• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45 
46 #include <asm/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51 
52 #include "tick-internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56 
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58 
59 EXPORT_SYMBOL(jiffies_64);
60 
61 /*
62  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
63  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
64  * level has a different granularity.
65  *
66  * The level granularity is:		LVL_CLK_DIV ^ lvl
67  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
68  *
69  * The array level of a newly armed timer depends on the relative expiry
70  * time. The farther the expiry time is away the higher the array level and
71  * therefor the granularity becomes.
72  *
73  * Contrary to the original timer wheel implementation, which aims for 'exact'
74  * expiry of the timers, this implementation removes the need for recascading
75  * the timers into the lower array levels. The previous 'classic' timer wheel
76  * implementation of the kernel already violated the 'exact' expiry by adding
77  * slack to the expiry time to provide batched expiration. The granularity
78  * levels provide implicit batching.
79  *
80  * This is an optimization of the original timer wheel implementation for the
81  * majority of the timer wheel use cases: timeouts. The vast majority of
82  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
83  * the timeout expires it indicates that normal operation is disturbed, so it
84  * does not matter much whether the timeout comes with a slight delay.
85  *
86  * The only exception to this are networking timers with a small expiry
87  * time. They rely on the granularity. Those fit into the first wheel level,
88  * which has HZ granularity.
89  *
90  * We don't have cascading anymore. timers with a expiry time above the
91  * capacity of the last wheel level are force expired at the maximum timeout
92  * value of the last wheel level. From data sampling we know that the maximum
93  * value observed is 5 days (network connection tracking), so this should not
94  * be an issue.
95  *
96  * The currently chosen array constants values are a good compromise between
97  * array size and granularity.
98  *
99  * This results in the following granularity and range levels:
100  *
101  * HZ 1000 steps
102  * Level Offset  Granularity            Range
103  *  0      0         1 ms                0 ms -         63 ms
104  *  1     64         8 ms               64 ms -        511 ms
105  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
106  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
107  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
108  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
109  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
110  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
111  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
112  *
113  * HZ  300
114  * Level Offset  Granularity            Range
115  *  0	   0         3 ms                0 ms -        210 ms
116  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
117  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
118  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
119  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
120  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
121  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
122  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
123  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
124  *
125  * HZ  250
126  * Level Offset  Granularity            Range
127  *  0	   0         4 ms                0 ms -        255 ms
128  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
129  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
130  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
131  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
132  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
133  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
134  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
135  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
136  *
137  * HZ  100
138  * Level Offset  Granularity            Range
139  *  0	   0         10 ms               0 ms -        630 ms
140  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
141  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
142  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
143  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
144  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
145  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
146  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
147  */
148 
149 /* Clock divisor for the next level */
150 #define LVL_CLK_SHIFT	3
151 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
152 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
153 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
154 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
155 
156 /*
157  * The time start value for each level to select the bucket at enqueue
158  * time.
159  */
160 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
161 
162 /* Size of each clock level */
163 #define LVL_BITS	6
164 #define LVL_SIZE	(1UL << LVL_BITS)
165 #define LVL_MASK	(LVL_SIZE - 1)
166 #define LVL_OFFS(n)	((n) * LVL_SIZE)
167 
168 /* Level depth */
169 #if HZ > 100
170 # define LVL_DEPTH	9
171 # else
172 # define LVL_DEPTH	8
173 #endif
174 
175 /* The cutoff (max. capacity of the wheel) */
176 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
177 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
178 
179 /*
180  * The resulting wheel size. If NOHZ is configured we allocate two
181  * wheels so we have a separate storage for the deferrable timers.
182  */
183 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
184 
185 #ifdef CONFIG_NO_HZ_COMMON
186 # define NR_BASES	2
187 # define BASE_STD	0
188 # define BASE_DEF	1
189 #else
190 # define NR_BASES	1
191 # define BASE_STD	0
192 # define BASE_DEF	0
193 #endif
194 
195 struct timer_base {
196 	spinlock_t		lock;
197 	struct timer_list	*running_timer;
198 	unsigned long		clk;
199 	unsigned long		next_expiry;
200 	unsigned int		cpu;
201 	bool			migration_enabled;
202 	bool			nohz_active;
203 	bool			is_idle;
204 	bool			must_forward_clk;
205 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
206 	struct hlist_head	vectors[WHEEL_SIZE];
207 } ____cacheline_aligned;
208 
209 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
210 
211 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
212 unsigned int sysctl_timer_migration = 1;
213 
timers_update_migration(bool update_nohz)214 void timers_update_migration(bool update_nohz)
215 {
216 	bool on = sysctl_timer_migration && tick_nohz_active;
217 	unsigned int cpu;
218 
219 	/* Avoid the loop, if nothing to update */
220 	if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
221 		return;
222 
223 	for_each_possible_cpu(cpu) {
224 		per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
225 		per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
226 		per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
227 		if (!update_nohz)
228 			continue;
229 		per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
230 		per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
231 		per_cpu(hrtimer_bases.nohz_active, cpu) = true;
232 	}
233 }
234 
timer_migration_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)235 int timer_migration_handler(struct ctl_table *table, int write,
236 			    void __user *buffer, size_t *lenp,
237 			    loff_t *ppos)
238 {
239 	static DEFINE_MUTEX(mutex);
240 	int ret;
241 
242 	mutex_lock(&mutex);
243 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
244 	if (!ret && write)
245 		timers_update_migration(false);
246 	mutex_unlock(&mutex);
247 	return ret;
248 }
249 #endif
250 
round_jiffies_common(unsigned long j,int cpu,bool force_up)251 static unsigned long round_jiffies_common(unsigned long j, int cpu,
252 		bool force_up)
253 {
254 	int rem;
255 	unsigned long original = j;
256 
257 	/*
258 	 * We don't want all cpus firing their timers at once hitting the
259 	 * same lock or cachelines, so we skew each extra cpu with an extra
260 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
261 	 * already did this.
262 	 * The skew is done by adding 3*cpunr, then round, then subtract this
263 	 * extra offset again.
264 	 */
265 	j += cpu * 3;
266 
267 	rem = j % HZ;
268 
269 	/*
270 	 * If the target jiffie is just after a whole second (which can happen
271 	 * due to delays of the timer irq, long irq off times etc etc) then
272 	 * we should round down to the whole second, not up. Use 1/4th second
273 	 * as cutoff for this rounding as an extreme upper bound for this.
274 	 * But never round down if @force_up is set.
275 	 */
276 	if (rem < HZ/4 && !force_up) /* round down */
277 		j = j - rem;
278 	else /* round up */
279 		j = j - rem + HZ;
280 
281 	/* now that we have rounded, subtract the extra skew again */
282 	j -= cpu * 3;
283 
284 	/*
285 	 * Make sure j is still in the future. Otherwise return the
286 	 * unmodified value.
287 	 */
288 	return time_is_after_jiffies(j) ? j : original;
289 }
290 
291 /**
292  * __round_jiffies - function to round jiffies to a full second
293  * @j: the time in (absolute) jiffies that should be rounded
294  * @cpu: the processor number on which the timeout will happen
295  *
296  * __round_jiffies() rounds an absolute time in the future (in jiffies)
297  * up or down to (approximately) full seconds. This is useful for timers
298  * for which the exact time they fire does not matter too much, as long as
299  * they fire approximately every X seconds.
300  *
301  * By rounding these timers to whole seconds, all such timers will fire
302  * at the same time, rather than at various times spread out. The goal
303  * of this is to have the CPU wake up less, which saves power.
304  *
305  * The exact rounding is skewed for each processor to avoid all
306  * processors firing at the exact same time, which could lead
307  * to lock contention or spurious cache line bouncing.
308  *
309  * The return value is the rounded version of the @j parameter.
310  */
__round_jiffies(unsigned long j,int cpu)311 unsigned long __round_jiffies(unsigned long j, int cpu)
312 {
313 	return round_jiffies_common(j, cpu, false);
314 }
315 EXPORT_SYMBOL_GPL(__round_jiffies);
316 
317 /**
318  * __round_jiffies_relative - function to round jiffies to a full second
319  * @j: the time in (relative) jiffies that should be rounded
320  * @cpu: the processor number on which the timeout will happen
321  *
322  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
323  * up or down to (approximately) full seconds. This is useful for timers
324  * for which the exact time they fire does not matter too much, as long as
325  * they fire approximately every X seconds.
