1 /*
2 * Copyright (c) 2014-2015 The Linux Foundation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #include "mdp5_kms.h"
15 #include "mdp5_ctl.h"
16
17 /*
18 * CTL - MDP Control Pool Manager
19 *
20 * Controls are shared between all display interfaces.
21 *
22 * They are intended to be used for data path configuration.
23 * The top level register programming describes the complete data path for
24 * a specific data path ID - REG_MDP5_CTL_*(<id>, ...)
25 *
26 * Hardware capabilities determine the number of concurrent data paths
27 *
28 * In certain use cases (high-resolution dual pipe), one single CTL can be
29 * shared across multiple CRTCs.
30 */
31
32 #define CTL_STAT_BUSY 0x1
33 #define CTL_STAT_BOOKED 0x2
34
35 struct op_mode {
36 struct mdp5_interface intf;
37
38 bool encoder_enabled;
39 uint32_t start_mask;
40 };
41
42 struct mdp5_ctl {
43 struct mdp5_ctl_manager *ctlm;
44
45 u32 id;
46 int lm;
47
48 /* CTL status bitmask */
49 u32 status;
50
51 /* Operation Mode Configuration for the Pipeline */
52 struct op_mode pipeline;
53
54 /* REG_MDP5_CTL_*(<id>) registers access info + lock: */
55 spinlock_t hw_lock;
56 u32 reg_offset;
57
58 /* when do CTL registers need to be flushed? (mask of trigger bits) */
59 u32 pending_ctl_trigger;
60
61 bool cursor_on;
62
63 /* True if the current CTL has FLUSH bits pending for single FLUSH. */
64 bool flush_pending;
65
66 struct mdp5_ctl *pair; /* Paired CTL to be flushed together */
67 };
68
69 struct mdp5_ctl_manager {
70 struct drm_device *dev;
71
72 /* number of CTL / Layer Mixers in this hw config: */
73 u32 nlm;
74 u32 nctl;
75
76 /* to filter out non-present bits in the current hardware config */
77 u32 flush_hw_mask;
78
79 /* status for single FLUSH */
80 bool single_flush_supported;
81 u32 single_flush_pending_mask;
82
83 /* pool of CTLs + lock to protect resource allocation (ctls[i].busy) */
84 spinlock_t pool_lock;
85 struct mdp5_ctl ctls[MAX_CTL];
86 };
87
88 static inline
get_kms(struct mdp5_ctl_manager * ctl_mgr)89 struct mdp5_kms *get_kms(struct mdp5_ctl_manager *ctl_mgr)
90 {
91 struct msm_drm_private *priv = ctl_mgr->dev->dev_private;
92
93 return to_mdp5_kms(to_mdp_kms(priv->kms));
94 }
95
96 static inline
ctl_write(struct mdp5_ctl * ctl,u32 reg,u32 data)97 void ctl_write(struct mdp5_ctl *ctl, u32 reg, u32 data)
98 {
99 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
100
101 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
102 mdp5_write(mdp5_kms, reg, data);
103 }
104
105 static inline
ctl_read(struct mdp5_ctl * ctl,u32 reg)106 u32 ctl_read(struct mdp5_ctl *ctl, u32 reg)
107 {
108 struct mdp5_kms *mdp5_kms = get_kms(ctl->ctlm);
109
110 (void)ctl->reg_offset; /* TODO use this instead of mdp5_write */
111 return mdp5_read(mdp5_kms, reg);
112 }
113
set_display_intf(struct mdp5_kms * mdp5_kms,struct mdp5_interface * intf)114 static void set_display_intf(struct mdp5_kms *mdp5_kms,
115 struct mdp5_interface *intf)
116 {
117 unsigned long flags;
118 u32 intf_sel;
119
120 spin_lock_irqsave(&mdp5_kms->resource_lock, flags);
121 intf_sel = mdp5_read(mdp5_kms, REG_MDP5_DISP_INTF_SEL);
122
123 switch (intf->num) {
