1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100
101 #include "internal.h"
102
103 /* Internal flags */
104 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
105 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
106
107 static struct kmem_cache *policy_cache;
108 static struct kmem_cache *sn_cache;
109
110 /* Highest zone. An specific allocation for a zone below that is not
111 policied. */
112 enum zone_type policy_zone = 0;
113
114 /*
115 * run-time system-wide default policy => local allocation
116 */
117 static struct mempolicy default_policy = {
118 .refcnt = ATOMIC_INIT(1), /* never free it */
119 .mode = MPOL_PREFERRED,
120 .flags = MPOL_F_LOCAL,
121 };
122
123 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
124
get_task_policy(struct task_struct * p)125 struct mempolicy *get_task_policy(struct task_struct *p)
126 {
127 struct mempolicy *pol = p->mempolicy;
128 int node;
129
130 if (pol)
131 return pol;
132
133 node = numa_node_id();
134 if (node != NUMA_NO_NODE) {
135 pol = &preferred_node_policy[node];
136 /* preferred_node_policy is not initialised early in boot */
137 if (pol->mode)
138 return pol;
139 }
140
141 return &default_policy;
142 }
143
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
mpol_store_user_nodemask(const struct mempolicy * pol)164 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
165 {
166 return pol->flags & MPOL_MODE_FLAGS;
167 }
168
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)169 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
170 const nodemask_t *rel)
171 {
172 nodemask_t tmp;
173 nodes_fold(tmp, *orig, nodes_weight(*rel));
174 nodes_onto(*ret, tmp, *rel);
175 }
176
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)177 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
178 {
179 if (nodes_empty(*nodes))
180 return -EINVAL;
181 pol->v.nodes = *nodes;
182 return 0;
183 }
184
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)185 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
186 {
187 if (!nodes)
188 pol->flags |= MPOL_F_LOCAL; /* local allocation */
189 else if (nodes_empty(*nodes))
190 return -EINVAL; /* no allowed nodes */
191 else
192 pol->v.preferred_node = first_node(*nodes);
193 return 0;
194 }
195
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)196 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
197 {
198 if (nodes_empty(*nodes))
199 return -EINVAL;
200 pol->v.nodes = *nodes;
201 return 0;
202 }
203
204 /*
205 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
206 * any, for the new policy. mpol_new() has already validated the nodes
207 * parameter with respect to the policy mode and flags. But, we need to
208 * handle an empty nodemask with MPOL_PREFERRED here.
209 *
210 * Must be called holding task's alloc_lock to protect task's mems_allowed
211 * and mempolicy. May also be called holding the mmap_semaphore for write.
212 */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)213 static int mpol_set_nodemask(struct mempolicy *pol,
214 const nodemask_t *nodes, struct nodemask_scratch *nsc)
215 {
216 int ret;
217
218 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
219 if (pol == NULL)
220 return 0;
221 /* Check N_MEMORY */
222 nodes_and(nsc->mask1,
223 cpuset_current_mems_allowed, node_states[N_MEMORY]);
224
225 VM_BUG_ON(!nodes);
226 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
227 nodes = NULL; /* explicit local allocation */
228 else {
229 if (pol->flags & MPOL_F_RELATIVE_NODES)
230 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
231 else
232 nodes_and(nsc->mask2, *nodes, nsc->mask1);
233
234 if (mpol_store_user_nodemask(pol))
235 pol->w.user_nodemask = *nodes;
236 else
237 pol->w.cpuset_mems_allowed =
238 cpuset_current_mems_allowed;
239 }
240
241 if (nodes)
242 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
243 else
244 ret = mpol_ops[pol->mode].create(pol, NULL);
245 return ret;
246 }
247
248 /*
249 * This function just creates a new policy, does some check and simple
250 * initialization. You must invoke mpol_set_nodemask() to set nodes.
251 */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)252 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
253 nodemask_t *nodes)
254 {
255 struct mempolicy *policy;
256
257 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
258 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
259
260 if (mode == MPOL_DEFAULT) {
261 if (nodes && !nodes_empty(*nodes))
262 return ERR_PTR(-EINVAL);
263 return NULL;
264 }
265 VM_BUG_ON(!nodes);
266
267 /*
268 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
269 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
270 * All other modes require a valid pointer to a non-empty nodemask.
271 */
272 if (mode == MPOL_PREFERRED) {
273 if (nodes_empty(*nodes)) {
274 if (((flags & MPOL_F_STATIC_NODES) ||
275 (flags & MPOL_F_RELATIVE_NODES)))
276 return ERR_PTR(-EINVAL);
277 }
278 } else if (mode == MPOL_LOCAL) {
279 if (!nodes_empty(*nodes))
280 return ERR_PTR(-EINVAL);
281 mode = MPOL_PREFERRED;
282 } else if (nodes_empty(*nodes))
283 return ERR_PTR(-EINVAL);
284 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
285 if (!policy)
286 return ERR_PTR(-ENOMEM);
287 atomic_set(&policy->refcnt, 1);
288 policy->mode = mode;
289 policy->flags = flags;
290
291 return policy;
292 }
293
294 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)295 void __mpol_put(struct mempolicy *p)
296 {
297 if (!atomic_dec_and_test(&p->refcnt))
298 return;
299 kmem_cache_free(policy_cache, p);
300 }
301
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)302 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
303 enum mpol_rebind_step step)
304 {
305 }
306
307 /*
308 * step:
309 * MPOL_REBIND_ONCE - do rebind work at once
310 * MPOL_REBIND_STEP1 - set all the newly nodes
311 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
312 */
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)313 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
314 enum mpol_rebind_step step)
315 {
316 nodemask_t tmp;
317
318 if (pol->flags & MPOL_F_STATIC_NODES)
319 nodes_and(tmp, pol->w.user_nodemask, *nodes);
320 else if (pol->flags & MPOL_F_RELATIVE_NODES)
321 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
322 else {
323 /*
324 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
325 * result
326 */
327 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
328 nodes_remap(tmp, pol->v.nodes,
329 pol->w.cpuset_mems_allowed, *nodes);
330 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
331 } else if (step == MPOL_REBIND_STEP2) {
332 tmp = pol->w.cpuset_mems_allowed;
333 pol->w.cpuset_mems_allowed = *nodes;
334 } else
335 BUG();
336 }
337
338 if (nodes_empty(tmp))
339 tmp = *nodes;
340
341 if (step == MPOL_REBIND_STEP1)
342 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
343 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
344 pol->v.nodes = tmp;
345 else
346 BUG();
347
348 if (!node_isset(current->il_next, tmp)) {
349 current->il_next = next_node_in(current->il_next, tmp);
350 if (current->il_next >= MAX_NUMNODES)
351 current->il_next = numa_node_id();
352 }
353 }
354
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes,enum mpol_rebind_step step)355 static void mpol_rebind_preferred(struct mempolicy *pol,
356 const nodemask_t *nodes,
357 enum mpol_rebind_step step)
358 {
359 nodemask_t tmp;
360
361 if (pol->flags & MPOL_F_STATIC_NODES) {
362 int node = first_node(pol->w.user_nodemask);
363
364 if (node_isset(node, *nodes)) {
365 pol->v.preferred_node = node;
366 pol->flags &= ~MPOL_F_LOCAL;
367 } else
368 pol->flags |= MPOL_F_LOCAL;
369 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
370 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
371 pol->v.preferred_node = first_node(tmp);
372 } else if (!(pol->flags & MPOL_F_LOCAL)) {
373 pol->v.preferred_node = node_remap(pol->v.preferred_node,
374 pol->w.cpuset_mems_allowed,
375 *nodes);
376 pol->w.cpuset_mems_allowed = *nodes;
377 }
378 }
379
380 /*
381 * mpol_rebind_policy - Migrate a policy to a different set of nodes
382 *
383 * If read-side task has no lock to protect task->mempolicy, write-side
384 * task will rebind the task->mempolicy by two step. The first step is
385 * setting all the newly nodes, and the second step is cleaning all the
386 * disallowed nodes. In this way, we can avoid finding no node to alloc
387 * page.
388 * If we have a lock to protect task->mempolicy in read-side, we do
389 * rebind directly.
390 *
391 * step:
392 * MPOL_REBIND_ONCE - do rebind work at once
393 * MPOL_REBIND_STEP1 - set all the newly nodes
394 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
395 */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask,enum mpol_rebind_step step)396 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
397 enum mpol_rebind_step step)
398 {
399 if (!pol)
400 return;
401 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
402 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
403 return;
404
405 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
406 return;
407
408 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
409 BUG();
410
411 if (step == MPOL_REBIND_STEP1)
412 pol->flags |= MPOL_F_REBINDING;
413 else if (step == MPOL_REBIND_STEP2)
414 pol->flags &= ~MPOL_F_REBINDING;
415 else if (step >= MPOL_REBIND_NSTEP)
416 BUG();
417
418 mpol_ops[pol->mode].rebind(pol, newmask, step);
419 }
420
421 /*
422 * Wrapper for mpol_rebind_policy() that just requires task
423 * pointer, and updates task mempolicy.
424 *
425 * Called with task's alloc_lock held.
426 */
427
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new,enum mpol_rebind_step step)428 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
429 enum mpol_rebind_step step)
430 {
431 mpol_rebind_policy(tsk->mempolicy, new, step);
432 }
433
434 /*
435 * Rebind each vma in mm to new nodemask.
436 *
437 * Call holding a reference to mm. Takes mm->mmap_sem during call.
438 */
439
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)440 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
441 {
442 struct vm_area_struct *vma;
443
444 down_write(&mm->mmap_sem);
445 for (vma = mm->mmap; vma; vma = vma->vm_next)
446 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
447 up_write(&mm->mmap_sem);
448 }
449
450 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
451 [MPOL_DEFAULT] = {
452 .rebind = mpol_rebind_default,
453 },
454 [MPOL_INTERLEAVE] = {
455 .create = mpol_new_interleave,
456 .rebind = mpol_rebind_nodemask,
457 },
458 [MPOL_PREFERRED] = {
459 .create = mpol_new_preferred,
460 .rebind = mpol_rebind_preferred,
461 },
462 [MPOL_BIND] = {
463 .create = mpol_new_bind,
464 .rebind = mpol_rebind_nodemask,
465 },
466 };
467
468 static void migrate_page_add(struct page *page, struct list_head *pagelist,
469 unsigned long flags);
470
471 struct queue_pages {
472 struct list_head *pagelist;
473 unsigned long flags;
474 nodemask_t *nmask;
475 struct vm_area_struct *prev;
476 };
477
478 /*
479 * Scan through pages checking if pages follow certain conditions,
480 * and move them to the pagelist if they do.
