1 /*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44 #include <linux/jump_label.h>
45
46 #include <asm/processor.h>
47 #include <asm/traps.h>
48 #include <asm/tlbflush.h>
49 #include <asm/mce.h>
50 #include <asm/msr.h>
51 #include <asm/reboot.h>
52
53 #include "mce-internal.h"
54
55 static DEFINE_MUTEX(mce_chrdev_read_mutex);
56
57 #define mce_log_get_idx_check(p) \
58 ({ \
59 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
60 !lockdep_is_held(&mce_chrdev_read_mutex), \
61 "suspicious mce_log_get_idx_check() usage"); \
62 smp_load_acquire(&(p)); \
63 })
64
65 /* sysfs synchronization */
66 static DEFINE_MUTEX(mce_sysfs_mutex);
67
68 #define CREATE_TRACE_POINTS
69 #include <trace/events/mce.h>
70
71 #define SPINUNIT 100 /* 100ns */
72
73 DEFINE_PER_CPU(unsigned, mce_exception_count);
74
75 struct mce_bank *mce_banks __read_mostly;
76 struct mce_vendor_flags mce_flags __read_mostly;
77
78 struct mca_config mca_cfg __read_mostly = {
79 .bootlog = -1,
80 /*
81 * Tolerant levels:
82 * 0: always panic on uncorrected errors, log corrected errors
83 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
84 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
85 * 3: never panic or SIGBUS, log all errors (for testing only)
86 */
87 .tolerant = 1,
88 .monarch_timeout = -1
89 };
90
91 /* User mode helper program triggered by machine check event */
92 static unsigned long mce_need_notify;
93 static char mce_helper[128];
94 static char *mce_helper_argv[2] = { mce_helper, NULL };
95
96 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
97
98 static DEFINE_PER_CPU(struct mce, mces_seen);
99 static int cpu_missing;
100
101 /*
102 * MCA banks polled by the period polling timer for corrected events.
103 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
104 */
105 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
106 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
107 };
108
109 /*
110 * MCA banks controlled through firmware first for corrected errors.
111 * This is a global list of banks for which we won't enable CMCI and we
112 * won't poll. Firmware controls these banks and is responsible for
113 * reporting corrected errors through GHES. Uncorrected/recoverable
114 * errors are still notified through a machine check.
115 */
116 mce_banks_t mce_banks_ce_disabled;
117
118 static struct work_struct mce_work;
119 static struct irq_work mce_irq_work;
120
121 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
122
123 /*
124 * CPU/chipset specific EDAC code can register a notifier call here to print
125 * MCE errors in a human-readable form.
126 */
127 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
128
129 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)130 void mce_setup(struct mce *m)
131 {
132 memset(m, 0, sizeof(struct mce));
133 m->cpu = m->extcpu = smp_processor_id();
134 m->tsc = rdtsc();
135 /* We hope get_seconds stays lockless */
136 m->time = get_seconds();
137 m->cpuvendor = boot_cpu_data.x86_vendor;
138 m->cpuid = cpuid_eax(1);
139 m->socketid = cpu_data(m->extcpu).phys_proc_id;
140 m->apicid = cpu_data(m->extcpu).initial_apicid;
141 rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
142 }
143
144 DEFINE_PER_CPU(struct mce, injectm);
145 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
146
147 /*
148 * Lockless MCE logging infrastructure.
149 * This avoids deadlocks on printk locks without having to break locks. Also
150 * separate MCEs from kernel messages to avoid bogus bug reports.
151 */
152
153 static struct mce_log mcelog = {
154 .signature = MCE_LOG_SIGNATURE,
155 .len = MCE_LOG_LEN,
156 .recordlen = sizeof(struct mce),
157 };
158
mce_log(struct mce * mce)159 void mce_log(struct mce *mce)
160 {
161 unsigned next, entry;
162
163 /* Emit the trace record: */
164 trace_mce_record(mce);
165
166 if (!mce_gen_pool_add(mce))
167 irq_work_queue(&mce_irq_work);
168
169 wmb();
170 for (;;) {
171 entry = mce_log_get_idx_check(mcelog.next);
172 for (;;) {
173
174 /*
175 * When the buffer fills up discard new entries.
176 * Assume that the earlier errors are the more
177 * interesting ones:
178 */
179 if (entry >= MCE_LOG_LEN) {
180 set_bit(MCE_OVERFLOW,
181 (unsigned long *)&mcelog.flags);
182 return;
183 }
184 /* Old left over entry. Skip: */
185 if (mcelog.entry[entry].finished) {
186 entry++;
187 continue;
188 }
189 break;
190 }
191 smp_rmb();
192 next = entry + 1;
193 if (cmpxchg(&mcelog.next, entry, next) == entry)
194 break;
195 }
196 memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
197 wmb();
198 mcelog.entry[entry].finished = 1;
199 wmb();
200
201 set_bit(0, &mce_need_notify);
202 }
203
mce_inject_log(struct mce * m)204 void mce_inject_log(struct mce *m)
205 {
206 mutex_lock(&mce_chrdev_read_mutex);
207 mce_log(m);
208 mutex_unlock(&mce_chrdev_read_mutex);
209 }
210 EXPORT_SYMBOL_GPL(mce_inject_log);
211
212 static struct notifier_block mce_srao_nb;
213
mce_register_decode_chain(struct notifier_block * nb)214 void mce_register_decode_chain(struct notifier_block *nb)
215 {
216 /* Ensure SRAO notifier has the highest priority in the decode chain. */
217 if (nb != &mce_srao_nb && nb->priority == INT_MAX)
218 nb->priority -= 1;
219
220 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
221 }
222 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
223
mce_unregister_decode_chain(struct notifier_block * nb)224 void mce_unregister_decode_chain(struct notifier_block *nb)
225 {
226 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
227 }
228 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
229
ctl_reg(int bank)230 static inline u32 ctl_reg(int bank)
231 {
232 return MSR_IA32_MCx_CTL(bank);
233 }
234
status_reg(int bank)235 static inline u32 status_reg(int bank)
236 {
237 return MSR_IA32_MCx_STATUS(bank);
238 }
239
addr_reg(int bank)240 static inline u32 addr_reg(int bank)
241 {
242 return MSR_IA32_MCx_ADDR(bank);
243 }
244
misc_reg(int bank)245 static inline u32 misc_reg(int bank)
246 {
247 return MSR_IA32_MCx_MISC(bank);
248 }
249
smca_ctl_reg(int bank)250 static inline u32 smca_ctl_reg(int bank)
251 {
252 return MSR_AMD64_SMCA_MCx_CTL(bank);
253 }
254
smca_status_reg(int bank)255 static inline u32 smca_status_reg(int bank)
256 {
257 return MSR_AMD64_SMCA_MCx_STATUS(bank);
258 }
259
smca_addr_reg(int bank)260 static inline u32 smca_addr_reg(int bank)
261 {
262 return MSR_AMD64_SMCA_MCx_ADDR(bank);
263 }
264
smca_misc_reg(int bank)265 static inline u32 smca_misc_reg(int bank)
266 {
267 return MSR_AMD64_SMCA_MCx_MISC(bank);
268 }
269
270 struct mca_msr_regs msr_ops = {
271 .ctl = ctl_reg,
272 .status = status_reg,
273 .addr = addr_reg,
274 .misc = misc_reg
275 };
276
print_mce(struct mce * m)277 static void print_mce(struct mce *m)
278 {
279 pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
280 m->extcpu, m->mcgstatus, m->bank, m->status);
281
282 if (m->ip) {
283 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
284 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
285 m->cs, m->ip);
286
287 if (m->cs == __KERNEL_CS)
288 print_symbol("{%s}", m->ip);
289 pr_cont("\n");
290 }
291
292 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
293 if (m->addr)
294 pr_cont("ADDR %llx ", m->addr);
295 if (m->misc)
296 pr_cont("MISC %llx ", m->misc);
297
298 if (mce_flags.smca) {
299 if (m->synd)
300 pr_cont("SYND %llx ", m->synd);
301 if (m->ipid)
302 pr_cont("IPID %llx ", m->ipid);
303 }
304
305 pr_cont("\n");
306 /*
307 * Note this output is parsed by external tools and old fields
308 * should not be changed.
309 */
310 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
311 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
312 cpu_data(m->extcpu).microcode);
313
314 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
315 }
316
317 #define PANIC_TIMEOUT 5 /* 5 seconds */
318
319 static atomic_t mce_panicked;
320
321 static int fake_panic;
322 static atomic_t mce_fake_panicked;
323
324 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)325 static void wait_for_panic(void)
326 {
327 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
328
329 preempt_disable();
330 local_irq_enable();
331 while (timeout-- > 0)
332 udelay(1);
333 if (panic_timeout == 0)
334 panic_timeout = mca_cfg.panic_timeout;
335 panic("Panicing machine check CPU died");
336 }
337
mce_panic(const char * msg,struct mce * final,char * exp)338 static void mce_panic(const char *msg, struct mce *final, char *exp)
339 {
340 int apei_err = 0;
341 struct llist_node *pending;
342 struct mce_evt_llist *l;
343
344 if (!fake_panic) {
345 /*
346 * Make sure only one CPU runs in machine check panic
347 */
348 if (atomic_inc_return(&mce_panicked) > 1)
349 wait_for_panic();
350 barrier();
351
352 bust_spinlocks(1);
353 console_verbose();
354 } else {
355 /* Don't log too much for fake panic */
356 if (atomic_inc_return(&mce_fake_panicked) > 1)
357 return;
358 }
359 pending = mce_gen_pool_prepare_records();
360 /* First print corrected ones that are still unlogged */
361 llist_for_each_entry(l, pending, llnode) {
362 struct mce *m = &l->mce;
363 if (!(m->status & MCI_STATUS_UC)) {
364 print_mce(m);
365 if (!apei_err)
366 apei_err = apei_write_mce(m);
367 }
368 }
369 /* Now print uncorrected but with the final one last */
370 llist_for_each_entry(l, pending, llnode) {
371 struct mce *m = &l->mce;
372 if (!(m->status & MCI_STATUS_UC))
373 continue;
374 if (!final || mce_cmp(m, final)) {
375 print_mce(m);
376 if (!apei_err)
377 apei_err = apei_write_mce(m);
378 }
379 }
380 if (final) {
381 print_mce(final);
382 if (!apei_err)
383 apei_err = apei_write_mce(final);
384 }
385 if (cpu_missing)
386 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
387 if (exp)
388 pr_emerg(HW_ERR "Machine check: %s\n", exp);
389 if (!fake_panic) {
390 if (panic_timeout == 0)
391 panic_timeout = mca_cfg.panic_timeout;
392 panic(msg);
393 } else
394 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
395 }
396
397 /* Support code for software error injection */
398
msr_to_offset(u32 msr)399 static int msr_to_offset(u32 msr)
400 {
401 unsigned bank = __this_cpu_read(injectm.bank);
402
403 if (msr == mca_cfg.rip_msr)
404 return offsetof(struct mce, ip);
405 if (msr == msr_ops.status(bank))
406 return offsetof(struct mce, status);
407 if (msr == msr_ops.addr(bank))
408 return offsetof(struct mce, addr);
409 if (msr == msr_ops.misc(bank))
410 return offsetof(struct mce, misc);
411 if (msr == MSR_IA32_MCG_STATUS)
412 return offsetof(struct mce, mcgstatus);
413 return -1;
414 }
415
416 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)417 static u64 mce_rdmsrl(u32 msr)
418 {
419 u64 v;
420
421 if (__this_cpu_read(injectm.finished)) {
422 int offset = msr_to_offset(msr);
423
424 if (offset < 0)
425 return 0;
426 return *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
427 }
428
429 if (rdmsrl_safe(msr, &v)) {
430 WARN_ONCE(1, "mce: Unable to read MSR 0x%x!\n", msr);
431 /*
432 * Return zero in case the access faulted. This should
433 * not happen normally but can happen if the CPU does
434 * something weird, or if the code is buggy.
