• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/namei.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Some corrections by tytso.
9  */
10 
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12  * lookup logic.
13  */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15  */
16 
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <asm/uaccess.h>
41 
42 #include "internal.h"
43 #include "mount.h"
44 
45 /* [Feb-1997 T. Schoebel-Theuer]
46  * Fundamental changes in the pathname lookup mechanisms (namei)
47  * were necessary because of omirr.  The reason is that omirr needs
48  * to know the _real_ pathname, not the user-supplied one, in case
49  * of symlinks (and also when transname replacements occur).
50  *
51  * The new code replaces the old recursive symlink resolution with
52  * an iterative one (in case of non-nested symlink chains).  It does
53  * this with calls to <fs>_follow_link().
54  * As a side effect, dir_namei(), _namei() and follow_link() are now
55  * replaced with a single function lookup_dentry() that can handle all
56  * the special cases of the former code.
57  *
58  * With the new dcache, the pathname is stored at each inode, at least as
59  * long as the refcount of the inode is positive.  As a side effect, the
60  * size of the dcache depends on the inode cache and thus is dynamic.
61  *
62  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63  * resolution to correspond with current state of the code.
64  *
65  * Note that the symlink resolution is not *completely* iterative.
66  * There is still a significant amount of tail- and mid- recursion in
67  * the algorithm.  Also, note that <fs>_readlink() is not used in
68  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69  * may return different results than <fs>_follow_link().  Many virtual
70  * filesystems (including /proc) exhibit this behavior.
71  */
72 
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75  * and the name already exists in form of a symlink, try to create the new
76  * name indicated by the symlink. The old code always complained that the
77  * name already exists, due to not following the symlink even if its target
78  * is nonexistent.  The new semantics affects also mknod() and link() when
79  * the name is a symlink pointing to a non-existent name.
80  *
81  * I don't know which semantics is the right one, since I have no access
82  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84  * "old" one. Personally, I think the new semantics is much more logical.
85  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86  * file does succeed in both HP-UX and SunOs, but not in Solaris
87  * and in the old Linux semantics.
88  */
89 
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91  * semantics.  See the comments in "open_namei" and "do_link" below.
92  *
93  * [10-Sep-98 Alan Modra] Another symlink change.
94  */
95 
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97  *	inside the path - always follow.
98  *	in the last component in creation/removal/renaming - never follow.
99  *	if LOOKUP_FOLLOW passed - follow.
100  *	if the pathname has trailing slashes - follow.
101  *	otherwise - don't follow.
102  * (applied in that order).
103  *
104  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106  * During the 2.4 we need to fix the userland stuff depending on it -
107  * hopefully we will be able to get rid of that wart in 2.5. So far only
108  * XEmacs seems to be relying on it...
109  */
110 /*
111  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
113  * any extra contention...
114  */
115 
116 /* In order to reduce some races, while at the same time doing additional
117  * checking and hopefully speeding things up, we copy filenames to the
118  * kernel data space before using them..
119  *
120  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121  * PATH_MAX includes the nul terminator --RR.
122  */
123 
124 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
125 
126 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)127 getname_flags(const char __user *filename, int flags, int *empty)
128 {
129 	struct filename *result;
130 	char *kname;
131 	int len;
132 
133 	result = audit_reusename(filename);
134 	if (result)
135 		return result;
136 
137 	result = __getname();
138 	if (unlikely(!result))
139 		return ERR_PTR(-ENOMEM);
140 
141 	/*
142 	 * First, try to embed the struct filename inside the names_cache
143 	 * allocation
144 	 */
145 	kname = (char *)result->iname;
146 	result->name = kname;
147 
148 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 	if (unlikely(len < 0)) {
150 		__putname(result);
151 		return ERR_PTR(len);
152 	}
153 
154 	/*
155 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 	 * separate struct filename so we can dedicate the entire
157 	 * names_cache allocation for the pathname, and re-do the copy from
158 	 * userland.
159 	 */
160 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 		const size_t size = offsetof(struct filename, iname[1]);
162 		kname = (char *)result;
163 
164 		/*
165 		 * size is chosen that way we to guarantee that
166 		 * result->iname[0] is within the same object and that
167 		 * kname can't be equal to result->iname, no matter what.
168 		 */
169 		result = kzalloc(size, GFP_KERNEL);
170 		if (unlikely(!result)) {
171 			__putname(kname);
172 			return ERR_PTR(-ENOMEM);
173 		}
174 		result->name = kname;
175 		len = strncpy_from_user(kname, filename, PATH_MAX);
176 		if (unlikely(len < 0)) {
177 			__putname(kname);
178 			kfree(result);
179 			return ERR_PTR(len);
180 		}
181 		if (unlikely(len == PATH_MAX)) {
182 			__putname(kname);
183 			kfree(result);
184 			return ERR_PTR(-ENAMETOOLONG);
185 		}
186 	}
187 
188 	result->refcnt = 1;
189 	/* The empty path is special. */
190 	if (unlikely(!len)) {
191 		if (empty)
192 			*empty = 1;
193 		if (!(flags & LOOKUP_EMPTY)) {
194 			putname(result);
195 			return ERR_PTR(-ENOENT);
196 		}
197 	}
198 
199 	result->uptr = filename;
200 	result->aname = NULL;
201 	audit_getname(result);
202 	return result;
203 }
204 
205 struct filename *
getname(const char __user * filename)206 getname(const char __user * filename)
207 {
208 	return getname_flags(filename, 0, NULL);
209 }
210 
211 struct filename *
getname_kernel(const char * filename)212 getname_kernel(const char * filename)
213 {
214 	struct filename *result;
215 	int len = strlen(filename) + 1;
216 
217 	result = __getname();
218 	if (unlikely(!result))
219 		return ERR_PTR(-ENOMEM);
220 
221 	if (len <= EMBEDDED_NAME_MAX) {
222 		result->name = (char *)result->iname;
223 	} else if (len <= PATH_MAX) {
224 		const size_t size = offsetof(struct filename, iname[1]);
225 		struct filename *tmp;
226 
227 		tmp = kmalloc(size, GFP_KERNEL);
228 		if (unlikely(!tmp)) {
229 			__putname(result);
230 			return ERR_PTR(-ENOMEM);
231 		}
232 		tmp->name = (char *)result;
233 		result = tmp;
234 	} else {
235 		__putname(result);
236 		return ERR_PTR(-ENAMETOOLONG);
237 	}
238 	memcpy((char *)result->name, filename, len);
239 	result->uptr = NULL;
240 	result->aname = NULL;
241 	result->refcnt = 1;
242 	audit_getname(result);
243 
244 	return result;
245 }
246 
putname(struct filename * name)247 void putname(struct filename *name)
248 {
249 	BUG_ON(name->refcnt <= 0);
250 
251 	if (--name->refcnt > 0)
252 		return;
253 
254 	if (name->name != name->iname) {
255 		__putname(name->name);
256 		kfree(name);
257 	} else
258 		__putname(name);
259 }
260 
check_acl(struct inode * inode,int mask)261 static int check_acl(struct inode *inode, int mask)
262 {
263 #ifdef CONFIG_FS_POSIX_ACL
264 	struct posix_acl *acl;
265 
266 	if (mask & MAY_NOT_BLOCK) {
267 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268 	        if (!acl)
269 	                return -EAGAIN;
270 		/* no ->get_acl() calls in RCU mode... */
271 		if (is_uncached_acl(acl))
272 			return -ECHILD;
273 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274 	}
275 
276 	acl = get_acl(inode, ACL_TYPE_ACCESS);
277 	if (IS_ERR(acl))
278 		return PTR_ERR(acl);
279 	if (acl) {
280 	        int error = posix_acl_permission(inode, acl, mask);
281 	        posix_acl_release(acl);
282 	        return error;
283 	}
284 #endif
285 
286 	return -EAGAIN;
287 }
288 
289 /*
290  * This does the basic permission checking
291  */
acl_permission_check(struct inode * inode,int mask)292 static int acl_permission_check(struct inode *inode, int mask)
293 {
294 	unsigned int mode = inode->i_mode;
295 
296 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297 		mode >>= 6;
298 	else {
299 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300 			int error = check_acl(inode, mask);
301 			if (error != -EAGAIN)
302 				return error;
303 		}
304 
305 		if (in_group_p(inode->i_gid))
306 			mode >>= 3;
307 	}
308 
309 	/*
310 	 * If the DACs are ok we don't need any capability check.
311 	 */
312 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313 		return 0;
314 	return -EACCES;
315 }
316 
317 /**
318  * generic_permission -  check for access rights on a Posix-like filesystem
319  * @inode:	inode to check access rights for
320  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321  *
322  * Used to check for read/write/execute permissions on a file.
323  * We use "fsuid" for this, letting us set arbitrary permissions
324  * for filesystem access without changing the "normal" uids which
325  * are used for other things.
326  *
327  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328  * request cannot be satisfied (eg. requires blocking or too much complexity).
329  * It would then be called again in ref-walk mode.
330  */
generic_permission(struct inode * inode,int mask)331 int generic_permission(struct inode *inode, int mask)
332 {
333 	int ret;
334 
335 	/*
336 	 * Do the basic permission checks.
337 	 */
338 	ret = acl_permission_check(inode, mask);
339 	if (ret != -EACCES)
340 		return ret;
341 
342 	if (S_ISDIR(inode->i_mode)) {
343 		/* DACs are overridable for directories */
344 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
345 			return 0;
346 		if (!(mask & MAY_WRITE))
347 			if (capable_wrt_inode_uidgid(inode,
348 						     CAP_DAC_READ_SEARCH))
349 				return 0;
350 		return -EACCES;
351 	}
352 	/*
353 	 * Read/write DACs are always overridable.
354 	 * Executable DACs are overridable when there is
355 	 * at least one exec bit set.
356 	 */
357 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
358 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
359 			return 0;
360 
361 	/*
362 	 * Searching includes executable on directories, else just read.
363 	 */
364 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
365 	if (mask == MAY_READ)
366 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
367 			return 0;
368 
369 	return -EACCES;
370 }
371 EXPORT_SYMBOL(generic_permission);
372 
373 /*
374  * We _really_ want to just do "generic_permission()" without
375  * even looking at the inode->i_op values. So we keep a cache
376  * flag in inode->i_opflags, that says "this has not special
377  * permission function, use the fast case".
378  */
do_inode_permission(struct vfsmount * mnt,struct inode * inode,int mask)379 static inline int do_inode_permission(struct vfsmount *mnt, struct inode *inode, int mask)
380 {
381 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382 		if (likely(mnt && inode->i_op->permission2))
383 			return inode->i_op->permission2(mnt, inode, mask);
384 		if (likely(inode->i_op->permission))
385 			return inode->i_op->permission(inode, mask);
386 
387 		/* This gets set once for the inode lifetime */
388 		spin_lock(&inode->i_lock);
389 		inode->i_opflags |= IOP_FASTPERM;
390 		spin_unlock(&inode->i_lock);
391 	}
392 	return generic_permission(inode, mask);
393 }
394 
395 /**
396  * __inode_permission - Check for access rights to a given inode
397  * @inode: Inode to check permission on
398  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
399  *
400  * Check for read/write/execute permissions on an inode.
401  *
402  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
403  *
404  * This does not check for a read-only file system.  You probably want
405  * inode_permission().
406  */
__inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)407 int __inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
408 {
409 	int retval;
410 
411 	if (unlikely(mask & MAY_WRITE)) {
412 		/*
413 		 * Nobody gets write access to an immutable file.
414 		 */
415 		if (IS_IMMUTABLE(inode))
416 			return -EPERM;
417 
418 		/*
419 		 * Updating mtime will likely cause i_uid and i_gid to be
420 		 * written back improperly if their true value is unknown
421 		 * to the vfs.
422 		 */
423 		if (HAS_UNMAPPED_ID(inode))
424 			return -EACCES;
425 	}
426 
427 	retval = do_inode_permission(mnt, inode, mask);
428 	if (retval)
429 		return retval;
430 
431 	retval = devcgroup_inode_permission(inode, mask);
432 	if (retval)
433 		return retval;
434 
435 	retval = security_inode_permission(inode, mask);
436 	return retval;
437 }
438 EXPORT_SYMBOL(__inode_permission2);
439 
__inode_permission(struct inode * inode,int mask)440 int __inode_permission(struct inode *inode, int mask)
441 {
442 	return __inode_permission2(NULL, inode, mask);
443 }
444 EXPORT_SYMBOL(__inode_permission);
445 
446 /**
447  * sb_permission - Check superblock-level permissions
448  * @sb: Superblock of inode to check permission on
449  * @inode: Inode to check permission on
450  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451  *
452  * Separate out file-system wide checks from inode-specific permission checks.
453  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)454 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
455 {
456 	if (unlikely(mask & MAY_WRITE)) {
457 		umode_t mode = inode->i_mode;
458 
459 		/* Nobody gets write access to a read-only fs. */
460 		if ((sb->s_flags & MS_RDONLY) &&
461 		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
462 			return -EROFS;
463 	}
464 	return 0;
465 }
466 
467 /**
468  * inode_permission - Check for access rights to a given inode
469  * @inode: Inode to check permission on
470  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
471  *
472  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
473  * this, letting us set arbitrary permissions for filesystem access without
474  * changing the "normal" UIDs which are used for other things.
475  *
476  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
477  */
inode_permission2(struct vfsmount * mnt,struct inode * inode,int mask)478 int inode_permission2(struct vfsmount *mnt, struct inode *inode, int mask)
479 {
480 	int retval;
481 
482 	retval = sb_permission(inode->i_sb, inode, mask);
483 	if (retval)
484 		return retval;
485 	return __inode_permission2(mnt, inode, mask);
486 }
487 EXPORT_SYMBOL(inode_permission2);
488 
inode_permission(struct inode * inode,int mask)489 int inode_permission(struct inode *inode, int mask)
490 {
491 	return inode_permission2(NULL, inode, mask);
492 }
493 EXPORT_SYMBOL(inode_permission);
494 
495 /**
496  * path_get - get a reference to a path
497  * @path: path to get the reference to
498  *
499  * Given a path increment the reference count to the dentry and the vfsmount.
500  */
path_get(const struct path * path)501 void path_get(const struct path *path)
502 {
503 	mntget(path->mnt);
504 	dget(path->dentry);
505 }
506 EXPORT_SYMBOL(path_get);
507 
508 /**
509  * path_put - put a reference to a path
510  * @path: path to put the reference to
511  *
512  * Given a path decrement the reference count to the dentry and the vfsmount.
513  */
path_put(const struct path * path)514 void path_put(const struct path *path)
515 {
516 	dput(path->dentry);
517 	mntput(path->mnt);
518 }
519 EXPORT_SYMBOL(path_put);
520 
521 #define EMBEDDED_LEVELS 2
522 struct nameidata {
523 	struct path	path;
524 	struct qstr	last;
525 	struct path	root;
526 	struct inode	*inode; /* path.dentry.d_inode */
527 	unsigned int	flags;
528 	unsigned	seq, m_seq;
529 	int		last_type;
530 	unsigned	depth;
531 	int		total_link_count;
532 	struct saved {
533 		struct path link;
534 		struct delayed_call done;
535 		const char *name;
536 		unsigned seq;
537 	} *stack, internal[EMBEDDED_LEVELS];
538 	struct filename	*name;
539 	struct nameidata *saved;
540 	struct inode	*link_inode;
541 	unsigned	root_seq;
542 	int		dfd;
543 };
544 
set_nameidata(struct nameidata * p,int dfd,struct filename * name)545 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
546 {
547 	struct nameidata *old = current->nameidata;
548 	p->stack = p->internal;
549 	p->dfd = dfd;
550 	p->name = name;
551 	p->total_link_count = old ? old->total_link_count : 0;
552 	p->saved = old;
553 	current->nameidata = p;
554 }
555 
restore_nameidata(void)556 static void restore_nameidata(void)
557 {
558 	struct nameidata *now = current->nameidata, *old = now->saved;
559 
560 	current->nameidata = old;
561 	if (old)
562 		old->total_link_count = now->total_link_count;
563 	if (now->stack != now->internal)
564 		kfree(now->stack);
565 }
566 
__nd_alloc_stack(struct nameidata * nd)567 static int __nd_alloc_stack(struct nameidata *nd)
568 {
569 	struct saved *p;
570 
571 	if (nd->flags & LOOKUP_RCU) {
572 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
573 				  GFP_ATOMIC);
574 		if (unlikely(!p))
575 			return -ECHILD;
576 	} else {
577 		p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
578 				  GFP_KERNEL);
579 		if (unlikely(!p))
580 			return -ENOMEM;
581 	}
582 	memcpy(p, nd->internal, sizeof(nd->internal));
583 	nd->stack = p;
584 	return 0;
585 }
586 
587 /**
588  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
589  * @path: nameidate to verify
590  *
591  * Rename can sometimes move a file or directory outside of a bind
592  * mount, path_connected allows those cases to be detected.
593  */
path_connected(const struct path * path)594 static bool path_connected(const struct path *path)
595 {
596 	struct vfsmount *mnt = path->mnt;
597 	struct super_block *sb = mnt->mnt_sb;
598 
599 	/* Bind mounts and multi-root filesystems can have disconnected paths */
600 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
601 		return true;
602 
603 	return is_subdir(path->dentry, mnt->mnt_root);
604 }
605 
nd_alloc_stack(struct nameidata * nd)606 static inline int nd_alloc_stack(struct nameidata *nd)
607 {
608 	if (likely(nd->depth != EMBEDDED_LEVELS))
609 		return 0;
610 	if (likely(nd->stack != nd->internal))
611 		return 0;
612 	return __nd_alloc_stack(nd);
613 }
614 
drop_links(struct nameidata * nd)615 static void drop_links(struct nameidata *nd)
616 {
617 	int i = nd->depth;
618 	while (i--) {
619 		struct saved *last = nd->stack + i;
620 		do_delayed_call(&last->done);
621 		clear_delayed_call(&last->done);
622 	}
623 }
624 
terminate_walk(struct nameidata * nd)625 static void terminate_walk(struct nameidata *nd)
626 {
627 	drop_links(nd);
628 	if (!(nd->flags & LOOKUP_RCU)) {
629 		int i;
630 		path_put(&nd->path);
631 		for (i = 0; i < nd->depth; i++)
632 			path_put(&nd->stack[i].link);
633 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
634 			path_put(&nd->root);
635 			nd->root.mnt = NULL;
636 		}
637 	} else {
638 		nd->flags &= ~LOOKUP_RCU;
639 		if (!(nd->flags & LOOKUP_ROOT))
640 			nd->root.mnt = NULL;
641 		rcu_read_unlock();
642 	}
643 	nd->depth = 0;
644 }
645 
646 /* path_put is needed afterwards regardless of success or failure */
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)647 static bool legitimize_path(struct nameidata *nd,
648 			    struct path *path, unsigned seq)
649 {
650 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
651 	if (unlikely(res)) {
652 		if (res > 0)
653 			path->mnt = NULL;
654 		path->dentry = NULL;
655 		return false;
656 	}
657 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
658 		path->dentry = NULL;
659 		return false;
660 	}
661 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
662 }
663 
legitimize_links(struct nameidata * nd)664 static bool legitimize_links(struct nameidata *nd)
665 {
666 	int i;
667 	for (i = 0; i < nd->depth; i++) {
668 		struct saved *last = nd->stack + i;
669 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
670 			drop_links(nd);
671 			nd->depth = i + 1;
672 			return false;
673 		}
674 	}
675 	return true;
676 }
677 
678 /*
679  * Path walking has 2 modes, rcu-walk and ref-walk (see
680  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
681  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
682  * normal reference counts on dentries and vfsmounts to transition to ref-walk
683  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
684  * got stuck, so ref-walk may continue from there. If this is not successful
685  * (eg. a seqcount has changed), then failure is returned and it's up to caller
686  * to restart the path walk from the beginning in ref-walk mode.
