• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/locking/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
29 
30 /*
31  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32  * which forces all calls into the slowpath:
33  */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38  * Must be 0 for the debug case so we do not do the unlock outside of the
39  * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40  * case.
41  */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define  __mutex_slowpath_needs_to_unlock()	0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48 
49 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 	atomic_set(&lock->count, 1);
53 	spin_lock_init(&lock->wait_lock);
54 	INIT_LIST_HEAD(&lock->wait_list);
55 	mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 	osq_lock_init(&lock->osq);
58 #endif
59 
60 	debug_mutex_init(lock, name, key);
61 }
62 
63 EXPORT_SYMBOL(__mutex_init);
64 
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67  * We split the mutex lock/unlock logic into separate fastpath and
68  * slowpath functions, to reduce the register pressure on the fastpath.
69  * We also put the fastpath first in the kernel image, to make sure the
70  * branch is predicted by the CPU as default-untaken.
71  */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73 
74 /**
75  * mutex_lock - acquire the mutex
76  * @lock: the mutex to be acquired
77  *
78  * Lock the mutex exclusively for this task. If the mutex is not
79  * available right now, it will sleep until it can get it.
80  *
81  * The mutex must later on be released by the same task that
82  * acquired it. Recursive locking is not allowed. The task
83  * may not exit without first unlocking the mutex. Also, kernel
84  * memory where the mutex resides must not be freed with
85  * the mutex still locked. The mutex must first be initialized
86  * (or statically defined) before it can be locked. memset()-ing
87  * the mutex to 0 is not allowed.
88  *
89  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90  *   checks that will enforce the restrictions and will also do
91  *   deadlock debugging. )
92  *
93  * This function is similar to (but not equivalent to) down().
94  */
mutex_lock(struct mutex * lock)95 void __sched mutex_lock(struct mutex *lock)
96 {
97 	might_sleep();
98 	/*
99 	 * The locking fastpath is the 1->0 transition from
100 	 * 'unlocked' into 'locked' state.
101 	 */
102 	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 	mutex_set_owner(lock);
104 }
105 
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108 
ww_mutex_lock_acquired(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 						   struct ww_acquire_ctx *ww_ctx)
111 {
112 #ifdef CONFIG_DEBUG_MUTEXES
113 	/*
114 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 	 * but released with a normal mutex_unlock in this call.
116 	 *
117 	 * This should never happen, always use ww_mutex_unlock.
118 	 */
119 	DEBUG_LOCKS_WARN_ON(ww->ctx);
120 
121 	/*
122 	 * Not quite done after calling ww_acquire_done() ?
123 	 */
124 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125 
126 	if (ww_ctx->contending_lock) {
127 		/*
128 		 * After -EDEADLK you tried to
129 		 * acquire a different ww_mutex? Bad!
130 		 */
131 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132 
133 		/*
134 		 * You called ww_mutex_lock after receiving -EDEADLK,
135 		 * but 'forgot' to unlock everything else first?
136 		 */
137 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 		ww_ctx->contending_lock = NULL;
139 	}
140 
141 	/*
142 	 * Naughty, using a different class will lead to undefined behavior!
143 	 */
144 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145 #endif
146 	ww_ctx->acquired++;
147 }
148 
149 /*
150  * After acquiring lock with fastpath or when we lost out in contested
151  * slowpath, set ctx and wake up any waiters so they can recheck.
152  *
153  * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154  * as the fastpath and opportunistic spinning are disabled in that case.
155  */
156 static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)157 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 			       struct ww_acquire_ctx *ctx)
159 {
160 	unsigned long flags;
161 	struct mutex_waiter *cur;
162 
163 	ww_mutex_lock_acquired(lock, ctx);
164 
165 	lock->ctx = ctx;
166 
167 	/*
168 	 * The lock->ctx update should be visible on all cores before
169 	 * the atomic read is done, otherwise contended waiters might be
170 	 * missed. The contended waiters will either see ww_ctx == NULL
171 	 * and keep spinning, or it will acquire wait_lock, add itself
172 	 * to waiter list and sleep.
