• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37 #include <linux/libfdt.h>
38 
39 #include <asm/processor.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/page.h>
44 #include <asm/types.h>
45 #include <asm/uaccess.h>
46 #include <asm/machdep.h>
47 #include <asm/prom.h>
48 #include <asm/tlbflush.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63 
64 #ifdef DEBUG
65 #define DBG(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
69 
70 #ifdef DEBUG_LOW
71 #define DBG_LOW(fmt...) udbg_printf(fmt)
72 #else
73 #define DBG_LOW(fmt...)
74 #endif
75 
76 #define KB (1024)
77 #define MB (1024*KB)
78 #define GB (1024L*MB)
79 
80 /*
81  * Note:  pte   --> Linux PTE
82  *        HPTE  --> PowerPC Hashed Page Table Entry
83  *
84  * Execution context:
85  *   htab_initialize is called with the MMU off (of course), but
86  *   the kernel has been copied down to zero so it can directly
87  *   reference global data.  At this point it is very difficult
88  *   to print debug info.
89  *
90  */
91 
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
94 EXPORT_SYMBOL_GPL(mmu_psize_defs);
95 
96 u8 hpte_page_sizes[1 << LP_BITS];
97 EXPORT_SYMBOL_GPL(hpte_page_sizes);
98 
99 struct hash_pte *htab_address;
100 unsigned long htab_size_bytes;
101 unsigned long htab_hash_mask;
102 EXPORT_SYMBOL_GPL(htab_hash_mask);
103 int mmu_linear_psize = MMU_PAGE_4K;
104 EXPORT_SYMBOL_GPL(mmu_linear_psize);
105 int mmu_virtual_psize = MMU_PAGE_4K;
106 int mmu_vmalloc_psize = MMU_PAGE_4K;
107 #ifdef CONFIG_SPARSEMEM_VMEMMAP
108 int mmu_vmemmap_psize = MMU_PAGE_4K;
109 #endif
110 int mmu_io_psize = MMU_PAGE_4K;
111 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
112 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
113 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
114 u16 mmu_slb_size = 64;
115 EXPORT_SYMBOL_GPL(mmu_slb_size);
116 #ifdef CONFIG_PPC_64K_PAGES
117 int mmu_ci_restrictions;
118 #endif
119 #ifdef CONFIG_DEBUG_PAGEALLOC
120 static u8 *linear_map_hash_slots;
121 static unsigned long linear_map_hash_count;
122 static DEFINE_SPINLOCK(linear_map_hash_lock);
123 #endif /* CONFIG_DEBUG_PAGEALLOC */
124 struct mmu_hash_ops mmu_hash_ops;
125 EXPORT_SYMBOL(mmu_hash_ops);
126 
127 /* There are definitions of page sizes arrays to be used when none
128  * is provided by the firmware.
129  */
130 
131 /* Pre-POWER4 CPUs (4k pages only)
132  */
133 static struct mmu_psize_def mmu_psize_defaults_old[] = {
134 	[MMU_PAGE_4K] = {
135 		.shift	= 12,
136 		.sllp	= 0,
137 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
138 		.avpnm	= 0,
139 		.tlbiel = 0,
140 	},
141 };
142 
143 /* POWER4, GPUL, POWER5
144  *
145  * Support for 16Mb large pages
146  */
147 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
148 	[MMU_PAGE_4K] = {
149 		.shift	= 12,
150 		.sllp	= 0,
151 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
152 		.avpnm	= 0,
153 		.tlbiel = 1,
154 	},
155 	[MMU_PAGE_16M] = {
156 		.shift	= 24,
157 		.sllp	= SLB_VSID_L,
158 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
159 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
160 		.avpnm	= 0x1UL,
161 		.tlbiel = 0,
162 	},
163 };
164 
165 /*
166  * 'R' and 'C' update notes:
167  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
168  *     create writeable HPTEs without C set, because the hcall H_PROTECT
169  *     that we use in that case will not update C
170  *  - The above is however not a problem, because we also don't do that
171  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
172  *     do the right thing and thus we don't have the race I described earlier
173  *
174  *    - Under bare metal,  we do have the race, so we need R and C set
175  *    - We make sure R is always set and never lost
176  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
177  */
htab_convert_pte_flags(unsigned long pteflags)178 unsigned long htab_convert_pte_flags(unsigned long pteflags)
179 {
180 	unsigned long rflags = 0;
181 
182 	/* _PAGE_EXEC -> NOEXEC */
183 	if ((pteflags & _PAGE_EXEC) == 0)
184 		rflags |= HPTE_R_N;
185 	/*
186 	 * PPP bits:
187 	 * Linux uses slb key 0 for kernel and 1 for user.
188 	 * kernel RW areas are mapped with PPP=0b000
189 	 * User area is mapped with PPP=0b010 for read/write
190 	 * or PPP=0b011 for read-only (including writeable but clean pages).
191 	 */
192 	if (pteflags & _PAGE_PRIVILEGED) {
193 		/*
194 		 * Kernel read only mapped with ppp bits 0b110
195 		 */
196 		if (!(pteflags & _PAGE_WRITE)) {
197 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
198 				rflags |= (HPTE_R_PP0 | 0x2);
199 			else
200 				rflags |= 0x3;
201 		}
202 	} else {
203 		if (pteflags & _PAGE_RWX)
204 			rflags |= 0x2;
205 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
206 			rflags |= 0x1;
207 	}
208 	/*
209 	 * We can't allow hardware to update hpte bits. Hence always
210 	 * set 'R' bit and set 'C' if it is a write fault
211 	 */
212 	rflags |=  HPTE_R_R;
213 
214 	if (pteflags & _PAGE_DIRTY)
215 		rflags |= HPTE_R_C;
216 	/*
217 	 * Add in WIG bits
218 	 */
219 
220 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
221 		rflags |= HPTE_R_I;
222 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
223 		rflags |= (HPTE_R_I | HPTE_R_G);
224 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
225 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
226 	else
227 		/*
228 		 * Add memory coherence if cache inhibited is not set
229 		 */
230 		rflags |= HPTE_R_M;
231 
232 	return rflags;
233 }
234 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)235 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
236 		      unsigned long pstart, unsigned long prot,
237 		      int psize, int ssize)
238 {
239 	unsigned long vaddr, paddr;
240 	unsigned int step, shift;
241 	int ret = 0;
242 
243 	shift = mmu_psize_defs[psize].shift;
244 	step = 1 << shift;
245 
246 	prot = htab_convert_pte_flags(prot);
247 
248 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
249 	    vstart, vend, pstart, prot, psize, ssize);
250 
251 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
252 	     vaddr += step, paddr += step) {
253 		unsigned long hash, hpteg;
254 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
255 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
256 		unsigned long tprot = prot;
257 
258 		/*
259 		 * If we hit a bad address return error.
260 		 */
261 		if (!vsid)
262 			return -1;
263 		/* Make kernel text executable */
264 		if (overlaps_kernel_text(vaddr, vaddr + step))
265 			tprot &= ~HPTE_R_N;
266 
267 		/* Make kvm guest trampolines executable */
268 		if (overlaps_kvm_tmp(vaddr, vaddr + step))
269 			tprot &= ~HPTE_R_N;
270 
271 		/*
272 		 * If relocatable, check if it overlaps interrupt vectors that
273 		 * are copied down to real 0. For relocatable kernel
274 		 * (e.g. kdump case) we copy interrupt vectors down to real
275 		 * address 0. Mark that region as executable. This is
276 		 * because on p8 system with relocation on exception feature
277 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
278 		 * in order to execute the interrupt handlers in virtual
279 		 * mode the vector region need to be marked as executable.