687  */
688 
689 /**
690  * unlazy_walk - try to switch to ref-walk mode.
691  * @nd: nameidata pathwalk data
692  * @dentry: child of nd->path.dentry or NULL
693  * @seq: seq number to check dentry against
694  * Returns: 0 on success, -ECHILD on failure
695  *
696  * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
697  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
698  * @nd or NULL.  Must be called from rcu-walk context.
699  * Nothing should touch nameidata between unlazy_walk() failure and
700  * terminate_walk().
701  */
unlazy_walk(struct nameidata * nd,struct dentry * dentry,unsigned seq)702 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
703 {
704 	struct dentry *parent = nd->path.dentry;
705 
706 	BUG_ON(!(nd->flags & LOOKUP_RCU));
707 
708 	nd->flags &= ~LOOKUP_RCU;
709 	if (unlikely(!legitimize_links(nd)))
710 		goto out2;
711 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
712 		goto out2;
713 	if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
714 		goto out1;
715 
716 	/*
717 	 * For a negative lookup, the lookup sequence point is the parents
718 	 * sequence point, and it only needs to revalidate the parent dentry.
719 	 *
720 	 * For a positive lookup, we need to move both the parent and the
721 	 * dentry from the RCU domain to be properly refcounted. And the
722 	 * sequence number in the dentry validates *both* dentry counters,
723 	 * since we checked the sequence number of the parent after we got
724 	 * the child sequence number. So we know the parent must still
725 	 * be valid if the child sequence number is still valid.
726 	 */
727 	if (!dentry) {
728 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
729 			goto out;
730 		BUG_ON(nd->inode != parent->d_inode);
731 	} else {
732 		if (!lockref_get_not_dead(&dentry->d_lockref))
733 			goto out;
734 		if (read_seqcount_retry(&dentry->d_seq, seq))
735 			goto drop_dentry;
736 	}
737 
738 	/*
739 	 * Sequence counts matched. Now make sure that the root is
740 	 * still valid and get it if required.
741 	 */
742 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
743 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
744 			rcu_read_unlock();
745 			dput(dentry);
746 			return -ECHILD;
747 		}
748 	}
749 
750 	rcu_read_unlock();
751 	return 0;
752 
753 drop_dentry:
754 	rcu_read_unlock();
755 	dput(dentry);
756 	goto drop_root_mnt;
757 out2:
758 	nd->path.mnt = NULL;
759 out1:
760 	nd->path.dentry = NULL;
761 out:
762 	rcu_read_unlock();
763 drop_root_mnt:
764 	if (!(nd->flags & LOOKUP_ROOT))
765 		nd->root.mnt = NULL;
766 	return -ECHILD;
767 }
768 
unlazy_link(struct nameidata * nd,struct path * link,unsigned seq)769 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
770 {
771 	if (unlikely(!legitimize_path(nd, link, seq))) {
772 		drop_links(nd);
773 		nd->depth = 0;
774 		nd->flags &= ~LOOKUP_RCU;
775 		nd->path.mnt = NULL;
776 		nd->path.dentry = NULL;
777 		if (!(nd->flags & LOOKUP_ROOT))
778 			nd->root.mnt = NULL;
779 		rcu_read_unlock();
780 	} else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
781 		return 0;
782 	}
783 	path_put(link);
784 	return -ECHILD;
785 }
786 
d_revalidate(struct dentry * dentry,unsigned int flags)787 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
788 {
789 	return dentry->d_op->d_revalidate(dentry, flags);
790 }
791 
792 /**
793  * complete_walk - successful completion of path walk
794  * @nd:  pointer nameidata
795  *
796  * If we had been in RCU mode, drop out of it and legitimize nd->path.
797  * Revalidate the final result, unless we'd already done that during
798  * the path walk or the filesystem doesn't ask for it.  Return 0 on
799  * success, -error on failure.  In case of failure caller does not
800  * need to drop nd->path.
801  */
complete_walk(struct nameidata * nd)802 static int complete_walk(struct nameidata *nd)
803 {
804 	struct dentry *dentry = nd->path.dentry;
805 	int status;
806 
807 	if (nd->flags & LOOKUP_RCU) {
808 		if (!(nd->flags & LOOKUP_ROOT))
809 			nd->root.mnt = NULL;
810 		if (unlikely(unlazy_walk(nd, NULL, 0)))
811 			return -ECHILD;
812 	}
813 
814 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
815 		return 0;
816 
817 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
818 		return 0;
819 
820 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
821 	if (status > 0)
822 		return 0;
823 
824 	if (!status)
825 		status = -ESTALE;
826 
827 	return status;
828 }
829 
set_root(struct nameidata * nd)830 static void set_root(struct nameidata *nd)
831 {
832 	struct fs_struct *fs = current->fs;
833 
834 	if (nd->flags & LOOKUP_RCU) {
835 		unsigned seq;
836 
837 		do {
838 			seq = read_seqcount_begin(&fs->seq);
839 			nd->root = fs->root;
840 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
841 		} while (read_seqcount_retry(&fs->seq, seq));
842 	} else {
843 		get_fs_root(fs, &nd->root);
844 	}
845 }
846 
path_put_conditional(struct path * path,struct nameidata * nd)847 static void path_put_conditional(struct path *path, struct nameidata *nd)
848 {
849 	dput(path->dentry);
850 	if (path->mnt != nd->path.mnt)
851 		mntput(path->mnt);
852 }
853 
path_to_nameidata(const struct path * path,struct nameidata * nd)854 static inline void path_to_nameidata(const struct path *path,
855 					struct nameidata *nd)
856 {
857 	if (!(nd->flags & LOOKUP_RCU)) {
858 		dput(nd->path.dentry);
859 		if (nd->path.mnt != path->mnt)
860 			mntput(nd->path.mnt);
861 	}
862 	nd->path.mnt = path->mnt;
863 	nd->path.dentry = path->dentry;
864 }
865 
nd_jump_root(struct nameidata * nd)866 static int nd_jump_root(struct nameidata *nd)
867 {
868 	if (nd->flags & LOOKUP_RCU) {
869 		struct dentry *d;
870 		nd->path = nd->root;
871 		d = nd->path.dentry;
872 		nd->inode = d->d_inode;
873 		nd->seq = nd->root_seq;
874 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
875 			return -ECHILD;
876 	} else {
877 		path_put(&nd->path);
878 		nd->path = nd->root;
879 		path_get(&nd->path);
880 		nd->inode = nd->path.dentry->d_inode;
881 	}
882 	nd->flags |= LOOKUP_JUMPED;
883 	return 0;
884 }
885 
886 /*
887  * Helper to directly jump to a known parsed path from ->get_link,
888  * caller must have taken a reference to path beforehand.
889  */
nd_jump_link(struct path * path)890 void nd_jump_link(struct path *path)
891 {
892 	struct nameidata *nd = current->nameidata;
893 	path_put(&nd->path);
894 
895 	nd->path = *path;
896 	nd->inode = nd->path.dentry->d_inode;
897 	nd->flags |= LOOKUP_JUMPED;
898 }
899 
put_link(struct nameidata * nd)900 static inline void put_link(struct nameidata *nd)
901 {
902 	struct saved *last = nd->stack + --nd->depth;
903 	do_delayed_call(&last->done);
904 	if (!(nd->flags & LOOKUP_RCU))
905 		path_put(&last->link);
906 }
907 
908 int sysctl_protected_symlinks __read_mostly = 0;
909 int sysctl_protected_hardlinks __read_mostly = 0;
910 
911 /**
912  * may_follow_link - Check symlink following for unsafe situations
913  * @nd: nameidata pathwalk data
914  *
915  * In the case of the sysctl_protected_symlinks sysctl being enabled,
916  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
917  * in a sticky world-writable directory. This is to protect privileged
918  * processes from failing races against path names that may change out
919  * from under them by way of other users creating malicious symlinks.
920  * It will permit symlinks to be followed only when outside a sticky
921  * world-writable directory, or when the uid of the symlink and follower
922  * match, or when the directory owner matches the symlink's owner.
923  *
924  * Returns 0 if following the symlink is allowed, -ve on error.
925  */
may_follow_link(struct nameidata * nd)926 static inline int may_follow_link(struct nameidata *nd)
927 {
928 	const struct inode *inode;
929 	const struct inode *parent;
930 	kuid_t puid;
931 
932 	if (!sysctl_protected_symlinks)
933 		return 0;
934 
935 	/* Allowed if owner and follower match. */
936 	inode = nd->link_inode;
937 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
938 		return 0;
939 
940 	/* Allowed if parent directory not sticky and world-writable. */
941 	parent = nd->inode;
942 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
943 		return 0;
944 
945 	/* Allowed if parent directory and link owner match. */
946 	puid = parent->i_uid;
947 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
948 		return 0;
949 
950 	if (nd->flags & LOOKUP_RCU)
951 		return -ECHILD;
952 
953 	audit_log_link_denied("follow_link", &nd->stack[0].link);
954 	return -EACCES;
955 }
956 
957 /**
958  * safe_hardlink_source - Check for safe hardlink conditions
959  * @inode: the source inode to hardlink from
960  *
961  * Return false if at least one of the following conditions:
962  *    - inode is not a regular file
963  *    - inode is setuid
964  *    - inode is setgid and group-exec
965  *    - access failure for read and write
966  *
967  * Otherwise returns true.
968  */
safe_hardlink_source(struct inode * inode)969 static bool safe_hardlink_source(struct inode *inode)
970 {
971 	umode_t mode = inode->i_mode;
972 
973 	/* Special files should not get pinned to the filesystem. */
974 	if (!S_ISREG(mode))
975 		return false;
976 
977 	/* Setuid files should not get pinned to the filesystem. */
978 	if (mode & S_ISUID)
979 		return false;
980 
981 	/* Executable setgid files should not get pinned to the filesystem. */
982 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
983 		return false;
984 
985 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
986 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
987 		return false;
988 
989 	return true;
990 }
991 
992 /**
993  * may_linkat - Check permissions for creating a hardlink
994  * @link: the source to hardlink from
995  *
996  * Block hardlink when all of:
997  *  - sysctl_protected_hardlinks enabled
998  *  - fsuid does not match inode
999  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1000  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1001  *
1002  * Returns 0 if successful, -ve on error.
1003  */
may_linkat(struct path * link)1004 static int may_linkat(struct path *link)
1005 {
1006 	struct inode *inode;
1007 
1008 	if (!sysctl_protected_hardlinks)
1009 		return 0;
1010 
1011 	inode = link->dentry->d_inode;
1012 
1013 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1014 	 * otherwise, it must be a safe source.
1015 	 */
1016 	if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1017 		return 0;
1018 
1019 	audit_log_link_denied("linkat", link);
1020 	return -EPERM;
1021 }
1022 
1023 static __always_inline
get_link(struct nameidata * nd)1024 const char *get_link(struct nameidata *nd)
1025 {
1026 	struct saved *last = nd->stack + nd->depth - 1;
1027 	struct dentry *dentry = last->link.dentry;
1028 	struct inode *inode = nd->link_inode;
1029 	int error;
1030 	const char *res;
1031 
1032 	if (!(nd->flags & LOOKUP_RCU)) {
1033 		touch_atime(&last->link);
1034 		cond_resched();
1035 	} else if (atime_needs_update_rcu(&last->link, inode)) {
1036 		if (unlikely(unlazy_walk(nd, NULL, 0)))
1037 			return ERR_PTR(-ECHILD);
1038 		touch_atime(&last->link);
1039 	}
1040 
1041 	error = security_inode_follow_link(dentry, inode,
1042 					   nd->flags & LOOKUP_RCU);
1043 	if (unlikely(error))
1044 		return ERR_PTR(error);
1045 
1046 	nd->last_type = LAST_BIND;
1047 	res = inode->i_link;
1048 	if (!res) {
1049 		const char * (*get)(struct dentry *, struct inode *,
1050 				struct delayed_call *);
1051 		get = inode->i_op->get_link;
1052 		if (nd->flags & LOOKUP_RCU) {
1053 			res = get(NULL, inode, &last->done);
1054 			if (res == ERR_PTR(-ECHILD)) {
1055 				if (unlikely(unlazy_walk(nd, NULL, 0)))
1056 					return ERR_PTR(-ECHILD);
1057 				res = get(dentry, inode, &last->done);
1058 			}
1059 		} else {
1060 			res = get(dentry, inode, &last->done);
1061 		}
1062 		if (IS_ERR_OR_NULL(res))
1063 			return res;
1064 	}
1065 	if (*res == '/') {
1066 		if (!nd->root.mnt)
1067 			set_root(nd);
1068 		if (unlikely(nd_jump_root(nd)))
1069 			return ERR_PTR(-ECHILD);
1070 		while (unlikely(*++res == '/'))
1071 			;
1072 	}
1073 	if (!*res)
1074 		res = NULL;
1075 	return res;
1076 }
1077 
1078 /*
1079  * follow_up - Find the mountpoint of path's vfsmount
1080  *
1081  * Given a path, find the mountpoint of its source file system.
1082  * Replace @path with the path of the mountpoint in the parent mount.
1083  * Up is towards /.
1084  *
1085  * Return 1 if we went up a level and 0 if we were already at the
1086  * root.
1087  */
follow_up(struct path * path)1088 int follow_up(struct path *path)
1089 {
1090 	struct mount *mnt = real_mount(path->mnt);
1091 	struct mount *parent;
1092 	struct dentry *mountpoint;
1093 
1094 	read_seqlock_excl(&mount_lock);
1095 	parent = mnt->mnt_parent;
1096 	if (parent == mnt) {
1097 		read_sequnlock_excl(&mount_lock);
1098 		return 0;
1099 	}
1100 	mntget(&parent->mnt);
1101 	mountpoint = dget(mnt->mnt_mountpoint);
1102 	read_sequnlock_excl(&mount_lock);
1103 	dput(path->dentry);
1104 	path->dentry = mountpoint;
1105 	mntput(path->mnt);
1106 	path->mnt = &parent->mnt;
1107 	return 1;
1108 }
1109 EXPORT_SYMBOL(follow_up);
1110 
1111 /*
1112  * Perform an automount
1113  * - return -EISDIR to tell follow_managed() to stop and return the path we
1114  *   were called with.
1115  */
follow_automount(struct path * path,struct nameidata * nd,bool * need_mntput)1116 static int follow_automount(struct path *path, struct nameidata *nd,
1117 			    bool *need_mntput)
1118 {
1119 	struct vfsmount *mnt;
1120 	int err;
1121 
1122 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1123 		return -EREMOTE;
1124 
1125 	/* We don't want to mount if someone's just doing a stat -
1126 	 * unless they're stat'ing a directory and appended a '/' to
1127 	 * the name.
1128 	 *
1129 	 * We do, however, want to mount if someone wants to open or
1130 	 * create a file of any type under the mountpoint, wants to
1131 	 * traverse through the mountpoint or wants to open the
1132 	 * mounted directory.  Also, autofs may mark negative dentries
1133 	 * as being automount points.  These will need the attentions
1134 	 * of the daemon to instantiate them before they can be used.
1135 	 */
1136 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1137 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1138 	    path->dentry->d_inode)
1139 		return -EISDIR;
1140 
1141 	nd->total_link_count++;
1142 	if (nd->total_link_count >= 40)
1143 		return -ELOOP;
1144 
1145 	mnt = path->dentry->d_op->d_automount(path);
1146 	if (IS_ERR(mnt)) {
1147 		/*
1148 		 * The filesystem is allowed to return -EISDIR here to indicate
1149 		 * it doesn't want to automount.  For instance, autofs would do
1150 		 * this so that its userspace daemon can mount on this dentry.
1151 		 *
1152 		 * However, we can only permit this if it's a terminal point in
1153 		 * the path being looked up; if it wasn't then the remainder of
1154 		 * the path is inaccessible and we should say so.
1155 		 */
1156 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1157 			return -EREMOTE;
1158 		return PTR_ERR(mnt);
1159 	}
1160 
1161 	if (!mnt) /* mount collision */
1162 		return 0;
1163 
1164 	if (!*need_mntput) {
1165 		/* lock_mount() may release path->mnt on error */
1166 		mntget(path->mnt);
1167 		*need_mntput = true;
1168 	}
1169 	err = finish_automount(mnt, path);
1170 
1171 	switch (err) {
1172 	case -EBUSY:
1173 		/* Someone else made a mount here whilst we were busy */
1174 		return 0;
1175 	case 0:
1176 		path_put(path);
1177 		path->mnt = mnt;
1178 		path->dentry = dget(mnt->mnt_root);
1179 		return 0;
1180 	default:
1181 		return err;
1182 	}
1183 
1184 }
1185 
1186 /*
1187  * Handle a dentry that is managed in some way.
1188  * - Flagged for transit management (autofs)
1189  * - Flagged as mountpoint
1190  * - Flagged as automount point
1191  *
1192  * This may only be called in refwalk mode.
