1 /*
2 * linux/drivers/mmc/core/core.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
32
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
41
42 #include "core.h"
43 #include "bus.h"
44 #include "host.h"
45 #include "sdio_bus.h"
46 #include "pwrseq.h"
47
48 #include "mmc_ops.h"
49 #include "sd_ops.h"
50 #include "sdio_ops.h"
51
52 /* If the device is not responding */
53 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
54
55 /*
56 * Background operations can take a long time, depending on the housekeeping
57 * operations the card has to perform.
58 */
59 #define MMC_BKOPS_MAX_TIMEOUT (4 * 60 * 1000) /* max time to wait in ms */
60
61 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
62 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
63
64 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
65
66 /*
67 * Enabling software CRCs on the data blocks can be a significant (30%)
68 * performance cost, and for other reasons may not always be desired.
69 * So we allow it it to be disabled.
70 */
71 bool use_spi_crc = 1;
72 module_param(use_spi_crc, bool, 0);
73
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)74 static int mmc_schedule_delayed_work(struct delayed_work *work,
75 unsigned long delay)
76 {
77 /*
78 * We use the system_freezable_wq, because of two reasons.
79 * First, it allows several works (not the same work item) to be
80 * executed simultaneously. Second, the queue becomes frozen when
81 * userspace becomes frozen during system PM.
82 */
83 return queue_delayed_work(system_freezable_wq, work, delay);
84 }
85
86 #ifdef CONFIG_FAIL_MMC_REQUEST
87
88 /*
89 * Internal function. Inject random data errors.
90 * If mmc_data is NULL no errors are injected.
91 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)92 static void mmc_should_fail_request(struct mmc_host *host,
93 struct mmc_request *mrq)
94 {
95 struct mmc_command *cmd = mrq->cmd;
96 struct mmc_data *data = mrq->data;
97 static const int data_errors[] = {
98 -ETIMEDOUT,
99 -EILSEQ,
100 -EIO,
101 };
102
103 if (!data)
104 return;
105
106 if (cmd->error || data->error ||
107 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
108 return;
109
110 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
111 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
112 }
113
114 #else /* CONFIG_FAIL_MMC_REQUEST */
115
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)116 static inline void mmc_should_fail_request(struct mmc_host *host,
117 struct mmc_request *mrq)
118 {
119 }
120
121 #endif /* CONFIG_FAIL_MMC_REQUEST */
122
mmc_complete_cmd(struct mmc_request * mrq)123 static inline void mmc_complete_cmd(struct mmc_request *mrq)
124 {
125 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
126 complete_all(&mrq->cmd_completion);
127 }
128
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)129 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
130 {
131 if (!mrq->cap_cmd_during_tfr)
132 return;
133
134 mmc_complete_cmd(mrq);
135
136 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
137 mmc_hostname(host), mrq->cmd->opcode);
138 }
139 EXPORT_SYMBOL(mmc_command_done);
140
141 /**
142 * mmc_request_done - finish processing an MMC request
143 * @host: MMC host which completed request
144 * @mrq: MMC request which request
145 *
146 * MMC drivers should call this function when they have completed
147 * their processing of a request.
148 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)149 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
150 {
151 struct mmc_command *cmd = mrq->cmd;
152 int err = cmd->error;
153
154 /* Flag re-tuning needed on CRC errors */
155 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
156 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
157 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
158 (mrq->data && mrq->data->error == -EILSEQ) ||
159 (mrq->stop && mrq->stop->error == -EILSEQ)))
160 mmc_retune_needed(host);
161
162 if (err && cmd->retries && mmc_host_is_spi(host)) {
163 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
164 cmd->retries = 0;
165 }
166
167 if (host->ongoing_mrq == mrq)
168 host->ongoing_mrq = NULL;
169
170 mmc_complete_cmd(mrq);
171
172 trace_mmc_request_done(host, mrq);
173
174 if (err && cmd->retries && !mmc_card_removed(host->card)) {
175 /*
176 * Request starter must handle retries - see
177 * mmc_wait_for_req_done().
178 */
179 if (mrq->done)
180 mrq->done(mrq);
181 } else {
182 mmc_should_fail_request(host, mrq);
183
184 if (!host->ongoing_mrq)
185 led_trigger_event(host->led, LED_OFF);
186
187 if (mrq->sbc) {
188 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), mrq->sbc->opcode,
190 mrq->sbc->error,
191 mrq->sbc->resp[0], mrq->sbc->resp[1],
192 mrq->sbc->resp[2], mrq->sbc->resp[3]);
193 }
194
195 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
196 mmc_hostname(host), cmd->opcode, err,
197 cmd->resp[0], cmd->resp[1],
198 cmd->resp[2], cmd->resp[3]);
199
200 if (mrq->data) {
201 pr_debug("%s: %d bytes transferred: %d\n",
202 mmc_hostname(host),
203 mrq->data->bytes_xfered, mrq->data->error);
204 #ifdef CONFIG_BLOCK
205 if (mrq->lat_hist_enabled) {
206 ktime_t completion;
207 u_int64_t delta_us;
208
209 completion = ktime_get();
210 delta_us = ktime_us_delta(completion,
211 mrq->io_start);
212 blk_update_latency_hist(
213 (mrq->data->flags & MMC_DATA_READ) ?
214 &host->io_lat_read :
215 &host->io_lat_write, delta_us);
216 }
217 #endif
218 }
219
220 if (mrq->stop) {
221 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
222 mmc_hostname(host), mrq->stop->opcode,
223 mrq->stop->error,
224 mrq->stop->resp[0], mrq->stop->resp[1],
225 mrq->stop->resp[2], mrq->stop->resp[3]);
226 }
227
228 if (mrq->done)
229 mrq->done(mrq);
230 }
231 }
232
233 EXPORT_SYMBOL(mmc_request_done);
234
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)235 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
236 {
237 int err;
238
239 /* Assumes host controller has been runtime resumed by mmc_claim_host */
240 err = mmc_retune(host);
241 if (err) {
242 mrq->cmd->error = err;
243 mmc_request_done(host, mrq);
244 return;
245 }
246
247 /*
248 * For sdio rw commands we must wait for card busy otherwise some
249 * sdio devices won't work properly.
250 */
251 if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
252 int tries = 500; /* Wait aprox 500ms at maximum */
253
254 while (host->ops->card_busy(host) && --tries)
255 mmc_delay(1);
256
257 if (tries == 0) {
258 mrq->cmd->error = -EBUSY;
259 mmc_request_done(host, mrq);
260 return;
261 }
262 }
263
264 if (mrq->cap_cmd_during_tfr) {
265 host->ongoing_mrq = mrq;
266 /*
267 * Retry path could come through here without having waiting on
268 * cmd_completion, so ensure it is reinitialised.
269 */
270 reinit_completion(&mrq->cmd_completion);
271 }
272
273 trace_mmc_request_start(host, mrq);
274
275 host->ops->request(host, mrq);
276 }
277
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)278 static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
279 {
280 #ifdef CONFIG_MMC_DEBUG
281 unsigned int i, sz;
282 struct scatterlist *sg;
283 #endif
284 mmc_retune_hold(host);
285
286 if (mmc_card_removed(host->card))
287 return -ENOMEDIUM;
288
289 if (mrq->sbc) {
290 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
291 mmc_hostname(host), mrq->sbc->opcode,
292 mrq->sbc->arg, mrq->sbc->flags);
293 }
294
295 pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
296 mmc_hostname(host), mrq->cmd->opcode,
297 mrq->cmd->arg, mrq->cmd->flags);
298
299 if (mrq->data) {
300 pr_debug("%s: blksz %d blocks %d flags %08x "
301 "tsac %d ms nsac %d\n",
302 mmc_hostname(host), mrq->data->blksz,
303 mrq->data->blocks, mrq->data->flags,
304 mrq->data->timeout_ns / 1000000,
305 mrq->data->timeout_clks);
306 }
307
308 if (mrq->stop) {
309 pr_debug("%s: CMD%u arg %08x flags %08x\n",
310 mmc_hostname(host), mrq->stop->opcode,
311 mrq->stop->arg, mrq->stop->flags);
312 }
313
314 WARN_ON(!host->claimed);
315
316 mrq->cmd->error = 0;
317 mrq->cmd->mrq = mrq;
318 if (mrq->sbc) {
319 mrq->sbc->error = 0;
320 mrq->sbc->mrq = mrq;
321 }
322 if (mrq->data) {
323 BUG_ON(mrq->data->blksz > host->max_blk_size);
324 BUG_ON(mrq->data->blocks > host->max_blk_count);
325 BUG_ON(mrq->data->blocks * mrq->data->blksz >
326 host->max_req_size);
327
328 #ifdef CONFIG_MMC_DEBUG
329 sz = 0;
330 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
331 sz += sg->length;
332 BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
333 #endif
334
335 mrq->cmd->data = mrq->data;
336 mrq->data->error = 0;
337 mrq->data->mrq = mrq;
338 if (mrq->stop) {
339 mrq->data->stop = mrq->stop;
340 mrq->stop->error = 0;
341 mrq->stop->mrq = mrq;
342 }
343 }
344 led_trigger_event(host->led, LED_FULL);
345 __mmc_start_request(host, mrq);
346
347 return 0;
348 }
349
350 /**
351 * mmc_start_bkops - start BKOPS for supported cards
352 * @card: MMC card to start BKOPS
353 * @form_exception: A flag to indicate if this function was
354 * called due to an exception raised by the card
355 *
356 * Start background operations whenever requested.
357 * When the urgent BKOPS bit is set in a R1 command response
358 * then background operations should be started immediately.
359 */
mmc_start_bkops(struct mmc_card * card,bool from_exception)360 void mmc_start_bkops(struct mmc_card *card, bool from_exception)
361 {
362 int err;
363 int timeout;
364 bool use_busy_signal;
365
366 BUG_ON(!card);
367
368 if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
369 return;
370
371 err = mmc_read_bkops_status(card);
372 if (err) {
373 pr_err("%s: Failed to read bkops status: %d\n",
374 mmc_hostname(card->host), err);
375 return;
376 }
377
378 if (!card->ext_csd.raw_bkops_status)
379 return;
380
381 if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
382 from_exception)
383 return;
384
385 mmc_claim_host(card->host);
386 if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
387 timeout = MMC_BKOPS_MAX_TIMEOUT;
388 use_busy_signal = true;
389 } else {
390 timeout = 0;
391 use_busy_signal = false;
392 }
393
394 mmc_retune_hold(card->host);
395
396 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
397 EXT_CSD_BKOPS_START, 1, timeout,
398 use_busy_signal, true, false);
399 if (err) {
400 pr_warn("%s: Error %d starting bkops\n",
401 mmc_hostname(card->host), err);
402 mmc_retune_release(card->host);
403 goto out;
404 }
405
406 /*
407 * For urgent bkops status (LEVEL_2 and more)
408 * bkops executed synchronously, otherwise
409 * the operation is in progress
410 */
411 if (!use_busy_signal)
412 mmc_card_set_doing_bkops(card);
413 else
414 mmc_retune_release(card->host);
415 out:
416 mmc_release_host(card->host);
417 }
418 EXPORT_SYMBOL(mmc_start_bkops);
419
420 /*
421 * mmc_wait_data_done() - done callback for data request
422 * @mrq: done data request
423 *
424 * Wakes up mmc context, passed as a callback to host controller driver
425 */
mmc_wait_data_done(struct mmc_request * mrq)426 static void mmc_wait_data_done(struct mmc_request *mrq)
427 {
428 struct mmc_context_info *context_info = &mrq->host->context_info;
429
430 context_info->is_done_rcv = true;
431 wake_up_interruptible(&context_info->wait);
432 }
433
mmc_wait_done(struct mmc_request * mrq)434 static void mmc_wait_done(struct mmc_request *mrq)
435 {
436 complete(&mrq->completion);
437 }
438
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)439 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
440 {
441 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
442
443 /*
444 * If there is an ongoing transfer, wait for the command line to become
445 * available.
446 */
447 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
448 wait_for_completion(&ongoing_mrq->cmd_completion);
449 }
450
451 /*
452 *__mmc_start_data_req() - starts data request
453 * @host: MMC host to start the request
454 * @mrq: data request to start
455 *
456 * Sets the done callback to be called when request is completed by the card.
