1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30
31 #include <asm/addrspace.h>
32 #include <asm/bootinfo.h>
33 #include <asm/bugs.h>
34 #include <asm/cache.h>
35 #include <asm/cdmm.h>
36 #include <asm/cpu.h>
37 #include <asm/debug.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <asm/smp-ops.h>
41 #include <asm/prom.h>
42
43 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
44 const char __section(.appended_dtb) __appended_dtb[0x100000];
45 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
46
47 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
48
49 EXPORT_SYMBOL(cpu_data);
50
51 #ifdef CONFIG_VT
52 struct screen_info screen_info;
53 #endif
54
55 /*
56 * Setup information
57 *
58 * These are initialized so they are in the .data section
59 */
60 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
61
62 EXPORT_SYMBOL(mips_machtype);
63
64 struct boot_mem_map boot_mem_map;
65
66 static char __initdata command_line[COMMAND_LINE_SIZE];
67 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
68
69 #ifdef CONFIG_CMDLINE_BOOL
70 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
71 #endif
72
73 /*
74 * mips_io_port_base is the begin of the address space to which x86 style
75 * I/O ports are mapped.
76 */
77 const unsigned long mips_io_port_base = -1;
78 EXPORT_SYMBOL(mips_io_port_base);
79
80 static struct resource code_resource = { .name = "Kernel code", };
81 static struct resource data_resource = { .name = "Kernel data", };
82
83 static void *detect_magic __initdata = detect_memory_region;
84
add_memory_region(phys_addr_t start,phys_addr_t size,long type)85 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
86 {
87 int x = boot_mem_map.nr_map;
88 int i;
89
90 /*
91 * If the region reaches the top of the physical address space, adjust
92 * the size slightly so that (start + size) doesn't overflow
93 */
94 if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
95 --size;
96
97 /* Sanity check */
98 if (start + size < start) {
99 pr_warn("Trying to add an invalid memory region, skipped\n");
100 return;
101 }
102
103 /*
104 * Try to merge with existing entry, if any.
105 */
106 for (i = 0; i < boot_mem_map.nr_map; i++) {
107 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
108 unsigned long top;
109
110 if (entry->type != type)
111 continue;
112
113 if (start + size < entry->addr)
114 continue; /* no overlap */
115
116 if (entry->addr + entry->size < start)
117 continue; /* no overlap */
118
119 top = max(entry->addr + entry->size, start + size);
120 entry->addr = min(entry->addr, start);
121 entry->size = top - entry->addr;
122
123 return;
124 }
125
126 if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
127 pr_err("Ooops! Too many entries in the memory map!\n");
128 return;
129 }
130
131 boot_mem_map.map[x].addr = start;
132 boot_mem_map.map[x].size = size;
133 boot_mem_map.map[x].type = type;
134 boot_mem_map.nr_map++;
135 }
136
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)137 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
138 {
139 void *dm = &detect_magic;
140 phys_addr_t size;
141
142 for (size = sz_min; size < sz_max; size <<= 1) {
143 if (!memcmp(dm, dm + size, sizeof(detect_magic)))
144 break;
145 }
146
147 pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
148 ((unsigned long long) size) / SZ_1M,
