• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 /* Common definitions for all Efx net driver code */
12 
13 #ifndef EFX_NET_DRIVER_H
14 #define EFX_NET_DRIVER_H
15 
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/ethtool.h>
19 #include <linux/if_vlan.h>
20 #include <linux/timer.h>
21 #include <linux/mdio.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/device.h>
25 #include <linux/highmem.h>
26 #include <linux/workqueue.h>
27 #include <linux/mutex.h>
28 #include <linux/rwsem.h>
29 #include <linux/vmalloc.h>
30 #include <linux/i2c.h>
31 #include <linux/mtd/mtd.h>
32 #include <net/busy_poll.h>
33 
34 #include "enum.h"
35 #include "bitfield.h"
36 #include "filter.h"
37 
38 /**************************************************************************
39  *
40  * Build definitions
41  *
42  **************************************************************************/
43 
44 #define EFX_DRIVER_VERSION	"4.0"
45 
46 #ifdef DEBUG
47 #define EFX_BUG_ON_PARANOID(x) BUG_ON(x)
48 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
49 #else
50 #define EFX_BUG_ON_PARANOID(x) do {} while (0)
51 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
52 #endif
53 
54 /**************************************************************************
55  *
56  * Efx data structures
57  *
58  **************************************************************************/
59 
60 #define EFX_MAX_CHANNELS 32U
61 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
62 #define EFX_EXTRA_CHANNEL_IOV	0
63 #define EFX_EXTRA_CHANNEL_PTP	1
64 #define EFX_MAX_EXTRA_CHANNELS	2U
65 
66 /* Checksum generation is a per-queue option in hardware, so each
67  * queue visible to the networking core is backed by two hardware TX
68  * queues. */
69 #define EFX_MAX_TX_TC		2
70 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
71 #define EFX_TXQ_TYPE_OFFLOAD	1	/* flag */
72 #define EFX_TXQ_TYPE_HIGHPRI	2	/* flag */
73 #define EFX_TXQ_TYPES		4
74 #define EFX_MAX_TX_QUEUES	(EFX_TXQ_TYPES * EFX_MAX_CHANNELS)
75 
76 /* Maximum possible MTU the driver supports */
77 #define EFX_MAX_MTU (9 * 1024)
78 
79 /* Minimum MTU, from RFC791 (IP) */
80 #define EFX_MIN_MTU 68
81 
82 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
83  * and should be a multiple of the cache line size.
84  */
85 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
86 
87 /* If possible, we should ensure cache line alignment at start and end
88  * of every buffer.  Otherwise, we just need to ensure 4-byte
89  * alignment of the network header.
90  */
91 #if NET_IP_ALIGN == 0
92 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
93 #else
94 #define EFX_RX_BUF_ALIGNMENT	4
95 #endif
96 
97 /* Forward declare Precision Time Protocol (PTP) support structure. */
98 struct efx_ptp_data;
99 struct hwtstamp_config;
100 
101 struct efx_self_tests;
102 
103 /**
104  * struct efx_buffer - A general-purpose DMA buffer
105  * @addr: host base address of the buffer
106  * @dma_addr: DMA base address of the buffer
107  * @len: Buffer length, in bytes
108  *
109  * The NIC uses these buffers for its interrupt status registers and
110  * MAC stats dumps.
111  */
112 struct efx_buffer {
113 	void *addr;
114 	dma_addr_t dma_addr;
115 	unsigned int len;
116 };
117 
118 /**
119  * struct efx_special_buffer - DMA buffer entered into buffer table
120  * @buf: Standard &struct efx_buffer
121  * @index: Buffer index within controller;s buffer table
122  * @entries: Number of buffer table entries
123  *
124  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
125  * Event and descriptor rings are addressed via one or more buffer
126  * table entries (and so can be physically non-contiguous, although we
127  * currently do not take advantage of that).  On Falcon and Siena we
128  * have to take care of allocating and initialising the entries
129  * ourselves.  On later hardware this is managed by the firmware and
130  * @index and @entries are left as 0.
131  */
132 struct efx_special_buffer {
133 	struct efx_buffer buf;
134 	unsigned int index;
135 	unsigned int entries;
136 };
137 
138 /**
139  * struct efx_tx_buffer - buffer state for a TX descriptor
140  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
141  *	freed when descriptor completes
142  * @heap_buf: When @flags & %EFX_TX_BUF_HEAP, the associated heap buffer to be
143  *	freed when descriptor completes.
144  * @option: When @flags & %EFX_TX_BUF_OPTION, a NIC-specific option descriptor.
145  * @dma_addr: DMA address of the fragment.
146  * @flags: Flags for allocation and DMA mapping type
147  * @len: Length of this fragment.
148  *	This field is zero when the queue slot is empty.
149  * @unmap_len: Length of this fragment to unmap
150  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
151  * Only valid if @unmap_len != 0.
152  */
153 struct efx_tx_buffer {
154 	union {
155 		const struct sk_buff *skb;
156 		void *heap_buf;
157 	};
158 	union {
159 		efx_qword_t option;
160 		dma_addr_t dma_addr;
161 	};
162 	unsigned short flags;
163 	unsigned short len;
164 	unsigned short unmap_len;
165 	unsigned short dma_offset;
166 };
167 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
168 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
169 #define EFX_TX_BUF_HEAP		4	/* buffer was allocated with kmalloc() */
170 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
171 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
172 
173 /**
174  * struct efx_tx_queue - An Efx TX queue
175  *
176  * This is a ring buffer of TX fragments.
177  * Since the TX completion path always executes on the same
178  * CPU and the xmit path can operate on different CPUs,
179  * performance is increased by ensuring that the completion
180  * path and the xmit path operate on different cache lines.
181  * This is particularly important if the xmit path is always
182  * executing on one CPU which is different from the completion
183  * path.  There is also a cache line for members which are
184  * read but not written on the fast path.
185  *
186  * @efx: The associated Efx NIC
187  * @queue: DMA queue number
188  * @tso_version: Version of TSO in use for this queue.
189  * @channel: The associated channel
190  * @core_txq: The networking core TX queue structure
191  * @buffer: The software buffer ring
192  * @tsoh_page: Array of pages of TSO header buffers
193  * @txd: The hardware descriptor ring
194  * @ptr_mask: The size of the ring minus 1.
195  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
196  *	Size of the region is efx_piobuf_size.
197  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
198  * @initialised: Has hardware queue been initialised?
199  * @read_count: Current read pointer.
200  *	This is the number of buffers that have been removed from both rings.
201  * @old_write_count: The value of @write_count when last checked.
202  *	This is here for performance reasons.  The xmit path will
203  *	only get the up-to-date value of @write_count if this
204  *	variable indicates that the queue is empty.  This is to
205  *	avoid cache-line ping-pong between the xmit path and the
206  *	completion path.
207  * @merge_events: Number of TX merged completion events
208  * @insert_count: Current insert pointer
209  *	This is the number of buffers that have been added to the
210  *	software ring.
211  * @write_count: Current write pointer
212  *	This is the number of buffers that have been added to the
213  *	hardware ring.
214  * @old_read_count: The value of read_count when last checked.
215  *	This is here for performance reasons.  The xmit path will
216  *	only get the up-to-date value of read_count if this
217  *	variable indicates that the queue is full.  This is to
218  *	avoid cache-line ping-pong between the xmit path and the
219  *	completion path.
