• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007	 Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25 #include <linux/kexec.h>
26 #include <linux/sizes.h>
27 #include <linux/device.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/decompress/generic.h>
30 
31 #include <asm/addrspace.h>
32 #include <asm/bootinfo.h>
33 #include <asm/bugs.h>
34 #include <asm/cache.h>
35 #include <asm/cdmm.h>
36 #include <asm/cpu.h>
37 #include <asm/debug.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <asm/smp-ops.h>
41 #include <asm/prom.h>
42 
43 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
44 const char __section(.appended_dtb) __appended_dtb[0x100000];
45 #endif /* CONFIG_MIPS_ELF_APPENDED_DTB */
46 
47 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
48 
49 EXPORT_SYMBOL(cpu_data);
50 
51 #ifdef CONFIG_VT
52 struct screen_info screen_info;
53 #endif
54 
55 /*
56  * Setup information
57  *
58  * These are initialized so they are in the .data section
59  */
60 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
61 
62 EXPORT_SYMBOL(mips_machtype);
63 
64 struct boot_mem_map boot_mem_map;
65 
66 static char __initdata command_line[COMMAND_LINE_SIZE];
67 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
68 
69 #ifdef CONFIG_CMDLINE_BOOL
70 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
71 #endif
72 
73 /*
74  * mips_io_port_base is the begin of the address space to which x86 style
75  * I/O ports are mapped.
76  */
77 const unsigned long mips_io_port_base = -1;
78 EXPORT_SYMBOL(mips_io_port_base);
79 
80 static struct resource code_resource = { .name = "Kernel code", };
81 static struct resource data_resource = { .name = "Kernel data", };
82 
83 static void *detect_magic __initdata = detect_memory_region;
84 
add_memory_region(phys_addr_t start,phys_addr_t size,long type)85 void __init add_memory_region(phys_addr_t start, phys_addr_t size, long type)
86 {
87 	int x = boot_mem_map.nr_map;
88 	int i;
89 
90 	/*
91 	 * If the region reaches the top of the physical address space, adjust
92 	 * the size slightly so that (start + size) doesn't overflow
93 	 */
94 	if (start + size - 1 == (phys_addr_t)ULLONG_MAX)
95 		--size;
96 
97 	/* Sanity check */
98 	if (start + size < start) {
99 		pr_warn("Trying to add an invalid memory region, skipped\n");
100 		return;
101 	}
102 
103 	/*
104 	 * Try to merge with existing entry, if any.
105 	 */
106 	for (i = 0; i < boot_mem_map.nr_map; i++) {
107 		struct boot_mem_map_entry *entry = boot_mem_map.map + i;
108 		unsigned long top;
109 
110 		if (entry->type != type)
111 			continue;
112 
113 		if (start + size < entry->addr)
114 			continue;			/* no overlap */
115 
116 		if (entry->addr + entry->size < start)
117 			continue;			/* no overlap */
118 
119 		top = max(entry->addr + entry->size, start + size);
120 		entry->addr = min(entry->addr, start);
121 		entry->size = top - entry->addr;
122 
123 		return;
124 	}
125 
126 	if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
127 		pr_err("Ooops! Too many entries in the memory map!\n");
128 		return;
129 	}
130 
131 	boot_mem_map.map[x].addr = start;
132 	boot_mem_map.map[x].size = size;
133 	boot_mem_map.map[x].type = type;
134 	boot_mem_map.nr_map++;
135 }
136 
detect_memory_region(phys_addr_t start,phys_addr_t sz_min,phys_addr_t sz_max)137 void __init detect_memory_region(phys_addr_t start, phys_addr_t sz_min, phys_addr_t sz_max)
138 {
139 	void *dm = &detect_magic;
140 	phys_addr_t size;
141 
142 	for (size = sz_min; size < sz_max; size <<= 1) {
143 		if (!memcmp(dm, dm + size, sizeof(detect_magic)))
144 			break;
145 	}
146 