1193  *
1194  * Serialization is taken care of in namespace.c
1195  */
follow_managed(struct path * path,struct nameidata * nd)1196 static int follow_managed(struct path *path, struct nameidata *nd)
1197 {
1198 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1199 	unsigned managed;
1200 	bool need_mntput = false;
1201 	int ret = 0;
1202 
1203 	/* Given that we're not holding a lock here, we retain the value in a
1204 	 * local variable for each dentry as we look at it so that we don't see
1205 	 * the components of that value change under us */
1206 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1207 	       managed &= DCACHE_MANAGED_DENTRY,
1208 	       unlikely(managed != 0)) {
1209 		/* Allow the filesystem to manage the transit without i_mutex
1210 		 * being held. */
1211 		if (managed & DCACHE_MANAGE_TRANSIT) {
1212 			BUG_ON(!path->dentry->d_op);
1213 			BUG_ON(!path->dentry->d_op->d_manage);
1214 			ret = path->dentry->d_op->d_manage(path->dentry, false);
1215 			if (ret < 0)
1216 				break;
1217 		}
1218 
1219 		/* Transit to a mounted filesystem. */
1220 		if (managed & DCACHE_MOUNTED) {
1221 			struct vfsmount *mounted = lookup_mnt(path);
1222 			if (mounted) {
1223 				dput(path->dentry);
1224 				if (need_mntput)
1225 					mntput(path->mnt);
1226 				path->mnt = mounted;
1227 				path->dentry = dget(mounted->mnt_root);
1228 				need_mntput = true;
1229 				continue;
1230 			}
1231 
1232 			/* Something is mounted on this dentry in another
1233 			 * namespace and/or whatever was mounted there in this
1234 			 * namespace got unmounted before lookup_mnt() could
1235 			 * get it */
1236 		}
1237 
1238 		/* Handle an automount point */
1239 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1240 			ret = follow_automount(path, nd, &need_mntput);
1241 			if (ret < 0)
1242 				break;
1243 			continue;
1244 		}
1245 
1246 		/* We didn't change the current path point */
1247 		break;
1248 	}
1249 
1250 	if (need_mntput && path->mnt == mnt)
1251 		mntput(path->mnt);
1252 	if (ret == -EISDIR || !ret)
1253 		ret = 1;
1254 	if (need_mntput)
1255 		nd->flags |= LOOKUP_JUMPED;
1256 	if (unlikely(ret < 0))
1257 		path_put_conditional(path, nd);
1258 	return ret;
1259 }
1260 
follow_down_one(struct path * path)1261 int follow_down_one(struct path *path)
1262 {
1263 	struct vfsmount *mounted;
1264 
1265 	mounted = lookup_mnt(path);
1266 	if (mounted) {
1267 		dput(path->dentry);
1268 		mntput(path->mnt);
1269 		path->mnt = mounted;
1270 		path->dentry = dget(mounted->mnt_root);
1271 		return 1;
1272 	}
1273 	return 0;
1274 }
1275 EXPORT_SYMBOL(follow_down_one);
1276 
managed_dentry_rcu(struct dentry * dentry)1277 static inline int managed_dentry_rcu(struct dentry *dentry)
1278 {
1279 	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1280 		dentry->d_op->d_manage(dentry, true) : 0;
1281 }
1282 
1283 /*
1284  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1285  * we meet a managed dentry that would need blocking.
1286  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1287 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1288 			       struct inode **inode, unsigned *seqp)
1289 {
1290 	for (;;) {
1291 		struct mount *mounted;
1292 		/*
1293 		 * Don't forget we might have a non-mountpoint managed dentry
1294 		 * that wants to block transit.
1295 		 */
1296 		switch (managed_dentry_rcu(path->dentry)) {
1297 		case -ECHILD:
1298 		default:
1299 			return false;
1300 		case -EISDIR:
1301 			return true;
1302 		case 0:
1303 			break;
1304 		}
1305 
1306 		if (!d_mountpoint(path->dentry))
1307 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1308 
1309 		mounted = __lookup_mnt(path->mnt, path->dentry);
1310 		if (!mounted)
1311 			break;
1312 		path->mnt = &mounted->mnt;
1313 		path->dentry = mounted->mnt.mnt_root;
1314 		nd->flags |= LOOKUP_JUMPED;
1315 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1316 		/*
1317 		 * Update the inode too. We don't need to re-check the
1318 		 * dentry sequence number here after this d_inode read,
1319 		 * because a mount-point is always pinned.
1320 		 */
1321 		*inode = path->dentry->d_inode;
1322 	}
1323 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1324 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1325 }
1326 
follow_dotdot_rcu(struct nameidata * nd)1327 static int follow_dotdot_rcu(struct nameidata *nd)
1328 {
1329 	struct inode *inode = nd->inode;
1330 
1331 	while (1) {
1332 		if (path_equal(&nd->path, &nd->root))
1333 			break;
1334 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1335 			struct dentry *old = nd->path.dentry;
1336 			struct dentry *parent = old->d_parent;
1337 			unsigned seq;
1338 
1339 			inode = parent->d_inode;
1340 			seq = read_seqcount_begin(&parent->d_seq);
1341 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1342 				return -ECHILD;
1343 			nd->path.dentry = parent;
1344 			nd->seq = seq;
1345 			if (unlikely(!path_connected(&nd->path)))
1346 				return -ENOENT;
1347 			break;
1348 		} else {
1349 			struct mount *mnt = real_mount(nd->path.mnt);
1350 			struct mount *mparent = mnt->mnt_parent;
1351 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1352 			struct inode *inode2 = mountpoint->d_inode;
1353 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1354 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1355 				return -ECHILD;
1356 			if (&mparent->mnt == nd->path.mnt)
1357 				break;
1358 			/* we know that mountpoint was pinned */
1359 			nd->path.dentry = mountpoint;
1360 			nd->path.mnt = &mparent->mnt;
1361 			inode = inode2;
1362 			nd->seq = seq;
1363 		}
1364 	}
1365 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1366 		struct mount *mounted;
1367 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1368 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1369 			return -ECHILD;
1370 		if (!mounted)
1371 			break;
1372 		nd->path.mnt = &mounted->mnt;
1373 		nd->path.dentry = mounted->mnt.mnt_root;
1374 		inode = nd->path.dentry->d_inode;
1375 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1376 	}
1377 	nd->inode = inode;
1378 	return 0;
1379 }
1380 
1381 /*
1382  * Follow down to the covering mount currently visible to userspace.  At each
1383  * point, the filesystem owning that dentry may be queried as to whether the
1384  * caller is permitted to proceed or not.
1385  */
follow_down(struct path * path)1386 int follow_down(struct path *path)
1387 {
1388 	unsigned managed;
1389 	int ret;
1390 
1391 	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1392 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1393 		/* Allow the filesystem to manage the transit without i_mutex
1394 		 * being held.
1395 		 *
1396 		 * We indicate to the filesystem if someone is trying to mount
1397 		 * something here.  This gives autofs the chance to deny anyone
1398 		 * other than its daemon the right to mount on its
1399 		 * superstructure.
1400 		 *
1401 		 * The filesystem may sleep at this point.
1402 		 */
1403 		if (managed & DCACHE_MANAGE_TRANSIT) {
1404 			BUG_ON(!path->dentry->d_op);
1405 			BUG_ON(!path->dentry->d_op->d_manage);
1406 			ret = path->dentry->d_op->d_manage(
1407 				path->dentry, false);
1408 			if (ret < 0)
1409 				return ret == -EISDIR ? 0 : ret;
1410 		}
1411 
1412 		/* Transit to a mounted filesystem. */
1413 		if (managed & DCACHE_MOUNTED) {
1414 			struct vfsmount *mounted = lookup_mnt(path);
1415 			if (!mounted)
1416 				break;
1417 			dput(path->dentry);
1418 			mntput(path->mnt);
1419 			path->mnt = mounted;
1420 			path->dentry = dget(mounted->mnt_root);
1421 			continue;
1422 		}
1423 
1424 		/* Don't handle automount points here */
1425 		break;
1426 	}
1427 	return 0;
1428 }
1429 EXPORT_SYMBOL(follow_down);
1430 
1431 /*
1432  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1433  */
follow_mount(struct path * path)1434 static void follow_mount(struct path *path)
1435 {
1436 	while (d_mountpoint(path->dentry)) {
1437 		struct vfsmount *mounted = lookup_mnt(path);
1438 		if (!mounted)
1439 			break;
1440 		dput(path->dentry);
1441 		mntput(path->mnt);
1442 		path->mnt = mounted;
1443 		path->dentry = dget(mounted->mnt_root);
1444 	}
1445 }
1446 
path_parent_directory(struct path * path)1447 static int path_parent_directory(struct path *path)
1448 {
1449 	struct dentry *old = path->dentry;
1450 	/* rare case of legitimate dget_parent()... */
1451 	path->dentry = dget_parent(path->dentry);
1452 	dput(old);
1453 	if (unlikely(!path_connected(path)))
1454 		return -ENOENT;
1455 	return 0;
1456 }
1457 
follow_dotdot(struct nameidata * nd)1458 static int follow_dotdot(struct nameidata *nd)
1459 {
1460 	while(1) {
1461 		if (nd->path.dentry == nd->root.dentry &&
1462 		    nd->path.mnt == nd->root.mnt) {
1463 			break;
1464 		}
1465 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1466 			int ret = path_parent_directory(&nd->path);
1467 			if (ret)
1468 				return ret;
1469 			break;
1470 		}
1471 		if (!follow_up(&nd->path))
1472 			break;
1473 	}
1474 	follow_mount(&nd->path);
1475 	nd->inode = nd->path.dentry->d_inode;
1476 	return 0;
1477 }
1478 
1479 /*
1480  * This looks up the name in dcache and possibly revalidates the found dentry.
1481  * NULL is returned if the dentry does not exist in the cache.
1482  */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1483 static struct dentry *lookup_dcache(const struct qstr *name,
1484 				    struct dentry *dir,
1485 				    unsigned int flags)
1486 {
1487 	struct dentry *dentry;
1488 	int error;
1489 
1490 	dentry = d_lookup(dir, name);
1491 	if (dentry) {
1492 		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1493 			error = d_revalidate(dentry, flags);
1494 			if (unlikely(error <= 0)) {
1495 				if (!error)
1496 					d_invalidate(dentry);
1497 				dput(dentry);
1498 				return ERR_PTR(error);
1499 			}
1500 		}
1501 	}
1502 	return dentry;
1503 }
1504 
1505 /*
1506  * Call i_op->lookup on the dentry.  The dentry must be negative and
1507  * unhashed.
1508  *
1509  * dir->d_inode->i_mutex must be held
1510  */
lookup_real(struct inode * dir,struct dentry * dentry,unsigned int flags)1511 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1512 				  unsigned int flags)
1513 {
1514 	struct dentry *old;
1515 
1516 	/* Don't create child dentry for a dead directory. */
1517 	if (unlikely(IS_DEADDIR(dir))) {
1518 		dput(dentry);
1519 		return ERR_PTR(-ENOENT);
1520 	}
1521 
1522 	old = dir->i_op->lookup(dir, dentry, flags);
1523 	if (unlikely(old)) {
1524 		dput(dentry);
1525 		dentry = old;
1526 	}
1527 	return dentry;
1528 }
1529 
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1530 static struct dentry *__lookup_hash(const struct qstr *name,
1531 		struct dentry *base, unsigned int flags)
1532 {
1533 	struct dentry *dentry = lookup_dcache(name, base, flags);
1534 
1535 	if (dentry)
1536 		return dentry;
1537 
1538 	dentry = d_alloc(base, name);
1539 	if (unlikely(!dentry))
1540 		return ERR_PTR(-ENOMEM);
1541 
1542 	return lookup_real(base->d_inode, dentry, flags);
1543 }
1544 
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1545 static int lookup_fast(struct nameidata *nd,
1546 		       struct path *path, struct inode **inode,
1547 		       unsigned *seqp)
1548 {
1549 	struct vfsmount *mnt = nd->path.mnt;
1550 	struct dentry *dentry, *parent = nd->path.dentry;
1551 	int status = 1;
1552 	int err;
1553 
1554 	/*
1555 	 * Rename seqlock is not required here because in the off chance
1556 	 * of a false negative due to a concurrent rename, the caller is
1557 	 * going to fall back to non-racy lookup.
1558 	 */
1559 	if (nd->flags & LOOKUP_RCU) {
1560 		unsigned seq;
1561 		bool negative;
1562 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1563 		if (unlikely(!dentry)) {
1564 			if (unlazy_walk(nd, NULL, 0))
1565 				return -ECHILD;
1566 			return 0;
1567 		}
1568 
1569 		/*
1570 		 * This sequence count validates that the inode matches
1571 		 * the dentry name information from lookup.
1572 		 */
1573 		*inode = d_backing_inode(dentry);
1574 		negative = d_is_negative(dentry);
1575 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1576 			return -ECHILD;
1577 
1578 		/*
1579 		 * This sequence count validates that the parent had no
1580 		 * changes while we did the lookup of the dentry above.
1581 		 *
1582 		 * The memory barrier in read_seqcount_begin of child is
1583 		 *  enough, we can use __read_seqcount_retry here.
1584 		 */
1585 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1586 			return -ECHILD;
1587 
1588 		*seqp = seq;
1589 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1590 			status = d_revalidate(dentry, nd->flags);
1591 		if (unlikely(status <= 0)) {
1592 			if (unlazy_walk(nd, dentry, seq))
1593 				return -ECHILD;
1594 			if (status == -ECHILD)
1595 				status = d_revalidate(dentry, nd->flags);
1596 		} else {
1597 			/*
1598 			 * Note: do negative dentry check after revalidation in
1599 			 * case that drops it.
1600 			 */
1601 			if (unlikely(negative))
1602 				return -ENOENT;
1603 			path->mnt = mnt;
1604 			path->dentry = dentry;
1605 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1606 				return 1;
1607 			if (unlazy_walk(nd, dentry, seq))
1608 				return -ECHILD;
1609 		}
1610 	} else {
1611 		dentry = __d_lookup(parent, &nd->last);
1612 		if (unlikely(!dentry))
1613 			return 0;
1614 		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1615 			status = d_revalidate(dentry, nd->flags);
1616 	}
1617 	if (unlikely(status <= 0)) {
1618 		if (!status)
1619 			d_invalidate(dentry);
1620 		dput(dentry);
1621 		return status;
1622 	}
1623 	if (unlikely(d_is_negative(dentry))) {
1624 		dput(dentry);
1625 		return -ENOENT;
1626 	}
1627 
1628 	path->mnt = mnt;
1629 	path->dentry = dentry;
1630 	err = follow_managed(path, nd);
1631 	if (likely(err > 0))
1632 		*inode = d_backing_inode(path->dentry);
1633 	return err;
1634 }
1635 
1636 /* Fast lookup failed, do it the slow way */
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1637 static struct dentry *lookup_slow(const struct qstr *name,
1638 				  struct dentry *dir,
1639 				  unsigned int flags)
1640 {
1641 	struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1642 	struct inode *inode = dir->d_inode;
1643 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1644 
1645 	inode_lock_shared(inode);
1646 	/* Don't go there if it's already dead */
1647 	if (unlikely(IS_DEADDIR(inode)))
1648 		goto out;
1649 again:
1650 	dentry = d_alloc_parallel(dir, name, &wq);
1651 	if (IS_ERR(dentry))
1652 		goto out;
1653 	if (unlikely(!d_in_lookup(dentry))) {
1654 		if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1655 		    !(flags & LOOKUP_NO_REVAL)) {
1656 			int error = d_revalidate(dentry, flags);
1657 			if (unlikely(error <= 0)) {
1658 				if (!error) {
1659 					d_invalidate(dentry);
1660 					dput(dentry);
1661 					goto again;
1662 				}
1663 				dput(dentry);
1664 				dentry = ERR_PTR(error);
1665 			}
1666 		}
1667 	} else {
1668 		old = inode->i_op->lookup(inode, dentry, flags);
1669 		d_lookup_done(dentry);
1670 		if (unlikely(old)) {
1671 			dput(dentry);
1672 			dentry = old;
1673 		}
1674 	}
1675 out:
1676 	inode_unlock_shared(inode);
1677 	return dentry;
1678 }
1679 
may_lookup(struct nameidata * nd)1680 static inline int may_lookup(struct nameidata *nd)
1681 {
1682 	if (nd->flags & LOOKUP_RCU) {
1683 		int err = inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1684 		if (err != -ECHILD)
1685 			return err;
1686 		if (unlazy_walk(nd, NULL, 0))
1687 			return -ECHILD;
1688 	}
1689 	return inode_permission2(nd->path.mnt, nd->inode, MAY_EXEC);
1690 }
1691 
handle_dots(struct nameidata * nd,int type)1692 static inline int handle_dots(struct nameidata *nd, int type)
1693 {
1694 	if (type == LAST_DOTDOT) {
1695 		if (!nd->root.mnt)
1696 			set_root(nd);
1697 		if (nd->flags & LOOKUP_RCU) {
1698 			return follow_dotdot_rcu(nd);
1699 		} else
1700 			return follow_dotdot(nd);
1701 	}
1702 	return 0;
1703 }
1704 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq)1705 static int pick_link(struct nameidata *nd, struct path *link,
1706 		     struct inode *inode, unsigned seq)
1707 {
1708 	int error;
1709 	struct saved *last;
1710 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1711 		path_to_nameidata(link, nd);
1712 		return -ELOOP;
1713 	}
1714 	if (!(nd->flags & LOOKUP_RCU)) {
1715 		if (link->mnt == nd->path.mnt)
1716 			mntget(link->mnt);
1717 	}
1718 	error = nd_alloc_stack(nd);
1719 	if (unlikely(error)) {
1720 		if (error == -ECHILD) {
1721 			if (unlikely(unlazy_link(nd, link, seq)))
1722 				return -ECHILD;
1723 			error = nd_alloc_stack(nd);
1724 		}
1725 		if (error) {
1726 			path_put(link);
1727 			return error;
1728 		}
1729 	}
1730 
1731 	last = nd->stack + nd->depth++;
1732 	last->link = *link;
1733 	clear_delayed_call(&last->done);
1734 	nd->link_inode = inode;
1735 	last->seq = seq;
1736 	return 1;
1737 }
1738 
1739 /*
1740  * Do we need to follow links? We _really_ want to be able
1741  * to do this check without having to look at inode->i_op,
1742  * so we keep a cache of "no, this doesn't need follow_link"
1743  * for the common case.
1744  */
should_follow_link(struct nameidata * nd,struct path * link,int follow,struct inode * inode,unsigned seq)1745 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1746 				     int follow,
1747 				     struct inode *inode, unsigned seq)
1748 {
1749 	if (likely(!d_is_symlink(link->dentry)))
1750 		return 0;
1751 	if (!follow)
1752 		return 0;
1753 	/* make sure that d_is_symlink above matches inode */
1754 	if (nd->flags & LOOKUP_RCU) {
1755 		if (read_seqcount_retry(&link->dentry->d_seq, seq))
1756 			return -ECHILD;
1757 	}
1758 	return pick_link(nd, link, inode, seq);
1759 }
1760 
1761 enum {WALK_GET = 1, WALK_PUT = 2};
1762 
walk_component(struct nameidata * nd,int flags)1763 static int walk_component(struct nameidata *nd, int flags)
1764 {
1765 	struct path path;
1766 	struct inode *inode;
1767 	unsigned seq;
1768 	int err;
1769 	/*
1770 	 * "." and ".." are special - ".." especially so because it has
1771 	 * to be able to know about the current root directory and
1772 	 * parent relationships.