173 	 */
174 	smp_mb(); /* ^^^ */
175 
176 	/*
177 	 * Check if lock is contended, if not there is nobody to wake up
178 	 */
179 	if (likely(atomic_read(&lock->base.count) == 0))
180 		return;
181 
182 	/*
183 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 	 * so they can see the new lock->ctx.
185 	 */
186 	spin_lock_mutex(&lock->base.wait_lock, flags);
187 	list_for_each_entry(cur, &lock->base.wait_list, list) {
188 		debug_mutex_wake_waiter(&lock->base, cur);
189 		wake_up_process(cur->task);
190 	}
191 	spin_unlock_mutex(&lock->base.wait_lock, flags);
192 }
193 
194 /*
195  * After acquiring lock in the slowpath set ctx and wake up any
196  * waiters so they can recheck.
197  *
198  * Callers must hold the mutex wait_lock.
199  */
200 static __always_inline void
ww_mutex_set_context_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)201 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
202 			      struct ww_acquire_ctx *ctx)
203 {
204 	struct mutex_waiter *cur;
205 
206 	ww_mutex_lock_acquired(lock, ctx);
207 	lock->ctx = ctx;
208 
209 	/*
210 	 * Give any possible sleeping processes the chance to wake up,
211 	 * so they can recheck if they have to back off.
212 	 */
213 	list_for_each_entry(cur, &lock->base.wait_list, list) {
214 		debug_mutex_wake_waiter(&lock->base, cur);
215 		wake_up_process(cur->task);
216 	}
217 }
218 
219 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
220 /*
221  * Look out! "owner" is an entirely speculative pointer
222  * access and not reliable.
223  */
224 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner)225 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
226 {
227 	bool ret = true;
228 
229 	rcu_read_lock();
230 	while (lock->owner == owner) {
231 		/*
232 		 * Ensure we emit the owner->on_cpu, dereference _after_
233 		 * checking lock->owner still matches owner. If that fails,
234 		 * owner might point to freed memory. If it still matches,
235 		 * the rcu_read_lock() ensures the memory stays valid.
236 		 */
237 		barrier();
238 
239 		if (!owner->on_cpu || need_resched()) {
240 			ret = false;
241 			break;
242 		}
243 
244 		cpu_relax_lowlatency();
245 	}
246 	rcu_read_unlock();
247 
248 	return ret;
249 }
250 
251 /*
252  * Initial check for entering the mutex spinning loop
253  */
mutex_can_spin_on_owner(struct mutex * lock)254 static inline int mutex_can_spin_on_owner(struct mutex *lock)
255 {
256 	struct task_struct *owner;
257 	int retval = 1;
258 
259 	if (need_resched())
260 		return 0;
261 
262 	rcu_read_lock();
263 	owner = READ_ONCE(lock->owner);
264 	if (owner)
265 		retval = owner->on_cpu;
266 	rcu_read_unlock();
267 	/*
268 	 * if lock->owner is not set, the mutex owner may have just acquired
269 	 * it and not set the owner yet or the mutex has been released.
270 	 */
271 	return retval;
272 }
273 
274 /*
275  * Atomically try to take the lock when it is available
276  */
mutex_try_to_acquire(struct mutex * lock)277 static inline bool mutex_try_to_acquire(struct mutex *lock)
278 {
279 	return !mutex_is_locked(lock) &&
280 		(atomic_cmpxchg_acquire(&lock->count, 1, 0) == 1);
281 }
282 
283 /*
284  * Optimistic spinning.
285  *
286  * We try to spin for acquisition when we find that the lock owner
287  * is currently running on a (different) CPU and while we don't
288  * need to reschedule. The rationale is that if the lock owner is
289  * running, it is likely to release the lock soon.
290  *
291  * Since this needs the lock owner, and this mutex implementation
292  * doesn't track the owner atomically in the lock field, we need to
293  * track it non-atomically.
294  *
295  * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
296  * to serialize everything.
297  *
298  * The mutex spinners are queued up using MCS lock so that only one
299  * spinner can compete for the mutex. However, if mutex spinning isn't
300  * going to happen, there is no point in going through the lock/unlock
301  * overhead.
302  *
303  * Returns true when the lock was taken, otherwise false, indicating
304  * that we need to jump to the slowpath and sleep.