124 case 0:
125 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF0__MASK;
126 intf_sel |= MDP5_DISP_INTF_SEL_INTF0(intf->type);
127 break;
128 case 1:
129 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF1__MASK;
130 intf_sel |= MDP5_DISP_INTF_SEL_INTF1(intf->type);
131 break;
132 case 2:
133 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF2__MASK;
134 intf_sel |= MDP5_DISP_INTF_SEL_INTF2(intf->type);
135 break;
136 case 3:
137 intf_sel &= ~MDP5_DISP_INTF_SEL_INTF3__MASK;
138 intf_sel |= MDP5_DISP_INTF_SEL_INTF3(intf->type);
139 break;
140 default:
141 BUG();
142 break;
143 }
144
145 mdp5_write(mdp5_kms, REG_MDP5_DISP_INTF_SEL, intf_sel);
146 spin_unlock_irqrestore(&mdp5_kms->resource_lock, flags);
147 }
148
set_ctl_op(struct mdp5_ctl * ctl,struct mdp5_interface * intf)149 static void set_ctl_op(struct mdp5_ctl *ctl, struct mdp5_interface *intf)
150 {
151 unsigned long flags;
152 u32 ctl_op = 0;
153
154 if (!mdp5_cfg_intf_is_virtual(intf->type))
155 ctl_op |= MDP5_CTL_OP_INTF_NUM(INTF0 + intf->num);
156
157 switch (intf->type) {
158 case INTF_DSI:
159 if (intf->mode == MDP5_INTF_DSI_MODE_COMMAND)
160 ctl_op |= MDP5_CTL_OP_CMD_MODE;
161 break;
162
163 case INTF_WB:
164 if (intf->mode == MDP5_INTF_WB_MODE_LINE)
165 ctl_op |= MDP5_CTL_OP_MODE(MODE_WB_2_LINE);
166 break;
167
168 default:
169 break;
170 }
171
172 spin_lock_irqsave(&ctl->hw_lock, flags);
173 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), ctl_op);
174 spin_unlock_irqrestore(&ctl->hw_lock, flags);
175 }
176
mdp5_ctl_set_pipeline(struct mdp5_ctl * ctl,struct mdp5_interface * intf,int lm)177 int mdp5_ctl_set_pipeline(struct mdp5_ctl *ctl,
178 struct mdp5_interface *intf, int lm)
179 {
180 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
181 struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
182
183 if (unlikely(WARN_ON(intf->num != ctl->pipeline.intf.num))) {
184 dev_err(mdp5_kms->dev->dev,
185 "CTL %d is allocated by INTF %d, but used by INTF %d\n",
186 ctl->id, ctl->pipeline.intf.num, intf->num);
187 return -EINVAL;
188 }
189
190 ctl->lm = lm;
191
192 memcpy(&ctl->pipeline.intf, intf, sizeof(*intf));
193
194 ctl->pipeline.start_mask = mdp_ctl_flush_mask_lm(ctl->lm) |
195 mdp_ctl_flush_mask_encoder(intf);
196
197 /* Virtual interfaces need not set a display intf (e.g.: Writeback) */
198 if (!mdp5_cfg_intf_is_virtual(intf->type))
199 set_display_intf(mdp5_kms, intf);
200
201 set_ctl_op(ctl, intf);
202
203 return 0;
204 }
205
start_signal_needed(struct mdp5_ctl * ctl)206 static bool start_signal_needed(struct mdp5_ctl *ctl)
207 {
208 struct op_mode *pipeline = &ctl->pipeline;
209
210 if (!pipeline->encoder_enabled || pipeline->start_mask != 0)
211 return false;
212
213 switch (pipeline->intf.type) {
214 case INTF_WB:
215 return true;
216 case INTF_DSI:
217 return pipeline->intf.mode == MDP5_INTF_DSI_MODE_COMMAND;
218 default:
219 return false;
220 }
221 }
222
223 /*
224 * send_start_signal() - Overlay Processor Start Signal
225 *
226 * For a given control operation (display pipeline), a START signal needs to be
227 * executed in order to kick off operation and activate all layers.