220  * @tso_bursts: Number of times TSO xmit invoked by kernel
221  * @tso_long_headers: Number of packets with headers too long for standard
222  *	blocks
223  * @tso_packets: Number of packets via the TSO xmit path
224  * @pushes: Number of times the TX push feature has been used
225  * @pio_packets: Number of times the TX PIO feature has been used
226  * @xmit_more_available: Are any packets waiting to be pushed to the NIC
227  * @empty_read_count: If the completion path has seen the queue as empty
228  *	and the transmission path has not yet checked this, the value of
229  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
230  */
231 struct efx_tx_queue {
232 	/* Members which don't change on the fast path */
233 	struct efx_nic *efx ____cacheline_aligned_in_smp;
234 	unsigned queue;
235 	unsigned int tso_version;
236 	struct efx_channel *channel;
237 	struct netdev_queue *core_txq;
238 	struct efx_tx_buffer *buffer;
239 	struct efx_buffer *tsoh_page;
240 	struct efx_special_buffer txd;
241 	unsigned int ptr_mask;
242 	void __iomem *piobuf;
243 	unsigned int piobuf_offset;
244 	bool initialised;
245 
246 	/* Members used mainly on the completion path */
247 	unsigned int read_count ____cacheline_aligned_in_smp;
248 	unsigned int old_write_count;
249 	unsigned int merge_events;
250 	unsigned int bytes_compl;
251 	unsigned int pkts_compl;
252 
253 	/* Members used only on the xmit path */
254 	unsigned int insert_count ____cacheline_aligned_in_smp;
255 	unsigned int write_count;
256 	unsigned int old_read_count;
257 	unsigned int tso_bursts;
258 	unsigned int tso_long_headers;
259 	unsigned int tso_packets;
260 	unsigned int pushes;
261 	unsigned int pio_packets;
262 	bool xmit_more_available;
263 	/* Statistics to supplement MAC stats */
264 	unsigned long tx_packets;
265 
266 	/* Members shared between paths and sometimes updated */
267 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
268 #define EFX_EMPTY_COUNT_VALID 0x80000000
269 	atomic_t flush_outstanding;
270 };
271 
272 /**
273  * struct efx_rx_buffer - An Efx RX data buffer
274  * @dma_addr: DMA base address of the buffer
275  * @page: The associated page buffer.
276  *	Will be %NULL if the buffer slot is currently free.
277  * @page_offset: If pending: offset in @page of DMA base address.
278  *	If completed: offset in @page of Ethernet header.
279  * @len: If pending: length for DMA descriptor.
280  *	If completed: received length, excluding hash prefix.
281  * @flags: Flags for buffer and packet state.  These are only set on the
282  *	first buffer of a scattered packet.
283  */
284 struct efx_rx_buffer {
285 	dma_addr_t dma_addr;
286 	struct page *page;
287 	u16 page_offset;
288 	u16 len;
289 	u16 flags;
290 };
291 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
292 #define EFX_RX_PKT_CSUMMED	0x0002
293 #define EFX_RX_PKT_DISCARD	0x0004
294 #define EFX_RX_PKT_TCP		0x0040
295 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
296 
297 /**
298  * struct efx_rx_page_state - Page-based rx buffer state
299  *
300  * Inserted at the start of every page allocated for receive buffers.
301  * Used to facilitate sharing dma mappings between recycled rx buffers
302  * and those passed up to the kernel.
303  *
304  * @dma_addr: The dma address of this page.
305  */
306 struct efx_rx_page_state {
307 	dma_addr_t dma_addr;
308 
309 	unsigned int __pad[0] ____cacheline_aligned;
310 };
311 
312 /**
313  * struct efx_rx_queue - An Efx RX queue
314  * @efx: The associated Efx NIC
315  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
316  *	is associated with a real RX queue.
317  * @buffer: The software buffer ring
318  * @rxd: The hardware descriptor ring
319  * @ptr_mask: The size of the ring minus 1.
320  * @refill_enabled: Enable refill whenever fill level is low
321  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
322  *	@rxq_flush_pending.
323  * @added_count: Number of buffers added to the receive queue.
324  * @notified_count: Number of buffers given to NIC (<= @added_count).
325  * @removed_count: Number of buffers removed from the receive queue.
326  * @scatter_n: Used by NIC specific receive code.
327  * @scatter_len: Used by NIC specific receive code.
328  * @page_ring: The ring to store DMA mapped pages for reuse.
329  * @page_add: Counter to calculate the write pointer for the recycle ring.
330  * @page_remove: Counter to calculate the read pointer for the recycle ring.
331  * @page_recycle_count: The number of pages that have been recycled.
332  * @page_recycle_failed: The number of pages that couldn't be recycled because
333  *      the kernel still held a reference to them.
334  * @page_recycle_full: The number of pages that were released because the
335  *      recycle ring was full.
336  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
337  * @max_fill: RX descriptor maximum fill level (<= ring size)
338  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
339  *	(<= @max_fill)
340  * @min_fill: RX descriptor minimum non-zero fill level.
341  *	This records the minimum fill level observed when a ring
342  *	refill was triggered.
343  * @recycle_count: RX buffer recycle counter.
344  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
345  */
346 struct efx_rx_queue {
347 	struct efx_nic *efx;
348 	int core_index;
349 	struct efx_rx_buffer *buffer;
350 	struct efx_special_buffer rxd;
351 	unsigned int ptr_mask;
352 	bool refill_enabled;
353 	bool flush_pending;
354 
355 	unsigned int added_count;
356 	unsigned int notified_count;
357 	unsigned int removed_count;
358 	unsigned int scatter_n;
359 	unsigned int scatter_len;
360 	struct page **page_ring;
361 	unsigned int page_add;
362 	unsigned int page_remove;
363 	unsigned int page_recycle_count;
364 	unsigned int page_recycle_failed;
365 	unsigned int page_recycle_full;
366 	unsigned int page_ptr_mask;
367 	unsigned int max_fill;
368 	unsigned int fast_fill_trigger;
369 	unsigned int min_fill;
370 	unsigned int min_overfill;
371 	unsigned int recycle_count;
372 	struct timer_list slow_fill;
373 	unsigned int slow_fill_count;
374 	/* Statistics to supplement MAC stats */
375 	unsigned long rx_packets;
376 };
377 
378 enum efx_sync_events_state {
379 	SYNC_EVENTS_DISABLED = 0,
380 	SYNC_EVENTS_QUIESCENT,
381 	SYNC_EVENTS_REQUESTED,
382 	SYNC_EVENTS_VALID,
383 };
384 
385 /**
386  * struct efx_channel - An Efx channel
387  *
388  * A channel comprises an event queue, at least one TX queue, at least
389  * one RX queue, and an associated tasklet for processing the event
390  * queue.