149 (unsigned long long) start,
150 ((unsigned long long) sz_min) / SZ_1M,
151 ((unsigned long long) sz_max) / SZ_1M);
152
153 add_memory_region(start, size, BOOT_MEM_RAM);
154 }
155
memory_region_available(phys_addr_t start,phys_addr_t size)156 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
157 {
158 int i;
159 bool in_ram = false, free = true;
160
161 for (i = 0; i < boot_mem_map.nr_map; i++) {
162 phys_addr_t start_, end_;
163
164 start_ = boot_mem_map.map[i].addr;
165 end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
166
167 switch (boot_mem_map.map[i].type) {
168 case BOOT_MEM_RAM:
169 if (start >= start_ && start + size <= end_)
170 in_ram = true;
171 break;
172 case BOOT_MEM_RESERVED:
173 if ((start >= start_ && start < end_) ||
174 (start < start_ && start + size >= start_))
175 free = false;
176 break;
177 default:
178 continue;
179 }
180 }
181
182 return in_ram && free;
183 }
184
print_memory_map(void)185 static void __init print_memory_map(void)
186 {
187 int i;
188 const int field = 2 * sizeof(unsigned long);
189
190 for (i = 0; i < boot_mem_map.nr_map; i++) {
191 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
192 field, (unsigned long long) boot_mem_map.map[i].size,
193 field, (unsigned long long) boot_mem_map.map[i].addr);
194
195 switch (boot_mem_map.map[i].type) {
196 case BOOT_MEM_RAM:
197 printk(KERN_CONT "(usable)\n");
198 break;
199 case BOOT_MEM_INIT_RAM:
200 printk(KERN_CONT "(usable after init)\n");
201 break;
202 case BOOT_MEM_ROM_DATA:
203 printk(KERN_CONT "(ROM data)\n");
204 break;
205 case BOOT_MEM_RESERVED:
206 printk(KERN_CONT "(reserved)\n");
207 break;
208 default:
209 printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
210 break;
211 }
212 }
213 }
214
215 /*
216 * Manage initrd
217 */
218 #ifdef CONFIG_BLK_DEV_INITRD
219
rd_start_early(char * p)220 static int __init rd_start_early(char *p)
221 {
222 unsigned long start = memparse(p, &p);
223
224 #ifdef CONFIG_64BIT
225 /* Guess if the sign extension was forgotten by bootloader */
226 if (start < XKPHYS)
227 start = (int)start;
228 #endif
229 initrd_start = start;
230 initrd_end += start;
231 return 0;
232 }
233 early_param("rd_start", rd_start_early);
234
rd_size_early(char * p)235 static int __init rd_size_early(char *p)
236 {
237 initrd_end += memparse(p, &p);
238 return 0;
239 }
240 early_param("rd_size", rd_size_early);
241
242 /* it returns the next free pfn after initrd */
init_initrd(void)243 static unsigned long __init init_initrd(void)
244 {
245 unsigned long end;
246
247 /*
248 * Board specific code or command line parser should have
249 * already set up initrd_start and initrd_end. In these cases
250 * perfom sanity checks and use them if all looks good.
251 */
252 if (!initrd_start || initrd_end <= initrd_start)
253 goto disable;
254
255 if (initrd_start & ~PAGE_MASK) {
256 pr_err("initrd start must be page aligned\n");
257 goto disable;
258 }
259 if (initrd_start < PAGE_OFFSET) {
260 pr_err("initrd start < PAGE_OFFSET\n");
261 goto disable;
262 }
263
264 /*
265 * Sanitize initrd addresses. For example firmware
266 * can't guess if they need to pass them through
267 * 64-bits values if the kernel has been built in pure
268 * 32-bit. We need also to switch from KSEG0 to XKPHYS
269 * addresses now, so the code can now safely use __pa().