305  */
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)306 static bool mutex_optimistic_spin(struct mutex *lock,
307 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
308 {
309 	struct task_struct *task = current;
310 
311 	if (!mutex_can_spin_on_owner(lock))
312 		goto done;
313 
314 	/*
315 	 * In order to avoid a stampede of mutex spinners trying to
316 	 * acquire the mutex all at once, the spinners need to take a
317 	 * MCS (queued) lock first before spinning on the owner field.
318 	 */
319 	if (!osq_lock(&lock->osq))
320 		goto done;
321 
322 	while (true) {
323 		struct task_struct *owner;
324 
325 		if (use_ww_ctx && ww_ctx->acquired > 0) {
326 			struct ww_mutex *ww;
327 
328 			ww = container_of(lock, struct ww_mutex, base);
329 			/*
330 			 * If ww->ctx is set the contents are undefined, only
331 			 * by acquiring wait_lock there is a guarantee that
332 			 * they are not invalid when reading.
333 			 *
334 			 * As such, when deadlock detection needs to be
335 			 * performed the optimistic spinning cannot be done.
336 			 */
337 			if (READ_ONCE(ww->ctx))
338 				break;
339 		}
340 
341 		/*
342 		 * If there's an owner, wait for it to either
343 		 * release the lock or go to sleep.
344 		 */
345 		owner = READ_ONCE(lock->owner);
346 		if (owner && !mutex_spin_on_owner(lock, owner))
347 			break;
348 
349 		/* Try to acquire the mutex if it is unlocked. */
350 		if (mutex_try_to_acquire(lock)) {
351 			lock_acquired(&lock->dep_map, ip);
352 
353 			if (use_ww_ctx) {
354 				struct ww_mutex *ww;
355 				ww = container_of(lock, struct ww_mutex, base);
356 
357 				ww_mutex_set_context_fastpath(ww, ww_ctx);
358 			}
359 
360 			mutex_set_owner(lock);
361 			osq_unlock(&lock->osq);
362 			return true;
363 		}
364 
365 		/*
366 		 * When there's no owner, we might have preempted between the
367 		 * owner acquiring the lock and setting the owner field. If
368 		 * we're an RT task that will live-lock because we won't let
369 		 * the owner complete.
370 		 */
371 		if (!owner && (need_resched() || rt_task(task)))
372 			break;
373 
374 		/*
375 		 * The cpu_relax() call is a compiler barrier which forces
376 		 * everything in this loop to be re-loaded. We don't need
377 		 * memory barriers as we'll eventually observe the right
378 		 * values at the cost of a few extra spins.
379 		 */
380 		cpu_relax_lowlatency();
381 	}
382 
383 	osq_unlock(&lock->osq);
384 done:
385 	/*
386 	 * If we fell out of the spin path because of need_resched(),
387 	 * reschedule now, before we try-lock the mutex. This avoids getting
388 	 * scheduled out right after we obtained the mutex.
389 	 */
390 	if (need_resched()) {
391 		/*
392 		 * We _should_ have TASK_RUNNING here, but just in case
393 		 * we do not, make it so, otherwise we might get stuck.
394 		 */
395 		__set_current_state(TASK_RUNNING);
396 		schedule_preempt_disabled();
397 	}
398 
399 	return false;
400 }
401 #else
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)402 static bool mutex_optimistic_spin(struct mutex *lock,
403 				  struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
404 {
405 	return false;
406 }
407 #endif
408 
409 __visible __used noinline
410 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
411 
412 /**
413  * mutex_unlock - release the mutex
414  * @lock: the mutex to be released
415  *
416  * Unlock a mutex that has been locked by this task previously.
417  *
418  * This function must not be used in interrupt context. Unlocking
419  * of a not locked mutex is not allowed.
420  *
421  * This function is similar to (but not equivalent to) up().
422  */
mutex_unlock(struct mutex * lock)423 void __sched mutex_unlock(struct mutex *lock)
424 {
425 	/*
426 	 * The unlocking fastpath is the 0->1 transition from 'locked'
427 	 * into 'unlocked' state:
428 	 */
429 #ifndef CONFIG_DEBUG_MUTEXES
430 	/*
431 	 * When debugging is enabled we must not clear the owner before time,
432 	 * the slow path will always be taken, and that clears the owner field
433 	 * after verifying that it was indeed current.