228 * e.g.: DSI command mode, Writeback
229 */
send_start_signal(struct mdp5_ctl * ctl)230 static void send_start_signal(struct mdp5_ctl *ctl)
231 {
232 unsigned long flags;
233
234 spin_lock_irqsave(&ctl->hw_lock, flags);
235 ctl_write(ctl, REG_MDP5_CTL_START(ctl->id), 1);
236 spin_unlock_irqrestore(&ctl->hw_lock, flags);
237 }
238
refill_start_mask(struct mdp5_ctl * ctl)239 static void refill_start_mask(struct mdp5_ctl *ctl)
240 {
241 struct op_mode *pipeline = &ctl->pipeline;
242 struct mdp5_interface *intf = &ctl->pipeline.intf;
243
244 pipeline->start_mask = mdp_ctl_flush_mask_lm(ctl->lm);
245
246 /*
247 * Writeback encoder needs to program & flush
248 * address registers for each page flip..
249 */
250 if (intf->type == INTF_WB)
251 pipeline->start_mask |= mdp_ctl_flush_mask_encoder(intf);
252 }
253
254 /**
255 * mdp5_ctl_set_encoder_state() - set the encoder state
256 *
257 * @enable: true, when encoder is ready for data streaming; false, otherwise.
258 *
259 * Note:
260 * This encoder state is needed to trigger START signal (data path kickoff).
261 */
mdp5_ctl_set_encoder_state(struct mdp5_ctl * ctl,bool enabled)262 int mdp5_ctl_set_encoder_state(struct mdp5_ctl *ctl, bool enabled)
263 {
264 if (WARN_ON(!ctl))
265 return -EINVAL;
266
267 ctl->pipeline.encoder_enabled = enabled;
268 DBG("intf_%d: %s", ctl->pipeline.intf.num, enabled ? "on" : "off");
269
270 if (start_signal_needed(ctl)) {
271 send_start_signal(ctl);
272 refill_start_mask(ctl);
273 }
274
275 return 0;
276 }
277
278 /*
279 * Note:
280 * CTL registers need to be flushed after calling this function
281 * (call mdp5_ctl_commit() with mdp_ctl_flush_mask_ctl() mask)
282 */
mdp5_ctl_set_cursor(struct mdp5_ctl * ctl,int cursor_id,bool enable)283 int mdp5_ctl_set_cursor(struct mdp5_ctl *ctl, int cursor_id, bool enable)
284 {
285 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
286 unsigned long flags;
287 u32 blend_cfg;
288 int lm = ctl->lm;
289
290 if (unlikely(WARN_ON(lm < 0))) {
291 dev_err(ctl_mgr->dev->dev, "CTL %d cannot find LM: %d",
292 ctl->id, lm);
293 return -EINVAL;
294 }
295
296 spin_lock_irqsave(&ctl->hw_lock, flags);
297
298 blend_cfg = ctl_read(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm));
299
300 if (enable)
301 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
302 else
303 blend_cfg &= ~MDP5_CTL_LAYER_REG_CURSOR_OUT;
304
305 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, lm), blend_cfg);
306 ctl->cursor_on = enable;
307
308 spin_unlock_irqrestore(&ctl->hw_lock, flags);
309
310 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_cursor(cursor_id);
311
312 return 0;
313 }
314