435 */
436 v = 0;
437 }
438
439 return v;
440 }
441
mce_wrmsrl(u32 msr,u64 v)442 static void mce_wrmsrl(u32 msr, u64 v)
443 {
444 if (__this_cpu_read(injectm.finished)) {
445 int offset = msr_to_offset(msr);
446
447 if (offset >= 0)
448 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
449 return;
450 }
451 wrmsrl(msr, v);
452 }
453
454 /*
455 * Collect all global (w.r.t. this processor) status about this machine
456 * check into our "mce" struct so that we can use it later to assess
457 * the severity of the problem as we read per-bank specific details.
458 */
mce_gather_info(struct mce * m,struct pt_regs * regs)459 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
460 {
461 mce_setup(m);
462
463 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
464 if (regs) {
465 /*
466 * Get the address of the instruction at the time of
467 * the machine check error.
468 */
469 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
470 m->ip = regs->ip;
471 m->cs = regs->cs;
472
473 /*
474 * When in VM86 mode make the cs look like ring 3
475 * always. This is a lie, but it's better than passing
476 * the additional vm86 bit around everywhere.
477 */
478 if (v8086_mode(regs))
479 m->cs |= 3;
480 }
481 /* Use accurate RIP reporting if available. */
482 if (mca_cfg.rip_msr)
483 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
484 }
485 }
486
mce_available(struct cpuinfo_x86 * c)487 int mce_available(struct cpuinfo_x86 *c)
488 {
489 if (mca_cfg.disabled)
490 return 0;
491 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
492 }
493
mce_schedule_work(void)494 static void mce_schedule_work(void)
495 {
496 if (!mce_gen_pool_empty() && keventd_up())
497 schedule_work(&mce_work);
498 }
499
mce_irq_work_cb(struct irq_work * entry)500 static void mce_irq_work_cb(struct irq_work *entry)
501 {
502 mce_notify_irq();
503 mce_schedule_work();
504 }
505
mce_report_event(struct pt_regs * regs)506 static void mce_report_event(struct pt_regs *regs)
507 {
508 if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
509 mce_notify_irq();
510 /*
511 * Triggering the work queue here is just an insurance
512 * policy in case the syscall exit notify handler
513 * doesn't run soon enough or ends up running on the
514 * wrong CPU (can happen when audit sleeps)
515 */
516 mce_schedule_work();
517 return;
518 }
519
520 irq_work_queue(&mce_irq_work);
521 }
522
523 /*
524 * Check if the address reported by the CPU is in a format we can parse.
525 * It would be possible to add code for most other cases, but all would
526 * be somewhat complicated (e.g. segment offset would require an instruction
527 * parser). So only support physical addresses up to page granuality for now.
528 */
mce_usable_address(struct mce * m)529 static int mce_usable_address(struct mce *m)
530 {
531 if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
532 return 0;
533
534 /* Checks after this one are Intel-specific: */
535 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
536 return 1;
537
538 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
539 return 0;
540 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
541 return 0;
542 return 1;
543 }
544
srao_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)545 static int srao_decode_notifier(struct notifier_block *nb, unsigned long val,
546 void *data)
547 {
548 struct mce *mce = (struct mce *)data;
549 unsigned long pfn;
550
551 if (!mce)
552 return NOTIFY_DONE;
553
554 if (mce_usable_address(mce) && (mce->severity == MCE_AO_SEVERITY)) {
555 pfn = mce->addr >> PAGE_SHIFT;
556 memory_failure(pfn, MCE_VECTOR, 0);
557 }
558
559 return NOTIFY_OK;
560 }
561 static struct notifier_block mce_srao_nb = {
562 .notifier_call = srao_decode_notifier,
563 .priority = INT_MAX,
564 };
565
566 /*
567 * Read ADDR and MISC registers.
568 */
mce_read_aux(struct mce * m,int i)569 static void mce_read_aux(struct mce *m, int i)
570 {
571 if (m->status & MCI_STATUS_MISCV)
572 m->misc = mce_rdmsrl(msr_ops.misc(i));
573
574 if (m->status & MCI_STATUS_ADDRV) {
575 m->addr = mce_rdmsrl(msr_ops.addr(i));
576
577 /*
578 * Mask the reported address by the reported granularity.
579 */
580 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
581 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
582 m->addr >>= shift;
583 m->addr <<= shift;
584 }
585
586 /*
587 * Extract [55:<lsb>] where lsb is the least significant
588 * *valid* bit of the address bits.
589 */
590 if (mce_flags.smca) {
591 u8 lsb = (m->addr >> 56) & 0x3f;
592
593 m->addr &= GENMASK_ULL(55, lsb);
594 }
595 }
596
597 if (mce_flags.smca) {
598 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
599
600 if (m->status & MCI_STATUS_SYNDV)
601 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
602 }
603 }
604
mce_is_memory_error(struct mce * m)605 bool mce_is_memory_error(struct mce *m)
606 {
607 if (m->cpuvendor == X86_VENDOR_AMD) {
608 /* ErrCodeExt[20:16] */
609 u8 xec = (m->status >> 16) & 0x1f;
610
611 return (xec == 0x0 || xec == 0x8);
612 } else if (m->cpuvendor == X86_VENDOR_INTEL) {
613 /*
614 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
615 *
616 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
617 * indicating a memory error. Bit 8 is used for indicating a
618 * cache hierarchy error. The combination of bit 2 and bit 3
619 * is used for indicating a `generic' cache hierarchy error
620 * But we can't just blindly check the above bits, because if
621 * bit 11 is set, then it is a bus/interconnect error - and
622 * either way the above bits just gives more detail on what
623 * bus/interconnect error happened. Note that bit 12 can be
624 * ignored, as it's the "filter" bit.
625 */
626 return (m->status & 0xef80) == BIT(7) ||
627 (m->status & 0xef00) == BIT(8) ||
628 (m->status & 0xeffc) == 0xc;
629 }
630
631 return false;
632 }
633 EXPORT_SYMBOL_GPL(mce_is_memory_error);
634
635 DEFINE_PER_CPU(unsigned, mce_poll_count);
636
637 /*
638 * Poll for corrected events or events that happened before reset.
639 * Those are just logged through /dev/mcelog.
640 *
641 * This is executed in standard interrupt context.
642 *
643 * Note: spec recommends to panic for fatal unsignalled
644 * errors here. However this would be quite problematic --
645 * we would need to reimplement the Monarch handling and
646 * it would mess up the exclusion between exception handler
647 * and poll hander -- * so we skip this for now.
648 * These cases should not happen anyways, or only when the CPU
649 * is already totally * confused. In this case it's likely it will
650 * not fully execute the machine check handler either.
651 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)652 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
653 {
654 bool error_seen = false;
655 struct mce m;
656 int severity;
657 int i;
658
659 this_cpu_inc(mce_poll_count);
660
661 mce_gather_info(&m, NULL);
662
663 for (i = 0; i < mca_cfg.banks; i++) {
664 if (!mce_banks[i].ctl || !test_bit(i, *b))
665 continue;
666
667 m.misc = 0;
668 m.addr = 0;
669 m.bank = i;
670 m.tsc = 0;
671
672 barrier();
673 m.status = mce_rdmsrl(msr_ops.status(i));
674 if (!(m.status & MCI_STATUS_VAL))
675 continue;
676
677
678 /*
679 * Uncorrected or signalled events are handled by the exception
680 * handler when it is enabled, so don't process those here.
681 *
682 * TBD do the same check for MCI_STATUS_EN here?
683 */
684 if (!(flags & MCP_UC) &&
685 (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
686 continue;
687
688 error_seen = true;
689
690 mce_read_aux(&m, i);
691
692 if (!(flags & MCP_TIMESTAMP))
693 m.tsc = 0;
694
695 severity = mce_severity(&m, mca_cfg.tolerant, NULL, false);
696
697 if (severity == MCE_DEFERRED_SEVERITY && mce_is_memory_error(&m))
698 if (m.status & MCI_STATUS_ADDRV)
699 m.severity = severity;
700
701 /*
702 * Don't get the IP here because it's unlikely to
703 * have anything to do with the actual error location.
704 */
705 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
706 mce_log(&m);
707 else if (mce_usable_address(&m)) {
708 /*
709 * Although we skipped logging this, we still want
710 * to take action. Add to the pool so the registered
711 * notifiers will see it.
712 */
713 if (!mce_gen_pool_add(&m))
714 mce_schedule_work();
715 }
716
717 /*
718 * Clear state for this bank.