391  *
392  * @efx: Associated Efx NIC
393  * @channel: Channel instance number
394  * @type: Channel type definition
395  * @eventq_init: Event queue initialised flag
396  * @enabled: Channel enabled indicator
397  * @irq: IRQ number (MSI and MSI-X only)
398  * @irq_moderation_us: IRQ moderation value (in microseconds)
399  * @napi_dev: Net device used with NAPI
400  * @napi_str: NAPI control structure
401  * @state: state for NAPI vs busy polling
402  * @state_lock: lock protecting @state
403  * @eventq: Event queue buffer
404  * @eventq_mask: Event queue pointer mask
405  * @eventq_read_ptr: Event queue read pointer
406  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
407  * @irq_count: Number of IRQs since last adaptive moderation decision
408  * @irq_mod_score: IRQ moderation score
409  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
410  *      indexed by filter ID
411  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
412  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
413  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
414  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
415  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
416  * @n_rx_overlength: Count of RX_OVERLENGTH errors
417  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
418  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
419  *	lack of descriptors
420  * @n_rx_merge_events: Number of RX merged completion events
421  * @n_rx_merge_packets: Number of RX packets completed by merged events
422  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
423  *	__efx_rx_packet(), or zero if there is none
424  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
425  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
426  * @rx_queue: RX queue for this channel
427  * @tx_queue: TX queues for this channel
428  * @sync_events_state: Current state of sync events on this channel
429  * @sync_timestamp_major: Major part of the last ptp sync event
430  * @sync_timestamp_minor: Minor part of the last ptp sync event
431  */
432 struct efx_channel {
433 	struct efx_nic *efx;
434 	int channel;
435 	const struct efx_channel_type *type;
436 	bool eventq_init;
437 	bool enabled;
438 	int irq;
439 	unsigned int irq_moderation_us;
440 	struct net_device *napi_dev;
441 	struct napi_struct napi_str;
442 #ifdef CONFIG_NET_RX_BUSY_POLL
443 	unsigned long busy_poll_state;
444 #endif
445 	struct efx_special_buffer eventq;
446 	unsigned int eventq_mask;
447 	unsigned int eventq_read_ptr;
448 	int event_test_cpu;
449 
450 	unsigned int irq_count;
451 	unsigned int irq_mod_score;
452 #ifdef CONFIG_RFS_ACCEL
453 	unsigned int rfs_filters_added;
454 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
455 	u32 *rps_flow_id;
456 #endif
457 
458 	unsigned n_rx_tobe_disc;
459 	unsigned n_rx_ip_hdr_chksum_err;
460 	unsigned n_rx_tcp_udp_chksum_err;
461 	unsigned n_rx_mcast_mismatch;
462 	unsigned n_rx_frm_trunc;
463 	unsigned n_rx_overlength;
464 	unsigned n_skbuff_leaks;
465 	unsigned int n_rx_nodesc_trunc;
466 	unsigned int n_rx_merge_events;
467 	unsigned int n_rx_merge_packets;
468 
469 	unsigned int rx_pkt_n_frags;
470 	unsigned int rx_pkt_index;
471 
472 	struct efx_rx_queue rx_queue;
473 	struct efx_tx_queue tx_queue[EFX_TXQ_TYPES];
474 
475 	enum efx_sync_events_state sync_events_state;
476 	u32 sync_timestamp_major;
477 	u32 sync_timestamp_minor;
478 };
479 
480 #ifdef CONFIG_NET_RX_BUSY_POLL
481 enum efx_channel_busy_poll_state {
482 	EFX_CHANNEL_STATE_IDLE = 0,
483 	EFX_CHANNEL_STATE_NAPI = BIT(0),
484 	EFX_CHANNEL_STATE_NAPI_REQ_BIT = 1,
485 	EFX_CHANNEL_STATE_NAPI_REQ = BIT(1),
486 	EFX_CHANNEL_STATE_POLL_BIT = 2,
487 	EFX_CHANNEL_STATE_POLL = BIT(2),
488 	EFX_CHANNEL_STATE_DISABLE_BIT = 3,
489 };
490 
efx_channel_busy_poll_init(struct efx_channel * channel)491 static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
492 {
493 	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
494 }
495 
496 /* Called from the device poll routine to get ownership of a channel. */
efx_channel_lock_napi(struct efx_channel * channel)497 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
498 {
499 	unsigned long prev, old = READ_ONCE(channel->busy_poll_state);
500 
501 	while (1) {
502 		switch (old) {
503 		case EFX_CHANNEL_STATE_POLL:
504 			/* Ensure efx_channel_try_lock_poll() wont starve us */
505 			set_bit(EFX_CHANNEL_STATE_NAPI_REQ_BIT,
506 				&channel->busy_poll_state);
507 			/* fallthrough */
508 		case EFX_CHANNEL_STATE_POLL | EFX_CHANNEL_STATE_NAPI_REQ:
509 			return false;
510 		default:
511 			break;
512 		}
513 		prev = cmpxchg(&channel->busy_poll_state, old,
514 			       EFX_CHANNEL_STATE_NAPI);
515 		if (unlikely(prev != old)) {
516 			/* This is likely to mean we've just entered polling
517 			 * state. Go back round to set the REQ bit.
518 			 */
519 			old = prev;
520 			continue;
521 		}
522 		return true;
523 	}
524 }
525 
efx_channel_unlock_napi(struct efx_channel * channel)526 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
527 {
528 	/* Make sure write has completed from efx_channel_lock_napi() */
529 	smp_wmb();
530 	WRITE_ONCE(channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE);
531 }
532 
533 /* Called from efx_busy_poll(). */
efx_channel_try_lock_poll(struct efx_channel * channel)534 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
535 {
536 	return cmpxchg(&channel->busy_poll_state, EFX_CHANNEL_STATE_IDLE,
537 			EFX_CHANNEL_STATE_POLL) == EFX_CHANNEL_STATE_IDLE;
538 }
539 
efx_channel_unlock_poll(struct efx_channel * channel)540 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
541 {
542 	clear_bit_unlock(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
543 }
544 
efx_channel_busy_polling(struct efx_channel * channel)545 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
546 {
547 	return test_bit(EFX_CHANNEL_STATE_POLL_BIT, &channel->busy_poll_state);
548 }
549 
efx_channel_enable(struct efx_channel * channel)550 static inline void efx_channel_enable(struct efx_channel *channel)
551 {
552 	clear_bit_unlock(EFX_CHANNEL_STATE_DISABLE_BIT,
553 			 &channel->busy_poll_state);
554 }
555 
556 /* Stop further polling or napi access.
557  * Returns false if the channel is currently busy polling.
558  */
efx_channel_disable(struct efx_channel * channel)559 static inline bool efx_channel_disable(struct efx_channel *channel)
560 {
561 	set_bit(EFX_CHANNEL_STATE_DISABLE_BIT, &channel->busy_poll_state);
562 	/* Implicit barrier in efx_channel_busy_polling() */
563 	return !efx_channel_busy_polling(channel);
564 }
565 
566 #else /* CONFIG_NET_RX_BUSY_POLL */
567 
efx_channel_busy_poll_init(struct efx_channel * channel)568 static inline void efx_channel_busy_poll_init(struct efx_channel *channel)
569 {
570 }
571 
efx_channel_lock_napi(struct efx_channel * channel)572 static inline bool efx_channel_lock_napi(struct efx_channel *channel)
573 {
574 	return true;
575 }
576 
efx_channel_unlock_napi(struct efx_channel * channel)577 static inline void efx_channel_unlock_napi(struct efx_channel *channel)
578 {
579 }
580 
efx_channel_try_lock_poll(struct efx_channel * channel)581 static inline bool efx_channel_try_lock_poll(struct efx_channel *channel)
582 {
583 	return false;
584 }
585 
efx_channel_unlock_poll(struct efx_channel * channel)586 static inline void efx_channel_unlock_poll(struct efx_channel *channel)
587 {
588 }
589 
efx_channel_busy_polling(struct efx_channel * channel)590 static inline bool efx_channel_busy_polling(struct efx_channel *channel)
591 {
592 	return false;
593 }
594 
efx_channel_enable(struct efx_channel * channel)595 static inline void efx_channel_enable(struct efx_channel *channel)
596 {
597 }
598 
efx_channel_disable(struct efx_channel * channel)599 static inline bool efx_channel_disable(struct efx_channel *channel)
600 {
601 	return true;
602 }
603 #endif /* CONFIG_NET_RX_BUSY_POLL */
604 
605 /**
606  * struct efx_msi_context - Context for each MSI
607  * @efx: The associated NIC
608  * @index: Index of the channel/IRQ
609  * @name: Name of the channel/IRQ
610  *
611  * Unlike &struct efx_channel, this is never reallocated and is always
612  * safe for the IRQ handler to access.