326  *
327  * By rounding these timers to whole seconds, all such timers will fire
328  * at the same time, rather than at various times spread out. The goal
329  * of this is to have the CPU wake up less, which saves power.
330  *
331  * The exact rounding is skewed for each processor to avoid all
332  * processors firing at the exact same time, which could lead
333  * to lock contention or spurious cache line bouncing.
334  *
335  * The return value is the rounded version of the @j parameter.
336  */
__round_jiffies_relative(unsigned long j,int cpu)337 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
338 {
339 	unsigned long j0 = jiffies;
340 
341 	/* Use j0 because jiffies might change while we run */
342 	return round_jiffies_common(j + j0, cpu, false) - j0;
343 }
344 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
345 
346 /**
347  * round_jiffies - function to round jiffies to a full second
348  * @j: the time in (absolute) jiffies that should be rounded
349  *
350  * round_jiffies() rounds an absolute time in the future (in jiffies)
351  * up or down to (approximately) full seconds. This is useful for timers
352  * for which the exact time they fire does not matter too much, as long as
353  * they fire approximately every X seconds.
354  *
355  * By rounding these timers to whole seconds, all such timers will fire
356  * at the same time, rather than at various times spread out. The goal
357  * of this is to have the CPU wake up less, which saves power.
358  *
359  * The return value is the rounded version of the @j parameter.
360  */
round_jiffies(unsigned long j)361 unsigned long round_jiffies(unsigned long j)
362 {
363 	return round_jiffies_common(j, raw_smp_processor_id(), false);
364 }
365 EXPORT_SYMBOL_GPL(round_jiffies);
366 
367 /**
368  * round_jiffies_relative - function to round jiffies to a full second
369  * @j: the time in (relative) jiffies that should be rounded
370  *
371  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
372  * up or down to (approximately) full seconds. This is useful for timers
373  * for which the exact time they fire does not matter too much, as long as
374  * they fire approximately every X seconds.
375  *
376  * By rounding these timers to whole seconds, all such timers will fire
377  * at the same time, rather than at various times spread out. The goal
378  * of this is to have the CPU wake up less, which saves power.
379  *
380  * The return value is the rounded version of the @j parameter.
381  */
round_jiffies_relative(unsigned long j)382 unsigned long round_jiffies_relative(unsigned long j)
383 {
384 	return __round_jiffies_relative(j, raw_smp_processor_id());
385 }
386 EXPORT_SYMBOL_GPL(round_jiffies_relative);
387 
388 /**
389  * __round_jiffies_up - function to round jiffies up to a full second
390  * @j: the time in (absolute) jiffies that should be rounded
391  * @cpu: the processor number on which the timeout will happen
392  *
393  * This is the same as __round_jiffies() except that it will never
394  * round down.  This is useful for timeouts for which the exact time
395  * of firing does not matter too much, as long as they don't fire too
396  * early.
397  */
__round_jiffies_up(unsigned long j,int cpu)398 unsigned long __round_jiffies_up(unsigned long j, int cpu)
399 {
400 	return round_jiffies_common(j, cpu, true);
401 }
402 EXPORT_SYMBOL_GPL(__round_jiffies_up);
403 
404 /**
405  * __round_jiffies_up_relative - function to round jiffies up to a full second
406  * @j: the time in (relative) jiffies that should be rounded
407  * @cpu: the processor number on which the timeout will happen
408  *
409  * This is the same as __round_jiffies_relative() except that it will never
410  * round down.  This is useful for timeouts for which the exact time
411  * of firing does not matter too much, as long as they don't fire too
412  * early.
413  */
__round_jiffies_up_relative(unsigned long j,int cpu)414 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
415 {
416 	unsigned long j0 = jiffies;
417 
418 	/* Use j0 because jiffies might change while we run */
419 	return round_jiffies_common(j + j0, cpu, true) - j0;
420 }
421 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
422 
423 /**
424  * round_jiffies_up - function to round jiffies up to a full second
425  * @j: the time in (absolute) jiffies that should be rounded
426  *
427  * This is the same as round_jiffies() except that it will never
428  * round down.  This is useful for timeouts for which the exact time
429  * of firing does not matter too much, as long as they don't fire too
430  * early.
431  */
round_jiffies_up(unsigned long j)432 unsigned long round_jiffies_up(unsigned long j)
433 {
434 	return round_jiffies_common(j, raw_smp_processor_id(), true);
435 }
436 EXPORT_SYMBOL_GPL(round_jiffies_up);
437 
438 /**
439  * round_jiffies_up_relative - function to round jiffies up to a full second
440  * @j: the time in (relative) jiffies that should be rounded
441  *
442  * This is the same as round_jiffies_relative() except that it will never
443  * round down.  This is useful for timeouts for which the exact time
444  * of firing does not matter too much, as long as they don't fire too
445  * early.
446  */
round_jiffies_up_relative(unsigned long j)447 unsigned long round_jiffies_up_relative(unsigned long j)
448 {
449 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
450 }
451 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
452 
453 
timer_get_idx(struct timer_list * timer)454 static inline unsigned int timer_get_idx(struct timer_list *timer)
455 {
456 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
457 }
458 
timer_set_idx(struct timer_list * timer,unsigned int idx)459 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
460 {
461 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
462 			idx << TIMER_ARRAYSHIFT;
463 }
464 
465 /*
466  * Helper function to calculate the array index for a given expiry
467  * time.
468  */
calc_index(unsigned expires,unsigned lvl)469 static inline unsigned calc_index(unsigned expires, unsigned lvl)
470 {
471 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
472 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
473 }
474 
calc_wheel_index(unsigned long expires,unsigned long clk)475 static int calc_wheel_index(unsigned long expires, unsigned long clk)
476 {
477 	unsigned long delta = expires - clk;
478 	unsigned int idx;
479 
480 	if (delta < LVL_START(1)) {
481 		idx = calc_index(expires, 0);
482 	} else if (delta < LVL_START(2)) {
483 		idx = calc_index(expires, 1);
484 	} else if (delta < LVL_START(3)) {
485 		idx = calc_index(expires, 2);
486 	} else if (delta < LVL_START(4)) {
487 		idx = calc_index(expires, 3);
488 	} else if (delta < LVL_START(5)) {
489 		idx = calc_index(expires, 4);
490 	} else if (delta < LVL_START(6)) {
491 		idx = calc_index(expires, 5);
492 	} else if (delta < LVL_START(7)) {
493 		idx = calc_index(expires, 6);
494 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
495 		idx = calc_index(expires, 7);
496 	} else if ((long) delta < 0) {
497 		idx = clk & LVL_MASK;
498 	} else {
499 		/*
500 		 * Force expire obscene large timeouts to expire at the
501 		 * capacity limit of the wheel.
502 		 */
503 		if (expires >= WHEEL_TIMEOUT_CUTOFF)
504 			expires = WHEEL_TIMEOUT_MAX;
505 
506 		idx = calc_index(expires, LVL_DEPTH - 1);
507 	}
508 	return idx;
509 }
510 
511 /*
512  * Enqueue the timer into the hash bucket, mark it pending in
513  * the bitmap and store the index in the timer flags.
514  */
enqueue_timer(struct timer_base * base,struct timer_list * timer,unsigned int idx)515 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
516 			  unsigned int idx)
517 {
518 	hlist_add_head(&timer->entry, base->vectors + idx);
519 	__set_bit(idx, base->pending_map);
520 	timer_set_idx(timer, idx);
521 }
522 
523 static void
__internal_add_timer(struct timer_base * base,struct timer_list * timer)524 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
525 {
526 	unsigned int idx;
527 
528 	idx = calc_wheel_index(timer->expires, base->clk);
529 	enqueue_timer(base, timer, idx);
530 }
531 
532 static void
trigger_dyntick_cpu(struct timer_base * base,struct timer_list * timer)533 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
534 {
535 	if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
536 		return;
537 
538 	/*
539 	 * TODO: This wants some optimizing similar to the code below, but we
540 	 * will do that when we switch from push to pull for deferrable timers.