457 * Starts data mmc request execution
458 * If an ongoing transfer is already in progress, wait for the command line
459 * to become available before sending another command.
460 */
__mmc_start_data_req(struct mmc_host * host,struct mmc_request * mrq)461 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
462 {
463 int err;
464
465 mmc_wait_ongoing_tfr_cmd(host);
466
467 mrq->done = mmc_wait_data_done;
468 mrq->host = host;
469
470 init_completion(&mrq->cmd_completion);
471
472 err = mmc_start_request(host, mrq);
473 if (err) {
474 mrq->cmd->error = err;
475 mmc_complete_cmd(mrq);
476 mmc_wait_data_done(mrq);
477 }
478
479 return err;
480 }
481
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)482 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 int err;
485
486 mmc_wait_ongoing_tfr_cmd(host);
487
488 init_completion(&mrq->completion);
489 mrq->done = mmc_wait_done;
490
491 init_completion(&mrq->cmd_completion);
492
493 err = mmc_start_request(host, mrq);
494 if (err) {
495 mrq->cmd->error = err;
496 mmc_complete_cmd(mrq);
497 complete(&mrq->completion);
498 }
499
500 return err;
501 }
502
503 /*
504 * mmc_wait_for_data_req_done() - wait for request completed
505 * @host: MMC host to prepare the command.
506 * @mrq: MMC request to wait for
507 *
508 * Blocks MMC context till host controller will ack end of data request
509 * execution or new request notification arrives from the block layer.
510 * Handles command retries.
511 *
512 * Returns enum mmc_blk_status after checking errors.
513 */
mmc_wait_for_data_req_done(struct mmc_host * host,struct mmc_request * mrq,struct mmc_async_req * next_req)514 static int mmc_wait_for_data_req_done(struct mmc_host *host,
515 struct mmc_request *mrq,
516 struct mmc_async_req *next_req)
517 {
518 struct mmc_command *cmd;
519 struct mmc_context_info *context_info = &host->context_info;
520 int err;
521 unsigned long flags;
522
523 while (1) {
524 wait_event_interruptible(context_info->wait,
525 (context_info->is_done_rcv ||
526 context_info->is_new_req));
527 spin_lock_irqsave(&context_info->lock, flags);
528 context_info->is_waiting_last_req = false;
529 spin_unlock_irqrestore(&context_info->lock, flags);
530 if (context_info->is_done_rcv) {
531 context_info->is_done_rcv = false;
532 context_info->is_new_req = false;
533 cmd = mrq->cmd;
534
535 if (!cmd->error || !cmd->retries ||
536 mmc_card_removed(host->card)) {
537 err = host->areq->err_check(host->card,
538 host->areq);
539 break; /* return err */
540 } else {
541 mmc_retune_recheck(host);
542 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
543 mmc_hostname(host),
544 cmd->opcode, cmd->error);
545 cmd->retries--;
546 cmd->error = 0;
547 __mmc_start_request(host, mrq);
548 continue; /* wait for done/new event again */
549 }
550 } else if (context_info->is_new_req) {
551 context_info->is_new_req = false;
552 if (!next_req)
553 return MMC_BLK_NEW_REQUEST;
554 }
555 }
556 mmc_retune_release(host);
557 return err;
558 }
559
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)560 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
561 {
562 struct mmc_command *cmd;
563
564 while (1) {
565 wait_for_completion(&mrq->completion);
566
567 cmd = mrq->cmd;
568
569 /*
570 * If host has timed out waiting for the sanitize
571 * to complete, card might be still in programming state
572 * so let's try to bring the card out of programming
573 * state.
574 */
575 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
576 if (!mmc_interrupt_hpi(host->card)) {
577 pr_warn("%s: %s: Interrupted sanitize\n",
578 mmc_hostname(host), __func__);
579 cmd->error = 0;
580 break;
581 } else {
582 pr_err("%s: %s: Failed to interrupt sanitize\n",
583 mmc_hostname(host), __func__);
584 }
585 }
586 if (!cmd->error || !cmd->retries ||
587 mmc_card_removed(host->card))
588 break;
589
590 mmc_retune_recheck(host);
591
592 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
593 mmc_hostname(host), cmd->opcode, cmd->error);
594 cmd->retries--;
595 cmd->error = 0;
596 __mmc_start_request(host, mrq);
597 }
598
599 mmc_retune_release(host);
600 }
601 EXPORT_SYMBOL(mmc_wait_for_req_done);
602
603 /**
604 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
605 * @host: MMC host
606 * @mrq: MMC request
607 *
608 * mmc_is_req_done() is used with requests that have
609 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
610 * starting a request and before waiting for it to complete. That is,
611 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
612 * and before mmc_wait_for_req_done(). If it is called at other times the
613 * result is not meaningful.
614 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)615 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
616 {
617 if (host->areq)
618 return host->context_info.is_done_rcv;
619 else
620 return completion_done(&mrq->completion);
621 }
622 EXPORT_SYMBOL(mmc_is_req_done);
623
624 /**
625 * mmc_pre_req - Prepare for a new request
626 * @host: MMC host to prepare command
627 * @mrq: MMC request to prepare for
628 * @is_first_req: true if there is no previous started request
629 * that may run in parellel to this call, otherwise false
630 *
631 * mmc_pre_req() is called in prior to mmc_start_req() to let
632 * host prepare for the new request. Preparation of a request may be
633 * performed while another request is running on the host.
634 */
mmc_pre_req(struct mmc_host * host,struct mmc_request * mrq,bool is_first_req)635 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
636 bool is_first_req)
637 {
638 if (host->ops->pre_req)
639 host->ops->pre_req(host, mrq, is_first_req);
640 }
641
642 /**
643 * mmc_post_req - Post process a completed request
644 * @host: MMC host to post process command
645 * @mrq: MMC request to post process for
646 * @err: Error, if non zero, clean up any resources made in pre_req
647 *
648 * Let the host post process a completed request. Post processing of
649 * a request may be performed while another reuqest is running.
650 */
mmc_post_req(struct mmc_host * host,struct mmc_request * mrq,int err)651 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
652 int err)
653 {
654 if (host->ops->post_req)
655 host->ops->post_req(host, mrq, err);
656 }
657
658 /**
659 * mmc_start_req - start a non-blocking request
660 * @host: MMC host to start command
661 * @areq: async request to start
662 * @error: out parameter returns 0 for success, otherwise non zero
663 *
664 * Start a new MMC custom command request for a host.
665 * If there is on ongoing async request wait for completion
666 * of that request and start the new one and return.
667 * Does not wait for the new request to complete.
668 *
669 * Returns the completed request, NULL in case of none completed.
670 * Wait for the an ongoing request (previoulsy started) to complete and
671 * return the completed request. If there is no ongoing request, NULL
672 * is returned without waiting. NULL is not an error condition.
673 */
mmc_start_req(struct mmc_host * host,struct mmc_async_req * areq,int * error)674 struct mmc_async_req *mmc_start_req(struct mmc_host *host,
675 struct mmc_async_req *areq, int *error)
676 {
677 int err = 0;
678 int start_err = 0;
679 struct mmc_async_req *data = host->areq;
680
681 /* Prepare a new request */
682 if (areq)
683 mmc_pre_req(host, areq->mrq, !host->areq);
684
685 if (host->areq) {
686 err = mmc_wait_for_data_req_done(host, host->areq->mrq, areq);
687 if (err == MMC_BLK_NEW_REQUEST) {
688 if (error)
689 *error = err;
690 /*
691 * The previous request was not completed,
692 * nothing to return
693 */
694 return NULL;
695 }
696 /*
697 * Check BKOPS urgency for each R1 response
698 */
699 if (host->card && mmc_card_mmc(host->card) &&
700 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
701 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
702 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
703
704 /* Cancel the prepared request */
705 if (areq)
706 mmc_post_req(host, areq->mrq, -EINVAL);
707
708 mmc_start_bkops(host->card, true);
709
710 /* prepare the request again */
711 if (areq)
712 mmc_pre_req(host, areq->mrq, !host->areq);
713 }
714 }
715
716 if (!err && areq) {
717 #ifdef CONFIG_BLOCK
718 if (host->latency_hist_enabled) {
719 areq->mrq->io_start = ktime_get();
720 areq->mrq->lat_hist_enabled = 1;
721 } else
722 areq->mrq->lat_hist_enabled = 0;
723 #endif
724 start_err = __mmc_start_data_req(host, areq->mrq);
725 }
726
727 if (host->areq)
728 mmc_post_req(host, host->areq->mrq, 0);
729
730 /* Cancel a prepared request if it was not started. */
731 if ((err || start_err) && areq)
732 mmc_post_req(host, areq->mrq, -EINVAL);
733
734 if (err)
735 host->areq = NULL;
736 else
737 host->areq = areq;
738
739 if (error)
740 *error = err;
741 return data;
742 }
743 EXPORT_SYMBOL(mmc_start_req);
744
745 /**
746 * mmc_wait_for_req - start a request and wait for completion
747 * @host: MMC host to start command
748 * @mrq: MMC request to start
749 *
750 * Start a new MMC custom command request for a host, and wait
751 * for the command to complete. In the case of 'cap_cmd_during_tfr'
752 * requests, the transfer is ongoing and the caller can issue further
753 * commands that do not use the data lines, and then wait by calling
754 * mmc_wait_for_req_done().
755 * Does not attempt to parse the response.
756 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)757 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
758 {
759 __mmc_start_req(host, mrq);
760
761 if (!mrq->cap_cmd_during_tfr)
762 mmc_wait_for_req_done(host, mrq);
763 }
764 EXPORT_SYMBOL(mmc_wait_for_req);
765
766 /**
767 * mmc_interrupt_hpi - Issue for High priority Interrupt
768 * @card: the MMC card associated with the HPI transfer
769 *
770 * Issued High Priority Interrupt, and check for card status
771 * until out-of prg-state.
772 */
mmc_interrupt_hpi(struct mmc_card * card)773 int mmc_interrupt_hpi(struct mmc_card *card)
774 {
775 int err;
776 u32 status;
777 unsigned long prg_wait;
778
779 BUG_ON(!card);
780
781 if (!card->ext_csd.hpi_en) {
782 pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
783 return 1;
784 }
785
786 mmc_claim_host(card->host);
787 err = mmc_send_status(card, &status);
788 if (err) {
789 pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
790 goto out;
791 }
792
793 switch (R1_CURRENT_STATE(status)) {
794 case R1_STATE_IDLE:
795 case R1_STATE_READY:
796 case R1_STATE_STBY:
797 case R1_STATE_TRAN:
798 /*
799 * In idle and transfer states, HPI is not needed and the caller
800 * can issue the next intended command immediately
801 */
802 goto out;
803 case R1_STATE_PRG:
804 break;
805 default:
806 /* In all other states, it's illegal to issue HPI */
807 pr_debug("%s: HPI cannot be sent. Card state=%d\n",
808 mmc_hostname(card->host), R1_CURRENT_STATE(status));
809 err = -EINVAL;
810 goto out;
811 }
812
813 err = mmc_send_hpi_cmd(card, &status);
814 if (err)
815 goto out;
816
817 prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
818 do {
819 err = mmc_send_status(card, &status);
820
821 if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
822 break;
823 if (time_after(jiffies, prg_wait))
824 err = -ETIMEDOUT;
825 } while (!err);
826
827 out:
828 mmc_release_host(card->host);
829 return err;
830 }
831 EXPORT_SYMBOL(mmc_interrupt_hpi);
832
833 /**
834 * mmc_wait_for_cmd - start a command and wait for completion
835 * @host: MMC host to start command
836 * @cmd: MMC command to start
837 * @retries: maximum number of retries
838 *
839 * Start a new MMC command for a host, and wait for the command
840 * to complete. Return any error that occurred while the command
841 * was executing. Do not attempt to parse the response.
842 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)843 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
844 {
845 struct mmc_request mrq = {NULL};
846
847 WARN_ON(!host->claimed);
848
849 memset(cmd->resp, 0, sizeof(cmd->resp));
850 cmd->retries = retries;
851
852 mrq.cmd = cmd;
853 cmd->data = NULL;
854
855 mmc_wait_for_req(host, &mrq);
856
857 return cmd->error;
858 }
859
860 EXPORT_SYMBOL(mmc_wait_for_cmd);
861
862 /**
863 * mmc_stop_bkops - stop ongoing BKOPS
864 * @card: MMC card to check BKOPS
865 *
866 * Send HPI command to stop ongoing background operations to
867 * allow rapid servicing of foreground operations, e.g. read/
868 * writes. Wait until the card comes out of the programming state
869 * to avoid errors in servicing read/write requests.