434 	 */
435 	mutex_clear_owner(lock);
436 #endif
437 	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
438 }
439 
440 EXPORT_SYMBOL(mutex_unlock);
441 
442 /**
443  * ww_mutex_unlock - release the w/w mutex
444  * @lock: the mutex to be released
445  *
446  * Unlock a mutex that has been locked by this task previously with any of the
447  * ww_mutex_lock* functions (with or without an acquire context). It is
448  * forbidden to release the locks after releasing the acquire context.
449  *
450  * This function must not be used in interrupt context. Unlocking
451  * of a unlocked mutex is not allowed.
452  */
ww_mutex_unlock(struct ww_mutex * lock)453 void __sched ww_mutex_unlock(struct ww_mutex *lock)
454 {
455 	/*
456 	 * The unlocking fastpath is the 0->1 transition from 'locked'
457 	 * into 'unlocked' state:
458 	 */
459 	if (lock->ctx) {
460 #ifdef CONFIG_DEBUG_MUTEXES
461 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
462 #endif
463 		if (lock->ctx->acquired > 0)
464 			lock->ctx->acquired--;
465 		lock->ctx = NULL;
466 	}
467 
468 #ifndef CONFIG_DEBUG_MUTEXES
469 	/*
470 	 * When debugging is enabled we must not clear the owner before time,
471 	 * the slow path will always be taken, and that clears the owner field
472 	 * after verifying that it was indeed current.
473 	 */
474 	mutex_clear_owner(&lock->base);
475 #endif
476 	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
477 }
478 EXPORT_SYMBOL(ww_mutex_unlock);
479 
480 static inline int __sched
__ww_mutex_lock_check_stamp(struct mutex * lock,struct ww_acquire_ctx * ctx)481 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
482 {
483 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
484 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
485 
486 	if (!hold_ctx)
487 		return 0;
488 
489 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
490 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
491 #ifdef CONFIG_DEBUG_MUTEXES
492 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
493 		ctx->contending_lock = ww;
494 #endif
495 		return -EDEADLK;
496 	}
497 
498 	return 0;
499 }
500 
501 /*
502  * Lock a mutex (possibly interruptible), slowpath:
503  */
504 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)505 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
506 		    struct lockdep_map *nest_lock, unsigned long ip,
507 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
508 {
509 	struct task_struct *task = current;
510 	struct mutex_waiter waiter;
511 	unsigned long flags;
512 	int ret;
513 
514 	if (use_ww_ctx) {
515 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
516 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
517 			return -EALREADY;
518 	}
519 
520 	preempt_disable();
521 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
522 
523 	if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
524 		/* got the lock, yay! */
525 		preempt_enable();
526 		return 0;
527 	}
528 
529 	spin_lock_mutex(&lock->wait_lock, flags);
530 
531 	/*
532 	 * Once more, try to acquire the lock. Only try-lock the mutex if
533 	 * it is unlocked to reduce unnecessary xchg() operations.
534 	 */
535 	if (!mutex_is_locked(lock) &&
536 	    (atomic_xchg_acquire(&lock->count, 0) == 1))
537 		goto skip_wait;
538 
539 	debug_mutex_lock_common(lock, &waiter);
540 	debug_mutex_add_waiter(lock, &waiter, task);
541 
542 	/* add waiting tasks to the end of the waitqueue (FIFO): */
543 	list_add_tail(&waiter.list, &lock->wait_list);
544 	waiter.task = task;
545 
546 	lock_contended(&lock->dep_map, ip);
547 
548 	for (;;) {
549 		/*
550 		 * Lets try to take the lock again - this is needed even if
551 		 * we get here for the first time (shortly after failing to
552 		 * acquire the lock), to make sure that we get a wakeup once
553 		 * it's unlocked. Later on, if we sleep, this is the
554 		 * operation that gives us the lock. We xchg it to -1, so
555 		 * that when we release the lock, we properly wake up the
556 		 * other waiters. We only attempt the xchg if the count is
557 		 * non-negative in order to avoid unnecessary xchg operations:
558 		 */
559 		if (atomic_read(&lock->count) >= 0 &&
560 		    (atomic_xchg_acquire(&lock->count, -1) == 1))
561 			break;
562 
563 		/*
564 		 * got a signal? (This code gets eliminated in the
565 		 * TASK_UNINTERRUPTIBLE case.)