541 	 */
542 	if (timer->flags & TIMER_DEFERRABLE) {
543 		if (tick_nohz_full_cpu(base->cpu))
544 			wake_up_nohz_cpu(base->cpu);
545 		return;
546 	}
547 
548 	/*
549 	 * We might have to IPI the remote CPU if the base is idle and the
550 	 * timer is not deferrable. If the other CPU is on the way to idle
551 	 * then it can't set base->is_idle as we hold the base lock:
552 	 */
553 	if (!base->is_idle)
554 		return;
555 
556 	/* Check whether this is the new first expiring timer: */
557 	if (time_after_eq(timer->expires, base->next_expiry))
558 		return;
559 
560 	/*
561 	 * Set the next expiry time and kick the CPU so it can reevaluate the
562 	 * wheel:
563 	 */
564 	base->next_expiry = timer->expires;
565 		wake_up_nohz_cpu(base->cpu);
566 }
567 
568 static void
internal_add_timer(struct timer_base * base,struct timer_list * timer)569 internal_add_timer(struct timer_base *base, struct timer_list *timer)
570 {
571 	__internal_add_timer(base, timer);
572 	trigger_dyntick_cpu(base, timer);
573 }
574 
575 #ifdef CONFIG_TIMER_STATS
__timer_stats_timer_set_start_info(struct timer_list * timer,void * addr)576 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
577 {
578 	if (timer->start_site)
579 		return;
580 
581 	timer->start_site = addr;
582 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
583 	timer->start_pid = current->pid;
584 }
585 
timer_stats_account_timer(struct timer_list * timer)586 static void timer_stats_account_timer(struct timer_list *timer)
587 {
588 	void *site;
589 
590 	/*
591 	 * start_site can be concurrently reset by
592 	 * timer_stats_timer_clear_start_info()
593 	 */
594 	site = READ_ONCE(timer->start_site);
595 	if (likely(!site))
596 		return;
597 
598 	timer_stats_update_stats(timer, timer->start_pid, site,
599 				 timer->function, timer->start_comm,
600 				 timer->flags);
601 }
602 
603 #else
timer_stats_account_timer(struct timer_list * timer)604 static void timer_stats_account_timer(struct timer_list *timer) {}
605 #endif
606 
607 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
608 
609 static struct debug_obj_descr timer_debug_descr;
610 
timer_debug_hint(void * addr)611 static void *timer_debug_hint(void *addr)
612 {
613 	return ((struct timer_list *) addr)->function;
614 }
615 
timer_is_static_object(void * addr)616 static bool timer_is_static_object(void *addr)
617 {
618 	struct timer_list *timer = addr;
619 
620 	return (timer->entry.pprev == NULL &&
621 		timer->entry.next == TIMER_ENTRY_STATIC);
622 }
623 
624 /*
625  * fixup_init is called when:
626  * - an active object is initialized
627  */
timer_fixup_init(void * addr,enum debug_obj_state state)628 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
629 {
630 	struct timer_list *timer = addr;
631 
632 	switch (state) {
633 	case ODEBUG_STATE_ACTIVE:
634 		del_timer_sync(timer);
635 		debug_object_init(timer, &timer_debug_descr);
636 		return true;
637 	default:
638 		return false;
639 	}
640 }
641 
642 /* Stub timer callback for improperly used timers. */
stub_timer(unsigned long data)643 static void stub_timer(unsigned long data)
644 {
645 	WARN_ON(1);
646 }
647 
648 /*
649  * fixup_activate is called when:
650  * - an active object is activated
651  * - an unknown non-static object is activated
652  */
timer_fixup_activate(void * addr,enum debug_obj_state state)653 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
654 {
655 	struct timer_list *timer = addr;
656 
657 	switch (state) {
658 	case ODEBUG_STATE_NOTAVAILABLE:
659 		setup_timer(timer, stub_timer, 0);
660 		return true;
661 
662 	case ODEBUG_STATE_ACTIVE:
663 		WARN_ON(1);
664 
665 	default:
666 		return false;
667 	}
668 }
669 
670 /*
671  * fixup_free is called when:
672  * - an active object is freed
673  */
timer_fixup_free(void * addr,enum debug_obj_state state)674 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
675 {
676 	struct timer_list *timer = addr;
677 
678 	switch (state) {
679 	case ODEBUG_STATE_ACTIVE:
680 		del_timer_sync(timer);
681 		debug_object_free(timer, &timer_debug_descr);
682 		return true;
683 	default:
684 		return false;
685 	}
686 }
687 
688 /*
689  * fixup_assert_init is called when:
690  * - an untracked/uninit-ed object is found
691  */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)692 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
693 {
694 	struct timer_list *timer = addr;
695 
696 	switch (state) {
697 	case ODEBUG_STATE_NOTAVAILABLE:
698 		setup_timer(timer, stub_timer, 0);
699 		return true;
700 	default:
701 		return false;
702 	}
703 }
704 
705 static struct debug_obj_descr timer_debug_descr = {
706 	.name			= "timer_list",
707 	.debug_hint		= timer_debug_hint,
708 	.is_static_object	= timer_is_static_object,
709 	.fixup_init		= timer_fixup_init,
710 	.fixup_activate		= timer_fixup_activate,
711 	.fixup_free		= timer_fixup_free,
712 	.fixup_assert_init	= timer_fixup_assert_init,
713 };
714 
debug_timer_init(struct timer_list * timer)715 static inline void debug_timer_init(struct timer_list *timer)
716 {
717 	debug_object_init(timer, &timer_debug_descr);
718 }
719 
debug_timer_activate(struct timer_list * timer)720 static inline void debug_timer_activate(struct timer_list *timer)
721 {
722 	debug_object_activate(timer, &timer_debug_descr);
723 }
724 
debug_timer_deactivate(struct timer_list * timer)725 static inline void debug_timer_deactivate(struct timer_list *timer)
726 {
727 	debug_object_deactivate(timer, &timer_debug_descr);
728 }
729 
debug_timer_free(struct timer_list * timer)730 static inline void debug_timer_free(struct timer_list *timer)
731 {
732 	debug_object_free(timer, &timer_debug_descr);
733 }
734 
debug_timer_assert_init(struct timer_list * timer)735 static inline void debug_timer_assert_init(struct timer_list *timer)
736 {
737 	debug_object_assert_init(timer, &timer_debug_descr);
738 }
739 
740 static void do_init_timer(struct timer_list *timer, unsigned int flags,
741 			  const char *name, struct lock_class_key *key);
742 
init_timer_on_stack_key(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)743 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
744 			     const char *name, struct lock_class_key *key)
745 {
746 	debug_object_init_on_stack(timer, &timer_debug_descr);
747 	do_init_timer(timer, flags, name, key);
748 }
749 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
750 
destroy_timer_on_stack(struct timer_list * timer)751 void destroy_timer_on_stack(struct timer_list *timer)
752 {
753 	debug_object_free(timer, &timer_debug_descr);
754 }
755 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
756 
757 #else
debug_timer_init(struct timer_list * timer)758 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)759 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)760 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)761 static inline void debug_timer_assert_init(struct timer_list *timer) { }
762 #endif
763 
debug_init(struct timer_list * timer)764 static inline void debug_init(struct timer_list *timer)
765 {
766 	debug_timer_init(timer);
767 	trace_timer_init(timer);
768 }
769 
770 static inline void
debug_activate(struct timer_list * timer,unsigned long expires)771 debug_activate(struct timer_list *timer, unsigned long expires)
772 {
773 	debug_timer_activate(timer);
774 	trace_timer_start(timer, expires, timer->flags);
775 }
776 
debug_deactivate(struct timer_list * timer)777 static inline void debug_deactivate(struct timer_list *timer)
778 {
779 	debug_timer_deactivate(timer);
780 	trace_timer_cancel(timer);
781 }
782 
debug_assert_init(struct timer_list * timer)783 static inline void debug_assert_init(struct timer_list *timer)
784 {
785 	debug_timer_assert_init(timer);
786 }
787 
do_init_timer(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)788 static void do_init_timer(struct timer_list *timer, unsigned int flags,
789 			  const char *name, struct lock_class_key *key)
790 {
791 	timer->entry.pprev = NULL;
792 	timer->flags = flags | raw_smp_processor_id();
793 #ifdef CONFIG_TIMER_STATS
794 	timer->start_site = NULL;
795 	timer->start_pid = -1;
796 	memset(timer->start_comm, 0, TASK_COMM_LEN);
797 #endif
798 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
799 }
800 
801 /**
802  * init_timer_key - initialize a timer
803  * @timer: the timer to be initialized
804  * @flags: timer flags
805  * @name: name of the timer
806  * @key: lockdep class key of the fake lock used for tracking timer
807  *       sync lock dependencies
808  *
809  * init_timer_key() must be done to a timer prior calling *any* of the
810  * other timer functions.