270 */
271 end = __pa(initrd_end);
272 initrd_end = (unsigned long)__va(end);
273 initrd_start = (unsigned long)__va(__pa(initrd_start));
274
275 ROOT_DEV = Root_RAM0;
276 return PFN_UP(end);
277 disable:
278 initrd_start = 0;
279 initrd_end = 0;
280 return 0;
281 }
282
283 /* In some conditions (e.g. big endian bootloader with a little endian
284 kernel), the initrd might appear byte swapped. Try to detect this and
285 byte swap it if needed. */
maybe_bswap_initrd(void)286 static void __init maybe_bswap_initrd(void)
287 {
288 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
289 u64 buf;
290
291 /* Check for CPIO signature */
292 if (!memcmp((void *)initrd_start, "070701", 6))
293 return;
294
295 /* Check for compressed initrd */
296 if (decompress_method((unsigned char *)initrd_start, 8, NULL))
297 return;
298
299 /* Try again with a byte swapped header */
300 buf = swab64p((u64 *)initrd_start);
301 if (!memcmp(&buf, "070701", 6) ||
302 decompress_method((unsigned char *)(&buf), 8, NULL)) {
303 unsigned long i;
304
305 pr_info("Byteswapped initrd detected\n");
306 for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
307 swab64s((u64 *)i);
308 }
309 #endif
310 }
311
finalize_initrd(void)312 static void __init finalize_initrd(void)
313 {
314 unsigned long size = initrd_end - initrd_start;
315
316 if (size == 0) {
317 printk(KERN_INFO "Initrd not found or empty");
318 goto disable;
319 }
320 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
321 printk(KERN_ERR "Initrd extends beyond end of memory");
322 goto disable;
323 }
324
325 maybe_bswap_initrd();
326
327 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
328 initrd_below_start_ok = 1;
329
330 pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
331 initrd_start, size);
332 return;
333 disable:
334 printk(KERN_CONT " - disabling initrd\n");
335 initrd_start = 0;
336 initrd_end = 0;
337 }
338
339 #else /* !CONFIG_BLK_DEV_INITRD */
340
init_initrd(void)341 static unsigned long __init init_initrd(void)
342 {
343 return 0;
344 }
345
346 #define finalize_initrd() do {} while (0)
347
348 #endif
349
350 /*
351 * Initialize the bootmem allocator. It also setup initrd related data
352 * if needed.
353 */
354 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
355
bootmem_init(void)356 static void __init bootmem_init(void)
357 {
358 init_initrd();
359 finalize_initrd();
360 }
361
362 #else /* !CONFIG_SGI_IP27 */
363
bootmap_bytes(unsigned long pages)364 static unsigned long __init bootmap_bytes(unsigned long pages)
365 {
366 unsigned long bytes = DIV_ROUND_UP(pages, 8);
367
368 return ALIGN(bytes, sizeof(long));
369 }
370
bootmem_init(void)371 static void __init bootmem_init(void)
372 {
373 unsigned long reserved_end;
374 unsigned long mapstart = ~0UL;
375 unsigned long bootmap_size;
376 bool bootmap_valid = false;
377 int i;
378
379 /*
380 * Sanity check any INITRD first. We don't take it into account
381 * for bootmem setup initially, rely on the end-of-kernel-code
382 * as our memory range starting point. Once bootmem is inited we
383 * will reserve the area used for the initrd.
384 */
385 init_initrd();
386 reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
387
388 /*
389 * max_low_pfn is not a number of pages. The number of pages
390 * of the system is given by 'max_low_pfn - min_low_pfn'.
391 */
392 min_low_pfn = ~0UL;
393 max_low_pfn = 0;
394
395 /*
396 * Find the highest page frame number we have available.
397 */
398 for (i = 0; i < boot_mem_map.nr_map; i++) {
399 unsigned long start, end;
400
401 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
402 continue;
403
404 start = PFN_UP(boot_mem_map.map[i].addr);
405 end = PFN_DOWN(boot_mem_map.map[i].addr
406 + boot_mem_map.map[i].size);
407
408 #ifndef CONFIG_HIGHMEM
409 /*
410 * Skip highmem here so we get an accurate max_low_pfn if low
411 * memory stops short of high memory.
412 * If the region overlaps HIGHMEM_START, end is clipped so
413 * max_pfn excludes the highmem portion.