566 		 */
567 		if (unlikely(signal_pending_state(state, task))) {
568 			ret = -EINTR;
569 			goto err;
570 		}
571 
572 		if (use_ww_ctx && ww_ctx->acquired > 0) {
573 			ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
574 			if (ret)
575 				goto err;
576 		}
577 
578 		__set_task_state(task, state);
579 
580 		/* didn't get the lock, go to sleep: */
581 		spin_unlock_mutex(&lock->wait_lock, flags);
582 		schedule_preempt_disabled();
583 		spin_lock_mutex(&lock->wait_lock, flags);
584 	}
585 	__set_task_state(task, TASK_RUNNING);
586 
587 	mutex_remove_waiter(lock, &waiter, task);
588 	/* set it to 0 if there are no waiters left: */
589 	if (likely(list_empty(&lock->wait_list)))
590 		atomic_set(&lock->count, 0);
591 	debug_mutex_free_waiter(&waiter);
592 
593 skip_wait:
594 	/* got the lock - cleanup and rejoice! */
595 	lock_acquired(&lock->dep_map, ip);
596 	mutex_set_owner(lock);
597 
598 	if (use_ww_ctx) {
599 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
600 		ww_mutex_set_context_slowpath(ww, ww_ctx);
601 	}
602 
603 	spin_unlock_mutex(&lock->wait_lock, flags);
604 	preempt_enable();
605 	return 0;
606 
607 err:
608 	mutex_remove_waiter(lock, &waiter, task);
609 	spin_unlock_mutex(&lock->wait_lock, flags);
610 	debug_mutex_free_waiter(&waiter);
611 	mutex_release(&lock->dep_map, 1, ip);
612 	preempt_enable();
613 	return ret;
614 }
615 
616 #ifdef CONFIG_DEBUG_LOCK_ALLOC
617 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)618 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
619 {
620 	might_sleep();
621 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
622 			    subclass, NULL, _RET_IP_, NULL, 0);
623 }
624 
625 EXPORT_SYMBOL_GPL(mutex_lock_nested);
626 
627 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)628 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
629 {
630 	might_sleep();
631 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
632 			    0, nest, _RET_IP_, NULL, 0);
633 }
634 
635 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
636 
637 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)638 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
639 {
640 	might_sleep();
641 	return __mutex_lock_common(lock, TASK_KILLABLE,
642 				   subclass, NULL, _RET_IP_, NULL, 0);
643 }
644 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
645 
646 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)647 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
648 {
649 	might_sleep();
650 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
651 				   subclass, NULL, _RET_IP_, NULL, 0);
652 }
653 
654 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
655 
656 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)657 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
658 {
659 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
660 	unsigned tmp;
661 
662 	if (ctx->deadlock_inject_countdown-- == 0) {
663 		tmp = ctx->deadlock_inject_interval;
664 		if (tmp > UINT_MAX/4)
665 			tmp = UINT_MAX;
666 		else
667 			tmp = tmp*2 + tmp + tmp/2;
668 
669 		ctx->deadlock_inject_interval = tmp;
670 		ctx->deadlock_inject_countdown = tmp;
671 		ctx->contending_lock = lock;
672 
673 		ww_mutex_unlock(lock);
674 
675 		return -EDEADLK;
676 	}
677 #endif
678 
679 	return 0;
680 }
681 
682 int __sched
__ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)683 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
684 {
685 	int ret;
686 
687 	might_sleep();
688 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
689 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
690 	if (!ret && ctx->acquired > 1)
691 		return ww_mutex_deadlock_injection(lock, ctx);
692 
693 	return ret;
694 }
695 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
696 
697 int __sched
__ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)698 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
699 {
700 	int ret;
701 
702 	might_sleep();
703 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
704 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
705 
706 	if (!ret && ctx->acquired > 1)
707 		return ww_mutex_deadlock_injection(lock, ctx);
708 
709 	return ret;
710 }
711 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
712 
713 #endif
714 
715 /*
716  * Release the lock, slowpath:
717  */
718 static inline void
__mutex_unlock_common_slowpath(struct mutex * lock,int nested)719 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
720 {
721 	unsigned long flags;
722 	WAKE_Q(wake_q);
723 
724 	/*
725 	 * As a performance measurement, release the lock before doing other
726 	 * wakeup related duties to follow. This allows other tasks to acquire
727 	 * the lock sooner, while still handling cleanups in past unlock calls.
