1 /*
2 * kernel/locking/mutex.c
3 *
4 * Mutexes: blocking mutual exclusion locks
5 *
6 * Started by Ingo Molnar:
7 *
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9 *
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
12 *
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
17 *
18 * Also see Documentation/locking/mutex-design.txt.
19 */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include <linux/osq_lock.h>
29
30 /*
31 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32 * which forces all calls into the slowpath:
33 */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38 * Must be 0 for the debug case so we do not do the unlock outside of the
39 * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40 * case.
41 */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define __mutex_slowpath_needs_to_unlock() 0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48
49 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 atomic_set(&lock->count, 1);
53 spin_lock_init(&lock->wait_lock);
54 INIT_LIST_HEAD(&lock->wait_list);
55 mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 osq_lock_init(&lock->osq);
58 #endif
59
60 debug_mutex_init(lock, name, key);
61 }
62
63 EXPORT_SYMBOL(__mutex_init);
64
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67 * We split the mutex lock/unlock logic into separate fastpath and
68 * slowpath functions, to reduce the register pressure on the fastpath.
69 * We also put the fastpath first in the kernel image, to make sure the
70 * branch is predicted by the CPU as default-untaken.
71 */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73
74 /**
75 * mutex_lock - acquire the mutex
76 * @lock: the mutex to be acquired
77 *
78 * Lock the mutex exclusively for this task. If the mutex is not
79 * available right now, it will sleep until it can get it.
80 *
81 * The mutex must later on be released by the same task that
82 * acquired it. Recursive locking is not allowed. The task
83 * may not exit without first unlocking the mutex. Also, kernel
84 * memory where the mutex resides must not be freed with
85 * the mutex still locked. The mutex must first be initialized
86 * (or statically defined) before it can be locked. memset()-ing
87 * the mutex to 0 is not allowed.
88 *
89 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90 * checks that will enforce the restrictions and will also do
91 * deadlock debugging. )
92 *
93 * This function is similar to (but not equivalent to) down().
94 */
mutex_lock(struct mutex * lock)95 void __sched mutex_lock(struct mutex *lock)
96 {
97 might_sleep();
98 /*
99 * The locking fastpath is the 1->0 transition from
100 * 'unlocked' into 'locked' state.
101 */
102 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 mutex_set_owner(lock);
104 }
105
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108
ww_mutex_lock_acquired(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)109 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
110 struct ww_acquire_ctx *ww_ctx)
111 {
112 #ifdef CONFIG_DEBUG_MUTEXES
113 /*
114 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
115 * but released with a normal mutex_unlock in this call.
116 *
117 * This should never happen, always use ww_mutex_unlock.
118 */
119 DEBUG_LOCKS_WARN_ON(ww->ctx);
120
121 /*
122 * Not quite done after calling ww_acquire_done() ?
123 */
124 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
125
126 if (ww_ctx->contending_lock) {
127 /*
128 * After -EDEADLK you tried to
129 * acquire a different ww_mutex? Bad!
130 */
131 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
132
133 /*
134 * You called ww_mutex_lock after receiving -EDEADLK,
135 * but 'forgot' to unlock everything else first?
136 */
137 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
138 ww_ctx->contending_lock = NULL;
139 }
140
141 /*
142 * Naughty, using a different class will lead to undefined behavior!
143 */
144 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
145 #endif
146 ww_ctx->acquired++;
147 }
148
149 /*
150 * After acquiring lock with fastpath or when we lost out in contested
151 * slowpath, set ctx and wake up any waiters so they can recheck.
152 *
153 * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
154 * as the fastpath and opportunistic spinning are disabled in that case.
155 */
156 static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)157 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
158 struct ww_acquire_ctx *ctx)
159 {
160 unsigned long flags;
161 struct mutex_waiter *cur;
162
163 ww_mutex_lock_acquired(lock, ctx);
164
165 lock->ctx = ctx;
166
167 /*
168 * The lock->ctx update should be visible on all cores before
169 * the atomic read is done, otherwise contended waiters might be
170 * missed. The contended waiters will either see ww_ctx == NULL
171 * and keep spinning, or it will acquire wait_lock, add itself
172 * to waiter list and sleep.
