• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmalloc.c
3  *
4  *  Copyright (C) 1993  Linus Torvalds
5  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6  *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7  *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8  *  Numa awareness, Christoph Lameter, SGI, June 2005
9  */
10 
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/notifier.h>
25 #include <linux/rbtree.h>
26 #include <linux/radix-tree.h>
27 #include <linux/rcupdate.h>
28 #include <linux/pfn.h>
29 #include <linux/kmemleak.h>
30 #include <linux/atomic.h>
31 #include <linux/compiler.h>
32 #include <linux/llist.h>
33 #include <linux/bitops.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/shmparam.h>
38 
39 #include "internal.h"
40 
41 struct vfree_deferred {
42 	struct llist_head list;
43 	struct work_struct wq;
44 };
45 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
46 
47 static void __vunmap(const void *, int);
48 
free_work(struct work_struct * w)49 static void free_work(struct work_struct *w)
50 {
51 	struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
52 	struct llist_node *llnode = llist_del_all(&p->list);
53 	while (llnode) {
54 		void *p = llnode;
55 		llnode = llist_next(llnode);
56 		__vunmap(p, 1);
57 	}
58 }
59 
60 /*** Page table manipulation functions ***/
61 
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end)62 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
63 {
64 	pte_t *pte;
65 
66 	pte = pte_offset_kernel(pmd, addr);
67 	do {
68 		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
69 		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
70 	} while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72 
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end)73 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
74 {
75 	pmd_t *pmd;
76 	unsigned long next;
77 
78 	pmd = pmd_offset(pud, addr);
79 	do {
80 		next = pmd_addr_end(addr, end);
81 		if (pmd_clear_huge(pmd))
82 			continue;
83 		if (pmd_none_or_clear_bad(pmd))
84 			continue;
85 		vunmap_pte_range(pmd, addr, next);
86 	} while (pmd++, addr = next, addr != end);
87 }
88 
vunmap_pud_range(pgd_t * pgd,unsigned long addr,unsigned long end)89 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
90 {
91 	pud_t *pud;
92 	unsigned long next;
93 
94 	pud = pud_offset(pgd, addr);
95 	do {
96 		next = pud_addr_end(addr, end);
97 		if (pud_clear_huge(pud))
98 			continue;
99 		if (pud_none_or_clear_bad(pud))
100 			continue;
101 		vunmap_pmd_range(pud, addr, next);
102 	} while (pud++, addr = next, addr != end);
103 }
104 
vunmap_page_range(unsigned long addr,unsigned long end)105 static void vunmap_page_range(unsigned long addr, unsigned long end)
106 {
107 	pgd_t *pgd;
108 	unsigned long next;
109 
110 	BUG_ON(addr >= end);
111 	pgd = pgd_offset_k(addr);
112 	do {
113 		next = pgd_addr_end(addr, end);
114 		if (pgd_none_or_clear_bad(pgd))
115 			continue;
116 		vunmap_pud_range(pgd, addr, next);
117 	} while (pgd++, addr = next, addr != end);
118 }
119 
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)120 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
121 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
122 {
123 	pte_t *pte;
124 
125 	/*
126 	 * nr is a running index into the array which helps higher level
127 	 * callers keep track of where we're up to.
128 	 */
129 
130 	pte = pte_alloc_kernel(pmd, addr);
131 	if (!pte)
132 		return -ENOMEM;
133 	do {
134 		struct page *page = pages[*nr];
135 
136 		if (WARN_ON(!pte_none(*pte)))
137 			return -EBUSY;
138 		if (WARN_ON(!page))
139 			return -ENOMEM;
140 		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
141 		(*nr)++;
142 	} while (pte++, addr += PAGE_SIZE, addr != end);
143 	return 0;
144 }
145 
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)146 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
147 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
148 {
149 	pmd_t *pmd;
150 	unsigned long next;
151 
152 	pmd = pmd_alloc(&init_mm, pud, addr);
153 	if (!pmd)
154 		return -ENOMEM;
155 	do {
156 		next = pmd_addr_end(addr, end);
157 		if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
158 			return -ENOMEM;
159 	} while (pmd++, addr = next, addr != end);
160 	return 0;
161 }
162 
vmap_pud_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr)163 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
164 		unsigned long end, pgprot_t prot, struct page **pages, int *nr)
165 {
166 	pud_t *pud;
167 	unsigned long next;
168 
169 	pud = pud_alloc(&init_mm, pgd, addr);
170 	if (!pud)
171 		return -ENOMEM;
172 	do {
173 		next = pud_addr_end(addr, end);
174 		if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
175 			return -ENOMEM;
176 	} while (pud++, addr = next, addr != end);
177 	return 0;
178 }
179 
180 /*
181  * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
182  * will have pfns corresponding to the "pages" array.
183  *
184  * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185  */
vmap_page_range_noflush(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)186 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
187 				   pgprot_t prot, struct page **pages)
188 {
189 	pgd_t *pgd;
190 	unsigned long next;
191 	unsigned long addr = start;
192 	int err = 0;
193 	int nr = 0;
194 
195 	BUG_ON(addr >= end);
196 	pgd = pgd_offset_k(addr);
197 	do {
198 		next = pgd_addr_end(addr, end);
199 		err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
200 		if (err)
201 			return err;
202 	} while (pgd++, addr = next, addr != end);
203 
204 	return nr;
205 }
206 
vmap_page_range(unsigned long start,unsigned long end,pgprot_t prot,struct page ** pages)207 static int vmap_page_range(unsigned long start, unsigned long end,
208 			   pgprot_t prot, struct page **pages)
209 {
210 	int ret;
211 
212 	ret = vmap_page_range_noflush(start, end, prot, pages);
213 	flush_cache_vmap(start, end);
214 	return ret;
215 }
216 
is_vmalloc_or_module_addr(const void * x)217 int is_vmalloc_or_module_addr(const void *x)
218 {
219 	/*
220 	 * ARM, x86-64 and sparc64 put modules in a special place,
221 	 * and fall back on vmalloc() if that fails. Others
222 	 * just put it in the vmalloc space.
223 	 */
224 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
225 	unsigned long addr = (unsigned long)x;
226 	if (addr >= MODULES_VADDR && addr < MODULES_END)
227 		return 1;
228 #endif
229 	return is_vmalloc_addr(x);
230 }
231 
232 /*
233  * Walk a vmap address to the struct page it maps.
234  */
vmalloc_to_page(const void * vmalloc_addr)235 struct page *vmalloc_to_page(const void *vmalloc_addr)
236 {
237 	unsigned long addr = (unsigned long) vmalloc_addr;
238 	struct page *page = NULL;
239 	pgd_t *pgd = pgd_offset_k(addr);
240 
241 	/*
242 	 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
243 	 * architectures that do not vmalloc module space
244 	 */
245 	VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
246 
247 	/*
248 	 * Don't dereference bad PUD or PMD (below) entries. This will also
249 	 * identify huge mappings, which we may encounter on architectures
250 	 * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
251 	 * identified as vmalloc addresses by is_vmalloc_addr(), but are
252 	 * not [unambiguously] associated with a struct page, so there is
253 	 * no correct value to return for them.
254 	 */
255 	if (!pgd_none(*pgd)) {
256 		pud_t *pud = pud_offset(pgd, addr);
257 		WARN_ON_ONCE(pud_bad(*pud));
258 		if (!pud_none(*pud) && !pud_bad(*pud)) {
259 			pmd_t *pmd = pmd_offset(pud, addr);
260 			WARN_ON_ONCE(pmd_bad(*pmd));
261 			if (!pmd_none(*pmd) && !pmd_bad(*pmd)) {
262 				pte_t *ptep, pte;
263 
264 				ptep = pte_offset_map(pmd, addr);
265 				pte = *ptep;
266 				if (pte_present(pte))
267 					page = pte_page(pte);
268 				pte_unmap(ptep);
269 			}
270 		}
271 	}
272 	return page;
273 }
274 EXPORT_SYMBOL(vmalloc_to_page);
275 
276 /*
277  * Map a vmalloc()-space virtual address to the physical page frame number.
278  */
vmalloc_to_pfn(const void * vmalloc_addr)279 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
280 {
281 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
282 }
283 EXPORT_SYMBOL(vmalloc_to_pfn);
284 
285 
286 /*** Global kva allocator ***/
287 
288 #define VM_VM_AREA	0x04
289 
290 static DEFINE_SPINLOCK(vmap_area_lock);
291 /* Export for kexec only */
292 LIST_HEAD(vmap_area_list);
293 static LLIST_HEAD(vmap_purge_list);
294 static struct rb_root vmap_area_root = RB_ROOT;
295 
296 /* The vmap cache globals are protected by vmap_area_lock */
297 static struct rb_node *free_vmap_cache;
298 static unsigned long cached_hole_size;
299 static unsigned long cached_vstart;
300 static unsigned long cached_align;
301 
302 static unsigned long vmap_area_pcpu_hole;
303 
__find_vmap_area(unsigned long addr)304 static struct vmap_area *__find_vmap_area(unsigned long addr)
305 {
306 	struct rb_node *n = vmap_area_root.rb_node;
307 
308 	while (n) {
309 		struct vmap_area *va;
310 
311 		va = rb_entry(n, struct vmap_area, rb_node);
312 		if (addr < va->va_start)
313 			n = n->rb_left;
314 		else if (addr >= va->va_end)
315 			n = n->rb_right;
316 		else
317 			return va;
318 	}
319 
320 	return NULL;
321 }
322 
__insert_vmap_area(struct vmap_area * va)323 static void __insert_vmap_area(struct vmap_area *va)
324 {
325 	struct rb_node **p = &vmap_area_root.rb_node;
326 	struct rb_node *parent = NULL;
327 	struct rb_node *tmp;
328 
329 	while (*p) {
330 		struct vmap_area *tmp_va;
331 
332 		parent = *p;
333 		tmp_va = rb_entry(parent, struct vmap_area, rb_node);
334 		if (va->va_start < tmp_va->va_end)
335 			p = &(*p)->rb_left;
336 		else if (va->va_end > tmp_va->va_start)
337 			p = &(*p)->rb_right;
338 		else
339 			BUG();
340 	}
341 
342 	rb_link_node(&va->rb_node, parent, p);
343 	rb_insert_color(&va->rb_node, &vmap_area_root);
344 
345 	/* address-sort this list */
346 	tmp = rb_prev(&va->rb_node);
347 	if (tmp) {
348 		struct vmap_area *prev;
349 		prev = rb_entry(tmp, struct vmap_area, rb_node);
350 		list_add_rcu(&va->list, &prev->list);
351 	} else
352 		list_add_rcu(&va->list, &vmap_area_list);
353 }
354 
355 static void purge_vmap_area_lazy(void);
356 
357 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
358 
359 /*
360  * Allocate a region of KVA of the specified size and alignment, within the
361  * vstart and vend.
362  */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)363 static struct vmap_area *alloc_vmap_area(unsigned long size,
364 				unsigned long align,
365 				unsigned long vstart, unsigned long vend,
366 				int node, gfp_t gfp_mask)
367 {
368 	struct vmap_area *va;
369 	struct rb_node *n;
370 	unsigned long addr;
371 	int purged = 0;
372 	struct vmap_area *first;
373 
374 	BUG_ON(!size);
375 	BUG_ON(offset_in_page(size));
376 	BUG_ON(!is_power_of_2(align));
377 
378 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
379 
380 	va = kmalloc_node(sizeof(struct vmap_area),
381 			gfp_mask & GFP_RECLAIM_MASK, node);
382 	if (unlikely(!va))
383 		return ERR_PTR(-ENOMEM);
384 
385 	/*
386 	 * Only scan the relevant parts containing pointers to other objects
387 	 * to avoid false negatives.