719 */
720 mce_wrmsrl(msr_ops.status(i), 0);
721 }
722
723 /*
724 * Don't clear MCG_STATUS here because it's only defined for
725 * exceptions.
726 */
727
728 sync_core();
729
730 return error_seen;
731 }
732 EXPORT_SYMBOL_GPL(machine_check_poll);
733
734 /*
735 * Do a quick check if any of the events requires a panic.
736 * This decides if we keep the events around or clear them.
737 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)738 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
739 struct pt_regs *regs)
740 {
741 int i, ret = 0;
742 char *tmp;
743
744 for (i = 0; i < mca_cfg.banks; i++) {
745 m->status = mce_rdmsrl(msr_ops.status(i));
746 if (m->status & MCI_STATUS_VAL) {
747 __set_bit(i, validp);
748 if (quirk_no_way_out)
749 quirk_no_way_out(i, m, regs);
750 }
751
752 if (mce_severity(m, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
753 *msg = tmp;
754 ret = 1;
755 }
756 }
757 return ret;
758 }
759
760 /*
761 * Variable to establish order between CPUs while scanning.
762 * Each CPU spins initially until executing is equal its number.
763 */
764 static atomic_t mce_executing;
765
766 /*
767 * Defines order of CPUs on entry. First CPU becomes Monarch.
768 */
769 static atomic_t mce_callin;
770
771 /*
772 * Check if a timeout waiting for other CPUs happened.
773 */
mce_timed_out(u64 * t,const char * msg)774 static int mce_timed_out(u64 *t, const char *msg)
775 {
776 /*
777 * The others already did panic for some reason.
778 * Bail out like in a timeout.
779 * rmb() to tell the compiler that system_state
780 * might have been modified by someone else.
781 */
782 rmb();
783 if (atomic_read(&mce_panicked))
784 wait_for_panic();
785 if (!mca_cfg.monarch_timeout)
786 goto out;
787 if ((s64)*t < SPINUNIT) {
788 if (mca_cfg.tolerant <= 1)
789 mce_panic(msg, NULL, NULL);
790 cpu_missing = 1;
791 return 1;
792 }
793 *t -= SPINUNIT;
794 out:
795 touch_nmi_watchdog();
796 return 0;
797 }
798
799 /*
800 * The Monarch's reign. The Monarch is the CPU who entered
801 * the machine check handler first. It waits for the others to
802 * raise the exception too and then grades them. When any
803 * error is fatal panic. Only then let the others continue.
804 *
805 * The other CPUs entering the MCE handler will be controlled by the
806 * Monarch. They are called Subjects.
807 *
808 * This way we prevent any potential data corruption in a unrecoverable case
809 * and also makes sure always all CPU's errors are examined.
810 *
811 * Also this detects the case of a machine check event coming from outer
812 * space (not detected by any CPUs) In this case some external agent wants
813 * us to shut down, so panic too.
814 *
815 * The other CPUs might still decide to panic if the handler happens
816 * in a unrecoverable place, but in this case the system is in a semi-stable
817 * state and won't corrupt anything by itself. It's ok to let the others
818 * continue for a bit first.
819 *
820 * All the spin loops have timeouts; when a timeout happens a CPU
821 * typically elects itself to be Monarch.
822 */
mce_reign(void)823 static void mce_reign(void)
824 {
825 int cpu;
826 struct mce *m = NULL;
827 int global_worst = 0;
828 char *msg = NULL;
829 char *nmsg = NULL;
830
831 /*
832 * This CPU is the Monarch and the other CPUs have run
833 * through their handlers.
834 * Grade the severity of the errors of all the CPUs.
835 */
836 for_each_possible_cpu(cpu) {
837 int severity = mce_severity(&per_cpu(mces_seen, cpu),
838 mca_cfg.tolerant,
839 &nmsg, true);
840 if (severity > global_worst) {
841 msg = nmsg;
842 global_worst = severity;
843 m = &per_cpu(mces_seen, cpu);
844 }
845 }
846
847 /*
848 * Cannot recover? Panic here then.
849 * This dumps all the mces in the log buffer and stops the
850 * other CPUs.
851 */
852 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
853 mce_panic("Fatal machine check", m, msg);
854
855 /*
856 * For UC somewhere we let the CPU who detects it handle it.
857 * Also must let continue the others, otherwise the handling
858 * CPU could deadlock on a lock.
859 */
860
861 /*
862 * No machine check event found. Must be some external
863 * source or one CPU is hung. Panic.
864 */
865 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
866 mce_panic("Fatal machine check from unknown source", NULL, NULL);
867
868 /*
869 * Now clear all the mces_seen so that they don't reappear on
870 * the next mce.
871 */
872 for_each_possible_cpu(cpu)
873 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
874 }
875
876 static atomic_t global_nwo;
877
878 /*
879 * Start of Monarch synchronization. This waits until all CPUs have
880 * entered the exception handler and then determines if any of them
881 * saw a fatal event that requires panic. Then it executes them
882 * in the entry order.
883 * TBD double check parallel CPU hotunplug
884 */
mce_start(int * no_way_out)885 static int mce_start(int *no_way_out)
886 {
887 int order;
888 int cpus = num_online_cpus();
889 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
890
891 if (!timeout)
892 return -1;
893
894 atomic_add(*no_way_out, &global_nwo);
895 /*
896 * Rely on the implied barrier below, such that global_nwo
897 * is updated before mce_callin.
898 */
899 order = atomic_inc_return(&mce_callin);
900
901 /*
902 * Wait for everyone.
903 */
904 while (atomic_read(&mce_callin) != cpus) {
905 if (mce_timed_out(&timeout,
906 "Timeout: Not all CPUs entered broadcast exception handler")) {
907 atomic_set(&global_nwo, 0);
908 return -1;
909 }
910 ndelay(SPINUNIT);
911 }
912
913 /*
914 * mce_callin should be read before global_nwo
915 */
916 smp_rmb();
917
918 if (order == 1) {
919 /*
920 * Monarch: Starts executing now, the others wait.
921 */
922 atomic_set(&mce_executing, 1);
923 } else {
924 /*
925 * Subject: Now start the scanning loop one by one in
926 * the original callin order.
927 * This way when there are any shared banks it will be
928 * only seen by one CPU before cleared, avoiding duplicates.
929 */
930 while (atomic_read(&mce_executing) < order) {
931 if (mce_timed_out(&timeout,
932 "Timeout: Subject CPUs unable to finish machine check processing")) {
933 atomic_set(&global_nwo, 0);
934 return -1;
935 }
936 ndelay(SPINUNIT);
937 }
938 }
939
940 /*
941 * Cache the global no_way_out state.
942 */
943 *no_way_out = atomic_read(&global_nwo);
944
945 return order;
946 }
947
948 /*
949 * Synchronize between CPUs after main scanning loop.
950 * This invokes the bulk of the Monarch processing.
951 */
mce_end(int order)952 static int mce_end(int order)
953 {
954 int ret = -1;
955 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
956
957 if (!timeout)
958 goto reset;
959 if (order < 0)
960 goto reset;
961
962 /*
963 * Allow others to run.
964 */
965 atomic_inc(&mce_executing);
966
967 if (order == 1) {
968 /* CHECKME: Can this race with a parallel hotplug? */
969 int cpus = num_online_cpus();
970
971 /*
972 * Monarch: Wait for everyone to go through their scanning
973 * loops.
974 */
975 while (atomic_read(&mce_executing) <= cpus) {
976 if (mce_timed_out(&timeout,
977 "Timeout: Monarch CPU unable to finish machine check processing"))
978 goto reset;
979 ndelay(SPINUNIT);
980 }
981
982 mce_reign();
983 barrier();
984 ret = 0;
985 } else {
986 /*
987 * Subject: Wait for Monarch to finish.
988 */
989 while (atomic_read(&mce_executing) != 0) {
990 if (mce_timed_out(&timeout,
991 "Timeout: Monarch CPU did not finish machine check processing"))
992 goto reset;
993 ndelay(SPINUNIT);
994 }
995
996 /*
997 * Don't reset anything. That's done by the Monarch.
998 */
999 return 0;
1000 }
1001
1002 /*
1003 * Reset all global state.
1004 */
1005 reset:
1006 atomic_set(&global_nwo, 0);
1007 atomic_set(&mce_callin, 0);
1008 barrier();
1009
1010 /*
1011 * Let others run again.
1012 */
1013 atomic_set(&mce_executing, 0);
1014 return ret;
1015 }
1016
mce_clear_state(unsigned long * toclear)1017 static void mce_clear_state(unsigned long *toclear)
1018 {
1019 int i;
1020
1021 for (i = 0; i < mca_cfg.banks; i++) {
1022 if (test_bit(i, toclear))
1023 mce_wrmsrl(msr_ops.status(i), 0);
1024 }
1025 }
1026
do_memory_failure(struct mce * m)1027 static int do_memory_failure(struct mce *m)
1028 {
1029 int flags = MF_ACTION_REQUIRED;
1030 int ret;
1031
1032 pr_err("Uncorrected hardware memory error in user-access at %llx", m->addr);
1033 if (!(m->mcgstatus & MCG_STATUS_RIPV))
1034 flags |= MF_MUST_KILL;
1035 ret = memory_failure(m->addr >> PAGE_SHIFT, MCE_VECTOR, flags);
1036 if (ret)
1037 pr_err("Memory error not recovered");
1038 return ret;
1039 }
1040
1041 /*
1042 * The actual machine check handler. This only handles real
1043 * exceptions when something got corrupted coming in through int 18.
1044 *
1045 * This is executed in NMI context not subject to normal locking rules. This
1046 * implies that most kernel services cannot be safely used. Don't even
1047 * think about putting a printk in there!
1048 *
1049 * On Intel systems this is entered on all CPUs in parallel through
1050 * MCE broadcast. However some CPUs might be broken beyond repair,
1051 * so be always careful when synchronizing with others.
1052 */
do_machine_check(struct pt_regs * regs,long error_code)1053 void do_machine_check(struct pt_regs *regs, long error_code)
1054 {
1055 struct mca_config *cfg = &mca_cfg;
1056 struct mce m, *final;
1057 int i;
1058 int worst = 0;
1059 int severity;
1060
1061 /*
1062 * Establish sequential order between the CPUs entering the machine
1063 * check handler.