173 */
174 smp_mb(); /* ^^^ */
175
176 /*
177 * Check if lock is contended, if not there is nobody to wake up
178 */
179 if (likely(atomic_read(&lock->base.count) == 0))
180 return;
181
182 /*
183 * Uh oh, we raced in fastpath, wake up everyone in this case,
184 * so they can see the new lock->ctx.
185 */
186 spin_lock_mutex(&lock->base.wait_lock, flags);
187 list_for_each_entry(cur, &lock->base.wait_list, list) {
188 debug_mutex_wake_waiter(&lock->base, cur);
189 wake_up_process(cur->task);
190 }
191 spin_unlock_mutex(&lock->base.wait_lock, flags);
192 }
193
194 /*
195 * After acquiring lock in the slowpath set ctx and wake up any
196 * waiters so they can recheck.
197 *
198 * Callers must hold the mutex wait_lock.
199 */
200 static __always_inline void
ww_mutex_set_context_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)201 ww_mutex_set_context_slowpath(struct ww_mutex *lock,
202 struct ww_acquire_ctx *ctx)
203 {
204 struct mutex_waiter *cur;
205
206 ww_mutex_lock_acquired(lock, ctx);
207 lock->ctx = ctx;
208
209 /*
210 * Give any possible sleeping processes the chance to wake up,
211 * so they can recheck if they have to back off.
212 */
213 list_for_each_entry(cur, &lock->base.wait_list, list) {
214 debug_mutex_wake_waiter(&lock->base, cur);
215 wake_up_process(cur->task);
216 }
217 }
218
219 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
220 /*
221 * Look out! "owner" is an entirely speculative pointer
222 * access and not reliable.
223 */
224 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner)225 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
226 {
227 bool ret = true;
228
229 rcu_read_lock();
230 while (lock->owner == owner) {
231 /*
232 * Ensure we emit the owner->on_cpu, dereference _after_
233 * checking lock->owner still matches owner. If that fails,
234 * owner might point to freed memory. If it still matches,
235 * the rcu_read_lock() ensures the memory stays valid.
236 */
237 barrier();
238
239 if (!owner->on_cpu || need_resched()) {
240 ret = false;
241 break;
242 }
243
244 cpu_relax_lowlatency();
245 }
246 rcu_read_unlock();
247
248 return ret;
249 }
250
251 /*
252 * Initial check for entering the mutex spinning loop
253 */
mutex_can_spin_on_owner(struct mutex * lock)254 static inline int mutex_can_spin_on_owner(struct mutex *lock)
255 {
256 struct task_struct *owner;
257 int retval = 1;
258
259 if (need_resched())
260 return 0;
261
262 rcu_read_lock();
263 owner = READ_ONCE(lock->owner);
264 if (owner)
265 retval = owner->on_cpu;
266 rcu_read_unlock();
267 /*
268 * if lock->owner is not set, the mutex owner may have just acquired
269 * it and not set the owner yet or the mutex has been released.
270 */
271 return retval;
272 }
273
274 /*
275 * Atomically try to take the lock when it is available
276 */
mutex_try_to_acquire(struct mutex * lock)277 static inline bool mutex_try_to_acquire(struct mutex *lock)
278 {
279 return !mutex_is_locked(lock) &&
280 (atomic_cmpxchg_acquire(&lock->count, 1, 0) == 1);
281 }
282
283 /*
284 * Optimistic spinning.
285 *
286 * We try to spin for acquisition when we find that the lock owner
287 * is currently running on a (different) CPU and while we don't
288 * need to reschedule. The rationale is that if the lock owner is
289 * running, it is likely to release the lock soon.
290 *
291 * Since this needs the lock owner, and this mutex implementation
292 * doesn't track the owner atomically in the lock field, we need to
293 * track it non-atomically.
294 *
295 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
296 * to serialize everything.
297 *
298 * The mutex spinners are queued up using MCS lock so that only one
299 * spinner can compete for the mutex. However, if mutex spinning isn't
300 * going to happen, there is no point in going through the lock/unlock
301 * overhead.