613  */
614 struct efx_msi_context {
615 	struct efx_nic *efx;
616 	unsigned int index;
617 	char name[IFNAMSIZ + 6];
618 };
619 
620 /**
621  * struct efx_channel_type - distinguishes traffic and extra channels
622  * @handle_no_channel: Handle failure to allocate an extra channel
623  * @pre_probe: Set up extra state prior to initialisation
624  * @post_remove: Tear down extra state after finalisation, if allocated.
625  *	May be called on channels that have not been probed.
626  * @get_name: Generate the channel's name (used for its IRQ handler)
627  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
628  *	reallocation is not supported.
629  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
630  * @keep_eventq: Flag for whether event queue should be kept initialised
631  *	while the device is stopped
632  */
633 struct efx_channel_type {
634 	void (*handle_no_channel)(struct efx_nic *);
635 	int (*pre_probe)(struct efx_channel *);
636 	void (*post_remove)(struct efx_channel *);
637 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
638 	struct efx_channel *(*copy)(const struct efx_channel *);
639 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
640 	bool keep_eventq;
641 };
642 
643 enum efx_led_mode {
644 	EFX_LED_OFF	= 0,
645 	EFX_LED_ON	= 1,
646 	EFX_LED_DEFAULT	= 2
647 };
648 
649 #define STRING_TABLE_LOOKUP(val, member) \
650 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
651 
652 extern const char *const efx_loopback_mode_names[];
653 extern const unsigned int efx_loopback_mode_max;
654 #define LOOPBACK_MODE(efx) \
655 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
656 
657 extern const char *const efx_reset_type_names[];
658 extern const unsigned int efx_reset_type_max;
659 #define RESET_TYPE(type) \
660 	STRING_TABLE_LOOKUP(type, efx_reset_type)
661 
662 enum efx_int_mode {
663 	/* Be careful if altering to correct macro below */
664 	EFX_INT_MODE_MSIX = 0,
665 	EFX_INT_MODE_MSI = 1,
666 	EFX_INT_MODE_LEGACY = 2,
667 	EFX_INT_MODE_MAX	/* Insert any new items before this */
668 };
669 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
670 
671 enum nic_state {
672 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
673 	STATE_READY = 1,	/* hardware ready and netdev registered */
674 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
675 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
676 };
677 
678 /* Forward declaration */
679 struct efx_nic;
680 
681 /* Pseudo bit-mask flow control field */
682 #define EFX_FC_RX	FLOW_CTRL_RX
683 #define EFX_FC_TX	FLOW_CTRL_TX
684 #define EFX_FC_AUTO	4
685 
686 /**
687  * struct efx_link_state - Current state of the link
688  * @up: Link is up
689  * @fd: Link is full-duplex
690  * @fc: Actual flow control flags
691  * @speed: Link speed (Mbps)
692  */
693 struct efx_link_state {
694 	bool up;
695 	bool fd;
696 	u8 fc;
697 	unsigned int speed;
698 };
699 
efx_link_state_equal(const struct efx_link_state * left,const struct efx_link_state * right)700 static inline bool efx_link_state_equal(const struct efx_link_state *left,
701 					const struct efx_link_state *right)
702 {
703 	return left->up == right->up && left->fd == right->fd &&
704 		left->fc == right->fc && left->speed == right->speed;
705 }
706 
707 /**
708  * struct efx_phy_operations - Efx PHY operations table
709  * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds,
710  *	efx->loopback_modes.
711  * @init: Initialise PHY
712  * @fini: Shut down PHY
713  * @reconfigure: Reconfigure PHY (e.g. for new link parameters)
714  * @poll: Update @link_state and report whether it changed.
715  *	Serialised by the mac_lock.
716  * @get_settings: Get ethtool settings. Serialised by the mac_lock.
717  * @set_settings: Set ethtool settings. Serialised by the mac_lock.
718  * @set_npage_adv: Set abilities advertised in (Extended) Next Page
719  *	(only needed where AN bit is set in mmds)
720  * @test_alive: Test that PHY is 'alive' (online)
721  * @test_name: Get the name of a PHY-specific test/result
722  * @run_tests: Run tests and record results as appropriate (offline).
723  *	Flags are the ethtool tests flags.
724  */
725 struct efx_phy_operations {
726 	int (*probe) (struct efx_nic *efx);
727 	int (*init) (struct efx_nic *efx);
728 	void (*fini) (struct efx_nic *efx);
729 	void (*remove) (struct efx_nic *efx);
730 	int (*reconfigure) (struct efx_nic *efx);
731 	bool (*poll) (struct efx_nic *efx);
732 	void (*get_settings) (struct efx_nic *efx,
733 			      struct ethtool_cmd *ecmd);
734 	int (*set_settings) (struct efx_nic *efx,
735 			     struct ethtool_cmd *ecmd);
736 	void (*set_npage_adv) (struct efx_nic *efx, u32);
737 	int (*test_alive) (struct efx_nic *efx);
738 	const char *(*test_name) (struct efx_nic *efx, unsigned int index);
739 	int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags);
740 	int (*get_module_eeprom) (struct efx_nic *efx,
741 			       struct ethtool_eeprom *ee,
742 			       u8 *data);
743 	int (*get_module_info) (struct efx_nic *efx,
744 				struct ethtool_modinfo *modinfo);
745 };
746 
747 /**
748  * enum efx_phy_mode - PHY operating mode flags
749  * @PHY_MODE_NORMAL: on and should pass traffic
750  * @PHY_MODE_TX_DISABLED: on with TX disabled
751  * @PHY_MODE_LOW_POWER: set to low power through MDIO
752  * @PHY_MODE_OFF: switched off through external control
753  * @PHY_MODE_SPECIAL: on but will not pass traffic
754  */
755 enum efx_phy_mode {
756 	PHY_MODE_NORMAL		= 0,
757 	PHY_MODE_TX_DISABLED	= 1,
758 	PHY_MODE_LOW_POWER	= 2,
759 	PHY_MODE_OFF		= 4,
760 	PHY_MODE_SPECIAL	= 8,
761 };
762 
efx_phy_mode_disabled(enum efx_phy_mode mode)763 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
764 {
765 	return !!(mode & ~PHY_MODE_TX_DISABLED);
766 }
767 
768 /**
769  * struct efx_hw_stat_desc - Description of a hardware statistic
770  * @name: Name of the statistic as visible through ethtool, or %NULL if
771  *	it should not be exposed
772  * @dma_width: Width in bits (0 for non-DMA statistics)
773  * @offset: Offset within stats (ignored for non-DMA statistics)
774  */
775 struct efx_hw_stat_desc {
776 	const char *name;
777 	u16 dma_width;
778 	u16 offset;
779 };
780 
781 /* Number of bits used in a multicast filter hash address */
782 #define EFX_MCAST_HASH_BITS 8
783 
784 /* Number of (single-bit) entries in a multicast filter hash */
785 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
786 
787 /* An Efx multicast filter hash */
788 union efx_multicast_hash {
789 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
790 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
791 };
792 
793 struct vfdi_status;
794 
795 /**
796  * struct efx_nic - an Efx NIC
797  * @name: Device name (net device name or bus id before net device registered)
798  * @pci_dev: The PCI device
799  * @node: List node for maintaning primary/secondary function lists
800  * @primary: &struct efx_nic instance for the primary function of this
801  *	controller.  May be the same structure, and may be %NULL if no
802  *	primary function is bound.  Serialised by rtnl_lock.