811  */
init_timer_key(struct timer_list * timer,unsigned int flags,const char * name,struct lock_class_key * key)812 void init_timer_key(struct timer_list *timer, unsigned int flags,
813 		    const char *name, struct lock_class_key *key)
814 {
815 	debug_init(timer);
816 	do_init_timer(timer, flags, name, key);
817 }
818 EXPORT_SYMBOL(init_timer_key);
819 
detach_timer(struct timer_list * timer,bool clear_pending)820 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
821 {
822 	struct hlist_node *entry = &timer->entry;
823 
824 	debug_deactivate(timer);
825 
826 	__hlist_del(entry);
827 	if (clear_pending)
828 		entry->pprev = NULL;
829 	entry->next = LIST_POISON2;
830 }
831 
detach_if_pending(struct timer_list * timer,struct timer_base * base,bool clear_pending)832 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
833 			     bool clear_pending)
834 {
835 	unsigned idx = timer_get_idx(timer);
836 
837 	if (!timer_pending(timer))
838 		return 0;
839 
840 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
841 		__clear_bit(idx, base->pending_map);
842 
843 	detach_timer(timer, clear_pending);
844 	return 1;
845 }
846 
get_timer_cpu_base(u32 tflags,u32 cpu)847 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
848 {
849 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
850 
851 	/*
852 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
853 	 * to use the deferrable base.
854 	 */
855 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
856 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
857 	return base;
858 }
859 
get_timer_this_cpu_base(u32 tflags)860 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
861 {
862 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
863 
864 	/*
865 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
866 	 * to use the deferrable base.
867 	 */
868 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
869 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
870 	return base;
871 }
872 
get_timer_base(u32 tflags)873 static inline struct timer_base *get_timer_base(u32 tflags)
874 {
875 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
876 }
877 
878 #ifdef CONFIG_NO_HZ_COMMON
879 static inline struct timer_base *
get_target_base(struct timer_base * base,unsigned tflags)880 get_target_base(struct timer_base *base, unsigned tflags)
881 {
882 #ifdef CONFIG_SMP
883 	if ((tflags & TIMER_PINNED) || !base->migration_enabled)
884 		return get_timer_this_cpu_base(tflags);
885 	return get_timer_cpu_base(tflags, get_nohz_timer_target());
886 #else
887 	return get_timer_this_cpu_base(tflags);
888 #endif
889 }
890 
forward_timer_base(struct timer_base * base)891 static inline void forward_timer_base(struct timer_base *base)
892 {
893 	unsigned long jnow;
894 
895 	/*
896 	 * We only forward the base when we are idle or have just come out of
897 	 * idle (must_forward_clk logic), and have a delta between base clock
898 	 * and jiffies. In the common case, run_timers will take care of it.
899 	 */
900 	if (likely(!base->must_forward_clk))
901 		return;
902 
903 	jnow = READ_ONCE(jiffies);
904 	base->must_forward_clk = base->is_idle;
905 	if ((long)(jnow - base->clk) < 2)
906 		return;
907 
908 	/*
909 	 * If the next expiry value is > jiffies, then we fast forward to
910 	 * jiffies otherwise we forward to the next expiry value.
911 	 */
912 	if (time_after(base->next_expiry, jnow))
913 		base->clk = jnow;
914 	else
915 		base->clk = base->next_expiry;
916 }
917 #else
918 static inline struct timer_base *
get_target_base(struct timer_base * base,unsigned tflags)919 get_target_base(struct timer_base *base, unsigned tflags)
920 {
921 	return get_timer_this_cpu_base(tflags);
922 }
923 
forward_timer_base(struct timer_base * base)924 static inline void forward_timer_base(struct timer_base *base) { }
925 #endif
926 
927 
928 /*
929  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
930  * that all timers which are tied to this base are locked, and the base itself
931  * is locked too.
932  *
933  * So __run_timers/migrate_timers can safely modify all timers which could
934  * be found in the base->vectors array.
935  *
936  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
937  * to wait until the migration is done.
938  */
lock_timer_base(struct timer_list * timer,unsigned long * flags)939 static struct timer_base *lock_timer_base(struct timer_list *timer,
940 					  unsigned long *flags)
941 	__acquires(timer->base->lock)
942 {
943 	for (;;) {
944 		struct timer_base *base;
945 		u32 tf;
946 
947 		/*
948 		 * We need to use READ_ONCE() here, otherwise the compiler
949 		 * might re-read @tf between the check for TIMER_MIGRATING
950 		 * and spin_lock().
951 		 */
952 		tf = READ_ONCE(timer->flags);
953 
954 		if (!(tf & TIMER_MIGRATING)) {
955 			base = get_timer_base(tf);
956 			spin_lock_irqsave(&base->lock, *flags);
957 			if (timer->flags == tf)
958 				return base;
959 			spin_unlock_irqrestore(&base->lock, *flags);
960 		}
961 		cpu_relax();
962 	}
963 }
964 
965 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,bool pending_only)966 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
967 {
968 	struct timer_base *base, *new_base;
969 	unsigned int idx = UINT_MAX;
970 	unsigned long clk = 0, flags;
971 	int ret = 0;
972 
973 	BUG_ON(!timer->function);
974 
975 	/*
976 	 * This is a common optimization triggered by the networking code - if
977 	 * the timer is re-modified to have the same timeout or ends up in the
978 	 * same array bucket then just return:
979 	 */
980 	if (timer_pending(timer)) {
981 		/*
982 		 * The downside of this optimization is that it can result in
983 		 * larger granularity than you would get from adding a new
984 		 * timer with this expiry.
985 		 */
986 		if (timer->expires == expires)
987 			return 1;
988 
989 		/*
990 		 * We lock timer base and calculate the bucket index right
991 		 * here. If the timer ends up in the same bucket, then we
992 		 * just update the expiry time and avoid the whole
993 		 * dequeue/enqueue dance.
994 		 */
995 		base = lock_timer_base(timer, &flags);
996 		forward_timer_base(base);
997 
998 		clk = base->clk;
999 		idx = calc_wheel_index(expires, clk);
1000 
1001 		/*
1002 		 * Retrieve and compare the array index of the pending
1003 		 * timer. If it matches set the expiry to the new value so a
1004 		 * subsequent call will exit in the expires check above.
1005 		 */
1006 		if (idx == timer_get_idx(timer)) {
1007 			timer->expires = expires;
1008 			ret = 1;
1009 			goto out_unlock;
1010 		}
1011 	} else {
1012 		base = lock_timer_base(timer, &flags);
1013 		forward_timer_base(base);
1014 	}
1015 
1016 	timer_stats_timer_set_start_info(timer);
1017 
1018 	ret = detach_if_pending(timer, base, false);
1019 	if (!ret && pending_only)
1020 		goto out_unlock;
1021 
1022 	new_base = get_target_base(base, timer->flags);
1023 
1024 	if (base != new_base) {
1025 		/*
1026 		 * We are trying to schedule the timer on the new base.
1027 		 * However we can't change timer's base while it is running,
1028 		 * otherwise del_timer_sync() can't detect that the timer's
1029 		 * handler yet has not finished. This also guarantees that the
1030 		 * timer is serialized wrt itself.
1031 		 */
1032 		if (likely(base->running_timer != timer)) {
1033 			/* See the comment in lock_timer_base() */
1034 			timer->flags |= TIMER_MIGRATING;
1035 
1036 			spin_unlock(&base->lock);
1037 			base = new_base;
1038 			spin_lock(&base->lock);
1039 			WRITE_ONCE(timer->flags,
1040 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1041 			forward_timer_base(base);
1042 		}
1043 	}
1044 
1045 	debug_activate(timer, expires);
1046 
1047 	timer->expires = expires;
1048 	/*
1049 	 * If 'idx' was calculated above and the base time did not advance
1050 	 * between calculating 'idx' and possibly switching the base, only
1051 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1052 	 * we need to (re)calculate the wheel index via
1053 	 * internal_add_timer().