302 *
303 * Returns true when the lock was taken, otherwise false, indicating
304 * that we need to jump to the slowpath and sleep.
305 */
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)306 static bool mutex_optimistic_spin(struct mutex *lock,
307 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
308 {
309 struct task_struct *task = current;
310
311 if (!mutex_can_spin_on_owner(lock))
312 goto done;
313
314 /*
315 * In order to avoid a stampede of mutex spinners trying to
316 * acquire the mutex all at once, the spinners need to take a
317 * MCS (queued) lock first before spinning on the owner field.
318 */
319 if (!osq_lock(&lock->osq))
320 goto done;
321
322 while (true) {
323 struct task_struct *owner;
324
325 if (use_ww_ctx && ww_ctx->acquired > 0) {
326 struct ww_mutex *ww;
327
328 ww = container_of(lock, struct ww_mutex, base);
329 /*
330 * If ww->ctx is set the contents are undefined, only
331 * by acquiring wait_lock there is a guarantee that
332 * they are not invalid when reading.
333 *
334 * As such, when deadlock detection needs to be
335 * performed the optimistic spinning cannot be done.
336 */
337 if (READ_ONCE(ww->ctx))
338 break;
339 }
340
341 /*
342 * If there's an owner, wait for it to either
343 * release the lock or go to sleep.
344 */
345 owner = READ_ONCE(lock->owner);
346 if (owner && !mutex_spin_on_owner(lock, owner))
347 break;
348
349 /* Try to acquire the mutex if it is unlocked. */
350 if (mutex_try_to_acquire(lock)) {
351 lock_acquired(&lock->dep_map, ip);
352
353 if (use_ww_ctx) {
354 struct ww_mutex *ww;
355 ww = container_of(lock, struct ww_mutex, base);
356
357 ww_mutex_set_context_fastpath(ww, ww_ctx);
358 }
359
360 mutex_set_owner(lock);
361 osq_unlock(&lock->osq);
362 return true;
363 }
364
365 /*
366 * When there's no owner, we might have preempted between the
367 * owner acquiring the lock and setting the owner field. If
368 * we're an RT task that will live-lock because we won't let
369 * the owner complete.
370 */
371 if (!owner && (need_resched() || rt_task(task)))
372 break;
373
374 /*
375 * The cpu_relax() call is a compiler barrier which forces
376 * everything in this loop to be re-loaded. We don't need
377 * memory barriers as we'll eventually observe the right
378 * values at the cost of a few extra spins.
379 */
380 cpu_relax_lowlatency();
381 }
382
383 osq_unlock(&lock->osq);
384 done:
385 /*
386 * If we fell out of the spin path because of need_resched(),
387 * reschedule now, before we try-lock the mutex. This avoids getting
388 * scheduled out right after we obtained the mutex.
389 */
390 if (need_resched()) {
391 /*
392 * We _should_ have TASK_RUNNING here, but just in case
393 * we do not, make it so, otherwise we might get stuck.
394 */
395 __set_current_state(TASK_RUNNING);
396 schedule_preempt_disabled();
397 }
398
399 return false;
400 }
401 #else
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)402 static bool mutex_optimistic_spin(struct mutex *lock,
403 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
404 {
405 return false;
406 }
407 #endif
408
409 __visible __used noinline
410 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
411
412 /**
413 * mutex_unlock - release the mutex
414 * @lock: the mutex to be released
415 *
416 * Unlock a mutex that has been locked by this task previously.
417 *
418 * This function must not be used in interrupt context. Unlocking
419 * of a not locked mutex is not allowed.
420 *
421 * This function is similar to (but not equivalent to) up().
422 */
mutex_unlock(struct mutex * lock)423 void __sched mutex_unlock(struct mutex *lock)
424 {
425 /*
426 * The unlocking fastpath is the 0->1 transition from 'locked'
427 * into 'unlocked' state:
428 */
429 #ifndef CONFIG_DEBUG_MUTEXES
430 /*
431 * When debugging is enabled we must not clear the owner before time,
432 * the slow path will always be taken, and that clears the owner field
433 * after verifying that it was indeed current.