870 */
mmc_stop_bkops(struct mmc_card * card)871 int mmc_stop_bkops(struct mmc_card *card)
872 {
873 int err = 0;
874
875 BUG_ON(!card);
876 err = mmc_interrupt_hpi(card);
877
878 /*
879 * If err is EINVAL, we can't issue an HPI.
880 * It should complete the BKOPS.
881 */
882 if (!err || (err == -EINVAL)) {
883 mmc_card_clr_doing_bkops(card);
884 mmc_retune_release(card->host);
885 err = 0;
886 }
887
888 return err;
889 }
890 EXPORT_SYMBOL(mmc_stop_bkops);
891
mmc_read_bkops_status(struct mmc_card * card)892 int mmc_read_bkops_status(struct mmc_card *card)
893 {
894 int err;
895 u8 *ext_csd;
896
897 mmc_claim_host(card->host);
898 err = mmc_get_ext_csd(card, &ext_csd);
899 mmc_release_host(card->host);
900 if (err)
901 return err;
902
903 card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
904 card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
905 kfree(ext_csd);
906 return 0;
907 }
908 EXPORT_SYMBOL(mmc_read_bkops_status);
909
910 /**
911 * mmc_set_data_timeout - set the timeout for a data command
912 * @data: data phase for command
913 * @card: the MMC card associated with the data transfer
914 *
915 * Computes the data timeout parameters according to the
916 * correct algorithm given the card type.
917 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)918 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
919 {
920 unsigned int mult;
921
922 /*
923 * SDIO cards only define an upper 1 s limit on access.
924 */
925 if (mmc_card_sdio(card)) {
926 data->timeout_ns = 1000000000;
927 data->timeout_clks = 0;
928 return;
929 }
930
931 /*
932 * SD cards use a 100 multiplier rather than 10
933 */
934 mult = mmc_card_sd(card) ? 100 : 10;
935
936 /*
937 * Scale up the multiplier (and therefore the timeout) by
938 * the r2w factor for writes.
939 */
940 if (data->flags & MMC_DATA_WRITE)
941 mult <<= card->csd.r2w_factor;
942
943 data->timeout_ns = card->csd.tacc_ns * mult;
944 data->timeout_clks = card->csd.tacc_clks * mult;
945
946 /*
947 * SD cards also have an upper limit on the timeout.
948 */
949 if (mmc_card_sd(card)) {
950 unsigned int timeout_us, limit_us;
951
952 timeout_us = data->timeout_ns / 1000;
953 if (card->host->ios.clock)
954 timeout_us += data->timeout_clks * 1000 /
955 (card->host->ios.clock / 1000);
956
957 if (data->flags & MMC_DATA_WRITE)
958 /*
959 * The MMC spec "It is strongly recommended
960 * for hosts to implement more than 500ms
961 * timeout value even if the card indicates
962 * the 250ms maximum busy length." Even the
963 * previous value of 300ms is known to be
964 * insufficient for some cards.
965 */
966 limit_us = 3000000;
967 else
968 limit_us = 100000;
969
970 /*
971 * SDHC cards always use these fixed values.
972 */
973 if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
974 data->timeout_ns = limit_us * 1000;
975 data->timeout_clks = 0;
976 }
977
978 /* assign limit value if invalid */
979 if (timeout_us == 0)
980 data->timeout_ns = limit_us * 1000;
981 }
982
983 /*
984 * Some cards require longer data read timeout than indicated in CSD.
985 * Address this by setting the read timeout to a "reasonably high"
986 * value. For the cards tested, 600ms has proven enough. If necessary,
987 * this value can be increased if other problematic cards require this.
988 */
989 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
990 data->timeout_ns = 600000000;
991 data->timeout_clks = 0;
992 }
993
994 /*
995 * Some cards need very high timeouts if driven in SPI mode.
996 * The worst observed timeout was 900ms after writing a
997 * continuous stream of data until the internal logic
998 * overflowed.
999 */
1000 if (mmc_host_is_spi(card->host)) {
1001 if (data->flags & MMC_DATA_WRITE) {
1002 if (data->timeout_ns < 1000000000)
1003 data->timeout_ns = 1000000000; /* 1s */
1004 } else {
1005 if (data->timeout_ns < 100000000)
1006 data->timeout_ns = 100000000; /* 100ms */
1007 }
1008 }
1009 }
1010 EXPORT_SYMBOL(mmc_set_data_timeout);
1011
1012 /**
1013 * mmc_align_data_size - pads a transfer size to a more optimal value
1014 * @card: the MMC card associated with the data transfer
1015 * @sz: original transfer size
1016 *
1017 * Pads the original data size with a number of extra bytes in
1018 * order to avoid controller bugs and/or performance hits
1019 * (e.g. some controllers revert to PIO for certain sizes).
1020 *
1021 * Returns the improved size, which might be unmodified.
1022 *
1023 * Note that this function is only relevant when issuing a
1024 * single scatter gather entry.
1025 */
mmc_align_data_size(struct mmc_card * card,unsigned int sz)1026 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
1027 {
1028 /*
1029 * FIXME: We don't have a system for the controller to tell
1030 * the core about its problems yet, so for now we just 32-bit
1031 * align the size.
1032 */
1033 sz = ((sz + 3) / 4) * 4;
1034
1035 return sz;
1036 }
1037 EXPORT_SYMBOL(mmc_align_data_size);
1038
1039 /**
1040 * __mmc_claim_host - exclusively claim a host
1041 * @host: mmc host to claim
1042 * @abort: whether or not the operation should be aborted
1043 *
1044 * Claim a host for a set of operations. If @abort is non null and
1045 * dereference a non-zero value then this will return prematurely with
1046 * that non-zero value without acquiring the lock. Returns zero
1047 * with the lock held otherwise.
1048 */
__mmc_claim_host(struct mmc_host * host,atomic_t * abort)1049 int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
1050 {
1051 DECLARE_WAITQUEUE(wait, current);
1052 unsigned long flags;
1053 int stop;
1054 bool pm = false;
1055
1056 might_sleep();
1057
1058 add_wait_queue(&host->wq, &wait);
1059 spin_lock_irqsave(&host->lock, flags);
1060 while (1) {
1061 set_current_state(TASK_UNINTERRUPTIBLE);
1062 stop = abort ? atomic_read(abort) : 0;
1063 if (stop || !host->claimed || host->claimer == current)
1064 break;
1065 spin_unlock_irqrestore(&host->lock, flags);
1066 schedule();
1067 spin_lock_irqsave(&host->lock, flags);
1068 }
1069 set_current_state(TASK_RUNNING);
1070 if (!stop) {
1071 host->claimed = 1;
1072 host->claimer = current;
1073 host->claim_cnt += 1;
1074 if (host->claim_cnt == 1)
1075 pm = true;
1076 } else
1077 wake_up(&host->wq);
1078 spin_unlock_irqrestore(&host->lock, flags);
1079 remove_wait_queue(&host->wq, &wait);
1080
1081 if (pm)
1082 pm_runtime_get_sync(mmc_dev(host));
1083
1084 return stop;
1085 }
1086 EXPORT_SYMBOL(__mmc_claim_host);
1087
1088 /**
1089 * mmc_release_host - release a host
1090 * @host: mmc host to release
1091 *
1092 * Release a MMC host, allowing others to claim the host
1093 * for their operations.
1094 */
mmc_release_host(struct mmc_host * host)1095 void mmc_release_host(struct mmc_host *host)
1096 {
1097 unsigned long flags;
1098
1099 WARN_ON(!host->claimed);
1100
1101 spin_lock_irqsave(&host->lock, flags);
1102 if (--host->claim_cnt) {
1103 /* Release for nested claim */
1104 spin_unlock_irqrestore(&host->lock, flags);
1105 } else {
1106 host->claimed = 0;
1107 host->claimer = NULL;
1108 spin_unlock_irqrestore(&host->lock, flags);
1109 wake_up(&host->wq);
1110 pm_runtime_mark_last_busy(mmc_dev(host));
1111 pm_runtime_put_autosuspend(mmc_dev(host));
1112 }
1113 }
1114 EXPORT_SYMBOL(mmc_release_host);
1115
1116 /*
1117 * This is a helper function, which fetches a runtime pm reference for the
1118 * card device and also claims the host.
1119 */
mmc_get_card(struct mmc_card * card)1120 void mmc_get_card(struct mmc_card *card)
1121 {
1122 pm_runtime_get_sync(&card->dev);
1123 mmc_claim_host(card->host);
1124 }
1125 EXPORT_SYMBOL(mmc_get_card);
1126
1127 /*
1128 * This is a helper function, which releases the host and drops the runtime
1129 * pm reference for the card device.
1130 */
mmc_put_card(struct mmc_card * card)1131 void mmc_put_card(struct mmc_card *card)
1132 {
1133 mmc_release_host(card->host);
1134 pm_runtime_mark_last_busy(&card->dev);
1135 pm_runtime_put_autosuspend(&card->dev);
1136 }
1137 EXPORT_SYMBOL(mmc_put_card);
1138
1139 /*
1140 * Internal function that does the actual ios call to the host driver,
1141 * optionally printing some debug output.
1142 */
mmc_set_ios(struct mmc_host * host)1143 static inline void mmc_set_ios(struct mmc_host *host)
1144 {
1145 struct mmc_ios *ios = &host->ios;
1146
1147 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1148 "width %u timing %u\n",
1149 mmc_hostname(host), ios->clock, ios->bus_mode,
1150 ios->power_mode, ios->chip_select, ios->vdd,
1151 1 << ios->bus_width, ios->timing);
1152
1153 host->ops->set_ios(host, ios);
1154 }
1155
1156 /*
1157 * Control chip select pin on a host.
1158 */
mmc_set_chip_select(struct mmc_host * host,int mode)1159 void mmc_set_chip_select(struct mmc_host *host, int mode)
1160 {
1161 host->ios.chip_select = mode;
1162 mmc_set_ios(host);
1163 }
1164
1165 /*
1166 * Sets the host clock to the highest possible frequency that
1167 * is below "hz".
1168 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)1169 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1170 {
1171 WARN_ON(hz && hz < host->f_min);
1172
1173 if (hz > host->f_max)
1174 hz = host->f_max;
1175
1176 host->ios.clock = hz;
1177 mmc_set_ios(host);
1178 }
1179
mmc_execute_tuning(struct mmc_card * card)1180 int mmc_execute_tuning(struct mmc_card *card)
1181 {
1182 struct mmc_host *host = card->host;
1183 u32 opcode;
1184 int err;
1185
1186 if (!host->ops->execute_tuning)
1187 return 0;
1188
1189 if (mmc_card_mmc(card))
1190 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1191 else
1192 opcode = MMC_SEND_TUNING_BLOCK;
1193
1194 err = host->ops->execute_tuning(host, opcode);
1195
1196 if (err)
1197 pr_err("%s: tuning execution failed: %d\n",
1198 mmc_hostname(host), err);
1199 else
1200 mmc_retune_enable(host);
1201
1202 return err;
1203 }
1204
1205 /*
1206 * Change the bus mode (open drain/push-pull) of a host.
1207 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)1208 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1209 {
1210 host->ios.bus_mode = mode;
1211 mmc_set_ios(host);
1212 }
1213
1214 /*
1215 * Change data bus width of a host.
1216 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)1217 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1218 {
1219 host->ios.bus_width = width;
1220 mmc_set_ios(host);
1221 }
1222
1223 /*
1224 * Set initial state after a power cycle or a hw_reset.
1225 */
mmc_set_initial_state(struct mmc_host * host)1226 void mmc_set_initial_state(struct mmc_host *host)
1227 {
1228 mmc_retune_disable(host);
1229
1230 if (mmc_host_is_spi(host))
1231 host->ios.chip_select = MMC_CS_HIGH;
1232 else
1233 host->ios.chip_select = MMC_CS_DONTCARE;
1234 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1235 host->ios.bus_width = MMC_BUS_WIDTH_1;
1236 host->ios.timing = MMC_TIMING_LEGACY;
1237 host->ios.drv_type = 0;
1238 host->ios.enhanced_strobe = false;
1239
1240 /*
1241 * Make sure we are in non-enhanced strobe mode before we
1242 * actually enable it in ext_csd.