388 	 */
389 	kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
390 
391 retry:
392 	spin_lock(&vmap_area_lock);
393 	/*
394 	 * Invalidate cache if we have more permissive parameters.
395 	 * cached_hole_size notes the largest hole noticed _below_
396 	 * the vmap_area cached in free_vmap_cache: if size fits
397 	 * into that hole, we want to scan from vstart to reuse
398 	 * the hole instead of allocating above free_vmap_cache.
399 	 * Note that __free_vmap_area may update free_vmap_cache
400 	 * without updating cached_hole_size or cached_align.
401 	 */
402 	if (!free_vmap_cache ||
403 			size < cached_hole_size ||
404 			vstart < cached_vstart ||
405 			align < cached_align) {
406 nocache:
407 		cached_hole_size = 0;
408 		free_vmap_cache = NULL;
409 	}
410 	/* record if we encounter less permissive parameters */
411 	cached_vstart = vstart;
412 	cached_align = align;
413 
414 	/* find starting point for our search */
415 	if (free_vmap_cache) {
416 		first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
417 		addr = ALIGN(first->va_end, align);
418 		if (addr < vstart)
419 			goto nocache;
420 		if (addr + size < addr)
421 			goto overflow;
422 
423 	} else {
424 		addr = ALIGN(vstart, align);
425 		if (addr + size < addr)
426 			goto overflow;
427 
428 		n = vmap_area_root.rb_node;
429 		first = NULL;
430 
431 		while (n) {
432 			struct vmap_area *tmp;
433 			tmp = rb_entry(n, struct vmap_area, rb_node);
434 			if (tmp->va_end >= addr) {
435 				first = tmp;
436 				if (tmp->va_start <= addr)
437 					break;
438 				n = n->rb_left;
439 			} else
440 				n = n->rb_right;
441 		}
442 
443 		if (!first)
444 			goto found;
445 	}
446 
447 	/* from the starting point, walk areas until a suitable hole is found */
448 	while (addr + size > first->va_start && addr + size <= vend) {
449 		if (addr + cached_hole_size < first->va_start)
450 			cached_hole_size = first->va_start - addr;
451 		addr = ALIGN(first->va_end, align);
452 		if (addr + size < addr)
453 			goto overflow;
454 
455 		if (list_is_last(&first->list, &vmap_area_list))
456 			goto found;
457 
458 		first = list_next_entry(first, list);
459 	}
460 
461 found:
462 	if (addr + size > vend)
463 		goto overflow;
464 
465 	va->va_start = addr;
466 	va->va_end = addr + size;
467 	va->flags = 0;
468 	__insert_vmap_area(va);
469 	free_vmap_cache = &va->rb_node;
470 	spin_unlock(&vmap_area_lock);
471 
472 	BUG_ON(!IS_ALIGNED(va->va_start, align));
473 	BUG_ON(va->va_start < vstart);
474 	BUG_ON(va->va_end > vend);
475 
476 	return va;
477 
478 overflow:
479 	spin_unlock(&vmap_area_lock);
480 	if (!purged) {
481 		purge_vmap_area_lazy();
482 		purged = 1;
483 		goto retry;
484 	}
485 
486 	if (gfpflags_allow_blocking(gfp_mask)) {
487 		unsigned long freed = 0;
488 		blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
489 		if (freed > 0) {
490 			purged = 0;
491 			goto retry;
492 		}
493 	}
494 
495 	if (printk_ratelimit())
496 		pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
497 			size);
498 	kfree(va);
499 	return ERR_PTR(-EBUSY);
500 }
501 
register_vmap_purge_notifier(struct notifier_block * nb)502 int register_vmap_purge_notifier(struct notifier_block *nb)
503 {
504 	return blocking_notifier_chain_register(&vmap_notify_list, nb);
505 }
506 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
507 
unregister_vmap_purge_notifier(struct notifier_block * nb)508 int unregister_vmap_purge_notifier(struct notifier_block *nb)
509 {
510 	return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
511 }
512 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
513 
__free_vmap_area(struct vmap_area * va)514 static void __free_vmap_area(struct vmap_area *va)
515 {
516 	BUG_ON(RB_EMPTY_NODE(&va->rb_node));
517 
518 	if (free_vmap_cache) {
519 		if (va->va_end < cached_vstart) {
520 			free_vmap_cache = NULL;
521 		} else {
522 			struct vmap_area *cache;
523 			cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
524 			if (va->va_start <= cache->va_start) {
525 				free_vmap_cache = rb_prev(&va->rb_node);
526 				/*
527 				 * We don't try to update cached_hole_size or
528 				 * cached_align, but it won't go very wrong.
529 				 */
530 			}
531 		}
532 	}
533 	rb_erase(&va->rb_node, &vmap_area_root);
534 	RB_CLEAR_NODE(&va->rb_node);
535 	list_del_rcu(&va->list);
536 
537 	/*
538 	 * Track the highest possible candidate for pcpu area
539 	 * allocation.  Areas outside of vmalloc area can be returned
540 	 * here too, consider only end addresses which fall inside
541 	 * vmalloc area proper.
542 	 */
543 	if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
544 		vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
545 
546 	kfree_rcu(va, rcu_head);
547 }
548 
549 /*
550  * Free a region of KVA allocated by alloc_vmap_area
551  */
free_vmap_area(struct vmap_area * va)552 static void free_vmap_area(struct vmap_area *va)
553 {
554 	spin_lock(&vmap_area_lock);
555 	__free_vmap_area(va);
556 	spin_unlock(&vmap_area_lock);
557 }
558 
559 /*
560  * Clear the pagetable entries of a given vmap_area
561  */
unmap_vmap_area(struct vmap_area * va)562 static void unmap_vmap_area(struct vmap_area *va)
563 {
564 	vunmap_page_range(va->va_start, va->va_end);
565 }
566 
vmap_debug_free_range(unsigned long start,unsigned long end)567 static void vmap_debug_free_range(unsigned long start, unsigned long end)
568 {
569 	/*
570 	 * Unmap page tables and force a TLB flush immediately if pagealloc
571 	 * debugging is enabled.  This catches use after free bugs similarly to
572 	 * those in linear kernel virtual address space after a page has been
573 	 * freed.
574 	 *
575 	 * All the lazy freeing logic is still retained, in order to minimise
576 	 * intrusiveness of this debugging feature.
577 	 *
578 	 * This is going to be *slow* (linear kernel virtual address debugging
579 	 * doesn't do a broadcast TLB flush so it is a lot faster).
580 	 */
581 	if (debug_pagealloc_enabled()) {
582 		vunmap_page_range(start, end);
583 		flush_tlb_kernel_range(start, end);
584 	}
585 }
586 
587 /*
588  * lazy_max_pages is the maximum amount of virtual address space we gather up
589  * before attempting to purge with a TLB flush.
590  *
591  * There is a tradeoff here: a larger number will cover more kernel page tables
592  * and take slightly longer to purge, but it will linearly reduce the number of
593  * global TLB flushes that must be performed. It would seem natural to scale
594  * this number up linearly with the number of CPUs (because vmapping activity
595  * could also scale linearly with the number of CPUs), however it is likely
596  * that in practice, workloads might be constrained in other ways that mean
597  * vmap activity will not scale linearly with CPUs. Also, I want to be
598  * conservative and not introduce a big latency on huge systems, so go with
599  * a less aggressive log scale. It will still be an improvement over the old
600  * code, and it will be simple to change the scale factor if we find that it
601  * becomes a problem on bigger systems.
602  */
lazy_max_pages(void)603 static unsigned long lazy_max_pages(void)
604 {
605 	unsigned int log;
606 
607 	log = fls(num_online_cpus());
608 
609 	return log * (32UL * 1024 * 1024 / PAGE_SIZE);
610 }
611 
612 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
613 
614 /* for per-CPU blocks */
615 static void purge_fragmented_blocks_allcpus(void);
616 
617 /*
618  * called before a call to iounmap() if the caller wants vm_area_struct's
619  * immediately freed.
620  */
set_iounmap_nonlazy(void)621 void set_iounmap_nonlazy(void)
622 {
623 	atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
624 }
625 
626 /*
627  * Purges all lazily-freed vmap areas.
628  *
629  * If sync is 0 then don't purge if there is already a purge in progress.
630  * If force_flush is 1, then flush kernel TLBs between *start and *end even
631  * if we found no lazy vmap areas to unmap (callers can use this to optimise
632  * their own TLB flushing).
633  * Returns with *start = min(*start, lowest purged address)
634  *              *end = max(*end, highest purged address)
635  */
__purge_vmap_area_lazy(unsigned long * start,unsigned long * end,int sync,int force_flush)636 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
637 					int sync, int force_flush)
638 {
639 	static DEFINE_SPINLOCK(purge_lock);
640 	struct llist_node *valist;
641 	struct vmap_area *va;
642 	struct vmap_area *n_va;
643 	int nr = 0;
644 
645 	/*
646 	 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
647 	 * should not expect such behaviour. This just simplifies locking for
648 	 * the case that isn't actually used at the moment anyway.
649 	 */
650 	if (!sync && !force_flush) {
651 		if (!spin_trylock(&purge_lock))
652 			return;
653 	} else
654 		spin_lock(&purge_lock);
655 
656 	if (sync)
657 		purge_fragmented_blocks_allcpus();
658 
659 	valist = llist_del_all(&vmap_purge_list);
660 	llist_for_each_entry(va, valist, purge_list) {
661 		if (va->va_start < *start)
662 			*start = va->va_start;
663 		if (va->va_end > *end)
664 			*end = va->va_end;
665 		nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
666 	}
667 
668 	if (nr)
669 		atomic_sub(nr, &vmap_lazy_nr);
670 
671 	if (nr || force_flush)
672 		flush_tlb_kernel_range(*start, *end);
673 
674 	if (nr) {
675 		spin_lock(&vmap_area_lock);
676 		llist_for_each_entry_safe(va, n_va, valist, purge_list)
677 			__free_vmap_area(va);
678 		spin_unlock(&vmap_area_lock);
679 	}
680 	spin_unlock(&purge_lock);
681 }
682 
683 /*
684  * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
685  * is already purging.
686  */
try_purge_vmap_area_lazy(void)687 static void try_purge_vmap_area_lazy(void)
688 {
689 	unsigned long start = ULONG_MAX, end = 0;
690 
691 	__purge_vmap_area_lazy(&start, &end, 0, 0);
692 }
693 
694 /*
695  * Kick off a purge of the outstanding lazy areas.
696  */
purge_vmap_area_lazy(void)697 static void purge_vmap_area_lazy(void)
698 {
699 	unsigned long start = ULONG_MAX, end = 0;
700 
701 	__purge_vmap_area_lazy(&start, &end, 1, 0);
702 }
703 
704 /*
705  * Free a vmap area, caller ensuring that the area has been unmapped
706  * and flush_cache_vunmap had been called for the correct range
707  * previously.