434 */
435 mutex_clear_owner(lock);
436 #endif
437 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
438 }
439
440 EXPORT_SYMBOL(mutex_unlock);
441
442 /**
443 * ww_mutex_unlock - release the w/w mutex
444 * @lock: the mutex to be released
445 *
446 * Unlock a mutex that has been locked by this task previously with any of the
447 * ww_mutex_lock* functions (with or without an acquire context). It is
448 * forbidden to release the locks after releasing the acquire context.
449 *
450 * This function must not be used in interrupt context. Unlocking
451 * of a unlocked mutex is not allowed.
452 */
ww_mutex_unlock(struct ww_mutex * lock)453 void __sched ww_mutex_unlock(struct ww_mutex *lock)
454 {
455 /*
456 * The unlocking fastpath is the 0->1 transition from 'locked'
457 * into 'unlocked' state:
458 */
459 if (lock->ctx) {
460 #ifdef CONFIG_DEBUG_MUTEXES
461 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
462 #endif
463 if (lock->ctx->acquired > 0)
464 lock->ctx->acquired--;
465 lock->ctx = NULL;
466 }
467
468 #ifndef CONFIG_DEBUG_MUTEXES
469 /*
470 * When debugging is enabled we must not clear the owner before time,
471 * the slow path will always be taken, and that clears the owner field
472 * after verifying that it was indeed current.
473 */
474 mutex_clear_owner(&lock->base);
475 #endif
476 __mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
477 }
478 EXPORT_SYMBOL(ww_mutex_unlock);
479
480 static inline int __sched
__ww_mutex_lock_check_stamp(struct mutex * lock,struct ww_acquire_ctx * ctx)481 __ww_mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
482 {
483 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
484 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
485
486 if (!hold_ctx)
487 return 0;
488
489 if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
490 (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
491 #ifdef CONFIG_DEBUG_MUTEXES
492 DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
493 ctx->contending_lock = ww;
494 #endif
495 return -EDEADLK;
496 }
497
498 return 0;
499 }
500
501 /*
502 * Lock a mutex (possibly interruptible), slowpath:
503 */
504 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)505 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
506 struct lockdep_map *nest_lock, unsigned long ip,
507 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
508 {
509 struct task_struct *task = current;
510 struct mutex_waiter waiter;
511 unsigned long flags;
512 int ret;
513
514 if (use_ww_ctx) {
515 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
516 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
517 return -EALREADY;
518 }
519
520 preempt_disable();
521 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
522
523 if (mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx)) {
524 /* got the lock, yay! */
525 preempt_enable();
526 return 0;
527 }
528
529 spin_lock_mutex(&lock->wait_lock, flags);
530
531 /*
532 * Once more, try to acquire the lock. Only try-lock the mutex if
533 * it is unlocked to reduce unnecessary xchg() operations.
534 */
535 if (!mutex_is_locked(lock) &&
536 (atomic_xchg_acquire(&lock->count, 0) == 1))
537 goto skip_wait;
538
539 debug_mutex_lock_common(lock, &waiter);
540 debug_mutex_add_waiter(lock, &waiter, task);
541
542 /* add waiting tasks to the end of the waitqueue (FIFO): */
543 list_add_tail(&waiter.list, &lock->wait_list);
544 waiter.task = task;
545
546 lock_contended(&lock->dep_map, ip);
547
548 for (;;) {
549 /*
550 * Lets try to take the lock again - this is needed even if
551 * we get here for the first time (shortly after failing to
552 * acquire the lock), to make sure that we get a wakeup once
553 * it's unlocked. Later on, if we sleep, this is the
554 * operation that gives us the lock. We xchg it to -1, so
555 * that when we release the lock, we properly wake up the
556 * other waiters. We only attempt the xchg if the count is
557 * non-negative in order to avoid unnecessary xchg operations:
558 */
559 if (atomic_read(&lock->count) >= 0 &&
560 (atomic_xchg_acquire(&lock->count, -1) == 1))
561 break;
562
563 /*
564 * got a signal? (This code gets eliminated in the
565 * TASK_UNINTERRUPTIBLE case.)