1054 	 */
1055 	if (idx != UINT_MAX && clk == base->clk) {
1056 		enqueue_timer(base, timer, idx);
1057 		trigger_dyntick_cpu(base, timer);
1058 	} else {
1059 		internal_add_timer(base, timer);
1060 	}
1061 
1062 out_unlock:
1063 	spin_unlock_irqrestore(&base->lock, flags);
1064 
1065 	return ret;
1066 }
1067 
1068 /**
1069  * mod_timer_pending - modify a pending timer's timeout
1070  * @timer: the pending timer to be modified
1071  * @expires: new timeout in jiffies
1072  *
1073  * mod_timer_pending() is the same for pending timers as mod_timer(),
1074  * but will not re-activate and modify already deleted timers.
1075  *
1076  * It is useful for unserialized use of timers.
1077  */
mod_timer_pending(struct timer_list * timer,unsigned long expires)1078 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1079 {
1080 	return __mod_timer(timer, expires, true);
1081 }
1082 EXPORT_SYMBOL(mod_timer_pending);
1083 
1084 /**
1085  * mod_timer - modify a timer's timeout
1086  * @timer: the timer to be modified
1087  * @expires: new timeout in jiffies
1088  *
1089  * mod_timer() is a more efficient way to update the expire field of an
1090  * active timer (if the timer is inactive it will be activated)
1091  *
1092  * mod_timer(timer, expires) is equivalent to:
1093  *
1094  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1095  *
1096  * Note that if there are multiple unserialized concurrent users of the
1097  * same timer, then mod_timer() is the only safe way to modify the timeout,
1098  * since add_timer() cannot modify an already running timer.
1099  *
1100  * The function returns whether it has modified a pending timer or not.
1101  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1102  * active timer returns 1.)
1103  */
mod_timer(struct timer_list * timer,unsigned long expires)1104 int mod_timer(struct timer_list *timer, unsigned long expires)
1105 {
1106 	return __mod_timer(timer, expires, false);
1107 }
1108 EXPORT_SYMBOL(mod_timer);
1109 
1110 /**
1111  * add_timer - start a timer
1112  * @timer: the timer to be added
1113  *
1114  * The kernel will do a ->function(->data) callback from the
1115  * timer interrupt at the ->expires point in the future. The
1116  * current time is 'jiffies'.
1117  *
1118  * The timer's ->expires, ->function (and if the handler uses it, ->data)
1119  * fields must be set prior calling this function.
1120  *
1121  * Timers with an ->expires field in the past will be executed in the next
1122  * timer tick.
1123  */
add_timer(struct timer_list * timer)1124 void add_timer(struct timer_list *timer)
1125 {
1126 	BUG_ON(timer_pending(timer));
1127 	mod_timer(timer, timer->expires);
1128 }
1129 EXPORT_SYMBOL(add_timer);
1130 
1131 /**
1132  * add_timer_on - start a timer on a particular CPU
1133  * @timer: the timer to be added
1134  * @cpu: the CPU to start it on
1135  *
1136  * This is not very scalable on SMP. Double adds are not possible.
1137  */
add_timer_on(struct timer_list * timer,int cpu)1138 void add_timer_on(struct timer_list *timer, int cpu)
1139 {
1140 	struct timer_base *new_base, *base;
1141 	unsigned long flags;
1142 
1143 	timer_stats_timer_set_start_info(timer);
1144 	BUG_ON(timer_pending(timer) || !timer->function);
1145 
1146 	new_base = get_timer_cpu_base(timer->flags, cpu);
1147 
1148 	/*
1149 	 * If @timer was on a different CPU, it should be migrated with the
1150 	 * old base locked to prevent other operations proceeding with the
1151 	 * wrong base locked.  See lock_timer_base().
1152 	 */
1153 	base = lock_timer_base(timer, &flags);
1154 	if (base != new_base) {
1155 		timer->flags |= TIMER_MIGRATING;
1156 
1157 		spin_unlock(&base->lock);
1158 		base = new_base;
1159 		spin_lock(&base->lock);
1160 		WRITE_ONCE(timer->flags,
1161 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1162 	}
1163 	forward_timer_base(base);
1164 
1165 	debug_activate(timer, timer->expires);
1166 	internal_add_timer(base, timer);
1167 	spin_unlock_irqrestore(&base->lock, flags);
1168 }
1169 EXPORT_SYMBOL_GPL(add_timer_on);
1170 
1171 /**
1172  * del_timer - deactive a timer.
1173  * @timer: the timer to be deactivated
1174  *
1175  * del_timer() deactivates a timer - this works on both active and inactive
1176  * timers.
1177  *
1178  * The function returns whether it has deactivated a pending timer or not.
1179  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1180  * active timer returns 1.)
1181  */
del_timer(struct timer_list * timer)1182 int del_timer(struct timer_list *timer)
1183 {
1184 	struct timer_base *base;
1185 	unsigned long flags;
1186 	int ret = 0;
1187 
1188 	debug_assert_init(timer);
1189 
1190 	timer_stats_timer_clear_start_info(timer);
1191 	if (timer_pending(timer)) {
1192 		base = lock_timer_base(timer, &flags);
1193 		ret = detach_if_pending(timer, base, true);
1194 		spin_unlock_irqrestore(&base->lock, flags);
1195 	}
1196 
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL(del_timer);
1200 
1201 /**
1202  * try_to_del_timer_sync - Try to deactivate a timer
1203  * @timer: timer do del
1204  *
1205  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1206  * exit the timer is not queued and the handler is not running on any CPU.
1207  */
try_to_del_timer_sync(struct timer_list * timer)1208 int try_to_del_timer_sync(struct timer_list *timer)
1209 {
1210 	struct timer_base *base;
1211 	unsigned long flags;
1212 	int ret = -1;
1213 
1214 	debug_assert_init(timer);
1215 
1216 	base = lock_timer_base(timer, &flags);
1217 
1218 	if (base->running_timer != timer) {
1219 		timer_stats_timer_clear_start_info(timer);
1220 		ret = detach_if_pending(timer, base, true);
1221 	}
1222 	spin_unlock_irqrestore(&base->lock, flags);
1223 
1224 	return ret;
1225 }
1226 EXPORT_SYMBOL(try_to_del_timer_sync);
1227 
1228 #ifdef CONFIG_SMP
1229 /**
1230  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1231  * @timer: the timer to be deactivated
1232  *
1233  * This function only differs from del_timer() on SMP: besides deactivating
1234  * the timer it also makes sure the handler has finished executing on other
1235  * CPUs.
1236  *
1237  * Synchronization rules: Callers must prevent restarting of the timer,
1238  * otherwise this function is meaningless. It must not be called from
1239  * interrupt contexts unless the timer is an irqsafe one. The caller must
1240  * not hold locks which would prevent completion of the timer's
1241  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1242  * timer is not queued and the handler is not running on any CPU.
1243  *
1244  * Note: For !irqsafe timers, you must not hold locks that are held in
1245  *   interrupt context while calling this function. Even if the lock has
1246  *   nothing to do with the timer in question.  Here's why:
1247  *
1248  *    CPU0                             CPU1
1249  *    ----                             ----
1250  *                                   <SOFTIRQ>
1251  *                                   call_timer_fn();
1252  *                                     base->running_timer = mytimer;
1253  *  spin_lock_irq(somelock);
1254  *                                     <IRQ>
1255  *                                        spin_lock(somelock);
1256  *  del_timer_sync(mytimer);
1257  *   while (base->running_timer == mytimer);
1258  *
1259  * Now del_timer_sync() will never return and never release somelock.
1260  * The interrupt on the other CPU is waiting to grab somelock but
1261  * it has interrupted the softirq that CPU0 is waiting to finish.
1262  *
1263  * The function returns whether it has deactivated a pending timer or not.
1264  */
del_timer_sync(struct timer_list * timer)1265 int del_timer_sync(struct timer_list *timer)
1266 {
1267 #ifdef CONFIG_LOCKDEP
1268 	unsigned long flags;
1269 
1270 	/*
1271 	 * If lockdep gives a backtrace here, please reference
1272 	 * the synchronization rules above.