803  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
804  *	functions of the controller, if this is for the primary function.
805  *	Serialised by rtnl_lock.
806  * @type: Controller type attributes
807  * @legacy_irq: IRQ number
808  * @workqueue: Workqueue for port reconfigures and the HW monitor.
809  *	Work items do not hold and must not acquire RTNL.
810  * @workqueue_name: Name of workqueue
811  * @reset_work: Scheduled reset workitem
812  * @membase_phys: Memory BAR value as physical address
813  * @membase: Memory BAR value
814  * @interrupt_mode: Interrupt mode
815  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
816  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
817  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
818  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
819  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
820  * @msg_enable: Log message enable flags
821  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
822  * @reset_pending: Bitmask for pending resets
823  * @tx_queue: TX DMA queues
824  * @rx_queue: RX DMA queues
825  * @channel: Channels
826  * @msi_context: Context for each MSI
827  * @extra_channel_types: Types of extra (non-traffic) channels that
828  *	should be allocated for this NIC
829  * @rxq_entries: Size of receive queues requested by user.
830  * @txq_entries: Size of transmit queues requested by user.
831  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
832  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
833  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
834  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
835  * @sram_lim_qw: Qword address limit of SRAM
836  * @next_buffer_table: First available buffer table id
837  * @n_channels: Number of channels in use
838  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
839  * @n_tx_channels: Number of channels used for TX
840  * @rx_ip_align: RX DMA address offset to have IP header aligned in
841  *	in accordance with NET_IP_ALIGN
842  * @rx_dma_len: Current maximum RX DMA length
843  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
844  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
845  *	for use in sk_buff::truesize
846  * @rx_prefix_size: Size of RX prefix before packet data
847  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
848  *	(valid only if @rx_prefix_size != 0; always negative)
849  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
850  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
851  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
852  *	(valid only if channel->sync_timestamps_enabled; always negative)
853  * @rx_hash_key: Toeplitz hash key for RSS
854  * @rx_indir_table: Indirection table for RSS
855  * @rx_scatter: Scatter mode enabled for receives
856  * @int_error_count: Number of internal errors seen recently
857  * @int_error_expire: Time at which error count will be expired
858  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
859  *	acknowledge but do nothing else.
860  * @irq_status: Interrupt status buffer
861  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
862  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
863  * @selftest_work: Work item for asynchronous self-test
864  * @mtd_list: List of MTDs attached to the NIC
865  * @nic_data: Hardware dependent state
866  * @mcdi: Management-Controller-to-Driver Interface state
867  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
868  *	efx_monitor() and efx_reconfigure_port()
869  * @port_enabled: Port enabled indicator.
870  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
871  *	efx_mac_work() with kernel interfaces. Safe to read under any
872  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
873  *	be held to modify it.
874  * @port_initialized: Port initialized?
875  * @net_dev: Operating system network device. Consider holding the rtnl lock
876  * @fixed_features: Features which cannot be turned off
877  * @stats_buffer: DMA buffer for statistics
878  * @phy_type: PHY type
879  * @phy_op: PHY interface
880  * @phy_data: PHY private data (including PHY-specific stats)
881  * @mdio: PHY MDIO interface
882  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
883  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
884  * @link_advertising: Autonegotiation advertising flags
885  * @link_state: Current state of the link
886  * @n_link_state_changes: Number of times the link has changed state
887  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
888  *	Protected by @mac_lock.
889  * @multicast_hash: Multicast hash table for Falcon-arch.
890  *	Protected by @mac_lock.
891  * @wanted_fc: Wanted flow control flags
892  * @fc_disable: When non-zero flow control is disabled. Typically used to
893  *	ensure that network back pressure doesn't delay dma queue flushes.
894  *	Serialised by the rtnl lock.
895  * @mac_work: Work item for changing MAC promiscuity and multicast hash
896  * @loopback_mode: Loopback status
897  * @loopback_modes: Supported loopback mode bitmask
898  * @loopback_selftest: Offline self-test private state
899  * @filter_sem: Filter table rw_semaphore, for freeing the table
900  * @filter_lock: Filter table lock, for mere content changes
901  * @filter_state: Architecture-dependent filter table state
902  * @rps_expire_channel: Next channel to check for expiry
903  * @rps_expire_index: Next index to check for expiry in
904  *	@rps_expire_channel's @rps_flow_id
905  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
906  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
907  *	Decremented when the efx_flush_rx_queue() is called.
908  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
909  *	completed (either success or failure). Not used when MCDI is used to
910  *	flush receive queues.
911  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
912  * @vf_count: Number of VFs intended to be enabled.
913  * @vf_init_count: Number of VFs that have been fully initialised.
914  * @vi_scale: log2 number of vnics per VF.
915  * @ptp_data: PTP state data
916  * @vpd_sn: Serial number read from VPD
917  * @monitor_work: Hardware monitor workitem
918  * @biu_lock: BIU (bus interface unit) lock
919  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
920  *	field is used by efx_test_interrupts() to verify that an
921  *	interrupt has occurred.
922  * @stats_lock: Statistics update lock. Must be held when calling
923  *	efx_nic_type::{update,start,stop}_stats.
924  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
925  *
926  * This is stored in the private area of the &struct net_device.