1773 	 */
1774 	if (unlikely(nd->last_type != LAST_NORM)) {
1775 		err = handle_dots(nd, nd->last_type);
1776 		if (flags & WALK_PUT)
1777 			put_link(nd);
1778 		return err;
1779 	}
1780 	err = lookup_fast(nd, &path, &inode, &seq);
1781 	if (unlikely(err <= 0)) {
1782 		if (err < 0)
1783 			return err;
1784 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1785 					  nd->flags);
1786 		if (IS_ERR(path.dentry))
1787 			return PTR_ERR(path.dentry);
1788 
1789 		path.mnt = nd->path.mnt;
1790 		err = follow_managed(&path, nd);
1791 		if (unlikely(err < 0))
1792 			return err;
1793 
1794 		if (unlikely(d_is_negative(path.dentry))) {
1795 			path_to_nameidata(&path, nd);
1796 			return -ENOENT;
1797 		}
1798 
1799 		seq = 0;	/* we are already out of RCU mode */
1800 		inode = d_backing_inode(path.dentry);
1801 	}
1802 
1803 	if (flags & WALK_PUT)
1804 		put_link(nd);
1805 	err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1806 	if (unlikely(err))
1807 		return err;
1808 	path_to_nameidata(&path, nd);
1809 	nd->inode = inode;
1810 	nd->seq = seq;
1811 	return 0;
1812 }
1813 
1814 /*
1815  * We can do the critical dentry name comparison and hashing
1816  * operations one word at a time, but we are limited to:
1817  *
1818  * - Architectures with fast unaligned word accesses. We could
1819  *   do a "get_unaligned()" if this helps and is sufficiently
1820  *   fast.
1821  *
1822  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1823  *   do not trap on the (extremely unlikely) case of a page
1824  *   crossing operation.
1825  *
1826  * - Furthermore, we need an efficient 64-bit compile for the
1827  *   64-bit case in order to generate the "number of bytes in
1828  *   the final mask". Again, that could be replaced with a
1829  *   efficient population count instruction or similar.
1830  */
1831 #ifdef CONFIG_DCACHE_WORD_ACCESS
1832 
1833 #include <asm/word-at-a-time.h>
1834 
1835 #ifdef HASH_MIX
1836 
1837 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1838 
1839 #elif defined(CONFIG_64BIT)
1840 /*
1841  * Register pressure in the mixing function is an issue, particularly
1842  * on 32-bit x86, but almost any function requires one state value and
1843  * one temporary.  Instead, use a function designed for two state values
1844  * and no temporaries.
1845  *
1846  * This function cannot create a collision in only two iterations, so
1847  * we have two iterations to achieve avalanche.  In those two iterations,
1848  * we have six layers of mixing, which is enough to spread one bit's
1849  * influence out to 2^6 = 64 state bits.
1850  *
1851  * Rotate constants are scored by considering either 64 one-bit input
1852  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1853  * probability of that delta causing a change to each of the 128 output
1854  * bits, using a sample of random initial states.
1855  *
1856  * The Shannon entropy of the computed probabilities is then summed
1857  * to produce a score.  Ideally, any input change has a 50% chance of
1858  * toggling any given output bit.
1859  *
1860  * Mixing scores (in bits) for (12,45):
1861  * Input delta: 1-bit      2-bit
1862  * 1 round:     713.3    42542.6
1863  * 2 rounds:   2753.7   140389.8
1864  * 3 rounds:   5954.1   233458.2
1865  * 4 rounds:   7862.6   256672.2
1866  * Perfect:    8192     258048
1867  *            (64*128) (64*63/2 * 128)
1868  */
1869 #define HASH_MIX(x, y, a)	\
1870 	(	x ^= (a),	\
1871 	y ^= x,	x = rol64(x,12),\
1872 	x += y,	y = rol64(y,45),\
1873 	y *= 9			)
1874 
1875 /*
1876  * Fold two longs into one 32-bit hash value.  This must be fast, but
1877  * latency isn't quite as critical, as there is a fair bit of additional
1878  * work done before the hash value is used.
1879  */
fold_hash(unsigned long x,unsigned long y)1880 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1881 {
1882 	y ^= x * GOLDEN_RATIO_64;
1883 	y *= GOLDEN_RATIO_64;
1884 	return y >> 32;
1885 }
1886 
1887 #else	/* 32-bit case */
1888 
1889 /*
1890  * Mixing scores (in bits) for (7,20):
1891  * Input delta: 1-bit      2-bit
1892  * 1 round:     330.3     9201.6
1893  * 2 rounds:   1246.4    25475.4
1894  * 3 rounds:   1907.1    31295.1
1895  * 4 rounds:   2042.3    31718.6
1896  * Perfect:    2048      31744
1897  *            (32*64)   (32*31/2 * 64)
1898  */
1899 #define HASH_MIX(x, y, a)	\
1900 	(	x ^= (a),	\
1901 	y ^= x,	x = rol32(x, 7),\
1902 	x += y,	y = rol32(y,20),\
1903 	y *= 9			)
1904 
fold_hash(unsigned long x,unsigned long y)1905 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1906 {
1907 	/* Use arch-optimized multiply if one exists */
1908 	return __hash_32(y ^ __hash_32(x));
1909 }
1910 
1911 #endif
1912 
1913 /*
1914  * Return the hash of a string of known length.  This is carfully
1915  * designed to match hash_name(), which is the more critical function.
1916  * In particular, we must end by hashing a final word containing 0..7
1917  * payload bytes, to match the way that hash_name() iterates until it
1918  * finds the delimiter after the name.
1919  */
full_name_hash(const void * salt,const char * name,unsigned int len)1920 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1921 {
1922 	unsigned long a, x = 0, y = (unsigned long)salt;
1923 
1924 	for (;;) {
1925 		if (!len)
1926 			goto done;
1927 		a = load_unaligned_zeropad(name);
1928 		if (len < sizeof(unsigned long))
1929 			break;
1930 		HASH_MIX(x, y, a);
1931 		name += sizeof(unsigned long);
1932 		len -= sizeof(unsigned long);
1933 	}
1934 	x ^= a & bytemask_from_count(len);
1935 done:
1936 	return fold_hash(x, y);
1937 }
1938 EXPORT_SYMBOL(full_name_hash);
1939 
1940 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)1941 u64 hashlen_string(const void *salt, const char *name)
1942 {
1943 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1944 	unsigned long adata, mask, len;
1945 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1946 
1947 	len = 0;
1948 	goto inside;
1949 
1950 	do {
1951 		HASH_MIX(x, y, a);
1952 		len += sizeof(unsigned long);
1953 inside:
1954 		a = load_unaligned_zeropad(name+len);
1955 	} while (!has_zero(a, &adata, &constants));
1956 
1957 	adata = prep_zero_mask(a, adata, &constants);
1958 	mask = create_zero_mask(adata);
1959 	x ^= a & zero_bytemask(mask);
1960 
1961 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1962 }
1963 EXPORT_SYMBOL(hashlen_string);
1964 
1965 /*
1966  * Calculate the length and hash of the path component, and
1967  * return the "hash_len" as the result.
1968  */
hash_name(const void * salt,const char * name)1969 static inline u64 hash_name(const void *salt, const char *name)
1970 {
1971 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1972 	unsigned long adata, bdata, mask, len;
1973 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1974 
1975 	len = 0;
1976 	goto inside;
1977 
1978 	do {
1979 		HASH_MIX(x, y, a);
1980 		len += sizeof(unsigned long);
1981 inside:
1982 		a = load_unaligned_zeropad(name+len);
1983 		b = a ^ REPEAT_BYTE('/');
1984 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1985 
1986 	adata = prep_zero_mask(a, adata, &constants);
1987 	bdata = prep_zero_mask(b, bdata, &constants);
1988 	mask = create_zero_mask(adata | bdata);
1989 	x ^= a & zero_bytemask(mask);
1990 
1991 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1992 }
1993 
1994 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1995 
1996 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)1997 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1998 {
1999 	unsigned long hash = init_name_hash(salt);
2000 	while (len--)
2001 		hash = partial_name_hash((unsigned char)*name++, hash);
2002 	return end_name_hash(hash);
2003 }
2004 EXPORT_SYMBOL(full_name_hash);
2005 
2006 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2007 u64 hashlen_string(const void *salt, const char *name)
2008 {
2009 	unsigned long hash = init_name_hash(salt);
2010 	unsigned long len = 0, c;
2011 
2012 	c = (unsigned char)*name;
2013 	while (c) {
2014 		len++;
2015 		hash = partial_name_hash(c, hash);
2016 		c = (unsigned char)name[len];
2017 	}
2018 	return hashlen_create(end_name_hash(hash), len);
2019 }
2020 EXPORT_SYMBOL(hashlen_string);
2021 
2022 /*
2023  * We know there's a real path component here of at least
2024  * one character.
2025  */
hash_name(const void * salt,const char * name)2026 static inline u64 hash_name(const void *salt, const char *name)
2027 {
2028 	unsigned long hash = init_name_hash(salt);
2029 	unsigned long len = 0, c;
2030 
2031 	c = (unsigned char)*name;
2032 	do {
2033 		len++;
2034 		hash = partial_name_hash(c, hash);
2035 		c = (unsigned char)name[len];
2036 	} while (c && c != '/');
2037 	return hashlen_create(end_name_hash(hash), len);
2038 }
2039 
2040 #endif
2041 
2042 /*
2043  * Name resolution.
2044  * This is the basic name resolution function, turning a pathname into
2045  * the final dentry. We expect 'base' to be positive and a directory.
2046  *
2047  * Returns 0 and nd will have valid dentry and mnt on success.
2048  * Returns error and drops reference to input namei data on failure.
2049  */
link_path_walk(const char * name,struct nameidata * nd)2050 static int link_path_walk(const char *name, struct nameidata *nd)
2051 {
2052 	int err;
2053 
2054 	while (*name=='/')
2055 		name++;
2056 	if (!*name)
2057 		return 0;
2058 
2059 	/* At this point we know we have a real path component. */
2060 	for(;;) {
2061 		u64 hash_len;
2062 		int type;
2063 
2064 		err = may_lookup(nd);
2065 		if (err)
2066 			return err;
2067 
2068 		hash_len = hash_name(nd->path.dentry, name);
2069 
2070 		type = LAST_NORM;
2071 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2072 			case 2:
2073 				if (name[1] == '.') {
2074 					type = LAST_DOTDOT;
2075 					nd->flags |= LOOKUP_JUMPED;
2076 				}
2077 				break;
2078 			case 1:
2079 				type = LAST_DOT;
2080 		}
2081 		if (likely(type == LAST_NORM)) {
2082 			struct dentry *parent = nd->path.dentry;
2083 			nd->flags &= ~LOOKUP_JUMPED;
2084 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2085 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2086 				err = parent->d_op->d_hash(parent, &this);
2087 				if (err < 0)
2088 					return err;
2089 				hash_len = this.hash_len;
2090 				name = this.name;
2091 			}
2092 		}
2093 
2094 		nd->last.hash_len = hash_len;
2095 		nd->last.name = name;
2096 		nd->last_type = type;
2097 
2098 		name += hashlen_len(hash_len);
2099 		if (!*name)
2100 			goto OK;
2101 		/*
2102 		 * If it wasn't NUL, we know it was '/'. Skip that
2103 		 * slash, and continue until no more slashes.
2104 		 */
2105 		do {
2106 			name++;
2107 		} while (unlikely(*name == '/'));
2108 		if (unlikely(!*name)) {
2109 OK:
2110 			/* pathname body, done */
2111 			if (!nd->depth)
2112 				return 0;
2113 			name = nd->stack[nd->depth - 1].name;
2114 			/* trailing symlink, done */
2115 			if (!name)
2116 				return 0;
2117 			/* last component of nested symlink */
2118 			err = walk_component(nd, WALK_GET | WALK_PUT);
2119 		} else {
2120 			err = walk_component(nd, WALK_GET);
2121 		}
2122 		if (err < 0)
2123 			return err;
2124 
2125 		if (err) {
2126 			const char *s = get_link(nd);
2127 
2128 			if (IS_ERR(s))
2129 				return PTR_ERR(s);
2130 			err = 0;
2131 			if (unlikely(!s)) {
2132 				/* jumped */
2133 				put_link(nd);
2134 			} else {
2135 				nd->stack[nd->depth - 1].name = name;
2136 				name = s;
2137 				continue;
2138 			}
2139 		}
2140 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2141 			if (nd->flags & LOOKUP_RCU) {
2142 				if (unlazy_walk(nd, NULL, 0))
2143 					return -ECHILD;
2144 			}
2145 			return -ENOTDIR;
2146 		}
2147 	}
2148 }
2149 
path_init(struct nameidata * nd,unsigned flags)2150 static const char *path_init(struct nameidata *nd, unsigned flags)
2151 {
2152 	int retval = 0;
2153 	const char *s = nd->name->name;
2154 
2155 	if (!*s)
2156 		flags &= ~LOOKUP_RCU;
2157 
2158 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2159 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2160 	nd->depth = 0;
2161 	if (flags & LOOKUP_ROOT) {
2162 		struct dentry *root = nd->root.dentry;
2163 		struct vfsmount *mnt = nd->root.mnt;
2164 		struct inode *inode = root->d_inode;
2165 		if (*s) {
2166 			if (!d_can_lookup(root))
2167 				return ERR_PTR(-ENOTDIR);
2168 			retval = inode_permission2(mnt, inode, MAY_EXEC);
2169 			if (retval)
2170 				return ERR_PTR(retval);
2171 		}
2172 		nd->path = nd->root;
2173 		nd->inode = inode;
2174 		if (flags & LOOKUP_RCU) {
2175 			rcu_read_lock();
2176 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2177 			nd->root_seq = nd->seq;
2178 			nd->m_seq = read_seqbegin(&mount_lock);
2179 		} else {
2180 			path_get(&nd->path);
2181 		}
2182 		return s;
2183 	}
2184 
2185 	nd->root.mnt = NULL;
2186 	nd->path.mnt = NULL;
2187 	nd->path.dentry = NULL;
2188 
2189 	nd->m_seq = read_seqbegin(&mount_lock);
2190 	if (*s == '/') {
2191 		if (flags & LOOKUP_RCU)
2192 			rcu_read_lock();
2193 		set_root(nd);
2194 		if (likely(!nd_jump_root(nd)))
2195 			return s;
2196 		nd->root.mnt = NULL;
2197 		rcu_read_unlock();
2198 		return ERR_PTR(-ECHILD);
2199 	} else if (nd->dfd == AT_FDCWD) {
2200 		if (flags & LOOKUP_RCU) {
2201 			struct fs_struct *fs = current->fs;
2202 			unsigned seq;
2203 
2204 			rcu_read_lock();
2205 
2206 			do {
2207 				seq = read_seqcount_begin(&fs->seq);
2208 				nd->path = fs->pwd;
2209 				nd->inode = nd->path.dentry->d_inode;
2210 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2211 			} while (read_seqcount_retry(&fs->seq, seq));
2212 		} else {
2213 			get_fs_pwd(current->fs, &nd->path);
2214 			nd->inode = nd->path.dentry->d_inode;
2215 		}
2216 		return s;
2217 	} else {
2218 		/* Caller must check execute permissions on the starting path component */
2219 		struct fd f = fdget_raw(nd->dfd);
2220 		struct dentry *dentry;
2221 
2222 		if (!f.file)
2223 			return ERR_PTR(-EBADF);
2224 
2225 		dentry = f.file->f_path.dentry;
2226 
2227 		if (*s) {
2228 			if (!d_can_lookup(dentry)) {
2229 				fdput(f);
2230 				return ERR_PTR(-ENOTDIR);
2231 			}
2232 		}
2233 
2234 		nd->path = f.file->f_path;
2235 		if (flags & LOOKUP_RCU) {
2236 			rcu_read_lock();
2237 			nd->inode = nd->path.dentry->d_inode;
2238 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2239 		} else {
2240 			path_get(&nd->path);
2241 			nd->inode = nd->path.dentry->d_inode;
2242 		}
2243 		fdput(f);
2244 		return s;
2245 	}
2246 }
2247 
trailing_symlink(struct nameidata * nd)2248 static const char *trailing_symlink(struct nameidata *nd)
2249 {
2250 	const char *s;
2251 	int error = may_follow_link(nd);
2252 	if (unlikely(error))
2253 		return ERR_PTR(error);
2254 	nd->flags |= LOOKUP_PARENT;
2255 	nd->stack[0].name = NULL;
2256 	s = get_link(nd);
2257 	return s ? s : "";
2258 }
2259 
lookup_last(struct nameidata * nd)2260 static inline int lookup_last(struct nameidata *nd)
2261 {
2262 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2263 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2264 
2265 	nd->flags &= ~LOOKUP_PARENT;
2266 	return walk_component(nd,
2267 			nd->flags & LOOKUP_FOLLOW
2268 				? nd->depth
2269 					? WALK_PUT | WALK_GET
2270 					: WALK_GET
2271 				: 0);
2272 }
2273 
2274 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2275 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2276 {
2277 	const char *s = path_init(nd, flags);
2278 	int err;
2279 
2280 	if (IS_ERR(s))
2281 		return PTR_ERR(s);
2282 	while (!(err = link_path_walk(s, nd))
2283 		&& ((err = lookup_last(nd)) > 0)) {
2284 		s = trailing_symlink(nd);
2285 		if (IS_ERR(s)) {
2286 			err = PTR_ERR(s);
2287 			break;
2288 		}
2289 	}
2290 	if (!err)
2291 		err = complete_walk(nd);
2292 
2293 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2294 		if (!d_can_lookup(nd->path.dentry))
2295 			err = -ENOTDIR;
2296 	if (!err) {
2297 		*path = nd->path;
2298 		nd->path.mnt = NULL;
2299 		nd->path.dentry = NULL;
2300 	}
2301 	terminate_walk(nd);
2302 	return err;
2303 }
2304 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2305 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2306 			   struct path *path, struct path *root)
2307 {
2308 	int retval;
2309 	struct nameidata nd;
2310 	if (IS_ERR(name))
2311 		return PTR_ERR(name);
2312 	if (unlikely(root)) {
2313 		nd.root = *root;
2314 		flags |= LOOKUP_ROOT;
2315 	}
2316 	set_nameidata(&nd, dfd, name);
2317 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2318 	if (unlikely(retval == -ECHILD))
2319 		retval = path_lookupat(&nd, flags, path);
2320 	if (unlikely(retval == -ESTALE))
2321 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2322 
2323 	if (likely(!retval))
2324 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2325 	restore_nameidata();
2326 	putname(name);
2327 	return retval;
2328 }
2329 
2330 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2331 static int path_parentat(struct nameidata *nd, unsigned flags,
2332 				struct path *parent)
2333 {
2334 	const char *s = path_init(nd, flags);
2335 	int err;
2336 	if (IS_ERR(s))
2337 		return PTR_ERR(s);
2338 	err = link_path_walk(s, nd);
2339 	if (!err)
2340 		err = complete_walk(nd);
2341 	if (!err) {
2342 		*parent = nd->path;
2343 		nd->path.mnt = NULL;
2344 		nd->path.dentry = NULL;
2345 	}
2346 	terminate_walk(nd);
2347 	return err;
2348 }
2349 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2350 static struct filename *filename_parentat(int dfd, struct filename *name,
2351 				unsigned int flags, struct path *parent,
2352 				struct qstr *last, int *type)
2353 {
2354 	int retval;
2355 	struct nameidata nd;
2356 
2357 	if (IS_ERR(name))
2358 		return name;
2359 	set_nameidata(&nd, dfd, name);
2360 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2361 	if (unlikely(retval == -ECHILD))
2362 		retval = path_parentat(&nd, flags, parent);
2363 	if (unlikely(retval == -ESTALE))
2364 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2365 	if (likely(!retval)) {
2366 		*last = nd.last;
2367 		*type = nd.last_type;
2368 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2369 	} else {
2370 		putname(name);
2371 		name = ERR_PTR(retval);
2372 	}
2373 	restore_nameidata();
2374 	return name;
2375 }
2376 
2377 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2378 struct dentry *kern_path_locked(const char *name, struct path *path)
2379 {
2380 	struct filename *filename;
2381 	struct dentry *d;
2382 	struct qstr last;
2383 	int type;
2384 
2385 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2386 				    &last, &type);
2387 	if (IS_ERR(filename))
2388 		return ERR_CAST(filename);
2389 	if (unlikely(type != LAST_NORM)) {
2390 		path_put(path);
2391 		putname(filename);
2392 		return ERR_PTR(-EINVAL);
2393 	}
2394 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2395 	d = __lookup_hash(&last, path->dentry, 0);
2396 	if (IS_ERR(d)) {
2397 		inode_unlock(path->dentry->d_inode);
2398 		path_put(path);
2399 	}
2400 	putname(filename);
2401 	return d;
2402 }
2403 
kern_path(const char * name,unsigned int flags,struct path * path)2404 int kern_path(const char *name, unsigned int flags, struct path *path)
2405 {
2406 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2407 			       flags, path, NULL);
2408 }
2409 EXPORT_SYMBOL(kern_path);
2410 
2411 /**
2412  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2413  * @dentry:  pointer to dentry of the base directory
2414  * @mnt: pointer to vfs mount of the base directory
2415  * @name: pointer to file name
2416  * @flags: lookup flags
2417  * @path: pointer to struct path to fill
2418  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2419 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2420 		    const char *name, unsigned int flags,
2421 		    struct path *path)
2422 {
2423 	struct path root = {.mnt = mnt, .dentry = dentry};
2424 	/* the first argument of filename_lookup() is ignored with root */
2425 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2426 			       flags , path, &root);
2427 }
2428 EXPORT_SYMBOL(vfs_path_lookup);
2429 
2430 /**
2431  * lookup_one_len - filesystem helper to lookup single pathname component
2432  * @name:	pathname component to lookup
2433  * @mnt:	mount we are looking up on
2434  * @base:	base directory to lookup from
2435  * @len:	maximum length @len should be interpreted to
2436  *
2437  * Note that this routine is purely a helper for filesystem usage and should
2438  * not be called by generic code.