mdp_ctl_blend_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)315 static u32 mdp_ctl_blend_mask(enum mdp5_pipe pipe,
316 enum mdp_mixer_stage_id stage)
317 {
318 switch (pipe) {
319 case SSPP_VIG0: return MDP5_CTL_LAYER_REG_VIG0(stage);
320 case SSPP_VIG1: return MDP5_CTL_LAYER_REG_VIG1(stage);
321 case SSPP_VIG2: return MDP5_CTL_LAYER_REG_VIG2(stage);
322 case SSPP_RGB0: return MDP5_CTL_LAYER_REG_RGB0(stage);
323 case SSPP_RGB1: return MDP5_CTL_LAYER_REG_RGB1(stage);
324 case SSPP_RGB2: return MDP5_CTL_LAYER_REG_RGB2(stage);
325 case SSPP_DMA0: return MDP5_CTL_LAYER_REG_DMA0(stage);
326 case SSPP_DMA1: return MDP5_CTL_LAYER_REG_DMA1(stage);
327 case SSPP_VIG3: return MDP5_CTL_LAYER_REG_VIG3(stage);
328 case SSPP_RGB3: return MDP5_CTL_LAYER_REG_RGB3(stage);
329 default: return 0;
330 }
331 }
332
mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,enum mdp_mixer_stage_id stage)333 static u32 mdp_ctl_blend_ext_mask(enum mdp5_pipe pipe,
334 enum mdp_mixer_stage_id stage)
335 {
336 if (stage < STAGE6)
337 return 0;
338
339 switch (pipe) {
340 case SSPP_VIG0: return MDP5_CTL_LAYER_EXT_REG_VIG0_BIT3;
341 case SSPP_VIG1: return MDP5_CTL_LAYER_EXT_REG_VIG1_BIT3;
342 case SSPP_VIG2: return MDP5_CTL_LAYER_EXT_REG_VIG2_BIT3;
343 case SSPP_RGB0: return MDP5_CTL_LAYER_EXT_REG_RGB0_BIT3;
344 case SSPP_RGB1: return MDP5_CTL_LAYER_EXT_REG_RGB1_BIT3;
345 case SSPP_RGB2: return MDP5_CTL_LAYER_EXT_REG_RGB2_BIT3;
346 case SSPP_DMA0: return MDP5_CTL_LAYER_EXT_REG_DMA0_BIT3;
347 case SSPP_DMA1: return MDP5_CTL_LAYER_EXT_REG_DMA1_BIT3;
348 case SSPP_VIG3: return MDP5_CTL_LAYER_EXT_REG_VIG3_BIT3;
349 case SSPP_RGB3: return MDP5_CTL_LAYER_EXT_REG_RGB3_BIT3;
350 default: return 0;
351 }
352 }
353
mdp5_ctl_blend(struct mdp5_ctl * ctl,u8 * stage,u32 stage_cnt,u32 ctl_blend_op_flags)354 int mdp5_ctl_blend(struct mdp5_ctl *ctl, u8 *stage, u32 stage_cnt,
355 u32 ctl_blend_op_flags)
356 {
357 unsigned long flags;
358 u32 blend_cfg = 0, blend_ext_cfg = 0;
359 int i, start_stage;
360
361 if (ctl_blend_op_flags & MDP5_CTL_BLEND_OP_FLAG_BORDER_OUT) {
362 start_stage = STAGE0;
363 blend_cfg |= MDP5_CTL_LAYER_REG_BORDER_COLOR;
364 } else {
365 start_stage = STAGE_BASE;
366 }
367
368 for (i = start_stage; i < start_stage + stage_cnt; i++) {
369 blend_cfg |= mdp_ctl_blend_mask(stage[i], i);
370 blend_ext_cfg |= mdp_ctl_blend_ext_mask(stage[i], i);
371 }
372
373 spin_lock_irqsave(&ctl->hw_lock, flags);
374 if (ctl->cursor_on)
375 blend_cfg |= MDP5_CTL_LAYER_REG_CURSOR_OUT;
376
377 ctl_write(ctl, REG_MDP5_CTL_LAYER_REG(ctl->id, ctl->lm), blend_cfg);
378 ctl_write(ctl, REG_MDP5_CTL_LAYER_EXT_REG(ctl->id, ctl->lm), blend_ext_cfg);
379 spin_unlock_irqrestore(&ctl->hw_lock, flags);