481 */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)482 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
483 unsigned long end, struct mm_walk *walk)
484 {
485 struct vm_area_struct *vma = walk->vma;
486 struct page *page;
487 struct queue_pages *qp = walk->private;
488 unsigned long flags = qp->flags;
489 int nid, ret;
490 pte_t *pte;
491 spinlock_t *ptl;
492
493 if (pmd_trans_huge(*pmd)) {
494 ptl = pmd_lock(walk->mm, pmd);
495 if (pmd_trans_huge(*pmd)) {
496 page = pmd_page(*pmd);
497 if (is_huge_zero_page(page)) {
498 spin_unlock(ptl);
499 split_huge_pmd(vma, pmd, addr);
500 } else {
501 get_page(page);
502 spin_unlock(ptl);
503 lock_page(page);
504 ret = split_huge_page(page);
505 unlock_page(page);
506 put_page(page);
507 if (ret)
508 return 0;
509 }
510 } else {
511 spin_unlock(ptl);
512 }
513 }
514
515 if (pmd_trans_unstable(pmd))
516 return 0;
517 retry:
518 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
519 for (; addr != end; pte++, addr += PAGE_SIZE) {
520 if (!pte_present(*pte))
521 continue;
522 page = vm_normal_page(vma, addr, *pte);
523 if (!page)
524 continue;
525 /*
526 * vm_normal_page() filters out zero pages, but there might
527 * still be PageReserved pages to skip, perhaps in a VDSO.
528 */
529 if (PageReserved(page))
530 continue;
531 nid = page_to_nid(page);
532 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
533 continue;
534 if (PageTransCompound(page)) {
535 get_page(page);
536 pte_unmap_unlock(pte, ptl);
537 lock_page(page);
538 ret = split_huge_page(page);
539 unlock_page(page);
540 put_page(page);
541 /* Failed to split -- skip. */
542 if (ret) {
543 pte = pte_offset_map_lock(walk->mm, pmd,
544 addr, &ptl);
545 continue;
546 }
547 goto retry;
548 }
549
550 migrate_page_add(page, qp->pagelist, flags);
551 }
552 pte_unmap_unlock(pte - 1, ptl);
553 cond_resched();
554 return 0;
555 }
556
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)557 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
558 unsigned long addr, unsigned long end,
559 struct mm_walk *walk)
560 {
561 #ifdef CONFIG_HUGETLB_PAGE
562 struct queue_pages *qp = walk->private;
563 unsigned long flags = qp->flags;
564 int nid;
565 struct page *page;
566 spinlock_t *ptl;
567 pte_t entry;
568
569 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
570 entry = huge_ptep_get(pte);
571 if (!pte_present(entry))
572 goto unlock;
573 page = pte_page(entry);
574 nid = page_to_nid(page);
575 if (node_isset(nid, *qp->nmask) == !!(flags & MPOL_MF_INVERT))
576 goto unlock;
577 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
578 if (flags & (MPOL_MF_MOVE_ALL) ||
579 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
580 isolate_huge_page(page, qp->pagelist);
581 unlock:
582 spin_unlock(ptl);
583 #else
584 BUG();
585 #endif
586 return 0;
587 }
588
589 #ifdef CONFIG_NUMA_BALANCING
590 /*
591 * This is used to mark a range of virtual addresses to be inaccessible.
592 * These are later cleared by a NUMA hinting fault. Depending on these
593 * faults, pages may be migrated for better NUMA placement.
594 *
595 * This is assuming that NUMA faults are handled using PROT_NONE. If
596 * an architecture makes a different choice, it will need further
597 * changes to the core.
598 */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)599 unsigned long change_prot_numa(struct vm_area_struct *vma,
600 unsigned long addr, unsigned long end)
601 {
602 int nr_updated;
603
604 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
605 if (nr_updated)
606 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
607
608 return nr_updated;
609 }
610 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)611 static unsigned long change_prot_numa(struct vm_area_struct *vma,
612 unsigned long addr, unsigned long end)
613 {
614 return 0;
615 }
616 #endif /* CONFIG_NUMA_BALANCING */
617
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)618 static int queue_pages_test_walk(unsigned long start, unsigned long end,
619 struct mm_walk *walk)
620 {
621 struct vm_area_struct *vma = walk->vma;
622 struct queue_pages *qp = walk->private;
623 unsigned long endvma = vma->vm_end;
624 unsigned long flags = qp->flags;
625
626 if (!vma_migratable(vma))
627 return 1;
628
629 if (endvma > end)
630 endvma = end;
631 if (vma->vm_start > start)
632 start = vma->vm_start;
633
634 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
635 if (!vma->vm_next && vma->vm_end < end)
636 return -EFAULT;
637 if (qp->prev && qp->prev->vm_end < vma->vm_start)
638 return -EFAULT;
639 }
640
641 qp->prev = vma;
642
643 if (flags & MPOL_MF_LAZY) {
644 /* Similar to task_numa_work, skip inaccessible VMAs */
645 if (!is_vm_hugetlb_page(vma) &&
646 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
647 !(vma->vm_flags & VM_MIXEDMAP))
648 change_prot_numa(vma, start, endvma);
649 return 1;
650 }
651
652 /* queue pages from current vma */
653 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
654 return 0;
655 return 1;
656 }
657
658 /*
659 * Walk through page tables and collect pages to be migrated.
660 *
661 * If pages found in a given range are on a set of nodes (determined by
662 * @nodes and @flags,) it's isolated and queued to the pagelist which is
663 * passed via @private.)
664 */
665 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)666 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
667 nodemask_t *nodes, unsigned long flags,
668 struct list_head *pagelist)
669 {
670 struct queue_pages qp = {
671 .pagelist = pagelist,
672 .flags = flags,
673 .nmask = nodes,
674 .prev = NULL,
675 };
676 struct mm_walk queue_pages_walk = {
677 .hugetlb_entry = queue_pages_hugetlb,
678 .pmd_entry = queue_pages_pte_range,
679 .test_walk = queue_pages_test_walk,
680 .mm = mm,
681 .private = &qp,
682 };
683
684 return walk_page_range(start, end, &queue_pages_walk);
685 }
686
687 /*
688 * Apply policy to a single VMA
689 * This must be called with the mmap_sem held for writing.
690 */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)691 static int vma_replace_policy(struct vm_area_struct *vma,
692 struct mempolicy *pol)
693 {
694 int err;
695 struct mempolicy *old;
696 struct mempolicy *new;
697
698 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
699 vma->vm_start, vma->vm_end, vma->vm_pgoff,
700 vma->vm_ops, vma->vm_file,
701 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
702
703 new = mpol_dup(pol);
704 if (IS_ERR(new))
705 return PTR_ERR(new);
706
707 if (vma->vm_ops && vma->vm_ops->set_policy) {
708 err = vma->vm_ops->set_policy(vma, new);
709 if (err)
710 goto err_out;
711 }
712
713 old = vma->vm_policy;
714 vma->vm_policy = new; /* protected by mmap_sem */
715 mpol_put(old);
716
717 return 0;
718 err_out:
719 mpol_put(new);
720 return err;
721 }
722
723 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)724 static int mbind_range(struct mm_struct *mm, unsigned long start,
725 unsigned long end, struct mempolicy *new_pol)
726 {
727 struct vm_area_struct *next;
728 struct vm_area_struct *prev;
729 struct vm_area_struct *vma;
730 int err = 0;
731 pgoff_t pgoff;
732 unsigned long vmstart;
733 unsigned long vmend;
734
735 vma = find_vma(mm, start);
736 if (!vma || vma->vm_start > start)
737 return -EFAULT;
738
739 prev = vma->vm_prev;
740 if (start > vma->vm_start)
741 prev = vma;
742
743 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
744 next = vma->vm_next;
745 vmstart = max(start, vma->vm_start);
746 vmend = min(end, vma->vm_end);
747
748 if (mpol_equal(vma_policy(vma), new_pol))
749 continue;
750
751 pgoff = vma->vm_pgoff +
752 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
753 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
754 vma->anon_vma, vma->vm_file, pgoff,
755 new_pol, vma->vm_userfaultfd_ctx,
756 vma_get_anon_name(vma));
757 if (prev) {
758 vma = prev;
759 next = vma->vm_next;
760 if (mpol_equal(vma_policy(vma), new_pol))
761 continue;
762 /* vma_merge() joined vma && vma->next, case 8 */
763 goto replace;
764 }
765 if (vma->vm_start != vmstart) {
766 err = split_vma(vma->vm_mm, vma, vmstart, 1);
767 if (err)
768 goto out;
769 }
770 if (vma->vm_end != vmend) {
771 err = split_vma(vma->vm_mm, vma, vmend, 0);
772 if (err)
773 goto out;
774 }
775 replace:
776 err = vma_replace_policy(vma, new_pol);
777 if (err)
778 goto out;
779 }
780
781 out:
782 return err;
783 }
784
785 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)786 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
787 nodemask_t *nodes)
788 {
789 struct mempolicy *new, *old;
790 NODEMASK_SCRATCH(scratch);
791 int ret;
792
793 if (!scratch)
794 return -ENOMEM;
795
796 new = mpol_new(mode, flags, nodes);
797 if (IS_ERR(new)) {
798 ret = PTR_ERR(new);
799 goto out;
800 }
801
802 task_lock(current);
803 ret = mpol_set_nodemask(new, nodes, scratch);
804 if (ret) {
805 task_unlock(current);
806 mpol_put(new);
807 goto out;
808 }
809 old = current->mempolicy;
810 current->mempolicy = new;
811 if (new && new->mode == MPOL_INTERLEAVE &&
812 nodes_weight(new->v.nodes))
813 current->il_next = first_node(new->v.nodes);
814 task_unlock(current);
815 mpol_put(old);
816 ret = 0;
817 out:
818 NODEMASK_SCRATCH_FREE(scratch);
819 return ret;
820 }
821
822 /*
823 * Return nodemask for policy for get_mempolicy() query
824 *
825 * Called with task's alloc_lock held
826 */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)827 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
828 {
829 nodes_clear(*nodes);
830 if (p == &default_policy)
831 return;
832
833 switch (p->mode) {
834 case MPOL_BIND:
835 /* Fall through */
836 case MPOL_INTERLEAVE:
837 *nodes = p->v.nodes;
838 break;
839 case MPOL_PREFERRED:
840 if (!(p->flags & MPOL_F_LOCAL))
841 node_set(p->v.preferred_node, *nodes);
842 /* else return empty node mask for local allocation */
843 break;
844 default:
845 BUG();
846 }
847 }
848
lookup_node(unsigned long addr)849 static int lookup_node(unsigned long addr)
850 {
851 struct page *p;
852 int err;
853
854 err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
855 if (err >= 0) {
856 err = page_to_nid(p);
857 put_page(p);
858 }
859 return err;
860 }
861
862 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)863 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
864 unsigned long addr, unsigned long flags)
865 {
866 int err;
867 struct mm_struct *mm = current->mm;
868 struct vm_area_struct *vma = NULL;
869 struct mempolicy *pol = current->mempolicy;
870
871 if (flags &
872 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
873 return -EINVAL;
874
875 if (flags & MPOL_F_MEMS_ALLOWED) {
876 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
877 return -EINVAL;
878 *policy = 0; /* just so it's initialized */
879 task_lock(current);
880 *nmask = cpuset_current_mems_allowed;
881 task_unlock(current);
882 return 0;
883 }
884
885 if (flags & MPOL_F_ADDR) {
886 /*
887 * Do NOT fall back to task policy if the
888 * vma/shared policy at addr is NULL. We
889 * want to return MPOL_DEFAULT in this case.