2439  *
2440  * The caller must hold base->i_mutex.
2441  */
lookup_one_len2(const char * name,struct vfsmount * mnt,struct dentry * base,int len)2442 struct dentry *lookup_one_len2(const char *name, struct vfsmount *mnt, struct dentry *base, int len)
2443 {
2444 	struct qstr this;
2445 	unsigned int c;
2446 	int err;
2447 
2448 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2449 
2450 	this.name = name;
2451 	this.len = len;
2452 	this.hash = full_name_hash(base, name, len);
2453 	if (!len)
2454 		return ERR_PTR(-EACCES);
2455 
2456 	if (unlikely(name[0] == '.')) {
2457 		if (len < 2 || (len == 2 && name[1] == '.'))
2458 			return ERR_PTR(-EACCES);
2459 	}
2460 
2461 	while (len--) {
2462 		c = *(const unsigned char *)name++;
2463 		if (c == '/' || c == '\0')
2464 			return ERR_PTR(-EACCES);
2465 	}
2466 	/*
2467 	 * See if the low-level filesystem might want
2468 	 * to use its own hash..
2469 	 */
2470 	if (base->d_flags & DCACHE_OP_HASH) {
2471 		int err = base->d_op->d_hash(base, &this);
2472 		if (err < 0)
2473 			return ERR_PTR(err);
2474 	}
2475 
2476 	err = inode_permission2(mnt, base->d_inode, MAY_EXEC);
2477 	if (err)
2478 		return ERR_PTR(err);
2479 
2480 	return __lookup_hash(&this, base, 0);
2481 }
2482 EXPORT_SYMBOL(lookup_one_len2);
2483 
lookup_one_len(const char * name,struct dentry * base,int len)2484 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2485 {
2486 	return lookup_one_len2(name, NULL, base, len);
2487 }
2488 EXPORT_SYMBOL(lookup_one_len);
2489 
2490 /**
2491  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2492  * @name:	pathname component to lookup
2493  * @base:	base directory to lookup from
2494  * @len:	maximum length @len should be interpreted to
2495  *
2496  * Note that this routine is purely a helper for filesystem usage and should
2497  * not be called by generic code.
2498  *
2499  * Unlike lookup_one_len, it should be called without the parent
2500  * i_mutex held, and will take the i_mutex itself if necessary.
2501  */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2502 struct dentry *lookup_one_len_unlocked(const char *name,
2503 				       struct dentry *base, int len)
2504 {
2505 	struct qstr this;
2506 	unsigned int c;
2507 	int err;
2508 	struct dentry *ret;
2509 
2510 	this.name = name;
2511 	this.len = len;
2512 	this.hash = full_name_hash(base, name, len);
2513 	if (!len)
2514 		return ERR_PTR(-EACCES);
2515 
2516 	if (unlikely(name[0] == '.')) {
2517 		if (len < 2 || (len == 2 && name[1] == '.'))
2518 			return ERR_PTR(-EACCES);
2519 	}
2520 
2521 	while (len--) {
2522 		c = *(const unsigned char *)name++;
2523 		if (c == '/' || c == '\0')
2524 			return ERR_PTR(-EACCES);
2525 	}
2526 	/*
2527 	 * See if the low-level filesystem might want
2528 	 * to use its own hash..
2529 	 */
2530 	if (base->d_flags & DCACHE_OP_HASH) {
2531 		int err = base->d_op->d_hash(base, &this);
2532 		if (err < 0)
2533 			return ERR_PTR(err);
2534 	}
2535 
2536 	err = inode_permission(base->d_inode, MAY_EXEC);
2537 	if (err)
2538 		return ERR_PTR(err);
2539 
2540 	ret = lookup_dcache(&this, base, 0);
2541 	if (!ret)
2542 		ret = lookup_slow(&this, base, 0);
2543 	return ret;
2544 }
2545 EXPORT_SYMBOL(lookup_one_len_unlocked);
2546 
2547 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2548 int path_pts(struct path *path)
2549 {
2550 	/* Find something mounted on "pts" in the same directory as
2551 	 * the input path.
2552 	 */
2553 	struct dentry *child, *parent;
2554 	struct qstr this;
2555 	int ret;
2556 
2557 	ret = path_parent_directory(path);
2558 	if (ret)
2559 		return ret;
2560 
2561 	parent = path->dentry;
2562 	this.name = "pts";
2563 	this.len = 3;
2564 	child = d_hash_and_lookup(parent, &this);
2565 	if (!child)
2566 		return -ENOENT;
2567 
2568 	path->dentry = child;
2569 	dput(parent);
2570 	follow_mount(path);
2571 	return 0;
2572 }
2573 #endif
2574 
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2575 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2576 		 struct path *path, int *empty)
2577 {
2578 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2579 			       flags, path, NULL);
2580 }
2581 EXPORT_SYMBOL(user_path_at_empty);
2582 
2583 /*
2584  * NB: most callers don't do anything directly with the reference to the
2585  *     to struct filename, but the nd->last pointer points into the name string
2586  *     allocated by getname. So we must hold the reference to it until all
2587  *     path-walking is complete.
2588  */
2589 static inline struct filename *
user_path_parent(int dfd,const char __user * path,struct path * parent,struct qstr * last,int * type,unsigned int flags)2590 user_path_parent(int dfd, const char __user *path,
2591 		 struct path *parent,
2592 		 struct qstr *last,
2593 		 int *type,
2594 		 unsigned int flags)
2595 {
2596 	/* only LOOKUP_REVAL is allowed in extra flags */
2597 	return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2598 				 parent, last, type);
2599 }
2600 
2601 /**
2602  * mountpoint_last - look up last component for umount
2603  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2604  * @path: pointer to container for result
2605  *
2606  * This is a special lookup_last function just for umount. In this case, we
2607  * need to resolve the path without doing any revalidation.
2608  *
2609  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2610  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2611  * in almost all cases, this lookup will be served out of the dcache. The only
2612  * cases where it won't are if nd->last refers to a symlink or the path is
2613  * bogus and it doesn't exist.
2614  *
2615  * Returns:
2616  * -error: if there was an error during lookup. This includes -ENOENT if the
2617  *         lookup found a negative dentry. The nd->path reference will also be
2618  *         put in this case.
2619  *
2620  * 0:      if we successfully resolved nd->path and found it to not to be a
2621  *         symlink that needs to be followed. "path" will also be populated.
2622  *         The nd->path reference will also be put.
2623  *
2624  * 1:      if we successfully resolved nd->last and found it to be a symlink
2625  *         that needs to be followed. "path" will be populated with the path
2626  *         to the link, and nd->path will *not* be put.
2627  */
2628 static int
mountpoint_last(struct nameidata * nd,struct path * path)2629 mountpoint_last(struct nameidata *nd, struct path *path)
2630 {
2631 	int error = 0;
2632 	struct dentry *dentry;
2633 	struct dentry *dir = nd->path.dentry;
2634 
2635 	/* If we're in rcuwalk, drop out of it to handle last component */
2636 	if (nd->flags & LOOKUP_RCU) {
2637 		if (unlazy_walk(nd, NULL, 0))
2638 			return -ECHILD;
2639 	}
2640 
2641 	nd->flags &= ~LOOKUP_PARENT;
2642 
2643 	if (unlikely(nd->last_type != LAST_NORM)) {
2644 		error = handle_dots(nd, nd->last_type);
2645 		if (error)
2646 			return error;
2647 		dentry = dget(nd->path.dentry);
2648 	} else {
2649 		dentry = d_lookup(dir, &nd->last);
2650 		if (!dentry) {
2651 			/*
2652 			 * No cached dentry. Mounted dentries are pinned in the
2653 			 * cache, so that means that this dentry is probably
2654 			 * a symlink or the path doesn't actually point
2655 			 * to a mounted dentry.
2656 			 */
2657 			dentry = lookup_slow(&nd->last, dir,
2658 					     nd->flags | LOOKUP_NO_REVAL);
2659 			if (IS_ERR(dentry))
2660 				return PTR_ERR(dentry);
2661 		}
2662 	}
2663 	if (d_is_negative(dentry)) {
2664 		dput(dentry);
2665 		return -ENOENT;
2666 	}
2667 	if (nd->depth)
2668 		put_link(nd);
2669 	path->dentry = dentry;
2670 	path->mnt = nd->path.mnt;
2671 	error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2672 				   d_backing_inode(dentry), 0);
2673 	if (unlikely(error))
2674 		return error;
2675 	mntget(path->mnt);
2676 	follow_mount(path);
2677 	return 0;
2678 }
2679 
2680 /**
2681  * path_mountpoint - look up a path to be umounted
2682  * @nd:		lookup context
2683  * @flags:	lookup flags
2684  * @path:	pointer to container for result
2685  *
2686  * Look up the given name, but don't attempt to revalidate the last component.
2687  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2688  */
2689 static int
path_mountpoint(struct nameidata * nd,unsigned flags,struct path * path)2690 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2691 {
2692 	const char *s = path_init(nd, flags);
2693 	int err;
2694 	if (IS_ERR(s))
2695 		return PTR_ERR(s);
2696 	while (!(err = link_path_walk(s, nd)) &&
2697 		(err = mountpoint_last(nd, path)) > 0) {
2698 		s = trailing_symlink(nd);
2699 		if (IS_ERR(s)) {
2700 			err = PTR_ERR(s);
2701 			break;
2702 		}
2703 	}
2704 	terminate_walk(nd);
2705 	return err;
2706 }
2707 
2708 static int
filename_mountpoint(int dfd,struct filename * name,struct path * path,unsigned int flags)2709 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2710 			unsigned int flags)
2711 {
2712 	struct nameidata nd;
2713 	int error;
2714 	if (IS_ERR(name))
2715 		return PTR_ERR(name);
2716 	set_nameidata(&nd, dfd, name);
2717 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2718 	if (unlikely(error == -ECHILD))
2719 		error = path_mountpoint(&nd, flags, path);
2720 	if (unlikely(error == -ESTALE))
2721 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2722 	if (likely(!error))
2723 		audit_inode(name, path->dentry, 0);
2724 	restore_nameidata();
2725 	putname(name);
2726 	return error;
2727 }
2728 
2729 /**
2730  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2731  * @dfd:	directory file descriptor
2732  * @name:	pathname from userland
2733  * @flags:	lookup flags
2734  * @path:	pointer to container to hold result
2735  *
2736  * A umount is a special case for path walking. We're not actually interested
2737  * in the inode in this situation, and ESTALE errors can be a problem. We
2738  * simply want track down the dentry and vfsmount attached at the mountpoint
2739  * and avoid revalidating the last component.
2740  *
2741  * Returns 0 and populates "path" on success.
2742  */
2743 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2744 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2745 			struct path *path)
2746 {
2747 	return filename_mountpoint(dfd, getname(name), path, flags);
2748 }
2749 
2750 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2751 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2752 			unsigned int flags)
2753 {
2754 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2755 }
2756 EXPORT_SYMBOL(kern_path_mountpoint);
2757 
__check_sticky(struct inode * dir,struct inode * inode)2758 int __check_sticky(struct inode *dir, struct inode *inode)
2759 {
2760 	kuid_t fsuid = current_fsuid();
2761 
2762 	if (uid_eq(inode->i_uid, fsuid))
2763 		return 0;
2764 	if (uid_eq(dir->i_uid, fsuid))
2765 		return 0;
2766 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2767 }
2768 EXPORT_SYMBOL(__check_sticky);
2769 
2770 /*
2771  *	Check whether we can remove a link victim from directory dir, check
2772  *  whether the type of victim is right.
2773  *  1. We can't do it if dir is read-only (done in permission())
2774  *  2. We should have write and exec permissions on dir
2775  *  3. We can't remove anything from append-only dir
2776  *  4. We can't do anything with immutable dir (done in permission())
2777  *  5. If the sticky bit on dir is set we should either
2778  *	a. be owner of dir, or
2779  *	b. be owner of victim, or
2780  *	c. have CAP_FOWNER capability
2781  *  6. If the victim is append-only or immutable we can't do antyhing with
2782  *     links pointing to it.
2783  *  7. If the victim has an unknown uid or gid we can't change the inode.
2784  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2785  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2786  * 10. We can't remove a root or mountpoint.
2787  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2788  *     nfs_async_unlink().
2789  */
may_delete(struct vfsmount * mnt,struct inode * dir,struct dentry * victim,bool isdir)2790 static int may_delete(struct vfsmount *mnt, struct inode *dir, struct dentry *victim, bool isdir)
2791 {
2792 	struct inode *inode = d_backing_inode(victim);
2793 	int error;
2794 
2795 	if (d_is_negative(victim))
2796 		return -ENOENT;
2797 	BUG_ON(!inode);
2798 
2799 	BUG_ON(victim->d_parent->d_inode != dir);
2800 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2801 
2802 	error = inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2803 	if (error)
2804 		return error;
2805 	if (IS_APPEND(dir))
2806 		return -EPERM;
2807 
2808 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2809 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2810 		return -EPERM;
2811 	if (isdir) {
2812 		if (!d_is_dir(victim))
2813 			return -ENOTDIR;
2814 		if (IS_ROOT(victim))
2815 			return -EBUSY;
2816 	} else if (d_is_dir(victim))
2817 		return -EISDIR;
2818 	if (IS_DEADDIR(dir))
2819 		return -ENOENT;
2820 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2821 		return -EBUSY;
2822 	return 0;
2823 }
2824 
2825 /*	Check whether we can create an object with dentry child in directory
2826  *  dir.
2827  *  1. We can't do it if child already exists (open has special treatment for
2828  *     this case, but since we are inlined it's OK)
2829  *  2. We can't do it if dir is read-only (done in permission())
2830  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2831  *  4. We should have write and exec permissions on dir
2832  *  5. We can't do it if dir is immutable (done in permission())
2833  */
may_create(struct vfsmount * mnt,struct inode * dir,struct dentry * child)2834 static inline int may_create(struct vfsmount *mnt, struct inode *dir, struct dentry *child)
2835 {
2836 	struct user_namespace *s_user_ns;
2837 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2838 	if (child->d_inode)
2839 		return -EEXIST;
2840 	if (IS_DEADDIR(dir))
2841 		return -ENOENT;
2842 	s_user_ns = dir->i_sb->s_user_ns;
2843 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2844 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2845 		return -EOVERFLOW;
2846 	return inode_permission2(mnt, dir, MAY_WRITE | MAY_EXEC);
2847 }
2848 
2849 /*
2850  * p1 and p2 should be directories on the same fs.