280 		 */
281 		if ((PHYSICAL_START > MEMORY_START) &&
282 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
283 				tprot &= ~HPTE_R_N;
284 
285 		hash = hpt_hash(vpn, shift, ssize);
286 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
287 
288 		BUG_ON(!mmu_hash_ops.hpte_insert);
289 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
290 					       HPTE_V_BOLTED, psize, psize,
291 					       ssize);
292 
293 		if (ret < 0)
294 			break;
295 
296 #ifdef CONFIG_DEBUG_PAGEALLOC
297 		if (debug_pagealloc_enabled() &&
298 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
299 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
300 #endif /* CONFIG_DEBUG_PAGEALLOC */
301 	}
302 	return ret < 0 ? ret : 0;
303 }
304 
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)305 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
306 		      int psize, int ssize)
307 {
308 	unsigned long vaddr;
309 	unsigned int step, shift;
310 	int rc;
311 	int ret = 0;
312 
313 	shift = mmu_psize_defs[psize].shift;
314 	step = 1 << shift;
315 
316 	if (!mmu_hash_ops.hpte_removebolted)
317 		return -ENODEV;
318 
319 	for (vaddr = vstart; vaddr < vend; vaddr += step) {
320 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
321 		if (rc == -ENOENT) {
322 			ret = -ENOENT;
323 			continue;
324 		}
325 		if (rc < 0)
326 			return rc;
327 	}
328 
329 	return ret;
330 }
331 
332 static bool disable_1tb_segments = false;
333 
parse_disable_1tb_segments(char * p)334 static int __init parse_disable_1tb_segments(char *p)
335 {
336 	disable_1tb_segments = true;
337 	return 0;
338 }
339 early_param("disable_1tb_segments", parse_disable_1tb_segments);
340 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)341 static int __init htab_dt_scan_seg_sizes(unsigned long node,
342 					 const char *uname, int depth,
343 					 void *data)
344 {
345 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
346 	const __be32 *prop;
347 	int size = 0;
348 
349 	/* We are scanning "cpu" nodes only */
350 	if (type == NULL || strcmp(type, "cpu") != 0)
351 		return 0;
352 
353 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
354 	if (prop == NULL)
355 		return 0;
356 	for (; size >= 4; size -= 4, ++prop) {
357 		if (be32_to_cpu(prop[0]) == 40) {
358 			DBG("1T segment support detected\n");
359 
360 			if (disable_1tb_segments) {
361 				DBG("1T segments disabled by command line\n");
362 				break;
363 			}
364 
365 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
366 			return 1;
367 		}
368 	}
369 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
370 	return 0;
371 }
372 
get_idx_from_shift(unsigned int shift)373 static int __init get_idx_from_shift(unsigned int shift)
374 {
375 	int idx = -1;
376 
377 	switch (shift) {
378 	case 0xc:
379 		idx = MMU_PAGE_4K;
380 		break;
381 	case 0x10:
382 		idx = MMU_PAGE_64K;
383 		break;
384 	case 0x14:
385 		idx = MMU_PAGE_1M;
386 		break;
387 	case 0x18:
388 		idx = MMU_PAGE_16M;
389 		break;
390 	case 0x22:
391 		idx = MMU_PAGE_16G;
392 		break;
393 	}
394 	return idx;
395 }
396 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)397 static int __init htab_dt_scan_page_sizes(unsigned long node,
398 					  const char *uname, int depth,
399 					  void *data)
400 {
401 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
402 	const __be32 *prop;
403 	int size = 0;
404 
405 	/* We are scanning "cpu" nodes only */
406 	if (type == NULL || strcmp(type, "cpu") != 0)
407 		return 0;
408 
409 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
410 	if (!prop)
411 		return 0;
412 
413 	pr_info("Page sizes from device-tree:\n");
414 	size /= 4;
415 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
416 	while(size > 0) {
417 		unsigned int base_shift = be32_to_cpu(prop[0]);
418 		unsigned int slbenc = be32_to_cpu(prop[1]);
419 		unsigned int lpnum = be32_to_cpu(prop[2]);
420 		struct mmu_psize_def *def;
421 		int idx, base_idx;
422 
423 		size -= 3; prop += 3;
424 		base_idx = get_idx_from_shift(base_shift);
425 		if (base_idx < 0) {
426 			/* skip the pte encoding also */
427 			prop += lpnum * 2; size -= lpnum * 2;
428 			continue;
429 		}
430 		def = &mmu_psize_defs[base_idx];
431 		if (base_idx == MMU_PAGE_16M)
432 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
433 
434 		def->shift = base_shift;
435 		if (base_shift <= 23)
436 			def->avpnm = 0;
437 		else
438 			def->avpnm = (1 << (base_shift - 23)) - 1;
439 		def->sllp = slbenc;
440 		/*
441 		 * We don't know for sure what's up with tlbiel, so
442 		 * for now we only set it for 4K and 64K pages
443 		 */
444 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
445 			def->tlbiel = 1;
446 		else
447 			def->tlbiel = 0;
448 
449 		while (size > 0 && lpnum) {
450 			unsigned int shift = be32_to_cpu(prop[0]);
451 			int penc  = be32_to_cpu(prop[1]);
452 
453 			prop += 2; size -= 2;
454 			lpnum--;
455 
456 			idx = get_idx_from_shift(shift);
457 			if (idx < 0)
458 				continue;
459 
460 			if (penc == -1)
461 				pr_err("Invalid penc for base_shift=%d "
462 				       "shift=%d\n", base_shift, shift);
463 
464 			def->penc[idx] = penc;
465 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
466 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
467 				base_shift, shift, def->sllp,
468 				def->avpnm, def->tlbiel, def->penc[idx]);
469 		}
470 	}
471 
472 	return 1;
473 }
474 
475 #ifdef CONFIG_HUGETLB_PAGE
476 /* Scan for 16G memory blocks that have been set aside for huge pages
477  * and reserve those blocks for 16G huge pages.
478  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)479 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
480 					const char *uname, int depth,
481 					void *data) {
482 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
483 	const __be64 *addr_prop;
484 	const __be32 *page_count_prop;
485 	unsigned int expected_pages;
486 	long unsigned int phys_addr;
487 	long unsigned int block_size;
488 
489 	/* We are scanning "memory" nodes only */
490 	if (type == NULL || strcmp(type, "memory") != 0)
491 		return 0;
492 
493 	/* This property is the log base 2 of the number of virtual pages that
494 	 * will represent this memory block. */
495 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
496 	if (page_count_prop == NULL)
497 		return 0;
498 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
499 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
500 	if (addr_prop == NULL)
501 		return 0;
502 	phys_addr = be64_to_cpu(addr_prop[0]);
503 	block_size = be64_to_cpu(addr_prop[1]);
504 	if (block_size != (16 * GB))
505 		return 0;
506 	printk(KERN_INFO "Huge page(16GB) memory: "
507 			"addr = 0x%lX size = 0x%lX pages = %d\n",
508 			phys_addr, block_size, expected_pages);
509 	if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
510 		memblock_reserve(phys_addr, block_size * expected_pages);
511 		add_gpage(phys_addr, block_size, expected_pages);
512 	}
513 	return 0;
514 }
515 #endif /* CONFIG_HUGETLB_PAGE */
516 
mmu_psize_set_default_penc(void)517 static void mmu_psize_set_default_penc(void)
518 {
519 	int bpsize, apsize;
520 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
521 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
522 			mmu_psize_defs[bpsize].penc[apsize] = -1;
523 }
524 
525 #ifdef CONFIG_PPC_64K_PAGES
526 
might_have_hea(void)527 static bool might_have_hea(void)
528 {
529 	/*
530 	 * The HEA ethernet adapter requires awareness of the
531 	 * GX bus. Without that awareness we can easily assume
532 	 * we will never see an HEA ethernet device.