147 	pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
148 		((unsigned long long) size) / SZ_1M,
149 		(unsigned long long) start,
150 		((unsigned long long) sz_min) / SZ_1M,
151 		((unsigned long long) sz_max) / SZ_1M);
152 
153 	add_memory_region(start, size, BOOT_MEM_RAM);
154 }
155 
memory_region_available(phys_addr_t start,phys_addr_t size)156 bool __init memory_region_available(phys_addr_t start, phys_addr_t size)
157 {
158 	int i;
159 	bool in_ram = false, free = true;
160 
161 	for (i = 0; i < boot_mem_map.nr_map; i++) {
162 		phys_addr_t start_, end_;
163 
164 		start_ = boot_mem_map.map[i].addr;
165 		end_ = boot_mem_map.map[i].addr + boot_mem_map.map[i].size;
166 
167 		switch (boot_mem_map.map[i].type) {
168 		case BOOT_MEM_RAM:
169 			if (start >= start_ && start + size <= end_)
170 				in_ram = true;
171 			break;
172 		case BOOT_MEM_RESERVED:
173 			if ((start >= start_ && start < end_) ||
174 			    (start < start_ && start + size >= start_))
175 				free = false;
176 			break;
177 		default:
178 			continue;
179 		}
180 	}
181 
182 	return in_ram && free;
183 }
184 
print_memory_map(void)185 static void __init print_memory_map(void)
186 {
187 	int i;
188 	const int field = 2 * sizeof(unsigned long);
189 
190 	for (i = 0; i < boot_mem_map.nr_map; i++) {
191 		printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
192 		       field, (unsigned long long) boot_mem_map.map[i].size,
193 		       field, (unsigned long long) boot_mem_map.map[i].addr);
194 
195 		switch (boot_mem_map.map[i].type) {
196 		case BOOT_MEM_RAM:
197 			printk(KERN_CONT "(usable)\n");
198 			break;
199 		case BOOT_MEM_INIT_RAM:
200 			printk(KERN_CONT "(usable after init)\n");
201 			break;
202 		case BOOT_MEM_ROM_DATA:
203 			printk(KERN_CONT "(ROM data)\n");
204 			break;
205 		case BOOT_MEM_RESERVED:
206 			printk(KERN_CONT "(reserved)\n");
207 			break;
208 		default:
209 			printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
210 			break;
211 		}
212 	}
213 }
214 
215 /*
216  * Manage initrd
217  */
218 #ifdef CONFIG_BLK_DEV_INITRD
219 
rd_start_early(char * p)220 static int __init rd_start_early(char *p)
221 {
222 	unsigned long start = memparse(p, &p);
223 
224 #ifdef CONFIG_64BIT
225 	/* Guess if the sign extension was forgotten by bootloader */
226 	if (start < XKPHYS)
227 		start = (int)start;
228 #endif
229 	initrd_start = start;
230 	initrd_end += start;
231 	return 0;
232 }
233 early_param("rd_start", rd_start_early);
234 
rd_size_early(char * p)235 static int __init rd_size_early(char *p)
236 {
237 	initrd_end += memparse(p, &p);
238 	return 0;
239 }
240 early_param("rd_size", rd_size_early);
241 
242 /* it returns the next free pfn after initrd */
init_initrd(void)243 static unsigned long __init init_initrd(void)
244 {
245 	unsigned long end;
246 
247 	/*
248 	 * Board specific code or command line parser should have
249 	 * already set up initrd_start and initrd_end. In these cases
250 	 * perfom sanity checks and use them if all looks good.
251 	 */
252 	if (!initrd_start || initrd_end <= initrd_start)
253 		goto disable;
254 
255 	if (initrd_start & ~PAGE_MASK) {
256 		pr_err("initrd start must be page aligned\n");
257 		goto disable;
258 	}
259 	if (initrd_start < PAGE_OFFSET) {
260 		pr_err("initrd start < PAGE_OFFSET\n");
261 		goto disable;
262 	}
263 
264 	/*
265 	 * Sanitize initrd addresses. For example firmware
266 	 * can't guess if they need to pass them through
267 	 * 64-bits values if the kernel has been built in pure
268 	 * 32-bit. We need also to switch from KSEG0 to XKPHYS
269 	 * addresses now, so the code can now safely use __pa().