2851  */
lock_rename(struct dentry * p1,struct dentry * p2)2852 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2853 {
2854 	struct dentry *p;
2855 
2856 	if (p1 == p2) {
2857 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2858 		return NULL;
2859 	}
2860 
2861 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2862 
2863 	p = d_ancestor(p2, p1);
2864 	if (p) {
2865 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2866 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2867 		return p;
2868 	}
2869 
2870 	p = d_ancestor(p1, p2);
2871 	if (p) {
2872 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2874 		return p;
2875 	}
2876 
2877 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2878 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2879 	return NULL;
2880 }
2881 EXPORT_SYMBOL(lock_rename);
2882 
unlock_rename(struct dentry * p1,struct dentry * p2)2883 void unlock_rename(struct dentry *p1, struct dentry *p2)
2884 {
2885 	inode_unlock(p1->d_inode);
2886 	if (p1 != p2) {
2887 		inode_unlock(p2->d_inode);
2888 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2889 	}
2890 }
2891 EXPORT_SYMBOL(unlock_rename);
2892 
vfs_create2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2893 int vfs_create2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry,
2894 		umode_t mode, bool want_excl)
2895 {
2896 	int error = may_create(mnt, dir, dentry);
2897 	if (error)
2898 		return error;
2899 
2900 	if (!dir->i_op->create)
2901 		return -EACCES;	/* shouldn't it be ENOSYS? */
2902 	mode &= S_IALLUGO;
2903 	mode |= S_IFREG;
2904 	error = security_inode_create(dir, dentry, mode);
2905 	if (error)
2906 		return error;
2907 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2908 	if (!error)
2909 		fsnotify_create(dir, dentry);
2910 	return error;
2911 }
2912 EXPORT_SYMBOL(vfs_create2);
2913 
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2914 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2915 		bool want_excl)
2916 {
2917 	return vfs_create2(NULL, dir, dentry, mode, want_excl);
2918 }
2919 EXPORT_SYMBOL(vfs_create);
2920 
may_open_dev(const struct path * path)2921 bool may_open_dev(const struct path *path)
2922 {
2923 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2924 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2925 }
2926 
may_open(struct path * path,int acc_mode,int flag)2927 static int may_open(struct path *path, int acc_mode, int flag)
2928 {
2929 	struct dentry *dentry = path->dentry;
2930 	struct vfsmount *mnt = path->mnt;
2931 	struct inode *inode = dentry->d_inode;
2932 	int error;
2933 
2934 	if (!inode)
2935 		return -ENOENT;
2936 
2937 	switch (inode->i_mode & S_IFMT) {
2938 	case S_IFLNK:
2939 		return -ELOOP;
2940 	case S_IFDIR:
2941 		if (acc_mode & MAY_WRITE)
2942 			return -EISDIR;
2943 		break;
2944 	case S_IFBLK:
2945 	case S_IFCHR:
2946 		if (!may_open_dev(path))
2947 			return -EACCES;
2948 		/*FALLTHRU*/
2949 	case S_IFIFO:
2950 	case S_IFSOCK:
2951 		flag &= ~O_TRUNC;
2952 		break;
2953 	}
2954 
2955 	error = inode_permission2(mnt, inode, MAY_OPEN | acc_mode);
2956 	if (error)
2957 		return error;
2958 
2959 	/*
2960 	 * An append-only file must be opened in append mode for writing.
2961 	 */
2962 	if (IS_APPEND(inode)) {
2963 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2964 			return -EPERM;
2965 		if (flag & O_TRUNC)
2966 			return -EPERM;
2967 	}
2968 
2969 	/* O_NOATIME can only be set by the owner or superuser */
2970 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2971 		return -EPERM;
2972 
2973 	return 0;
2974 }
2975 
handle_truncate(struct file * filp)2976 static int handle_truncate(struct file *filp)
2977 {
2978 	struct path *path = &filp->f_path;
2979 	struct inode *inode = path->dentry->d_inode;
2980 	int error = get_write_access(inode);
2981 	if (error)
2982 		return error;
2983 	/*
2984 	 * Refuse to truncate files with mandatory locks held on them.
2985 	 */
2986 	error = locks_verify_locked(filp);
2987 	if (!error)
2988 		error = security_path_truncate(path);
2989 	if (!error) {
2990 		error = do_truncate2(path->mnt, path->dentry, 0,
2991 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2992 				    filp);
2993 	}
2994 	put_write_access(inode);
2995 	return error;
2996 }
2997 
open_to_namei_flags(int flag)2998 static inline int open_to_namei_flags(int flag)
2999 {
3000 	if ((flag & O_ACCMODE) == 3)
3001 		flag--;
3002 	return flag;
3003 }
3004 
may_o_create(const struct path * dir,struct dentry * dentry,umode_t mode)3005 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3006 {
3007 	struct user_namespace *s_user_ns;
3008 	int error = security_path_mknod(dir, dentry, mode, 0);
3009 	if (error)
3010 		return error;
3011 
3012 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3013 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3014 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3015 		return -EOVERFLOW;
3016 
3017 	error = inode_permission2(dir->mnt, dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3018 	if (error)
3019 		return error;
3020 
3021 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3022 }
3023 
3024 /*
3025  * Attempt to atomically look up, create and open a file from a negative
3026  * dentry.
3027  *
3028  * Returns 0 if successful.  The file will have been created and attached to
3029  * @file by the filesystem calling finish_open().
3030  *
3031  * Returns 1 if the file was looked up only or didn't need creating.  The
3032  * caller will need to perform the open themselves.  @path will have been
3033  * updated to point to the new dentry.  This may be negative.
3034  *
3035  * Returns an error code otherwise.
3036  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,int open_flag,umode_t mode,int * opened)3037 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3038 			struct path *path, struct file *file,
3039 			const struct open_flags *op,
3040 			int open_flag, umode_t mode,
3041 			int *opened)
3042 {
3043 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3044 	struct inode *dir =  nd->path.dentry->d_inode;
3045 	int error;
3046 
3047 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3048 		open_flag &= ~O_TRUNC;
3049 
3050 	if (nd->flags & LOOKUP_DIRECTORY)
3051 		open_flag |= O_DIRECTORY;
3052 
3053 	file->f_path.dentry = DENTRY_NOT_SET;
3054 	file->f_path.mnt = nd->path.mnt;
3055 	error = dir->i_op->atomic_open(dir, dentry, file,
3056 				       open_to_namei_flags(open_flag),
3057 				       mode, opened);
3058 	d_lookup_done(dentry);
3059 	if (!error) {
3060 		/*
3061 		 * We didn't have the inode before the open, so check open
3062 		 * permission here.
3063 		 */
3064 		int acc_mode = op->acc_mode;
3065 		if (*opened & FILE_CREATED) {
3066 			WARN_ON(!(open_flag & O_CREAT));
3067 			fsnotify_create(dir, dentry);
3068 			acc_mode = 0;
3069 		}
3070 		error = may_open(&file->f_path, acc_mode, open_flag);
3071 		if (WARN_ON(error > 0))
3072 			error = -EINVAL;
3073 	} else if (error > 0) {
3074 		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3075 			error = -EIO;
3076 		} else {
3077 			if (file->f_path.dentry) {
3078 				dput(dentry);
3079 				dentry = file->f_path.dentry;
3080 			}
3081 			if (*opened & FILE_CREATED)
3082 				fsnotify_create(dir, dentry);
3083 			if (unlikely(d_is_negative(dentry))) {
3084 				error = -ENOENT;
3085 			} else {
3086 				path->dentry = dentry;
3087 				path->mnt = nd->path.mnt;
3088 				return 1;
3089 			}
3090 		}
3091 	}
3092 	dput(dentry);
3093 	return error;
3094 }
3095 
3096 /*
3097  * Look up and maybe create and open the last component.
3098  *
3099  * Must be called with i_mutex held on parent.
3100  *
3101  * Returns 0 if the file was successfully atomically created (if necessary) and
3102  * opened.  In this case the file will be returned attached to @file.
3103  *
3104  * Returns 1 if the file was not completely opened at this time, though lookups
3105  * and creations will have been performed and the dentry returned in @path will
3106  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3107  * specified then a negative dentry may be returned.
3108  *
3109  * An error code is returned otherwise.
3110  *
3111  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3112  * cleared otherwise prior to returning.
3113  */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write,int * opened)3114 static int lookup_open(struct nameidata *nd, struct path *path,
3115 			struct file *file,
3116 			const struct open_flags *op,
3117 			bool got_write, int *opened)
3118 {
3119 	struct dentry *dir = nd->path.dentry;
3120 	struct inode *dir_inode = dir->d_inode;
3121 	int open_flag = op->open_flag;
3122 	struct dentry *dentry;
3123 	int error, create_error = 0;
3124 	umode_t mode = op->mode;
3125 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3126 
3127 	if (unlikely(IS_DEADDIR(dir_inode)))
3128 		return -ENOENT;
3129 
3130 	*opened &= ~FILE_CREATED;
3131 	dentry = d_lookup(dir, &nd->last);
3132 	for (;;) {
3133 		if (!dentry) {
3134 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3135 			if (IS_ERR(dentry))
3136 				return PTR_ERR(dentry);
3137 		}
3138 		if (d_in_lookup(dentry))
3139 			break;
3140 
3141 		if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3142 			break;
3143 
3144 		error = d_revalidate(dentry, nd->flags);
3145 		if (likely(error > 0))
3146 			break;
3147 		if (error)
3148 			goto out_dput;
3149 		d_invalidate(dentry);
3150 		dput(dentry);
3151 		dentry = NULL;
3152 	}
3153 	if (dentry->d_inode) {
3154 		/* Cached positive dentry: will open in f_op->open */
3155 		goto out_no_open;
3156 	}
3157 
3158 	/*
3159 	 * Checking write permission is tricky, bacuse we don't know if we are
3160 	 * going to actually need it: O_CREAT opens should work as long as the
3161 	 * file exists.  But checking existence breaks atomicity.  The trick is
3162 	 * to check access and if not granted clear O_CREAT from the flags.
3163 	 *
3164 	 * Another problem is returing the "right" error value (e.g. for an
3165 	 * O_EXCL open we want to return EEXIST not EROFS).
3166 	 */
3167 	if (open_flag & O_CREAT) {
3168 		if (!IS_POSIXACL(dir->d_inode))
3169 			mode &= ~current_umask();
3170 		if (unlikely(!got_write)) {
3171 			create_error = -EROFS;
3172 			open_flag &= ~O_CREAT;
3173 			if (open_flag & (O_EXCL | O_TRUNC))
3174 				goto no_open;
3175 			/* No side effects, safe to clear O_CREAT */
3176 		} else {
3177 			create_error = may_o_create(&nd->path, dentry, mode);
3178 			if (create_error) {
3179 				open_flag &= ~O_CREAT;
3180 				if (open_flag & O_EXCL)
3181 					goto no_open;
3182 			}
3183 		}
3184 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3185 		   unlikely(!got_write)) {
3186 		/*
3187 		 * No O_CREATE -> atomicity not a requirement -> fall
3188 		 * back to lookup + open
3189 		 */
3190 		goto no_open;
3191 	}
3192 
3193 	if (dir_inode->i_op->atomic_open) {
3194 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3195 				    mode, opened);
3196 		if (unlikely(error == -ENOENT) && create_error)
3197 			error = create_error;
3198 		return error;
3199 	}
3200 
3201 no_open:
3202 	if (d_in_lookup(dentry)) {
3203 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3204 							     nd->flags);
3205 		d_lookup_done(dentry);
3206 		if (unlikely(res)) {
3207 			if (IS_ERR(res)) {
3208 				error = PTR_ERR(res);
3209 				goto out_dput;
3210 			}
3211 			dput(dentry);
3212 			dentry = res;
3213 		}
3214 	}
3215 
3216 	/* Negative dentry, just create the file */
3217 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3218 		*opened |= FILE_CREATED;
3219 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3220 		if (!dir_inode->i_op->create) {
3221 			error = -EACCES;
3222 			goto out_dput;
3223 		}
3224 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3225 						open_flag & O_EXCL);
3226 		if (error)
3227 			goto out_dput;
3228 		fsnotify_create(dir_inode, dentry);
3229 	}
3230 	if (unlikely(create_error) && !dentry->d_inode) {
3231 		error = create_error;
3232 		goto out_dput;
3233 	}
3234 out_no_open:
3235 	path->dentry = dentry;
3236 	path->mnt = nd->path.mnt;
3237 	return 1;
3238 
3239 out_dput:
3240 	dput(dentry);
3241 	return error;
3242 }
3243 
3244 /*
3245  * Handle the last step of open()
3246  */
do_last(struct nameidata * nd,struct file * file,const struct open_flags * op,int * opened)3247 static int do_last(struct nameidata *nd,
3248 		   struct file *file, const struct open_flags *op,
3249 		   int *opened)
3250 {
3251 	struct dentry *dir = nd->path.dentry;
3252 	int open_flag = op->open_flag;
3253 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3254 	bool got_write = false;
3255 	int acc_mode = op->acc_mode;
3256 	unsigned seq;
3257 	struct inode *inode;
3258 	struct path path;
3259 	int error;
3260 
3261 	nd->flags &= ~LOOKUP_PARENT;
3262 	nd->flags |= op->intent;
3263 
3264 	if (nd->last_type != LAST_NORM) {
3265 		error = handle_dots(nd, nd->last_type);
3266 		if (unlikely(error))
3267 			return error;
3268 		goto finish_open;
3269 	}
3270 
3271 	if (!(open_flag & O_CREAT)) {
3272 		if (nd->last.name[nd->last.len])
3273 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3274 		/* we _can_ be in RCU mode here */
3275 		error = lookup_fast(nd, &path, &inode, &seq);
3276 		if (likely(error > 0))
3277 			goto finish_lookup;
3278 
3279 		if (error < 0)
3280 			return error;
3281 
3282 		BUG_ON(nd->inode != dir->d_inode);
3283 		BUG_ON(nd->flags & LOOKUP_RCU);
3284 	} else {
3285 		/* create side of things */
3286 		/*
3287 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3288 		 * has been cleared when we got to the last component we are
3289 		 * about to look up
3290 		 */
3291 		error = complete_walk(nd);
3292 		if (error)
3293 			return error;
3294 
3295 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3296 		/* trailing slashes? */
3297 		if (unlikely(nd->last.name[nd->last.len]))
3298 			return -EISDIR;
3299 	}
3300 
3301 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3302 		error = mnt_want_write(nd->path.mnt);
3303 		if (!error)
3304 			got_write = true;
3305 		/*
3306 		 * do _not_ fail yet - we might not need that or fail with
3307 		 * a different error; let lookup_open() decide; we'll be
3308 		 * dropping this one anyway.
3309 		 */
3310 	}
3311 	if (open_flag & O_CREAT)
3312 		inode_lock(dir->d_inode);
3313 	else
3314 		inode_lock_shared(dir->d_inode);
3315 	error = lookup_open(nd, &path, file, op, got_write, opened);
3316 	if (open_flag & O_CREAT)
3317 		inode_unlock(dir->d_inode);
3318 	else
3319 		inode_unlock_shared(dir->d_inode);
3320 
3321 	if (error <= 0) {
3322 		if (error)
3323 			goto out;
3324 
3325 		if ((*opened & FILE_CREATED) ||
3326 		    !S_ISREG(file_inode(file)->i_mode))
3327 			will_truncate = false;
3328 
3329 		audit_inode(nd->name, file->f_path.dentry, 0);
3330 		goto opened;
3331 	}
3332 
3333 	if (*opened & FILE_CREATED) {
3334 		/* Don't check for write permission, don't truncate */
3335 		open_flag &= ~O_TRUNC;
3336 		will_truncate = false;
3337 		acc_mode = 0;
3338 		path_to_nameidata(&path, nd);
3339 		goto finish_open_created;
3340 	}
3341 
3342 	/*
3343 	 * If atomic_open() acquired write access it is dropped now due to
3344 	 * possible mount and symlink following (this might be optimized away if
3345 	 * necessary...)
3346 	 */
3347 	if (got_write) {
3348 		mnt_drop_write(nd->path.mnt);
3349 		got_write = false;
3350 	}
3351 
3352 	error = follow_managed(&path, nd);
3353 	if (unlikely(error < 0))
3354 		return error;
3355 
3356 	if (unlikely(d_is_negative(path.dentry))) {
3357 		path_to_nameidata(&path, nd);
3358 		return -ENOENT;
3359 	}
3360 
3361 	/*
3362 	 * create/update audit record if it already exists.