533 	 */
534 #ifdef CONFIG_IBMEBUS
535 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
536 		firmware_has_feature(FW_FEATURE_SPLPAR);
537 #else
538 	return false;
539 #endif
540 }
541 
542 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
543 
htab_scan_page_sizes(void)544 static void __init htab_scan_page_sizes(void)
545 {
546 	int rc;
547 
548 	/* se the invalid penc to -1 */
549 	mmu_psize_set_default_penc();
550 
551 	/* Default to 4K pages only */
552 	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
553 	       sizeof(mmu_psize_defaults_old));
554 
555 	/*
556 	 * Try to find the available page sizes in the device-tree
557 	 */
558 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
559 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
560 		/*
561 		 * Nothing in the device-tree, but the CPU supports 16M pages,
562 		 * so let's fallback on a known size list for 16M capable CPUs.
563 		 */
564 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
565 		       sizeof(mmu_psize_defaults_gp));
566 	}
567 
568 #ifdef CONFIG_HUGETLB_PAGE
569 	/* Reserve 16G huge page memory sections for huge pages */
570 	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
571 #endif /* CONFIG_HUGETLB_PAGE */
572 }
573 
574 /*
575  * Fill in the hpte_page_sizes[] array.
576  * We go through the mmu_psize_defs[] array looking for all the
577  * supported base/actual page size combinations.  Each combination
578  * has a unique pagesize encoding (penc) value in the low bits of
579  * the LP field of the HPTE.  For actual page sizes less than 1MB,
580  * some of the upper LP bits are used for RPN bits, meaning that
581  * we need to fill in several entries in hpte_page_sizes[].
582  *
583  * In diagrammatic form, with r = RPN bits and z = page size bits:
584  *        PTE LP     actual page size
585  *    rrrr rrrz		>=8KB
586  *    rrrr rrzz		>=16KB
587  *    rrrr rzzz		>=32KB
588  *    rrrr zzzz		>=64KB
589  *    ...
590  *
591  * The zzzz bits are implementation-specific but are chosen so that
592  * no encoding for a larger page size uses the same value in its
593  * low-order N bits as the encoding for the 2^(12+N) byte page size
594  * (if it exists).
595  */
init_hpte_page_sizes(void)596 static void init_hpte_page_sizes(void)
597 {
598 	long int ap, bp;
599 	long int shift, penc;
600 
601 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
602 		if (!mmu_psize_defs[bp].shift)
603 			continue;	/* not a supported page size */
604 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
605 			penc = mmu_psize_defs[bp].penc[ap];
606 			if (penc == -1)
607 				continue;
608 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
609 			if (shift <= 0)
610 				continue;	/* should never happen */
611 			/*
612 			 * For page sizes less than 1MB, this loop
613 			 * replicates the entry for all possible values
614 			 * of the rrrr bits.
615 			 */
616 			while (penc < (1 << LP_BITS)) {
617 				hpte_page_sizes[penc] = (ap << 4) | bp;
618 				penc += 1 << shift;
619 			}
620 		}
621 	}
622 }
623 
htab_init_page_sizes(void)624 static void __init htab_init_page_sizes(void)
625 {
626 	init_hpte_page_sizes();
627 
628 	if (!debug_pagealloc_enabled()) {
629 		/*
630 		 * Pick a size for the linear mapping. Currently, we only
631 		 * support 16M, 1M and 4K which is the default
632 		 */
633 		if (mmu_psize_defs[MMU_PAGE_16M].shift)
634 			mmu_linear_psize = MMU_PAGE_16M;
635 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
636 			mmu_linear_psize = MMU_PAGE_1M;
637 	}
638 
639 #ifdef CONFIG_PPC_64K_PAGES
640 	/*
641 	 * Pick a size for the ordinary pages. Default is 4K, we support
642 	 * 64K for user mappings and vmalloc if supported by the processor.
643 	 * We only use 64k for ioremap if the processor
644 	 * (and firmware) support cache-inhibited large pages.
645 	 * If not, we use 4k and set mmu_ci_restrictions so that
646 	 * hash_page knows to switch processes that use cache-inhibited
647 	 * mappings to 4k pages.
648 	 */
649 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
650 		mmu_virtual_psize = MMU_PAGE_64K;
651 		mmu_vmalloc_psize = MMU_PAGE_64K;
652 		if (mmu_linear_psize == MMU_PAGE_4K)
653 			mmu_linear_psize = MMU_PAGE_64K;
654 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
655 			/*
656 			 * When running on pSeries using 64k pages for ioremap
657 			 * would stop us accessing the HEA ethernet. So if we
658 			 * have the chance of ever seeing one, stay at 4k.
659 			 */
660 			if (!might_have_hea())
661 				mmu_io_psize = MMU_PAGE_64K;
662 		} else
663 			mmu_ci_restrictions = 1;
664 	}
665 #endif /* CONFIG_PPC_64K_PAGES */
666 
667 #ifdef CONFIG_SPARSEMEM_VMEMMAP
668 	/* We try to use 16M pages for vmemmap if that is supported
669 	 * and we have at least 1G of RAM at boot
670 	 */
671 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
672 	    memblock_phys_mem_size() >= 0x40000000)
673 		mmu_vmemmap_psize = MMU_PAGE_16M;
674 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
675 		mmu_vmemmap_psize = MMU_PAGE_64K;
676 	else
677 		mmu_vmemmap_psize = MMU_PAGE_4K;
678 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
679 
680 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
681 	       "virtual = %d, io = %d"
682 #ifdef CONFIG_SPARSEMEM_VMEMMAP
683 	       ", vmemmap = %d"
684 #endif
685 	       "\n",
686 	       mmu_psize_defs[mmu_linear_psize].shift,
687 	       mmu_psize_defs[mmu_virtual_psize].shift,
688 	       mmu_psize_defs[mmu_io_psize].shift
689 #ifdef CONFIG_SPARSEMEM_VMEMMAP
690 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
691 #endif
692 	       );
693 }
694 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)695 static int __init htab_dt_scan_pftsize(unsigned long node,
696 				       const char *uname, int depth,
697 				       void *data)
698 {
699 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
700 	const __be32 *prop;
701 
702 	/* We are scanning "cpu" nodes only */
703 	if (type == NULL || strcmp(type, "cpu") != 0)
704 		return 0;
705 
706 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
707 	if (prop != NULL) {
708 		/* pft_size[0] is the NUMA CEC cookie */
709 		ppc64_pft_size = be32_to_cpu(prop[1]);
710 		return 1;
711 	}
712 	return 0;
713 }
714 
htab_shift_for_mem_size(unsigned long mem_size)715 unsigned htab_shift_for_mem_size(unsigned long mem_size)
716 {
717 	unsigned memshift = __ilog2(mem_size);
718 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
719 	unsigned pteg_shift;
720 
721 	/* round mem_size up to next power of 2 */
722 	if ((1UL << memshift) < mem_size)
723 		memshift += 1;
724 
725 	/* aim for 2 pages / pteg */
726 	pteg_shift = memshift - (pshift + 1);
727 
728 	/*
729 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
730 	 * size permitted by the architecture.