708  */
free_vmap_area_noflush(struct vmap_area * va)709 static void free_vmap_area_noflush(struct vmap_area *va)
710 {
711 	int nr_lazy;
712 
713 	nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
714 				    &vmap_lazy_nr);
715 
716 	/* After this point, we may free va at any time */
717 	llist_add(&va->purge_list, &vmap_purge_list);
718 
719 	if (unlikely(nr_lazy > lazy_max_pages()))
720 		try_purge_vmap_area_lazy();
721 }
722 
723 /*
724  * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
725  * called for the correct range previously.
726  */
free_unmap_vmap_area_noflush(struct vmap_area * va)727 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
728 {
729 	unmap_vmap_area(va);
730 	free_vmap_area_noflush(va);
731 }
732 
733 /*
734  * Free and unmap a vmap area
735  */
free_unmap_vmap_area(struct vmap_area * va)736 static void free_unmap_vmap_area(struct vmap_area *va)
737 {
738 	flush_cache_vunmap(va->va_start, va->va_end);
739 	free_unmap_vmap_area_noflush(va);
740 }
741 
find_vmap_area(unsigned long addr)742 static struct vmap_area *find_vmap_area(unsigned long addr)
743 {
744 	struct vmap_area *va;
745 
746 	spin_lock(&vmap_area_lock);
747 	va = __find_vmap_area(addr);
748 	spin_unlock(&vmap_area_lock);
749 
750 	return va;
751 }
752 
free_unmap_vmap_area_addr(unsigned long addr)753 static void free_unmap_vmap_area_addr(unsigned long addr)
754 {
755 	struct vmap_area *va;
756 
757 	va = find_vmap_area(addr);
758 	BUG_ON(!va);
759 	free_unmap_vmap_area(va);
760 }
761 
762 
763 /*** Per cpu kva allocator ***/
764 
765 /*
766  * vmap space is limited especially on 32 bit architectures. Ensure there is
767  * room for at least 16 percpu vmap blocks per CPU.
768  */
769 /*
770  * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
771  * to #define VMALLOC_SPACE		(VMALLOC_END-VMALLOC_START). Guess
772  * instead (we just need a rough idea)
773  */
774 #if BITS_PER_LONG == 32
775 #define VMALLOC_SPACE		(128UL*1024*1024)
776 #else
777 #define VMALLOC_SPACE		(128UL*1024*1024*1024)
778 #endif
779 
780 #define VMALLOC_PAGES		(VMALLOC_SPACE / PAGE_SIZE)
781 #define VMAP_MAX_ALLOC		BITS_PER_LONG	/* 256K with 4K pages */
782 #define VMAP_BBMAP_BITS_MAX	1024	/* 4MB with 4K pages */
783 #define VMAP_BBMAP_BITS_MIN	(VMAP_MAX_ALLOC*2)
784 #define VMAP_MIN(x, y)		((x) < (y) ? (x) : (y)) /* can't use min() */
785 #define VMAP_MAX(x, y)		((x) > (y) ? (x) : (y)) /* can't use max() */
786 #define VMAP_BBMAP_BITS		\
787 		VMAP_MIN(VMAP_BBMAP_BITS_MAX,	\
788 		VMAP_MAX(VMAP_BBMAP_BITS_MIN,	\
789 			VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
790 
791 #define VMAP_BLOCK_SIZE		(VMAP_BBMAP_BITS * PAGE_SIZE)
792 
793 static bool vmap_initialized __read_mostly = false;
794 
795 struct vmap_block_queue {
796 	spinlock_t lock;
797 	struct list_head free;
798 };
799 
800 struct vmap_block {
801 	spinlock_t lock;
802 	struct vmap_area *va;
803 	unsigned long free, dirty;
804 	unsigned long dirty_min, dirty_max; /*< dirty range */
805 	struct list_head free_list;
806 	struct rcu_head rcu_head;
807 	struct list_head purge;
808 };
809 
810 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
811 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
812 
813 /*
814  * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
815  * in the free path. Could get rid of this if we change the API to return a
816  * "cookie" from alloc, to be passed to free. But no big deal yet.
817  */
818 static DEFINE_SPINLOCK(vmap_block_tree_lock);
819 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
820 
821 /*
822  * We should probably have a fallback mechanism to allocate virtual memory
823  * out of partially filled vmap blocks. However vmap block sizing should be
824  * fairly reasonable according to the vmalloc size, so it shouldn't be a
825  * big problem.
826  */
827 
addr_to_vb_idx(unsigned long addr)828 static unsigned long addr_to_vb_idx(unsigned long addr)
829 {
830 	addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
831 	addr /= VMAP_BLOCK_SIZE;
832 	return addr;
833 }
834 
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)835 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
836 {
837 	unsigned long addr;
838 
839 	addr = va_start + (pages_off << PAGE_SHIFT);
840 	BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
841 	return (void *)addr;
842 }
843 
844 /**
845  * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
846  *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
847  * @order:    how many 2^order pages should be occupied in newly allocated block
848  * @gfp_mask: flags for the page level allocator
849  *
850  * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
851  */
new_vmap_block(unsigned int order,gfp_t gfp_mask)852 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
853 {
854 	struct vmap_block_queue *vbq;
855 	struct vmap_block *vb;
856 	struct vmap_area *va;
857 	unsigned long vb_idx;
858 	int node, err;
859 	void *vaddr;
860 
861 	node = numa_node_id();
862 
863 	vb = kmalloc_node(sizeof(struct vmap_block),
864 			gfp_mask & GFP_RECLAIM_MASK, node);
865 	if (unlikely(!vb))
866 		return ERR_PTR(-ENOMEM);
867 
868 	va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
869 					VMALLOC_START, VMALLOC_END,
870 					node, gfp_mask);
871 	if (IS_ERR(va)) {
872 		kfree(vb);
873 		return ERR_CAST(va);
874 	}
875 
876 	err = radix_tree_preload(gfp_mask);
877 	if (unlikely(err)) {
878 		kfree(vb);
879 		free_vmap_area(va);
880 		return ERR_PTR(err);
881 	}
882 
883 	vaddr = vmap_block_vaddr(va->va_start, 0);
884 	spin_lock_init(&vb->lock);
885 	vb->va = va;
886 	/* At least something should be left free */
887 	BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
888 	vb->free = VMAP_BBMAP_BITS - (1UL << order);
889 	vb->dirty = 0;
890 	vb->dirty_min = VMAP_BBMAP_BITS;
891 	vb->dirty_max = 0;
892 	INIT_LIST_HEAD(&vb->free_list);
893 
894 	vb_idx = addr_to_vb_idx(va->va_start);
895 	spin_lock(&vmap_block_tree_lock);
896 	err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
897 	spin_unlock(&vmap_block_tree_lock);
898 	BUG_ON(err);
899 	radix_tree_preload_end();
900 
901 	vbq = &get_cpu_var(vmap_block_queue);
902 	spin_lock(&vbq->lock);
903 	list_add_tail_rcu(&vb->free_list, &vbq->free);
904 	spin_unlock(&vbq->lock);
905 	put_cpu_var(vmap_block_queue);
906 
907 	return vaddr;
908 }
909 
free_vmap_block(struct vmap_block * vb)910 static void free_vmap_block(struct vmap_block *vb)
911 {
912 	struct vmap_block *tmp;
913 	unsigned long vb_idx;
914 
915 	vb_idx = addr_to_vb_idx(vb->va->va_start);
916 	spin_lock(&vmap_block_tree_lock);
917 	tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
918 	spin_unlock(&vmap_block_tree_lock);
919 	BUG_ON(tmp != vb);
920 
921 	free_vmap_area_noflush(vb->va);
922 	kfree_rcu(vb, rcu_head);
923 }
924 
purge_fragmented_blocks(int cpu)925 static void purge_fragmented_blocks(int cpu)
926 {
927 	LIST_HEAD(purge);
928 	struct vmap_block *vb;
929 	struct vmap_block *n_vb;
930 	struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
931 
932 	rcu_read_lock();
933 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
934 
935 		if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
936 			continue;
937 
938 		spin_lock(&vb->lock);
939 		if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
940 			vb->free = 0; /* prevent further allocs after releasing lock */
941 			vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
942 			vb->dirty_min = 0;
943 			vb->dirty_max = VMAP_BBMAP_BITS;
944 			spin_lock(&vbq->lock);
945 			list_del_rcu(&vb->free_list);
946 			spin_unlock(&vbq->lock);
947 			spin_unlock(&vb->lock);
948 			list_add_tail(&vb->purge, &purge);
949 		} else
950 			spin_unlock(&vb->lock);
951 	}
952 	rcu_read_unlock();
953 
954 	list_for_each_entry_safe(vb, n_vb, &purge, purge) {
955 		list_del(&vb->purge);
956 		free_vmap_block(vb);
957 	}
958 }
959 
purge_fragmented_blocks_allcpus(void)960 static void purge_fragmented_blocks_allcpus(void)
961 {
962 	int cpu;
963 
964 	for_each_possible_cpu(cpu)
965 		purge_fragmented_blocks(cpu);
966 }
967 
vb_alloc(unsigned long size,gfp_t gfp_mask)968 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
969 {
970 	struct vmap_block_queue *vbq;
971 	struct vmap_block *vb;
972 	void *vaddr = NULL;
973 	unsigned int order;
974 
975 	BUG_ON(offset_in_page(size));
976 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
977 	if (WARN_ON(size == 0)) {
978 		/*
979 		 * Allocating 0 bytes isn't what caller wants since
980 		 * get_order(0) returns funny result. Just warn and terminate
981 		 * early.
982 		 */
983 		return NULL;
984 	}
985 	order = get_order(size);
986 
987 	rcu_read_lock();
988 	vbq = &get_cpu_var(vmap_block_queue);
989 	list_for_each_entry_rcu(vb, &vbq->free, free_list) {
990 		unsigned long pages_off;
991 
992 		spin_lock(&vb->lock);
993 		if (vb->free < (1UL << order)) {
994 			spin_unlock(&vb->lock);
995 			continue;
996 		}
997 
998 		pages_off = VMAP_BBMAP_BITS - vb->free;
999 		vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1000 		vb->free -= 1UL << order;
1001 		if (vb->free == 0) {
1002 			spin_lock(&vbq->lock);
1003 			list_del_rcu(&vb->free_list);
1004 			spin_unlock(&vbq->lock);
1005 		}
1006 
1007 		spin_unlock(&vb->lock);
1008 		break;
1009 	}
1010 
1011 	put_cpu_var(vmap_block_queue);
1012 	rcu_read_unlock();
1013 
1014 	/* Allocate new block if nothing was found */
1015 	if (!vaddr)
1016 		vaddr = new_vmap_block(order, gfp_mask);
1017 
1018 	return vaddr;
1019 }
1020 
vb_free(const void * addr,unsigned long size)1021 static void vb_free(const void *addr, unsigned long size)
1022 {
1023 	unsigned long offset;
1024 	unsigned long vb_idx;
1025 	unsigned int order;
1026 	struct vmap_block *vb;
1027 
1028 	BUG_ON(offset_in_page(size));
1029 	BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1030 
1031 	flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1032 
1033 	order = get_order(size);
1034 
1035 	offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1036 	offset >>= PAGE_SHIFT;
1037 
1038 	vb_idx = addr_to_vb_idx((unsigned long)addr);
1039 	rcu_read_lock();
1040 	vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1041 	rcu_read_unlock();
1042 	BUG_ON(!vb);
1043 
1044 	vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1045 
1046 	spin_lock(&vb->lock);
1047 
1048 	/* Expand dirty range */
1049 	vb->dirty_min = min(vb->dirty_min, offset);
1050 	vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1051 
1052 	vb->dirty += 1UL << order;
1053 	if (vb->dirty == VMAP_BBMAP_BITS) {
1054 		BUG_ON(vb->free);
1055 		spin_unlock(&vb->lock);
1056 		free_vmap_block(vb);
1057 	} else
1058 		spin_unlock(&vb->lock);
1059 }
1060 
1061 /**
1062  * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1063  *
1064  * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1065  * to amortize TLB flushing overheads. What this means is that any page you
1066  * have now, may, in a former life, have been mapped into kernel virtual
1067  * address by the vmap layer and so there might be some CPUs with TLB entries
1068  * still referencing that page (additional to the regular 1:1 kernel mapping).