1064 */
1065 int order = -1;
1066 /*
1067 * If no_way_out gets set, there is no safe way to recover from this
1068 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1069 */
1070 int no_way_out = 0;
1071 /*
1072 * If kill_it gets set, there might be a way to recover from this
1073 * error.
1074 */
1075 int kill_it = 0;
1076 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1077 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1078 char *msg = "Unknown";
1079
1080 /*
1081 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1082 * on Intel.
1083 */
1084 int lmce = 1;
1085 int cpu = smp_processor_id();
1086
1087 /*
1088 * Cases where we avoid rendezvous handler timeout:
1089 * 1) If this CPU is offline.
1090 *
1091 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1092 * skip those CPUs which remain looping in the 1st kernel - see
1093 * crash_nmi_callback().
1094 *
1095 * Note: there still is a small window between kexec-ing and the new,
1096 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1097 * might not get handled properly.
1098 */
1099 if (cpu_is_offline(cpu) ||
1100 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1101 u64 mcgstatus;
1102
1103 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
1104 if (mcgstatus & MCG_STATUS_RIPV) {
1105 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1106 return;
1107 }
1108 }
1109
1110 ist_enter(regs);
1111
1112 this_cpu_inc(mce_exception_count);
1113
1114 if (!cfg->banks)
1115 goto out;
1116
1117 mce_gather_info(&m, regs);
1118
1119 final = this_cpu_ptr(&mces_seen);
1120 *final = m;
1121
1122 memset(valid_banks, 0, sizeof(valid_banks));
1123 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1124
1125 barrier();
1126
1127 /*
1128 * When no restart IP might need to kill or panic.
1129 * Assume the worst for now, but if we find the
1130 * severity is MCE_AR_SEVERITY we have other options.
1131 */
1132 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1133 kill_it = 1;
1134
1135 /*
1136 * Check if this MCE is signaled to only this logical processor,
1137 * on Intel only.
1138 */
1139 if (m.cpuvendor == X86_VENDOR_INTEL)
1140 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1141
1142 /*
1143 * Go through all banks in exclusion of the other CPUs. This way we
1144 * don't report duplicated events on shared banks because the first one
1145 * to see it will clear it. If this is a Local MCE, then no need to
1146 * perform rendezvous.
1147 */
1148 if (!lmce)
1149 order = mce_start(&no_way_out);
1150
1151 for (i = 0; i < cfg->banks; i++) {
1152 __clear_bit(i, toclear);
1153 if (!test_bit(i, valid_banks))
1154 continue;
1155 if (!mce_banks[i].ctl)
1156 continue;
1157
1158 m.misc = 0;
1159 m.addr = 0;
1160 m.bank = i;
1161
1162 m.status = mce_rdmsrl(msr_ops.status(i));
1163 if ((m.status & MCI_STATUS_VAL) == 0)
1164 continue;
1165
1166 /*
1167 * Non uncorrected or non signaled errors are handled by
1168 * machine_check_poll. Leave them alone, unless this panics.
1169 */
1170 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1171 !no_way_out)
1172 continue;
1173
1174 /*
1175 * Set taint even when machine check was not enabled.
1176 */
1177 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1178
1179 severity = mce_severity(&m, cfg->tolerant, NULL, true);
1180
1181 /*
1182 * When machine check was for corrected/deferred handler don't
1183 * touch, unless we're panicing.
1184 */
1185 if ((severity == MCE_KEEP_SEVERITY ||
1186 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1187 continue;
1188 __set_bit(i, toclear);
1189 if (severity == MCE_NO_SEVERITY) {
1190 /*
1191 * Machine check event was not enabled. Clear, but
1192 * ignore.
1193 */
1194 continue;
1195 }
1196
1197 mce_read_aux(&m, i);
1198
1199 /* assuming valid severity level != 0 */
1200 m.severity = severity;
1201
1202 mce_log(&m);
1203
1204 if (severity > worst) {
1205 *final = m;
1206 worst = severity;
1207 }
1208 }
1209
1210 /* mce_clear_state will clear *final, save locally for use later */
1211 m = *final;
1212
1213 if (!no_way_out)
1214 mce_clear_state(toclear);
1215
1216 /*
1217 * Do most of the synchronization with other CPUs.
1218 * When there's any problem use only local no_way_out state.
1219 */
1220 if (!lmce) {
1221 if (mce_end(order) < 0)
1222 no_way_out = worst >= MCE_PANIC_SEVERITY;
1223 } else {
1224 /*
1225 * Local MCE skipped calling mce_reign()
1226 * If we found a fatal error, we need to panic here.
1227 */
1228 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
1229 mce_panic("Machine check from unknown source",
1230 NULL, NULL);
1231 }
1232
1233 /*
1234 * If tolerant is at an insane level we drop requests to kill
1235 * processes and continue even when there is no way out.
1236 */
1237 if (cfg->tolerant == 3)
1238 kill_it = 0;
1239 else if (no_way_out)
1240 mce_panic("Fatal machine check on current CPU", &m, msg);
1241
1242 if (worst > 0)
1243 mce_report_event(regs);
1244 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1245 out:
1246 sync_core();
1247
1248 if (worst != MCE_AR_SEVERITY && !kill_it)
1249 goto out_ist;
1250
1251 /* Fault was in user mode and we need to take some action */
1252 if ((m.cs & 3) == 3) {
1253 ist_begin_non_atomic(regs);
1254 local_irq_enable();
1255
1256 if (kill_it || do_memory_failure(&m))
1257 force_sig(SIGBUS, current);
1258 local_irq_disable();
1259 ist_end_non_atomic();
1260 } else {
1261 if (!fixup_exception(regs, X86_TRAP_MC))
1262 mce_panic("Failed kernel mode recovery", &m, NULL);
1263 }
1264
1265 out_ist:
1266 ist_exit(regs);
1267 }
1268 EXPORT_SYMBOL_GPL(do_machine_check);
1269
1270 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int vector,int flags)1271 int memory_failure(unsigned long pfn, int vector, int flags)
1272 {
1273 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1274 BUG_ON(flags & MF_ACTION_REQUIRED);
1275 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1276 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1277 pfn);
1278
1279 return 0;
1280 }
1281 #endif
1282
1283 /*
1284 * Action optional processing happens here (picking up
1285 * from the list of faulting pages that do_machine_check()
1286 * placed into the genpool).
1287 */
mce_process_work(struct work_struct * dummy)1288 static void mce_process_work(struct work_struct *dummy)
1289 {
1290 mce_gen_pool_process();
1291 }
1292
1293 #ifdef CONFIG_X86_MCE_INTEL
1294 /***
1295 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1296 * @cpu: The CPU on which the event occurred.
1297 * @status: Event status information
1298 *
1299 * This function should be called by the thermal interrupt after the
1300 * event has been processed and the decision was made to log the event
1301 * further.
1302 *
1303 * The status parameter will be saved to the 'status' field of 'struct mce'
1304 * and historically has been the register value of the
1305 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1306 */
mce_log_therm_throt_event(__u64 status)1307 void mce_log_therm_throt_event(__u64 status)
1308 {
1309 struct mce m;
1310
1311 mce_setup(&m);
1312 m.bank = MCE_THERMAL_BANK;
1313 m.status = status;
1314 mce_log(&m);
1315 }
1316 #endif /* CONFIG_X86_MCE_INTEL */
1317
1318 /*
1319 * Periodic polling timer for "silent" machine check errors. If the
1320 * poller finds an MCE, poll 2x faster. When the poller finds no more
1321 * errors, poll 2x slower (up to check_interval seconds).
1322 */
1323 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1324
1325 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1326 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1327
mce_adjust_timer_default(unsigned long interval)1328 static unsigned long mce_adjust_timer_default(unsigned long interval)
1329 {
1330 return interval;
1331 }
1332
1333 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1334
__restart_timer(struct timer_list * t,unsigned long interval)1335 static void __restart_timer(struct timer_list *t, unsigned long interval)
1336 {
1337 unsigned long when = jiffies + interval;
1338 unsigned long flags;
1339
1340 local_irq_save(flags);
1341
1342 if (timer_pending(t)) {
1343 if (time_before(when, t->expires))
1344 mod_timer(t, when);
1345 } else {
1346 t->expires = round_jiffies(when);
1347 add_timer_on(t, smp_processor_id());
1348 }
1349
1350 local_irq_restore(flags);
1351 }
1352
mce_timer_fn(unsigned long data)1353 static void mce_timer_fn(unsigned long data)
1354 {
1355 struct timer_list *t = this_cpu_ptr(&mce_timer);
1356 int cpu = smp_processor_id();
1357 unsigned long iv;
1358
1359 WARN_ON(cpu != data);
1360
1361 iv = __this_cpu_read(mce_next_interval);
1362
1363 if (mce_available(this_cpu_ptr(&cpu_info))) {
1364 machine_check_poll(MCP_TIMESTAMP, this_cpu_ptr(&mce_poll_banks));
1365
1366 if (mce_intel_cmci_poll()) {
1367 iv = mce_adjust_timer(iv);
1368 goto done;
1369 }
1370 }
1371
1372 /*
1373 * Alert userspace if needed. If we logged an MCE, reduce the polling
1374 * interval, otherwise increase the polling interval.
1375 */
1376 if (mce_notify_irq())
1377 iv = max(iv / 2, (unsigned long) HZ/100);
1378 else
1379 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1380
1381 done:
1382 __this_cpu_write(mce_next_interval, iv);
1383 __restart_timer(t, iv);
1384 }
1385
1386 /*
1387 * Ensure that the timer is firing in @interval from now.
1388 */
mce_timer_kick(unsigned long interval)1389 void mce_timer_kick(unsigned long interval)
1390 {
1391 struct timer_list *t = this_cpu_ptr(&mce_timer);
1392 unsigned long iv = __this_cpu_read(mce_next_interval);
1393
1394 __restart_timer(t, interval);
1395
1396 if (interval < iv)
1397 __this_cpu_write(mce_next_interval, interval);
1398 }
1399
1400 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1401 static void mce_timer_delete_all(void)
1402 {
1403 int cpu;
1404
1405 for_each_online_cpu(cpu)
1406 del_timer_sync(&per_cpu(mce_timer, cpu));
1407 }
1408
mce_do_trigger(struct work_struct * work)1409 static void mce_do_trigger(struct work_struct *work)
1410 {
1411 call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1412 }
1413
1414 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1415
1416 /*
1417 * Notify the user(s) about new machine check events.