1273 	 */
1274 	local_irq_save(flags);
1275 	lock_map_acquire(&timer->lockdep_map);
1276 	lock_map_release(&timer->lockdep_map);
1277 	local_irq_restore(flags);
1278 #endif
1279 	/*
1280 	 * don't use it in hardirq context, because it
1281 	 * could lead to deadlock.
1282 	 */
1283 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1284 	for (;;) {
1285 		int ret = try_to_del_timer_sync(timer);
1286 		if (ret >= 0)
1287 			return ret;
1288 		cpu_relax();
1289 	}
1290 }
1291 EXPORT_SYMBOL(del_timer_sync);
1292 #endif
1293 
call_timer_fn(struct timer_list * timer,void (* fn)(unsigned long),unsigned long data)1294 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1295 			  unsigned long data)
1296 {
1297 	int count = preempt_count();
1298 
1299 #ifdef CONFIG_LOCKDEP
1300 	/*
1301 	 * It is permissible to free the timer from inside the
1302 	 * function that is called from it, this we need to take into
1303 	 * account for lockdep too. To avoid bogus "held lock freed"
1304 	 * warnings as well as problems when looking into
1305 	 * timer->lockdep_map, make a copy and use that here.
1306 	 */
1307 	struct lockdep_map lockdep_map;
1308 
1309 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1310 #endif
1311 	/*
1312 	 * Couple the lock chain with the lock chain at
1313 	 * del_timer_sync() by acquiring the lock_map around the fn()
1314 	 * call here and in del_timer_sync().
1315 	 */
1316 	lock_map_acquire(&lockdep_map);
1317 
1318 	trace_timer_expire_entry(timer);
1319 	fn(data);
1320 	trace_timer_expire_exit(timer);
1321 
1322 	lock_map_release(&lockdep_map);
1323 
1324 	if (count != preempt_count()) {
1325 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1326 			  fn, count, preempt_count());
1327 		/*
1328 		 * Restore the preempt count. That gives us a decent
1329 		 * chance to survive and extract information. If the
1330 		 * callback kept a lock held, bad luck, but not worse
1331 		 * than the BUG() we had.
1332 		 */
1333 		preempt_count_set(count);
1334 	}
1335 }
1336 
expire_timers(struct timer_base * base,struct hlist_head * head)1337 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1338 {
1339 	while (!hlist_empty(head)) {
1340 		struct timer_list *timer;
1341 		void (*fn)(unsigned long);
1342 		unsigned long data;
1343 
1344 		timer = hlist_entry(head->first, struct timer_list, entry);
1345 		timer_stats_account_timer(timer);
1346 
1347 		base->running_timer = timer;
1348 		detach_timer(timer, true);
1349 
1350 		fn = timer->function;
1351 		data = timer->data;
1352 
1353 		if (timer->flags & TIMER_IRQSAFE) {
1354 			spin_unlock(&base->lock);
1355 			call_timer_fn(timer, fn, data);
1356 			spin_lock(&base->lock);
1357 		} else {
1358 			spin_unlock_irq(&base->lock);
1359 			call_timer_fn(timer, fn, data);
1360 			spin_lock_irq(&base->lock);
1361 		}
1362 	}
1363 }
1364 
__collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1365 static int __collect_expired_timers(struct timer_base *base,
1366 				    struct hlist_head *heads)
1367 {
1368 	unsigned long clk = base->clk;
1369 	struct hlist_head *vec;
1370 	int i, levels = 0;
1371 	unsigned int idx;
1372 
1373 	for (i = 0; i < LVL_DEPTH; i++) {
1374 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1375 
1376 		if (__test_and_clear_bit(idx, base->pending_map)) {
1377 			vec = base->vectors + idx;
1378 			hlist_move_list(vec, heads++);
1379 			levels++;
1380 		}
1381 		/* Is it time to look at the next level? */
1382 		if (clk & LVL_CLK_MASK)
1383 			break;
1384 		/* Shift clock for the next level granularity */
1385 		clk >>= LVL_CLK_SHIFT;
1386 	}
1387 	return levels;
1388 }
1389 
1390 #ifdef CONFIG_NO_HZ_COMMON
1391 /*
1392  * Find the next pending bucket of a level. Search from level start (@offset)
1393  * + @clk upwards and if nothing there, search from start of the level
1394  * (@offset) up to @offset + clk.
1395  */
next_pending_bucket(struct timer_base * base,unsigned offset,unsigned clk)1396 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1397 			       unsigned clk)
1398 {
1399 	unsigned pos, start = offset + clk;
1400 	unsigned end = offset + LVL_SIZE;
1401 
1402 	pos = find_next_bit(base->pending_map, end, start);
1403 	if (pos < end)
1404 		return pos - start;
1405 
1406 	pos = find_next_bit(base->pending_map, start, offset);
1407 	return pos < start ? pos + LVL_SIZE - start : -1;
1408 }
1409 
1410 /*
1411  * Search the first expiring timer in the various clock levels. Caller must
1412  * hold base->lock.
1413  */
__next_timer_interrupt(struct timer_base * base)1414 static unsigned long __next_timer_interrupt(struct timer_base *base)
1415 {
1416 	unsigned long clk, next, adj;
1417 	unsigned lvl, offset = 0;
1418 
1419 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1420 	clk = base->clk;
1421 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1422 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1423 
1424 		if (pos >= 0) {
1425 			unsigned long tmp = clk + (unsigned long) pos;
1426 
1427 			tmp <<= LVL_SHIFT(lvl);
1428 			if (time_before(tmp, next))
1429 				next = tmp;
1430 		}
1431 		/*
1432 		 * Clock for the next level. If the current level clock lower
1433 		 * bits are zero, we look at the next level as is. If not we
1434 		 * need to advance it by one because that's going to be the
1435 		 * next expiring bucket in that level. base->clk is the next
1436 		 * expiring jiffie. So in case of:
1437 		 *
1438 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1439 		 *  0    0    0    0    0    0
1440 		 *
1441 		 * we have to look at all levels @index 0. With
1442 		 *
1443 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1444 		 *  0    0    0    0    0    2
1445 		 *
1446 		 * LVL0 has the next expiring bucket @index 2. The upper
1447 		 * levels have the next expiring bucket @index 1.
1448 		 *
1449 		 * In case that the propagation wraps the next level the same
1450 		 * rules apply:
1451 		 *
1452 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1453 		 *  0    0    0    0    F    2
1454 		 *
1455 		 * So after looking at LVL0 we get:
1456 		 *
1457 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1458 		 *  0    0    0    1    0
1459 		 *
1460 		 * So no propagation from LVL1 to LVL2 because that happened
1461 		 * with the add already, but then we need to propagate further
1462 		 * from LVL2 to LVL3.
1463 		 *
1464 		 * So the simple check whether the lower bits of the current
1465 		 * level are 0 or not is sufficient for all cases.
1466 		 */
1467 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1468 		clk >>= LVL_CLK_SHIFT;
1469 		clk += adj;
1470 	}
1471 	return next;
1472 }
1473 
1474 /*
1475  * Check, if the next hrtimer event is before the next timer wheel
1476  * event:
1477  */
cmp_next_hrtimer_event(u64 basem,u64 expires)1478 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1479 {
1480 	u64 nextevt = hrtimer_get_next_event();
1481 
1482 	/*
1483 	 * If high resolution timers are enabled
1484 	 * hrtimer_get_next_event() returns KTIME_MAX.
1485 	 */
1486 	if (expires <= nextevt)
1487 		return expires;
1488 
1489 	/*
1490 	 * If the next timer is already expired, return the tick base
1491 	 * time so the tick is fired immediately.
1492 	 */
1493 	if (nextevt <= basem)
1494 		return basem;
1495 
1496 	/*
1497 	 * Round up to the next jiffie. High resolution timers are
1498 	 * off, so the hrtimers are expired in the tick and we need to
1499 	 * make sure that this tick really expires the timer to avoid
1500 	 * a ping pong of the nohz stop code.
1501 	 *
1502 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1503 	 */
1504 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1505 }
1506 
1507 /**
1508  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1509  * @basej:	base time jiffies
1510  * @basem:	base time clock monotonic
1511  *
1512  * Returns the tick aligned clock monotonic time of the next pending
1513  * timer or KTIME_MAX if no timer is pending.