1243 */
1244 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1245 host->ops->hs400_enhanced_strobe)
1246 host->ops->hs400_enhanced_strobe(host, &host->ios);
1247
1248 mmc_set_ios(host);
1249 }
1250
1251 /**
1252 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1253 * @vdd: voltage (mV)
1254 * @low_bits: prefer low bits in boundary cases
1255 *
1256 * This function returns the OCR bit number according to the provided @vdd
1257 * value. If conversion is not possible a negative errno value returned.
1258 *
1259 * Depending on the @low_bits flag the function prefers low or high OCR bits
1260 * on boundary voltages. For example,
1261 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1262 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1263 *
1264 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1265 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1266 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1267 {
1268 const int max_bit = ilog2(MMC_VDD_35_36);
1269 int bit;
1270
1271 if (vdd < 1650 || vdd > 3600)
1272 return -EINVAL;
1273
1274 if (vdd >= 1650 && vdd <= 1950)
1275 return ilog2(MMC_VDD_165_195);
1276
1277 if (low_bits)
1278 vdd -= 1;
1279
1280 /* Base 2000 mV, step 100 mV, bit's base 8. */
1281 bit = (vdd - 2000) / 100 + 8;
1282 if (bit > max_bit)
1283 return max_bit;
1284 return bit;
1285 }
1286
1287 /**
1288 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1289 * @vdd_min: minimum voltage value (mV)
1290 * @vdd_max: maximum voltage value (mV)
1291 *
1292 * This function returns the OCR mask bits according to the provided @vdd_min
1293 * and @vdd_max values. If conversion is not possible the function returns 0.
1294 *
1295 * Notes wrt boundary cases:
1296 * This function sets the OCR bits for all boundary voltages, for example
1297 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1298 * MMC_VDD_34_35 mask.
1299 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1300 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1301 {
1302 u32 mask = 0;
1303
1304 if (vdd_max < vdd_min)
1305 return 0;
1306
1307 /* Prefer high bits for the boundary vdd_max values. */
1308 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1309 if (vdd_max < 0)
1310 return 0;
1311
1312 /* Prefer low bits for the boundary vdd_min values. */
1313 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1314 if (vdd_min < 0)
1315 return 0;
1316
1317 /* Fill the mask, from max bit to min bit. */
1318 while (vdd_max >= vdd_min)
1319 mask |= 1 << vdd_max--;
1320
1321 return mask;
1322 }
1323 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1324
1325 #ifdef CONFIG_OF
1326
1327 /**
1328 * mmc_of_parse_voltage - return mask of supported voltages
1329 * @np: The device node need to be parsed.
1330 * @mask: mask of voltages available for MMC/SD/SDIO
1331 *
1332 * Parse the "voltage-ranges" DT property, returning zero if it is not
1333 * found, negative errno if the voltage-range specification is invalid,
1334 * or one if the voltage-range is specified and successfully parsed.
1335 */
mmc_of_parse_voltage(struct device_node * np,u32 * mask)1336 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1337 {
1338 const u32 *voltage_ranges;
1339 int num_ranges, i;
1340
1341 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1342 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1343 if (!voltage_ranges) {
1344 pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1345 return 0;
1346 }
1347 if (!num_ranges) {
1348 pr_err("%s: voltage-ranges empty\n", np->full_name);
1349 return -EINVAL;
1350 }
1351
1352 for (i = 0; i < num_ranges; i++) {
1353 const int j = i * 2;
1354 u32 ocr_mask;
1355
1356 ocr_mask = mmc_vddrange_to_ocrmask(
1357 be32_to_cpu(voltage_ranges[j]),
1358 be32_to_cpu(voltage_ranges[j + 1]));
1359 if (!ocr_mask) {
1360 pr_err("%s: voltage-range #%d is invalid\n",
1361 np->full_name, i);
1362 return -EINVAL;
1363 }
1364 *mask |= ocr_mask;
1365 }
1366
1367 return 1;
1368 }
1369 EXPORT_SYMBOL(mmc_of_parse_voltage);
1370
1371 #endif /* CONFIG_OF */
1372
mmc_of_get_func_num(struct device_node * node)1373 static int mmc_of_get_func_num(struct device_node *node)
1374 {
1375 u32 reg;
1376 int ret;
1377
1378 ret = of_property_read_u32(node, "reg", ®);
1379 if (ret < 0)
1380 return ret;
1381
1382 return reg;
1383 }
1384
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1385 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1386 unsigned func_num)
1387 {
1388 struct device_node *node;
1389
1390 if (!host->parent || !host->parent->of_node)
1391 return NULL;
1392
1393 for_each_child_of_node(host->parent->of_node, node) {
1394 if (mmc_of_get_func_num(node) == func_num)
1395 return node;
1396 }
1397
1398 return NULL;
1399 }
1400
1401 #ifdef CONFIG_REGULATOR
1402
1403 /**
1404 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1405 * @vdd_bit: OCR bit number
1406 * @min_uV: minimum voltage value (mV)
1407 * @max_uV: maximum voltage value (mV)
1408 *
1409 * This function returns the voltage range according to the provided OCR
1410 * bit number. If conversion is not possible a negative errno value returned.
1411 */
mmc_ocrbitnum_to_vdd(int vdd_bit,int * min_uV,int * max_uV)1412 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1413 {
1414 int tmp;
1415
1416 if (!vdd_bit)
1417 return -EINVAL;
1418
1419 /*
1420 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1421 * bits this regulator doesn't quite support ... don't
1422 * be too picky, most cards and regulators are OK with
1423 * a 0.1V range goof (it's a small error percentage).
1424 */
1425 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1426 if (tmp == 0) {
1427 *min_uV = 1650 * 1000;
1428 *max_uV = 1950 * 1000;
1429 } else {
1430 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1431 *max_uV = *min_uV + 100 * 1000;
1432 }
1433
1434 return 0;
1435 }
1436
1437 /**
1438 * mmc_regulator_get_ocrmask - return mask of supported voltages
1439 * @supply: regulator to use
1440 *
1441 * This returns either a negative errno, or a mask of voltages that
1442 * can be provided to MMC/SD/SDIO devices using the specified voltage
1443 * regulator. This would normally be called before registering the
1444 * MMC host adapter.
1445 */
mmc_regulator_get_ocrmask(struct regulator * supply)1446 int mmc_regulator_get_ocrmask(struct regulator *supply)
1447 {
1448 int result = 0;
1449 int count;
1450 int i;
1451 int vdd_uV;
1452 int vdd_mV;
1453
1454 count = regulator_count_voltages(supply);
1455 if (count < 0)
1456 return count;
1457
1458 for (i = 0; i < count; i++) {
1459 vdd_uV = regulator_list_voltage(supply, i);
1460 if (vdd_uV <= 0)
1461 continue;
1462
1463 vdd_mV = vdd_uV / 1000;
1464 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1465 }
1466
1467 if (!result) {
1468 vdd_uV = regulator_get_voltage(supply);
1469 if (vdd_uV <= 0)
1470 return vdd_uV;
1471
1472 vdd_mV = vdd_uV / 1000;
1473 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1474 }
1475
1476 return result;
1477 }
1478 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1479
1480 /**
1481 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1482 * @mmc: the host to regulate
1483 * @supply: regulator to use
1484 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1485 *
1486 * Returns zero on success, else negative errno.
1487 *
1488 * MMC host drivers may use this to enable or disable a regulator using
1489 * a particular supply voltage. This would normally be called from the
1490 * set_ios() method.
1491 */
mmc_regulator_set_ocr(struct mmc_host * mmc,struct regulator * supply,unsigned short vdd_bit)1492 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1493 struct regulator *supply,
1494 unsigned short vdd_bit)
1495 {
1496 int result = 0;
1497 int min_uV, max_uV;
1498
1499 if (vdd_bit) {
1500 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1501
1502 result = regulator_set_voltage(supply, min_uV, max_uV);
1503 if (result == 0 && !mmc->regulator_enabled) {
1504 result = regulator_enable(supply);
1505 if (!result)
1506 mmc->regulator_enabled = true;
1507 }
1508 } else if (mmc->regulator_enabled) {
1509 result = regulator_disable(supply);
1510 if (result == 0)
1511 mmc->regulator_enabled = false;
1512 }
1513
1514 if (result)
1515 dev_err(mmc_dev(mmc),
1516 "could not set regulator OCR (%d)\n", result);
1517 return result;
1518 }
1519 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1520
mmc_regulator_set_voltage_if_supported(struct regulator * regulator,int min_uV,int target_uV,int max_uV)1521 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1522 int min_uV, int target_uV,
1523 int max_uV)
1524 {
1525 /*
1526 * Check if supported first to avoid errors since we may try several
1527 * signal levels during power up and don't want to show errors.
1528 */
1529 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1530 return -EINVAL;
1531
1532 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1533 max_uV);
1534 }
1535
1536 /**
1537 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1538 *
1539 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1540 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1541 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1542 * SD card spec also define VQMMC in terms of VMMC.
1543 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1544 *
1545 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1546 * requested voltage. This is definitely a good idea for UHS where there's a
1547 * separate regulator on the card that's trying to make 1.8V and it's best if
1548 * we match.
1549 *
1550 * This function is expected to be used by a controller's
1551 * start_signal_voltage_switch() function.
1552 */
mmc_regulator_set_vqmmc(struct mmc_host * mmc,struct mmc_ios * ios)1553 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1554 {
1555 struct device *dev = mmc_dev(mmc);
1556 int ret, volt, min_uV, max_uV;
1557
1558 /* If no vqmmc supply then we can't change the voltage */
1559 if (IS_ERR(mmc->supply.vqmmc))
1560 return -EINVAL;
1561
1562 switch (ios->signal_voltage) {
1563 case MMC_SIGNAL_VOLTAGE_120:
1564 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1565 1100000, 1200000, 1300000);
1566 case MMC_SIGNAL_VOLTAGE_180:
1567 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1568 1700000, 1800000, 1950000);
1569 case MMC_SIGNAL_VOLTAGE_330:
1570 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1571 if (ret < 0)
1572 return ret;
1573
1574 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1575 __func__, volt, max_uV);
1576
1577 min_uV = max(volt - 300000, 2700000);
1578 max_uV = min(max_uV + 200000, 3600000);
1579
1580 /*
1581 * Due to a limitation in the current implementation of
1582 * regulator_set_voltage_triplet() which is taking the lowest
1583 * voltage possible if below the target, search for a suitable
1584 * voltage in two steps and try to stay close to vmmc
1585 * with a 0.3V tolerance at first.
1586 */
1587 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1588 min_uV, volt, max_uV))
1589 return 0;
1590
1591 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1592 2700000, volt, 3600000);
1593 default:
1594 return -EINVAL;
1595 }
1596 }
1597 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1598
1599 #endif /* CONFIG_REGULATOR */
1600
mmc_regulator_get_supply(struct mmc_host * mmc)1601 int mmc_regulator_get_supply(struct mmc_host *mmc)
1602 {
1603 struct device *dev = mmc_dev(mmc);
1604 int ret;
1605
1606 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1607 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1608
1609 if (IS_ERR(mmc->supply.vmmc)) {
1610 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1611 return -EPROBE_DEFER;
1612 dev_dbg(dev, "No vmmc regulator found\n");
1613 } else {
1614 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1615 if (ret > 0)
1616 mmc->ocr_avail = ret;
1617 else
1618 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1619 }
1620
1621 if (IS_ERR(mmc->supply.vqmmc)) {
1622 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1623 return -EPROBE_DEFER;
1624 dev_dbg(dev, "No vqmmc regulator found\n");
1625 }
1626
1627 return 0;
1628 }
1629 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1630
1631 /*
1632 * Mask off any voltages we don't support and select
1633 * the lowest voltage
1634 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1635 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1636 {
1637 int bit;
1638
1639 /*
1640 * Sanity check the voltages that the card claims to
1641 * support.