414 */
415 if (start >= PFN_DOWN(HIGHMEM_START))
416 continue;
417 if (end > PFN_DOWN(HIGHMEM_START))
418 end = PFN_DOWN(HIGHMEM_START);
419 #endif
420
421 if (end > max_low_pfn)
422 max_low_pfn = end;
423 if (start < min_low_pfn)
424 min_low_pfn = start;
425 if (end <= reserved_end)
426 continue;
427 #ifdef CONFIG_BLK_DEV_INITRD
428 /* Skip zones before initrd and initrd itself */
429 if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
430 continue;
431 #endif
432 if (start >= mapstart)
433 continue;
434 mapstart = max(reserved_end, start);
435 }
436
437 if (min_low_pfn >= max_low_pfn)
438 panic("Incorrect memory mapping !!!");
439 if (min_low_pfn > ARCH_PFN_OFFSET) {
440 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
441 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
442 min_low_pfn - ARCH_PFN_OFFSET);
443 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
444 pr_info("%lu free pages won't be used\n",
445 ARCH_PFN_OFFSET - min_low_pfn);
446 }
447 min_low_pfn = ARCH_PFN_OFFSET;
448
449 /*
450 * Determine low and high memory ranges
451 */
452 max_pfn = max_low_pfn;
453 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
454 #ifdef CONFIG_HIGHMEM
455 highstart_pfn = PFN_DOWN(HIGHMEM_START);
456 highend_pfn = max_low_pfn;
457 #endif
458 max_low_pfn = PFN_DOWN(HIGHMEM_START);
459 }
460
461 #ifdef CONFIG_BLK_DEV_INITRD
462 /*
463 * mapstart should be after initrd_end
464 */
465 if (initrd_end)
466 mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
467 #endif
468
469 /*
470 * check that mapstart doesn't overlap with any of
471 * memory regions that have been reserved through eg. DTB
472 */
473 bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
474
475 bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
476 bootmap_size);
477 for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
478 unsigned long mapstart_addr;
479
480 switch (boot_mem_map.map[i].type) {
481 case BOOT_MEM_RESERVED:
482 mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
483 boot_mem_map.map[i].size);
484 if (PHYS_PFN(mapstart_addr) < mapstart)
485 break;
486
487 bootmap_valid = memory_region_available(mapstart_addr,
488 bootmap_size);
489 if (bootmap_valid)
490 mapstart = PHYS_PFN(mapstart_addr);
491 break;
492 default:
493 break;
494 }
495 }
496
497 if (!bootmap_valid)
498 panic("No memory area to place a bootmap bitmap");
499
500 /*
501 * Initialize the boot-time allocator with low memory only.
502 */
503 if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
504 min_low_pfn, max_low_pfn))
505 panic("Unexpected memory size required for bootmap");
506
507 for (i = 0; i < boot_mem_map.nr_map; i++) {
508 unsigned long start, end;
509
510 start = PFN_UP(boot_mem_map.map[i].addr);
511 end = PFN_DOWN(boot_mem_map.map[i].addr
512 + boot_mem_map.map[i].size);
513
514 if (start <= min_low_pfn)
515 start = min_low_pfn;
516 if (start >= end)
517 continue;
518
519 #ifndef CONFIG_HIGHMEM
520 if (end > max_low_pfn)
521 end = max_low_pfn;
522
523 /*
524 * ... finally, is the area going away?
525 */
526 if (end <= start)
527 continue;
528 #endif
529
530 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
531 }
532
533 /*
534 * Register fully available low RAM pages with the bootmem allocator.
535 */
536 for (i = 0; i < boot_mem_map.nr_map; i++) {
537 unsigned long start, end, size;
538
539 start = PFN_UP(boot_mem_map.map[i].addr);
540 end = PFN_DOWN(boot_mem_map.map[i].addr
541 + boot_mem_map.map[i].size);
542
543 /*
544 * Reserve usable memory.
545 */
546 switch (boot_mem_map.map[i].type) {
547 case BOOT_MEM_RAM:
548 break;
549 case BOOT_MEM_INIT_RAM:
550 memory_present(0, start, end);
551 continue;
552 default:
553 /* Not usable memory */
554 if (start > min_low_pfn && end < max_low_pfn)
555 reserve_bootmem(boot_mem_map.map[i].addr,
556 boot_mem_map.map[i].size,
557 BOOTMEM_DEFAULT);
558 continue;
559 }
560
561 /*
562 * We are rounding up the start address of usable memory
563 * and at the end of the usable range downwards.
564 */
565 if (start >= max_low_pfn)
566 continue;
567 if (start < reserved_end)
568 start = reserved_end;
569 if (end > max_low_pfn)
570 end = max_low_pfn;
571
572 /*
573 * ... finally, is the area going away?