380
381 ctl->pending_ctl_trigger = mdp_ctl_flush_mask_lm(ctl->lm);
382
383 DBG("lm%d: blend config = 0x%08x. ext_cfg = 0x%08x", ctl->lm,
384 blend_cfg, blend_ext_cfg);
385
386 return 0;
387 }
388
mdp_ctl_flush_mask_encoder(struct mdp5_interface * intf)389 u32 mdp_ctl_flush_mask_encoder(struct mdp5_interface *intf)
390 {
391 if (intf->type == INTF_WB)
392 return MDP5_CTL_FLUSH_WB;
393
394 switch (intf->num) {
395 case 0: return MDP5_CTL_FLUSH_TIMING_0;
396 case 1: return MDP5_CTL_FLUSH_TIMING_1;
397 case 2: return MDP5_CTL_FLUSH_TIMING_2;
398 case 3: return MDP5_CTL_FLUSH_TIMING_3;
399 default: return 0;
400 }
401 }
402
mdp_ctl_flush_mask_cursor(int cursor_id)403 u32 mdp_ctl_flush_mask_cursor(int cursor_id)
404 {
405 switch (cursor_id) {
406 case 0: return MDP5_CTL_FLUSH_CURSOR_0;
407 case 1: return MDP5_CTL_FLUSH_CURSOR_1;
408 default: return 0;
409 }
410 }
411
mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)412 u32 mdp_ctl_flush_mask_pipe(enum mdp5_pipe pipe)
413 {
414 switch (pipe) {
415 case SSPP_VIG0: return MDP5_CTL_FLUSH_VIG0;
416 case SSPP_VIG1: return MDP5_CTL_FLUSH_VIG1;
417 case SSPP_VIG2: return MDP5_CTL_FLUSH_VIG2;
418 case SSPP_RGB0: return MDP5_CTL_FLUSH_RGB0;
419 case SSPP_RGB1: return MDP5_CTL_FLUSH_RGB1;
420 case SSPP_RGB2: return MDP5_CTL_FLUSH_RGB2;
421 case SSPP_DMA0: return MDP5_CTL_FLUSH_DMA0;
422 case SSPP_DMA1: return MDP5_CTL_FLUSH_DMA1;
423 case SSPP_VIG3: return MDP5_CTL_FLUSH_VIG3;
424 case SSPP_RGB3: return MDP5_CTL_FLUSH_RGB3;
425 default: return 0;
426 }
427 }
428
mdp_ctl_flush_mask_lm(int lm)429 u32 mdp_ctl_flush_mask_lm(int lm)
430 {
431 switch (lm) {
432 case 0: return MDP5_CTL_FLUSH_LM0;
433 case 1: return MDP5_CTL_FLUSH_LM1;
434 case 2: return MDP5_CTL_FLUSH_LM2;
435 case 5: return MDP5_CTL_FLUSH_LM5;
436 default: return 0;
437 }
438 }
439
fix_sw_flush(struct mdp5_ctl * ctl,u32 flush_mask)440 static u32 fix_sw_flush(struct mdp5_ctl *ctl, u32 flush_mask)
441 {
442 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
443 u32 sw_mask = 0;
444 #define BIT_NEEDS_SW_FIX(bit) \
445 (!(ctl_mgr->flush_hw_mask & bit) && (flush_mask & bit))
446
447 /* for some targets, cursor bit is the same as LM bit */
448 if (BIT_NEEDS_SW_FIX(MDP5_CTL_FLUSH_CURSOR_0))
449 sw_mask |= mdp_ctl_flush_mask_lm(ctl->lm);
450
451 return sw_mask;
452 }
453
fix_for_single_flush(struct mdp5_ctl * ctl,u32 * flush_mask,u32 * flush_id)454 static void fix_for_single_flush(struct mdp5_ctl *ctl, u32 *flush_mask,
455 u32 *flush_id)
456 {
457 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
458
459 if (ctl->pair) {
460 DBG("CTL %d FLUSH pending mask %x", ctl->id, *flush_mask);
461 ctl->flush_pending = true;