1069  *
1070  * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1071  * be sure that none of the pages we have control over will have any aliases
1072  * from the vmap layer.
1073  */
vm_unmap_aliases(void)1074 void vm_unmap_aliases(void)
1075 {
1076 	unsigned long start = ULONG_MAX, end = 0;
1077 	int cpu;
1078 	int flush = 0;
1079 
1080 	if (unlikely(!vmap_initialized))
1081 		return;
1082 
1083 	for_each_possible_cpu(cpu) {
1084 		struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1085 		struct vmap_block *vb;
1086 
1087 		rcu_read_lock();
1088 		list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1089 			spin_lock(&vb->lock);
1090 			if (vb->dirty) {
1091 				unsigned long va_start = vb->va->va_start;
1092 				unsigned long s, e;
1093 
1094 				s = va_start + (vb->dirty_min << PAGE_SHIFT);
1095 				e = va_start + (vb->dirty_max << PAGE_SHIFT);
1096 
1097 				start = min(s, start);
1098 				end   = max(e, end);
1099 
1100 				flush = 1;
1101 			}
1102 			spin_unlock(&vb->lock);
1103 		}
1104 		rcu_read_unlock();
1105 	}
1106 
1107 	__purge_vmap_area_lazy(&start, &end, 1, flush);
1108 }
1109 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1110 
1111 /**
1112  * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1113  * @mem: the pointer returned by vm_map_ram
1114  * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1115  */
vm_unmap_ram(const void * mem,unsigned int count)1116 void vm_unmap_ram(const void *mem, unsigned int count)
1117 {
1118 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1119 	unsigned long addr = (unsigned long)mem;
1120 
1121 	BUG_ON(!addr);
1122 	BUG_ON(addr < VMALLOC_START);
1123 	BUG_ON(addr > VMALLOC_END);
1124 	BUG_ON(!PAGE_ALIGNED(addr));
1125 
1126 	debug_check_no_locks_freed(mem, size);
1127 	vmap_debug_free_range(addr, addr+size);
1128 
1129 	if (likely(count <= VMAP_MAX_ALLOC))
1130 		vb_free(mem, size);
1131 	else
1132 		free_unmap_vmap_area_addr(addr);
1133 }
1134 EXPORT_SYMBOL(vm_unmap_ram);
1135 
1136 /**
1137  * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1138  * @pages: an array of pointers to the pages to be mapped
1139  * @count: number of pages
1140  * @node: prefer to allocate data structures on this node
1141  * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1142  *
1143  * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1144  * faster than vmap so it's good.  But if you mix long-life and short-life
1145  * objects with vm_map_ram(), it could consume lots of address space through
1146  * fragmentation (especially on a 32bit machine).  You could see failures in
1147  * the end.  Please use this function for short-lived objects.
1148  *
1149  * Returns: a pointer to the address that has been mapped, or %NULL on failure
1150  */
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)1151 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1152 {
1153 	unsigned long size = (unsigned long)count << PAGE_SHIFT;
1154 	unsigned long addr;
1155 	void *mem;
1156 
1157 	if (likely(count <= VMAP_MAX_ALLOC)) {
1158 		mem = vb_alloc(size, GFP_KERNEL);
1159 		if (IS_ERR(mem))
1160 			return NULL;
1161 		addr = (unsigned long)mem;
1162 	} else {
1163 		struct vmap_area *va;
1164 		va = alloc_vmap_area(size, PAGE_SIZE,
1165 				VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1166 		if (IS_ERR(va))
1167 			return NULL;
1168 
1169 		addr = va->va_start;
1170 		mem = (void *)addr;
1171 	}
1172 	if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1173 		vm_unmap_ram(mem, count);
1174 		return NULL;
1175 	}
1176 	return mem;
1177 }
1178 EXPORT_SYMBOL(vm_map_ram);
1179 
1180 static struct vm_struct *vmlist __initdata;
1181 /**
1182  * vm_area_add_early - add vmap area early during boot
1183  * @vm: vm_struct to add
1184  *
1185  * This function is used to add fixed kernel vm area to vmlist before
1186  * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1187  * should contain proper values and the other fields should be zero.
1188  *
1189  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1190  */
vm_area_add_early(struct vm_struct * vm)1191 void __init vm_area_add_early(struct vm_struct *vm)
1192 {
1193 	struct vm_struct *tmp, **p;
1194 
1195 	BUG_ON(vmap_initialized);
1196 	for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1197 		if (tmp->addr >= vm->addr) {
1198 			BUG_ON(tmp->addr < vm->addr + vm->size);
1199 			break;
1200 		} else
1201 			BUG_ON(tmp->addr + tmp->size > vm->addr);
1202 	}
1203 	vm->next = *p;
1204 	*p = vm;
1205 }
1206 
1207 /**
1208  * vm_area_register_early - register vmap area early during boot
1209  * @vm: vm_struct to register
1210  * @align: requested alignment
1211  *
1212  * This function is used to register kernel vm area before
1213  * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1214  * proper values on entry and other fields should be zero.  On return,
1215  * vm->addr contains the allocated address.
1216  *
1217  * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1218  */
vm_area_register_early(struct vm_struct * vm,size_t align)1219 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1220 {
1221 	static size_t vm_init_off __initdata;
1222 	unsigned long addr;
1223 
1224 	addr = ALIGN(VMALLOC_START + vm_init_off, align);
1225 	vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1226 
1227 	vm->addr = (void *)addr;
1228 
1229 	vm_area_add_early(vm);
1230 }
1231 
vmalloc_init(void)1232 void __init vmalloc_init(void)
1233 {
1234 	struct vmap_area *va;
1235 	struct vm_struct *tmp;
1236 	int i;
1237 
1238 	for_each_possible_cpu(i) {
1239 		struct vmap_block_queue *vbq;
1240 		struct vfree_deferred *p;
1241 
1242 		vbq = &per_cpu(vmap_block_queue, i);
1243 		spin_lock_init(&vbq->lock);
1244 		INIT_LIST_HEAD(&vbq->free);
1245 		p = &per_cpu(vfree_deferred, i);
1246 		init_llist_head(&p->list);
1247 		INIT_WORK(&p->wq, free_work);
1248 	}
1249 
1250 	/* Import existing vmlist entries. */
1251 	for (tmp = vmlist; tmp; tmp = tmp->next) {
1252 		va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1253 		va->flags = VM_VM_AREA;
1254 		va->va_start = (unsigned long)tmp->addr;
1255 		va->va_end = va->va_start + tmp->size;
1256 		va->vm = tmp;
1257 		__insert_vmap_area(va);
1258 	}
1259 
1260 	vmap_area_pcpu_hole = VMALLOC_END;
1261 
1262 	vmap_initialized = true;
1263 }
1264 
1265 /**
1266  * map_kernel_range_noflush - map kernel VM area with the specified pages
1267  * @addr: start of the VM area to map
1268  * @size: size of the VM area to map
1269  * @prot: page protection flags to use
1270  * @pages: pages to map
1271  *
1272  * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1273  * specify should have been allocated using get_vm_area() and its
1274  * friends.
1275  *
1276  * NOTE:
1277  * This function does NOT do any cache flushing.  The caller is
1278  * responsible for calling flush_cache_vmap() on to-be-mapped areas
1279  * before calling this function.
1280  *
1281  * RETURNS:
1282  * The number of pages mapped on success, -errno on failure.
1283  */
map_kernel_range_noflush(unsigned long addr,unsigned long size,pgprot_t prot,struct page ** pages)1284 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1285 			     pgprot_t prot, struct page **pages)
1286 {
1287 	return vmap_page_range_noflush(addr, addr + size, prot, pages);
1288 }
1289 
1290 /**
1291  * unmap_kernel_range_noflush - unmap kernel VM area
1292  * @addr: start of the VM area to unmap
1293  * @size: size of the VM area to unmap
1294  *
1295  * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1296  * specify should have been allocated using get_vm_area() and its
1297  * friends.
1298  *
1299  * NOTE:
1300  * This function does NOT do any cache flushing.  The caller is
1301  * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1302  * before calling this function and flush_tlb_kernel_range() after.
1303  */
unmap_kernel_range_noflush(unsigned long addr,unsigned long size)1304 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1305 {
1306 	vunmap_page_range(addr, addr + size);
1307 }
1308 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1309 
1310 /**
1311  * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1312  * @addr: start of the VM area to unmap
1313  * @size: size of the VM area to unmap
1314  *
1315  * Similar to unmap_kernel_range_noflush() but flushes vcache before
1316  * the unmapping and tlb after.
1317  */
unmap_kernel_range(unsigned long addr,unsigned long size)1318 void unmap_kernel_range(unsigned long addr, unsigned long size)
1319 {
1320 	unsigned long end = addr + size;
1321 
1322 	flush_cache_vunmap(addr, end);
1323 	vunmap_page_range(addr, end);
1324 	flush_tlb_kernel_range(addr, end);
1325 }
1326 EXPORT_SYMBOL_GPL(unmap_kernel_range);
1327 
map_vm_area(struct vm_struct * area,pgprot_t prot,struct page ** pages)1328 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1329 {
1330 	unsigned long addr = (unsigned long)area->addr;
1331 	unsigned long end = addr + get_vm_area_size(area);
1332 	int err;
1333 
1334 	err = vmap_page_range(addr, end, prot, pages);
1335 
1336 	return err > 0 ? 0 : err;
1337 }
1338 EXPORT_SYMBOL_GPL(map_vm_area);
1339 
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)1340 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1341 			      unsigned long flags, const void *caller)
1342 {
1343 	spin_lock(&vmap_area_lock);
1344 	vm->flags = flags;
1345 	vm->addr = (void *)va->va_start;
1346 	vm->size = va->va_end - va->va_start;
1347 	vm->caller = caller;
1348 	va->vm = vm;
1349 	va->flags |= VM_VM_AREA;
1350 	spin_unlock(&vmap_area_lock);
1351 }
1352 
clear_vm_uninitialized_flag(struct vm_struct * vm)1353 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1354 {
1355 	/*
1356 	 * Before removing VM_UNINITIALIZED,
1357 	 * we should make sure that vm has proper values.
1358 	 * Pair with smp_rmb() in show_numa_info().