1418 * Can be called from interrupt context, but not from machine check/NMI
1419 * context.
1420 */
mce_notify_irq(void)1421 int mce_notify_irq(void)
1422 {
1423 /* Not more than two messages every minute */
1424 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1425
1426 if (test_and_clear_bit(0, &mce_need_notify)) {
1427 /* wake processes polling /dev/mcelog */
1428 wake_up_interruptible(&mce_chrdev_wait);
1429
1430 if (mce_helper[0])
1431 schedule_work(&mce_trigger_work);
1432
1433 if (__ratelimit(&ratelimit))
1434 pr_info(HW_ERR "Machine check events logged\n");
1435
1436 return 1;
1437 }
1438 return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(mce_notify_irq);
1441
__mcheck_cpu_mce_banks_init(void)1442 static int __mcheck_cpu_mce_banks_init(void)
1443 {
1444 int i;
1445 u8 num_banks = mca_cfg.banks;
1446
1447 mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1448 if (!mce_banks)
1449 return -ENOMEM;
1450
1451 for (i = 0; i < num_banks; i++) {
1452 struct mce_bank *b = &mce_banks[i];
1453
1454 b->ctl = -1ULL;
1455 b->init = 1;
1456 }
1457 return 0;
1458 }
1459
1460 /*
1461 * Initialize Machine Checks for a CPU.
1462 */
__mcheck_cpu_cap_init(void)1463 static int __mcheck_cpu_cap_init(void)
1464 {
1465 unsigned b;
1466 u64 cap;
1467
1468 rdmsrl(MSR_IA32_MCG_CAP, cap);
1469
1470 b = cap & MCG_BANKCNT_MASK;
1471 if (!mca_cfg.banks)
1472 pr_info("CPU supports %d MCE banks\n", b);
1473
1474 if (b > MAX_NR_BANKS) {
1475 pr_warn("Using only %u machine check banks out of %u\n",
1476 MAX_NR_BANKS, b);
1477 b = MAX_NR_BANKS;
1478 }
1479
1480 /* Don't support asymmetric configurations today */
1481 WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1482 mca_cfg.banks = b;
1483
1484 if (!mce_banks) {
1485 int err = __mcheck_cpu_mce_banks_init();
1486
1487 if (err)
1488 return err;
1489 }
1490
1491 /* Use accurate RIP reporting if available. */
1492 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1493 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1494
1495 if (cap & MCG_SER_P)
1496 mca_cfg.ser = true;
1497
1498 return 0;
1499 }
1500
__mcheck_cpu_init_generic(void)1501 static void __mcheck_cpu_init_generic(void)
1502 {
1503 enum mcp_flags m_fl = 0;
1504 mce_banks_t all_banks;
1505 u64 cap;
1506
1507 if (!mca_cfg.bootlog)
1508 m_fl = MCP_DONTLOG;
1509
1510 /*
1511 * Log the machine checks left over from the previous reset.
1512 */
1513 bitmap_fill(all_banks, MAX_NR_BANKS);
1514 machine_check_poll(MCP_UC | m_fl, &all_banks);
1515
1516 cr4_set_bits(X86_CR4_MCE);
1517
1518 rdmsrl(MSR_IA32_MCG_CAP, cap);
1519 if (cap & MCG_CTL_P)
1520 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1521 }
1522
__mcheck_cpu_init_clear_banks(void)1523 static void __mcheck_cpu_init_clear_banks(void)
1524 {
1525 int i;
1526
1527 for (i = 0; i < mca_cfg.banks; i++) {
1528 struct mce_bank *b = &mce_banks[i];
1529
1530 if (!b->init)
1531 continue;
1532 wrmsrl(msr_ops.ctl(i), b->ctl);
1533 wrmsrl(msr_ops.status(i), 0);
1534 }
1535 }
1536
1537 /*
1538 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1539 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1540 * Vol 3B Table 15-20). But this confuses both the code that determines
1541 * whether the machine check occurred in kernel or user mode, and also
1542 * the severity assessment code. Pretend that EIPV was set, and take the
1543 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1544 */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)1545 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1546 {
1547 if (bank != 0)
1548 return;
1549 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1550 return;
1551 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1552 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1553 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1554 MCACOD)) !=
1555 (MCI_STATUS_UC|MCI_STATUS_EN|
1556 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1557 MCI_STATUS_AR|MCACOD_INSTR))
1558 return;
1559
1560 m->mcgstatus |= MCG_STATUS_EIPV;
1561 m->ip = regs->ip;
1562 m->cs = regs->cs;
1563 }
1564
1565 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1566 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1567 {
1568 struct mca_config *cfg = &mca_cfg;
1569
1570 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1571 pr_info("unknown CPU type - not enabling MCE support\n");
1572 return -EOPNOTSUPP;
1573 }
1574
1575 /* This should be disabled by the BIOS, but isn't always */
1576 if (c->x86_vendor == X86_VENDOR_AMD) {
1577 if (c->x86 == 15 && cfg->banks > 4) {
1578 /*
1579 * disable GART TBL walk error reporting, which
1580 * trips off incorrectly with the IOMMU & 3ware
1581 * & Cerberus:
1582 */
1583 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1584 }
1585 if (c->x86 < 17 && cfg->bootlog < 0) {
1586 /*
1587 * Lots of broken BIOS around that don't clear them
1588 * by default and leave crap in there. Don't log:
1589 */
1590 cfg->bootlog = 0;
1591 }
1592 /*
1593 * Various K7s with broken bank 0 around. Always disable
1594 * by default.
1595 */
1596 if (c->x86 == 6 && cfg->banks > 0)
1597 mce_banks[0].ctl = 0;
1598
1599 /*
1600 * overflow_recov is supported for F15h Models 00h-0fh
1601 * even though we don't have a CPUID bit for it.
1602 */
1603 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1604 mce_flags.overflow_recov = 1;
1605
1606 /*
1607 * Turn off MC4_MISC thresholding banks on those models since
1608 * they're not supported there.
1609 */
1610 if (c->x86 == 0x15 &&
1611 (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1612 int i;
1613 u64 hwcr;
1614 bool need_toggle;
1615 u32 msrs[] = {
1616 0x00000413, /* MC4_MISC0 */
1617 0xc0000408, /* MC4_MISC1 */
1618 };
1619
1620 rdmsrl(MSR_K7_HWCR, hwcr);
1621
1622 /* McStatusWrEn has to be set */
1623 need_toggle = !(hwcr & BIT(18));
1624
1625 if (need_toggle)
1626 wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1627
1628 /* Clear CntP bit safely */
1629 for (i = 0; i < ARRAY_SIZE(msrs); i++)
1630 msr_clear_bit(msrs[i], 62);
1631
1632 /* restore old settings */
1633 if (need_toggle)
1634 wrmsrl(MSR_K7_HWCR, hwcr);
1635 }
1636 }
1637
1638 if (c->x86_vendor == X86_VENDOR_INTEL) {
1639 /*
1640 * SDM documents that on family 6 bank 0 should not be written
1641 * because it aliases to another special BIOS controlled
1642 * register.
1643 * But it's not aliased anymore on model 0x1a+
1644 * Don't ignore bank 0 completely because there could be a
1645 * valid event later, merely don't write CTL0.
1646 */
1647
1648 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1649 mce_banks[0].init = 0;
1650
1651 /*
1652 * All newer Intel systems support MCE broadcasting. Enable
1653 * synchronization with a one second timeout.
1654 */
1655 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1656 cfg->monarch_timeout < 0)
1657 cfg->monarch_timeout = USEC_PER_SEC;
1658
1659 /*
1660 * There are also broken BIOSes on some Pentium M and
1661 * earlier systems:
1662 */
1663 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1664 cfg->bootlog = 0;
1665
1666 if (c->x86 == 6 && c->x86_model == 45)
1667 quirk_no_way_out = quirk_sandybridge_ifu;
1668 }
1669 if (cfg->monarch_timeout < 0)
1670 cfg->monarch_timeout = 0;
1671 if (cfg->bootlog != 0)
1672 cfg->panic_timeout = 30;
1673
1674 return 0;
1675 }
1676
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1677 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1678 {
1679 if (c->x86 != 5)
1680 return 0;
1681
1682 switch (c->x86_vendor) {
1683 case X86_VENDOR_INTEL:
1684 intel_p5_mcheck_init(c);
1685 return 1;
1686 break;
1687 case X86_VENDOR_CENTAUR:
1688 winchip_mcheck_init(c);
1689 return 1;
1690 break;
1691 default:
1692 return 0;
1693 }
1694
1695 return 0;
1696 }
1697
1698 /*
1699 * Init basic CPU features needed for early decoding of MCEs.
1700 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1701 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1702 {
1703 if (c->x86_vendor == X86_VENDOR_AMD) {
1704 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1705 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1706 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1707
1708 if (mce_flags.smca) {
1709 msr_ops.ctl = smca_ctl_reg;
1710 msr_ops.status = smca_status_reg;
1711 msr_ops.addr = smca_addr_reg;
1712 msr_ops.misc = smca_misc_reg;
1713 }
1714 }
1715 }
1716
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1717 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1718 {
1719 switch (c->x86_vendor) {
1720 case X86_VENDOR_INTEL:
1721 mce_intel_feature_init(c);
1722 mce_adjust_timer = cmci_intel_adjust_timer;
1723 break;
1724
1725 case X86_VENDOR_AMD: {
1726 mce_amd_feature_init(c);
1727 break;
1728 }
1729
1730 default:
1731 break;
1732 }
1733 }
1734
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1735 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1736 {
1737 switch (c->x86_vendor) {
1738 case X86_VENDOR_INTEL:
1739 mce_intel_feature_clear(c);
1740 break;
1741 default:
1742 break;
1743 }
1744 }
1745
mce_start_timer(unsigned int cpu,struct timer_list * t)1746 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1747 {
1748 unsigned long iv = check_interval * HZ;
1749
1750 if (mca_cfg.ignore_ce || !iv)
1751 return;
1752
1753 per_cpu(mce_next_interval, cpu) = iv;
1754
1755 t->expires = round_jiffies(jiffies + iv);
1756 add_timer_on(t, cpu);
1757 }
1758
__mcheck_cpu_init_timer(void)1759 static void __mcheck_cpu_init_timer(void)
1760 {
1761 struct timer_list *t = this_cpu_ptr(&mce_timer);
1762 unsigned int cpu = smp_processor_id();
1763
1764 setup_pinned_timer(t, mce_timer_fn, cpu);
1765 mce_start_timer(cpu, t);
1766 }
1767
1768 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs,long error_code)1769 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1770 {
1771 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1772 smp_processor_id());
1773 }
1774
1775 /* Call the installed machine check handler for this CPU setup. */
1776 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1777 unexpected_machine_check;
1778
do_mce(struct pt_regs * regs,long error_code)1779 dotraplinkage void do_mce(struct pt_regs *regs, long error_code)
1780 {
1781 machine_check_vector(regs, error_code);
1782 }
1783
1784 /*
1785 * Called for each booted CPU to set up machine checks.