462 ctl_mgr->single_flush_pending_mask |= (*flush_mask);
463 *flush_mask = 0;
464
465 if (ctl->pair->flush_pending) {
466 *flush_id = min_t(u32, ctl->id, ctl->pair->id);
467 *flush_mask = ctl_mgr->single_flush_pending_mask;
468
469 ctl->flush_pending = false;
470 ctl->pair->flush_pending = false;
471 ctl_mgr->single_flush_pending_mask = 0;
472
473 DBG("Single FLUSH mask %x,ID %d", *flush_mask,
474 *flush_id);
475 }
476 }
477 }
478
479 /**
480 * mdp5_ctl_commit() - Register Flush
481 *
482 * The flush register is used to indicate several registers are all
483 * programmed, and are safe to update to the back copy of the double
484 * buffered registers.
485 *
486 * Some registers FLUSH bits are shared when the hardware does not have
487 * dedicated bits for them; handling these is the job of fix_sw_flush().
488 *
489 * CTL registers need to be flushed in some circumstances; if that is the
490 * case, some trigger bits will be present in both flush mask and
491 * ctl->pending_ctl_trigger.
492 *
493 * Return H/W flushed bit mask.
494 */
mdp5_ctl_commit(struct mdp5_ctl * ctl,u32 flush_mask)495 u32 mdp5_ctl_commit(struct mdp5_ctl *ctl, u32 flush_mask)
496 {
497 struct mdp5_ctl_manager *ctl_mgr = ctl->ctlm;
498 struct op_mode *pipeline = &ctl->pipeline;
499 unsigned long flags;
500 u32 flush_id = ctl->id;
501 u32 curr_ctl_flush_mask;
502
503 pipeline->start_mask &= ~flush_mask;
504
505 VERB("flush_mask=%x, start_mask=%x, trigger=%x", flush_mask,
506 pipeline->start_mask, ctl->pending_ctl_trigger);
507
508 if (ctl->pending_ctl_trigger & flush_mask) {
509 flush_mask |= MDP5_CTL_FLUSH_CTL;
510 ctl->pending_ctl_trigger = 0;
511 }
512
513 flush_mask |= fix_sw_flush(ctl, flush_mask);
514
515 flush_mask &= ctl_mgr->flush_hw_mask;
516
517 curr_ctl_flush_mask = flush_mask;
518
519 fix_for_single_flush(ctl, &flush_mask, &flush_id);
520
521 if (flush_mask) {
522 spin_lock_irqsave(&ctl->hw_lock, flags);
523 ctl_write(ctl, REG_MDP5_CTL_FLUSH(flush_id), flush_mask);
524 spin_unlock_irqrestore(&ctl->hw_lock, flags);
525 }
526
527 if (start_signal_needed(ctl)) {
528 send_start_signal(ctl);
529 refill_start_mask(ctl);
530 }
531
532 return curr_ctl_flush_mask;
533 }
534
mdp5_ctl_get_commit_status(struct mdp5_ctl * ctl)535 u32 mdp5_ctl_get_commit_status(struct mdp5_ctl *ctl)
536 {
537 return ctl_read(ctl, REG_MDP5_CTL_FLUSH(ctl->id));
538 }
539
mdp5_ctl_get_ctl_id(struct mdp5_ctl * ctl)540 int mdp5_ctl_get_ctl_id(struct mdp5_ctl *ctl)
541 {
542 return WARN_ON(!ctl) ? -EINVAL : ctl->id;
543 }
544
545 /*
546 * mdp5_ctl_pair() - Associate 2 booked CTLs for single FLUSH
547 */