3363 	 */
3364 	audit_inode(nd->name, path.dentry, 0);
3365 
3366 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3367 		path_to_nameidata(&path, nd);
3368 		return -EEXIST;
3369 	}
3370 
3371 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3372 	inode = d_backing_inode(path.dentry);
3373 finish_lookup:
3374 	if (nd->depth)
3375 		put_link(nd);
3376 	error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3377 				   inode, seq);
3378 	if (unlikely(error))
3379 		return error;
3380 
3381 	path_to_nameidata(&path, nd);
3382 	nd->inode = inode;
3383 	nd->seq = seq;
3384 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3385 finish_open:
3386 	error = complete_walk(nd);
3387 	if (error)
3388 		return error;
3389 	audit_inode(nd->name, nd->path.dentry, 0);
3390 	error = -EISDIR;
3391 	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3392 		goto out;
3393 	error = -ENOTDIR;
3394 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3395 		goto out;
3396 	if (!d_is_reg(nd->path.dentry))
3397 		will_truncate = false;
3398 
3399 	if (will_truncate) {
3400 		error = mnt_want_write(nd->path.mnt);
3401 		if (error)
3402 			goto out;
3403 		got_write = true;
3404 	}
3405 finish_open_created:
3406 	error = may_open(&nd->path, acc_mode, open_flag);
3407 	if (error)
3408 		goto out;
3409 	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3410 	error = vfs_open(&nd->path, file, current_cred());
3411 	if (error)
3412 		goto out;
3413 	*opened |= FILE_OPENED;
3414 opened:
3415 	error = open_check_o_direct(file);
3416 	if (!error)
3417 		error = ima_file_check(file, op->acc_mode, *opened);
3418 	if (!error && will_truncate)
3419 		error = handle_truncate(file);
3420 out:
3421 	if (unlikely(error) && (*opened & FILE_OPENED))
3422 		fput(file);
3423 	if (unlikely(error > 0)) {
3424 		WARN_ON(1);
3425 		error = -EINVAL;
3426 	}
3427 	if (got_write)
3428 		mnt_drop_write(nd->path.mnt);
3429 	return error;
3430 }
3431 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file,int * opened)3432 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3433 		const struct open_flags *op,
3434 		struct file *file, int *opened)
3435 {
3436 	static const struct qstr name = QSTR_INIT("/", 1);
3437 	struct dentry *child;
3438 	struct inode *dir;
3439 	struct path path;
3440 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3441 	if (unlikely(error))
3442 		return error;
3443 	error = mnt_want_write(path.mnt);
3444 	if (unlikely(error))
3445 		goto out;
3446 	dir = path.dentry->d_inode;
3447 	/* we want directory to be writable */
3448 	error = inode_permission2(nd->path.mnt, dir, MAY_WRITE | MAY_EXEC);
3449 	if (error)
3450 		goto out2;
3451 	if (!dir->i_op->tmpfile) {
3452 		error = -EOPNOTSUPP;
3453 		goto out2;
3454 	}
3455 	child = d_alloc(path.dentry, &name);
3456 	if (unlikely(!child)) {
3457 		error = -ENOMEM;
3458 		goto out2;
3459 	}
3460 	dput(path.dentry);
3461 	path.dentry = child;
3462 	error = dir->i_op->tmpfile(dir, child, op->mode);
3463 	if (error)
3464 		goto out2;
3465 	audit_inode(nd->name, child, 0);
3466 	/* Don't check for other permissions, the inode was just created */
3467 	error = may_open(&path, 0, op->open_flag);
3468 	if (error)
3469 		goto out2;
3470 	file->f_path.mnt = path.mnt;
3471 	error = finish_open(file, child, NULL, opened);
3472 	if (error)
3473 		goto out2;
3474 	error = open_check_o_direct(file);
3475 	if (error) {
3476 		fput(file);
3477 	} else if (!(op->open_flag & O_EXCL)) {
3478 		struct inode *inode = file_inode(file);
3479 		spin_lock(&inode->i_lock);
3480 		inode->i_state |= I_LINKABLE;
3481 		spin_unlock(&inode->i_lock);
3482 	}
3483 out2:
3484 	mnt_drop_write(path.mnt);
3485 out:
3486 	path_put(&path);
3487 	return error;
3488 }
3489 
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3490 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3491 {
3492 	struct path path;
3493 	int error = path_lookupat(nd, flags, &path);
3494 	if (!error) {
3495 		audit_inode(nd->name, path.dentry, 0);
3496 		error = vfs_open(&path, file, current_cred());
3497 		path_put(&path);
3498 	}
3499 	return error;
3500 }
3501 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3502 static struct file *path_openat(struct nameidata *nd,
3503 			const struct open_flags *op, unsigned flags)
3504 {
3505 	const char *s;
3506 	struct file *file;
3507 	int opened = 0;
3508 	int error;
3509 
3510 	file = get_empty_filp();
3511 	if (IS_ERR(file))
3512 		return file;
3513 
3514 	file->f_flags = op->open_flag;
3515 
3516 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3517 		error = do_tmpfile(nd, flags, op, file, &opened);
3518 		goto out2;
3519 	}
3520 
3521 	if (unlikely(file->f_flags & O_PATH)) {
3522 		error = do_o_path(nd, flags, file);
3523 		if (!error)
3524 			opened |= FILE_OPENED;
3525 		goto out2;
3526 	}
3527 
3528 	s = path_init(nd, flags);
3529 	if (IS_ERR(s)) {
3530 		put_filp(file);
3531 		return ERR_CAST(s);
3532 	}
3533 	while (!(error = link_path_walk(s, nd)) &&
3534 		(error = do_last(nd, file, op, &opened)) > 0) {
3535 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3536 		s = trailing_symlink(nd);
3537 		if (IS_ERR(s)) {
3538 			error = PTR_ERR(s);
3539 			break;
3540 		}
3541 	}
3542 	terminate_walk(nd);
3543 out2:
3544 	if (!(opened & FILE_OPENED)) {
3545 		BUG_ON(!error);
3546 		put_filp(file);
3547 	}
3548 	if (unlikely(error)) {
3549 		if (error == -EOPENSTALE) {
3550 			if (flags & LOOKUP_RCU)
3551 				error = -ECHILD;
3552 			else
3553 				error = -ESTALE;
3554 		}
3555 		file = ERR_PTR(error);
3556 	}
3557 	return file;
3558 }
3559 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3560 struct file *do_filp_open(int dfd, struct filename *pathname,
3561 		const struct open_flags *op)
3562 {
3563 	struct nameidata nd;
3564 	int flags = op->lookup_flags;
3565 	struct file *filp;
3566 
3567 	set_nameidata(&nd, dfd, pathname);
3568 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3569 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3570 		filp = path_openat(&nd, op, flags);
3571 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3572 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3573 	restore_nameidata();
3574 	return filp;
3575 }
3576 
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3577 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3578 		const char *name, const struct open_flags *op)
3579 {
3580 	struct nameidata nd;
3581 	struct file *file;
3582 	struct filename *filename;
3583 	int flags = op->lookup_flags | LOOKUP_ROOT;
3584 
3585 	nd.root.mnt = mnt;
3586 	nd.root.dentry = dentry;
3587 
3588 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3589 		return ERR_PTR(-ELOOP);
3590 
3591 	filename = getname_kernel(name);
3592 	if (IS_ERR(filename))
3593 		return ERR_CAST(filename);
3594 
3595 	set_nameidata(&nd, -1, filename);
3596 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3597 	if (unlikely(file == ERR_PTR(-ECHILD)))
3598 		file = path_openat(&nd, op, flags);
3599 	if (unlikely(file == ERR_PTR(-ESTALE)))
3600 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3601 	restore_nameidata();
3602 	putname(filename);
3603 	return file;
3604 }
3605 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3606 static struct dentry *filename_create(int dfd, struct filename *name,
3607 				struct path *path, unsigned int lookup_flags)
3608 {
3609 	struct dentry *dentry = ERR_PTR(-EEXIST);
3610 	struct qstr last;
3611 	int type;
3612 	int err2;
3613 	int error;
3614 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3615 
3616 	/*
3617 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3618 	 * other flags passed in are ignored!
3619 	 */
3620 	lookup_flags &= LOOKUP_REVAL;
3621 
3622 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3623 	if (IS_ERR(name))
3624 		return ERR_CAST(name);
3625 
3626 	/*
3627 	 * Yucky last component or no last component at all?
3628 	 * (foo/., foo/.., /////)
3629 	 */
3630 	if (unlikely(type != LAST_NORM))
3631 		goto out;
3632 
3633 	/* don't fail immediately if it's r/o, at least try to report other errors */
3634 	err2 = mnt_want_write(path->mnt);
3635 	/*
3636 	 * Do the final lookup.
3637 	 */
3638 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3639 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3640 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3641 	if (IS_ERR(dentry))
3642 		goto unlock;
3643 
3644 	error = -EEXIST;
3645 	if (d_is_positive(dentry))
3646 		goto fail;
3647 
3648 	/*
3649 	 * Special case - lookup gave negative, but... we had foo/bar/
3650 	 * From the vfs_mknod() POV we just have a negative dentry -
3651 	 * all is fine. Let's be bastards - you had / on the end, you've
3652 	 * been asking for (non-existent) directory. -ENOENT for you.
3653 	 */
3654 	if (unlikely(!is_dir && last.name[last.len])) {
3655 		error = -ENOENT;
3656 		goto fail;
3657 	}
3658 	if (unlikely(err2)) {
3659 		error = err2;
3660 		goto fail;
3661 	}
3662 	putname(name);
3663 	return dentry;
3664 fail:
3665 	dput(dentry);
3666 	dentry = ERR_PTR(error);
3667 unlock:
3668 	inode_unlock(path->dentry->d_inode);
3669 	if (!err2)
3670 		mnt_drop_write(path->mnt);
3671 out:
3672 	path_put(path);
3673 	putname(name);
3674 	return dentry;
3675 }
3676 
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3677 struct dentry *kern_path_create(int dfd, const char *pathname,
3678 				struct path *path, unsigned int lookup_flags)
3679 {
3680 	return filename_create(dfd, getname_kernel(pathname),
3681 				path, lookup_flags);
3682 }
3683 EXPORT_SYMBOL(kern_path_create);
3684 
done_path_create(struct path * path,struct dentry * dentry)3685 void done_path_create(struct path *path, struct dentry *dentry)
3686 {
3687 	dput(dentry);
3688 	inode_unlock(path->dentry->d_inode);
3689 	mnt_drop_write(path->mnt);
3690 	path_put(path);
3691 }
3692 EXPORT_SYMBOL(done_path_create);
3693 
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3694 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3695 				struct path *path, unsigned int lookup_flags)
3696 {
3697 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3698 }
3699 EXPORT_SYMBOL(user_path_create);
3700 
vfs_mknod2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3701 int vfs_mknod2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3702 {
3703 	int error = may_create(mnt, dir, dentry);
3704 
3705 	if (error)
3706 		return error;
3707 
3708 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3709 		return -EPERM;
3710 
3711 	if (!dir->i_op->mknod)
3712 		return -EPERM;
3713 
3714 	error = devcgroup_inode_mknod(mode, dev);
3715 	if (error)
3716 		return error;
3717 
3718 	error = security_inode_mknod(dir, dentry, mode, dev);
3719 	if (error)
3720 		return error;
3721 
3722 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3723 	if (!error)
3724 		fsnotify_create(dir, dentry);
3725 	return error;
3726 }
3727 EXPORT_SYMBOL(vfs_mknod2);
3728 
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3729 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3730 {
3731 	return vfs_mknod2(NULL, dir, dentry, mode, dev);
3732 }
3733 EXPORT_SYMBOL(vfs_mknod);
3734 
may_mknod(umode_t mode)3735 static int may_mknod(umode_t mode)
3736 {
3737 	switch (mode & S_IFMT) {
3738 	case S_IFREG:
3739 	case S_IFCHR:
3740 	case S_IFBLK:
3741 	case S_IFIFO:
3742 	case S_IFSOCK:
3743 	case 0: /* zero mode translates to S_IFREG */
3744 		return 0;
3745 	case S_IFDIR:
3746 		return -EPERM;
3747 	default:
3748 		return -EINVAL;
3749 	}
3750 }
3751 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned,dev)3752 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3753 		unsigned, dev)
3754 {
3755 	struct dentry *dentry;
3756 	struct path path;
3757 	int error;
3758 	unsigned int lookup_flags = 0;
3759 
3760 	error = may_mknod(mode);
3761 	if (error)
3762 		return error;
3763 retry:
3764 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3765 	if (IS_ERR(dentry))
3766 		return PTR_ERR(dentry);
3767 
3768 	if (!IS_POSIXACL(path.dentry->d_inode))
3769 		mode &= ~current_umask();
3770 	error = security_path_mknod(&path, dentry, mode, dev);
3771 	if (error)
3772 		goto out;
3773 	switch (mode & S_IFMT) {
3774 		case 0: case S_IFREG:
3775 			error = vfs_create2(path.mnt, path.dentry->d_inode,dentry,mode,true);
3776 			if (!error)
3777 				ima_post_path_mknod(dentry);
3778 			break;
3779 		case S_IFCHR: case S_IFBLK:
3780 			error = vfs_mknod2(path.mnt, path.dentry->d_inode,dentry,mode,
3781 					new_decode_dev(dev));
3782 			break;
3783 		case S_IFIFO: case S_IFSOCK:
3784 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3785 			break;
3786 	}
3787 out:
3788 	done_path_create(&path, dentry);
3789 	if (retry_estale(error, lookup_flags)) {
3790 		lookup_flags |= LOOKUP_REVAL;
3791 		goto retry;
3792 	}
3793 	return error;
3794 }
3795 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3796 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3797 {
3798 	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3799 }
3800 
vfs_mkdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,umode_t mode)3801 int vfs_mkdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, umode_t mode)
3802 {
3803 	int error = may_create(mnt, dir, dentry);
3804 	unsigned max_links = dir->i_sb->s_max_links;
3805 
3806 	if (error)
3807 		return error;
3808 
3809 	if (!dir->i_op->mkdir)
3810 		return -EPERM;
3811 
3812 	mode &= (S_IRWXUGO|S_ISVTX);
3813 	error = security_inode_mkdir(dir, dentry, mode);
3814 	if (error)
3815 		return error;
3816 
3817 	if (max_links && dir->i_nlink >= max_links)
3818 		return -EMLINK;
3819 
3820 	error = dir->i_op->mkdir(dir, dentry, mode);
3821 	if (!error)
3822 		fsnotify_mkdir(dir, dentry);
3823 	return error;
3824 }
3825 EXPORT_SYMBOL(vfs_mkdir2);
3826 
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3827 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3828 {
3829 	return vfs_mkdir2(NULL, dir, dentry, mode);
3830 }
3831 EXPORT_SYMBOL(vfs_mkdir);
3832 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3833 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3834 {
3835 	struct dentry *dentry;
3836 	struct path path;
3837 	int error;
3838 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3839 
3840 retry:
3841 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3842 	if (IS_ERR(dentry))
3843 		return PTR_ERR(dentry);
3844 
3845 	if (!IS_POSIXACL(path.dentry->d_inode))
3846 		mode &= ~current_umask();
3847 	error = security_path_mkdir(&path, dentry, mode);
3848 	if (!error)
3849 		error = vfs_mkdir2(path.mnt, path.dentry->d_inode, dentry, mode);
3850 	done_path_create(&path, dentry);
3851 	if (retry_estale(error, lookup_flags)) {
3852 		lookup_flags |= LOOKUP_REVAL;
3853 		goto retry;
3854 	}
3855 	return error;
3856 }
3857 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3858 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3859 {
3860 	return sys_mkdirat(AT_FDCWD, pathname, mode);
3861 }
3862 
vfs_rmdir2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry)3863 int vfs_rmdir2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry)
3864 {
3865 	int error = may_delete(mnt, dir, dentry, 1);
3866 
3867 	if (error)
3868 		return error;
3869 
3870 	if (!dir->i_op->rmdir)
3871 		return -EPERM;
3872 
3873 	dget(dentry);
3874 	inode_lock(dentry->d_inode);
3875 
3876 	error = -EBUSY;
3877 	if (is_local_mountpoint(dentry))
3878 		goto out;
3879 
3880 	error = security_inode_rmdir(dir, dentry);
3881 	if (error)
3882 		goto out;
3883 
3884 	shrink_dcache_parent(dentry);
3885 	error = dir->i_op->rmdir(dir, dentry);
3886 	if (error)
3887 		goto out;
3888 
3889 	dentry->d_inode->i_flags |= S_DEAD;
3890 	dont_mount(dentry);
3891 	detach_mounts(dentry);
3892 
3893 out:
3894 	inode_unlock(dentry->d_inode);
3895 	dput(dentry);
3896 	if (!error)
3897 		d_delete(dentry);
3898 	return error;
3899 }
3900 EXPORT_SYMBOL(vfs_rmdir2);
3901 
vfs_rmdir(struct inode * dir,struct dentry * dentry)3902 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3903 {
3904 	return vfs_rmdir2(NULL, dir, dentry);
3905 }
3906 EXPORT_SYMBOL(vfs_rmdir);
3907 
do_rmdir(int dfd,const char __user * pathname)3908 static long do_rmdir(int dfd, const char __user *pathname)
3909 {
3910 	int error = 0;
3911 	struct filename *name;
3912 	struct dentry *dentry;
3913 	struct path path;
3914 	struct qstr last;
3915 	int type;
3916 	unsigned int lookup_flags = 0;
3917 retry:
3918 	name = user_path_parent(dfd, pathname,
3919 				&path, &last, &type, lookup_flags);
3920 	if (IS_ERR(name))
3921 		return PTR_ERR(name);
3922 
3923 	switch (type) {
3924 	case LAST_DOTDOT:
3925 		error = -ENOTEMPTY;
3926 		goto exit1;
3927 	case LAST_DOT:
3928 		error = -EINVAL;
3929 		goto exit1;
3930 	case LAST_ROOT:
3931 		error = -EBUSY;
3932 		goto exit1;
3933 	}
3934 
3935 	error = mnt_want_write(path.mnt);
3936 	if (error)
3937 		goto exit1;
3938 
3939 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3940 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3941 	error = PTR_ERR(dentry);
3942 	if (IS_ERR(dentry))
3943 		goto exit2;
3944 	if (!dentry->d_inode) {
3945 		error = -ENOENT;
3946 		goto exit3;
3947 	}
3948 	error = security_path_rmdir(&path, dentry);
3949 	if (error)
3950 		goto exit3;
3951 	error = vfs_rmdir2(path.mnt, path.dentry->d_inode, dentry);
3952 exit3:
3953 	dput(dentry);
3954 exit2:
3955 	inode_unlock(path.dentry->d_inode);
3956 	mnt_drop_write(path.mnt);
3957 exit1:
3958 	path_put(&path);
3959 	putname(name);
3960 	if (retry_estale(error, lookup_flags)) {
3961 		lookup_flags |= LOOKUP_REVAL;
3962 		goto retry;
3963 	}
3964 	return error;
3965 }
3966 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3967 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3968 {
3969 	return do_rmdir(AT_FDCWD, pathname);
3970 }
3971 
3972 /**
3973  * vfs_unlink - unlink a filesystem object
3974  * @dir:	parent directory
3975  * @dentry:	victim
3976  * @delegated_inode: returns victim inode, if the inode is delegated.
3977  *
3978  * The caller must hold dir->i_mutex.
3979  *
3980  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3981  * return a reference to the inode in delegated_inode.  The caller
3982  * should then break the delegation on that inode and retry.  Because
3983  * breaking a delegation may take a long time, the caller should drop
3984  * dir->i_mutex before doing so.
3985  *
3986  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3987  * be appropriate for callers that expect the underlying filesystem not
3988  * to be NFS exported.
3989  */
vfs_unlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)3990 int vfs_unlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3991 {
3992 	struct inode *target = dentry->d_inode;
3993 	int error = may_delete(mnt, dir, dentry, 0);
3994 
3995 	if (error)
3996 		return error;
3997 
3998 	if (!dir->i_op->unlink)
3999 		return -EPERM;
4000 
4001 	inode_lock(target);
4002 	if (is_local_mountpoint(dentry))
4003 		error = -EBUSY;
4004 	else {
4005 		error = security_inode_unlink(dir, dentry);
4006 		if (!error) {
4007 			error = try_break_deleg(target, delegated_inode);
4008 			if (error)
4009 				goto out;
4010 			error = dir->i_op->unlink(dir, dentry);
4011 			if (!error) {
4012 				dont_mount(dentry);
4013 				detach_mounts(dentry);
4014 			}
4015 		}
4016 	}
4017 out:
4018 	inode_unlock(target);
4019 
4020 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4021 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4022 		fsnotify_link_count(target);
4023 		d_delete(dentry);
4024 	}
4025 
4026 	return error;
4027 }
4028 EXPORT_SYMBOL(vfs_unlink2);
4029 
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4030 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4031 {
4032 	return vfs_unlink2(NULL, dir, dentry, delegated_inode);
4033 }
4034 EXPORT_SYMBOL(vfs_unlink);
4035 
4036 /*
4037  * Make sure that the actual truncation of the file will occur outside its
4038  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4039  * writeout happening, and we don't want to prevent access to the directory
4040  * while waiting on the I/O.