890 */
891 down_read(&mm->mmap_sem);
892 vma = find_vma_intersection(mm, addr, addr+1);
893 if (!vma) {
894 up_read(&mm->mmap_sem);
895 return -EFAULT;
896 }
897 if (vma->vm_ops && vma->vm_ops->get_policy)
898 pol = vma->vm_ops->get_policy(vma, addr);
899 else
900 pol = vma->vm_policy;
901 } else if (addr)
902 return -EINVAL;
903
904 if (!pol)
905 pol = &default_policy; /* indicates default behavior */
906
907 if (flags & MPOL_F_NODE) {
908 if (flags & MPOL_F_ADDR) {
909 err = lookup_node(addr);
910 if (err < 0)
911 goto out;
912 *policy = err;
913 } else if (pol == current->mempolicy &&
914 pol->mode == MPOL_INTERLEAVE) {
915 *policy = current->il_next;
916 } else {
917 err = -EINVAL;
918 goto out;
919 }
920 } else {
921 *policy = pol == &default_policy ? MPOL_DEFAULT :
922 pol->mode;
923 /*
924 * Internal mempolicy flags must be masked off before exposing
925 * the policy to userspace.
926 */
927 *policy |= (pol->flags & MPOL_MODE_FLAGS);
928 }
929
930 err = 0;
931 if (nmask) {
932 if (mpol_store_user_nodemask(pol)) {
933 *nmask = pol->w.user_nodemask;
934 } else {
935 task_lock(current);
936 get_policy_nodemask(pol, nmask);
937 task_unlock(current);
938 }
939 }
940
941 out:
942 mpol_cond_put(pol);
943 if (vma)
944 up_read(¤t->mm->mmap_sem);
945 return err;
946 }
947
948 #ifdef CONFIG_MIGRATION
949 /*
950 * page migration
951 */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)952 static void migrate_page_add(struct page *page, struct list_head *pagelist,
953 unsigned long flags)
954 {
955 /*
956 * Avoid migrating a page that is shared with others.
957 */
958 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
959 if (!isolate_lru_page(page)) {
960 list_add_tail(&page->lru, pagelist);
961 inc_node_page_state(page, NR_ISOLATED_ANON +
962 page_is_file_cache(page));
963 }
964 }
965 }
966
new_node_page(struct page * page,unsigned long node,int ** x)967 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
968 {
969 if (PageHuge(page))
970 return alloc_huge_page_node(page_hstate(compound_head(page)),
971 node);
972 else
973 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
974 __GFP_THISNODE, 0);
975 }
976
977 /*
978 * Migrate pages from one node to a target node.
979 * Returns error or the number of pages not migrated.
980 */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)981 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
982 int flags)
983 {
984 nodemask_t nmask;
985 LIST_HEAD(pagelist);
986 int err = 0;
987
988 nodes_clear(nmask);
989 node_set(source, nmask);
990
991 /*
992 * This does not "check" the range but isolates all pages that
993 * need migration. Between passing in the full user address
994 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
995 */
996 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
997 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
998 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
999
1000 if (!list_empty(&pagelist)) {
1001 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1002 MIGRATE_SYNC, MR_SYSCALL);
1003 if (err)
1004 putback_movable_pages(&pagelist);
1005 }
1006
1007 return err;
1008 }
1009
1010 /*
1011 * Move pages between the two nodesets so as to preserve the physical
1012 * layout as much as possible.
1013 *
1014 * Returns the number of page that could not be moved.
1015 */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1016 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1017 const nodemask_t *to, int flags)
1018 {
1019 int busy = 0;
1020 int err;
1021 nodemask_t tmp;
1022
1023 err = migrate_prep();
1024 if (err)
1025 return err;
1026
1027 down_read(&mm->mmap_sem);
1028
1029 /*
1030 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1031 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1032 * bit in 'tmp', and return that <source, dest> pair for migration.
1033 * The pair of nodemasks 'to' and 'from' define the map.
1034 *
1035 * If no pair of bits is found that way, fallback to picking some
1036 * pair of 'source' and 'dest' bits that are not the same. If the
1037 * 'source' and 'dest' bits are the same, this represents a node
1038 * that will be migrating to itself, so no pages need move.
1039 *
1040 * If no bits are left in 'tmp', or if all remaining bits left
1041 * in 'tmp' correspond to the same bit in 'to', return false
1042 * (nothing left to migrate).
1043 *
1044 * This lets us pick a pair of nodes to migrate between, such that
1045 * if possible the dest node is not already occupied by some other
1046 * source node, minimizing the risk of overloading the memory on a
1047 * node that would happen if we migrated incoming memory to a node
1048 * before migrating outgoing memory source that same node.
1049 *
1050 * A single scan of tmp is sufficient. As we go, we remember the
1051 * most recent <s, d> pair that moved (s != d). If we find a pair
1052 * that not only moved, but what's better, moved to an empty slot
1053 * (d is not set in tmp), then we break out then, with that pair.
1054 * Otherwise when we finish scanning from_tmp, we at least have the
1055 * most recent <s, d> pair that moved. If we get all the way through
1056 * the scan of tmp without finding any node that moved, much less
1057 * moved to an empty node, then there is nothing left worth migrating.
1058 */
1059
1060 tmp = *from;
1061 while (!nodes_empty(tmp)) {
1062 int s,d;
1063 int source = NUMA_NO_NODE;
1064 int dest = 0;
1065
1066 for_each_node_mask(s, tmp) {
1067
1068 /*
1069 * do_migrate_pages() tries to maintain the relative
1070 * node relationship of the pages established between
1071 * threads and memory areas.
1072 *
1073 * However if the number of source nodes is not equal to
1074 * the number of destination nodes we can not preserve
1075 * this node relative relationship. In that case, skip
1076 * copying memory from a node that is in the destination
1077 * mask.
1078 *
1079 * Example: [2,3,4] -> [3,4,5] moves everything.
1080 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1081 */
1082
1083 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1084 (node_isset(s, *to)))
1085 continue;
1086
1087 d = node_remap(s, *from, *to);
1088 if (s == d)
1089 continue;
1090
1091 source = s; /* Node moved. Memorize */
1092 dest = d;
1093
1094 /* dest not in remaining from nodes? */
1095 if (!node_isset(dest, tmp))
1096 break;
1097 }
1098 if (source == NUMA_NO_NODE)
1099 break;
1100
1101 node_clear(source, tmp);
1102 err = migrate_to_node(mm, source, dest, flags);
1103 if (err > 0)
1104 busy += err;
1105 if (err < 0)
1106 break;
1107 }
1108 up_read(&mm->mmap_sem);
1109 if (err < 0)
1110 return err;
1111 return busy;
1112
1113 }
1114
1115 /*
1116 * Allocate a new page for page migration based on vma policy.
1117 * Start by assuming the page is mapped by the same vma as contains @start.
1118 * Search forward from there, if not. N.B., this assumes that the
1119 * list of pages handed to migrate_pages()--which is how we get here--
1120 * is in virtual address order.