574 */
575 if (end <= start)
576 continue;
577 size = end - start;
578
579 /* Register lowmem ranges */
580 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
581 memory_present(0, start, end);
582 }
583
584 /*
585 * Reserve the bootmap memory.
586 */
587 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
588
589 #ifdef CONFIG_RELOCATABLE
590 /*
591 * The kernel reserves all memory below its _end symbol as bootmem,
592 * but the kernel may now be at a much higher address. The memory
593 * between the original and new locations may be returned to the system.
594 */
595 if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
596 unsigned long offset;
597 extern void show_kernel_relocation(const char *level);
598
599 offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
600 free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
601
602 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
603 /*
604 * This information is necessary when debugging the kernel
605 * But is a security vulnerability otherwise!
606 */
607 show_kernel_relocation(KERN_INFO);
608 #endif
609 }
610 #endif
611
612 /*
613 * Reserve initrd memory if needed.
614 */
615 finalize_initrd();
616 }
617
618 #endif /* CONFIG_SGI_IP27 */
619
620 /*
621 * arch_mem_init - initialize memory management subsystem
622 *
623 * o plat_mem_setup() detects the memory configuration and will record detected
624 * memory areas using add_memory_region.
625 *
626 * At this stage the memory configuration of the system is known to the
627 * kernel but generic memory management system is still entirely uninitialized.
628 *
629 * o bootmem_init()
630 * o sparse_init()
631 * o paging_init()
632 * o dma_contiguous_reserve()
633 *
634 * At this stage the bootmem allocator is ready to use.
635 *
636 * NOTE: historically plat_mem_setup did the entire platform initialization.
637 * This was rather impractical because it meant plat_mem_setup had to
638 * get away without any kind of memory allocator. To keep old code from
639 * breaking plat_setup was just renamed to plat_mem_setup and a second platform
640 * initialization hook for anything else was introduced.
641 */
642
643 static int usermem __initdata;
644
early_parse_mem(char * p)645 static int __init early_parse_mem(char *p)
646 {
647 phys_addr_t start, size;
648
649 /*
650 * If a user specifies memory size, we
651 * blow away any automatically generated
652 * size.
653 */
654 if (usermem == 0) {
655 boot_mem_map.nr_map = 0;
656 usermem = 1;
657 }
658 start = 0;
659 size = memparse(p, &p);
660 if (*p == '@')
661 start = memparse(p + 1, &p);
662
663 add_memory_region(start, size, BOOT_MEM_RAM);
664 return 0;
665 }
666 early_param("mem", early_parse_mem);
667
668 #ifdef CONFIG_PROC_VMCORE
669 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)670 static int __init early_parse_elfcorehdr(char *p)
671 {
672 int i;
673
674 setup_elfcorehdr = memparse(p, &p);
675
676 for (i = 0; i < boot_mem_map.nr_map; i++) {
677 unsigned long start = boot_mem_map.map[i].addr;
678 unsigned long end = (boot_mem_map.map[i].addr +
679 boot_mem_map.map[i].size);
680 if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
681 /*
682 * Reserve from the elf core header to the end of
683 * the memory segment, that should all be kdump
684 * reserved memory.
685 */
686 setup_elfcorehdr_size = end - setup_elfcorehdr;
687 break;
688 }
689 }
690 /*
691 * If we don't find it in the memory map, then we shouldn't
692 * have to worry about it, as the new kernel won't use it.