728 	 * This can be done as we do not enforce strict equivalence between the
729 	 * mutex counter and wait_list.
730 	 *
731 	 *
732 	 * Some architectures leave the lock unlocked in the fastpath failure
733 	 * case, others need to leave it locked. In the later case we have to
734 	 * unlock it here - as the lock counter is currently 0 or negative.
735 	 */
736 	if (__mutex_slowpath_needs_to_unlock())
737 		atomic_set(&lock->count, 1);
738 
739 	spin_lock_mutex(&lock->wait_lock, flags);
740 	mutex_release(&lock->dep_map, nested, _RET_IP_);
741 	debug_mutex_unlock(lock);
742 
743 	if (!list_empty(&lock->wait_list)) {
744 		/* get the first entry from the wait-list: */
745 		struct mutex_waiter *waiter =
746 				list_entry(lock->wait_list.next,
747 					   struct mutex_waiter, list);
748 
749 		debug_mutex_wake_waiter(lock, waiter);
750 		wake_q_add(&wake_q, waiter->task);
751 	}
752 
753 	spin_unlock_mutex(&lock->wait_lock, flags);
754 	wake_up_q(&wake_q);
755 }
756 
757 /*
758  * Release the lock, slowpath:
759  */
760 __visible void
__mutex_unlock_slowpath(atomic_t * lock_count)761 __mutex_unlock_slowpath(atomic_t *lock_count)
762 {
763 	struct mutex *lock = container_of(lock_count, struct mutex, count);
764 
765 	__mutex_unlock_common_slowpath(lock, 1);
766 }
767 
768 #ifndef CONFIG_DEBUG_LOCK_ALLOC
769 /*
770  * Here come the less common (and hence less performance-critical) APIs:
771  * mutex_lock_interruptible() and mutex_trylock().
772  */
773 static noinline int __sched
774 __mutex_lock_killable_slowpath(struct mutex *lock);
775 
776 static noinline int __sched
777 __mutex_lock_interruptible_slowpath(struct mutex *lock);
778 
779 /**
780  * mutex_lock_interruptible - acquire the mutex, interruptible
781  * @lock: the mutex to be acquired
782  *
783  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
784  * been acquired or sleep until the mutex becomes available. If a
785  * signal arrives while waiting for the lock then this function
786  * returns -EINTR.
787  *
788  * This function is similar to (but not equivalent to) down_interruptible().
789  */
mutex_lock_interruptible(struct mutex * lock)790 int __sched mutex_lock_interruptible(struct mutex *lock)
791 {
792 	int ret;
793 
794 	might_sleep();
795 	ret =  __mutex_fastpath_lock_retval(&lock->count);
796 	if (likely(!ret)) {
797 		mutex_set_owner(lock);
798 		return 0;
799 	} else
800 		return __mutex_lock_interruptible_slowpath(lock);
801 }
802 
803 EXPORT_SYMBOL(mutex_lock_interruptible);
804 
mutex_lock_killable(struct mutex * lock)805 int __sched mutex_lock_killable(struct mutex *lock)
806 {
807 	int ret;
808 
809 	might_sleep();
810 	ret = __mutex_fastpath_lock_retval(&lock->count);
811 	if (likely(!ret)) {
812 		mutex_set_owner(lock);
813 		return 0;
814 	} else
815 		return __mutex_lock_killable_slowpath(lock);
816 }
817 EXPORT_SYMBOL(mutex_lock_killable);
818 
819 __visible void __sched
__mutex_lock_slowpath(atomic_t * lock_count)820 __mutex_lock_slowpath(atomic_t *lock_count)
821 {
822 	struct mutex *lock = container_of(lock_count, struct mutex, count);
823 
824 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
825 			    NULL, _RET_IP_, NULL, 0);
826 }
827 
828 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)829 __mutex_lock_killable_slowpath(struct mutex *lock)
830 {
831 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
832 				   NULL, _RET_IP_, NULL, 0);
833 }
834 
835 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)836 __mutex_lock_interruptible_slowpath(struct mutex *lock)
837 {
838 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
839 				   NULL, _RET_IP_, NULL, 0);
840 }
841 
842 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)843 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
844 {
845 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
846 				   NULL, _RET_IP_, ctx, 1);
847 }
848 