1514  */
get_next_timer_interrupt(unsigned long basej,u64 basem)1515 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1516 {
1517 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1518 	u64 expires = KTIME_MAX;
1519 	unsigned long nextevt;
1520 	bool is_max_delta;
1521 
1522 	/*
1523 	 * Pretend that there is no timer pending if the cpu is offline.
1524 	 * Possible pending timers will be migrated later to an active cpu.
1525 	 */
1526 	if (cpu_is_offline(smp_processor_id()))
1527 		return expires;
1528 
1529 	spin_lock(&base->lock);
1530 	nextevt = __next_timer_interrupt(base);
1531 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1532 	base->next_expiry = nextevt;
1533 	/*
1534 	 * We have a fresh next event. Check whether we can forward the
1535 	 * base. We can only do that when @basej is past base->clk
1536 	 * otherwise we might rewind base->clk.
1537 	 */
1538 	if (time_after(basej, base->clk)) {
1539 		if (time_after(nextevt, basej))
1540 			base->clk = basej;
1541 		else if (time_after(nextevt, base->clk))
1542 			base->clk = nextevt;
1543 	}
1544 
1545 	if (time_before_eq(nextevt, basej)) {
1546 		expires = basem;
1547 		base->is_idle = false;
1548 	} else {
1549 		if (!is_max_delta)
1550 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1551 		/*
1552 		 * If we expect to sleep more than a tick, mark the base idle.
1553 		 * Also the tick is stopped so any added timer must forward
1554 		 * the base clk itself to keep granularity small. This idle
1555 		 * logic is only maintained for the BASE_STD base, deferrable
1556 		 * timers may still see large granularity skew (by design).
1557 		 */
1558 		if ((expires - basem) > TICK_NSEC) {
1559 			base->must_forward_clk = true;
1560 			base->is_idle = true;
1561 		}
1562 	}
1563 	spin_unlock(&base->lock);
1564 
1565 	return cmp_next_hrtimer_event(basem, expires);
1566 }
1567 
1568 /**
1569  * timer_clear_idle - Clear the idle state of the timer base
1570  *
1571  * Called with interrupts disabled
1572  */
timer_clear_idle(void)1573 void timer_clear_idle(void)
1574 {
1575 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1576 
1577 	/*
1578 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1579 	 * a pointless IPI, but taking the lock would just make the window for
1580 	 * sending the IPI a few instructions smaller for the cost of taking
1581 	 * the lock in the exit from idle path.
1582 	 */
1583 	base->is_idle = false;
1584 }
1585 
collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1586 static int collect_expired_timers(struct timer_base *base,
1587 				  struct hlist_head *heads)
1588 {
1589 	/*
1590 	 * NOHZ optimization. After a long idle sleep we need to forward the
1591 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1592 	 * the next expiring timer.
1593 	 */
1594 	if ((long)(jiffies - base->clk) > 2) {
1595 		unsigned long next = __next_timer_interrupt(base);
1596 
1597 		/*
1598 		 * If the next timer is ahead of time forward to current
1599 		 * jiffies, otherwise forward to the next expiry time:
1600 		 */
1601 		if (time_after(next, jiffies)) {
1602 			/* The call site will increment clock! */
1603 			base->clk = jiffies - 1;
1604 			return 0;
1605 		}
1606 		base->clk = next;
1607 	}
1608 	return __collect_expired_timers(base, heads);
1609 }
1610 #else
collect_expired_timers(struct timer_base * base,struct hlist_head * heads)1611 static inline int collect_expired_timers(struct timer_base *base,
1612 					 struct hlist_head *heads)
1613 {
1614 	return __collect_expired_timers(base, heads);
1615 }
1616 #endif
1617 
1618 /*
1619  * Called from the timer interrupt handler to charge one tick to the current
1620  * process.  user_tick is 1 if the tick is user time, 0 for system.
1621  */
update_process_times(int user_tick)1622 void update_process_times(int user_tick)
1623 {
1624 	struct task_struct *p = current;
1625 
1626 	/* Note: this timer irq context must be accounted for as well. */
1627 	account_process_tick(p, user_tick);
1628 	run_local_timers();
1629 	rcu_check_callbacks(user_tick);
1630 #ifdef CONFIG_IRQ_WORK
1631 	if (in_irq())
1632 		irq_work_tick();
1633 #endif
1634 	scheduler_tick();
1635 	run_posix_cpu_timers(p);
1636 }
1637 
1638 /**
1639  * __run_timers - run all expired timers (if any) on this CPU.
1640  * @base: the timer vector to be processed.
1641  */
__run_timers(struct timer_base * base)1642 static inline void __run_timers(struct timer_base *base)
1643 {
1644 	struct hlist_head heads[LVL_DEPTH];
1645 	int levels;
1646 
1647 	if (!time_after_eq(jiffies, base->clk))
1648 		return;
1649 
1650 	spin_lock_irq(&base->lock);
1651 
1652 	while (time_after_eq(jiffies, base->clk)) {
1653 
1654 		levels = collect_expired_timers(base, heads);
1655 		base->clk++;
1656 
1657 		while (levels--)
1658 			expire_timers(base, heads + levels);
1659 	}
1660 	base->running_timer = NULL;
1661 	spin_unlock_irq(&base->lock);
1662 }
1663 
1664 /*
1665  * This function runs timers and the timer-tq in bottom half context.
1666  */
run_timer_softirq(struct softirq_action * h)1667 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1668 {
1669 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1670 
1671 	/*
1672 	 * must_forward_clk must be cleared before running timers so that any
1673 	 * timer functions that call mod_timer will not try to forward the
1674 	 * base. idle trcking / clock forwarding logic is only used with
1675 	 * BASE_STD timers.
1676 	 *
1677 	 * The deferrable base does not do idle tracking at all, so we do
1678 	 * not forward it. This can result in very large variations in
1679 	 * granularity for deferrable timers, but they can be deferred for
1680 	 * long periods due to idle.
1681 	 */
1682 	base->must_forward_clk = false;
1683 
1684 	__run_timers(base);
1685 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1686 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1687 }
1688 
1689 /*
1690  * Called by the local, per-CPU timer interrupt on SMP.
1691  */
run_local_timers(void)1692 void run_local_timers(void)
1693 {
1694 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1695 
1696 	hrtimer_run_queues();
1697 	/* Raise the softirq only if required. */
1698 	if (time_before(jiffies, base->clk)) {
1699 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1700 			return;
1701 		/* CPU is awake, so check the deferrable base. */
1702 		base++;
1703 		if (time_before(jiffies, base->clk))
1704 			return;
1705 	}
1706 	raise_softirq(TIMER_SOFTIRQ);
1707 }
1708 
1709 #ifdef __ARCH_WANT_SYS_ALARM
1710 
1711 /*
1712  * For backwards compatibility?  This can be done in libc so Alpha
1713  * and all newer ports shouldn't need it.
1714  */
SYSCALL_DEFINE1(alarm,unsigned int,seconds)1715 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1716 {
1717 	return alarm_setitimer(seconds);
1718 }
1719 
1720 #endif
1721 
process_timeout(unsigned long __data)1722 static void process_timeout(unsigned long __data)
1723 {
1724 	wake_up_process((struct task_struct *)__data);
1725 }
1726 
1727 /**
1728  * schedule_timeout - sleep until timeout
1729  * @timeout: timeout value in jiffies
1730  *
1731  * Make the current task sleep until @timeout jiffies have
1732  * elapsed. The routine will return immediately unless
1733  * the current task state has been set (see set_current_state()).
1734  *
1735  * You can set the task state as follows -
1736  *
1737  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1738  * pass before the routine returns. The routine will return 0
1739  *
1740  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1741  * delivered to the current task. In this case the remaining time
1742  * in jiffies will be returned, or 0 if the timer expired in time
1743  *
1744  * The current task state is guaranteed to be TASK_RUNNING when this
1745  * routine returns.
1746  *
1747  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1748  * the CPU away without a bound on the timeout. In this case the return
1749  * value will be %MAX_SCHEDULE_TIMEOUT.
1750  *
1751  * In all cases the return value is guaranteed to be non-negative.