1786 * Must be called with preempt off:
1787 */
mcheck_cpu_init(struct cpuinfo_x86 * c)1788 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1789 {
1790 if (mca_cfg.disabled)
1791 return;
1792
1793 if (__mcheck_cpu_ancient_init(c))
1794 return;
1795
1796 if (!mce_available(c))
1797 return;
1798
1799 if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1800 mca_cfg.disabled = true;
1801 return;
1802 }
1803
1804 if (mce_gen_pool_init()) {
1805 mca_cfg.disabled = true;
1806 pr_emerg("Couldn't allocate MCE records pool!\n");
1807 return;
1808 }
1809
1810 machine_check_vector = do_machine_check;
1811
1812 __mcheck_cpu_init_early(c);
1813 __mcheck_cpu_init_generic();
1814 __mcheck_cpu_init_vendor(c);
1815 __mcheck_cpu_init_clear_banks();
1816 __mcheck_cpu_init_timer();
1817 }
1818
1819 /*
1820 * Called for each booted CPU to clear some machine checks opt-ins
1821 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)1822 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
1823 {
1824 if (mca_cfg.disabled)
1825 return;
1826
1827 if (!mce_available(c))
1828 return;
1829
1830 /*
1831 * Possibly to clear general settings generic to x86
1832 * __mcheck_cpu_clear_generic(c);
1833 */
1834 __mcheck_cpu_clear_vendor(c);
1835
1836 }
1837
1838 /*
1839 * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1840 */
1841
1842 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1843 static int mce_chrdev_open_count; /* #times opened */
1844 static int mce_chrdev_open_exclu; /* already open exclusive? */
1845
mce_chrdev_open(struct inode * inode,struct file * file)1846 static int mce_chrdev_open(struct inode *inode, struct file *file)
1847 {
1848 spin_lock(&mce_chrdev_state_lock);
1849
1850 if (mce_chrdev_open_exclu ||
1851 (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1852 spin_unlock(&mce_chrdev_state_lock);
1853
1854 return -EBUSY;
1855 }
1856
1857 if (file->f_flags & O_EXCL)
1858 mce_chrdev_open_exclu = 1;
1859 mce_chrdev_open_count++;
1860
1861 spin_unlock(&mce_chrdev_state_lock);
1862
1863 return nonseekable_open(inode, file);
1864 }
1865
mce_chrdev_release(struct inode * inode,struct file * file)1866 static int mce_chrdev_release(struct inode *inode, struct file *file)
1867 {
1868 spin_lock(&mce_chrdev_state_lock);
1869
1870 mce_chrdev_open_count--;
1871 mce_chrdev_open_exclu = 0;
1872
1873 spin_unlock(&mce_chrdev_state_lock);
1874
1875 return 0;
1876 }
1877
collect_tscs(void * data)1878 static void collect_tscs(void *data)
1879 {
1880 unsigned long *cpu_tsc = (unsigned long *)data;
1881
1882 cpu_tsc[smp_processor_id()] = rdtsc();
1883 }
1884
1885 static int mce_apei_read_done;
1886
1887 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
__mce_read_apei(char __user ** ubuf,size_t usize)1888 static int __mce_read_apei(char __user **ubuf, size_t usize)
1889 {
1890 int rc;
1891 u64 record_id;
1892 struct mce m;
1893
1894 if (usize < sizeof(struct mce))
1895 return -EINVAL;
1896
1897 rc = apei_read_mce(&m, &record_id);
1898 /* Error or no more MCE record */
1899 if (rc <= 0) {
1900 mce_apei_read_done = 1;
1901 /*
1902 * When ERST is disabled, mce_chrdev_read() should return
1903 * "no record" instead of "no device."
1904 */
1905 if (rc == -ENODEV)
1906 return 0;
1907 return rc;
1908 }
1909 rc = -EFAULT;
1910 if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1911 return rc;
1912 /*
1913 * In fact, we should have cleared the record after that has
1914 * been flushed to the disk or sent to network in
1915 * /sbin/mcelog, but we have no interface to support that now,
1916 * so just clear it to avoid duplication.
1917 */
1918 rc = apei_clear_mce(record_id);
1919 if (rc) {
1920 mce_apei_read_done = 1;
1921 return rc;
1922 }
1923 *ubuf += sizeof(struct mce);
1924
1925 return 0;
1926 }
1927
mce_chrdev_read(struct file * filp,char __user * ubuf,size_t usize,loff_t * off)1928 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1929 size_t usize, loff_t *off)
1930 {
1931 char __user *buf = ubuf;
1932 unsigned long *cpu_tsc;
1933 unsigned prev, next;
1934 int i, err;
1935
1936 cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1937 if (!cpu_tsc)
1938 return -ENOMEM;
1939
1940 mutex_lock(&mce_chrdev_read_mutex);
1941
1942 if (!mce_apei_read_done) {
1943 err = __mce_read_apei(&buf, usize);
1944 if (err || buf != ubuf)
1945 goto out;
1946 }
1947
1948 next = mce_log_get_idx_check(mcelog.next);
1949
1950 /* Only supports full reads right now */
1951 err = -EINVAL;
1952 if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1953 goto out;
1954
1955 err = 0;
1956 prev = 0;
1957 do {
1958 for (i = prev; i < next; i++) {
1959 unsigned long start = jiffies;
1960 struct mce *m = &mcelog.entry[i];
1961
1962 while (!m->finished) {
1963 if (time_after_eq(jiffies, start + 2)) {
1964 memset(m, 0, sizeof(*m));
1965 goto timeout;
1966 }
1967 cpu_relax();
1968 }
1969 smp_rmb();
1970 err |= copy_to_user(buf, m, sizeof(*m));
1971 buf += sizeof(*m);
1972 timeout:
1973 ;
1974 }
1975
1976 memset(mcelog.entry + prev, 0,
1977 (next - prev) * sizeof(struct mce));
1978 prev = next;
1979 next = cmpxchg(&mcelog.next, prev, 0);
1980 } while (next != prev);
1981
1982 synchronize_sched();
1983
1984 /*
1985 * Collect entries that were still getting written before the
1986 * synchronize.
1987 */
1988 on_each_cpu(collect_tscs, cpu_tsc, 1);
1989
1990 for (i = next; i < MCE_LOG_LEN; i++) {
1991 struct mce *m = &mcelog.entry[i];
1992
1993 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1994 err |= copy_to_user(buf, m, sizeof(*m));
1995 smp_rmb();
1996 buf += sizeof(*m);
1997 memset(m, 0, sizeof(*m));
1998 }
1999 }
2000
2001 if (err)
2002 err = -EFAULT;
2003
2004 out:
2005 mutex_unlock(&mce_chrdev_read_mutex);
2006 kfree(cpu_tsc);
2007
2008 return err ? err : buf - ubuf;
2009 }
2010
mce_chrdev_poll(struct file * file,poll_table * wait)2011 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
2012 {
2013 poll_wait(file, &mce_chrdev_wait, wait);
2014 if (READ_ONCE(mcelog.next))
2015 return POLLIN | POLLRDNORM;
2016 if (!mce_apei_read_done && apei_check_mce())
2017 return POLLIN | POLLRDNORM;
2018 return 0;
2019 }
2020
mce_chrdev_ioctl(struct file * f,unsigned int cmd,unsigned long arg)2021 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
2022 unsigned long arg)
2023 {
2024 int __user *p = (int __user *)arg;
2025
2026 if (!capable(CAP_SYS_ADMIN))
2027 return -EPERM;
2028
2029 switch (cmd) {
2030 case MCE_GET_RECORD_LEN:
2031 return put_user(sizeof(struct mce), p);
2032 case MCE_GET_LOG_LEN:
2033 return put_user(MCE_LOG_LEN, p);
2034 case MCE_GETCLEAR_FLAGS: {
2035 unsigned flags;
2036
2037 do {
2038 flags = mcelog.flags;
2039 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
2040
2041 return put_user(flags, p);
2042 }
2043 default:
2044 return -ENOTTY;
2045 }
2046 }
2047
2048 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
2049 size_t usize, loff_t *off);
2050
register_mce_write_callback(ssize_t (* fn)(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off))2051 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
2052 const char __user *ubuf,
2053 size_t usize, loff_t *off))
2054 {
2055 mce_write = fn;
2056 }
2057 EXPORT_SYMBOL_GPL(register_mce_write_callback);
2058
mce_chrdev_write(struct file * filp,const char __user * ubuf,size_t usize,loff_t * off)2059 static ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
2060 size_t usize, loff_t *off)
2061 {
2062 if (mce_write)
2063 return mce_write(filp, ubuf, usize, off);
2064 else
2065 return -EINVAL;
2066 }
2067
2068 static const struct file_operations mce_chrdev_ops = {
2069 .open = mce_chrdev_open,
2070 .release = mce_chrdev_release,
2071 .read = mce_chrdev_read,
2072 .write = mce_chrdev_write,
2073 .poll = mce_chrdev_poll,
2074 .unlocked_ioctl = mce_chrdev_ioctl,
2075 .llseek = no_llseek,
2076 };
2077
2078 static struct miscdevice mce_chrdev_device = {
2079 MISC_MCELOG_MINOR,
2080 "mcelog",
2081 &mce_chrdev_ops,
2082 };
2083
__mce_disable_bank(void * arg)2084 static void __mce_disable_bank(void *arg)
2085 {
2086 int bank = *((int *)arg);
2087 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2088 cmci_disable_bank(bank);
2089 }
2090
mce_disable_bank(int bank)2091 void mce_disable_bank(int bank)
2092 {
2093 if (bank >= mca_cfg.banks) {
2094 pr_warn(FW_BUG
2095 "Ignoring request to disable invalid MCA bank %d.\n",
2096 bank);
2097 return;
2098 }
2099 set_bit(bank, mce_banks_ce_disabled);
2100 on_each_cpu(__mce_disable_bank, &bank, 1);
2101 }
2102
2103 /*
2104 * mce=off Disables machine check
2105 * mce=no_cmci Disables CMCI
2106 * mce=no_lmce Disables LMCE
2107 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2108 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2109 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2110 * monarchtimeout is how long to wait for other CPUs on machine
2111 * check, or 0 to not wait
2112 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
2113 * mce=nobootlog Don't log MCEs from before booting.