927  */
928 struct efx_nic {
929 	/* The following fields should be written very rarely */
930 
931 	char name[IFNAMSIZ];
932 	struct list_head node;
933 	struct efx_nic *primary;
934 	struct list_head secondary_list;
935 	struct pci_dev *pci_dev;
936 	unsigned int port_num;
937 	const struct efx_nic_type *type;
938 	int legacy_irq;
939 	bool eeh_disabled_legacy_irq;
940 	struct workqueue_struct *workqueue;
941 	char workqueue_name[16];
942 	struct work_struct reset_work;
943 	resource_size_t membase_phys;
944 	void __iomem *membase;
945 
946 	enum efx_int_mode interrupt_mode;
947 	unsigned int timer_quantum_ns;
948 	unsigned int timer_max_ns;
949 	bool irq_rx_adaptive;
950 	unsigned int irq_mod_step_us;
951 	unsigned int irq_rx_moderation_us;
952 	u32 msg_enable;
953 
954 	enum nic_state state;
955 	unsigned long reset_pending;
956 
957 	struct efx_channel *channel[EFX_MAX_CHANNELS];
958 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
959 	const struct efx_channel_type *
960 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
961 
962 	unsigned rxq_entries;
963 	unsigned txq_entries;
964 	unsigned int txq_stop_thresh;
965 	unsigned int txq_wake_thresh;
966 
967 	unsigned tx_dc_base;
968 	unsigned rx_dc_base;
969 	unsigned sram_lim_qw;
970 	unsigned next_buffer_table;
971 
972 	unsigned int max_channels;
973 	unsigned int max_tx_channels;
974 	unsigned n_channels;
975 	unsigned n_rx_channels;
976 	unsigned rss_spread;
977 	unsigned tx_channel_offset;
978 	unsigned n_tx_channels;
979 	unsigned int rx_ip_align;
980 	unsigned int rx_dma_len;
981 	unsigned int rx_buffer_order;
982 	unsigned int rx_buffer_truesize;
983 	unsigned int rx_page_buf_step;
984 	unsigned int rx_bufs_per_page;
985 	unsigned int rx_pages_per_batch;
986 	unsigned int rx_prefix_size;
987 	int rx_packet_hash_offset;
988 	int rx_packet_len_offset;
989 	int rx_packet_ts_offset;
990 	u8 rx_hash_key[40];
991 	u32 rx_indir_table[128];
992 	bool rx_scatter;
993 
994 	unsigned int_error_count;
995 	unsigned long int_error_expire;
996 
997 	bool irq_soft_enabled;
998 	struct efx_buffer irq_status;
999 	unsigned irq_zero_count;
1000 	unsigned irq_level;
1001 	struct delayed_work selftest_work;
1002 
1003 #ifdef CONFIG_SFC_MTD
1004 	struct list_head mtd_list;
1005 #endif
1006 
1007 	void *nic_data;
1008 	struct efx_mcdi_data *mcdi;
1009 
1010 	struct mutex mac_lock;
1011 	struct work_struct mac_work;
1012 	bool port_enabled;
1013 
1014 	bool mc_bist_for_other_fn;
1015 	bool port_initialized;
1016 	struct net_device *net_dev;
1017 
1018 	netdev_features_t fixed_features;
1019 
1020 	struct efx_buffer stats_buffer;
1021 	u64 rx_nodesc_drops_total;
1022 	u64 rx_nodesc_drops_while_down;
1023 	bool rx_nodesc_drops_prev_state;
1024 
1025 	unsigned int phy_type;
1026 	const struct efx_phy_operations *phy_op;
1027 	void *phy_data;
1028 	struct mdio_if_info mdio;
1029 	unsigned int mdio_bus;
1030 	enum efx_phy_mode phy_mode;
1031 
1032 	u32 link_advertising;
1033 	struct efx_link_state link_state;
1034 	unsigned int n_link_state_changes;
1035 
1036 	bool unicast_filter;
1037 	union efx_multicast_hash multicast_hash;
1038 	u8 wanted_fc;
1039 	unsigned fc_disable;
1040 
1041 	atomic_t rx_reset;
1042 	enum efx_loopback_mode loopback_mode;
1043 	u64 loopback_modes;
1044 
1045 	void *loopback_selftest;
1046 
1047 	struct rw_semaphore filter_sem;
1048 	spinlock_t filter_lock;
1049 	void *filter_state;
1050 #ifdef CONFIG_RFS_ACCEL
1051 	unsigned int rps_expire_channel;
1052 	unsigned int rps_expire_index;
1053 #endif
1054 
1055 	atomic_t active_queues;
1056 	atomic_t rxq_flush_pending;
1057 	atomic_t rxq_flush_outstanding;
1058 	wait_queue_head_t flush_wq;
1059 
1060 #ifdef CONFIG_SFC_SRIOV
1061 	unsigned vf_count;
1062 	unsigned vf_init_count;
1063 	unsigned vi_scale;
1064 #endif
1065 
1066 	struct efx_ptp_data *ptp_data;
1067 
1068 	char *vpd_sn;
1069 
1070 	/* The following fields may be written more often */
1071 
1072 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1073 	spinlock_t biu_lock;
1074 	int last_irq_cpu;
1075 	spinlock_t stats_lock;
1076 	atomic_t n_rx_noskb_drops;
1077 };
1078 
efx_dev_registered(struct efx_nic * efx)1079 static inline int efx_dev_registered(struct efx_nic *efx)
1080 {
1081 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1082 }
1083 
efx_port_num(struct efx_nic * efx)1084 static inline unsigned int efx_port_num(struct efx_nic *efx)
1085 {
1086 	return efx->port_num;
1087 }
1088 
1089 struct efx_mtd_partition {
1090 	struct list_head node;
1091 	struct mtd_info mtd;
1092 	const char *dev_type_name;
1093 	const char *type_name;
1094 	char name[IFNAMSIZ + 20];
1095 };
1096 
1097 /**
1098  * struct efx_nic_type - Efx device type definition
1099  * @mem_bar: Get the memory BAR
1100  * @mem_map_size: Get memory BAR mapped size
1101  * @probe: Probe the controller
1102  * @remove: Free resources allocated by probe()
1103  * @init: Initialise the controller
1104  * @dimension_resources: Dimension controller resources (buffer table,
1105  *	and VIs once the available interrupt resources are clear)
1106  * @fini: Shut down the controller
1107  * @monitor: Periodic function for polling link state and hardware monitor
1108  * @map_reset_reason: Map ethtool reset reason to a reset method
1109  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1110  * @reset: Reset the controller hardware and possibly the PHY.  This will
1111  *	be called while the controller is uninitialised.
1112  * @probe_port: Probe the MAC and PHY
1113  * @remove_port: Free resources allocated by probe_port()
1114  * @handle_global_event: Handle a "global" event (may be %NULL)
1115  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1116  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1117  *	(for Falcon architecture)
1118  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1119  *	architecture)
1120  * @prepare_flr: Prepare for an FLR
1121  * @finish_flr: Clean up after an FLR
1122  * @describe_stats: Describe statistics for ethtool
1123  * @update_stats: Update statistics not provided by event handling.
1124  *	Either argument may be %NULL.
1125  * @start_stats: Start the regular fetching of statistics
1126  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1127  * @stop_stats: Stop the regular fetching of statistics
1128  * @set_id_led: Set state of identifying LED or revert to automatic function
1129  * @push_irq_moderation: Apply interrupt moderation value
1130  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1131  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1132  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1133  *	to the hardware.  Serialised by the mac_lock.
1134  * @check_mac_fault: Check MAC fault state. True if fault present.
1135  * @get_wol: Get WoL configuration from driver state
1136  * @set_wol: Push WoL configuration to the NIC
1137  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1138  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1139  *	expected to reset the NIC.
1140  * @test_nvram: Test validity of NVRAM contents
1141  * @mcdi_request: Send an MCDI request with the given header and SDU.
1142  *	The SDU length may be any value from 0 up to the protocol-
1143  *	defined maximum, but its buffer will be padded to a multiple
1144  *	of 4 bytes.
1145  * @mcdi_poll_response: Test whether an MCDI response is available.
1146  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1147  *	be a multiple of 4.  The length may not be, but the buffer
1148  *	will be padded so it is safe to round up.
1149  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1150  *	return an appropriate error code for aborting any current
1151  *	request; otherwise return 0.
1152  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1153  *	be separately enabled after this.
1154  * @irq_test_generate: Generate a test IRQ
1155  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1156  *	queue must be separately disabled before this.
1157  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1158  *	a pointer to the &struct efx_msi_context for the channel.
1159  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1160  *	is a pointer to the &struct efx_nic.