1752  */
schedule_timeout(signed long timeout)1753 signed long __sched schedule_timeout(signed long timeout)
1754 {
1755 	struct timer_list timer;
1756 	unsigned long expire;
1757 
1758 	switch (timeout)
1759 	{
1760 	case MAX_SCHEDULE_TIMEOUT:
1761 		/*
1762 		 * These two special cases are useful to be comfortable
1763 		 * in the caller. Nothing more. We could take
1764 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1765 		 * but I' d like to return a valid offset (>=0) to allow
1766 		 * the caller to do everything it want with the retval.
1767 		 */
1768 		schedule();
1769 		goto out;
1770 	default:
1771 		/*
1772 		 * Another bit of PARANOID. Note that the retval will be
1773 		 * 0 since no piece of kernel is supposed to do a check
1774 		 * for a negative retval of schedule_timeout() (since it
1775 		 * should never happens anyway). You just have the printk()
1776 		 * that will tell you if something is gone wrong and where.
1777 		 */
1778 		if (timeout < 0) {
1779 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1780 				"value %lx\n", timeout);
1781 			dump_stack();
1782 			current->state = TASK_RUNNING;
1783 			goto out;
1784 		}
1785 	}
1786 
1787 	expire = timeout + jiffies;
1788 
1789 	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1790 	__mod_timer(&timer, expire, false);
1791 	schedule();
1792 	del_singleshot_timer_sync(&timer);
1793 
1794 	/* Remove the timer from the object tracker */
1795 	destroy_timer_on_stack(&timer);
1796 
1797 	timeout = expire - jiffies;
1798 
1799  out:
1800 	return timeout < 0 ? 0 : timeout;
1801 }
1802 EXPORT_SYMBOL(schedule_timeout);
1803 
1804 /*
1805  * We can use __set_current_state() here because schedule_timeout() calls
1806  * schedule() unconditionally.
1807  */
schedule_timeout_interruptible(signed long timeout)1808 signed long __sched schedule_timeout_interruptible(signed long timeout)
1809 {
1810 	__set_current_state(TASK_INTERRUPTIBLE);
1811 	return schedule_timeout(timeout);
1812 }
1813 EXPORT_SYMBOL(schedule_timeout_interruptible);
1814 
schedule_timeout_killable(signed long timeout)1815 signed long __sched schedule_timeout_killable(signed long timeout)
1816 {
1817 	__set_current_state(TASK_KILLABLE);
1818 	return schedule_timeout(timeout);
1819 }
1820 EXPORT_SYMBOL(schedule_timeout_killable);
1821 
schedule_timeout_uninterruptible(signed long timeout)1822 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1823 {
1824 	__set_current_state(TASK_UNINTERRUPTIBLE);
1825 	return schedule_timeout(timeout);
1826 }
1827 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1828 
1829 /*
1830  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1831  * to load average.
1832  */
schedule_timeout_idle(signed long timeout)1833 signed long __sched schedule_timeout_idle(signed long timeout)
1834 {
1835 	__set_current_state(TASK_IDLE);
1836 	return schedule_timeout(timeout);
1837 }
1838 EXPORT_SYMBOL(schedule_timeout_idle);
1839 
1840 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct timer_base * new_base,struct hlist_head * head)1841 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1842 {
1843 	struct timer_list *timer;
1844 	int cpu = new_base->cpu;
1845 
1846 	while (!hlist_empty(head)) {
1847 		timer = hlist_entry(head->first, struct timer_list, entry);
1848 		detach_timer(timer, false);
1849 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1850 		internal_add_timer(new_base, timer);
1851 	}
1852 }
1853 
timers_prepare_cpu(unsigned int cpu)1854 int timers_prepare_cpu(unsigned int cpu)
1855 {
1856 	struct timer_base *base;
1857 	int b;
1858 
1859 	for (b = 0; b < NR_BASES; b++) {
1860 		base = per_cpu_ptr(&timer_bases[b], cpu);
1861 		base->clk = jiffies;
1862 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1863 		base->is_idle = false;
1864 		base->must_forward_clk = true;
1865 	}
1866 	return 0;
1867 }
1868 
timers_dead_cpu(unsigned int cpu)1869 int timers_dead_cpu(unsigned int cpu)
1870 {
1871 	struct timer_base *old_base;
1872 	struct timer_base *new_base;
1873 	int b, i;
1874 
1875 	BUG_ON(cpu_online(cpu));
1876 
1877 	for (b = 0; b < NR_BASES; b++) {
1878 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1879 		new_base = get_cpu_ptr(&timer_bases[b]);
1880 		/*
1881 		 * The caller is globally serialized and nobody else
1882 		 * takes two locks at once, deadlock is not possible.
1883 		 */
1884 		spin_lock_irq(&new_base->lock);
1885 		spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1886 
1887 		/*
1888 		 * The current CPUs base clock might be stale. Update it
1889 		 * before moving the timers over.
1890 		 */
1891 		forward_timer_base(new_base);
1892 
1893 		BUG_ON(old_base->running_timer);
1894 
1895 		for (i = 0; i < WHEEL_SIZE; i++)
1896 			migrate_timer_list(new_base, old_base->vectors + i);
1897 
1898 		spin_unlock(&old_base->lock);
1899 		spin_unlock_irq(&new_base->lock);
1900 		put_cpu_ptr(&timer_bases);
1901 	}
1902 	return 0;
1903 }
1904 
1905 #endif /* CONFIG_HOTPLUG_CPU */
1906 
init_timer_cpu(int cpu)1907 static void __init init_timer_cpu(int cpu)
1908 {
1909 	struct timer_base *base;
1910 	int i;
1911 
1912 	for (i = 0; i < NR_BASES; i++) {
1913 		base = per_cpu_ptr(&timer_bases[i], cpu);
1914 		base->cpu = cpu;
1915 		spin_lock_init(&base->lock);
1916 		base->clk = jiffies;
1917 	}
1918 }
1919 
init_timer_cpus(void)1920 static void __init init_timer_cpus(void)
1921 {
1922 	int cpu;
1923 
1924 	for_each_possible_cpu(cpu)
1925 		init_timer_cpu(cpu);
1926 }
1927 
init_timers(void)1928 void __init init_timers(void)
1929 {
1930 	init_timer_cpus();
1931 	init_timer_stats();
1932 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1933 }
1934 
1935 /**
1936  * msleep - sleep safely even with waitqueue interruptions
1937  * @msecs: Time in milliseconds to sleep for
1938  */
msleep(unsigned int msecs)1939 void msleep(unsigned int msecs)
1940 {
1941 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1942 
1943 	while (timeout)
1944 		timeout = schedule_timeout_uninterruptible(timeout);
1945 }
1946 
1947 EXPORT_SYMBOL(msleep);
1948 
1949 /**
1950  * msleep_interruptible - sleep waiting for signals
1951  * @msecs: Time in milliseconds to sleep for
1952  */
msleep_interruptible(unsigned int msecs)1953 unsigned long msleep_interruptible(unsigned int msecs)
1954 {
1955 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1956 
1957 	while (timeout && !signal_pending(current))
1958 		timeout = schedule_timeout_interruptible(timeout);
1959 	return jiffies_to_msecs(timeout);
1960 }
1961 
1962 EXPORT_SYMBOL(msleep_interruptible);
1963 
do_usleep_range(unsigned long min,unsigned long max)1964 static void __sched do_usleep_range(unsigned long min, unsigned long max)
1965 {
1966 	ktime_t kmin;
1967 	u64 delta;
1968 
1969 	kmin = ktime_set(0, min * NSEC_PER_USEC);
1970 	delta = (u64)(max - min) * NSEC_PER_USEC;
1971 	schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1972 }
1973 
1974 /**
1975  * usleep_range - Sleep for an approximate time
1976  * @min: Minimum time in usecs to sleep
1977  * @max: Maximum time in usecs to sleep
1978  *
1979  * In non-atomic context where the exact wakeup time is flexible, use
1980  * usleep_range() instead of udelay().  The sleep improves responsiveness
1981  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1982  * power usage by allowing hrtimers to take advantage of an already-
1983  * scheduled interrupt instead of scheduling a new one just for this sleep.
1984  */
usleep_range(unsigned long min,unsigned long max)1985 void __sched usleep_range(unsigned long min, unsigned long max)
1986 {
1987 	__set_current_state(TASK_UNINTERRUPTIBLE);
1988 	do_usleep_range(min, max);
1989 }
1990 EXPORT_SYMBOL(usleep_range);
1991