2114 * mce=bios_cmci_threshold Don't program the CMCI threshold
2115 * mce=recovery force enable memcpy_mcsafe()
2116 */
mcheck_enable(char * str)2117 static int __init mcheck_enable(char *str)
2118 {
2119 struct mca_config *cfg = &mca_cfg;
2120
2121 if (*str == 0) {
2122 enable_p5_mce();
2123 return 1;
2124 }
2125 if (*str == '=')
2126 str++;
2127 if (!strcmp(str, "off"))
2128 cfg->disabled = true;
2129 else if (!strcmp(str, "no_cmci"))
2130 cfg->cmci_disabled = true;
2131 else if (!strcmp(str, "no_lmce"))
2132 cfg->lmce_disabled = true;
2133 else if (!strcmp(str, "dont_log_ce"))
2134 cfg->dont_log_ce = true;
2135 else if (!strcmp(str, "ignore_ce"))
2136 cfg->ignore_ce = true;
2137 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2138 cfg->bootlog = (str[0] == 'b');
2139 else if (!strcmp(str, "bios_cmci_threshold"))
2140 cfg->bios_cmci_threshold = true;
2141 else if (!strcmp(str, "recovery"))
2142 cfg->recovery = true;
2143 else if (isdigit(str[0])) {
2144 if (get_option(&str, &cfg->tolerant) == 2)
2145 get_option(&str, &(cfg->monarch_timeout));
2146 } else {
2147 pr_info("mce argument %s ignored. Please use /sys\n", str);
2148 return 0;
2149 }
2150 return 1;
2151 }
2152 __setup("mce", mcheck_enable);
2153
mcheck_init(void)2154 int __init mcheck_init(void)
2155 {
2156 mcheck_intel_therm_init();
2157 mce_register_decode_chain(&mce_srao_nb);
2158 mcheck_vendor_init_severity();
2159
2160 INIT_WORK(&mce_work, mce_process_work);
2161 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2162
2163 return 0;
2164 }
2165
2166 /*
2167 * mce_syscore: PM support
2168 */
2169
2170 /*
2171 * Disable machine checks on suspend and shutdown. We can't really handle
2172 * them later.
2173 */
mce_disable_error_reporting(void)2174 static void mce_disable_error_reporting(void)
2175 {
2176 int i;
2177
2178 for (i = 0; i < mca_cfg.banks; i++) {
2179 struct mce_bank *b = &mce_banks[i];
2180
2181 if (b->init)
2182 wrmsrl(msr_ops.ctl(i), 0);
2183 }
2184 return;
2185 }
2186
vendor_disable_error_reporting(void)2187 static void vendor_disable_error_reporting(void)
2188 {
2189 /*
2190 * Don't clear on Intel CPUs. Some of these MSRs are socket-wide.
2191 * Disabling them for just a single offlined CPU is bad, since it will
2192 * inhibit reporting for all shared resources on the socket like the
2193 * last level cache (LLC), the integrated memory controller (iMC), etc.
2194 */
2195 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2196 return;
2197
2198 mce_disable_error_reporting();
2199 }
2200
mce_syscore_suspend(void)2201 static int mce_syscore_suspend(void)
2202 {
2203 vendor_disable_error_reporting();
2204 return 0;
2205 }
2206
mce_syscore_shutdown(void)2207 static void mce_syscore_shutdown(void)
2208 {
2209 vendor_disable_error_reporting();
2210 }
2211
2212 /*
2213 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2214 * Only one CPU is active at this time, the others get re-added later using
2215 * CPU hotplug:
2216 */
mce_syscore_resume(void)2217 static void mce_syscore_resume(void)
2218 {
2219 __mcheck_cpu_init_generic();
2220 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2221 __mcheck_cpu_init_clear_banks();
2222 }
2223
2224 static struct syscore_ops mce_syscore_ops = {
2225 .suspend = mce_syscore_suspend,
2226 .shutdown = mce_syscore_shutdown,
2227 .resume = mce_syscore_resume,
2228 };
2229
2230 /*
2231 * mce_device: Sysfs support
2232 */
2233
mce_cpu_restart(void * data)2234 static void mce_cpu_restart(void *data)
2235 {
2236 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2237 return;
2238 __mcheck_cpu_init_generic();
2239 __mcheck_cpu_init_clear_banks();
2240 __mcheck_cpu_init_timer();
2241 }
2242
2243 /* Reinit MCEs after user configuration changes */
mce_restart(void)2244 static void mce_restart(void)
2245 {
2246 mce_timer_delete_all();
2247 on_each_cpu(mce_cpu_restart, NULL, 1);
2248 }
2249
2250 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2251 static void mce_disable_cmci(void *data)
2252 {
2253 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2254 return;
2255 cmci_clear();
2256 }
2257
mce_enable_ce(void * all)2258 static void mce_enable_ce(void *all)
2259 {
2260 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2261 return;
2262 cmci_reenable();
2263 cmci_recheck();
2264 if (all)
2265 __mcheck_cpu_init_timer();
2266 }
2267
2268 static struct bus_type mce_subsys = {
2269 .name = "machinecheck",
2270 .dev_name = "machinecheck",
2271 };
2272
2273 DEFINE_PER_CPU(struct device *, mce_device);
2274
2275 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2276
attr_to_bank(struct device_attribute * attr)2277 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2278 {
2279 return container_of(attr, struct mce_bank, attr);
2280 }
2281
show_bank(struct device * s,struct device_attribute * attr,char * buf)2282 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2283 char *buf)
2284 {
2285 return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2286 }
2287
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2288 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2289 const char *buf, size_t size)
2290 {
2291 u64 new;
2292
2293 if (kstrtou64(buf, 0, &new) < 0)
2294 return -EINVAL;
2295
2296 attr_to_bank(attr)->ctl = new;
2297 mce_restart();
2298
2299 return size;
2300 }
2301
2302 static ssize_t
show_trigger(struct device * s,struct device_attribute * attr,char * buf)2303 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2304 {
2305 strcpy(buf, mce_helper);
2306 strcat(buf, "\n");
2307 return strlen(mce_helper) + 1;
2308 }
2309
set_trigger(struct device * s,struct device_attribute * attr,const char * buf,size_t siz)2310 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2311 const char *buf, size_t siz)
2312 {
2313 char *p;
2314
2315 strncpy(mce_helper, buf, sizeof(mce_helper));
2316 mce_helper[sizeof(mce_helper)-1] = 0;
2317 p = strchr(mce_helper, '\n');
2318
2319 if (p)
2320 *p = 0;
2321
2322 return strlen(mce_helper) + !!p;
2323 }
2324
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2325 static ssize_t set_ignore_ce(struct device *s,
2326 struct device_attribute *attr,
2327 const char *buf, size_t size)
2328 {
2329 u64 new;
2330
2331 if (kstrtou64(buf, 0, &new) < 0)
2332 return -EINVAL;
2333
2334 mutex_lock(&mce_sysfs_mutex);
2335 if (mca_cfg.ignore_ce ^ !!new) {
2336 if (new) {
2337 /* disable ce features */
2338 mce_timer_delete_all();
2339 on_each_cpu(mce_disable_cmci, NULL, 1);
2340 mca_cfg.ignore_ce = true;
2341 } else {
2342 /* enable ce features */
2343 mca_cfg.ignore_ce = false;
2344 on_each_cpu(mce_enable_ce, (void *)1, 1);
2345 }
2346 }
2347 mutex_unlock(&mce_sysfs_mutex);
2348
2349 return size;
2350 }
2351
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2352 static ssize_t set_cmci_disabled(struct device *s,
2353 struct device_attribute *attr,
2354 const char *buf, size_t size)
2355 {
2356 u64 new;
2357
2358 if (kstrtou64(buf, 0, &new) < 0)
2359 return -EINVAL;
2360
2361 mutex_lock(&mce_sysfs_mutex);
2362 if (mca_cfg.cmci_disabled ^ !!new) {
2363 if (new) {
2364 /* disable cmci */
2365 on_each_cpu(mce_disable_cmci, NULL, 1);
2366 mca_cfg.cmci_disabled = true;
2367 } else {
2368 /* enable cmci */
2369 mca_cfg.cmci_disabled = false;
2370 on_each_cpu(mce_enable_ce, NULL, 1);
2371 }
2372 }
2373 mutex_unlock(&mce_sysfs_mutex);
2374
2375 return size;
2376 }
2377
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2378 static ssize_t store_int_with_restart(struct device *s,
2379 struct device_attribute *attr,
2380 const char *buf, size_t size)
2381 {
2382 unsigned long old_check_interval = check_interval;
2383 ssize_t ret = device_store_ulong(s, attr, buf, size);
2384
2385 if (check_interval == old_check_interval)
2386 return ret;
2387
2388 if (check_interval < 1)
2389 check_interval = 1;
2390
2391 mutex_lock(&mce_sysfs_mutex);
2392 mce_restart();
2393 mutex_unlock(&mce_sysfs_mutex);
2394
2395 return ret;
2396 }
2397
2398 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2399 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2400 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2401 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2402
2403 static struct dev_ext_attribute dev_attr_check_interval = {
2404 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2405 &check_interval
2406 };
2407
2408 static struct dev_ext_attribute dev_attr_ignore_ce = {
2409 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2410 &mca_cfg.ignore_ce
2411 };
2412
2413 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2414 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2415 &mca_cfg.cmci_disabled