1359 	 */
1360 	smp_wmb();
1361 	vm->flags &= ~VM_UNINITIALIZED;
1362 }
1363 
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)1364 static struct vm_struct *__get_vm_area_node(unsigned long size,
1365 		unsigned long align, unsigned long flags, unsigned long start,
1366 		unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1367 {
1368 	struct vmap_area *va;
1369 	struct vm_struct *area;
1370 
1371 	BUG_ON(in_interrupt());
1372 	size = PAGE_ALIGN(size);
1373 	if (unlikely(!size))
1374 		return NULL;
1375 
1376 	if (flags & VM_IOREMAP)
1377 		align = 1ul << clamp_t(int, get_count_order_long(size),
1378 				       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1379 
1380 	area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1381 	if (unlikely(!area))
1382 		return NULL;
1383 
1384 	if (!(flags & VM_NO_GUARD))
1385 		size += PAGE_SIZE;
1386 
1387 	va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1388 	if (IS_ERR(va)) {
1389 		kfree(area);
1390 		return NULL;
1391 	}
1392 
1393 	setup_vmalloc_vm(area, va, flags, caller);
1394 
1395 	return area;
1396 }
1397 
__get_vm_area(unsigned long size,unsigned long flags,unsigned long start,unsigned long end)1398 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1399 				unsigned long start, unsigned long end)
1400 {
1401 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1402 				  GFP_KERNEL, __builtin_return_address(0));
1403 }
1404 EXPORT_SYMBOL_GPL(__get_vm_area);
1405 
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)1406 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1407 				       unsigned long start, unsigned long end,
1408 				       const void *caller)
1409 {
1410 	return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1411 				  GFP_KERNEL, caller);
1412 }
1413 
1414 /**
1415  *	get_vm_area  -  reserve a contiguous kernel virtual area
1416  *	@size:		size of the area
1417  *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
1418  *
1419  *	Search an area of @size in the kernel virtual mapping area,
1420  *	and reserved it for out purposes.  Returns the area descriptor
1421  *	on success or %NULL on failure.
1422  */
get_vm_area(unsigned long size,unsigned long flags)1423 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1424 {
1425 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1426 				  NUMA_NO_NODE, GFP_KERNEL,
1427 				  __builtin_return_address(0));
1428 }
1429 
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)1430 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1431 				const void *caller)
1432 {
1433 	return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1434 				  NUMA_NO_NODE, GFP_KERNEL, caller);
1435 }
1436 
1437 /**
1438  *	find_vm_area  -  find a continuous kernel virtual area
1439  *	@addr:		base address
1440  *
1441  *	Search for the kernel VM area starting at @addr, and return it.
1442  *	It is up to the caller to do all required locking to keep the returned
1443  *	pointer valid.
1444  */
find_vm_area(const void * addr)1445 struct vm_struct *find_vm_area(const void *addr)
1446 {
1447 	struct vmap_area *va;
1448 
1449 	va = find_vmap_area((unsigned long)addr);
1450 	if (va && va->flags & VM_VM_AREA)
1451 		return va->vm;
1452 
1453 	return NULL;
1454 }
1455 
1456 /**
1457  *	remove_vm_area  -  find and remove a continuous kernel virtual area
1458  *	@addr:		base address
1459  *
1460  *	Search for the kernel VM area starting at @addr, and remove it.
1461  *	This function returns the found VM area, but using it is NOT safe
1462  *	on SMP machines, except for its size or flags.
1463  */
remove_vm_area(const void * addr)1464 struct vm_struct *remove_vm_area(const void *addr)
1465 {
1466 	struct vmap_area *va;
1467 
1468 	va = find_vmap_area((unsigned long)addr);
1469 	if (va && va->flags & VM_VM_AREA) {
1470 		struct vm_struct *vm = va->vm;
1471 
1472 		spin_lock(&vmap_area_lock);
1473 		va->vm = NULL;
1474 		va->flags &= ~VM_VM_AREA;
1475 		spin_unlock(&vmap_area_lock);
1476 
1477 		vmap_debug_free_range(va->va_start, va->va_end);
1478 		kasan_free_shadow(vm);
1479 		free_unmap_vmap_area(va);
1480 
1481 		return vm;
1482 	}
1483 	return NULL;
1484 }
1485 
__vunmap(const void * addr,int deallocate_pages)1486 static void __vunmap(const void *addr, int deallocate_pages)
1487 {
1488 	struct vm_struct *area;
1489 
1490 	if (!addr)
1491 		return;
1492 
1493 	if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1494 			addr))
1495 		return;
1496 
1497 	area = remove_vm_area(addr);
1498 	if (unlikely(!area)) {
1499 		WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1500 				addr);
1501 		return;
1502 	}
1503 
1504 	debug_check_no_locks_freed(addr, get_vm_area_size(area));
1505 	debug_check_no_obj_freed(addr, get_vm_area_size(area));
1506 
1507 	if (deallocate_pages) {
1508 		int i;
1509 
1510 		for (i = 0; i < area->nr_pages; i++) {
1511 			struct page *page = area->pages[i];
1512 
1513 			BUG_ON(!page);
1514 			__free_pages(page, 0);
1515 		}
1516 
1517 		kvfree(area->pages);
1518 	}
1519 
1520 	kfree(area);
1521 	return;
1522 }
1523 
1524 /**
1525  *	vfree  -  release memory allocated by vmalloc()
1526  *	@addr:		memory base address
1527  *
1528  *	Free the virtually continuous memory area starting at @addr, as
1529  *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1530  *	NULL, no operation is performed.
1531  *
1532  *	Must not be called in NMI context (strictly speaking, only if we don't
1533  *	have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1534  *	conventions for vfree() arch-depenedent would be a really bad idea)
1535  *
1536  *	NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1537  */
vfree(const void * addr)1538 void vfree(const void *addr)
1539 {
1540 	BUG_ON(in_nmi());
1541 
1542 	kmemleak_free(addr);
1543 
1544 	if (!addr)
1545 		return;
1546 	if (unlikely(in_interrupt())) {
1547 		struct vfree_deferred *p = this_cpu_ptr(&vfree_deferred);
1548 		if (llist_add((struct llist_node *)addr, &p->list))
1549 			schedule_work(&p->wq);
1550 	} else
1551 		__vunmap(addr, 1);
1552 }
1553 EXPORT_SYMBOL(vfree);
1554 
1555 /**
1556  *	vunmap  -  release virtual mapping obtained by vmap()
1557  *	@addr:		memory base address
1558  *
1559  *	Free the virtually contiguous memory area starting at @addr,
1560  *	which was created from the page array passed to vmap().
1561  *
1562  *	Must not be called in interrupt context.
1563  */
vunmap(const void * addr)1564 void vunmap(const void *addr)
1565 {
1566 	BUG_ON(in_interrupt());
1567 	might_sleep();
1568 	if (addr)
1569 		__vunmap(addr, 0);
1570 }
1571 EXPORT_SYMBOL(vunmap);
1572 
1573 /**
1574  *	vmap  -  map an array of pages into virtually contiguous space
1575  *	@pages:		array of page pointers
1576  *	@count:		number of pages to map
1577  *	@flags:		vm_area->flags
1578  *	@prot:		page protection for the mapping
1579  *
1580  *	Maps @count pages from @pages into contiguous kernel virtual
1581  *	space.
1582  */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)1583 void *vmap(struct page **pages, unsigned int count,
1584 		unsigned long flags, pgprot_t prot)
1585 {
1586 	struct vm_struct *area;
1587 	unsigned long size;		/* In bytes */
1588 
1589 	might_sleep();
1590 
1591 	if (count > totalram_pages)
1592 		return NULL;
1593 
1594 	size = (unsigned long)count << PAGE_SHIFT;
1595 	area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1596 	if (!area)
1597 		return NULL;
1598 
1599 	if (map_vm_area(area, prot, pages)) {
1600 		vunmap(area->addr);
1601 		return NULL;
1602 	}
1603 
1604 	return area->addr;
1605 }
1606 EXPORT_SYMBOL(vmap);
1607 
1608 static void *__vmalloc_node(unsigned long size, unsigned long align,
1609 			    gfp_t gfp_mask, pgprot_t prot,
1610 			    int node, const void *caller);
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,int node)1611 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1612 				 pgprot_t prot, int node)
1613 {
1614 	struct page **pages;
1615 	unsigned int nr_pages, array_size, i;
1616 	const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1617 	const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1618 
1619 	nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1620 	array_size = (nr_pages * sizeof(struct page *));
1621 
1622 	area->nr_pages = nr_pages;
1623 	/* Please note that the recursion is strictly bounded. */
1624 	if (array_size > PAGE_SIZE) {
1625 		pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1626 				PAGE_KERNEL, node, area->caller);
1627 	} else {
1628 		pages = kmalloc_node(array_size, nested_gfp, node);
1629 	}
1630 	area->pages = pages;
1631 	if (!area->pages) {
1632 		remove_vm_area(area->addr);
1633 		kfree(area);
1634 		return NULL;
1635 	}
1636 
1637 	for (i = 0; i < area->nr_pages; i++) {
1638 		struct page *page;
1639 
1640 		if (node == NUMA_NO_NODE)
1641 			page = alloc_page(alloc_mask);
1642 		else
1643 			page = alloc_pages_node(node, alloc_mask, 0);
1644 
1645 		if (unlikely(!page)) {
1646 			/* Successfully allocated i pages, free them in __vunmap() */
1647 			area->nr_pages = i;
1648 			goto fail;
1649 		}
1650 		area->pages[i] = page;
1651 		if (gfpflags_allow_blocking(gfp_mask))
1652 			cond_resched();
1653 	}
1654 
1655 	if (map_vm_area(area, prot, pages))
1656 		goto fail;
1657 	return area->addr;
1658 
1659 fail:
1660 	warn_alloc(gfp_mask,
1661 			  "vmalloc: allocation failure, allocated %ld of %ld bytes",
1662 			  (area->nr_pages*PAGE_SIZE), area->size);
1663 	vfree(area->addr);
1664 	return NULL;
1665 }
1666 
1667 /**
1668  *	__vmalloc_node_range  -  allocate virtually contiguous memory
1669  *	@size:		allocation size
1670  *	@align:		desired alignment
1671  *	@start:		vm area range start
1672  *	@end:		vm area range end
1673  *	@gfp_mask:	flags for the page level allocator
1674  *	@prot:		protection mask for the allocated pages
1675  *	@vm_flags:	additional vm area flags (e.g. %VM_NO_GUARD)
1676  *	@node:		node to use for allocation or NUMA_NO_NODE
1677  *	@caller:	caller's return address
1678  *
1679  *	Allocate enough pages to cover @size from the page level
1680  *	allocator with @gfp_mask flags.  Map them into contiguous
1681  *	kernel virtual space, using a pagetable protection of @prot.
1682  */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)1683 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1684 			unsigned long start, unsigned long end, gfp_t gfp_mask,
1685 			pgprot_t prot, unsigned long vm_flags, int node,
1686 			const void *caller)
1687 {
1688 	struct vm_struct *area;
1689 	void *addr;
1690 	unsigned long real_size = size;
1691 
1692 	size = PAGE_ALIGN(size);
1693 	if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1694 		goto fail;
1695 
1696 	area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1697 				vm_flags, start, end, node, gfp_mask, caller);
1698 	if (!area)
1699 		goto fail;
1700 
1701 	addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1702 	if (!addr)
1703 		return NULL;
1704 
1705 	/*
1706 	 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1707 	 * flag. It means that vm_struct is not fully initialized.
1708 	 * Now, it is fully initialized, so remove this flag here.