849 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)850 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
851 					    struct ww_acquire_ctx *ctx)
852 {
853 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
854 				   NULL, _RET_IP_, ctx, 1);
855 }
856 
857 #endif
858 
859 /*
860  * Spinlock based trylock, we take the spinlock and check whether we
861  * can get the lock:
862  */
__mutex_trylock_slowpath(atomic_t * lock_count)863 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
864 {
865 	struct mutex *lock = container_of(lock_count, struct mutex, count);
866 	unsigned long flags;
867 	int prev;
868 
869 	/* No need to trylock if the mutex is locked. */
870 	if (mutex_is_locked(lock))
871 		return 0;
872 
873 	spin_lock_mutex(&lock->wait_lock, flags);
874 
875 	prev = atomic_xchg_acquire(&lock->count, -1);
876 	if (likely(prev == 1)) {
877 		mutex_set_owner(lock);
878 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
879 	}
880 
881 	/* Set it back to 0 if there are no waiters: */
882 	if (likely(list_empty(&lock->wait_list)))
883 		atomic_set(&lock->count, 0);
884 
885 	spin_unlock_mutex(&lock->wait_lock, flags);
886 
887 	return prev == 1;
888 }
889 
890 /**
891  * mutex_trylock - try to acquire the mutex, without waiting
892  * @lock: the mutex to be acquired
893  *
894  * Try to acquire the mutex atomically. Returns 1 if the mutex
895  * has been acquired successfully, and 0 on contention.
896  *
897  * NOTE: this function follows the spin_trylock() convention, so
898  * it is negated from the down_trylock() return values! Be careful
899  * about this when converting semaphore users to mutexes.
900  *
901  * This function must not be used in interrupt context. The
902  * mutex must be released by the same task that acquired it.
903  */
mutex_trylock(struct mutex * lock)904 int __sched mutex_trylock(struct mutex *lock)
905 {
906 	int ret;
907 
908 	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
909 	if (ret)
910 		mutex_set_owner(lock);
911 
912 	return ret;
913 }
914 EXPORT_SYMBOL(mutex_trylock);
915 
916 #ifndef CONFIG_DEBUG_LOCK_ALLOC
917 int __sched
__ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)918 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
919 {
920 	int ret;
921 
922 	might_sleep();
923 
924 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
925 
926 	if (likely(!ret)) {
927 		ww_mutex_set_context_fastpath(lock, ctx);
928 		mutex_set_owner(&lock->base);
929 	} else
930 		ret = __ww_mutex_lock_slowpath(lock, ctx);
931 	return ret;
932 }
933 EXPORT_SYMBOL(__ww_mutex_lock);
934 
935 int __sched
__ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)936 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
937 {
938 	int ret;
939 
940 	might_sleep();
941 
942 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
943 
944 	if (likely(!ret)) {
945 		ww_mutex_set_context_fastpath(lock, ctx);
946 		mutex_set_owner(&lock->base);
947 	} else
948 		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
949 	return ret;
950 }
951 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
952 
953 #endif
954 
955 /**
956  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
957  * @cnt: the atomic which we are to dec
958  * @lock: the mutex to return holding if we dec to 0
959  *
960  * return true and hold lock if we dec to 0, return false otherwise
961  */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)962 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
963 {
964 	/* dec if we can't possibly hit 0 */
965 	if (atomic_add_unless(cnt, -1, 1))
966 		return 0;
967 	/* we might hit 0, so take the lock */
968 	mutex_lock(lock);
969 	if (!atomic_dec_and_test(cnt)) {
970 		/* when we actually did the dec, we didn't hit 0 */
971 		mutex_unlock(lock);
972 		return 0;
973 	}
974 	/* we hit 0, and we hold the lock */
975 	return 1;
976 }
977 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
978