731 	 */
732 	return max(pteg_shift + 7, 18U);
733 }
734 
htab_get_table_size(void)735 static unsigned long __init htab_get_table_size(void)
736 {
737 	/* If hash size isn't already provided by the platform, we try to
738 	 * retrieve it from the device-tree. If it's not there neither, we
739 	 * calculate it now based on the total RAM size
740 	 */
741 	if (ppc64_pft_size == 0)
742 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
743 	if (ppc64_pft_size)
744 		return 1UL << ppc64_pft_size;
745 
746 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
747 }
748 
749 #ifdef CONFIG_MEMORY_HOTPLUG
hash__create_section_mapping(unsigned long start,unsigned long end)750 int hash__create_section_mapping(unsigned long start, unsigned long end)
751 {
752 	int rc = htab_bolt_mapping(start, end, __pa(start),
753 				   pgprot_val(PAGE_KERNEL), mmu_linear_psize,
754 				   mmu_kernel_ssize);
755 
756 	if (rc < 0) {
757 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
758 					      mmu_kernel_ssize);
759 		BUG_ON(rc2 && (rc2 != -ENOENT));
760 	}
761 	return rc;
762 }
763 
hash__remove_section_mapping(unsigned long start,unsigned long end)764 int hash__remove_section_mapping(unsigned long start, unsigned long end)
765 {
766 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
767 				     mmu_kernel_ssize);
768 	WARN_ON(rc < 0);
769 	return rc;
770 }
771 #endif /* CONFIG_MEMORY_HOTPLUG */
772 
update_hid_for_hash(void)773 static void update_hid_for_hash(void)
774 {
775 	unsigned long hid0;
776 	unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
777 
778 	asm volatile("ptesync": : :"memory");
779 	/* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
780 	asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
781 		     : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
782 	asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
783 	/*
784 	 * now switch the HID
785 	 */
786 	hid0  = mfspr(SPRN_HID0);
787 	hid0 &= ~HID0_POWER9_RADIX;
788 	mtspr(SPRN_HID0, hid0);
789 	asm volatile("isync": : :"memory");
790 
791 	/* Wait for it to happen */
792 	while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
793 		cpu_relax();
794 }
795 
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)796 static void __init hash_init_partition_table(phys_addr_t hash_table,
797 					     unsigned long htab_size)
798 {
799 	unsigned long ps_field;
800 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
801 
802 	/*
803 	 * slb llp encoding for the page size used in VPM real mode.
804 	 * We can ignore that for lpid 0
805 	 */
806 	ps_field = 0;
807 	htab_size =  __ilog2(htab_size) - 18;
808 
809 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 24), "Partition table size too large.");
810 	partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
811 						MEMBLOCK_ALLOC_ANYWHERE));
812 
813 	/* Initialize the Partition Table with no entries */
814 	memset((void *)partition_tb, 0, patb_size);
815 	partition_tb->patb0 = cpu_to_be64(ps_field | hash_table | htab_size);
816 	/*
817 	 * FIXME!! This should be done via update_partition table
818 	 * For now UPRT is 0 for us.
819 	 */
820 	partition_tb->patb1 = 0;
821 	pr_info("Partition table %p\n", partition_tb);
822 	if (cpu_has_feature(CPU_FTR_POWER9_DD1))
823 		update_hid_for_hash();
824 	/*
825 	 * update partition table control register,
826 	 * 64 K size.
827 	 */
828 	mtspr(SPRN_PTCR, __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
829 
830 }
831 
htab_initialize(void)832 static void __init htab_initialize(void)
833 {
834 	unsigned long table;
835 	unsigned long pteg_count;
836 	unsigned long prot;
837 	unsigned long base = 0, size = 0;
838 	struct memblock_region *reg;
839 
840 	DBG(" -> htab_initialize()\n");
841 
842 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
843 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
844 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
845 		printk(KERN_INFO "Using 1TB segments\n");
846 	}
847 
848 	/*
849 	 * Calculate the required size of the htab.  We want the number of
850 	 * PTEGs to equal one half the number of real pages.
851 	 */
852 	htab_size_bytes = htab_get_table_size();
853 	pteg_count = htab_size_bytes >> 7;
854 
855 	htab_hash_mask = pteg_count - 1;
856 
857 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
858 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
859 		/* Using a hypervisor which owns the htab */
860 		htab_address = NULL;
861 		_SDR1 = 0;
862 #ifdef CONFIG_FA_DUMP
863 		/*
864 		 * If firmware assisted dump is active firmware preserves
865 		 * the contents of htab along with entire partition memory.
866 		 * Clear the htab if firmware assisted dump is active so
867 		 * that we dont end up using old mappings.
868 		 */
869 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
870 			mmu_hash_ops.hpte_clear_all();
871 #endif
872 	} else {
873 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
874 
875 #ifdef CONFIG_PPC_CELL
876 		/*
877 		 * Cell may require the hash table down low when using the
878 		 * Axon IOMMU in order to fit the dynamic region over it, see
879 		 * comments in cell/iommu.c
880 		 */
881 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
882 			limit = 0x80000000;
883 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
884 		}
885 #endif /* CONFIG_PPC_CELL */
886 
887 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
888 					    limit);
889 
890 		DBG("Hash table allocated at %lx, size: %lx\n", table,
891 		    htab_size_bytes);
892 
893 		htab_address = __va(table);
894 
895 		/* htab absolute addr + encoded htabsize */
896 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
897 
898 		/* Initialize the HPT with no entries */
899 		memset((void *)table, 0, htab_size_bytes);
900 
901 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
902 			/* Set SDR1 */
903 			mtspr(SPRN_SDR1, _SDR1);
904 		else
905 			hash_init_partition_table(table, htab_size_bytes);
906 	}
907 
908 	prot = pgprot_val(PAGE_KERNEL);
909 
910 #ifdef CONFIG_DEBUG_PAGEALLOC
911 	if (debug_pagealloc_enabled()) {
912 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
913 		linear_map_hash_slots = __va(memblock_alloc_base(
914 				linear_map_hash_count, 1, ppc64_rma_size));
915 		memset(linear_map_hash_slots, 0, linear_map_hash_count);
916 	}
917 #endif /* CONFIG_DEBUG_PAGEALLOC */
918 
919 	/* On U3 based machines, we need to reserve the DART area and
920 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
921 	 * cacheable later on
922 	 */
923 
924 	/* create bolted the linear mapping in the hash table */
925 	for_each_memblock(memory, reg) {
926 		base = (unsigned long)__va(reg->base);
927 		size = reg->size;
928 
929 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
930 		    base, size, prot);
931 
932 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
933 				prot, mmu_linear_psize, mmu_kernel_ssize));
934 	}
935 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
936 
937 	/*
938 	 * If we have a memory_limit and we've allocated TCEs then we need to
939 	 * explicitly map the TCE area at the top of RAM. We also cope with the
940 	 * case that the TCEs start below memory_limit.