1642 */
1643 if (ocr & 0x7F) {
1644 dev_warn(mmc_dev(host),
1645 "card claims to support voltages below defined range\n");
1646 ocr &= ~0x7F;
1647 }
1648
1649 ocr &= host->ocr_avail;
1650 if (!ocr) {
1651 dev_warn(mmc_dev(host), "no support for card's volts\n");
1652 return 0;
1653 }
1654
1655 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1656 bit = ffs(ocr) - 1;
1657 ocr &= 3 << bit;
1658 mmc_power_cycle(host, ocr);
1659 } else {
1660 bit = fls(ocr) - 1;
1661 ocr &= 3 << bit;
1662 if (bit != host->ios.vdd)
1663 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1664 }
1665
1666 return ocr;
1667 }
1668
__mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1669 int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1670 {
1671 int err = 0;
1672 int old_signal_voltage = host->ios.signal_voltage;
1673
1674 host->ios.signal_voltage = signal_voltage;
1675 if (host->ops->start_signal_voltage_switch)
1676 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1677
1678 if (err)
1679 host->ios.signal_voltage = old_signal_voltage;
1680
1681 return err;
1682
1683 }
1684
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage,u32 ocr)1685 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1686 {
1687 struct mmc_command cmd = {0};
1688 int err = 0;
1689 u32 clock;
1690
1691 BUG_ON(!host);
1692
1693 /*
1694 * Send CMD11 only if the request is to switch the card to
1695 * 1.8V signalling.
1696 */
1697 if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1698 return __mmc_set_signal_voltage(host, signal_voltage);
1699
1700 /*
1701 * If we cannot switch voltages, return failure so the caller
1702 * can continue without UHS mode
1703 */
1704 if (!host->ops->start_signal_voltage_switch)
1705 return -EPERM;
1706 if (!host->ops->card_busy)
1707 pr_warn("%s: cannot verify signal voltage switch\n",
1708 mmc_hostname(host));
1709
1710 cmd.opcode = SD_SWITCH_VOLTAGE;
1711 cmd.arg = 0;
1712 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1713
1714 err = mmc_wait_for_cmd(host, &cmd, 0);
1715 if (err)
1716 return err;
1717
1718 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1719 return -EIO;
1720
1721 /*
1722 * The card should drive cmd and dat[0:3] low immediately
1723 * after the response of cmd11, but wait 1 ms to be sure
1724 */
1725 mmc_delay(1);
1726 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1727 err = -EAGAIN;
1728 goto power_cycle;
1729 }
1730 /*
1731 * During a signal voltage level switch, the clock must be gated
1732 * for 5 ms according to the SD spec
1733 */
1734 clock = host->ios.clock;
1735 host->ios.clock = 0;
1736 mmc_set_ios(host);
1737
1738 if (__mmc_set_signal_voltage(host, signal_voltage)) {
1739 /*
1740 * Voltages may not have been switched, but we've already
1741 * sent CMD11, so a power cycle is required anyway
1742 */
1743 err = -EAGAIN;
1744 goto power_cycle;
1745 }
1746
1747 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1748 mmc_delay(10);
1749 host->ios.clock = clock;
1750 mmc_set_ios(host);
1751
1752 /* Wait for at least 1 ms according to spec */
1753 mmc_delay(1);
1754
1755 /*
1756 * Failure to switch is indicated by the card holding
1757 * dat[0:3] low
1758 */
1759 if (host->ops->card_busy && host->ops->card_busy(host))
1760 err = -EAGAIN;
1761
1762 power_cycle:
1763 if (err) {
1764 pr_debug("%s: Signal voltage switch failed, "
1765 "power cycling card\n", mmc_hostname(host));
1766 mmc_power_cycle(host, ocr);
1767 }
1768
1769 return err;
1770 }
1771
1772 /*
1773 * Select timing parameters for host.
1774 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1775 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1776 {
1777 host->ios.timing = timing;
1778 mmc_set_ios(host);
1779 }
1780
1781 /*
1782 * Select appropriate driver type for host.
1783 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1784 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1785 {
1786 host->ios.drv_type = drv_type;
1787 mmc_set_ios(host);
1788 }
1789
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1790 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1791 int card_drv_type, int *drv_type)
1792 {
1793 struct mmc_host *host = card->host;
1794 int host_drv_type = SD_DRIVER_TYPE_B;
1795
1796 *drv_type = 0;
1797
1798 if (!host->ops->select_drive_strength)
1799 return 0;
1800
1801 /* Use SD definition of driver strength for hosts */
1802 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1803 host_drv_type |= SD_DRIVER_TYPE_A;
1804
1805 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1806 host_drv_type |= SD_DRIVER_TYPE_C;
1807
1808 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1809 host_drv_type |= SD_DRIVER_TYPE_D;
1810
1811 /*
1812 * The drive strength that the hardware can support
1813 * depends on the board design. Pass the appropriate
1814 * information and let the hardware specific code
1815 * return what is possible given the options
1816 */
1817 return host->ops->select_drive_strength(card, max_dtr,
1818 host_drv_type,
1819 card_drv_type,
1820 drv_type);
1821 }
1822
1823 /*
1824 * Apply power to the MMC stack. This is a two-stage process.
1825 * First, we enable power to the card without the clock running.
1826 * We then wait a bit for the power to stabilise. Finally,
1827 * enable the bus drivers and clock to the card.
1828 *
1829 * We must _NOT_ enable the clock prior to power stablising.
1830 *
1831 * If a host does all the power sequencing itself, ignore the
1832 * initial MMC_POWER_UP stage.
1833 */
mmc_power_up(struct mmc_host * host,u32 ocr)1834 void mmc_power_up(struct mmc_host *host, u32 ocr)
1835 {
1836 if (host->ios.power_mode == MMC_POWER_ON)
1837 return;
1838
1839 mmc_pwrseq_pre_power_on(host);
1840
1841 host->ios.vdd = fls(ocr) - 1;
1842 host->ios.power_mode = MMC_POWER_UP;
1843 /* Set initial state and call mmc_set_ios */
1844 mmc_set_initial_state(host);
1845
1846 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1847 if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1848 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1849 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1850 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1851 else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1852 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1853
1854 /*
1855 * This delay should be sufficient to allow the power supply
1856 * to reach the minimum voltage.
1857 */
1858 mmc_delay(10);
1859
1860 mmc_pwrseq_post_power_on(host);
1861
1862 host->ios.clock = host->f_init;
1863
1864 host->ios.power_mode = MMC_POWER_ON;
1865 mmc_set_ios(host);
1866
1867 /*
1868 * This delay must be at least 74 clock sizes, or 1 ms, or the
1869 * time required to reach a stable voltage.
1870 */
1871 mmc_delay(10);
1872 }
1873
mmc_power_off(struct mmc_host * host)1874 void mmc_power_off(struct mmc_host *host)
1875 {
1876 if (host->ios.power_mode == MMC_POWER_OFF)
1877 return;
1878
1879 mmc_pwrseq_power_off(host);
1880
1881 host->ios.clock = 0;
1882 host->ios.vdd = 0;
1883
1884 host->ios.power_mode = MMC_POWER_OFF;
1885 /* Set initial state and call mmc_set_ios */
1886 mmc_set_initial_state(host);
1887
1888 /*
1889 * Some configurations, such as the 802.11 SDIO card in the OLPC
1890 * XO-1.5, require a short delay after poweroff before the card
1891 * can be successfully turned on again.
1892 */
1893 mmc_delay(1);
1894 }
1895
mmc_power_cycle(struct mmc_host * host,u32 ocr)1896 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1897 {
1898 mmc_power_off(host);
1899 /* Wait at least 1 ms according to SD spec */
1900 mmc_delay(1);
1901 mmc_power_up(host, ocr);
1902 }
1903
1904 /*
1905 * Cleanup when the last reference to the bus operator is dropped.
1906 */
__mmc_release_bus(struct mmc_host * host)1907 static void __mmc_release_bus(struct mmc_host *host)
1908 {
1909 BUG_ON(!host);
1910 BUG_ON(host->bus_refs);
1911 BUG_ON(!host->bus_dead);
1912
1913 host->bus_ops = NULL;
1914 }
1915
1916 /*
1917 * Increase reference count of bus operator
1918 */
mmc_bus_get(struct mmc_host * host)1919 static inline void mmc_bus_get(struct mmc_host *host)
1920 {
1921 unsigned long flags;
1922
1923 spin_lock_irqsave(&host->lock, flags);
1924 host->bus_refs++;
1925 spin_unlock_irqrestore(&host->lock, flags);
1926 }
1927
1928 /*
1929 * Decrease reference count of bus operator and free it if
1930 * it is the last reference.
1931 */
mmc_bus_put(struct mmc_host * host)1932 static inline void mmc_bus_put(struct mmc_host *host)
1933 {
1934 unsigned long flags;
1935
1936 spin_lock_irqsave(&host->lock, flags);
1937 host->bus_refs--;
1938 if ((host->bus_refs == 0) && host->bus_ops)
1939 __mmc_release_bus(host);
1940 spin_unlock_irqrestore(&host->lock, flags);
1941 }
1942
1943 /*
1944 * Assign a mmc bus handler to a host. Only one bus handler may control a
1945 * host at any given time.
1946 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1947 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1948 {
1949 unsigned long flags;
1950
1951 BUG_ON(!host);
1952 BUG_ON(!ops);
1953
1954 WARN_ON(!host->claimed);
1955
1956 spin_lock_irqsave(&host->lock, flags);
1957
1958 BUG_ON(host->bus_ops);
1959 BUG_ON(host->bus_refs);
1960
1961 host->bus_ops = ops;
1962 host->bus_refs = 1;
1963 host->bus_dead = 0;
1964
1965 spin_unlock_irqrestore(&host->lock, flags);
1966 }
1967
1968 /*
1969 * Remove the current bus handler from a host.
1970 */
mmc_detach_bus(struct mmc_host * host)1971 void mmc_detach_bus(struct mmc_host *host)
1972 {
1973 unsigned long flags;
1974
1975 BUG_ON(!host);
1976
1977 WARN_ON(!host->claimed);
1978 WARN_ON(!host->bus_ops);
1979
1980 spin_lock_irqsave(&host->lock, flags);
1981
1982 host->bus_dead = 1;
1983
1984 spin_unlock_irqrestore(&host->lock, flags);
1985
1986 mmc_bus_put(host);
1987 }
1988
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1989 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1990 bool cd_irq)
1991 {
1992 #ifdef CONFIG_MMC_DEBUG
1993 unsigned long flags;
1994 spin_lock_irqsave(&host->lock, flags);
1995 WARN_ON(host->removed);
1996 spin_unlock_irqrestore(&host->lock, flags);
1997 #endif
1998
1999 /*
2000 * If the device is configured as wakeup, we prevent a new sleep for
2001 * 5 s to give provision for user space to consume the event.
2002 */
2003 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
2004 device_can_wakeup(mmc_dev(host)))
2005 pm_wakeup_event(mmc_dev(host), 5000);
2006
2007 host->detect_change = 1;
2008 mmc_schedule_delayed_work(&host->detect, delay);
2009 }
2010
2011 /**
2012 * mmc_detect_change - process change of state on a MMC socket
2013 * @host: host which changed state.
2014 * @delay: optional delay to wait before detection (jiffies)
2015 *
2016 * MMC drivers should call this when they detect a card has been
2017 * inserted or removed. The MMC layer will confirm that any
2018 * present card is still functional, and initialize any newly
2019 * inserted.
2020 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)2021 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
2022 {
2023 _mmc_detect_change(host, delay, true);
2024 }
2025 EXPORT_SYMBOL(mmc_detect_change);
2026
mmc_init_erase(struct mmc_card * card)2027 void mmc_init_erase(struct mmc_card *card)
2028 {
2029 unsigned int sz;
2030
2031 if (is_power_of_2(card->erase_size))
2032 card->erase_shift = ffs(card->erase_size) - 1;
2033 else
2034 card->erase_shift = 0;
2035
2036 /*
2037 * It is possible to erase an arbitrarily large area of an SD or MMC
2038 * card. That is not desirable because it can take a long time
2039 * (minutes) potentially delaying more important I/O, and also the
2040 * timeout calculations become increasingly hugely over-estimated.
2041 * Consequently, 'pref_erase' is defined as a guide to limit erases
2042 * to that size and alignment.
2043 *
2044 * For SD cards that define Allocation Unit size, limit erases to one
2045 * Allocation Unit at a time.
2046 * For MMC, have a stab at ai good value and for modern cards it will
2047 * end up being 4MiB. Note that if the value is too small, it can end
2048 * up taking longer to erase. Also note, erase_size is already set to
2049 * High Capacity Erase Size if available when this function is called.