566 */
567 if (unlikely(signal_pending_state(state, task))) {
568 ret = -EINTR;
569 goto err;
570 }
571
572 if (use_ww_ctx && ww_ctx->acquired > 0) {
573 ret = __ww_mutex_lock_check_stamp(lock, ww_ctx);
574 if (ret)
575 goto err;
576 }
577
578 __set_task_state(task, state);
579
580 /* didn't get the lock, go to sleep: */
581 spin_unlock_mutex(&lock->wait_lock, flags);
582 schedule_preempt_disabled();
583 spin_lock_mutex(&lock->wait_lock, flags);
584 }
585 __set_task_state(task, TASK_RUNNING);
586
587 mutex_remove_waiter(lock, &waiter, task);
588 /* set it to 0 if there are no waiters left: */
589 if (likely(list_empty(&lock->wait_list)))
590 atomic_set(&lock->count, 0);
591 debug_mutex_free_waiter(&waiter);
592
593 skip_wait:
594 /* got the lock - cleanup and rejoice! */
595 lock_acquired(&lock->dep_map, ip);
596 mutex_set_owner(lock);
597
598 if (use_ww_ctx) {
599 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
600 ww_mutex_set_context_slowpath(ww, ww_ctx);
601 }
602
603 spin_unlock_mutex(&lock->wait_lock, flags);
604 preempt_enable();
605 return 0;
606
607 err:
608 mutex_remove_waiter(lock, &waiter, task);
609 spin_unlock_mutex(&lock->wait_lock, flags);
610 debug_mutex_free_waiter(&waiter);
611 mutex_release(&lock->dep_map, 1, ip);
612 preempt_enable();
613 return ret;
614 }
615
616 #ifdef CONFIG_DEBUG_LOCK_ALLOC
617 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)618 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
619 {
620 might_sleep();
621 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
622 subclass, NULL, _RET_IP_, NULL, 0);
623 }
624
625 EXPORT_SYMBOL_GPL(mutex_lock_nested);
626
627 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)628 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
629 {
630 might_sleep();
631 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
632 0, nest, _RET_IP_, NULL, 0);
633 }
634
635 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
636
637 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)638 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
639 {
640 might_sleep();
641 return __mutex_lock_common(lock, TASK_KILLABLE,
642 subclass, NULL, _RET_IP_, NULL, 0);
643 }
644 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
645
646 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)647 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
648 {
649 might_sleep();
650 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
651 subclass, NULL, _RET_IP_, NULL, 0);
652 }
653
654 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
655
656 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)657 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
658 {
659 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
660 unsigned tmp;
661
662 if (ctx->deadlock_inject_countdown-- == 0) {
663 tmp = ctx->deadlock_inject_interval;
664 if (tmp > UINT_MAX/4)
665 tmp = UINT_MAX;
666 else
667 tmp = tmp*2 + tmp + tmp/2;
668
669 ctx->deadlock_inject_interval = tmp;
670 ctx->deadlock_inject_countdown = tmp;
671 ctx->contending_lock = lock;
672
673 ww_mutex_unlock(lock);
674
675 return -EDEADLK;
676 }
677 #endif
678
679 return 0;
680 }
681
682 int __sched
__ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)683 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
684 {
685 int ret;
686
687 might_sleep();
688 ret = __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
689 0, &ctx->dep_map, _RET_IP_, ctx, 1);
690 if (!ret && ctx->acquired > 1)
691 return ww_mutex_deadlock_injection(lock, ctx);
692
693 return ret;
694 }
695 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
696
697 int __sched
__ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)698 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
699 {
700 int ret;
701
702 might_sleep();
703 ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
704 0, &ctx->dep_map, _RET_IP_, ctx, 1);
705
706 if (!ret && ctx->acquired > 1)
707 return ww_mutex_deadlock_injection(lock, ctx);
708
709 return ret;
710 }
711 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
712
713 #endif
714
715 /*
716 * Release the lock, slowpath:
717 */
718 static inline void
__mutex_unlock_common_slowpath(struct mutex * lock,int nested)719 __mutex_unlock_common_slowpath(struct mutex *lock, int nested)
720 {
721 unsigned long flags;
722 WAKE_Q(wake_q);
723
724 /*
725 * As a performance measurement, release the lock before doing other
726 * wakeup related duties to follow. This allows other tasks to acquire
727 * the lock sooner, while still handling cleanups in past unlock calls.