941 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
942 	 * for either 4K or 16MB pages.
943 	 */
944 	if (tce_alloc_start) {
945 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
946 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
947 
948 		if (base + size >= tce_alloc_start)
949 			tce_alloc_start = base + size + 1;
950 
951 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
952 					 __pa(tce_alloc_start), prot,
953 					 mmu_linear_psize, mmu_kernel_ssize));
954 	}
955 
956 
957 	DBG(" <- htab_initialize()\n");
958 }
959 #undef KB
960 #undef MB
961 
hash__early_init_devtree(void)962 void __init hash__early_init_devtree(void)
963 {
964 	/* Initialize segment sizes */
965 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
966 
967 	/* Initialize page sizes */
968 	htab_scan_page_sizes();
969 }
970 
hash__early_init_mmu(void)971 void __init hash__early_init_mmu(void)
972 {
973 	htab_init_page_sizes();
974 
975 	/*
976 	 * initialize page table size
977 	 */
978 	__pte_frag_nr = H_PTE_FRAG_NR;
979 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
980 
981 	__pte_index_size = H_PTE_INDEX_SIZE;
982 	__pmd_index_size = H_PMD_INDEX_SIZE;
983 	__pud_index_size = H_PUD_INDEX_SIZE;
984 	__pgd_index_size = H_PGD_INDEX_SIZE;
985 	__pmd_cache_index = H_PMD_CACHE_INDEX;
986 	__pte_table_size = H_PTE_TABLE_SIZE;
987 	__pmd_table_size = H_PMD_TABLE_SIZE;
988 	__pud_table_size = H_PUD_TABLE_SIZE;
989 	__pgd_table_size = H_PGD_TABLE_SIZE;
990 	/*
991 	 * 4k use hugepd format, so for hash set then to
992 	 * zero
993 	 */
994 	__pmd_val_bits = 0;
995 	__pud_val_bits = 0;
996 	__pgd_val_bits = 0;
997 
998 	__kernel_virt_start = H_KERN_VIRT_START;
999 	__kernel_virt_size = H_KERN_VIRT_SIZE;
1000 	__vmalloc_start = H_VMALLOC_START;
1001 	__vmalloc_end = H_VMALLOC_END;
1002 	vmemmap = (struct page *)H_VMEMMAP_BASE;
1003 	ioremap_bot = IOREMAP_BASE;
1004 
1005 #ifdef CONFIG_PCI
1006 	pci_io_base = ISA_IO_BASE;
1007 #endif
1008 
1009 	/* Select appropriate backend */
1010 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1011 		ps3_early_mm_init();
1012 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1013 		hpte_init_pseries();
1014 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1015 		hpte_init_native();
1016 
1017 	if (!mmu_hash_ops.hpte_insert)
1018 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1019 
1020 	/* Initialize the MMU Hash table and create the linear mapping
1021 	 * of memory. Has to be done before SLB initialization as this is
1022 	 * currently where the page size encoding is obtained.
1023 	 */
1024 	htab_initialize();
1025 
1026 	pr_info("Initializing hash mmu with SLB\n");
1027 	/* Initialize SLB management */
1028 	slb_initialize();
1029 }
1030 
1031 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1032 void hash__early_init_mmu_secondary(void)
1033 {
1034 	/* Initialize hash table for that CPU */
1035 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1036 
1037 		if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1038 			update_hid_for_hash();
1039 
1040 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1041 			mtspr(SPRN_SDR1, _SDR1);
1042 		else
1043 			mtspr(SPRN_PTCR,
1044 			      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1045 	}
1046 	/* Initialize SLB */
1047 	slb_initialize();
1048 }
1049 #endif /* CONFIG_SMP */
1050 
1051 /*
1052  * Called by asm hashtable.S for doing lazy icache flush
1053  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1054 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1055 {
1056 	struct page *page;
1057 
1058 	if (!pfn_valid(pte_pfn(pte)))
1059 		return pp;
1060 
1061 	page = pte_page(pte);
1062 
1063 	/* page is dirty */
1064 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1065 		if (trap == 0x400) {
1066 			flush_dcache_icache_page(page);
1067 			set_bit(PG_arch_1, &page->flags);
1068 		} else
1069 			pp |= HPTE_R_N;
1070 	}
1071 	return pp;
1072 }
1073 
1074 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)1075 static unsigned int get_paca_psize(unsigned long addr)
1076 {
1077 	u64 lpsizes;
1078 	unsigned char *hpsizes;
1079 	unsigned long index, mask_index;
1080 
1081 	if (addr < SLICE_LOW_TOP) {
1082 		lpsizes = get_paca()->mm_ctx_low_slices_psize;
1083 		index = GET_LOW_SLICE_INDEX(addr);
1084 		return (lpsizes >> (index * 4)) & 0xF;
1085 	}
1086 	hpsizes = get_paca()->mm_ctx_high_slices_psize;
1087 	index = GET_HIGH_SLICE_INDEX(addr);
1088 	mask_index = index & 0x1;
1089 	return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
1090 }
1091 
1092 #else
get_paca_psize(unsigned long addr)1093 unsigned int get_paca_psize(unsigned long addr)
1094 {
1095 	return get_paca()->mm_ctx_user_psize;
1096 }
1097 #endif
1098 
1099 /*
1100  * Demote a segment to using 4k pages.
1101  * For now this makes the whole process use 4k pages.
1102  */
1103 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1104 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1105 {
1106 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1107 		return;
1108 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1109 	copro_flush_all_slbs(mm);
1110 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1111 
1112 		copy_mm_to_paca(&mm->context);
1113 		slb_flush_and_rebolt();
1114 	}
1115 }
1116 #endif /* CONFIG_PPC_64K_PAGES */
1117 
1118 #ifdef CONFIG_PPC_SUBPAGE_PROT
1119 /*
1120  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1121  * Userspace sets the subpage permissions using the subpage_prot system call.
1122  *
1123  * Result is 0: full permissions, _PAGE_RW: read-only,
1124  * _PAGE_RWX: no access.
1125  */
subpage_protection(struct mm_struct * mm,unsigned long ea)1126 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1127 {
1128 	struct subpage_prot_table *spt = &mm->context.spt;
1129 	u32 spp = 0;
1130 	u32 **sbpm, *sbpp;
1131 
1132 	if (ea >= spt->maxaddr)
1133 		return 0;
1134 	if (ea < 0x100000000UL) {
1135 		/* addresses below 4GB use spt->low_prot */
1136 		sbpm = spt->low_prot;
1137 	} else {
1138 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1139 		if (!sbpm)
1140 			return 0;
1141 	}
1142 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1143 	if (!sbpp)
1144 		return 0;
1145 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1146 
1147 	/* extract 2-bit bitfield for this 4k subpage */
1148 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1149 
1150 	/*
1151 	 * 0 -> full premission
1152 	 * 1 -> Read only
1153 	 * 2 -> no access.
1154 	 * We return the flag that need to be cleared.