1161  * @tx_probe: Allocate resources for TX queue
1162  * @tx_init: Initialise TX queue on the NIC
1163  * @tx_remove: Free resources for TX queue
1164  * @tx_write: Write TX descriptors and doorbell
1165  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1166  * @rx_probe: Allocate resources for RX queue
1167  * @rx_init: Initialise RX queue on the NIC
1168  * @rx_remove: Free resources for RX queue
1169  * @rx_write: Write RX descriptors and doorbell
1170  * @rx_defer_refill: Generate a refill reminder event
1171  * @ev_probe: Allocate resources for event queue
1172  * @ev_init: Initialise event queue on the NIC
1173  * @ev_fini: Deinitialise event queue on the NIC
1174  * @ev_remove: Free resources for event queue
1175  * @ev_process: Process events for a queue, up to the given NAPI quota
1176  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1177  * @ev_test_generate: Generate a test event
1178  * @filter_table_probe: Probe filter capabilities and set up filter software state
1179  * @filter_table_restore: Restore filters removed from hardware
1180  * @filter_table_remove: Remove filters from hardware and tear down software state
1181  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1182  * @filter_insert: add or replace a filter
1183  * @filter_remove_safe: remove a filter by ID, carefully
1184  * @filter_get_safe: retrieve a filter by ID, carefully
1185  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1186  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1187  * @filter_count_rx_used: Get the number of filters in use at a given priority
1188  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1189  * @filter_get_rx_ids: Get list of RX filters at a given priority
1190  * @filter_rfs_insert: Add or replace a filter for RFS.  This must be
1191  *	atomic.  The hardware change may be asynchronous but should
1192  *	not be delayed for long.  It may fail if this can't be done
1193  *	atomically.
1194  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1195  *	This must check whether the specified table entry is used by RFS
1196  *	and that rps_may_expire_flow() returns true for it.
1197  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1198  *	 using efx_mtd_add()
1199  * @mtd_rename: Set an MTD partition name using the net device name
1200  * @mtd_read: Read from an MTD partition
1201  * @mtd_erase: Erase part of an MTD partition
1202  * @mtd_write: Write to an MTD partition
1203  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1204  *	also notifies the driver that a writer has finished using this
1205  *	partition.
1206  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1207  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1208  *	timestamping, possibly only temporarily for the purposes of a reset.
1209  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1210  *	and tx_type will already have been validated but this operation
1211  *	must validate and update rx_filter.
1212  * @set_mac_address: Set the MAC address of the device
1213  * @revision: Hardware architecture revision
1214  * @txd_ptr_tbl_base: TX descriptor ring base address
1215  * @rxd_ptr_tbl_base: RX descriptor ring base address
1216  * @buf_tbl_base: Buffer table base address
1217  * @evq_ptr_tbl_base: Event queue pointer table base address
1218  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1219  * @max_dma_mask: Maximum possible DMA mask
1220  * @rx_prefix_size: Size of RX prefix before packet data
1221  * @rx_hash_offset: Offset of RX flow hash within prefix
1222  * @rx_ts_offset: Offset of timestamp within prefix
1223  * @rx_buffer_padding: Size of padding at end of RX packet
1224  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1225  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1226  * @max_interrupt_mode: Highest capability interrupt mode supported
1227  *	from &enum efx_init_mode.
1228  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1229  * @offload_features: net_device feature flags for protocol offload
1230  *	features implemented in hardware
1231  * @mcdi_max_ver: Maximum MCDI version supported
1232  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1233  */
1234 struct efx_nic_type {
1235 	bool is_vf;
1236 	unsigned int mem_bar;
1237 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1238 	int (*probe)(struct efx_nic *efx);
1239 	void (*remove)(struct efx_nic *efx);
1240 	int (*init)(struct efx_nic *efx);
1241 	int (*dimension_resources)(struct efx_nic *efx);
1242 	void (*fini)(struct efx_nic *efx);
1243 	void (*monitor)(struct efx_nic *efx);
1244 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1245 	int (*map_reset_flags)(u32 *flags);
1246 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1247 	int (*probe_port)(struct efx_nic *efx);
1248 	void (*remove_port)(struct efx_nic *efx);
1249 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1250 	int (*fini_dmaq)(struct efx_nic *efx);
1251 	void (*prepare_flush)(struct efx_nic *efx);
1252 	void (*finish_flush)(struct efx_nic *efx);
1253 	void (*prepare_flr)(struct efx_nic *efx);
1254 	void (*finish_flr)(struct efx_nic *efx);
1255 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1256 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1257 			       struct rtnl_link_stats64 *core_stats);
1258 	void (*start_stats)(struct efx_nic *efx);
1259 	void (*pull_stats)(struct efx_nic *efx);
1260 	void (*stop_stats)(struct efx_nic *efx);
1261 	void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode);
1262 	void (*push_irq_moderation)(struct efx_channel *channel);
1263 	int (*reconfigure_port)(struct efx_nic *efx);
1264 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1265 	int (*reconfigure_mac)(struct efx_nic *efx);
1266 	bool (*check_mac_fault)(struct efx_nic *efx);
1267 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1268 	int (*set_wol)(struct efx_nic *efx, u32 type);
1269 	void (*resume_wol)(struct efx_nic *efx);
1270 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1271 	int (*test_nvram)(struct efx_nic *efx);
1272 	void (*mcdi_request)(struct efx_nic *efx,
1273 			     const efx_dword_t *hdr, size_t hdr_len,
1274 			     const efx_dword_t *sdu, size_t sdu_len);
1275 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1276 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1277 				   size_t pdu_offset, size_t pdu_len);
1278 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1279 	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1280 	void (*irq_enable_master)(struct efx_nic *efx);
1281 	int (*irq_test_generate)(struct efx_nic *efx);
1282 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1283 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1284 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1285 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1286 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1287 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1288 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1289 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1290 				  const u32 *rx_indir_table);
1291 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1292 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1293 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1294 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1295 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1296 	int (*ev_probe)(struct efx_channel *channel);
1297 	int (*ev_init)(struct efx_channel *channel);
1298 	void (*ev_fini)(struct efx_channel *channel);
1299 	void (*ev_remove)(struct efx_channel *channel);
1300 	int (*ev_process)(struct efx_channel *channel, int quota);
1301 	void (*ev_read_ack)(struct efx_channel *channel);
1302 	void (*ev_test_generate)(struct efx_channel *channel);
1303 	int (*filter_table_probe)(struct efx_nic *efx);
1304 	void (*filter_table_restore)(struct efx_nic *efx);
1305 	void (*filter_table_remove)(struct efx_nic *efx);
1306 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1307 	s32 (*filter_insert)(struct efx_nic *efx,
1308 			     struct efx_filter_spec *spec, bool replace);
1309 	int (*filter_remove_safe)(struct efx_nic *efx,
1310 				  enum efx_filter_priority priority,
1311 				  u32 filter_id);
1312 	int (*filter_get_safe)(struct efx_nic *efx,
1313 			       enum efx_filter_priority priority,
1314 			       u32 filter_id, struct efx_filter_spec *);
1315 	int (*filter_clear_rx)(struct efx_nic *efx,
1316 			       enum efx_filter_priority priority);
1317 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1318 				    enum efx_filter_priority priority);
1319 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1320 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1321 				 enum efx_filter_priority priority,
1322 				 u32 *buf, u32 size);
1323 #ifdef CONFIG_RFS_ACCEL
1324 	s32 (*filter_rfs_insert)(struct efx_nic *efx,
1325 				 struct efx_filter_spec *spec);