2050 */
2051 if (mmc_card_sd(card) && card->ssr.au) {
2052 card->pref_erase = card->ssr.au;
2053 card->erase_shift = ffs(card->ssr.au) - 1;
2054 } else if (card->erase_size) {
2055 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2056 if (sz < 128)
2057 card->pref_erase = 512 * 1024 / 512;
2058 else if (sz < 512)
2059 card->pref_erase = 1024 * 1024 / 512;
2060 else if (sz < 1024)
2061 card->pref_erase = 2 * 1024 * 1024 / 512;
2062 else
2063 card->pref_erase = 4 * 1024 * 1024 / 512;
2064 if (card->pref_erase < card->erase_size)
2065 card->pref_erase = card->erase_size;
2066 else {
2067 sz = card->pref_erase % card->erase_size;
2068 if (sz)
2069 card->pref_erase += card->erase_size - sz;
2070 }
2071 } else
2072 card->pref_erase = 0;
2073 }
2074
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)2075 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2076 unsigned int arg, unsigned int qty)
2077 {
2078 unsigned int erase_timeout;
2079
2080 if (arg == MMC_DISCARD_ARG ||
2081 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2082 erase_timeout = card->ext_csd.trim_timeout;
2083 } else if (card->ext_csd.erase_group_def & 1) {
2084 /* High Capacity Erase Group Size uses HC timeouts */
2085 if (arg == MMC_TRIM_ARG)
2086 erase_timeout = card->ext_csd.trim_timeout;
2087 else
2088 erase_timeout = card->ext_csd.hc_erase_timeout;
2089 } else {
2090 /* CSD Erase Group Size uses write timeout */
2091 unsigned int mult = (10 << card->csd.r2w_factor);
2092 unsigned int timeout_clks = card->csd.tacc_clks * mult;
2093 unsigned int timeout_us;
2094
2095 /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
2096 if (card->csd.tacc_ns < 1000000)
2097 timeout_us = (card->csd.tacc_ns * mult) / 1000;
2098 else
2099 timeout_us = (card->csd.tacc_ns / 1000) * mult;
2100
2101 /*
2102 * ios.clock is only a target. The real clock rate might be
2103 * less but not that much less, so fudge it by multiplying by 2.
2104 */
2105 timeout_clks <<= 1;
2106 timeout_us += (timeout_clks * 1000) /
2107 (card->host->ios.clock / 1000);
2108
2109 erase_timeout = timeout_us / 1000;
2110
2111 /*
2112 * Theoretically, the calculation could underflow so round up
2113 * to 1ms in that case.
2114 */
2115 if (!erase_timeout)
2116 erase_timeout = 1;
2117 }
2118
2119 /* Multiplier for secure operations */
2120 if (arg & MMC_SECURE_ARGS) {
2121 if (arg == MMC_SECURE_ERASE_ARG)
2122 erase_timeout *= card->ext_csd.sec_erase_mult;
2123 else
2124 erase_timeout *= card->ext_csd.sec_trim_mult;
2125 }
2126
2127 erase_timeout *= qty;
2128
2129 /*
2130 * Ensure at least a 1 second timeout for SPI as per
2131 * 'mmc_set_data_timeout()'
2132 */
2133 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2134 erase_timeout = 1000;
2135
2136 return erase_timeout;
2137 }
2138
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)2139 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2140 unsigned int arg,
2141 unsigned int qty)
2142 {
2143 unsigned int erase_timeout;
2144
2145 if (card->ssr.erase_timeout) {
2146 /* Erase timeout specified in SD Status Register (SSR) */
2147 erase_timeout = card->ssr.erase_timeout * qty +
2148 card->ssr.erase_offset;
2149 } else {
2150 /*
2151 * Erase timeout not specified in SD Status Register (SSR) so
2152 * use 250ms per write block.
2153 */
2154 erase_timeout = 250 * qty;
2155 }
2156
2157 /* Must not be less than 1 second */
2158 if (erase_timeout < 1000)
2159 erase_timeout = 1000;
2160
2161 return erase_timeout;
2162 }
2163
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)2164 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2165 unsigned int arg,
2166 unsigned int qty)
2167 {
2168 if (mmc_card_sd(card))
2169 return mmc_sd_erase_timeout(card, arg, qty);
2170 else
2171 return mmc_mmc_erase_timeout(card, arg, qty);
2172 }
2173
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)2174 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2175 unsigned int to, unsigned int arg)
2176 {
2177 struct mmc_command cmd = {0};
2178 unsigned int qty = 0, busy_timeout = 0;
2179 bool use_r1b_resp = false;
2180 unsigned long timeout;
2181 int err;
2182
2183 mmc_retune_hold(card->host);
2184
2185 /*
2186 * qty is used to calculate the erase timeout which depends on how many
2187 * erase groups (or allocation units in SD terminology) are affected.
2188 * We count erasing part of an erase group as one erase group.
2189 * For SD, the allocation units are always a power of 2. For MMC, the
2190 * erase group size is almost certainly also power of 2, but it does not
2191 * seem to insist on that in the JEDEC standard, so we fall back to
2192 * division in that case. SD may not specify an allocation unit size,
2193 * in which case the timeout is based on the number of write blocks.
2194 *
2195 * Note that the timeout for secure trim 2 will only be correct if the
2196 * number of erase groups specified is the same as the total of all
2197 * preceding secure trim 1 commands. Since the power may have been
2198 * lost since the secure trim 1 commands occurred, it is generally
2199 * impossible to calculate the secure trim 2 timeout correctly.
2200 */
2201 if (card->erase_shift)
2202 qty += ((to >> card->erase_shift) -
2203 (from >> card->erase_shift)) + 1;
2204 else if (mmc_card_sd(card))
2205 qty += to - from + 1;
2206 else
2207 qty += ((to / card->erase_size) -
2208 (from / card->erase_size)) + 1;
2209
2210 if (!mmc_card_blockaddr(card)) {
2211 from <<= 9;
2212 to <<= 9;
2213 }
2214
2215 if (mmc_card_sd(card))
2216 cmd.opcode = SD_ERASE_WR_BLK_START;
2217 else
2218 cmd.opcode = MMC_ERASE_GROUP_START;
2219 cmd.arg = from;
2220 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2221 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2222 if (err) {
2223 pr_err("mmc_erase: group start error %d, "
2224 "status %#x\n", err, cmd.resp[0]);
2225 err = -EIO;
2226 goto out;
2227 }
2228
2229 memset(&cmd, 0, sizeof(struct mmc_command));
2230 if (mmc_card_sd(card))
2231 cmd.opcode = SD_ERASE_WR_BLK_END;
2232 else
2233 cmd.opcode = MMC_ERASE_GROUP_END;
2234 cmd.arg = to;
2235 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2236 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2237 if (err) {
2238 pr_err("mmc_erase: group end error %d, status %#x\n",
2239 err, cmd.resp[0]);
2240 err = -EIO;
2241 goto out;
2242 }
2243
2244 memset(&cmd, 0, sizeof(struct mmc_command));
2245 cmd.opcode = MMC_ERASE;
2246 cmd.arg = arg;
2247 busy_timeout = mmc_erase_timeout(card, arg, qty);
2248 /*
2249 * If the host controller supports busy signalling and the timeout for
2250 * the erase operation does not exceed the max_busy_timeout, we should
2251 * use R1B response. Or we need to prevent the host from doing hw busy
2252 * detection, which is done by converting to a R1 response instead.
2253 */
2254 if (card->host->max_busy_timeout &&
2255 busy_timeout > card->host->max_busy_timeout) {
2256 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2257 } else {
2258 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2259 cmd.busy_timeout = busy_timeout;
2260 use_r1b_resp = true;
2261 }
2262
2263 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2264 if (err) {
2265 pr_err("mmc_erase: erase error %d, status %#x\n",
2266 err, cmd.resp[0]);
2267 err = -EIO;
2268 goto out;
2269 }
2270
2271 if (mmc_host_is_spi(card->host))
2272 goto out;
2273
2274 /*
2275 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2276 * shall be avoided.
2277 */
2278 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2279 goto out;
2280
2281 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2282 do {
2283 memset(&cmd, 0, sizeof(struct mmc_command));
2284 cmd.opcode = MMC_SEND_STATUS;
2285 cmd.arg = card->rca << 16;
2286 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2287 /* Do not retry else we can't see errors */
2288 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2289 if (err || (cmd.resp[0] & 0xFDF92000)) {
2290 pr_err("error %d requesting status %#x\n",
2291 err, cmd.resp[0]);
2292 err = -EIO;
2293 goto out;
2294 }
2295
2296 /* Timeout if the device never becomes ready for data and
2297 * never leaves the program state.
2298 */
2299 if (time_after(jiffies, timeout)) {
2300 pr_err("%s: Card stuck in programming state! %s\n",
2301 mmc_hostname(card->host), __func__);
2302 err = -EIO;
2303 goto out;
2304 }
2305
2306 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2307 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2308 out:
2309 mmc_retune_release(card->host);
2310 return err;
2311 }
2312
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)2313 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2314 unsigned int *from,
2315 unsigned int *to,
2316 unsigned int nr)
2317 {
2318 unsigned int from_new = *from, nr_new = nr, rem;
2319
2320 /*
2321 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2322 * to align the erase size efficiently.
2323 */
2324 if (is_power_of_2(card->erase_size)) {
2325 unsigned int temp = from_new;
2326
2327 from_new = round_up(temp, card->erase_size);
2328 rem = from_new - temp;
2329
2330 if (nr_new > rem)
2331 nr_new -= rem;
2332 else
2333 return 0;
2334
2335 nr_new = round_down(nr_new, card->erase_size);
2336 } else {
2337 rem = from_new % card->erase_size;
2338 if (rem) {
2339 rem = card->erase_size - rem;
2340 from_new += rem;
2341 if (nr_new > rem)
2342 nr_new -= rem;
2343 else
2344 return 0;
2345 }
2346
2347 rem = nr_new % card->erase_size;
2348 if (rem)
2349 nr_new -= rem;
2350 }
2351
2352 if (nr_new == 0)
2353 return 0;
2354
2355 *to = from_new + nr_new;
2356 *from = from_new;
2357
2358 return nr_new;
2359 }
2360
2361 /**
2362 * mmc_erase - erase sectors.
2363 * @card: card to erase
2364 * @from: first sector to erase
2365 * @nr: number of sectors to erase
2366 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2367 *
2368 * Caller must claim host before calling this function.
2369 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)2370 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2371 unsigned int arg)
2372 {
2373 unsigned int rem, to = from + nr;
2374 int err;
2375
2376 if (!(card->host->caps & MMC_CAP_ERASE) ||
2377 !(card->csd.cmdclass & CCC_ERASE))
2378 return -EOPNOTSUPP;
2379
2380 if (!card->erase_size)
2381 return -EOPNOTSUPP;
2382
2383 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2384 return -EOPNOTSUPP;
2385
2386 if ((arg & MMC_SECURE_ARGS) &&
2387 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2388 return -EOPNOTSUPP;
2389
2390 if ((arg & MMC_TRIM_ARGS) &&
2391 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2392 return -EOPNOTSUPP;
2393
2394 if (arg == MMC_SECURE_ERASE_ARG) {
2395 if (from % card->erase_size || nr % card->erase_size)
2396 return -EINVAL;
2397 }
2398
2399 if (arg == MMC_ERASE_ARG)
2400 nr = mmc_align_erase_size(card, &from, &to, nr);
2401
2402 if (nr == 0)
2403 return 0;
2404
2405 if (to <= from)
2406 return -EINVAL;
2407
2408 /* 'from' and 'to' are inclusive */
2409 to -= 1;
2410
2411 /*
2412 * Special case where only one erase-group fits in the timeout budget:
2413 * If the region crosses an erase-group boundary on this particular
2414 * case, we will be trimming more than one erase-group which, does not
2415 * fit in the timeout budget of the controller, so we need to split it
2416 * and call mmc_do_erase() twice if necessary. This special case is
2417 * identified by the card->eg_boundary flag.