1155 	 */
1156 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1157 	return spp;
1158 }
1159 
1160 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1161 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1162 {
1163 	return 0;
1164 }
1165 #endif
1166 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1167 void hash_failure_debug(unsigned long ea, unsigned long access,
1168 			unsigned long vsid, unsigned long trap,
1169 			int ssize, int psize, int lpsize, unsigned long pte)
1170 {
1171 	if (!printk_ratelimit())
1172 		return;
1173 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1174 		ea, access, current->comm);
1175 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1176 		trap, vsid, ssize, psize, lpsize, pte);
1177 }
1178 
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1179 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1180 			     int psize, bool user_region)
1181 {
1182 	if (user_region) {
1183 		if (psize != get_paca_psize(ea)) {
1184 			copy_mm_to_paca(&mm->context);
1185 			slb_flush_and_rebolt();
1186 		}
1187 	} else if (get_paca()->vmalloc_sllp !=
1188 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1189 		get_paca()->vmalloc_sllp =
1190 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1191 		slb_vmalloc_update();
1192 	}
1193 }
1194 
1195 /* Result code is:
1196  *  0 - handled
1197  *  1 - normal page fault
1198  * -1 - critical hash insertion error
1199  * -2 - access not permitted by subpage protection mechanism
1200  */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1201 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1202 		 unsigned long access, unsigned long trap,
1203 		 unsigned long flags)
1204 {
1205 	bool is_thp;
1206 	enum ctx_state prev_state = exception_enter();
1207 	pgd_t *pgdir;
1208 	unsigned long vsid;
1209 	pte_t *ptep;
1210 	unsigned hugeshift;
1211 	const struct cpumask *tmp;
1212 	int rc, user_region = 0;
1213 	int psize, ssize;
1214 
1215 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1216 		ea, access, trap);
1217 	trace_hash_fault(ea, access, trap);
1218 
1219 	/* Get region & vsid */
1220  	switch (REGION_ID(ea)) {
1221 	case USER_REGION_ID:
1222 		user_region = 1;
1223 		if (! mm) {
1224 			DBG_LOW(" user region with no mm !\n");
1225 			rc = 1;
1226 			goto bail;
1227 		}
1228 		psize = get_slice_psize(mm, ea);
1229 		ssize = user_segment_size(ea);
1230 		vsid = get_vsid(mm->context.id, ea, ssize);
1231 		break;
1232 	case VMALLOC_REGION_ID:
1233 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1234 		if (ea < VMALLOC_END)
1235 			psize = mmu_vmalloc_psize;
1236 		else
1237 			psize = mmu_io_psize;
1238 		ssize = mmu_kernel_ssize;
1239 		break;
1240 	default:
1241 		/* Not a valid range
1242 		 * Send the problem up to do_page_fault
1243 		 */
1244 		rc = 1;
1245 		goto bail;
1246 	}
1247 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1248 
1249 	/* Bad address. */
1250 	if (!vsid) {
1251 		DBG_LOW("Bad address!\n");
1252 		rc = 1;
1253 		goto bail;
1254 	}
1255 	/* Get pgdir */
1256 	pgdir = mm->pgd;
1257 	if (pgdir == NULL) {
1258 		rc = 1;
1259 		goto bail;
1260 	}
1261 
1262 	/* Check CPU locality */
1263 	tmp = cpumask_of(smp_processor_id());
1264 	if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1265 		flags |= HPTE_LOCAL_UPDATE;
1266 
1267 #ifndef CONFIG_PPC_64K_PAGES
1268 	/* If we use 4K pages and our psize is not 4K, then we might
1269 	 * be hitting a special driver mapping, and need to align the
1270 	 * address before we fetch the PTE.
1271 	 *
1272 	 * It could also be a hugepage mapping, in which case this is
1273 	 * not necessary, but it's not harmful, either.
1274 	 */
1275 	if (psize != MMU_PAGE_4K)
1276 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1277 #endif /* CONFIG_PPC_64K_PAGES */
1278 
1279 	/* Get PTE and page size from page tables */
1280 	ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift);
1281 	if (ptep == NULL || !pte_present(*ptep)) {
1282 		DBG_LOW(" no PTE !\n");
1283 		rc = 1;
1284 		goto bail;
1285 	}
1286 
1287 	/* Add _PAGE_PRESENT to the required access perm */
1288 	access |= _PAGE_PRESENT;
1289 
1290 	/* Pre-check access permissions (will be re-checked atomically
1291 	 * in __hash_page_XX but this pre-check is a fast path
1292 	 */
1293 	if (!check_pte_access(access, pte_val(*ptep))) {
1294 		DBG_LOW(" no access !\n");
1295 		rc = 1;
1296 		goto bail;
1297 	}
1298 
1299 	if (hugeshift) {
1300 		if (is_thp)
1301 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1302 					     trap, flags, ssize, psize);
1303 #ifdef CONFIG_HUGETLB_PAGE
1304 		else
1305 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1306 					      flags, ssize, hugeshift, psize);
1307 #else
1308 		else {
1309 			/*
1310 			 * if we have hugeshift, and is not transhuge with
1311 			 * hugetlb disabled, something is really wrong.
1312 			 */
1313 			rc = 1;
1314 			WARN_ON(1);
1315 		}
1316 #endif
1317 		if (current->mm == mm)
1318 			check_paca_psize(ea, mm, psize, user_region);
1319 
1320 		goto bail;
1321 	}
1322 
1323 #ifndef CONFIG_PPC_64K_PAGES
1324 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1325 #else
1326 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1327 		pte_val(*(ptep + PTRS_PER_PTE)));
1328 #endif
1329 	/* Do actual hashing */
1330 #ifdef CONFIG_PPC_64K_PAGES
1331 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1332 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1333 		demote_segment_4k(mm, ea);
1334 		psize = MMU_PAGE_4K;
1335 	}
1336 
1337 	/* If this PTE is non-cacheable and we have restrictions on
1338 	 * using non cacheable large pages, then we switch to 4k
1339 	 */
1340 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1341 		if (user_region) {
1342 			demote_segment_4k(mm, ea);
1343 			psize = MMU_PAGE_4K;
1344 		} else if (ea < VMALLOC_END) {
1345 			/*
1346 			 * some driver did a non-cacheable mapping
1347 			 * in vmalloc space, so switch vmalloc
1348 			 * to 4k pages
1349 			 */
1350 			printk(KERN_ALERT "Reducing vmalloc segment "
1351 			       "to 4kB pages because of "
1352 			       "non-cacheable mapping\n");
1353 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1354 			copro_flush_all_slbs(mm);
1355 		}
1356 	}
1357 
1358 #endif /* CONFIG_PPC_64K_PAGES */
1359 
1360 	if (current->mm == mm)
1361 		check_paca_psize(ea, mm, psize, user_region);
1362 
1363 #ifdef CONFIG_PPC_64K_PAGES
1364 	if (psize == MMU_PAGE_64K)
1365 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1366 				     flags, ssize);
1367 	else
1368 #endif /* CONFIG_PPC_64K_PAGES */
1369 	{
1370 		int spp = subpage_protection(mm, ea);
1371 		if (access & spp)
1372 			rc = -2;
1373 		else
1374 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1375 					    flags, ssize, spp);
1376 	}
1377 
1378 	/* Dump some info in case of hash insertion failure, they should
1379 	 * never happen so it is really useful to know if/when they do
1380 	 */
1381 	if (rc == -1)
1382 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1383 				   psize, pte_val(*ptep));
1384 #ifndef CONFIG_PPC_64K_PAGES
1385 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1386 #else
1387 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1388 		pte_val(*(ptep + PTRS_PER_PTE)));
1389 #endif
1390 	DBG_LOW(" -> rc=%d\n", rc);
1391 
1392 bail:
1393 	exception_exit(prev_state);
1394 	return rc;
1395 }
1396 EXPORT_SYMBOL_GPL(hash_page_mm);
1397 
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1398 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1399 	      unsigned long dsisr)
1400 {
1401 	unsigned long flags = 0;
1402 	struct mm_struct *mm = current->mm;
1403 
1404 	if (REGION_ID(ea) == VMALLOC_REGION_ID)
1405 		mm = &init_mm;
1406 
1407 	if (dsisr & DSISR_NOHPTE)
1408 		flags |= HPTE_NOHPTE_UPDATE;
1409 
1410 	return hash_page_mm(mm, ea, access, trap, flags);
1411 }
1412 EXPORT_SYMBOL_GPL(hash_page);
1413 
__hash_page(unsigned long ea,unsigned long msr,unsigned long trap,unsigned long dsisr)1414 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1415 		unsigned long dsisr)
1416 {
1417 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1418 	unsigned long flags = 0;
1419 	struct mm_struct *mm = current->mm;
1420 
1421 	if (REGION_ID(ea) == VMALLOC_REGION_ID)
1422 		mm = &init_mm;
1423 
1424 	if (dsisr & DSISR_NOHPTE)
1425 		flags |= HPTE_NOHPTE_UPDATE;
1426 
1427 	if (dsisr & DSISR_ISSTORE)
1428 		access |= _PAGE_WRITE;
1429 	/*
1430 	 * We set _PAGE_PRIVILEGED only when
1431 	 * kernel mode access kernel space.