1121 */
new_page(struct page * page,unsigned long start,int ** x)1122 static struct page *new_page(struct page *page, unsigned long start, int **x)
1123 {
1124 struct vm_area_struct *vma;
1125 unsigned long uninitialized_var(address);
1126
1127 vma = find_vma(current->mm, start);
1128 while (vma) {
1129 address = page_address_in_vma(page, vma);
1130 if (address != -EFAULT)
1131 break;
1132 vma = vma->vm_next;
1133 }
1134
1135 if (PageHuge(page)) {
1136 BUG_ON(!vma);
1137 return alloc_huge_page_noerr(vma, address, 1);
1138 }
1139 /*
1140 * if !vma, alloc_page_vma() will use task or system default policy
1141 */
1142 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1143 }
1144 #else
1145
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1146 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1147 unsigned long flags)
1148 {
1149 }
1150
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1151 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1152 const nodemask_t *to, int flags)
1153 {
1154 return -ENOSYS;
1155 }
1156
new_page(struct page * page,unsigned long start,int ** x)1157 static struct page *new_page(struct page *page, unsigned long start, int **x)
1158 {
1159 return NULL;
1160 }
1161 #endif
1162
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1163 static long do_mbind(unsigned long start, unsigned long len,
1164 unsigned short mode, unsigned short mode_flags,
1165 nodemask_t *nmask, unsigned long flags)
1166 {
1167 struct mm_struct *mm = current->mm;
1168 struct mempolicy *new;
1169 unsigned long end;
1170 int err;
1171 LIST_HEAD(pagelist);
1172
1173 if (flags & ~(unsigned long)MPOL_MF_VALID)
1174 return -EINVAL;
1175 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1176 return -EPERM;
1177
1178 if (start & ~PAGE_MASK)
1179 return -EINVAL;
1180
1181 if (mode == MPOL_DEFAULT)
1182 flags &= ~MPOL_MF_STRICT;
1183
1184 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1185 end = start + len;
1186
1187 if (end < start)
1188 return -EINVAL;
1189 if (end == start)
1190 return 0;
1191
1192 new = mpol_new(mode, mode_flags, nmask);
1193 if (IS_ERR(new))
1194 return PTR_ERR(new);
1195
1196 if (flags & MPOL_MF_LAZY)
1197 new->flags |= MPOL_F_MOF;
1198
1199 /*
1200 * If we are using the default policy then operation
1201 * on discontinuous address spaces is okay after all
1202 */
1203 if (!new)
1204 flags |= MPOL_MF_DISCONTIG_OK;
1205
1206 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1207 start, start + len, mode, mode_flags,
1208 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1209
1210 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1211
1212 err = migrate_prep();
1213 if (err)
1214 goto mpol_out;
1215 }
1216 {
1217 NODEMASK_SCRATCH(scratch);
1218 if (scratch) {
1219 down_write(&mm->mmap_sem);
1220 task_lock(current);
1221 err = mpol_set_nodemask(new, nmask, scratch);
1222 task_unlock(current);
1223 if (err)
1224 up_write(&mm->mmap_sem);
1225 } else
1226 err = -ENOMEM;
1227 NODEMASK_SCRATCH_FREE(scratch);
1228 }
1229 if (err)
1230 goto mpol_out;
1231
1232 err = queue_pages_range(mm, start, end, nmask,
1233 flags | MPOL_MF_INVERT, &pagelist);
1234 if (!err)
1235 err = mbind_range(mm, start, end, new);
1236
1237 if (!err) {
1238 int nr_failed = 0;
1239
1240 if (!list_empty(&pagelist)) {
1241 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1242 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1243 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1244 if (nr_failed)
1245 putback_movable_pages(&pagelist);
1246 }
1247
1248 if (nr_failed && (flags & MPOL_MF_STRICT))
1249 err = -EIO;
1250 } else
1251 putback_movable_pages(&pagelist);
1252
1253 up_write(&mm->mmap_sem);
1254 mpol_out:
1255 mpol_put(new);
1256 return err;
1257 }
1258
1259 /*
1260 * User space interface with variable sized bitmaps for nodelists.
1261 */
1262
1263 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1264 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1265 unsigned long maxnode)
1266 {
1267 unsigned long k;
1268 unsigned long nlongs;
1269 unsigned long endmask;
1270
1271 --maxnode;
1272 nodes_clear(*nodes);
1273 if (maxnode == 0 || !nmask)
1274 return 0;
1275 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1276 return -EINVAL;
1277
1278 nlongs = BITS_TO_LONGS(maxnode);
1279 if ((maxnode % BITS_PER_LONG) == 0)
1280 endmask = ~0UL;
1281 else
1282 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1283
1284 /* When the user specified more nodes than supported just check
1285 if the non supported part is all zero. */
1286 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1287 if (nlongs > PAGE_SIZE/sizeof(long))
1288 return -EINVAL;
1289 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1290 unsigned long t;
1291 if (get_user(t, nmask + k))
1292 return -EFAULT;
1293 if (k == nlongs - 1) {
1294 if (t & endmask)
1295 return -EINVAL;
1296 } else if (t)
1297 return -EINVAL;
1298 }
1299 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1300 endmask = ~0UL;
1301 }
1302
1303 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1304 return -EFAULT;
1305 nodes_addr(*nodes)[nlongs-1] &= endmask;
1306 return 0;
1307 }
1308
1309 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1310 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1311 nodemask_t *nodes)
1312 {
1313 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1314 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1315
1316 if (copy > nbytes) {
1317 if (copy > PAGE_SIZE)
1318 return -EINVAL;
1319 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1320 return -EFAULT;
1321 copy = nbytes;
1322 }
1323 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1324 }
1325
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned,flags)1326 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1327 unsigned long, mode, const unsigned long __user *, nmask,
1328 unsigned long, maxnode, unsigned, flags)
1329 {
1330 nodemask_t nodes;
1331 int err;
1332 unsigned short mode_flags;
1333
1334 mode_flags = mode & MPOL_MODE_FLAGS;
1335 mode &= ~MPOL_MODE_FLAGS;
1336 if (mode >= MPOL_MAX)
1337 return -EINVAL;
1338 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1339 (mode_flags & MPOL_F_RELATIVE_NODES))
1340 return -EINVAL;
1341 err = get_nodes(&nodes, nmask, maxnode);
1342 if (err)
1343 return err;
1344 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1345 }
1346
1347 /* Set the process memory policy */
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1348 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1349 unsigned long, maxnode)
1350 {
1351 int err;
1352 nodemask_t nodes;
1353 unsigned short flags;
1354
1355 flags = mode & MPOL_MODE_FLAGS;
1356 mode &= ~MPOL_MODE_FLAGS;
1357 if ((unsigned int)mode >= MPOL_MAX)
1358 return -EINVAL;
1359 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1360 return -EINVAL;
1361 err = get_nodes(&nodes, nmask, maxnode);
1362 if (err)
1363 return err;
1364 return do_set_mempolicy(mode, flags, &nodes);
1365 }
1366
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1367 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1368 const unsigned long __user *, old_nodes,
1369 const unsigned long __user *, new_nodes)
1370 {
1371 const struct cred *cred = current_cred(), *tcred;
1372 struct mm_struct *mm = NULL;
1373 struct task_struct *task;
1374 nodemask_t task_nodes;
1375 int err;
1376 nodemask_t *old;
1377 nodemask_t *new;
1378 NODEMASK_SCRATCH(scratch);
1379
1380 if (!scratch)
1381 return -ENOMEM;
1382
1383 old = &scratch->mask1;
1384 new = &scratch->mask2;
1385
1386 err = get_nodes(old, old_nodes, maxnode);
1387 if (err)
1388 goto out;
1389
1390 err = get_nodes(new, new_nodes, maxnode);
1391 if (err)
1392 goto out;
1393
1394 /* Find the mm_struct */
1395 rcu_read_lock();
1396 task = pid ? find_task_by_vpid(pid) : current;
1397 if (!task) {
1398 rcu_read_unlock();
1399 err = -ESRCH;
1400 goto out;
1401 }
1402 get_task_struct(task);
1403
1404 err = -EINVAL;
1405
1406 /*
1407 * Check if this process has the right to modify the specified
1408 * process. The right exists if the process has administrative
1409 * capabilities, superuser privileges or the same
1410 * userid as the target process.
1411 */
1412 tcred = __task_cred(task);
1413 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1414 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1415 !capable(CAP_SYS_NICE)) {
1416 rcu_read_unlock();
1417 err = -EPERM;
1418 goto out_put;
1419 }
1420 rcu_read_unlock();
1421
1422 task_nodes = cpuset_mems_allowed(task);
1423 /* Is the user allowed to access the target nodes? */
1424 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1425 err = -EPERM;
1426 goto out_put;
1427 }
1428
1429 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1430 err = -EINVAL;
1431 goto out_put;
1432 }
1433
1434 err = security_task_movememory(task);
1435 if (err)
1436 goto out_put;
1437
1438 mm = get_task_mm(task);
1439 put_task_struct(task);
1440
1441 if (!mm) {
1442 err = -EINVAL;
1443 goto out;
1444 }
1445
1446 err = do_migrate_pages(mm, old, new,
1447 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1448
1449 mmput(mm);
1450 out:
1451 NODEMASK_SCRATCH_FREE(scratch);
1452
1453 return err;
1454
1455 out_put:
1456 put_task_struct(task);
1457 goto out;
1458
1459 }
1460
1461
1462 /* Retrieve NUMA policy */
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1463 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1464 unsigned long __user *, nmask, unsigned long, maxnode,
1465 unsigned long, addr, unsigned long, flags)
1466 {
1467 int err;
1468 int uninitialized_var(pval);
1469 nodemask_t nodes;
1470
1471 if (nmask != NULL && maxnode < MAX_NUMNODES)
1472 return -EINVAL;
1473
1474 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1475
1476 if (err)
1477 return err;
1478
1479 if (policy && put_user(pval, policy))
1480 return -EFAULT;
1481
1482 if (nmask)
1483 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1484
1485 return err;
1486 }
1487
1488 #ifdef CONFIG_COMPAT
1489
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1490 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1491 compat_ulong_t __user *, nmask,
1492 compat_ulong_t, maxnode,
1493 compat_ulong_t, addr, compat_ulong_t, flags)
1494 {
1495 long err;
1496 unsigned long __user *nm = NULL;
1497 unsigned long nr_bits, alloc_size;
1498 DECLARE_BITMAP(bm, MAX_NUMNODES);
1499
1500 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1501 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1502
1503 if (nmask)
1504 nm = compat_alloc_user_space(alloc_size);
1505
1506 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1507
1508 if (!err && nmask) {
1509 unsigned long copy_size;
1510 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1511 err = copy_from_user(bm, nm, copy_size);
1512 /* ensure entire bitmap is zeroed */
1513 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1514 err |= compat_put_bitmap(nmask, bm, nr_bits);
1515 }
1516
1517 return err;
1518 }
1519
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1520 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1521 compat_ulong_t, maxnode)
1522 {
1523 unsigned long __user *nm = NULL;
1524 unsigned long nr_bits, alloc_size;
1525 DECLARE_BITMAP(bm, MAX_NUMNODES);
1526
1527 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1528 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1529
1530 if (nmask) {
1531 if (compat_get_bitmap(bm, nmask, nr_bits))
1532 return -EFAULT;
1533 nm = compat_alloc_user_space(alloc_size);
1534 if (copy_to_user(nm, bm, alloc_size))
1535 return -EFAULT;
1536 }
1537
1538 return sys_set_mempolicy(mode, nm, nr_bits+1);
1539 }
1540
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1541 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1542 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1543 compat_ulong_t, maxnode, compat_ulong_t, flags)
1544 {
1545 unsigned long __user *nm = NULL;
1546 unsigned long nr_bits, alloc_size;
1547 nodemask_t bm;
1548
1549 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1550 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1551
1552 if (nmask) {
1553 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1554 return -EFAULT;
1555 nm = compat_alloc_user_space(alloc_size);
1556 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1557 return -EFAULT;
1558 }
1559
1560 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1561 }
1562
1563 #endif
1564
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1565 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1566 unsigned long addr)
1567 {
1568 struct mempolicy *pol = NULL;
1569
1570 if (vma) {
1571 if (vma->vm_ops && vma->vm_ops->get_policy) {
1572 pol = vma->vm_ops->get_policy(vma, addr);
1573 } else if (vma->vm_policy) {
1574 pol = vma->vm_policy;
1575
1576 /*
1577 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1578 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1579 * count on these policies which will be dropped by
1580 * mpol_cond_put() later
1581 */
1582 if (mpol_needs_cond_ref(pol))
1583 mpol_get(pol);
1584 }
1585 }
1586
1587 return pol;
1588 }
1589
1590 /*
1591 * get_vma_policy(@vma, @addr)
1592 * @vma: virtual memory area whose policy is sought
1593 * @addr: address in @vma for shared policy lookup
1594 *
1595 * Returns effective policy for a VMA at specified address.