2416 };
2417
2418 static struct device_attribute *mce_device_attrs[] = {
2419 &dev_attr_tolerant.attr,
2420 &dev_attr_check_interval.attr,
2421 &dev_attr_trigger,
2422 &dev_attr_monarch_timeout.attr,
2423 &dev_attr_dont_log_ce.attr,
2424 &dev_attr_ignore_ce.attr,
2425 &dev_attr_cmci_disabled.attr,
2426 NULL
2427 };
2428
2429 static cpumask_var_t mce_device_initialized;
2430
mce_device_release(struct device * dev)2431 static void mce_device_release(struct device *dev)
2432 {
2433 kfree(dev);
2434 }
2435
2436 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
mce_device_create(unsigned int cpu)2437 static int mce_device_create(unsigned int cpu)
2438 {
2439 struct device *dev;
2440 int err;
2441 int i, j;
2442
2443 if (!mce_available(&boot_cpu_data))
2444 return -EIO;
2445
2446 dev = kzalloc(sizeof *dev, GFP_KERNEL);
2447 if (!dev)
2448 return -ENOMEM;
2449 dev->id = cpu;
2450 dev->bus = &mce_subsys;
2451 dev->release = &mce_device_release;
2452
2453 err = device_register(dev);
2454 if (err) {
2455 put_device(dev);
2456 return err;
2457 }
2458
2459 for (i = 0; mce_device_attrs[i]; i++) {
2460 err = device_create_file(dev, mce_device_attrs[i]);
2461 if (err)
2462 goto error;
2463 }
2464 for (j = 0; j < mca_cfg.banks; j++) {
2465 err = device_create_file(dev, &mce_banks[j].attr);
2466 if (err)
2467 goto error2;
2468 }
2469 cpumask_set_cpu(cpu, mce_device_initialized);
2470 per_cpu(mce_device, cpu) = dev;
2471
2472 return 0;
2473 error2:
2474 while (--j >= 0)
2475 device_remove_file(dev, &mce_banks[j].attr);
2476 error:
2477 while (--i >= 0)
2478 device_remove_file(dev, mce_device_attrs[i]);
2479
2480 device_unregister(dev);
2481
2482 return err;
2483 }
2484
mce_device_remove(unsigned int cpu)2485 static void mce_device_remove(unsigned int cpu)
2486 {
2487 struct device *dev = per_cpu(mce_device, cpu);
2488 int i;
2489
2490 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2491 return;
2492
2493 for (i = 0; mce_device_attrs[i]; i++)
2494 device_remove_file(dev, mce_device_attrs[i]);
2495
2496 for (i = 0; i < mca_cfg.banks; i++)
2497 device_remove_file(dev, &mce_banks[i].attr);
2498
2499 device_unregister(dev);
2500 cpumask_clear_cpu(cpu, mce_device_initialized);
2501 per_cpu(mce_device, cpu) = NULL;
2502 }
2503
2504 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void * h)2505 static void mce_disable_cpu(void *h)
2506 {
2507 unsigned long action = *(unsigned long *)h;
2508
2509 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2510 return;
2511
2512 if (!(action & CPU_TASKS_FROZEN))
2513 cmci_clear();
2514
2515 vendor_disable_error_reporting();
2516 }
2517
mce_reenable_cpu(void * h)2518 static void mce_reenable_cpu(void *h)
2519 {
2520 unsigned long action = *(unsigned long *)h;
2521 int i;
2522
2523 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2524 return;
2525
2526 if (!(action & CPU_TASKS_FROZEN))
2527 cmci_reenable();
2528 for (i = 0; i < mca_cfg.banks; i++) {
2529 struct mce_bank *b = &mce_banks[i];
2530
2531 if (b->init)
2532 wrmsrl(msr_ops.ctl(i), b->ctl);
2533 }
2534 }
2535
2536 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2537 static int
mce_cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)2538 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2539 {
2540 unsigned int cpu = (unsigned long)hcpu;
2541 struct timer_list *t = &per_cpu(mce_timer, cpu);
2542
2543 switch (action & ~CPU_TASKS_FROZEN) {
2544 case CPU_ONLINE:
2545 mce_device_create(cpu);
2546 if (threshold_cpu_callback)
2547 threshold_cpu_callback(action, cpu);
2548 break;
2549 case CPU_DEAD:
2550 if (threshold_cpu_callback)
2551 threshold_cpu_callback(action, cpu);
2552 mce_device_remove(cpu);
2553 mce_intel_hcpu_update(cpu);
2554
2555 /* intentionally ignoring frozen here */
2556 if (!(action & CPU_TASKS_FROZEN))
2557 cmci_rediscover();
2558 break;
2559 case CPU_DOWN_PREPARE:
2560 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2561 del_timer_sync(t);
2562 break;
2563 case CPU_DOWN_FAILED:
2564 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2565 mce_start_timer(cpu, t);
2566 break;
2567 }
2568
2569 return NOTIFY_OK;
2570 }
2571
2572 static struct notifier_block mce_cpu_notifier = {
2573 .notifier_call = mce_cpu_callback,
2574 };
2575
mce_init_banks(void)2576 static __init void mce_init_banks(void)
2577 {
2578 int i;
2579
2580 for (i = 0; i < mca_cfg.banks; i++) {
2581 struct mce_bank *b = &mce_banks[i];
2582 struct device_attribute *a = &b->attr;
2583
2584 sysfs_attr_init(&a->attr);
2585 a->attr.name = b->attrname;
2586 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2587
2588 a->attr.mode = 0644;
2589 a->show = show_bank;
2590 a->store = set_bank;
2591 }
2592 }
2593
mcheck_init_device(void)2594 static __init int mcheck_init_device(void)
2595 {
2596 int err;
2597 int i = 0;
2598
2599 if (!mce_available(&boot_cpu_data)) {
2600 err = -EIO;
2601 goto err_out;
2602 }
2603
2604 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2605 err = -ENOMEM;
2606 goto err_out;
2607 }
2608
2609 mce_init_banks();
2610
2611 err = subsys_system_register(&mce_subsys, NULL);
2612 if (err)
2613 goto err_out_mem;
2614
2615 cpu_notifier_register_begin();
2616 for_each_online_cpu(i) {
2617 err = mce_device_create(i);
2618 if (err) {
2619 /*
2620 * Register notifier anyway (and do not unreg it) so
2621 * that we don't leave undeleted timers, see notifier
2622 * callback above.
2623 */
2624 __register_hotcpu_notifier(&mce_cpu_notifier);
2625 cpu_notifier_register_done();
2626 goto err_device_create;
2627 }
2628 }
2629
2630 __register_hotcpu_notifier(&mce_cpu_notifier);
2631 cpu_notifier_register_done();
2632
2633 register_syscore_ops(&mce_syscore_ops);
2634
2635 /* register character device /dev/mcelog */
2636 err = misc_register(&mce_chrdev_device);
2637 if (err)
2638 goto err_register;
2639
2640 return 0;
2641
2642 err_register:
2643 unregister_syscore_ops(&mce_syscore_ops);
2644
2645 err_device_create:
2646 /*
2647 * We didn't keep track of which devices were created above, but
2648 * even if we had, the set of online cpus might have changed.
2649 * Play safe and remove for every possible cpu, since
2650 * mce_device_remove() will do the right thing.
2651 */
2652 for_each_possible_cpu(i)
2653 mce_device_remove(i);
2654
2655 err_out_mem:
2656 free_cpumask_var(mce_device_initialized);
2657
2658 err_out:
2659 pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2660
2661 return err;
2662 }
2663 device_initcall_sync(mcheck_init_device);
2664
2665 /*
2666 * Old style boot options parsing. Only for compatibility.
2667 */
mcheck_disable(char * str)2668 static int __init mcheck_disable(char *str)
2669 {
2670 mca_cfg.disabled = true;
2671 return 1;
2672 }
2673 __setup("nomce", mcheck_disable);
2674
2675 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2676 struct dentry *mce_get_debugfs_dir(void)
2677 {
2678 static struct dentry *dmce;
2679
2680 if (!dmce)
2681 dmce = debugfs_create_dir("mce", NULL);
2682
2683 return dmce;
2684 }
2685
mce_reset(void)2686 static void mce_reset(void)
2687 {
2688 cpu_missing = 0;
2689 atomic_set(&mce_fake_panicked, 0);
2690 atomic_set(&mce_executing, 0);
2691 atomic_set(&mce_callin, 0);
2692 atomic_set(&global_nwo, 0);
2693 }
2694
fake_panic_get(void * data,u64 * val)2695 static int fake_panic_get(void *data, u64 *val)
2696 {
2697 *val = fake_panic;
2698 return 0;
2699 }
2700
fake_panic_set(void * data,u64 val)2701 static int fake_panic_set(void *data, u64 val)
2702 {
2703 mce_reset();
2704 fake_panic = val;
2705 return 0;
2706 }
2707
2708 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2709 fake_panic_set, "%llu\n");
2710
mcheck_debugfs_init(void)2711 static int __init mcheck_debugfs_init(void)
2712 {
2713 struct dentry *dmce, *ffake_panic;
2714
2715 dmce = mce_get_debugfs_dir();
2716 if (!dmce)
2717 return -ENOMEM;
2718 ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2719 &fake_panic_fops);
2720 if (!ffake_panic)
2721 return -ENOMEM;
2722
2723 return 0;
2724 }
2725 #else
mcheck_debugfs_init(void)2726 static int __init mcheck_debugfs_init(void) { return -EINVAL; }
2727 #endif
2728
2729 DEFINE_STATIC_KEY_FALSE(mcsafe_key);
2730 EXPORT_SYMBOL_GPL(mcsafe_key);
2731
mcheck_late_init(void)2732 static int __init mcheck_late_init(void)
2733 {
2734 if (mca_cfg.recovery)
2735 static_branch_inc(&mcsafe_key);
2736
2737 mcheck_debugfs_init();
2738
2739 /*
2740 * Flush out everything that has been logged during early boot, now that
2741 * everything has been initialized (workqueues, decoders, ...).
2742 */
2743 mce_schedule_work();
2744
2745 return 0;
2746 }
2747 late_initcall(mcheck_late_init);
2748