270 	 */
271 	end = __pa(initrd_end);
272 	initrd_end = (unsigned long)__va(end);
273 	initrd_start = (unsigned long)__va(__pa(initrd_start));
274 
275 	ROOT_DEV = Root_RAM0;
276 	return PFN_UP(end);
277 disable:
278 	initrd_start = 0;
279 	initrd_end = 0;
280 	return 0;
281 }
282 
283 /* In some conditions (e.g. big endian bootloader with a little endian
284    kernel), the initrd might appear byte swapped.  Try to detect this and
285    byte swap it if needed.  */
maybe_bswap_initrd(void)286 static void __init maybe_bswap_initrd(void)
287 {
288 #if defined(CONFIG_CPU_CAVIUM_OCTEON)
289 	u64 buf;
290 
291 	/* Check for CPIO signature */
292 	if (!memcmp((void *)initrd_start, "070701", 6))
293 		return;
294 
295 	/* Check for compressed initrd */
296 	if (decompress_method((unsigned char *)initrd_start, 8, NULL))
297 		return;
298 
299 	/* Try again with a byte swapped header */
300 	buf = swab64p((u64 *)initrd_start);
301 	if (!memcmp(&buf, "070701", 6) ||
302 	    decompress_method((unsigned char *)(&buf), 8, NULL)) {
303 		unsigned long i;
304 
305 		pr_info("Byteswapped initrd detected\n");
306 		for (i = initrd_start; i < ALIGN(initrd_end, 8); i += 8)
307 			swab64s((u64 *)i);
308 	}
309 #endif
310 }
311 
finalize_initrd(void)312 static void __init finalize_initrd(void)
313 {
314 	unsigned long size = initrd_end - initrd_start;
315 
316 	if (size == 0) {
317 		printk(KERN_INFO "Initrd not found or empty");
318 		goto disable;
319 	}
320 	if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
321 		printk(KERN_ERR "Initrd extends beyond end of memory");
322 		goto disable;
323 	}
324 
325 	maybe_bswap_initrd();
326 
327 	reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
328 	initrd_below_start_ok = 1;
329 
330 	pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
331 		initrd_start, size);
332 	return;
333 disable:
334 	printk(KERN_CONT " - disabling initrd\n");
335 	initrd_start = 0;
336 	initrd_end = 0;
337 }
338 
339 #else  /* !CONFIG_BLK_DEV_INITRD */
340 
init_initrd(void)341 static unsigned long __init init_initrd(void)
342 {
343 	return 0;
344 }
345 
346 #define finalize_initrd()	do {} while (0)
347 
348 #endif
349 
350 /*
351  * Initialize the bootmem allocator. It also setup initrd related data
352  * if needed.
353  */
354 #if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
355 
bootmem_init(void)356 static void __init bootmem_init(void)
357 {
358 	init_initrd();
359 	finalize_initrd();
360 }
361 
362 #else  /* !CONFIG_SGI_IP27 */
363 
bootmap_bytes(unsigned long pages)364 static unsigned long __init bootmap_bytes(unsigned long pages)
365 {
366 	unsigned long bytes = DIV_ROUND_UP(pages, 8);
367 
368 	return ALIGN(bytes, sizeof(long));
369 }
370 
bootmem_init(void)371 static void __init bootmem_init(void)
372 {
373 	unsigned long reserved_end;
374 	unsigned long mapstart = ~0UL;
375 	unsigned long bootmap_size;
376 	bool bootmap_valid = false;
377 	int i;
378 
379 	/*
380 	 * Sanity check any INITRD first. We don't take it into account
381 	 * for bootmem setup initially, rely on the end-of-kernel-code
382 	 * as our memory range starting point. Once bootmem is inited we
383 	 * will reserve the area used for the initrd.
384 	 */
385 	init_initrd();
386 	reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
387 
388 	/*
389 	 * max_low_pfn is not a number of pages. The number of pages
390 	 * of the system is given by 'max_low_pfn - min_low_pfn'.
391 	 */
392 	min_low_pfn = ~0UL;
393 	max_low_pfn = 0;
394 
395 	/*
396 	 * Find the highest page frame number we have available.