mdp5_ctl_pair(struct mdp5_ctl * ctlx,struct mdp5_ctl * ctly,bool enable)548 int mdp5_ctl_pair(struct mdp5_ctl *ctlx, struct mdp5_ctl *ctly, bool enable)
549 {
550 struct mdp5_ctl_manager *ctl_mgr = ctlx->ctlm;
551 struct mdp5_kms *mdp5_kms = get_kms(ctl_mgr);
552
553 /* do nothing silently if hw doesn't support */
554 if (!ctl_mgr->single_flush_supported)
555 return 0;
556
557 if (!enable) {
558 ctlx->pair = NULL;
559 ctly->pair = NULL;
560 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0, 0);
561 return 0;
562 } else if ((ctlx->pair != NULL) || (ctly->pair != NULL)) {
563 dev_err(ctl_mgr->dev->dev, "CTLs already paired\n");
564 return -EINVAL;
565 } else if (!(ctlx->status & ctly->status & CTL_STAT_BOOKED)) {
566 dev_err(ctl_mgr->dev->dev, "Only pair booked CTLs\n");
567 return -EINVAL;
568 }
569
570 ctlx->pair = ctly;
571 ctly->pair = ctlx;
572
573 mdp5_write(mdp5_kms, REG_MDP5_SPARE_0,
574 MDP5_SPARE_0_SPLIT_DPL_SINGLE_FLUSH_EN);
575
576 return 0;
577 }
578
579 /*
580 * mdp5_ctl_request() - CTL allocation
581 *
582 * Try to return booked CTL for @intf_num is 1 or 2, unbooked for other INTFs.
583 * If no CTL is available in preferred category, allocate from the other one.
584 *
585 * @return fail if no CTL is available.
586 */
mdp5_ctlm_request(struct mdp5_ctl_manager * ctl_mgr,int intf_num)587 struct mdp5_ctl *mdp5_ctlm_request(struct mdp5_ctl_manager *ctl_mgr,
588 int intf_num)
589 {
590 struct mdp5_ctl *ctl = NULL;
591 const u32 checkm = CTL_STAT_BUSY | CTL_STAT_BOOKED;
592 u32 match = ((intf_num == 1) || (intf_num == 2)) ? CTL_STAT_BOOKED : 0;
593 unsigned long flags;
594 int c;
595
596 spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
597
598 /* search the preferred */
599 for (c = 0; c < ctl_mgr->nctl; c++)
600 if ((ctl_mgr->ctls[c].status & checkm) == match)
601 goto found;
602
603 dev_warn(ctl_mgr->dev->dev,
604 "fall back to the other CTL category for INTF %d!\n", intf_num);
605
606 match ^= CTL_STAT_BOOKED;
607 for (c = 0; c < ctl_mgr->nctl; c++)
608 if ((ctl_mgr->ctls[c].status & checkm) == match)
609 goto found;
610
611 dev_err(ctl_mgr->dev->dev, "No more CTL available!");
612 goto unlock;
613
614 found:
615 ctl = &ctl_mgr->ctls[c];
616 ctl->pipeline.intf.num = intf_num;
617 ctl->lm = -1;
618 ctl->status |= CTL_STAT_BUSY;
619 ctl->pending_ctl_trigger = 0;
620 DBG("CTL %d allocated", ctl->id);
621
622 unlock:
623 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
624 return ctl;
625 }
626
mdp5_ctlm_hw_reset(struct mdp5_ctl_manager * ctl_mgr)627 void mdp5_ctlm_hw_reset(struct mdp5_ctl_manager *ctl_mgr)
628 {
629 unsigned long flags;
630 int c;
631
632 for (c = 0; c < ctl_mgr->nctl; c++) {
633 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