1432 	 *
1433 	 * _PAGE_PRIVILEGED is NOT set
1434 	 * 1) when kernel mode access user space
1435 	 * 2) user space access kernel space.
1436 	 */
1437 	access |= _PAGE_PRIVILEGED;
1438 	if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1439 		access &= ~_PAGE_PRIVILEGED;
1440 
1441 	if (trap == 0x400)
1442 		access |= _PAGE_EXEC;
1443 
1444 	return hash_page_mm(mm, ea, access, trap, flags);
1445 }
1446 
1447 #ifdef CONFIG_PPC_MM_SLICES
should_hash_preload(struct mm_struct * mm,unsigned long ea)1448 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1449 {
1450 	int psize = get_slice_psize(mm, ea);
1451 
1452 	/* We only prefault standard pages for now */
1453 	if (unlikely(psize != mm->context.user_psize))
1454 		return false;
1455 
1456 	/*
1457 	 * Don't prefault if subpage protection is enabled for the EA.
1458 	 */
1459 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1460 		return false;
1461 
1462 	return true;
1463 }
1464 #else
should_hash_preload(struct mm_struct * mm,unsigned long ea)1465 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1466 {
1467 	return true;
1468 }
1469 #endif
1470 
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1471 void hash_preload(struct mm_struct *mm, unsigned long ea,
1472 		  unsigned long access, unsigned long trap)
1473 {
1474 	int hugepage_shift;
1475 	unsigned long vsid;
1476 	pgd_t *pgdir;
1477 	pte_t *ptep;
1478 	unsigned long flags;
1479 	int rc, ssize, update_flags = 0;
1480 
1481 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1482 
1483 	if (!should_hash_preload(mm, ea))
1484 		return;
1485 
1486 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1487 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1488 
1489 	/* Get Linux PTE if available */
1490 	pgdir = mm->pgd;
1491 	if (pgdir == NULL)
1492 		return;
1493 
1494 	/* Get VSID */
1495 	ssize = user_segment_size(ea);
1496 	vsid = get_vsid(mm->context.id, ea, ssize);
1497 	if (!vsid)
1498 		return;
1499 	/*
1500 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
1501 	 * saves us from holding multiple locks.
1502 	 */
1503 	local_irq_save(flags);
1504 
1505 	/*
1506 	 * THP pages use update_mmu_cache_pmd. We don't do
1507 	 * hash preload there. Hence can ignore THP here
1508 	 */
1509 	ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift);
1510 	if (!ptep)
1511 		goto out_exit;
1512 
1513 	WARN_ON(hugepage_shift);
1514 #ifdef CONFIG_PPC_64K_PAGES
1515 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1516 	 * a 64K kernel), then we don't preload, hash_page() will take
1517 	 * care of it once we actually try to access the page.
1518 	 * That way we don't have to duplicate all of the logic for segment
1519 	 * page size demotion here
1520 	 */
1521 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1522 		goto out_exit;
1523 #endif /* CONFIG_PPC_64K_PAGES */
1524 
1525 	/* Is that local to this CPU ? */
1526 	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1527 		update_flags |= HPTE_LOCAL_UPDATE;
1528 
1529 	/* Hash it in */
1530 #ifdef CONFIG_PPC_64K_PAGES
1531 	if (mm->context.user_psize == MMU_PAGE_64K)
1532 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1533 				     update_flags, ssize);
1534 	else
1535 #endif /* CONFIG_PPC_64K_PAGES */
1536 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1537 				    ssize, subpage_protection(mm, ea));
1538 
1539 	/* Dump some info in case of hash insertion failure, they should
1540 	 * never happen so it is really useful to know if/when they do
1541 	 */
1542 	if (rc == -1)
1543 		hash_failure_debug(ea, access, vsid, trap, ssize,
1544 				   mm->context.user_psize,
1545 				   mm->context.user_psize,
1546 				   pte_val(*ptep));
1547 out_exit:
1548 	local_irq_restore(flags);
1549 }
1550 
1551 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)1552 static inline void tm_flush_hash_page(int local)
1553 {
1554 	/*
1555 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1556 	 * page back to a block device w/PIO could pick up transactional data
1557 	 * (bad!) so we force an abort here. Before the sync the page will be
1558 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1559 	 * kernel uses a page from userspace without unmapping it first, it may
1560 	 * see the speculated version.
1561 	 */
1562 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1563 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1564 		tm_enable();
1565 		tm_abort(TM_CAUSE_TLBI);
1566 	}
1567 }
1568 #else
tm_flush_hash_page(int local)1569 static inline void tm_flush_hash_page(int local)
1570 {
1571 }
1572 #endif
1573 
1574 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1575  *          do not forget to update the assembly call site !