1596 * Falls back to current->mempolicy or system default policy, as necessary.
1597 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1598 * count--added by the get_policy() vm_op, as appropriate--to protect against
1599 * freeing by another task. It is the caller's responsibility to free the
1600 * extra reference for shared policies.
1601 */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1602 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1603 unsigned long addr)
1604 {
1605 struct mempolicy *pol = __get_vma_policy(vma, addr);
1606
1607 if (!pol)
1608 pol = get_task_policy(current);
1609
1610 return pol;
1611 }
1612
vma_policy_mof(struct vm_area_struct * vma)1613 bool vma_policy_mof(struct vm_area_struct *vma)
1614 {
1615 struct mempolicy *pol;
1616
1617 if (vma->vm_ops && vma->vm_ops->get_policy) {
1618 bool ret = false;
1619
1620 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1621 if (pol && (pol->flags & MPOL_F_MOF))
1622 ret = true;
1623 mpol_cond_put(pol);
1624
1625 return ret;
1626 }
1627
1628 pol = vma->vm_policy;
1629 if (!pol)
1630 pol = get_task_policy(current);
1631
1632 return pol->flags & MPOL_F_MOF;
1633 }
1634
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1635 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1636 {
1637 enum zone_type dynamic_policy_zone = policy_zone;
1638
1639 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1640
1641 /*
1642 * if policy->v.nodes has movable memory only,
1643 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1644 *
1645 * policy->v.nodes is intersect with node_states[N_MEMORY].
1646 * so if the following test faile, it implies
1647 * policy->v.nodes has movable memory only.
1648 */
1649 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1650 dynamic_policy_zone = ZONE_MOVABLE;
1651
1652 return zone >= dynamic_policy_zone;
1653 }
1654
1655 /*
1656 * Return a nodemask representing a mempolicy for filtering nodes for
1657 * page allocation
1658 */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1659 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1660 {
1661 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1662 if (unlikely(policy->mode == MPOL_BIND) &&
1663 apply_policy_zone(policy, gfp_zone(gfp)) &&
1664 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1665 return &policy->v.nodes;
1666
1667 return NULL;
1668 }
1669
1670 /* Return a zonelist indicated by gfp for node representing a mempolicy */
policy_zonelist(gfp_t gfp,struct mempolicy * policy,int nd)1671 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1672 int nd)
1673 {
1674 switch (policy->mode) {
1675 case MPOL_PREFERRED:
1676 if (!(policy->flags & MPOL_F_LOCAL))
1677 nd = policy->v.preferred_node;
1678 break;
1679 case MPOL_BIND:
1680 /*
1681 * Normally, MPOL_BIND allocations are node-local within the
1682 * allowed nodemask. However, if __GFP_THISNODE is set and the
1683 * current node isn't part of the mask, we use the zonelist for
1684 * the first node in the mask instead.
1685 */
1686 if (unlikely(gfp & __GFP_THISNODE) &&
1687 unlikely(!node_isset(nd, policy->v.nodes)))
1688 nd = first_node(policy->v.nodes);
1689 break;
1690 default:
1691 BUG();
1692 }
1693 return node_zonelist(nd, gfp);
1694 }
1695
1696 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1697 static unsigned interleave_nodes(struct mempolicy *policy)
1698 {
1699 unsigned nid, next;
1700 struct task_struct *me = current;
1701
1702 nid = me->il_next;
1703 next = next_node_in(nid, policy->v.nodes);
1704 if (next < MAX_NUMNODES)
1705 me->il_next = next;
1706 return nid;
1707 }
1708
1709 /*
1710 * Depending on the memory policy provide a node from which to allocate the
1711 * next slab entry.
1712 */
mempolicy_slab_node(void)1713 unsigned int mempolicy_slab_node(void)
1714 {
1715 struct mempolicy *policy;
1716 int node = numa_mem_id();
1717
1718 if (in_interrupt())
1719 return node;
1720
1721 policy = current->mempolicy;
1722 if (!policy || policy->flags & MPOL_F_LOCAL)
1723 return node;
1724
1725 switch (policy->mode) {
1726 case MPOL_PREFERRED:
1727 /*
1728 * handled MPOL_F_LOCAL above
1729 */
1730 return policy->v.preferred_node;
1731
1732 case MPOL_INTERLEAVE:
1733 return interleave_nodes(policy);
1734
1735 case MPOL_BIND: {
1736 struct zoneref *z;
1737
1738 /*
1739 * Follow bind policy behavior and start allocation at the
1740 * first node.
1741 */
1742 struct zonelist *zonelist;
1743 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1744 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1745 z = first_zones_zonelist(zonelist, highest_zoneidx,
1746 &policy->v.nodes);
1747 return z->zone ? z->zone->node : node;
1748 }
1749
1750 default:
1751 BUG();
1752 }
1753 }
1754
1755 /*
1756 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1757 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1758 * number of present nodes.
1759 */
offset_il_node(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long n)1760 static unsigned offset_il_node(struct mempolicy *pol,
1761 struct vm_area_struct *vma, unsigned long n)
1762 {
1763 unsigned nnodes = nodes_weight(pol->v.nodes);
1764 unsigned target;
1765 int i;
1766 int nid;
1767
1768 if (!nnodes)
1769 return numa_node_id();
1770 target = (unsigned int)n % nnodes;
1771 nid = first_node(pol->v.nodes);
1772 for (i = 0; i < target; i++)
1773 nid = next_node(nid, pol->v.nodes);
1774 return nid;
1775 }
1776
1777 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1778 static inline unsigned interleave_nid(struct mempolicy *pol,
1779 struct vm_area_struct *vma, unsigned long addr, int shift)
1780 {
1781 if (vma) {
1782 unsigned long off;
1783
1784 /*
1785 * for small pages, there is no difference between
1786 * shift and PAGE_SHIFT, so the bit-shift is safe.
1787 * for huge pages, since vm_pgoff is in units of small
1788 * pages, we need to shift off the always 0 bits to get
1789 * a useful offset.
1790 */
1791 BUG_ON(shift < PAGE_SHIFT);
1792 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1793 off += (addr - vma->vm_start) >> shift;
1794 return offset_il_node(pol, vma, off);
1795 } else
1796 return interleave_nodes(pol);
1797 }
1798
1799 #ifdef CONFIG_HUGETLBFS
1800 /*
1801 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1802 * @vma: virtual memory area whose policy is sought
1803 * @addr: address in @vma for shared policy lookup and interleave policy
1804 * @gfp_flags: for requested zone
1805 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1806 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1807 *
1808 * Returns a zonelist suitable for a huge page allocation and a pointer
1809 * to the struct mempolicy for conditional unref after allocation.
1810 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1811 * @nodemask for filtering the zonelist.
1812 *
1813 * Must be protected by read_mems_allowed_begin()
1814 */
huge_zonelist(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)1815 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1816 gfp_t gfp_flags, struct mempolicy **mpol,
1817 nodemask_t **nodemask)
1818 {
1819 struct zonelist *zl;
1820
1821 *mpol = get_vma_policy(vma, addr);
1822 *nodemask = NULL; /* assume !MPOL_BIND */
1823
1824 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1825 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1826 huge_page_shift(hstate_vma(vma))), gfp_flags);
1827 } else {
1828 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1829 if ((*mpol)->mode == MPOL_BIND)
1830 *nodemask = &(*mpol)->v.nodes;
1831 }
1832 return zl;
1833 }
1834
1835 /*
1836 * init_nodemask_of_mempolicy
1837 *
1838 * If the current task's mempolicy is "default" [NULL], return 'false'
1839 * to indicate default policy. Otherwise, extract the policy nodemask
1840 * for 'bind' or 'interleave' policy into the argument nodemask, or
1841 * initialize the argument nodemask to contain the single node for
1842 * 'preferred' or 'local' policy and return 'true' to indicate presence
1843 * of non-default mempolicy.
1844 *
1845 * We don't bother with reference counting the mempolicy [mpol_get/put]
1846 * because the current task is examining it's own mempolicy and a task's
1847 * mempolicy is only ever changed by the task itself.
1848 *
1849 * N.B., it is the caller's responsibility to free a returned nodemask.