693 */
694 return 0;
695 }
696 early_param("elfcorehdr", early_parse_elfcorehdr);
697 #endif
698
arch_mem_addpart(phys_addr_t mem,phys_addr_t end,int type)699 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
700 {
701 phys_addr_t size;
702 int i;
703
704 size = end - mem;
705 if (!size)
706 return;
707
708 /* Make sure it is in the boot_mem_map */
709 for (i = 0; i < boot_mem_map.nr_map; i++) {
710 if (mem >= boot_mem_map.map[i].addr &&
711 mem < (boot_mem_map.map[i].addr +
712 boot_mem_map.map[i].size))
713 return;
714 }
715 add_memory_region(mem, size, type);
716 }
717
718 #ifdef CONFIG_KEXEC
get_total_mem(void)719 static inline unsigned long long get_total_mem(void)
720 {
721 unsigned long long total;
722
723 total = max_pfn - min_low_pfn;
724 return total << PAGE_SHIFT;
725 }
726
mips_parse_crashkernel(void)727 static void __init mips_parse_crashkernel(void)
728 {
729 unsigned long long total_mem;
730 unsigned long long crash_size, crash_base;
731 int ret;
732
733 total_mem = get_total_mem();
734 ret = parse_crashkernel(boot_command_line, total_mem,
735 &crash_size, &crash_base);
736 if (ret != 0 || crash_size <= 0)
737 return;
738
739 crashk_res.start = crash_base;
740 crashk_res.end = crash_base + crash_size - 1;
741 }
742
request_crashkernel(struct resource * res)743 static void __init request_crashkernel(struct resource *res)
744 {
745 int ret;
746
747 ret = request_resource(res, &crashk_res);
748 if (!ret)
749 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
750 (unsigned long)((crashk_res.end -
751 crashk_res.start + 1) >> 20),
752 (unsigned long)(crashk_res.start >> 20));
753 }
754 #else /* !defined(CONFIG_KEXEC) */
mips_parse_crashkernel(void)755 static void __init mips_parse_crashkernel(void)
756 {
757 }
758
request_crashkernel(struct resource * res)759 static void __init request_crashkernel(struct resource *res)
760 {
761 }
762 #endif /* !defined(CONFIG_KEXEC) */
763
764 #define USE_PROM_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
765 #define USE_DTB_CMDLINE IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
766 #define EXTEND_WITH_PROM IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
767 #define BUILTIN_EXTEND_WITH_PROM \
768 IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
769
arch_mem_init(char ** cmdline_p)770 static void __init arch_mem_init(char **cmdline_p)
771 {
772 struct memblock_region *reg;
773 extern void plat_mem_setup(void);
774
775 /* call board setup routine */
776 plat_mem_setup();
777
778 /*
779 * Make sure all kernel memory is in the maps. The "UP" and
780 * "DOWN" are opposite for initdata since if it crosses over
781 * into another memory section you don't want that to be
782 * freed when the initdata is freed.
783 */
784 arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
785 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
786 BOOT_MEM_RAM);
787 arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
788 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
789 BOOT_MEM_INIT_RAM);
790
791 pr_info("Determined physical RAM map:\n");
792 print_memory_map();
793
794 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
795 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
796 #else
797 if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
798 (USE_DTB_CMDLINE && !boot_command_line[0]))
799 strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
800
801 if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
802 if (boot_command_line[0])
803 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
804 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
805 }
806
807 #if defined(CONFIG_CMDLINE_BOOL)
808 if (builtin_cmdline[0]) {
809 if (boot_command_line[0])
810 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
811 strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
812 }
813
814 if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
815 if (boot_command_line[0])
816 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
817 strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
818 }
819 #endif
820 #endif
821 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
822