397 	 */
398 	for (i = 0; i < boot_mem_map.nr_map; i++) {
399 		unsigned long start, end;
400 
401 		if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
402 			continue;
403 
404 		start = PFN_UP(boot_mem_map.map[i].addr);
405 		end = PFN_DOWN(boot_mem_map.map[i].addr
406 				+ boot_mem_map.map[i].size);
407 
408 #ifndef CONFIG_HIGHMEM
409 		/*
410 		 * Skip highmem here so we get an accurate max_low_pfn if low
411 		 * memory stops short of high memory.
412 		 * If the region overlaps HIGHMEM_START, end is clipped so
413 		 * max_pfn excludes the highmem portion.
414 		 */
415 		if (start >= PFN_DOWN(HIGHMEM_START))
416 			continue;
417 		if (end > PFN_DOWN(HIGHMEM_START))
418 			end = PFN_DOWN(HIGHMEM_START);
419 #endif
420 
421 		if (end > max_low_pfn)
422 			max_low_pfn = end;
423 		if (start < min_low_pfn)
424 			min_low_pfn = start;
425 		if (end <= reserved_end)
426 			continue;
427 #ifdef CONFIG_BLK_DEV_INITRD
428 		/* Skip zones before initrd and initrd itself */
429 		if (initrd_end && end <= (unsigned long)PFN_UP(__pa(initrd_end)))
430 			continue;
431 #endif
432 		if (start >= mapstart)
433 			continue;
434 		mapstart = max(reserved_end, start);
435 	}
436 
437 	if (min_low_pfn >= max_low_pfn)
438 		panic("Incorrect memory mapping !!!");
439 	if (min_low_pfn > ARCH_PFN_OFFSET) {
440 		pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
441 			(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
442 			min_low_pfn - ARCH_PFN_OFFSET);
443 	} else if (min_low_pfn < ARCH_PFN_OFFSET) {
444 		pr_info("%lu free pages won't be used\n",
445 			ARCH_PFN_OFFSET - min_low_pfn);
446 	}
447 	min_low_pfn = ARCH_PFN_OFFSET;
448 
449 	/*
450 	 * Determine low and high memory ranges
451 	 */
452 	max_pfn = max_low_pfn;
453 	if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
454 #ifdef CONFIG_HIGHMEM
455 		highstart_pfn = PFN_DOWN(HIGHMEM_START);
456 		highend_pfn = max_low_pfn;
457 #endif
458 		max_low_pfn = PFN_DOWN(HIGHMEM_START);
459 	}
460 
461 #ifdef CONFIG_BLK_DEV_INITRD
462 	/*
463 	 * mapstart should be after initrd_end
464 	 */
465 	if (initrd_end)
466 		mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
467 #endif
468 
469 	/*
470 	 * check that mapstart doesn't overlap with any of
471 	 * memory regions that have been reserved through eg. DTB
472 	 */
473 	bootmap_size = bootmap_bytes(max_low_pfn - min_low_pfn);
474 
475 	bootmap_valid = memory_region_available(PFN_PHYS(mapstart),
476 						bootmap_size);
477 	for (i = 0; i < boot_mem_map.nr_map && !bootmap_valid; i++) {
478 		unsigned long mapstart_addr;
479 
480 		switch (boot_mem_map.map[i].type) {
481 		case BOOT_MEM_RESERVED:
482 			mapstart_addr = PFN_ALIGN(boot_mem_map.map[i].addr +
483 						boot_mem_map.map[i].size);
484 			if (PHYS_PFN(mapstart_addr) < mapstart)
485 				break;
486 
487 			bootmap_valid = memory_region_available(mapstart_addr,
488 								bootmap_size);
489 			if (bootmap_valid)
490 				mapstart = PHYS_PFN(mapstart_addr);
491 			break;
492 		default:
493 			break;
494 		}
495 	}
496 
497 	if (!bootmap_valid)
498 		panic("No memory area to place a bootmap bitmap");
499 
500 	/*
501 	 * Initialize the boot-time allocator with low memory only.