1576  */
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)1577 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1578 		     unsigned long flags)
1579 {
1580 	unsigned long hash, index, shift, hidx, slot;
1581 	int local = flags & HPTE_LOCAL_UPDATE;
1582 
1583 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1584 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1585 		hash = hpt_hash(vpn, shift, ssize);
1586 		hidx = __rpte_to_hidx(pte, index);
1587 		if (hidx & _PTEIDX_SECONDARY)
1588 			hash = ~hash;
1589 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1590 		slot += hidx & _PTEIDX_GROUP_IX;
1591 		DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1592 		/*
1593 		 * We use same base page size and actual psize, because we don't
1594 		 * use these functions for hugepage
1595 		 */
1596 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize, psize,
1597 					     ssize, local);
1598 	} pte_iterate_hashed_end();
1599 
1600 	tm_flush_hash_page(local);
1601 }
1602 
1603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)1604 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1605 			 pmd_t *pmdp, unsigned int psize, int ssize,
1606 			 unsigned long flags)
1607 {
1608 	int i, max_hpte_count, valid;
1609 	unsigned long s_addr;
1610 	unsigned char *hpte_slot_array;
1611 	unsigned long hidx, shift, vpn, hash, slot;
1612 	int local = flags & HPTE_LOCAL_UPDATE;
1613 
1614 	s_addr = addr & HPAGE_PMD_MASK;
1615 	hpte_slot_array = get_hpte_slot_array(pmdp);
1616 	/*
1617 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1618 	 * we will find the below NULL. This happens when we do
1619 	 * split_huge_page_pmd
1620 	 */
1621 	if (!hpte_slot_array)
1622 		return;
1623 
1624 	if (mmu_hash_ops.hugepage_invalidate) {
1625 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1626 						 psize, ssize, local);
1627 		goto tm_abort;
1628 	}
1629 	/*
1630 	 * No bluk hpte removal support, invalidate each entry
1631 	 */
1632 	shift = mmu_psize_defs[psize].shift;
1633 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1634 	for (i = 0; i < max_hpte_count; i++) {
1635 		/*
1636 		 * 8 bits per each hpte entries
1637 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1638 		 */
1639 		valid = hpte_valid(hpte_slot_array, i);
1640 		if (!valid)
1641 			continue;
1642 		hidx =  hpte_hash_index(hpte_slot_array, i);
1643 
1644 		/* get the vpn */
1645 		addr = s_addr + (i * (1ul << shift));
1646 		vpn = hpt_vpn(addr, vsid, ssize);
1647 		hash = hpt_hash(vpn, shift, ssize);
1648 		if (hidx & _PTEIDX_SECONDARY)
1649 			hash = ~hash;
1650 
1651 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1652 		slot += hidx & _PTEIDX_GROUP_IX;
1653 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1654 					     MMU_PAGE_16M, ssize, local);
1655 	}
1656 tm_abort:
1657 	tm_flush_hash_page(local);
1658 }
1659 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1660 
flush_hash_range(unsigned long number,int local)1661 void flush_hash_range(unsigned long number, int local)
1662 {
1663 	if (mmu_hash_ops.flush_hash_range)
1664 		mmu_hash_ops.flush_hash_range(number, local);
1665 	else {
1666 		int i;
1667 		struct ppc64_tlb_batch *batch =
1668 			this_cpu_ptr(&ppc64_tlb_batch);
1669 
1670 		for (i = 0; i < number; i++)
1671 			flush_hash_page(batch->vpn[i], batch->pte[i],
1672 					batch->psize, batch->ssize, local);
1673 	}
1674 }
1675 
1676 /*
1677  * low_hash_fault is called when we the low level hash code failed
1678  * to instert a PTE due to an hypervisor error
1679  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1680 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1681 {
1682 	enum ctx_state prev_state = exception_enter();
1683 
1684 	if (user_mode(regs)) {
1685 #ifdef CONFIG_PPC_SUBPAGE_PROT
1686 		if (rc == -2)
1687 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1688 		else
1689 #endif
1690 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1691 	} else
1692 		bad_page_fault(regs, address, SIGBUS);
1693 
1694 	exception_exit(prev_state);
1695 }
1696 
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)1697 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1698 			   unsigned long pa, unsigned long rflags,
1699 			   unsigned long vflags, int psize, int ssize)
1700 {
1701 	unsigned long hpte_group;
1702 	long slot;
1703 
1704 repeat:
1705 	hpte_group = ((hash & htab_hash_mask) *
1706 		       HPTES_PER_GROUP) & ~0x7UL;
1707 
1708 	/* Insert into the hash table, primary slot */
1709 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1710 					psize, psize, ssize);
1711 
1712 	/* Primary is full, try the secondary */
1713 	if (unlikely(slot == -1)) {
1714 		hpte_group = ((~hash & htab_hash_mask) *
1715 			      HPTES_PER_GROUP) & ~0x7UL;
1716 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1717 						vflags | HPTE_V_SECONDARY,
1718 						psize, psize, ssize);
1719 		if (slot == -1) {
1720 			if (mftb() & 0x1)
1721 				hpte_group = ((hash & htab_hash_mask) *
1722 					      HPTES_PER_GROUP)&~0x7UL;
1723 
1724 			mmu_hash_ops.hpte_remove(hpte_group);
1725 			goto repeat;
1726 		}
1727 	}
1728 
1729 	return slot;
1730 }
1731 
1732 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1733 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1734 {
1735 	unsigned long hash;
1736 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1737 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1738 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1739 	long ret;
1740 
1741 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1742 
1743 	/* Don't create HPTE entries for bad address */
1744 	if (!vsid)
1745 		return;
1746 
1747 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1748 				    HPTE_V_BOLTED,
1749 				    mmu_linear_psize, mmu_kernel_ssize);
1750 
1751 	BUG_ON (ret < 0);
1752 	spin_lock(&linear_map_hash_lock);
1753 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1754 	linear_map_hash_slots[lmi] = ret | 0x80;
1755 	spin_unlock(&linear_map_hash_lock);
1756 }
1757 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1758 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1759 {
1760 	unsigned long hash, hidx, slot;
1761 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1762 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1763 
1764 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1765 	spin_lock(&linear_map_hash_lock);
1766 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1767 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1768 	linear_map_hash_slots[lmi] = 0;
1769 	spin_unlock(&linear_map_hash_lock);
1770 	if (hidx & _PTEIDX_SECONDARY)
1771 		hash = ~hash;
1772 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1773 	slot += hidx & _PTEIDX_GROUP_IX;
1774 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1775 				     mmu_linear_psize,
1776 				     mmu_kernel_ssize, 0);
1777 }
1778 
__kernel_map_pages(struct page * page,int numpages,int enable)1779 void __kernel_map_pages(struct page *page, int numpages, int enable)
1780 {
1781 	unsigned long flags, vaddr, lmi;
1782 	int i;
1783 
1784 	local_irq_save(flags);
1785 	for (i = 0; i < numpages; i++, page++) {
1786 		vaddr = (unsigned long)page_address(page);
1787 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1788 		if (lmi >= linear_map_hash_count)
1789 			continue;
1790 		if (enable)
1791 			kernel_map_linear_page(vaddr, lmi);
1792 		else
1793 			kernel_unmap_linear_page(vaddr, lmi);
1794 	}
1795 	local_irq_restore(flags);
1796 }
1797 #endif /* CONFIG_DEBUG_PAGEALLOC */
1798 
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1799 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1800 				phys_addr_t first_memblock_size)
1801 {
1802 	/* We don't currently support the first MEMBLOCK not mapping 0
1803 	 * physical on those processors
1804 	 */
1805 	BUG_ON(first_memblock_base != 0);
1806 
1807 	/* On LPAR systems, the first entry is our RMA region,
1808 	 * non-LPAR 64-bit hash MMU systems don't have a limitation
1809 	 * on real mode access, but using the first entry works well
1810 	 * enough. We also clamp it to 1G to avoid some funky things
1811 	 * such as RTAS bugs etc...
1812 	 */
1813 	ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1814 
1815 	/* Finally limit subsequent allocations */
1816 	memblock_set_current_limit(ppc64_rma_size);
1817 }
1818