2418 */
2419 rem = card->erase_size - (from % card->erase_size);
2420 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2421 err = mmc_do_erase(card, from, from + rem - 1, arg);
2422 from += rem;
2423 if ((err) || (to <= from))
2424 return err;
2425 }
2426
2427 return mmc_do_erase(card, from, to, arg);
2428 }
2429 EXPORT_SYMBOL(mmc_erase);
2430
mmc_can_erase(struct mmc_card * card)2431 int mmc_can_erase(struct mmc_card *card)
2432 {
2433 if ((card->host->caps & MMC_CAP_ERASE) &&
2434 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2435 return 1;
2436 return 0;
2437 }
2438 EXPORT_SYMBOL(mmc_can_erase);
2439
mmc_can_trim(struct mmc_card * card)2440 int mmc_can_trim(struct mmc_card *card)
2441 {
2442 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2443 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2444 return 1;
2445 return 0;
2446 }
2447 EXPORT_SYMBOL(mmc_can_trim);
2448
mmc_can_discard(struct mmc_card * card)2449 int mmc_can_discard(struct mmc_card *card)
2450 {
2451 /*
2452 * As there's no way to detect the discard support bit at v4.5
2453 * use the s/w feature support filed.
2454 */
2455 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2456 return 1;
2457 return 0;
2458 }
2459 EXPORT_SYMBOL(mmc_can_discard);
2460
mmc_can_sanitize(struct mmc_card * card)2461 int mmc_can_sanitize(struct mmc_card *card)
2462 {
2463 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2464 return 0;
2465 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2466 return 1;
2467 return 0;
2468 }
2469 EXPORT_SYMBOL(mmc_can_sanitize);
2470
mmc_can_secure_erase_trim(struct mmc_card * card)2471 int mmc_can_secure_erase_trim(struct mmc_card *card)
2472 {
2473 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2474 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2475 return 1;
2476 return 0;
2477 }
2478 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2479
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)2480 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2481 unsigned int nr)
2482 {
2483 if (!card->erase_size)
2484 return 0;
2485 if (from % card->erase_size || nr % card->erase_size)
2486 return 0;
2487 return 1;
2488 }
2489 EXPORT_SYMBOL(mmc_erase_group_aligned);
2490
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)2491 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2492 unsigned int arg)
2493 {
2494 struct mmc_host *host = card->host;
2495 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2496 unsigned int last_timeout = 0;
2497 unsigned int max_busy_timeout = host->max_busy_timeout ?
2498 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2499
2500 if (card->erase_shift) {
2501 max_qty = UINT_MAX >> card->erase_shift;
2502 min_qty = card->pref_erase >> card->erase_shift;
2503 } else if (mmc_card_sd(card)) {
2504 max_qty = UINT_MAX;
2505 min_qty = card->pref_erase;
2506 } else {
2507 max_qty = UINT_MAX / card->erase_size;
2508 min_qty = card->pref_erase / card->erase_size;
2509 }
2510
2511 /*
2512 * We should not only use 'host->max_busy_timeout' as the limitation
2513 * when deciding the max discard sectors. We should set a balance value
2514 * to improve the erase speed, and it can not get too long timeout at
2515 * the same time.
2516 *
2517 * Here we set 'card->pref_erase' as the minimal discard sectors no
2518 * matter what size of 'host->max_busy_timeout', but if the
2519 * 'host->max_busy_timeout' is large enough for more discard sectors,
2520 * then we can continue to increase the max discard sectors until we
2521 * get a balance value. In cases when the 'host->max_busy_timeout'
2522 * isn't specified, use the default max erase timeout.
2523 */
2524 do {
2525 y = 0;
2526 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2527 timeout = mmc_erase_timeout(card, arg, qty + x);
2528
2529 if (qty + x > min_qty && timeout > max_busy_timeout)
2530 break;
2531
2532 if (timeout < last_timeout)
2533 break;
2534 last_timeout = timeout;
2535 y = x;
2536 }
2537 qty += y;
2538 } while (y);
2539
2540 if (!qty)
2541 return 0;
2542
2543 /*
2544 * When specifying a sector range to trim, chances are we might cross
2545 * an erase-group boundary even if the amount of sectors is less than
2546 * one erase-group.
2547 * If we can only fit one erase-group in the controller timeout budget,
2548 * we have to care that erase-group boundaries are not crossed by a
2549 * single trim operation. We flag that special case with "eg_boundary".
2550 * In all other cases we can just decrement qty and pretend that we
2551 * always touch (qty + 1) erase-groups as a simple optimization.
2552 */
2553 if (qty == 1)
2554 card->eg_boundary = 1;
2555 else
2556 qty--;
2557
2558 /* Convert qty to sectors */
2559 if (card->erase_shift)
2560 max_discard = qty << card->erase_shift;
2561 else if (mmc_card_sd(card))
2562 max_discard = qty + 1;
2563 else
2564 max_discard = qty * card->erase_size;
2565
2566 return max_discard;
2567 }
2568
mmc_calc_max_discard(struct mmc_card * card)2569 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2570 {
2571 struct mmc_host *host = card->host;
2572 unsigned int max_discard, max_trim;
2573
2574 /*
2575 * Without erase_group_def set, MMC erase timeout depends on clock
2576 * frequence which can change. In that case, the best choice is
2577 * just the preferred erase size.
2578 */
2579 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2580 return card->pref_erase;
2581
2582 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2583 if (mmc_can_trim(card)) {
2584 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2585 if (max_trim < max_discard)
2586 max_discard = max_trim;
2587 } else if (max_discard < card->erase_size) {
2588 max_discard = 0;
2589 }
2590 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2591 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2592 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2593 return max_discard;
2594 }
2595 EXPORT_SYMBOL(mmc_calc_max_discard);
2596
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)2597 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2598 {
2599 struct mmc_command cmd = {0};
2600
2601 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2602 mmc_card_hs400(card) || mmc_card_hs400es(card))
2603 return 0;
2604
2605 cmd.opcode = MMC_SET_BLOCKLEN;
2606 cmd.arg = blocklen;
2607 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2608 return mmc_wait_for_cmd(card->host, &cmd, 5);
2609 }
2610 EXPORT_SYMBOL(mmc_set_blocklen);
2611
mmc_set_blockcount(struct mmc_card * card,unsigned int blockcount,bool is_rel_write)2612 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2613 bool is_rel_write)
2614 {
2615 struct mmc_command cmd = {0};
2616
2617 cmd.opcode = MMC_SET_BLOCK_COUNT;
2618 cmd.arg = blockcount & 0x0000FFFF;
2619 if (is_rel_write)
2620 cmd.arg |= 1 << 31;
2621 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2622 return mmc_wait_for_cmd(card->host, &cmd, 5);
2623 }
2624 EXPORT_SYMBOL(mmc_set_blockcount);
2625
mmc_hw_reset_for_init(struct mmc_host * host)2626 static void mmc_hw_reset_for_init(struct mmc_host *host)
2627 {
2628 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2629 return;
2630 host->ops->hw_reset(host);
2631 }
2632
mmc_hw_reset(struct mmc_host * host)2633 int mmc_hw_reset(struct mmc_host *host)
2634 {
2635 int ret;
2636
2637 if (!host->card)
2638 return -EINVAL;
2639
2640 mmc_bus_get(host);
2641 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2642 mmc_bus_put(host);
2643 return -EOPNOTSUPP;
2644 }
2645
2646 ret = host->bus_ops->reset(host);
2647 mmc_bus_put(host);
2648
2649 if (ret)
2650 pr_warn("%s: tried to reset card, got error %d\n",
2651 mmc_hostname(host), ret);
2652
2653 return ret;
2654 }
2655 EXPORT_SYMBOL(mmc_hw_reset);
2656
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2657 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2658 {
2659 host->f_init = freq;
2660
2661 #ifdef CONFIG_MMC_DEBUG
2662 pr_info("%s: %s: trying to init card at %u Hz\n",
2663 mmc_hostname(host), __func__, host->f_init);
2664 #endif
2665 mmc_power_up(host, host->ocr_avail);
2666
2667 /*
2668 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2669 * do a hardware reset if possible.
2670 */
2671 mmc_hw_reset_for_init(host);
2672
2673 /*
2674 * sdio_reset sends CMD52 to reset card. Since we do not know
2675 * if the card is being re-initialized, just send it. CMD52
2676 * should be ignored by SD/eMMC cards.
2677 * Skip it if we already know that we do not support SDIO commands
2678 */
2679 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2680 sdio_reset(host);
2681
2682 mmc_go_idle(host);
2683
2684 if (!(host->caps2 & MMC_CAP2_NO_SD))
2685 mmc_send_if_cond(host, host->ocr_avail);
2686
2687 /* Order's important: probe SDIO, then SD, then MMC */
2688 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2689 if (!mmc_attach_sdio(host))
2690 return 0;
2691
2692 if (!(host->caps2 & MMC_CAP2_NO_SD))
2693 if (!mmc_attach_sd(host))
2694 return 0;
2695
2696 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2697 if (!mmc_attach_mmc(host))
2698 return 0;
2699
2700 mmc_power_off(host);
2701 return -EIO;
2702 }
2703
_mmc_detect_card_removed(struct mmc_host * host)2704 int _mmc_detect_card_removed(struct mmc_host *host)
2705 {
2706 int ret;
2707
2708 if (!host->card || mmc_card_removed(host->card))
2709 return 1;
2710
2711 ret = host->bus_ops->alive(host);
2712
2713 /*
2714 * Card detect status and alive check may be out of sync if card is
2715 * removed slowly, when card detect switch changes while card/slot
2716 * pads are still contacted in hardware (refer to "SD Card Mechanical
2717 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2718 * detect work 200ms later for this case.
2719 */
2720 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2721 mmc_detect_change(host, msecs_to_jiffies(200));
2722 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2723 }
2724
2725 if (ret) {
2726 mmc_card_set_removed(host->card);
2727 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2728 }
2729
2730 return ret;
2731 }
2732
mmc_detect_card_removed(struct mmc_host * host)2733 int mmc_detect_card_removed(struct mmc_host *host)
2734 {
2735 struct mmc_card *card = host->card;
2736 int ret;
2737
2738 WARN_ON(!host->claimed);
2739
2740 if (!card)
2741 return 1;
2742
2743 if (!mmc_card_is_removable(host))
2744 return 0;
2745
2746 ret = mmc_card_removed(card);
2747 /*
2748 * The card will be considered unchanged unless we have been asked to
2749 * detect a change or host requires polling to provide card detection.
2750 */
2751 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2752 return ret;
2753
2754 host->detect_change = 0;
2755 if (!ret) {
2756 ret = _mmc_detect_card_removed(host);
2757 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2758 /*
2759 * Schedule a detect work as soon as possible to let a
2760 * rescan handle the card removal.
2761 */
2762 cancel_delayed_work(&host->detect);
2763 _mmc_detect_change(host, 0, false);
2764 }
2765 }
2766
2767 return ret;
2768 }
2769 EXPORT_SYMBOL(mmc_detect_card_removed);
2770
mmc_rescan(struct work_struct * work)2771 void mmc_rescan(struct work_struct *work)
2772 {
2773 struct mmc_host *host =
2774 container_of(work, struct mmc_host, detect.work);
2775 int i;
2776
2777 if (host->rescan_disable)
2778 return;
2779
2780 /* If there is a non-removable card registered, only scan once */
2781 if (!mmc_card_is_removable(host) && host->rescan_entered)
2782 return;
2783 host->rescan_entered = 1;
2784
2785 if (host->trigger_card_event && host->ops->card_event) {
2786 mmc_claim_host(host);
2787 host->ops->card_event(host);
2788 mmc_release_host(host);
2789 host->trigger_card_event = false;
2790 }
2791
2792 mmc_bus_get(host);
2793
2794 /*
2795 * if there is a _removable_ card registered, check whether it is
2796 * still present
2797 */
2798 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2799 host->bus_ops->detect(host);
2800
2801 host->detect_change = 0;
2802
2803 /*
2804 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2805 * the card is no longer present.
2806 */
2807 mmc_bus_put(host);
2808 mmc_bus_get(host);
2809
2810 /* if there still is a card present, stop here */
2811 if (host->bus_ops != NULL) {
2812 mmc_bus_put(host);
2813 goto out;
2814 }
2815
2816 /*
2817 * Only we can add a new handler, so it's safe to
2818 * release the lock here.