502 	 */
503 	if (bootmap_size != init_bootmem_node(NODE_DATA(0), mapstart,
504 					 min_low_pfn, max_low_pfn))
505 		panic("Unexpected memory size required for bootmap");
506 
507 	for (i = 0; i < boot_mem_map.nr_map; i++) {
508 		unsigned long start, end;
509 
510 		start = PFN_UP(boot_mem_map.map[i].addr);
511 		end = PFN_DOWN(boot_mem_map.map[i].addr
512 				+ boot_mem_map.map[i].size);
513 
514 		if (start <= min_low_pfn)
515 			start = min_low_pfn;
516 		if (start >= end)
517 			continue;
518 
519 #ifndef CONFIG_HIGHMEM
520 		if (end > max_low_pfn)
521 			end = max_low_pfn;
522 
523 		/*
524 		 * ... finally, is the area going away?
525 		 */
526 		if (end <= start)
527 			continue;
528 #endif
529 
530 		memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
531 	}
532 
533 	/*
534 	 * Register fully available low RAM pages with the bootmem allocator.
535 	 */
536 	for (i = 0; i < boot_mem_map.nr_map; i++) {
537 		unsigned long start, end, size;
538 
539 		start = PFN_UP(boot_mem_map.map[i].addr);
540 		end   = PFN_DOWN(boot_mem_map.map[i].addr
541 				    + boot_mem_map.map[i].size);
542 
543 		/*
544 		 * Reserve usable memory.
545 		 */
546 		switch (boot_mem_map.map[i].type) {
547 		case BOOT_MEM_RAM:
548 			break;
549 		case BOOT_MEM_INIT_RAM:
550 			memory_present(0, start, end);
551 			continue;
552 		default:
553 			/* Not usable memory */
554 			if (start > min_low_pfn && end < max_low_pfn)
555 				reserve_bootmem(boot_mem_map.map[i].addr,
556 						boot_mem_map.map[i].size,
557 						BOOTMEM_DEFAULT);
558 			continue;
559 		}
560 
561 		/*
562 		 * We are rounding up the start address of usable memory
563 		 * and at the end of the usable range downwards.
564 		 */
565 		if (start >= max_low_pfn)
566 			continue;
567 		if (start < reserved_end)
568 			start = reserved_end;
569 		if (end > max_low_pfn)
570 			end = max_low_pfn;
571 
572 		/*
573 		 * ... finally, is the area going away?
574 		 */
575 		if (end <= start)
576 			continue;
577 		size = end - start;
578 
579 		/* Register lowmem ranges */
580 		free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
581 		memory_present(0, start, end);
582 	}
583 
584 	/*
585 	 * Reserve the bootmap memory.
586 	 */
587 	reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
588 
589 #ifdef CONFIG_RELOCATABLE
590 	/*
591 	 * The kernel reserves all memory below its _end symbol as bootmem,
592 	 * but the kernel may now be at a much higher address. The memory
593 	 * between the original and new locations may be returned to the system.
594 	 */
595 	if (__pa_symbol(_text) > __pa_symbol(VMLINUX_LOAD_ADDRESS)) {
596 		unsigned long offset;
597 		extern void show_kernel_relocation(const char *level);
598 
599 		offset = __pa_symbol(_text) - __pa_symbol(VMLINUX_LOAD_ADDRESS);
600 		free_bootmem(__pa_symbol(VMLINUX_LOAD_ADDRESS), offset);
601 
602 #if defined(CONFIG_DEBUG_KERNEL) && defined(CONFIG_DEBUG_INFO)
603 		/*
604 		 * This information is necessary when debugging the kernel
605 		 * But is a security vulnerability otherwise!
606 		 */
607 		show_kernel_relocation(KERN_INFO);
608 #endif
609 	}
610 #endif
611 
612 	/*
613 	 * Reserve initrd memory if needed.
614 	 */
615 	finalize_initrd();
616 }
617 
618 #endif	/* CONFIG_SGI_IP27 */
619 
620 /*
621  * arch_mem_init - initialize memory management subsystem
622  *
623  *  o plat_mem_setup() detects the memory configuration and will record detected
624  *    memory areas using add_memory_region.
625  *
626  * At this stage the memory configuration of the system is known to the
627  * kernel but generic memory management system is still entirely uninitialized.