1850 */
init_nodemask_of_mempolicy(nodemask_t * mask)1851 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1852 {
1853 struct mempolicy *mempolicy;
1854 int nid;
1855
1856 if (!(mask && current->mempolicy))
1857 return false;
1858
1859 task_lock(current);
1860 mempolicy = current->mempolicy;
1861 switch (mempolicy->mode) {
1862 case MPOL_PREFERRED:
1863 if (mempolicy->flags & MPOL_F_LOCAL)
1864 nid = numa_node_id();
1865 else
1866 nid = mempolicy->v.preferred_node;
1867 init_nodemask_of_node(mask, nid);
1868 break;
1869
1870 case MPOL_BIND:
1871 /* Fall through */
1872 case MPOL_INTERLEAVE:
1873 *mask = mempolicy->v.nodes;
1874 break;
1875
1876 default:
1877 BUG();
1878 }
1879 task_unlock(current);
1880
1881 return true;
1882 }
1883 #endif
1884
1885 /*
1886 * mempolicy_nodemask_intersects
1887 *
1888 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1889 * policy. Otherwise, check for intersection between mask and the policy
1890 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1891 * policy, always return true since it may allocate elsewhere on fallback.
1892 *
1893 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1894 */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)1895 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1896 const nodemask_t *mask)
1897 {
1898 struct mempolicy *mempolicy;
1899 bool ret = true;
1900
1901 if (!mask)
1902 return ret;
1903 task_lock(tsk);
1904 mempolicy = tsk->mempolicy;
1905 if (!mempolicy)
1906 goto out;
1907
1908 switch (mempolicy->mode) {
1909 case MPOL_PREFERRED:
1910 /*
1911 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1912 * allocate from, they may fallback to other nodes when oom.
1913 * Thus, it's possible for tsk to have allocated memory from
1914 * nodes in mask.
1915 */
1916 break;
1917 case MPOL_BIND:
1918 case MPOL_INTERLEAVE:
1919 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1920 break;
1921 default:
1922 BUG();
1923 }
1924 out:
1925 task_unlock(tsk);
1926 return ret;
1927 }
1928
1929 /* Allocate a page in interleaved policy.
1930 Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)1931 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1932 unsigned nid)
1933 {
1934 struct zonelist *zl;
1935 struct page *page;
1936
1937 zl = node_zonelist(nid, gfp);
1938 page = __alloc_pages(gfp, order, zl);
1939 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1940 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1941 return page;
1942 }
1943
1944 /**
1945 * alloc_pages_vma - Allocate a page for a VMA.
1946 *
1947 * @gfp:
1948 * %GFP_USER user allocation.
1949 * %GFP_KERNEL kernel allocations,
1950 * %GFP_HIGHMEM highmem/user allocations,
1951 * %GFP_FS allocation should not call back into a file system.
1952 * %GFP_ATOMIC don't sleep.
1953 *
1954 * @order:Order of the GFP allocation.
1955 * @vma: Pointer to VMA or NULL if not available.
1956 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1957 * @node: Which node to prefer for allocation (modulo policy).
1958 * @hugepage: for hugepages try only the preferred node if possible
1959 *
1960 * This function allocates a page from the kernel page pool and applies
1961 * a NUMA policy associated with the VMA or the current process.
1962 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1963 * mm_struct of the VMA to prevent it from going away. Should be used for
1964 * all allocations for pages that will be mapped into user space. Returns
1965 * NULL when no page can be allocated.
1966 */
1967 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)1968 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1969 unsigned long addr, int node, bool hugepage)
1970 {
1971 struct mempolicy *pol;
1972 struct page *page;
1973 unsigned int cpuset_mems_cookie;
1974 struct zonelist *zl;
1975 nodemask_t *nmask;
1976
1977 retry_cpuset:
1978 pol = get_vma_policy(vma, addr);
1979 cpuset_mems_cookie = read_mems_allowed_begin();
1980
1981 if (pol->mode == MPOL_INTERLEAVE) {
1982 unsigned nid;
1983
1984 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1985 mpol_cond_put(pol);
1986 page = alloc_page_interleave(gfp, order, nid);
1987 goto out;
1988 }
1989
1990 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
1991 int hpage_node = node;
1992
1993 /*
1994 * For hugepage allocation and non-interleave policy which
1995 * allows the current node (or other explicitly preferred
1996 * node) we only try to allocate from the current/preferred
1997 * node and don't fall back to other nodes, as the cost of
1998 * remote accesses would likely offset THP benefits.
1999 *
2000 * If the policy is interleave, or does not allow the current
2001 * node in its nodemask, we allocate the standard way.
2002 */
2003 if (pol->mode == MPOL_PREFERRED &&
2004 !(pol->flags & MPOL_F_LOCAL))
2005 hpage_node = pol->v.preferred_node;
2006
2007 nmask = policy_nodemask(gfp, pol);
2008 if (!nmask || node_isset(hpage_node, *nmask)) {
2009 mpol_cond_put(pol);
2010 page = __alloc_pages_node(hpage_node,
2011 gfp | __GFP_THISNODE, order);
2012 goto out;
2013 }
2014 }
2015
2016 nmask = policy_nodemask(gfp, pol);
2017 zl = policy_zonelist(gfp, pol, node);
2018 page = __alloc_pages_nodemask(gfp, order, zl, nmask);
2019 mpol_cond_put(pol);
2020 out:
2021 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2022 goto retry_cpuset;
2023 return page;
2024 }
2025
2026 /**
2027 * alloc_pages_current - Allocate pages.
2028 *
2029 * @gfp:
2030 * %GFP_USER user allocation,
2031 * %GFP_KERNEL kernel allocation,
2032 * %GFP_HIGHMEM highmem allocation,
2033 * %GFP_FS don't call back into a file system.
2034 * %GFP_ATOMIC don't sleep.
2035 * @order: Power of two of allocation size in pages. 0 is a single page.
2036 *
2037 * Allocate a page from the kernel page pool. When not in
2038 * interrupt context and apply the current process NUMA policy.
2039 * Returns NULL when no page can be allocated.
2040 *
2041 * Don't call cpuset_update_task_memory_state() unless
2042 * 1) it's ok to take cpuset_sem (can WAIT), and
2043 * 2) allocating for current task (not interrupt).
2044 */
alloc_pages_current(gfp_t gfp,unsigned order)2045 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2046 {
2047 struct mempolicy *pol = &default_policy;
2048 struct page *page;
2049 unsigned int cpuset_mems_cookie;
2050
2051 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2052 pol = get_task_policy(current);
2053
2054 retry_cpuset:
2055 cpuset_mems_cookie = read_mems_allowed_begin();
2056
2057 /*
2058 * No reference counting needed for current->mempolicy
2059 * nor system default_policy
2060 */
2061 if (pol->mode == MPOL_INTERLEAVE)
2062 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2063 else
2064 page = __alloc_pages_nodemask(gfp, order,
2065 policy_zonelist(gfp, pol, numa_node_id()),
2066 policy_nodemask(gfp, pol));
2067
2068 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2069 goto retry_cpuset;
2070
2071 return page;
2072 }
2073 EXPORT_SYMBOL(alloc_pages_current);
2074
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2075 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2076 {
2077 struct mempolicy *pol = mpol_dup(vma_policy(src));
2078
2079 if (IS_ERR(pol))
2080 return PTR_ERR(pol);
2081 dst->vm_policy = pol;
2082 return 0;
2083 }
2084
2085 /*
2086 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2087 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2088 * with the mems_allowed returned by cpuset_mems_allowed(). This
2089 * keeps mempolicies cpuset relative after its cpuset moves. See
2090 * further kernel/cpuset.c update_nodemask().
2091 *
2092 * current's mempolicy may be rebinded by the other task(the task that changes
2093 * cpuset's mems), so we needn't do rebind work for current task.
2094 */
2095
2096 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2097 struct mempolicy *__mpol_dup(struct mempolicy *old)
2098 {
2099 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2100
2101 if (!new)
2102 return ERR_PTR(-ENOMEM);
2103
2104 /* task's mempolicy is protected by alloc_lock */
2105 if (old == current->mempolicy) {
2106 task_lock(current);
2107 *new = *old;
2108 task_unlock(current);
2109 } else
2110 *new = *old;
2111
2112 if (current_cpuset_is_being_rebound()) {
2113 nodemask_t mems = cpuset_mems_allowed(current);
2114 if (new->flags & MPOL_F_REBINDING)
2115 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2116 else
2117 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2118 }
2119 atomic_set(&new->refcnt, 1);
2120 return new;
2121 }
2122
2123 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2124 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2125 {
2126 if (!a || !b)
2127 return false;
2128 if (a->mode != b->mode)
2129 return false;
2130 if (a->flags != b->flags)
2131 return false;
2132 if (mpol_store_user_nodemask(a))
2133 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2134 return false;
2135
2136 switch (a->mode) {
2137 case MPOL_BIND:
2138 /* Fall through */
2139 case MPOL_INTERLEAVE:
2140 return !!nodes_equal(a->v.nodes, b->v.nodes);
2141 case MPOL_PREFERRED:
2142 return a->v.preferred_node == b->v.preferred_node;
2143 default:
2144 BUG();
2145 return false;
2146 }
2147 }
2148
2149 /*
2150 * Shared memory backing store policy support.
2151 *
2152 * Remember policies even when nobody has shared memory mapped.
2153 * The policies are kept in Red-Black tree linked from the inode.
2154 * They are protected by the sp->lock rwlock, which should be held
2155 * for any accesses to the tree.
2156 */
2157
2158 /*
2159 * lookup first element intersecting start-end. Caller holds sp->lock for
2160 * reading or for writing
2161 */
2162 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2163 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2164 {
2165 struct rb_node *n = sp->root.rb_node;
2166
2167 while (n) {
2168 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2169
2170 if (start >= p->end)
2171 n = n->rb_right;
2172 else if (end <= p->start)
2173 n = n->rb_left;
2174 else
2175 break;
2176 }
2177 if (!n)
2178 return NULL;
2179 for (;;) {
2180 struct sp_node *w = NULL;
2181 struct rb_node *prev = rb_prev(n);
2182 if (!prev)
2183 break;
2184 w = rb_entry(prev, struct sp_node, nd);
2185 if (w->end <= start)
2186 break;
2187 n = prev;
2188 }
2189 return rb_entry(n, struct sp_node, nd);
2190 }
2191
2192 /*
2193 * Insert a new shared policy into the list. Caller holds sp->lock for
2194 * writing.