2819 */
2820 mmc_bus_put(host);
2821
2822 mmc_claim_host(host);
2823 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2824 host->ops->get_cd(host) == 0) {
2825 mmc_power_off(host);
2826 mmc_release_host(host);
2827 goto out;
2828 }
2829
2830 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2831 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2832 break;
2833 if (freqs[i] <= host->f_min)
2834 break;
2835 }
2836 mmc_release_host(host);
2837
2838 out:
2839 if (host->caps & MMC_CAP_NEEDS_POLL)
2840 mmc_schedule_delayed_work(&host->detect, HZ);
2841 }
2842
mmc_start_host(struct mmc_host * host)2843 void mmc_start_host(struct mmc_host *host)
2844 {
2845 host->f_init = max(freqs[0], host->f_min);
2846 host->rescan_disable = 0;
2847 host->ios.power_mode = MMC_POWER_UNDEFINED;
2848
2849 mmc_claim_host(host);
2850 if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2851 mmc_power_off(host);
2852 else
2853 mmc_power_up(host, host->ocr_avail);
2854 mmc_release_host(host);
2855
2856 mmc_gpiod_request_cd_irq(host);
2857 _mmc_detect_change(host, 0, false);
2858 }
2859
mmc_stop_host(struct mmc_host * host)2860 void mmc_stop_host(struct mmc_host *host)
2861 {
2862 #ifdef CONFIG_MMC_DEBUG
2863 unsigned long flags;
2864 spin_lock_irqsave(&host->lock, flags);
2865 host->removed = 1;
2866 spin_unlock_irqrestore(&host->lock, flags);
2867 #endif
2868 if (host->slot.cd_irq >= 0)
2869 disable_irq(host->slot.cd_irq);
2870
2871 host->rescan_disable = 1;
2872 cancel_delayed_work_sync(&host->detect);
2873
2874 /* clear pm flags now and let card drivers set them as needed */
2875 host->pm_flags = 0;
2876
2877 mmc_bus_get(host);
2878 if (host->bus_ops && !host->bus_dead) {
2879 /* Calling bus_ops->remove() with a claimed host can deadlock */
2880 host->bus_ops->remove(host);
2881 mmc_claim_host(host);
2882 mmc_detach_bus(host);
2883 mmc_power_off(host);
2884 mmc_release_host(host);
2885 mmc_bus_put(host);
2886 return;
2887 }
2888 mmc_bus_put(host);
2889
2890 BUG_ON(host->card);
2891
2892 mmc_claim_host(host);
2893 mmc_power_off(host);
2894 mmc_release_host(host);
2895 }
2896
mmc_power_save_host(struct mmc_host * host)2897 int mmc_power_save_host(struct mmc_host *host)
2898 {
2899 int ret = 0;
2900
2901 #ifdef CONFIG_MMC_DEBUG
2902 pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2903 #endif
2904
2905 mmc_bus_get(host);
2906
2907 if (!host->bus_ops || host->bus_dead) {
2908 mmc_bus_put(host);
2909 return -EINVAL;
2910 }
2911
2912 if (host->bus_ops->power_save)
2913 ret = host->bus_ops->power_save(host);
2914
2915 mmc_bus_put(host);
2916
2917 mmc_power_off(host);
2918
2919 return ret;
2920 }
2921 EXPORT_SYMBOL(mmc_power_save_host);
2922
mmc_power_restore_host(struct mmc_host * host)2923 int mmc_power_restore_host(struct mmc_host *host)
2924 {
2925 int ret;
2926
2927 #ifdef CONFIG_MMC_DEBUG
2928 pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2929 #endif
2930
2931 mmc_bus_get(host);
2932
2933 if (!host->bus_ops || host->bus_dead) {
2934 mmc_bus_put(host);
2935 return -EINVAL;
2936 }
2937
2938 mmc_power_up(host, host->card->ocr);
2939 ret = host->bus_ops->power_restore(host);
2940
2941 mmc_bus_put(host);
2942
2943 return ret;
2944 }
2945 EXPORT_SYMBOL(mmc_power_restore_host);
2946
2947 /*
2948 * Flush the cache to the non-volatile storage.
2949 */
mmc_flush_cache(struct mmc_card * card)2950 int mmc_flush_cache(struct mmc_card *card)
2951 {
2952 int err = 0;
2953
2954 if (mmc_card_mmc(card) &&
2955 (card->ext_csd.cache_size > 0) &&
2956 (card->ext_csd.cache_ctrl & 1)) {
2957 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2958 EXT_CSD_FLUSH_CACHE, 1, 0);
2959 if (err)
2960 pr_err("%s: cache flush error %d\n",
2961 mmc_hostname(card->host), err);
2962 }
2963
2964 return err;
2965 }
2966 EXPORT_SYMBOL(mmc_flush_cache);
2967
2968 #ifdef CONFIG_PM_SLEEP
2969 /* Do the card removal on suspend if card is assumed removeable
2970 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2971 to sync the card.
2972 */
mmc_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)2973 static int mmc_pm_notify(struct notifier_block *notify_block,
2974 unsigned long mode, void *unused)
2975 {
2976 struct mmc_host *host = container_of(
2977 notify_block, struct mmc_host, pm_notify);
2978 unsigned long flags;
2979 int err = 0;
2980
2981 switch (mode) {
2982 case PM_HIBERNATION_PREPARE:
2983 case PM_SUSPEND_PREPARE:
2984 case PM_RESTORE_PREPARE:
2985 spin_lock_irqsave(&host->lock, flags);
2986 host->rescan_disable = 1;
2987 spin_unlock_irqrestore(&host->lock, flags);
2988 cancel_delayed_work_sync(&host->detect);
2989
2990 if (!host->bus_ops)
2991 break;
2992
2993 /* Validate prerequisites for suspend */
2994 if (host->bus_ops->pre_suspend)
2995 err = host->bus_ops->pre_suspend(host);
2996 if (!err)
2997 break;
2998
2999 if (!mmc_card_is_removable(host)) {
3000 dev_warn(mmc_dev(host),
3001 "pre_suspend failed for non-removable host: "
3002 "%d\n", err);
3003 /* Avoid removing non-removable hosts */
3004 break;
3005 }
3006
3007 /* Calling bus_ops->remove() with a claimed host can deadlock */
3008 host->bus_ops->remove(host);
3009 mmc_claim_host(host);
3010 mmc_detach_bus(host);
3011 mmc_power_off(host);
3012 mmc_release_host(host);
3013 host->pm_flags = 0;
3014 break;
3015
3016 case PM_POST_SUSPEND:
3017 case PM_POST_HIBERNATION:
3018 case PM_POST_RESTORE:
3019
3020 spin_lock_irqsave(&host->lock, flags);
3021 host->rescan_disable = 0;
3022 spin_unlock_irqrestore(&host->lock, flags);
3023 _mmc_detect_change(host, 0, false);
3024
3025 }
3026
3027 return 0;
3028 }
3029
mmc_register_pm_notifier(struct mmc_host * host)3030 void mmc_register_pm_notifier(struct mmc_host *host)
3031 {
3032 host->pm_notify.notifier_call = mmc_pm_notify;
3033 register_pm_notifier(&host->pm_notify);
3034 }
3035
mmc_unregister_pm_notifier(struct mmc_host * host)3036 void mmc_unregister_pm_notifier(struct mmc_host *host)
3037 {
3038 unregister_pm_notifier(&host->pm_notify);
3039 }
3040 #endif
3041
3042 /**
3043 * mmc_init_context_info() - init synchronization context
3044 * @host: mmc host
3045 *
3046 * Init struct context_info needed to implement asynchronous
3047 * request mechanism, used by mmc core, host driver and mmc requests
3048 * supplier.
3049 */
mmc_init_context_info(struct mmc_host * host)3050 void mmc_init_context_info(struct mmc_host *host)
3051 {
3052 spin_lock_init(&host->context_info.lock);
3053 host->context_info.is_new_req = false;
3054 host->context_info.is_done_rcv = false;
3055 host->context_info.is_waiting_last_req = false;
3056 init_waitqueue_head(&host->context_info.wait);
3057 }
3058
3059 #ifdef CONFIG_MMC_EMBEDDED_SDIO
mmc_set_embedded_sdio_data(struct mmc_host * host,struct sdio_cis * cis,struct sdio_cccr * cccr,struct sdio_embedded_func * funcs,int num_funcs)3060 void mmc_set_embedded_sdio_data(struct mmc_host *host,
3061 struct sdio_cis *cis,
3062 struct sdio_cccr *cccr,
3063 struct sdio_embedded_func *funcs,
3064 int num_funcs)
3065 {
3066 host->embedded_sdio_data.cis = cis;
3067 host->embedded_sdio_data.cccr = cccr;
3068 host->embedded_sdio_data.funcs = funcs;
3069 host->embedded_sdio_data.num_funcs = num_funcs;
3070 }
3071
3072 EXPORT_SYMBOL(mmc_set_embedded_sdio_data);
3073 #endif
3074
mmc_init(void)3075 static int __init mmc_init(void)
3076 {
3077 int ret;
3078
3079 ret = mmc_register_bus();
3080 if (ret)
3081 return ret;
3082
3083 ret = mmc_register_host_class();
3084 if (ret)
3085 goto unregister_bus;
3086
3087 ret = sdio_register_bus();
3088 if (ret)
3089 goto unregister_host_class;
3090
3091 return 0;
3092
3093 unregister_host_class:
3094 mmc_unregister_host_class();
3095 unregister_bus:
3096 mmc_unregister_bus();
3097 return ret;
3098 }
3099
mmc_exit(void)3100 static void __exit mmc_exit(void)
3101 {
3102 sdio_unregister_bus();
3103 mmc_unregister_host_class();
3104 mmc_unregister_bus();
3105 }
3106
3107 #ifdef CONFIG_BLOCK
3108 static ssize_t
latency_hist_show(struct device * dev,struct device_attribute * attr,char * buf)3109 latency_hist_show(struct device *dev, struct device_attribute *attr, char *buf)
3110 {
3111 struct mmc_host *host = cls_dev_to_mmc_host(dev);
3112 size_t written_bytes;
3113
3114 written_bytes = blk_latency_hist_show("Read", &host->io_lat_read,
3115 buf, PAGE_SIZE);
3116 written_bytes += blk_latency_hist_show("Write", &host->io_lat_write,
3117 buf + written_bytes, PAGE_SIZE - written_bytes);
3118
3119 return written_bytes;
3120 }
3121
3122 /*
3123 * Values permitted 0, 1, 2.
3124 * 0 -> Disable IO latency histograms (default)
3125 * 1 -> Enable IO latency histograms
3126 * 2 -> Zero out IO latency histograms
3127 */
3128 static ssize_t
latency_hist_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3129 latency_hist_store(struct device *dev, struct device_attribute *attr,
3130 const char *buf, size_t count)
3131 {
3132 struct mmc_host *host = cls_dev_to_mmc_host(dev);
3133 long value;
3134
3135 if (kstrtol(buf, 0, &value))
3136 return -EINVAL;
3137 if (value == BLK_IO_LAT_HIST_ZERO) {
3138 memset(&host->io_lat_read, 0, sizeof(host->io_lat_read));
3139 memset(&host->io_lat_write, 0, sizeof(host->io_lat_write));
3140 } else if (value == BLK_IO_LAT_HIST_ENABLE ||
3141 value == BLK_IO_LAT_HIST_DISABLE)
3142 host->latency_hist_enabled = value;
3143 return count;
3144 }
3145
3146 static DEVICE_ATTR(latency_hist, S_IRUGO | S_IWUSR,
3147 latency_hist_show, latency_hist_store);
3148
3149 void
mmc_latency_hist_sysfs_init(struct mmc_host * host)3150 mmc_latency_hist_sysfs_init(struct mmc_host *host)
3151 {
3152 if (device_create_file(&host->class_dev, &dev_attr_latency_hist))
3153 dev_err(&host->class_dev,
3154 "Failed to create latency_hist sysfs entry\n");
3155 }
3156
3157 void
mmc_latency_hist_sysfs_exit(struct mmc_host * host)3158 mmc_latency_hist_sysfs_exit(struct mmc_host *host)
3159 {
3160 device_remove_file(&host->class_dev, &dev_attr_latency_hist);
3161 }
3162 #endif
3163
3164 subsys_initcall(mmc_init);
3165 module_exit(mmc_exit);
3166
3167 MODULE_LICENSE("GPL");
3168