628  *
629  *  o bootmem_init()
630  *  o sparse_init()
631  *  o paging_init()
632  *  o dma_contiguous_reserve()
633  *
634  * At this stage the bootmem allocator is ready to use.
635  *
636  * NOTE: historically plat_mem_setup did the entire platform initialization.
637  *	 This was rather impractical because it meant plat_mem_setup had to
638  * get away without any kind of memory allocator.  To keep old code from
639  * breaking plat_setup was just renamed to plat_mem_setup and a second platform
640  * initialization hook for anything else was introduced.
641  */
642 
643 static int usermem __initdata;
644 
early_parse_mem(char * p)645 static int __init early_parse_mem(char *p)
646 {
647 	phys_addr_t start, size;
648 
649 	/*
650 	 * If a user specifies memory size, we
651 	 * blow away any automatically generated
652 	 * size.
653 	 */
654 	if (usermem == 0) {
655 		boot_mem_map.nr_map = 0;
656 		usermem = 1;
657 	}
658 	start = 0;
659 	size = memparse(p, &p);
660 	if (*p == '@')
661 		start = memparse(p + 1, &p);
662 
663 	add_memory_region(start, size, BOOT_MEM_RAM);
664 	return 0;
665 }
666 early_param("mem", early_parse_mem);
667 
668 #ifdef CONFIG_PROC_VMCORE
669 unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
early_parse_elfcorehdr(char * p)670 static int __init early_parse_elfcorehdr(char *p)
671 {
672 	int i;
673 
674 	setup_elfcorehdr = memparse(p, &p);
675 
676 	for (i = 0; i < boot_mem_map.nr_map; i++) {
677 		unsigned long start = boot_mem_map.map[i].addr;
678 		unsigned long end = (boot_mem_map.map[i].addr +
679 				     boot_mem_map.map[i].size);
680 		if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
681 			/*
682 			 * Reserve from the elf core header to the end of
683 			 * the memory segment, that should all be kdump
684 			 * reserved memory.
685 			 */
686 			setup_elfcorehdr_size = end - setup_elfcorehdr;
687 			break;
688 		}
689 	}
690 	/*
691 	 * If we don't find it in the memory map, then we shouldn't
692 	 * have to worry about it, as the new kernel won't use it.
693 	 */
694 	return 0;
695 }
696 early_param("elfcorehdr", early_parse_elfcorehdr);
697 #endif
698 
arch_mem_addpart(phys_addr_t mem,phys_addr_t end,int type)699 static void __init arch_mem_addpart(phys_addr_t mem, phys_addr_t end, int type)
700 {
701 	phys_addr_t size;
702 	int i;
703 
704 	size = end - mem;
705 	if (!size)
706 		return;
707 
708 	/* Make sure it is in the boot_mem_map */
709 	for (i = 0; i < boot_mem_map.nr_map; i++) {
710 		if (mem >= boot_mem_map.map[i].addr &&
711 		    mem < (boot_mem_map.map[i].addr +
712 			   boot_mem_map.map[i].size))
713 			return;
714 	}
715 	add_memory_region(mem, size, type);
716 }
717 
718 #ifdef CONFIG_KEXEC
get_total_mem(void)719 static inline unsigned long long get_total_mem(void)
720 {
721 	unsigned long long total;
722 
723 	total = max_pfn - min_low_pfn;
724 	return total << PAGE_SHIFT;
725 }
726 
mips_parse_crashkernel(void)727 static void __init mips_parse_crashkernel(void)
728 {
729 	unsigned long long total_mem;
730 	unsigned long long crash_size, crash_base;
731 	int ret;
732 
733 	total_mem = get_total_mem();
734 	ret = parse_crashkernel(boot_command_line, total_mem,
735 				&crash_size, &crash_base);
736 	if (ret != 0 || crash_size <= 0)
737 		return;
738 
739 	crashk_res.start = crash_base;
740 	crashk_res.end	 = crash_base + crash_size - 1;
741 }
742 
request_crashkernel(struct resource * res)743 static void __init request_crashkernel(struct resource *res)
744 {
745 	int ret;
746 
747 	ret = request_resource(res, &crashk_res);
748 	if (!ret)