2195 */
sp_insert(struct shared_policy * sp,struct sp_node * new)2196 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2197 {
2198 struct rb_node **p = &sp->root.rb_node;
2199 struct rb_node *parent = NULL;
2200 struct sp_node *nd;
2201
2202 while (*p) {
2203 parent = *p;
2204 nd = rb_entry(parent, struct sp_node, nd);
2205 if (new->start < nd->start)
2206 p = &(*p)->rb_left;
2207 else if (new->end > nd->end)
2208 p = &(*p)->rb_right;
2209 else
2210 BUG();
2211 }
2212 rb_link_node(&new->nd, parent, p);
2213 rb_insert_color(&new->nd, &sp->root);
2214 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2215 new->policy ? new->policy->mode : 0);
2216 }
2217
2218 /* Find shared policy intersecting idx */
2219 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2220 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2221 {
2222 struct mempolicy *pol = NULL;
2223 struct sp_node *sn;
2224
2225 if (!sp->root.rb_node)
2226 return NULL;
2227 read_lock(&sp->lock);
2228 sn = sp_lookup(sp, idx, idx+1);
2229 if (sn) {
2230 mpol_get(sn->policy);
2231 pol = sn->policy;
2232 }
2233 read_unlock(&sp->lock);
2234 return pol;
2235 }
2236
sp_free(struct sp_node * n)2237 static void sp_free(struct sp_node *n)
2238 {
2239 mpol_put(n->policy);
2240 kmem_cache_free(sn_cache, n);
2241 }
2242
2243 /**
2244 * mpol_misplaced - check whether current page node is valid in policy
2245 *
2246 * @page: page to be checked
2247 * @vma: vm area where page mapped
2248 * @addr: virtual address where page mapped
2249 *
2250 * Lookup current policy node id for vma,addr and "compare to" page's
2251 * node id.
2252 *
2253 * Returns:
2254 * -1 - not misplaced, page is in the right node
2255 * node - node id where the page should be
2256 *
2257 * Policy determination "mimics" alloc_page_vma().
2258 * Called from fault path where we know the vma and faulting address.
2259 */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2260 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2261 {
2262 struct mempolicy *pol;
2263 struct zoneref *z;
2264 int curnid = page_to_nid(page);
2265 unsigned long pgoff;
2266 int thiscpu = raw_smp_processor_id();
2267 int thisnid = cpu_to_node(thiscpu);
2268 int polnid = -1;
2269 int ret = -1;
2270
2271 BUG_ON(!vma);
2272
2273 pol = get_vma_policy(vma, addr);
2274 if (!(pol->flags & MPOL_F_MOF))
2275 goto out;
2276
2277 switch (pol->mode) {
2278 case MPOL_INTERLEAVE:
2279 BUG_ON(addr >= vma->vm_end);
2280 BUG_ON(addr < vma->vm_start);
2281
2282 pgoff = vma->vm_pgoff;
2283 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2284 polnid = offset_il_node(pol, vma, pgoff);
2285 break;
2286
2287 case MPOL_PREFERRED:
2288 if (pol->flags & MPOL_F_LOCAL)
2289 polnid = numa_node_id();
2290 else
2291 polnid = pol->v.preferred_node;
2292 break;
2293
2294 case MPOL_BIND:
2295
2296 /*
2297 * allows binding to multiple nodes.
2298 * use current page if in policy nodemask,
2299 * else select nearest allowed node, if any.
2300 * If no allowed nodes, use current [!misplaced].
2301 */
2302 if (node_isset(curnid, pol->v.nodes))
2303 goto out;
2304 z = first_zones_zonelist(
2305 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2306 gfp_zone(GFP_HIGHUSER),
2307 &pol->v.nodes);
2308 polnid = z->zone->node;
2309 break;
2310
2311 default:
2312 BUG();
2313 }
2314
2315 /* Migrate the page towards the node whose CPU is referencing it */
2316 if (pol->flags & MPOL_F_MORON) {
2317 polnid = thisnid;
2318
2319 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2320 goto out;
2321 }
2322
2323 if (curnid != polnid)
2324 ret = polnid;
2325 out:
2326 mpol_cond_put(pol);
2327
2328 return ret;
2329 }
2330
2331 /*
2332 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2333 * dropped after task->mempolicy is set to NULL so that any allocation done as
2334 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2335 * policy.
2336 */
mpol_put_task_policy(struct task_struct * task)2337 void mpol_put_task_policy(struct task_struct *task)
2338 {
2339 struct mempolicy *pol;
2340
2341 task_lock(task);
2342 pol = task->mempolicy;
2343 task->mempolicy = NULL;
2344 task_unlock(task);
2345 mpol_put(pol);
2346 }
2347
sp_delete(struct shared_policy * sp,struct sp_node * n)2348 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2349 {
2350 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2351 rb_erase(&n->nd, &sp->root);
2352 sp_free(n);
2353 }
2354
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2355 static void sp_node_init(struct sp_node *node, unsigned long start,
2356 unsigned long end, struct mempolicy *pol)
2357 {
2358 node->start = start;
2359 node->end = end;
2360 node->policy = pol;
2361 }
2362
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2363 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2364 struct mempolicy *pol)
2365 {
2366 struct sp_node *n;
2367 struct mempolicy *newpol;
2368
2369 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2370 if (!n)
2371 return NULL;
2372
2373 newpol = mpol_dup(pol);
2374 if (IS_ERR(newpol)) {
2375 kmem_cache_free(sn_cache, n);
2376 return NULL;
2377 }
2378 newpol->flags |= MPOL_F_SHARED;
2379 sp_node_init(n, start, end, newpol);
2380
2381 return n;
2382 }
2383
2384 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2385 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2386 unsigned long end, struct sp_node *new)
2387 {
2388 struct sp_node *n;
2389 struct sp_node *n_new = NULL;
2390 struct mempolicy *mpol_new = NULL;
2391 int ret = 0;
2392
2393 restart:
2394 write_lock(&sp->lock);
2395 n = sp_lookup(sp, start, end);
2396 /* Take care of old policies in the same range. */
2397 while (n && n->start < end) {
2398 struct rb_node *next = rb_next(&n->nd);
2399 if (n->start >= start) {
2400 if (n->end <= end)
2401 sp_delete(sp, n);
2402 else
2403 n->start = end;
2404 } else {
2405 /* Old policy spanning whole new range. */
2406 if (n->end > end) {
2407 if (!n_new)
2408 goto alloc_new;
2409
2410 *mpol_new = *n->policy;
2411 atomic_set(&mpol_new->refcnt, 1);
2412 sp_node_init(n_new, end, n->end, mpol_new);
2413 n->end = start;
2414 sp_insert(sp, n_new);
2415 n_new = NULL;
2416 mpol_new = NULL;
2417 break;
2418 } else
2419 n->end = start;
2420 }
2421 if (!next)
2422 break;
2423 n = rb_entry(next, struct sp_node, nd);
2424 }
2425 if (new)
2426 sp_insert(sp, new);
2427 write_unlock(&sp->lock);
2428 ret = 0;
2429
2430 err_out:
2431 if (mpol_new)
2432 mpol_put(mpol_new);
2433 if (n_new)
2434 kmem_cache_free(sn_cache, n_new);
2435
2436 return ret;
2437
2438 alloc_new:
2439 write_unlock(&sp->lock);
2440 ret = -ENOMEM;
2441 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2442 if (!n_new)
2443 goto err_out;
2444 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2445 if (!mpol_new)
2446 goto err_out;
2447 goto restart;
2448 }
2449
2450 /**
2451 * mpol_shared_policy_init - initialize shared policy for inode
2452 * @sp: pointer to inode shared policy
2453 * @mpol: struct mempolicy to install
2454 *
2455 * Install non-NULL @mpol in inode's shared policy rb-tree.
2456 * On entry, the current task has a reference on a non-NULL @mpol.
2457 * This must be released on exit.
2458 * This is called at get_inode() calls and we can use GFP_KERNEL.