728 * This can be done as we do not enforce strict equivalence between the
729 * mutex counter and wait_list.
730 *
731 *
732 * Some architectures leave the lock unlocked in the fastpath failure
733 * case, others need to leave it locked. In the later case we have to
734 * unlock it here - as the lock counter is currently 0 or negative.
735 */
736 if (__mutex_slowpath_needs_to_unlock())
737 atomic_set(&lock->count, 1);
738
739 spin_lock_mutex(&lock->wait_lock, flags);
740 mutex_release(&lock->dep_map, nested, _RET_IP_);
741 debug_mutex_unlock(lock);
742
743 if (!list_empty(&lock->wait_list)) {
744 /* get the first entry from the wait-list: */
745 struct mutex_waiter *waiter =
746 list_entry(lock->wait_list.next,
747 struct mutex_waiter, list);
748
749 debug_mutex_wake_waiter(lock, waiter);
750 wake_q_add(&wake_q, waiter->task);
751 }
752
753 spin_unlock_mutex(&lock->wait_lock, flags);
754 wake_up_q(&wake_q);
755 }
756
757 /*
758 * Release the lock, slowpath:
759 */
760 __visible void
__mutex_unlock_slowpath(atomic_t * lock_count)761 __mutex_unlock_slowpath(atomic_t *lock_count)
762 {
763 struct mutex *lock = container_of(lock_count, struct mutex, count);
764
765 __mutex_unlock_common_slowpath(lock, 1);
766 }
767
768 #ifndef CONFIG_DEBUG_LOCK_ALLOC
769 /*
770 * Here come the less common (and hence less performance-critical) APIs:
771 * mutex_lock_interruptible() and mutex_trylock().
772 */
773 static noinline int __sched
774 __mutex_lock_killable_slowpath(struct mutex *lock);
775
776 static noinline int __sched
777 __mutex_lock_interruptible_slowpath(struct mutex *lock);
778
779 /**
780 * mutex_lock_interruptible - acquire the mutex, interruptible
781 * @lock: the mutex to be acquired
782 *
783 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
784 * been acquired or sleep until the mutex becomes available. If a
785 * signal arrives while waiting for the lock then this function
786 * returns -EINTR.
787 *
788 * This function is similar to (but not equivalent to) down_interruptible().
789 */
mutex_lock_interruptible(struct mutex * lock)790 int __sched mutex_lock_interruptible(struct mutex *lock)
791 {
792 int ret;
793
794 might_sleep();
795 ret = __mutex_fastpath_lock_retval(&lock->count);
796 if (likely(!ret)) {
797 mutex_set_owner(lock);
798 return 0;
799 } else
800 return __mutex_lock_interruptible_slowpath(lock);
801 }
802
803 EXPORT_SYMBOL(mutex_lock_interruptible);
804
mutex_lock_killable(struct mutex * lock)805 int __sched mutex_lock_killable(struct mutex *lock)
806 {
807 int ret;
808
809 might_sleep();
810 ret = __mutex_fastpath_lock_retval(&lock->count);
811 if (likely(!ret)) {
812 mutex_set_owner(lock);
813 return 0;
814 } else
815 return __mutex_lock_killable_slowpath(lock);
816 }
817 EXPORT_SYMBOL(mutex_lock_killable);
818
819 __visible void __sched
__mutex_lock_slowpath(atomic_t * lock_count)820 __mutex_lock_slowpath(atomic_t *lock_count)
821 {
822 struct mutex *lock = container_of(lock_count, struct mutex, count);
823
824 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
825 NULL, _RET_IP_, NULL, 0);
826 }
827
828 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)829 __mutex_lock_killable_slowpath(struct mutex *lock)
830 {
831 return __mutex_lock_common(lock, TASK_KILLABLE, 0,
832 NULL, _RET_IP_, NULL, 0);
833 }
834
835 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)836 __mutex_lock_interruptible_slowpath(struct mutex *lock)
837 {
838 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
839 NULL, _RET_IP_, NULL, 0);
840 }
841
842 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)843 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
844 {
845 return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
846 NULL, _RET_IP_, ctx, 1);
847 }
848