823 *cmdline_p = command_line;
824
825 parse_early_param();
826
827 if (usermem) {
828 pr_info("User-defined physical RAM map:\n");
829 print_memory_map();
830 }
831
832 bootmem_init();
833 #ifdef CONFIG_PROC_VMCORE
834 if (setup_elfcorehdr && setup_elfcorehdr_size) {
835 printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
836 setup_elfcorehdr, setup_elfcorehdr_size);
837 reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
838 BOOTMEM_DEFAULT);
839 }
840 #endif
841
842 mips_parse_crashkernel();
843 #ifdef CONFIG_KEXEC
844 if (crashk_res.start != crashk_res.end)
845 reserve_bootmem(crashk_res.start,
846 crashk_res.end - crashk_res.start + 1,
847 BOOTMEM_DEFAULT);
848 #endif
849 device_tree_init();
850 sparse_init();
851 plat_swiotlb_setup();
852
853 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
854 /* Tell bootmem about cma reserved memblock section */
855 for_each_memblock(reserved, reg)
856 if (reg->size != 0)
857 reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
858
859 reserve_bootmem_region(__pa_symbol(&__nosave_begin),
860 __pa_symbol(&__nosave_end)); /* Reserve for hibernation */
861 }
862
resource_init(void)863 static void __init resource_init(void)
864 {
865 int i;
866
867 if (UNCAC_BASE != IO_BASE)
868 return;
869
870 code_resource.start = __pa_symbol(&_text);
871 code_resource.end = __pa_symbol(&_etext) - 1;
872 data_resource.start = __pa_symbol(&_etext);
873 data_resource.end = __pa_symbol(&_edata) - 1;
874
875 for (i = 0; i < boot_mem_map.nr_map; i++) {
876 struct resource *res;
877 unsigned long start, end;
878
879 start = boot_mem_map.map[i].addr;
880 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
881 if (start >= HIGHMEM_START)
882 continue;
883 if (end >= HIGHMEM_START)
884 end = HIGHMEM_START - 1;
885
886 res = alloc_bootmem(sizeof(struct resource));
887
888 res->start = start;
889 res->end = end;
890 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
891
892 switch (boot_mem_map.map[i].type) {
893 case BOOT_MEM_RAM:
894 case BOOT_MEM_INIT_RAM:
895 case BOOT_MEM_ROM_DATA:
896 res->name = "System RAM";
897 res->flags |= IORESOURCE_SYSRAM;
898 break;
899 case BOOT_MEM_RESERVED:
900 default:
901 res->name = "reserved";
902 }
903
904 request_resource(&iomem_resource, res);
905
906 /*
907 * We don't know which RAM region contains kernel data,
908 * so we try it repeatedly and let the resource manager
909 * test it.
910 */
911 request_resource(res, &code_resource);
912 request_resource(res, &data_resource);
913 request_crashkernel(res);
914 }
915 }
916
917 #ifdef CONFIG_SMP
prefill_possible_map(void)918 static void __init prefill_possible_map(void)
919 {
920 int i, possible = num_possible_cpus();
921
922 if (possible > nr_cpu_ids)
923 possible = nr_cpu_ids;
924
925 for (i = 0; i < possible; i++)
926 set_cpu_possible(i, true);
927 for (; i < NR_CPUS; i++)
928 set_cpu_possible(i, false);
929
930 nr_cpu_ids = possible;
931 }
932 #else
prefill_possible_map(void)933 static inline void prefill_possible_map(void) {}
934 #endif
935
setup_arch(char ** cmdline_p)936 void __init setup_arch(char **cmdline_p)
937 {
938 cpu_probe();
939 mips_cm_probe();
940 prom_init();
941
942 setup_early_fdc_console();
943 #ifdef CONFIG_EARLY_PRINTK
944 setup_early_printk();
945 #endif
946 cpu_report();
947 check_bugs_early();
948
949 #if defined(CONFIG_VT)
950 #if defined(CONFIG_VGA_CONSOLE)
951 conswitchp = &vga_con;
952 #elif defined(CONFIG_DUMMY_CONSOLE)
953 conswitchp = &dummy_con;
954 #endif
955 #endif
956
957 arch_mem_init(cmdline_p);
958
959 resource_init();
960 plat_smp_setup();
961 prefill_possible_map();
962
963 cpu_cache_init();
964 paging_init();
965 }
966
967 unsigned long kernelsp[NR_CPUS];
968 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
969
970 #ifdef CONFIG_USE_OF
971 unsigned long fw_passed_dtb;
972 #endif
973
974 #ifdef CONFIG_DEBUG_FS
975 struct dentry *mips_debugfs_dir;
debugfs_mips(void)976 static int __init debugfs_mips(void)
977 {
978 struct dentry *d;
979
980 d = debugfs_create_dir("mips", NULL);
981 if (!d)
982 return -ENOMEM;
983 mips_debugfs_dir = d;
984 return 0;
985 }
986 arch_initcall(debugfs_mips);
987 #endif
988