749 		pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
750 			(unsigned long)((crashk_res.end -
751 					 crashk_res.start + 1) >> 20),
752 			(unsigned long)(crashk_res.start  >> 20));
753 }
754 #else /* !defined(CONFIG_KEXEC)		*/
mips_parse_crashkernel(void)755 static void __init mips_parse_crashkernel(void)
756 {
757 }
758 
request_crashkernel(struct resource * res)759 static void __init request_crashkernel(struct resource *res)
760 {
761 }
762 #endif /* !defined(CONFIG_KEXEC)  */
763 
764 #define USE_PROM_CMDLINE	IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_BOOTLOADER)
765 #define USE_DTB_CMDLINE		IS_ENABLED(CONFIG_MIPS_CMDLINE_FROM_DTB)
766 #define EXTEND_WITH_PROM	IS_ENABLED(CONFIG_MIPS_CMDLINE_DTB_EXTEND)
767 #define BUILTIN_EXTEND_WITH_PROM	\
768 	IS_ENABLED(CONFIG_MIPS_CMDLINE_BUILTIN_EXTEND)
769 
arch_mem_init(char ** cmdline_p)770 static void __init arch_mem_init(char **cmdline_p)
771 {
772 	struct memblock_region *reg;
773 	extern void plat_mem_setup(void);
774 
775 	/* call board setup routine */
776 	plat_mem_setup();
777 
778 	/*
779 	 * Make sure all kernel memory is in the maps.  The "UP" and
780 	 * "DOWN" are opposite for initdata since if it crosses over
781 	 * into another memory section you don't want that to be
782 	 * freed when the initdata is freed.
783 	 */
784 	arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
785 			 PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
786 			 BOOT_MEM_RAM);
787 	arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
788 			 PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
789 			 BOOT_MEM_INIT_RAM);
790 
791 	pr_info("Determined physical RAM map:\n");
792 	print_memory_map();
793 
794 #if defined(CONFIG_CMDLINE_BOOL) && defined(CONFIG_CMDLINE_OVERRIDE)
795 	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
796 #else
797 	if ((USE_PROM_CMDLINE && arcs_cmdline[0]) ||
798 	    (USE_DTB_CMDLINE && !boot_command_line[0]))
799 		strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
800 
801 	if (EXTEND_WITH_PROM && arcs_cmdline[0]) {
802 		if (boot_command_line[0])
803 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
804 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
805 	}
806 
807 #if defined(CONFIG_CMDLINE_BOOL)
808 	if (builtin_cmdline[0]) {
809 		if (boot_command_line[0])
810 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
811 		strlcat(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
812 	}
813 
814 	if (BUILTIN_EXTEND_WITH_PROM && arcs_cmdline[0]) {
815 		if (boot_command_line[0])
816 			strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
817 		strlcat(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
818 	}
819 #endif
820 #endif
821 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
822 
823 	*cmdline_p = command_line;
824 
825 	parse_early_param();
826 
827 	if (usermem) {
828 		pr_info("User-defined physical RAM map:\n");
829 		print_memory_map();
830 	}
831 
832 	bootmem_init();
833 #ifdef CONFIG_PROC_VMCORE
834 	if (setup_elfcorehdr && setup_elfcorehdr_size) {
835 		printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
836 		       setup_elfcorehdr, setup_elfcorehdr_size);
837 		reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
838 				BOOTMEM_DEFAULT);
839 	}
840 #endif
841 
842 	mips_parse_crashkernel();
843 #ifdef CONFIG_KEXEC
844 	if (crashk_res.start != crashk_res.end)
845 		reserve_bootmem(crashk_res.start,
846 				crashk_res.end - crashk_res.start + 1,
847 				BOOTMEM_DEFAULT);
848 #endif
849 	device_tree_init();
850 	sparse_init();