1709 	 */
1710 	clear_vm_uninitialized_flag(area);
1711 
1712 	/*
1713 	 * A ref_count = 2 is needed because vm_struct allocated in
1714 	 * __get_vm_area_node() contains a reference to the virtual address of
1715 	 * the vmalloc'ed block.
1716 	 */
1717 	kmemleak_alloc(addr, real_size, 2, gfp_mask);
1718 
1719 	return addr;
1720 
1721 fail:
1722 	warn_alloc(gfp_mask,
1723 			  "vmalloc: allocation failure: %lu bytes", real_size);
1724 	return NULL;
1725 }
1726 
1727 /**
1728  *	__vmalloc_node  -  allocate virtually contiguous memory
1729  *	@size:		allocation size
1730  *	@align:		desired alignment
1731  *	@gfp_mask:	flags for the page level allocator
1732  *	@prot:		protection mask for the allocated pages
1733  *	@node:		node to use for allocation or NUMA_NO_NODE
1734  *	@caller:	caller's return address
1735  *
1736  *	Allocate enough pages to cover @size from the page level
1737  *	allocator with @gfp_mask flags.  Map them into contiguous
1738  *	kernel virtual space, using a pagetable protection of @prot.
1739  */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,pgprot_t prot,int node,const void * caller)1740 static void *__vmalloc_node(unsigned long size, unsigned long align,
1741 			    gfp_t gfp_mask, pgprot_t prot,
1742 			    int node, const void *caller)
1743 {
1744 	return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1745 				gfp_mask, prot, 0, node, caller);
1746 }
1747 
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)1748 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1749 {
1750 	return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1751 				__builtin_return_address(0));
1752 }
1753 EXPORT_SYMBOL(__vmalloc);
1754 
__vmalloc_node_flags(unsigned long size,int node,gfp_t flags)1755 static inline void *__vmalloc_node_flags(unsigned long size,
1756 					int node, gfp_t flags)
1757 {
1758 	return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1759 					node, __builtin_return_address(0));
1760 }
1761 
1762 /**
1763  *	vmalloc  -  allocate virtually contiguous memory
1764  *	@size:		allocation size
1765  *	Allocate enough pages to cover @size from the page level
1766  *	allocator and map them into contiguous kernel virtual space.
1767  *
1768  *	For tight control over page level allocator and protection flags
1769  *	use __vmalloc() instead.
1770  */
vmalloc(unsigned long size)1771 void *vmalloc(unsigned long size)
1772 {
1773 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1774 				    GFP_KERNEL | __GFP_HIGHMEM);
1775 }
1776 EXPORT_SYMBOL(vmalloc);
1777 
1778 /**
1779  *	vzalloc - allocate virtually contiguous memory with zero fill
1780  *	@size:	allocation size
1781  *	Allocate enough pages to cover @size from the page level
1782  *	allocator and map them into contiguous kernel virtual space.
1783  *	The memory allocated is set to zero.
1784  *
1785  *	For tight control over page level allocator and protection flags
1786  *	use __vmalloc() instead.
1787  */
vzalloc(unsigned long size)1788 void *vzalloc(unsigned long size)
1789 {
1790 	return __vmalloc_node_flags(size, NUMA_NO_NODE,
1791 				GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1792 }
1793 EXPORT_SYMBOL(vzalloc);
1794 
1795 /**
1796  * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1797  * @size: allocation size
1798  *
1799  * The resulting memory area is zeroed so it can be mapped to userspace
1800  * without leaking data.
1801  */
vmalloc_user(unsigned long size)1802 void *vmalloc_user(unsigned long size)
1803 {
1804 	struct vm_struct *area;
1805 	void *ret;
1806 
1807 	ret = __vmalloc_node(size, SHMLBA,
1808 			     GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1809 			     PAGE_KERNEL, NUMA_NO_NODE,
1810 			     __builtin_return_address(0));
1811 	if (ret) {
1812 		area = find_vm_area(ret);
1813 		area->flags |= VM_USERMAP;
1814 	}
1815 	return ret;
1816 }
1817 EXPORT_SYMBOL(vmalloc_user);
1818 
1819 /**
1820  *	vmalloc_node  -  allocate memory on a specific node
1821  *	@size:		allocation size
1822  *	@node:		numa node
1823  *
1824  *	Allocate enough pages to cover @size from the page level
1825  *	allocator and map them into contiguous kernel virtual space.
1826  *
1827  *	For tight control over page level allocator and protection flags
1828  *	use __vmalloc() instead.
1829  */
vmalloc_node(unsigned long size,int node)1830 void *vmalloc_node(unsigned long size, int node)
1831 {
1832 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1833 					node, __builtin_return_address(0));
1834 }
1835 EXPORT_SYMBOL(vmalloc_node);
1836 
1837 /**
1838  * vzalloc_node - allocate memory on a specific node with zero fill
1839  * @size:	allocation size
1840  * @node:	numa node
1841  *
1842  * Allocate enough pages to cover @size from the page level
1843  * allocator and map them into contiguous kernel virtual space.
1844  * The memory allocated is set to zero.
1845  *
1846  * For tight control over page level allocator and protection flags
1847  * use __vmalloc_node() instead.
1848  */
vzalloc_node(unsigned long size,int node)1849 void *vzalloc_node(unsigned long size, int node)
1850 {
1851 	return __vmalloc_node_flags(size, node,
1852 			 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1853 }
1854 EXPORT_SYMBOL(vzalloc_node);
1855 
1856 #ifndef PAGE_KERNEL_EXEC
1857 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1858 #endif
1859 
1860 /**
1861  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
1862  *	@size:		allocation size
1863  *
1864  *	Kernel-internal function to allocate enough pages to cover @size
1865  *	the page level allocator and map them into contiguous and
1866  *	executable kernel virtual space.
1867  *
1868  *	For tight control over page level allocator and protection flags
1869  *	use __vmalloc() instead.
1870  */
1871 
vmalloc_exec(unsigned long size)1872 void *vmalloc_exec(unsigned long size)
1873 {
1874 	return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1875 			      NUMA_NO_NODE, __builtin_return_address(0));
1876 }
1877 
1878 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1879 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1880 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1881 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1882 #else
1883 #define GFP_VMALLOC32 GFP_KERNEL
1884 #endif
1885 
1886 /**
1887  *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1888  *	@size:		allocation size
1889  *
1890  *	Allocate enough 32bit PA addressable pages to cover @size from the
1891  *	page level allocator and map them into contiguous kernel virtual space.
1892  */
vmalloc_32(unsigned long size)1893 void *vmalloc_32(unsigned long size)
1894 {
1895 	return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1896 			      NUMA_NO_NODE, __builtin_return_address(0));
1897 }
1898 EXPORT_SYMBOL(vmalloc_32);
1899 
1900 /**
1901  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1902  *	@size:		allocation size
1903  *
1904  * The resulting memory area is 32bit addressable and zeroed so it can be
1905  * mapped to userspace without leaking data.
1906  */
vmalloc_32_user(unsigned long size)1907 void *vmalloc_32_user(unsigned long size)
1908 {
1909 	struct vm_struct *area;
1910 	void *ret;
1911 
1912 	ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1913 			     NUMA_NO_NODE, __builtin_return_address(0));
1914 	if (ret) {
1915 		area = find_vm_area(ret);
1916 		area->flags |= VM_USERMAP;
1917 	}
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL(vmalloc_32_user);
1921 
1922 /*
1923  * small helper routine , copy contents to buf from addr.
1924  * If the page is not present, fill zero.
1925  */
1926 
aligned_vread(char * buf,char * addr,unsigned long count)1927 static int aligned_vread(char *buf, char *addr, unsigned long count)
1928 {
1929 	struct page *p;
1930 	int copied = 0;
1931 
1932 	while (count) {
1933 		unsigned long offset, length;
1934 
1935 		offset = offset_in_page(addr);
1936 		length = PAGE_SIZE - offset;
1937 		if (length > count)
1938 			length = count;
1939 		p = vmalloc_to_page(addr);
1940 		/*
1941 		 * To do safe access to this _mapped_ area, we need
1942 		 * lock. But adding lock here means that we need to add
1943 		 * overhead of vmalloc()/vfree() calles for this _debug_
1944 		 * interface, rarely used. Instead of that, we'll use
1945 		 * kmap() and get small overhead in this access function.
1946 		 */
1947 		if (p) {
1948 			/*
1949 			 * we can expect USER0 is not used (see vread/vwrite's
1950 			 * function description)
1951 			 */
1952 			void *map = kmap_atomic(p);
1953 			memcpy(buf, map + offset, length);
1954 			kunmap_atomic(map);
1955 		} else
1956 			memset(buf, 0, length);
1957 
1958 		addr += length;
1959 		buf += length;
1960 		copied += length;
1961 		count -= length;
1962 	}
1963 	return copied;
1964 }
1965 
aligned_vwrite(char * buf,char * addr,unsigned long count)1966 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1967 {
1968 	struct page *p;
1969 	int copied = 0;
1970 
1971 	while (count) {
1972 		unsigned long offset, length;
1973 
1974 		offset = offset_in_page(addr);
1975 		length = PAGE_SIZE - offset;
1976 		if (length > count)
1977 			length = count;
1978 		p = vmalloc_to_page(addr);
1979 		/*
1980 		 * To do safe access to this _mapped_ area, we need
1981 		 * lock. But adding lock here means that we need to add
1982 		 * overhead of vmalloc()/vfree() calles for this _debug_
1983 		 * interface, rarely used. Instead of that, we'll use
1984 		 * kmap() and get small overhead in this access function.
1985 		 */
1986 		if (p) {
1987 			/*
1988 			 * we can expect USER0 is not used (see vread/vwrite's
1989 			 * function description)
1990 			 */
1991 			void *map = kmap_atomic(p);
1992 			memcpy(map + offset, buf, length);
1993 			kunmap_atomic(map);
1994 		}
1995 		addr += length;
1996 		buf += length;
1997 		copied += length;
1998 		count -= length;
1999 	}
2000 	return copied;
2001 }
2002 
2003 /**
2004  *	vread() -  read vmalloc area in a safe way.
2005  *	@buf:		buffer for reading data
2006  *	@addr:		vm address.
2007  *	@count:		number of bytes to be read.
2008  *
2009  *	Returns # of bytes which addr and buf should be increased.
2010  *	(same number to @count). Returns 0 if [addr...addr+count) doesn't
2011  *	includes any intersect with alive vmalloc area.
2012  *
2013  *	This function checks that addr is a valid vmalloc'ed area, and
2014  *	copy data from that area to a given buffer. If the given memory range
2015  *	of [addr...addr+count) includes some valid address, data is copied to
2016  *	proper area of @buf. If there are memory holes, they'll be zero-filled.
2017  *	IOREMAP area is treated as memory hole and no copy is done.
2018  *
2019  *	If [addr...addr+count) doesn't includes any intersects with alive
2020  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2021  *
2022  *	Note: In usual ops, vread() is never necessary because the caller
2023  *	should know vmalloc() area is valid and can use memcpy().
2024  *	This is for routines which have to access vmalloc area without
2025  *	any informaion, as /dev/kmem.