2459 */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2460 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2461 {
2462 int ret;
2463
2464 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2465 rwlock_init(&sp->lock);
2466
2467 if (mpol) {
2468 struct vm_area_struct pvma;
2469 struct mempolicy *new;
2470 NODEMASK_SCRATCH(scratch);
2471
2472 if (!scratch)
2473 goto put_mpol;
2474 /* contextualize the tmpfs mount point mempolicy */
2475 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2476 if (IS_ERR(new))
2477 goto free_scratch; /* no valid nodemask intersection */
2478
2479 task_lock(current);
2480 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2481 task_unlock(current);
2482 if (ret)
2483 goto put_new;
2484
2485 /* Create pseudo-vma that contains just the policy */
2486 memset(&pvma, 0, sizeof(struct vm_area_struct));
2487 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2488 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2489
2490 put_new:
2491 mpol_put(new); /* drop initial ref */
2492 free_scratch:
2493 NODEMASK_SCRATCH_FREE(scratch);
2494 put_mpol:
2495 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2496 }
2497 }
2498
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2499 int mpol_set_shared_policy(struct shared_policy *info,
2500 struct vm_area_struct *vma, struct mempolicy *npol)
2501 {
2502 int err;
2503 struct sp_node *new = NULL;
2504 unsigned long sz = vma_pages(vma);
2505
2506 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2507 vma->vm_pgoff,
2508 sz, npol ? npol->mode : -1,
2509 npol ? npol->flags : -1,
2510 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2511
2512 if (npol) {
2513 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2514 if (!new)
2515 return -ENOMEM;
2516 }
2517 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2518 if (err && new)
2519 sp_free(new);
2520 return err;
2521 }
2522
2523 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2524 void mpol_free_shared_policy(struct shared_policy *p)
2525 {
2526 struct sp_node *n;
2527 struct rb_node *next;
2528
2529 if (!p->root.rb_node)
2530 return;
2531 write_lock(&p->lock);
2532 next = rb_first(&p->root);
2533 while (next) {
2534 n = rb_entry(next, struct sp_node, nd);
2535 next = rb_next(&n->nd);
2536 sp_delete(p, n);
2537 }
2538 write_unlock(&p->lock);
2539 }
2540
2541 #ifdef CONFIG_NUMA_BALANCING
2542 static int __initdata numabalancing_override;
2543
check_numabalancing_enable(void)2544 static void __init check_numabalancing_enable(void)
2545 {
2546 bool numabalancing_default = false;
2547
2548 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2549 numabalancing_default = true;
2550
2551 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2552 if (numabalancing_override)
2553 set_numabalancing_state(numabalancing_override == 1);
2554
2555 if (num_online_nodes() > 1 && !numabalancing_override) {
2556 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2557 numabalancing_default ? "Enabling" : "Disabling");
2558 set_numabalancing_state(numabalancing_default);
2559 }
2560 }
2561
setup_numabalancing(char * str)2562 static int __init setup_numabalancing(char *str)
2563 {
2564 int ret = 0;
2565 if (!str)
2566 goto out;
2567
2568 if (!strcmp(str, "enable")) {
2569 numabalancing_override = 1;
2570 ret = 1;
2571 } else if (!strcmp(str, "disable")) {
2572 numabalancing_override = -1;
2573 ret = 1;
2574 }
2575 out:
2576 if (!ret)
2577 pr_warn("Unable to parse numa_balancing=\n");
2578
2579 return ret;
2580 }
2581 __setup("numa_balancing=", setup_numabalancing);
2582 #else
check_numabalancing_enable(void)2583 static inline void __init check_numabalancing_enable(void)
2584 {
2585 }
2586 #endif /* CONFIG_NUMA_BALANCING */
2587
2588 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2589 void __init numa_policy_init(void)
2590 {
2591 nodemask_t interleave_nodes;
2592 unsigned long largest = 0;
2593 int nid, prefer = 0;
2594
2595 policy_cache = kmem_cache_create("numa_policy",
2596 sizeof(struct mempolicy),
2597 0, SLAB_PANIC, NULL);
2598
2599 sn_cache = kmem_cache_create("shared_policy_node",
2600 sizeof(struct sp_node),
2601 0, SLAB_PANIC, NULL);
2602
2603 for_each_node(nid) {
2604 preferred_node_policy[nid] = (struct mempolicy) {
2605 .refcnt = ATOMIC_INIT(1),
2606 .mode = MPOL_PREFERRED,
2607 .flags = MPOL_F_MOF | MPOL_F_MORON,
2608 .v = { .preferred_node = nid, },
2609 };
2610 }
2611
2612 /*
2613 * Set interleaving policy for system init. Interleaving is only
2614 * enabled across suitably sized nodes (default is >= 16MB), or
2615 * fall back to the largest node if they're all smaller.
2616 */
2617 nodes_clear(interleave_nodes);
2618 for_each_node_state(nid, N_MEMORY) {
2619 unsigned long total_pages = node_present_pages(nid);
2620
2621 /* Preserve the largest node */
2622 if (largest < total_pages) {
2623 largest = total_pages;
2624 prefer = nid;
2625 }
2626
2627 /* Interleave this node? */
2628 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2629 node_set(nid, interleave_nodes);
2630 }
2631
2632 /* All too small, use the largest */
2633 if (unlikely(nodes_empty(interleave_nodes)))
2634 node_set(prefer, interleave_nodes);
2635
2636 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2637 pr_err("%s: interleaving failed\n", __func__);
2638
2639 check_numabalancing_enable();
2640 }
2641
2642 /* Reset policy of current process to default */
numa_default_policy(void)2643 void numa_default_policy(void)
2644 {
2645 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2646 }
2647
2648 /*
2649 * Parse and format mempolicy from/to strings
2650 */
2651
2652 /*
2653 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2654 */
2655 static const char * const policy_modes[] =
2656 {
2657 [MPOL_DEFAULT] = "default",
2658 [MPOL_PREFERRED] = "prefer",
2659 [MPOL_BIND] = "bind",
2660 [MPOL_INTERLEAVE] = "interleave",
2661 [MPOL_LOCAL] = "local",
2662 };
2663
2664
2665 #ifdef CONFIG_TMPFS
2666 /**
2667 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2668 * @str: string containing mempolicy to parse
2669 * @mpol: pointer to struct mempolicy pointer, returned on success.
2670 *
2671 * Format of input:
2672 * <mode>[=<flags>][:<nodelist>]
2673 *
2674 * On success, returns 0, else 1
2675 */
mpol_parse_str(char * str,struct mempolicy ** mpol)2676 int mpol_parse_str(char *str, struct mempolicy **mpol)
2677 {
2678 struct mempolicy *new = NULL;
2679 unsigned short mode;
2680 unsigned short mode_flags;
2681 nodemask_t nodes;
2682 char *nodelist = strchr(str, ':');
2683 char *flags = strchr(str, '=');
2684 int err = 1;
2685
2686 if (nodelist) {
2687 /* NUL-terminate mode or flags string */
2688 *nodelist++ = '\0';
2689 if (nodelist_parse(nodelist, nodes))
2690 goto out;
2691 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2692 goto out;
2693 } else
2694 nodes_clear(nodes);
2695
2696 if (flags)
2697 *flags++ = '\0'; /* terminate mode string */
2698
2699 for (mode = 0; mode < MPOL_MAX; mode++) {
2700 if (!strcmp(str, policy_modes[mode])) {
2701 break;
2702 }
2703 }
2704 if (mode >= MPOL_MAX)
2705 goto out;
2706
2707 switch (mode) {
2708 case MPOL_PREFERRED:
2709 /*
2710 * Insist on a nodelist of one node only
2711 */
2712 if (nodelist) {
2713 char *rest = nodelist;
2714 while (isdigit(*rest))
2715 rest++;
2716 if (*rest)
2717 goto out;
2718 }
2719 break;
2720 case MPOL_INTERLEAVE:
2721 /*
2722 * Default to online nodes with memory if no nodelist
2723 */
2724 if (!nodelist)
2725 nodes = node_states[N_MEMORY];
2726 break;
2727 case MPOL_LOCAL:
2728 /*
2729 * Don't allow a nodelist; mpol_new() checks flags
2730 */
2731 if (nodelist)
2732 goto out;
2733 mode = MPOL_PREFERRED;
2734 break;
2735 case MPOL_DEFAULT:
2736 /*
2737 * Insist on a empty nodelist
2738 */
2739 if (!nodelist)
2740 err = 0;
2741 goto out;
2742 case MPOL_BIND:
2743 /*
2744 * Insist on a nodelist
2745 */
2746 if (!nodelist)
2747 goto out;
2748 }
2749
2750 mode_flags = 0;
2751 if (flags) {
2752 /*
2753 * Currently, we only support two mutually exclusive
2754 * mode flags.
2755 */
2756 if (!strcmp(flags, "static"))
2757 mode_flags |= MPOL_F_STATIC_NODES;
2758 else if (!strcmp(flags, "relative"))
2759 mode_flags |= MPOL_F_RELATIVE_NODES;
2760 else
2761 goto out;
2762 }
2763
2764 new = mpol_new(mode, mode_flags, &nodes);
2765 if (IS_ERR(new))
2766 goto out;
2767
2768 /*
2769 * Save nodes for mpol_to_str() to show the tmpfs mount options
2770 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2771 */
2772 if (mode != MPOL_PREFERRED)
2773 new->v.nodes = nodes;
2774 else if (nodelist)
2775 new->v.preferred_node = first_node(nodes);
2776 else
2777 new->flags |= MPOL_F_LOCAL;
2778
2779 /*
2780 * Save nodes for contextualization: this will be used to "clone"
2781 * the mempolicy in a specific context [cpuset] at a later time.
2782 */
2783 new->w.user_nodemask = nodes;
2784
2785 err = 0;
2786
2787 out:
2788 /* Restore string for error message */
2789 if (nodelist)
2790 *--nodelist = ':';
2791 if (flags)
2792 *--flags = '=';
2793 if (!err)
2794 *mpol = new;
2795 return err;
2796 }
2797 #endif /* CONFIG_TMPFS */
2798
2799 /**
2800 * mpol_to_str - format a mempolicy structure for printing
2801 * @buffer: to contain formatted mempolicy string
2802 * @maxlen: length of @buffer
2803 * @pol: pointer to mempolicy to be formatted
2804 *
2805 * Convert @pol into a string. If @buffer is too short, truncate the string.
2806 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2807 * longest flag, "relative", and to display at least a few node ids.
2808 */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)2809 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2810 {
2811 char *p = buffer;
2812 nodemask_t nodes = NODE_MASK_NONE;
2813 unsigned short mode = MPOL_DEFAULT;
2814 unsigned short flags = 0;
2815
2816 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2817 mode = pol->mode;
2818 flags = pol->flags;
2819 }
2820
2821 switch (mode) {
2822 case MPOL_DEFAULT:
2823 break;
2824 case MPOL_PREFERRED:
2825 if (flags & MPOL_F_LOCAL)
2826 mode = MPOL_LOCAL;
2827 else
2828 node_set(pol->v.preferred_node, nodes);
2829 break;
2830 case MPOL_BIND:
2831 case MPOL_INTERLEAVE:
2832 nodes = pol->v.nodes;
2833 break;
2834 default:
2835 WARN_ON_ONCE(1);
2836 snprintf(p, maxlen, "unknown");
2837 return;
2838 }
2839
2840 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2841
2842 if (flags & MPOL_MODE_FLAGS) {
2843 p += snprintf(p, buffer + maxlen - p, "=");
2844
2845 /*
2846 * Currently, the only defined flags are mutually exclusive
2847 */
2848 if (flags & MPOL_F_STATIC_NODES)
2849 p += snprintf(p, buffer + maxlen - p, "static");
2850 else if (flags & MPOL_F_RELATIVE_NODES)
2851 p += snprintf(p, buffer + maxlen - p, "relative");
2852 }
2853
2854 if (!nodes_empty(nodes))
2855 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2856 nodemask_pr_args(&nodes));
2857 }
2858