851 	plat_swiotlb_setup();
852 
853 	dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
854 	/* Tell bootmem about cma reserved memblock section */
855 	for_each_memblock(reserved, reg)
856 		if (reg->size != 0)
857 			reserve_bootmem(reg->base, reg->size, BOOTMEM_DEFAULT);
858 
859 	reserve_bootmem_region(__pa_symbol(&__nosave_begin),
860 			__pa_symbol(&__nosave_end)); /* Reserve for hibernation */
861 }
862 
resource_init(void)863 static void __init resource_init(void)
864 {
865 	int i;
866 
867 	if (UNCAC_BASE != IO_BASE)
868 		return;
869 
870 	code_resource.start = __pa_symbol(&_text);
871 	code_resource.end = __pa_symbol(&_etext) - 1;
872 	data_resource.start = __pa_symbol(&_etext);
873 	data_resource.end = __pa_symbol(&_edata) - 1;
874 
875 	for (i = 0; i < boot_mem_map.nr_map; i++) {
876 		struct resource *res;
877 		unsigned long start, end;
878 
879 		start = boot_mem_map.map[i].addr;
880 		end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
881 		if (start >= HIGHMEM_START)
882 			continue;
883 		if (end >= HIGHMEM_START)
884 			end = HIGHMEM_START - 1;
885 
886 		res = alloc_bootmem(sizeof(struct resource));
887 
888 		res->start = start;
889 		res->end = end;
890 		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
891 
892 		switch (boot_mem_map.map[i].type) {
893 		case BOOT_MEM_RAM:
894 		case BOOT_MEM_INIT_RAM:
895 		case BOOT_MEM_ROM_DATA:
896 			res->name = "System RAM";
897 			res->flags |= IORESOURCE_SYSRAM;
898 			break;
899 		case BOOT_MEM_RESERVED:
900 		default:
901 			res->name = "reserved";
902 		}
903 
904 		request_resource(&iomem_resource, res);
905 
906 		/*
907 		 *  We don't know which RAM region contains kernel data,
908 		 *  so we try it repeatedly and let the resource manager
909 		 *  test it.
910 		 */
911 		request_resource(res, &code_resource);
912 		request_resource(res, &data_resource);
913 		request_crashkernel(res);
914 	}
915 }
916 
917 #ifdef CONFIG_SMP
prefill_possible_map(void)918 static void __init prefill_possible_map(void)
919 {
920 	int i, possible = num_possible_cpus();
921 
922 	if (possible > nr_cpu_ids)
923 		possible = nr_cpu_ids;
924 
925 	for (i = 0; i < possible; i++)
926 		set_cpu_possible(i, true);
927 	for (; i < NR_CPUS; i++)
928 		set_cpu_possible(i, false);
929 
930 	nr_cpu_ids = possible;
931 }
932 #else
prefill_possible_map(void)933 static inline void prefill_possible_map(void) {}
934 #endif
935 
setup_arch(char ** cmdline_p)936 void __init setup_arch(char **cmdline_p)
937 {
938 	cpu_probe();
939 	mips_cm_probe();
940 	prom_init();
941 
942 	setup_early_fdc_console();
943 #ifdef CONFIG_EARLY_PRINTK
944 	setup_early_printk();
945 #endif
946 	cpu_report();
947 	check_bugs_early();
948 
949 #if defined(CONFIG_VT)
950 #if defined(CONFIG_VGA_CONSOLE)
951 	conswitchp = &vga_con;
952 #elif defined(CONFIG_DUMMY_CONSOLE)
953 	conswitchp = &dummy_con;
954 #endif
955 #endif
956 
957 	arch_mem_init(cmdline_p);
958 
959 	resource_init();
960 	plat_smp_setup();
961 	prefill_possible_map();
962 
963 	cpu_cache_init();
964 	paging_init();
965 }
966 
967 unsigned long kernelsp[NR_CPUS];
968 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
969 
970 #ifdef CONFIG_USE_OF
971 unsigned long fw_passed_dtb;
972 #endif
973 
974 #ifdef CONFIG_DEBUG_FS
975 struct dentry *mips_debugfs_dir;
debugfs_mips(void)976 static int __init debugfs_mips(void)
977 {
978 	struct dentry *d;
979 
980 	d = debugfs_create_dir("mips", NULL);
981 	if (!d)
982 		return -ENOMEM;
983 	mips_debugfs_dir = d;
984 	return 0;
985 }
986 arch_initcall(debugfs_mips);
987 #endif
988