1326 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1327 				      unsigned int index);
1328 #endif
1329 #ifdef CONFIG_SFC_MTD
1330 	int (*mtd_probe)(struct efx_nic *efx);
1331 	void (*mtd_rename)(struct efx_mtd_partition *part);
1332 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1333 			size_t *retlen, u8 *buffer);
1334 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1335 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1336 			 size_t *retlen, const u8 *buffer);
1337 	int (*mtd_sync)(struct mtd_info *mtd);
1338 #endif
1339 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1340 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1341 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1342 				 struct hwtstamp_config *init);
1343 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1344 	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1345 	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1346 	int (*sriov_init)(struct efx_nic *efx);
1347 	void (*sriov_fini)(struct efx_nic *efx);
1348 	bool (*sriov_wanted)(struct efx_nic *efx);
1349 	void (*sriov_reset)(struct efx_nic *efx);
1350 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1351 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1352 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1353 				 u8 qos);
1354 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1355 				     bool spoofchk);
1356 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1357 				   struct ifla_vf_info *ivi);
1358 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1359 				       int link_state);
1360 	int (*sriov_get_phys_port_id)(struct efx_nic *efx,
1361 				      struct netdev_phys_item_id *ppid);
1362 	int (*vswitching_probe)(struct efx_nic *efx);
1363 	int (*vswitching_restore)(struct efx_nic *efx);
1364 	void (*vswitching_remove)(struct efx_nic *efx);
1365 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1366 	int (*set_mac_address)(struct efx_nic *efx);
1367 
1368 	int revision;
1369 	unsigned int txd_ptr_tbl_base;
1370 	unsigned int rxd_ptr_tbl_base;
1371 	unsigned int buf_tbl_base;
1372 	unsigned int evq_ptr_tbl_base;
1373 	unsigned int evq_rptr_tbl_base;
1374 	u64 max_dma_mask;
1375 	unsigned int rx_prefix_size;
1376 	unsigned int rx_hash_offset;
1377 	unsigned int rx_ts_offset;
1378 	unsigned int rx_buffer_padding;
1379 	bool can_rx_scatter;
1380 	bool always_rx_scatter;
1381 	unsigned int max_interrupt_mode;
1382 	unsigned int timer_period_max;
1383 	netdev_features_t offload_features;
1384 	int mcdi_max_ver;
1385 	unsigned int max_rx_ip_filters;
1386 	u32 hwtstamp_filters;
1387 };
1388 
1389 /**************************************************************************
1390  *
1391  * Prototypes and inline functions
1392  *
1393  *************************************************************************/
1394 
1395 static inline struct efx_channel *
efx_get_channel(struct efx_nic * efx,unsigned index)1396 efx_get_channel(struct efx_nic *efx, unsigned index)
1397 {
1398 	EFX_BUG_ON_PARANOID(index >= efx->n_channels);
1399 	return efx->channel[index];
1400 }
1401 
1402 /* Iterate over all used channels */
1403 #define efx_for_each_channel(_channel, _efx)				\
1404 	for (_channel = (_efx)->channel[0];				\
1405 	     _channel;							\
1406 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1407 		     (_efx)->channel[_channel->channel + 1] : NULL)
1408 
1409 /* Iterate over all used channels in reverse */
1410 #define efx_for_each_channel_rev(_channel, _efx)			\
1411 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1412 	     _channel;							\
1413 	     _channel = _channel->channel ?				\
1414 		     (_efx)->channel[_channel->channel - 1] : NULL)
1415 
1416 static inline struct efx_tx_queue *
efx_get_tx_queue(struct efx_nic * efx,unsigned index,unsigned type)1417 efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type)
1418 {
1419 	EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels ||
1420 			    type >= EFX_TXQ_TYPES);
1421 	return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type];
1422 }
1423 
efx_channel_has_tx_queues(struct efx_channel * channel)1424 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1425 {
1426 	return channel->channel - channel->efx->tx_channel_offset <
1427 		channel->efx->n_tx_channels;
1428 }
1429 
1430 static inline struct efx_tx_queue *
efx_channel_get_tx_queue(struct efx_channel * channel,unsigned type)1431 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type)
1432 {
1433 	EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) ||
1434 			    type >= EFX_TXQ_TYPES);
1435 	return &channel->tx_queue[type];
1436 }
1437 
efx_tx_queue_used(struct efx_tx_queue * tx_queue)1438 static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue)
1439 {
1440 	return !(tx_queue->efx->net_dev->num_tc < 2 &&
1441 		 tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI);
1442 }
1443 
1444 /* Iterate over all TX queues belonging to a channel */
1445 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1446 	if (!efx_channel_has_tx_queues(_channel))			\
1447 		;							\
1448 	else								\
1449 		for (_tx_queue = (_channel)->tx_queue;			\
1450 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \
1451 			     efx_tx_queue_used(_tx_queue);		\
1452 		     _tx_queue++)
1453 
1454 /* Iterate over all possible TX queues belonging to a channel */
1455 #define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel)	\
1456 	if (!efx_channel_has_tx_queues(_channel))			\
1457 		;							\
1458 	else								\
1459 		for (_tx_queue = (_channel)->tx_queue;			\
1460 		     _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES;	\
1461 		     _tx_queue++)
1462 
efx_channel_has_rx_queue(struct efx_channel * channel)1463 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1464 {
1465 	return channel->rx_queue.core_index >= 0;
1466 }
1467 
1468 static inline struct efx_rx_queue *
efx_channel_get_rx_queue(struct efx_channel * channel)1469 efx_channel_get_rx_queue(struct efx_channel *channel)
1470 {
1471 	EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel));
1472 	return &channel->rx_queue;
1473 }
1474 
1475 /* Iterate over all RX queues belonging to a channel */
1476 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1477 	if (!efx_channel_has_rx_queue(_channel))			\
1478 		;							\
1479 	else								\
1480 		for (_rx_queue = &(_channel)->rx_queue;			\
1481 		     _rx_queue;						\
1482 		     _rx_queue = NULL)
1483 
1484 static inline struct efx_channel *
efx_rx_queue_channel(struct efx_rx_queue * rx_queue)1485 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1486 {
1487 	return container_of(rx_queue, struct efx_channel, rx_queue);
1488 }
1489 
efx_rx_queue_index(struct efx_rx_queue * rx_queue)1490 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1491 {
1492 	return efx_rx_queue_channel(rx_queue)->channel;
1493 }
1494 
1495 /* Returns a pointer to the specified receive buffer in the RX
1496  * descriptor queue.
1497  */
efx_rx_buffer(struct efx_rx_queue * rx_queue,unsigned int index)1498 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1499 						  unsigned int index)
1500 {
1501 	return &rx_queue->buffer[index];
1502 }
1503 
1504 /**
1505  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1506  *
1507  * This calculates the maximum frame length that will be used for a
1508  * given MTU.  The frame length will be equal to the MTU plus a
1509  * constant amount of header space and padding.  This is the quantity
1510  * that the net driver will program into the MAC as the maximum frame
1511  * length.
1512  *
1513  * The 10G MAC requires 8-byte alignment on the frame
1514  * length, so we round up to the nearest 8.
1515  *
1516  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1517  * XGMII cycle).  If the frame length reaches the maximum value in the
1518  * same cycle, the XMAC can miss the IPG altogether.  We work around
1519  * this by adding a further 16 bytes.
1520  */
1521 #define EFX_FRAME_PAD	16
1522 #define EFX_MAX_FRAME_LEN(mtu) \
1523 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1524 
efx_xmit_with_hwtstamp(struct sk_buff * skb)1525 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1526 {
1527 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1528 }
efx_xmit_hwtstamp_pending(struct sk_buff * skb)1529 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1530 {
1531 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1532 }
1533 
1534 /* Get all supported features.
1535  * If a feature is not fixed, it is present in hw_features.
1536  * If a feature is fixed, it does not present in hw_features, but
1537  * always in features.
1538  */
efx_supported_features(const struct efx_nic * efx)1539 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1540 {
1541 	const struct net_device *net_dev = efx->net_dev;
1542 
1543 	return net_dev->features | net_dev->hw_features;
1544 }
1545 
1546 #endif /* EFX_NET_DRIVER_H */
1547