2026  *
2027  */
2028 
vread(char * buf,char * addr,unsigned long count)2029 long vread(char *buf, char *addr, unsigned long count)
2030 {
2031 	struct vmap_area *va;
2032 	struct vm_struct *vm;
2033 	char *vaddr, *buf_start = buf;
2034 	unsigned long buflen = count;
2035 	unsigned long n;
2036 
2037 	/* Don't allow overflow */
2038 	if ((unsigned long) addr + count < count)
2039 		count = -(unsigned long) addr;
2040 
2041 	spin_lock(&vmap_area_lock);
2042 	list_for_each_entry(va, &vmap_area_list, list) {
2043 		if (!count)
2044 			break;
2045 
2046 		if (!(va->flags & VM_VM_AREA))
2047 			continue;
2048 
2049 		vm = va->vm;
2050 		vaddr = (char *) vm->addr;
2051 		if (addr >= vaddr + get_vm_area_size(vm))
2052 			continue;
2053 		while (addr < vaddr) {
2054 			if (count == 0)
2055 				goto finished;
2056 			*buf = '\0';
2057 			buf++;
2058 			addr++;
2059 			count--;
2060 		}
2061 		n = vaddr + get_vm_area_size(vm) - addr;
2062 		if (n > count)
2063 			n = count;
2064 		if (!(vm->flags & VM_IOREMAP))
2065 			aligned_vread(buf, addr, n);
2066 		else /* IOREMAP area is treated as memory hole */
2067 			memset(buf, 0, n);
2068 		buf += n;
2069 		addr += n;
2070 		count -= n;
2071 	}
2072 finished:
2073 	spin_unlock(&vmap_area_lock);
2074 
2075 	if (buf == buf_start)
2076 		return 0;
2077 	/* zero-fill memory holes */
2078 	if (buf != buf_start + buflen)
2079 		memset(buf, 0, buflen - (buf - buf_start));
2080 
2081 	return buflen;
2082 }
2083 
2084 /**
2085  *	vwrite() -  write vmalloc area in a safe way.
2086  *	@buf:		buffer for source data
2087  *	@addr:		vm address.
2088  *	@count:		number of bytes to be read.
2089  *
2090  *	Returns # of bytes which addr and buf should be incresed.
2091  *	(same number to @count).
2092  *	If [addr...addr+count) doesn't includes any intersect with valid
2093  *	vmalloc area, returns 0.
2094  *
2095  *	This function checks that addr is a valid vmalloc'ed area, and
2096  *	copy data from a buffer to the given addr. If specified range of
2097  *	[addr...addr+count) includes some valid address, data is copied from
2098  *	proper area of @buf. If there are memory holes, no copy to hole.
2099  *	IOREMAP area is treated as memory hole and no copy is done.
2100  *
2101  *	If [addr...addr+count) doesn't includes any intersects with alive
2102  *	vm_struct area, returns 0. @buf should be kernel's buffer.
2103  *
2104  *	Note: In usual ops, vwrite() is never necessary because the caller
2105  *	should know vmalloc() area is valid and can use memcpy().
2106  *	This is for routines which have to access vmalloc area without
2107  *	any informaion, as /dev/kmem.
2108  */
2109 
vwrite(char * buf,char * addr,unsigned long count)2110 long vwrite(char *buf, char *addr, unsigned long count)
2111 {
2112 	struct vmap_area *va;
2113 	struct vm_struct *vm;
2114 	char *vaddr;
2115 	unsigned long n, buflen;
2116 	int copied = 0;
2117 
2118 	/* Don't allow overflow */
2119 	if ((unsigned long) addr + count < count)
2120 		count = -(unsigned long) addr;
2121 	buflen = count;
2122 
2123 	spin_lock(&vmap_area_lock);
2124 	list_for_each_entry(va, &vmap_area_list, list) {
2125 		if (!count)
2126 			break;
2127 
2128 		if (!(va->flags & VM_VM_AREA))
2129 			continue;
2130 
2131 		vm = va->vm;
2132 		vaddr = (char *) vm->addr;
2133 		if (addr >= vaddr + get_vm_area_size(vm))
2134 			continue;
2135 		while (addr < vaddr) {
2136 			if (count == 0)
2137 				goto finished;
2138 			buf++;
2139 			addr++;
2140 			count--;
2141 		}
2142 		n = vaddr + get_vm_area_size(vm) - addr;
2143 		if (n > count)
2144 			n = count;
2145 		if (!(vm->flags & VM_IOREMAP)) {
2146 			aligned_vwrite(buf, addr, n);
2147 			copied++;
2148 		}
2149 		buf += n;
2150 		addr += n;
2151 		count -= n;
2152 	}
2153 finished:
2154 	spin_unlock(&vmap_area_lock);
2155 	if (!copied)
2156 		return 0;
2157 	return buflen;
2158 }
2159 
2160 /**
2161  *	remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2162  *	@vma:		vma to cover
2163  *	@uaddr:		target user address to start at
2164  *	@kaddr:		virtual address of vmalloc kernel memory
2165  *	@size:		size of map area
2166  *
2167  *	Returns:	0 for success, -Exxx on failure
2168  *
2169  *	This function checks that @kaddr is a valid vmalloc'ed area,
2170  *	and that it is big enough to cover the range starting at
2171  *	@uaddr in @vma. Will return failure if that criteria isn't
2172  *	met.
2173  *
2174  *	Similar to remap_pfn_range() (see mm/memory.c)
2175  */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long size)2176 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2177 				void *kaddr, unsigned long size)
2178 {
2179 	struct vm_struct *area;
2180 
2181 	size = PAGE_ALIGN(size);
2182 
2183 	if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2184 		return -EINVAL;
2185 
2186 	area = find_vm_area(kaddr);
2187 	if (!area)
2188 		return -EINVAL;
2189 
2190 	if (!(area->flags & VM_USERMAP))
2191 		return -EINVAL;
2192 
2193 	if (kaddr + size > area->addr + area->size)
2194 		return -EINVAL;
2195 
2196 	do {
2197 		struct page *page = vmalloc_to_page(kaddr);
2198 		int ret;
2199 
2200 		ret = vm_insert_page(vma, uaddr, page);
2201 		if (ret)
2202 			return ret;
2203 
2204 		uaddr += PAGE_SIZE;
2205 		kaddr += PAGE_SIZE;
2206 		size -= PAGE_SIZE;
2207 	} while (size > 0);
2208 
2209 	vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2210 
2211 	return 0;
2212 }
2213 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2214 
2215 /**
2216  *	remap_vmalloc_range  -  map vmalloc pages to userspace
2217  *	@vma:		vma to cover (map full range of vma)
2218  *	@addr:		vmalloc memory
2219  *	@pgoff:		number of pages into addr before first page to map
2220  *
2221  *	Returns:	0 for success, -Exxx on failure
2222  *
2223  *	This function checks that addr is a valid vmalloc'ed area, and
2224  *	that it is big enough to cover the vma. Will return failure if
2225  *	that criteria isn't met.
2226  *
2227  *	Similar to remap_pfn_range() (see mm/memory.c)
2228  */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)2229 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2230 						unsigned long pgoff)
2231 {
2232 	return remap_vmalloc_range_partial(vma, vma->vm_start,
2233 					   addr + (pgoff << PAGE_SHIFT),
2234 					   vma->vm_end - vma->vm_start);
2235 }
2236 EXPORT_SYMBOL(remap_vmalloc_range);
2237 
2238 /*
2239  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2240  * have one.
2241  */
vmalloc_sync_all(void)2242 void __weak vmalloc_sync_all(void)
2243 {
2244 }
2245 
2246 
f(pte_t * pte,pgtable_t table,unsigned long addr,void * data)2247 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2248 {
2249 	pte_t ***p = data;
2250 
2251 	if (p) {
2252 		*(*p) = pte;
2253 		(*p)++;
2254 	}
2255 	return 0;
2256 }
2257 
2258 /**
2259  *	alloc_vm_area - allocate a range of kernel address space
2260  *	@size:		size of the area
2261  *	@ptes:		returns the PTEs for the address space
2262  *
2263  *	Returns:	NULL on failure, vm_struct on success
2264  *
2265  *	This function reserves a range of kernel address space, and
2266  *	allocates pagetables to map that range.  No actual mappings
2267  *	are created.
2268  *
2269  *	If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2270  *	allocated for the VM area are returned.
2271  */
alloc_vm_area(size_t size,pte_t ** ptes)2272 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2273 {
2274 	struct vm_struct *area;
2275 
2276 	area = get_vm_area_caller(size, VM_IOREMAP,
2277 				__builtin_return_address(0));
2278 	if (area == NULL)
2279 		return NULL;
2280 
2281 	/*
2282 	 * This ensures that page tables are constructed for this region
2283 	 * of kernel virtual address space and mapped into init_mm.
2284 	 */
2285 	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2286 				size, f, ptes ? &ptes : NULL)) {
2287 		free_vm_area(area);
2288 		return NULL;
2289 	}
2290 
2291 	return area;
2292 }
2293 EXPORT_SYMBOL_GPL(alloc_vm_area);
2294 
free_vm_area(struct vm_struct * area)2295 void free_vm_area(struct vm_struct *area)
2296 {
2297 	struct vm_struct *ret;
2298 	ret = remove_vm_area(area->addr);
2299 	BUG_ON(ret != area);
2300 	kfree(area);
2301 }
2302 EXPORT_SYMBOL_GPL(free_vm_area);
2303 
2304 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)2305 static struct vmap_area *node_to_va(struct rb_node *n)
2306 {
2307 	return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2308 }
2309 
2310 /**
2311  * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2312  * @end: target address
2313  * @pnext: out arg for the next vmap_area
2314  * @pprev: out arg for the previous vmap_area
2315  *
2316  * Returns: %true if either or both of next and prev are found,
2317  *	    %false if no vmap_area exists
2318  *
2319  * Find vmap_areas end addresses of which enclose @end.  ie. if not
2320  * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2321  */
pvm_find_next_prev(unsigned long end,struct vmap_area ** pnext,struct vmap_area ** pprev)2322 static bool pvm_find_next_prev(unsigned long end,
2323 			       struct vmap_area **pnext,
2324 			       struct vmap_area **pprev)
2325 {
2326 	struct rb_node *n = vmap_area_root.rb_node;
2327 	struct vmap_area *va = NULL;
2328 
2329 	while (n) {
2330 		va = rb_entry(n, struct vmap_area, rb_node);
2331 		if (end < va->va_end)
2332 			n = n->rb_left;
2333 		else if (end > va->va_end)
2334 			n = n->rb_right;
2335 		else
2336 			break;
2337 	}
2338 
2339 	if (!va)
2340 		return false;
2341 
2342 	if (va->va_end > end) {
2343 		*pnext = va;
2344 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2345 	} else {
2346 		*pprev = va;
2347 		*pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2348 	}
2349 	return true;
2350 }
2351 
2352 /**
2353  * pvm_determine_end - find the highest aligned address between two vmap_areas
2354  * @pnext: in/out arg for the next vmap_area
2355  * @pprev: in/out arg for the previous vmap_area
2356  * @align: alignment
2357  *
2358  * Returns: determined end address
2359  *
2360  * Find the highest aligned address between *@pnext and *@pprev below
2361  * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2362  * down address is between the end addresses of the two vmap_areas.
2363  *
2364  * Please note that the address returned by this function may fall
2365  * inside *@pnext vmap_area.  The caller is responsible for checking
2366  * that.