849 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)850 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
851 struct ww_acquire_ctx *ctx)
852 {
853 return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
854 NULL, _RET_IP_, ctx, 1);
855 }
856
857 #endif
858
859 /*
860 * Spinlock based trylock, we take the spinlock and check whether we
861 * can get the lock:
862 */
__mutex_trylock_slowpath(atomic_t * lock_count)863 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
864 {
865 struct mutex *lock = container_of(lock_count, struct mutex, count);
866 unsigned long flags;
867 int prev;
868
869 /* No need to trylock if the mutex is locked. */
870 if (mutex_is_locked(lock))
871 return 0;
872
873 spin_lock_mutex(&lock->wait_lock, flags);
874
875 prev = atomic_xchg_acquire(&lock->count, -1);
876 if (likely(prev == 1)) {
877 mutex_set_owner(lock);
878 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
879 }
880
881 /* Set it back to 0 if there are no waiters: */
882 if (likely(list_empty(&lock->wait_list)))
883 atomic_set(&lock->count, 0);
884
885 spin_unlock_mutex(&lock->wait_lock, flags);
886
887 return prev == 1;
888 }
889
890 /**
891 * mutex_trylock - try to acquire the mutex, without waiting
892 * @lock: the mutex to be acquired
893 *
894 * Try to acquire the mutex atomically. Returns 1 if the mutex
895 * has been acquired successfully, and 0 on contention.
896 *
897 * NOTE: this function follows the spin_trylock() convention, so
898 * it is negated from the down_trylock() return values! Be careful
899 * about this when converting semaphore users to mutexes.
900 *
901 * This function must not be used in interrupt context. The
902 * mutex must be released by the same task that acquired it.
903 */
mutex_trylock(struct mutex * lock)904 int __sched mutex_trylock(struct mutex *lock)
905 {
906 int ret;
907
908 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
909 if (ret)
910 mutex_set_owner(lock);
911
912 return ret;
913 }
914 EXPORT_SYMBOL(mutex_trylock);
915
916 #ifndef CONFIG_DEBUG_LOCK_ALLOC
917 int __sched
__ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)918 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
919 {
920 int ret;
921
922 might_sleep();
923
924 ret = __mutex_fastpath_lock_retval(&lock->base.count);
925
926 if (likely(!ret)) {
927 ww_mutex_set_context_fastpath(lock, ctx);
928 mutex_set_owner(&lock->base);
929 } else
930 ret = __ww_mutex_lock_slowpath(lock, ctx);
931 return ret;
932 }
933 EXPORT_SYMBOL(__ww_mutex_lock);
934
935 int __sched
__ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)936 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
937 {
938 int ret;
939
940 might_sleep();
941
942 ret = __mutex_fastpath_lock_retval(&lock->base.count);
943
944 if (likely(!ret)) {
945 ww_mutex_set_context_fastpath(lock, ctx);
946 mutex_set_owner(&lock->base);
947 } else
948 ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
949 return ret;
950 }
951 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
952
953 #endif
954
955 /**
956 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
957 * @cnt: the atomic which we are to dec
958 * @lock: the mutex to return holding if we dec to 0
959 *
960 * return true and hold lock if we dec to 0, return false otherwise
961 */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)962 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
963 {
964 /* dec if we can't possibly hit 0 */
965 if (atomic_add_unless(cnt, -1, 1))
966 return 0;
967 /* we might hit 0, so take the lock */
968 mutex_lock(lock);
969 if (!atomic_dec_and_test(cnt)) {
970 /* when we actually did the dec, we didn't hit 0 */
971 mutex_unlock(lock);
972 return 0;
973 }
974 /* we hit 0, and we hold the lock */
975 return 1;
976 }
977 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
978