634
635 spin_lock_irqsave(&ctl->hw_lock, flags);
636 ctl_write(ctl, REG_MDP5_CTL_OP(ctl->id), 0);
637 spin_unlock_irqrestore(&ctl->hw_lock, flags);
638 }
639 }
640
mdp5_ctlm_destroy(struct mdp5_ctl_manager * ctl_mgr)641 void mdp5_ctlm_destroy(struct mdp5_ctl_manager *ctl_mgr)
642 {
643 kfree(ctl_mgr);
644 }
645
mdp5_ctlm_init(struct drm_device * dev,void __iomem * mmio_base,struct mdp5_cfg_handler * cfg_hnd)646 struct mdp5_ctl_manager *mdp5_ctlm_init(struct drm_device *dev,
647 void __iomem *mmio_base, struct mdp5_cfg_handler *cfg_hnd)
648 {
649 struct mdp5_ctl_manager *ctl_mgr;
650 const struct mdp5_cfg_hw *hw_cfg = mdp5_cfg_get_hw_config(cfg_hnd);
651 int rev = mdp5_cfg_get_hw_rev(cfg_hnd);
652 const struct mdp5_ctl_block *ctl_cfg = &hw_cfg->ctl;
653 unsigned long flags;
654 int c, ret;
655
656 ctl_mgr = kzalloc(sizeof(*ctl_mgr), GFP_KERNEL);
657 if (!ctl_mgr) {
658 dev_err(dev->dev, "failed to allocate CTL manager\n");
659 ret = -ENOMEM;
660 goto fail;
661 }
662
663 if (unlikely(WARN_ON(ctl_cfg->count > MAX_CTL))) {
664 dev_err(dev->dev, "Increase static pool size to at least %d\n",
665 ctl_cfg->count);
666 ret = -ENOSPC;
667 goto fail;
668 }
669
670 /* initialize the CTL manager: */
671 ctl_mgr->dev = dev;
672 ctl_mgr->nlm = hw_cfg->lm.count;
673 ctl_mgr->nctl = ctl_cfg->count;
674 ctl_mgr->flush_hw_mask = ctl_cfg->flush_hw_mask;
675 spin_lock_init(&ctl_mgr->pool_lock);
676
677 /* initialize each CTL of the pool: */
678 spin_lock_irqsave(&ctl_mgr->pool_lock, flags);
679 for (c = 0; c < ctl_mgr->nctl; c++) {
680 struct mdp5_ctl *ctl = &ctl_mgr->ctls[c];
681
682 if (WARN_ON(!ctl_cfg->base[c])) {
683 dev_err(dev->dev, "CTL_%d: base is null!\n", c);
684 ret = -EINVAL;
685 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
686 goto fail;
687 }
688 ctl->ctlm = ctl_mgr;
689 ctl->id = c;
690 ctl->reg_offset = ctl_cfg->base[c];
691 ctl->status = 0;
692 spin_lock_init(&ctl->hw_lock);
693 }
694
695 /*
696 * In Dual DSI case, CTL0 and CTL1 are always assigned to two DSI
697 * interfaces to support single FLUSH feature (Flush CTL0 and CTL1 when
698 * only write into CTL0's FLUSH register) to keep two DSI pipes in sync.
699 * Single FLUSH is supported from hw rev v3.0.
700 */
701 if (rev >= 3) {
702 ctl_mgr->single_flush_supported = true;
703 /* Reserve CTL0/1 for INTF1/2 */
704 ctl_mgr->ctls[0].status |= CTL_STAT_BOOKED;
705 ctl_mgr->ctls[1].status |= CTL_STAT_BOOKED;
706 }
707 spin_unlock_irqrestore(&ctl_mgr->pool_lock, flags);
708 DBG("Pool of %d CTLs created.", ctl_mgr->nctl);
709
710 return ctl_mgr;
711
712 fail:
713 if (ctl_mgr)
714 mdp5_ctlm_destroy(ctl_mgr);
715
716 return ERR_PTR(ret);
717 }
718