2367  */
pvm_determine_end(struct vmap_area ** pnext,struct vmap_area ** pprev,unsigned long align)2368 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2369 				       struct vmap_area **pprev,
2370 				       unsigned long align)
2371 {
2372 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2373 	unsigned long addr;
2374 
2375 	if (*pnext)
2376 		addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2377 	else
2378 		addr = vmalloc_end;
2379 
2380 	while (*pprev && (*pprev)->va_end > addr) {
2381 		*pnext = *pprev;
2382 		*pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2383 	}
2384 
2385 	return addr;
2386 }
2387 
2388 /**
2389  * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2390  * @offsets: array containing offset of each area
2391  * @sizes: array containing size of each area
2392  * @nr_vms: the number of areas to allocate
2393  * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2394  *
2395  * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2396  *	    vm_structs on success, %NULL on failure
2397  *
2398  * Percpu allocator wants to use congruent vm areas so that it can
2399  * maintain the offsets among percpu areas.  This function allocates
2400  * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2401  * be scattered pretty far, distance between two areas easily going up
2402  * to gigabytes.  To avoid interacting with regular vmallocs, these
2403  * areas are allocated from top.
2404  *
2405  * Despite its complicated look, this allocator is rather simple.  It
2406  * does everything top-down and scans areas from the end looking for
2407  * matching slot.  While scanning, if any of the areas overlaps with
2408  * existing vmap_area, the base address is pulled down to fit the
2409  * area.  Scanning is repeated till all the areas fit and then all
2410  * necessary data structres are inserted and the result is returned.
2411  */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)2412 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2413 				     const size_t *sizes, int nr_vms,
2414 				     size_t align)
2415 {
2416 	const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2417 	const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2418 	struct vmap_area **vas, *prev, *next;
2419 	struct vm_struct **vms;
2420 	int area, area2, last_area, term_area;
2421 	unsigned long base, start, end, last_end;
2422 	bool purged = false;
2423 
2424 	/* verify parameters and allocate data structures */
2425 	BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2426 	for (last_area = 0, area = 0; area < nr_vms; area++) {
2427 		start = offsets[area];
2428 		end = start + sizes[area];
2429 
2430 		/* is everything aligned properly? */
2431 		BUG_ON(!IS_ALIGNED(offsets[area], align));
2432 		BUG_ON(!IS_ALIGNED(sizes[area], align));
2433 
2434 		/* detect the area with the highest address */
2435 		if (start > offsets[last_area])
2436 			last_area = area;
2437 
2438 		for (area2 = 0; area2 < nr_vms; area2++) {
2439 			unsigned long start2 = offsets[area2];
2440 			unsigned long end2 = start2 + sizes[area2];
2441 
2442 			if (area2 == area)
2443 				continue;
2444 
2445 			BUG_ON(start2 >= start && start2 < end);
2446 			BUG_ON(end2 <= end && end2 > start);
2447 		}
2448 	}
2449 	last_end = offsets[last_area] + sizes[last_area];
2450 
2451 	if (vmalloc_end - vmalloc_start < last_end) {
2452 		WARN_ON(true);
2453 		return NULL;
2454 	}
2455 
2456 	vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2457 	vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2458 	if (!vas || !vms)
2459 		goto err_free2;
2460 
2461 	for (area = 0; area < nr_vms; area++) {
2462 		vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2463 		vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2464 		if (!vas[area] || !vms[area])
2465 			goto err_free;
2466 	}
2467 retry:
2468 	spin_lock(&vmap_area_lock);
2469 
2470 	/* start scanning - we scan from the top, begin with the last area */
2471 	area = term_area = last_area;
2472 	start = offsets[area];
2473 	end = start + sizes[area];
2474 
2475 	if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2476 		base = vmalloc_end - last_end;
2477 		goto found;
2478 	}
2479 	base = pvm_determine_end(&next, &prev, align) - end;
2480 
2481 	while (true) {
2482 		BUG_ON(next && next->va_end <= base + end);
2483 		BUG_ON(prev && prev->va_end > base + end);
2484 
2485 		/*
2486 		 * base might have underflowed, add last_end before
2487 		 * comparing.
2488 		 */
2489 		if (base + last_end < vmalloc_start + last_end) {
2490 			spin_unlock(&vmap_area_lock);
2491 			if (!purged) {
2492 				purge_vmap_area_lazy();
2493 				purged = true;
2494 				goto retry;
2495 			}
2496 			goto err_free;
2497 		}
2498 
2499 		/*
2500 		 * If next overlaps, move base downwards so that it's
2501 		 * right below next and then recheck.
2502 		 */
2503 		if (next && next->va_start < base + end) {
2504 			base = pvm_determine_end(&next, &prev, align) - end;
2505 			term_area = area;
2506 			continue;
2507 		}
2508 
2509 		/*
2510 		 * If prev overlaps, shift down next and prev and move
2511 		 * base so that it's right below new next and then
2512 		 * recheck.
2513 		 */
2514 		if (prev && prev->va_end > base + start)  {
2515 			next = prev;
2516 			prev = node_to_va(rb_prev(&next->rb_node));
2517 			base = pvm_determine_end(&next, &prev, align) - end;
2518 			term_area = area;
2519 			continue;
2520 		}
2521 
2522 		/*
2523 		 * This area fits, move on to the previous one.  If
2524 		 * the previous one is the terminal one, we're done.
2525 		 */
2526 		area = (area + nr_vms - 1) % nr_vms;
2527 		if (area == term_area)
2528 			break;
2529 		start = offsets[area];
2530 		end = start + sizes[area];
2531 		pvm_find_next_prev(base + end, &next, &prev);
2532 	}
2533 found:
2534 	/* we've found a fitting base, insert all va's */
2535 	for (area = 0; area < nr_vms; area++) {
2536 		struct vmap_area *va = vas[area];
2537 
2538 		va->va_start = base + offsets[area];
2539 		va->va_end = va->va_start + sizes[area];
2540 		__insert_vmap_area(va);
2541 	}
2542 
2543 	vmap_area_pcpu_hole = base + offsets[last_area];
2544 
2545 	spin_unlock(&vmap_area_lock);
2546 
2547 	/* insert all vm's */
2548 	for (area = 0; area < nr_vms; area++)
2549 		setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2550 				 pcpu_get_vm_areas);
2551 
2552 	kfree(vas);
2553 	return vms;
2554 
2555 err_free:
2556 	for (area = 0; area < nr_vms; area++) {
2557 		kfree(vas[area]);
2558 		kfree(vms[area]);
2559 	}
2560 err_free2:
2561 	kfree(vas);
2562 	kfree(vms);
2563 	return NULL;
2564 }
2565 
2566 /**
2567  * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2568  * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2569  * @nr_vms: the number of allocated areas
2570  *
2571  * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2572  */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)2573 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2574 {
2575 	int i;
2576 
2577 	for (i = 0; i < nr_vms; i++)
2578 		free_vm_area(vms[i]);
2579 	kfree(vms);
2580 }
2581 #endif	/* CONFIG_SMP */
2582 
2583 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)2584 static void *s_start(struct seq_file *m, loff_t *pos)
2585 	__acquires(&vmap_area_lock)
2586 {
2587 	loff_t n = *pos;
2588 	struct vmap_area *va;
2589 
2590 	spin_lock(&vmap_area_lock);
2591 	va = list_first_entry(&vmap_area_list, typeof(*va), list);
2592 	while (n > 0 && &va->list != &vmap_area_list) {
2593 		n--;
2594 		va = list_next_entry(va, list);
2595 	}
2596 	if (!n && &va->list != &vmap_area_list)
2597 		return va;
2598 
2599 	return NULL;
2600 
2601 }
2602 
s_next(struct seq_file * m,void * p,loff_t * pos)2603 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2604 {
2605 	struct vmap_area *va = p, *next;
2606 
2607 	++*pos;
2608 	next = list_next_entry(va, list);
2609 	if (&next->list != &vmap_area_list)
2610 		return next;
2611 
2612 	return NULL;
2613 }
2614 
s_stop(struct seq_file * m,void * p)2615 static void s_stop(struct seq_file *m, void *p)
2616 	__releases(&vmap_area_lock)
2617 {
2618 	spin_unlock(&vmap_area_lock);
2619 }
2620 
show_numa_info(struct seq_file * m,struct vm_struct * v)2621 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2622 {
2623 	if (IS_ENABLED(CONFIG_NUMA)) {
2624 		unsigned int nr, *counters = m->private;
2625 
2626 		if (!counters)
2627 			return;
2628 
2629 		if (v->flags & VM_UNINITIALIZED)
2630 			return;
2631 		/* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2632 		smp_rmb();
2633 
2634 		memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2635 
2636 		for (nr = 0; nr < v->nr_pages; nr++)
2637 			counters[page_to_nid(v->pages[nr])]++;
2638 
2639 		for_each_node_state(nr, N_HIGH_MEMORY)
2640 			if (counters[nr])
2641 				seq_printf(m, " N%u=%u", nr, counters[nr]);
2642 	}
2643 }
2644 
s_show(struct seq_file * m,void * p)2645 static int s_show(struct seq_file *m, void *p)
2646 {
2647 	struct vmap_area *va = p;
2648 	struct vm_struct *v;
2649 
2650 	/*
2651 	 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2652 	 * behalf of vmap area is being tear down or vm_map_ram allocation.
2653 	 */
2654 	if (!(va->flags & VM_VM_AREA))
2655 		return 0;
2656 
2657 	v = va->vm;
2658 
2659 	seq_printf(m, "0x%pK-0x%pK %7ld",
2660 		v->addr, v->addr + v->size, v->size);
2661 
2662 	if (v->caller)
2663 		seq_printf(m, " %pS", v->caller);
2664 
2665 	if (v->nr_pages)
2666 		seq_printf(m, " pages=%d", v->nr_pages);
2667 
2668 	if (v->phys_addr)
2669 		seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2670 
2671 	if (v->flags & VM_IOREMAP)
2672 		seq_puts(m, " ioremap");
2673 
2674 	if (v->flags & VM_ALLOC)
2675 		seq_puts(m, " vmalloc");
2676 
2677 	if (v->flags & VM_MAP)
2678 		seq_puts(m, " vmap");
2679 
2680 	if (v->flags & VM_USERMAP)
2681 		seq_puts(m, " user");
2682 
2683 	if (is_vmalloc_addr(v->pages))
2684 		seq_puts(m, " vpages");
2685 
2686 	show_numa_info(m, v);
2687 	seq_putc(m, '\n');
2688 	return 0;
2689 }
2690 
2691 static const struct seq_operations vmalloc_op = {
2692 	.start = s_start,
2693 	.next = s_next,
2694 	.stop = s_stop,
2695 	.show = s_show,
2696 };
2697 
vmalloc_open(struct inode * inode,struct file * file)2698 static int vmalloc_open(struct inode *inode, struct file *file)
2699 {
2700 	if (IS_ENABLED(CONFIG_NUMA))
2701 		return seq_open_private(file, &vmalloc_op,
2702 					nr_node_ids * sizeof(unsigned int));
2703 	else
2704 		return seq_open(file, &vmalloc_op);
2705 }
2706 
2707 static const struct file_operations proc_vmalloc_operations = {
2708 	.open		= vmalloc_open,
2709 	.read		= seq_read,
2710 	.llseek		= seq_lseek,
2711 	.release	= seq_release_private,
2712 };
2713 
proc_vmalloc_init(void)2714 static int __init proc_vmalloc_init(void)
2715 {
2716 	proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2717 	return 0;
2718 }
2719 module_init(proc_vmalloc_init);
2720 
2721 #endif
2722 
2723