4041  */
do_unlinkat(int dfd,const char __user * pathname)4042 static long do_unlinkat(int dfd, const char __user *pathname)
4043 {
4044 	int error;
4045 	struct filename *name;
4046 	struct dentry *dentry;
4047 	struct path path;
4048 	struct qstr last;
4049 	int type;
4050 	struct inode *inode = NULL;
4051 	struct inode *delegated_inode = NULL;
4052 	unsigned int lookup_flags = 0;
4053 retry:
4054 	name = user_path_parent(dfd, pathname,
4055 				&path, &last, &type, lookup_flags);
4056 	if (IS_ERR(name))
4057 		return PTR_ERR(name);
4058 
4059 	error = -EISDIR;
4060 	if (type != LAST_NORM)
4061 		goto exit1;
4062 
4063 	error = mnt_want_write(path.mnt);
4064 	if (error)
4065 		goto exit1;
4066 retry_deleg:
4067 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4068 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4069 	error = PTR_ERR(dentry);
4070 	if (!IS_ERR(dentry)) {
4071 		/* Why not before? Because we want correct error value */
4072 		if (last.name[last.len])
4073 			goto slashes;
4074 		inode = dentry->d_inode;
4075 		if (d_is_negative(dentry))
4076 			goto slashes;
4077 		ihold(inode);
4078 		error = security_path_unlink(&path, dentry);
4079 		if (error)
4080 			goto exit2;
4081 		error = vfs_unlink2(path.mnt, path.dentry->d_inode, dentry, &delegated_inode);
4082 exit2:
4083 		dput(dentry);
4084 	}
4085 	inode_unlock(path.dentry->d_inode);
4086 	if (inode)
4087 		iput(inode);	/* truncate the inode here */
4088 	inode = NULL;
4089 	if (delegated_inode) {
4090 		error = break_deleg_wait(&delegated_inode);
4091 		if (!error)
4092 			goto retry_deleg;
4093 	}
4094 	mnt_drop_write(path.mnt);
4095 exit1:
4096 	path_put(&path);
4097 	putname(name);
4098 	if (retry_estale(error, lookup_flags)) {
4099 		lookup_flags |= LOOKUP_REVAL;
4100 		inode = NULL;
4101 		goto retry;
4102 	}
4103 	return error;
4104 
4105 slashes:
4106 	if (d_is_negative(dentry))
4107 		error = -ENOENT;
4108 	else if (d_is_dir(dentry))
4109 		error = -EISDIR;
4110 	else
4111 		error = -ENOTDIR;
4112 	goto exit2;
4113 }
4114 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4115 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4116 {
4117 	if ((flag & ~AT_REMOVEDIR) != 0)
4118 		return -EINVAL;
4119 
4120 	if (flag & AT_REMOVEDIR)
4121 		return do_rmdir(dfd, pathname);
4122 
4123 	return do_unlinkat(dfd, pathname);
4124 }
4125 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4126 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4127 {
4128 	return do_unlinkat(AT_FDCWD, pathname);
4129 }
4130 
vfs_symlink2(struct vfsmount * mnt,struct inode * dir,struct dentry * dentry,const char * oldname)4131 int vfs_symlink2(struct vfsmount *mnt, struct inode *dir, struct dentry *dentry, const char *oldname)
4132 {
4133 	int error = may_create(mnt, dir, dentry);
4134 
4135 	if (error)
4136 		return error;
4137 
4138 	if (!dir->i_op->symlink)
4139 		return -EPERM;
4140 
4141 	error = security_inode_symlink(dir, dentry, oldname);
4142 	if (error)
4143 		return error;
4144 
4145 	error = dir->i_op->symlink(dir, dentry, oldname);
4146 	if (!error)
4147 		fsnotify_create(dir, dentry);
4148 	return error;
4149 }
4150 EXPORT_SYMBOL(vfs_symlink2);
4151 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)4152 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4153 {
4154 	return vfs_symlink2(NULL, dir, dentry, oldname);
4155 }
4156 EXPORT_SYMBOL(vfs_symlink);
4157 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4158 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4159 		int, newdfd, const char __user *, newname)
4160 {
4161 	int error;
4162 	struct filename *from;
4163 	struct dentry *dentry;
4164 	struct path path;
4165 	unsigned int lookup_flags = 0;
4166 
4167 	from = getname(oldname);
4168 	if (IS_ERR(from))
4169 		return PTR_ERR(from);
4170 retry:
4171 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4172 	error = PTR_ERR(dentry);
4173 	if (IS_ERR(dentry))
4174 		goto out_putname;
4175 
4176 	error = security_path_symlink(&path, dentry, from->name);
4177 	if (!error)
4178 		error = vfs_symlink2(path.mnt, path.dentry->d_inode, dentry, from->name);
4179 	done_path_create(&path, dentry);
4180 	if (retry_estale(error, lookup_flags)) {
4181 		lookup_flags |= LOOKUP_REVAL;
4182 		goto retry;
4183 	}
4184 out_putname:
4185 	putname(from);
4186 	return error;
4187 }
4188 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4189 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4190 {
4191 	return sys_symlinkat(oldname, AT_FDCWD, newname);
4192 }
4193 
4194 /**
4195  * vfs_link - create a new link
4196  * @old_dentry:	object to be linked
4197  * @dir:	new parent
4198  * @new_dentry:	where to create the new link
4199  * @delegated_inode: returns inode needing a delegation break
4200  *
4201  * The caller must hold dir->i_mutex
4202  *
4203  * If vfs_link discovers a delegation on the to-be-linked file in need
4204  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4205  * inode in delegated_inode.  The caller should then break the delegation
4206  * and retry.  Because breaking a delegation may take a long time, the
4207  * caller should drop the i_mutex before doing so.
4208  *
4209  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4210  * be appropriate for callers that expect the underlying filesystem not
4211  * to be NFS exported.
4212  */
vfs_link2(struct vfsmount * mnt,struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4213 int vfs_link2(struct vfsmount *mnt, struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4214 {
4215 	struct inode *inode = old_dentry->d_inode;
4216 	unsigned max_links = dir->i_sb->s_max_links;
4217 	int error;
4218 
4219 	if (!inode)
4220 		return -ENOENT;
4221 
4222 	error = may_create(mnt, dir, new_dentry);
4223 	if (error)
4224 		return error;
4225 
4226 	if (dir->i_sb != inode->i_sb)
4227 		return -EXDEV;
4228 
4229 	/*
4230 	 * A link to an append-only or immutable file cannot be created.
4231 	 */
4232 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4233 		return -EPERM;
4234 	/*
4235 	 * Updating the link count will likely cause i_uid and i_gid to
4236 	 * be writen back improperly if their true value is unknown to
4237 	 * the vfs.
4238 	 */
4239 	if (HAS_UNMAPPED_ID(inode))
4240 		return -EPERM;
4241 	if (!dir->i_op->link)
4242 		return -EPERM;
4243 	if (S_ISDIR(inode->i_mode))
4244 		return -EPERM;
4245 
4246 	error = security_inode_link(old_dentry, dir, new_dentry);
4247 	if (error)
4248 		return error;
4249 
4250 	inode_lock(inode);
4251 	/* Make sure we don't allow creating hardlink to an unlinked file */
4252 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4253 		error =  -ENOENT;
4254 	else if (max_links && inode->i_nlink >= max_links)
4255 		error = -EMLINK;
4256 	else {
4257 		error = try_break_deleg(inode, delegated_inode);
4258 		if (!error)
4259 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4260 	}
4261 
4262 	if (!error && (inode->i_state & I_LINKABLE)) {
4263 		spin_lock(&inode->i_lock);
4264 		inode->i_state &= ~I_LINKABLE;
4265 		spin_unlock(&inode->i_lock);
4266 	}
4267 	inode_unlock(inode);
4268 	if (!error)
4269 		fsnotify_link(dir, inode, new_dentry);
4270 	return error;
4271 }
4272 EXPORT_SYMBOL(vfs_link2);
4273 
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4274 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4275 {
4276 	return vfs_link2(NULL, old_dentry, dir, new_dentry, delegated_inode);
4277 }
4278 EXPORT_SYMBOL(vfs_link);
4279 
4280 /*
4281  * Hardlinks are often used in delicate situations.  We avoid
4282  * security-related surprises by not following symlinks on the
4283  * newname.  --KAB
4284  *
4285  * We don't follow them on the oldname either to be compatible
4286  * with linux 2.0, and to avoid hard-linking to directories
4287  * and other special files.  --ADM
4288  */
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4289 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4290 		int, newdfd, const char __user *, newname, int, flags)
4291 {
4292 	struct dentry *new_dentry;
4293 	struct path old_path, new_path;
4294 	struct inode *delegated_inode = NULL;
4295 	int how = 0;
4296 	int error;
4297 
4298 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4299 		return -EINVAL;
4300 	/*
4301 	 * To use null names we require CAP_DAC_READ_SEARCH
4302 	 * This ensures that not everyone will be able to create
4303 	 * handlink using the passed filedescriptor.
4304 	 */
4305 	if (flags & AT_EMPTY_PATH) {
4306 		if (!capable(CAP_DAC_READ_SEARCH))
4307 			return -ENOENT;
4308 		how = LOOKUP_EMPTY;
4309 	}
4310 
4311 	if (flags & AT_SYMLINK_FOLLOW)
4312 		how |= LOOKUP_FOLLOW;
4313 retry:
4314 	error = user_path_at(olddfd, oldname, how, &old_path);
4315 	if (error)
4316 		return error;
4317 
4318 	new_dentry = user_path_create(newdfd, newname, &new_path,
4319 					(how & LOOKUP_REVAL));
4320 	error = PTR_ERR(new_dentry);
4321 	if (IS_ERR(new_dentry))
4322 		goto out;
4323 
4324 	error = -EXDEV;
4325 	if (old_path.mnt != new_path.mnt)
4326 		goto out_dput;
4327 	error = may_linkat(&old_path);
4328 	if (unlikely(error))
4329 		goto out_dput;
4330 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4331 	if (error)
4332 		goto out_dput;
4333 	error = vfs_link2(old_path.mnt, old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4334 out_dput:
4335 	done_path_create(&new_path, new_dentry);
4336 	if (delegated_inode) {
4337 		error = break_deleg_wait(&delegated_inode);
4338 		if (!error) {
4339 			path_put(&old_path);
4340 			goto retry;
4341 		}
4342 	}
4343 	if (retry_estale(error, how)) {
4344 		path_put(&old_path);
4345 		how |= LOOKUP_REVAL;
4346 		goto retry;
4347 	}
4348 out:
4349 	path_put(&old_path);
4350 
4351 	return error;
4352 }
4353 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4354 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4355 {
4356 	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4357 }
4358 
4359 /**
4360  * vfs_rename - rename a filesystem object
4361  * @old_dir:	parent of source
4362  * @old_dentry:	source
4363  * @new_dir:	parent of destination
4364  * @new_dentry:	destination
4365  * @delegated_inode: returns an inode needing a delegation break
4366  * @flags:	rename flags
4367  *
4368  * The caller must hold multiple mutexes--see lock_rename()).
4369  *
4370  * If vfs_rename discovers a delegation in need of breaking at either
4371  * the source or destination, it will return -EWOULDBLOCK and return a
4372  * reference to the inode in delegated_inode.  The caller should then
4373  * break the delegation and retry.  Because breaking a delegation may
4374  * take a long time, the caller should drop all locks before doing
4375  * so.
4376  *
4377  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4378  * be appropriate for callers that expect the underlying filesystem not
4379  * to be NFS exported.
4380  *
4381  * The worst of all namespace operations - renaming directory. "Perverted"
4382  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4383  * Problems:
4384  *	a) we can get into loop creation.
4385  *	b) race potential - two innocent renames can create a loop together.
4386  *	   That's where 4.4 screws up. Current fix: serialization on
4387  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4388  *	   story.
4389  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4390  *	   and source (if it is not a directory).
4391  *	   And that - after we got ->i_mutex on parents (until then we don't know
4392  *	   whether the target exists).  Solution: try to be smart with locking
4393  *	   order for inodes.  We rely on the fact that tree topology may change
4394  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4395  *	   move will be locked.  Thus we can rank directories by the tree
4396  *	   (ancestors first) and rank all non-directories after them.
4397  *	   That works since everybody except rename does "lock parent, lookup,
4398  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4399  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4400  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4401  *	   we'd better make sure that there's no link(2) for them.
4402  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4403  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4404  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4405  *	   ->i_mutex on parents, which works but leads to some truly excessive
4406  *	   locking].
4407  */
vfs_rename2(struct vfsmount * mnt,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4408 int vfs_rename2(struct vfsmount *mnt,
4409 	       struct inode *old_dir, struct dentry *old_dentry,
4410 	       struct inode *new_dir, struct dentry *new_dentry,
4411 	       struct inode **delegated_inode, unsigned int flags)
4412 {
4413 	int error;
4414 	bool is_dir = d_is_dir(old_dentry);
4415 	struct inode *source = old_dentry->d_inode;
4416 	struct inode *target = new_dentry->d_inode;
4417 	bool new_is_dir = false;
4418 	unsigned max_links = new_dir->i_sb->s_max_links;
4419 	struct name_snapshot old_name;
4420 
4421 	/*
4422 	 * Check source == target.
4423 	 * On overlayfs need to look at underlying inodes.
4424 	 */
4425 	if (d_real_inode(old_dentry) == d_real_inode(new_dentry))
4426 		return 0;
4427 
4428 	error = may_delete(mnt, old_dir, old_dentry, is_dir);
4429 	if (error)
4430 		return error;
4431 
4432 	if (!target) {
4433 		error = may_create(mnt, new_dir, new_dentry);
4434 	} else {
4435 		new_is_dir = d_is_dir(new_dentry);
4436 
4437 		if (!(flags & RENAME_EXCHANGE))
4438 			error = may_delete(mnt, new_dir, new_dentry, is_dir);
4439 		else
4440 			error = may_delete(mnt, new_dir, new_dentry, new_is_dir);
4441 	}
4442 	if (error)
4443 		return error;
4444 
4445 	if (!old_dir->i_op->rename)
4446 		return -EPERM;
4447 
4448 	/*
4449 	 * If we are going to change the parent - check write permissions,
4450 	 * we'll need to flip '..'.
4451 	 */
4452 	if (new_dir != old_dir) {
4453 		if (is_dir) {
4454 			error = inode_permission2(mnt, source, MAY_WRITE);
4455 			if (error)
4456 				return error;
4457 		}
4458 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4459 			error = inode_permission2(mnt, target, MAY_WRITE);
4460 			if (error)
4461 				return error;
4462 		}
4463 	}
4464 
4465 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4466 				      flags);
4467 	if (error)
4468 		return error;
4469 
4470 	take_dentry_name_snapshot(&old_name, old_dentry);
4471 	dget(new_dentry);
4472 	if (!is_dir || (flags & RENAME_EXCHANGE))
4473 		lock_two_nondirectories(source, target);
4474 	else if (target)
4475 		inode_lock(target);
4476 
4477 	error = -EBUSY;
4478 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4479 		goto out;
4480 
4481 	if (max_links && new_dir != old_dir) {
4482 		error = -EMLINK;
4483 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4484 			goto out;
4485 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4486 		    old_dir->i_nlink >= max_links)
4487 			goto out;
4488 	}
4489 	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4490 		shrink_dcache_parent(new_dentry);
4491 	if (!is_dir) {
4492 		error = try_break_deleg(source, delegated_inode);
4493 		if (error)
4494 			goto out;
4495 	}
4496 	if (target && !new_is_dir) {
4497 		error = try_break_deleg(target, delegated_inode);
4498 		if (error)
4499 			goto out;
4500 	}
4501 	error = old_dir->i_op->rename(old_dir, old_dentry,
4502 				       new_dir, new_dentry, flags);
4503 	if (error)
4504 		goto out;
4505 
4506 	if (!(flags & RENAME_EXCHANGE) && target) {
4507 		if (is_dir)
4508 			target->i_flags |= S_DEAD;
4509 		dont_mount(new_dentry);
4510 		detach_mounts(new_dentry);
4511 	}
4512 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4513 		if (!(flags & RENAME_EXCHANGE))
4514 			d_move(old_dentry, new_dentry);
4515 		else
4516 			d_exchange(old_dentry, new_dentry);
4517 	}
4518 out:
4519 	if (!is_dir || (flags & RENAME_EXCHANGE))
4520 		unlock_two_nondirectories(source, target);
4521 	else if (target)
4522 		inode_unlock(target);
4523 	dput(new_dentry);
4524 	if (!error) {
4525 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4526 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4527 		if (flags & RENAME_EXCHANGE) {
4528 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4529 				      new_is_dir, NULL, new_dentry);
4530 		}
4531 	}
4532 	release_dentry_name_snapshot(&old_name);
4533 
4534 	return error;
4535 }
4536 EXPORT_SYMBOL(vfs_rename2);
4537 
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4538 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4539 	       struct inode *new_dir, struct dentry *new_dentry,
4540 	       struct inode **delegated_inode, unsigned int flags)
4541 {
4542 	return vfs_rename2(NULL, old_dir, old_dentry, new_dir, new_dentry, delegated_inode, flags);
4543 }
4544 EXPORT_SYMBOL(vfs_rename);
4545 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4546 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4547 		int, newdfd, const char __user *, newname, unsigned int, flags)
4548 {
4549 	struct dentry *old_dentry, *new_dentry;
4550 	struct dentry *trap;
4551 	struct path old_path, new_path;
4552 	struct qstr old_last, new_last;
4553 	int old_type, new_type;
4554 	struct inode *delegated_inode = NULL;
4555 	struct filename *from;
4556 	struct filename *to;
4557 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4558 	bool should_retry = false;
4559 	int error;
4560 
4561 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4562 		return -EINVAL;
4563 
4564 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4565 	    (flags & RENAME_EXCHANGE))
4566 		return -EINVAL;
4567 
4568 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4569 		return -EPERM;
4570 
4571 	if (flags & RENAME_EXCHANGE)
4572 		target_flags = 0;
4573 
4574 retry:
4575 	from = user_path_parent(olddfd, oldname,
4576 				&old_path, &old_last, &old_type, lookup_flags);
4577 	if (IS_ERR(from)) {
4578 		error = PTR_ERR(from);
4579 		goto exit;
4580 	}
4581 
4582 	to = user_path_parent(newdfd, newname,
4583 				&new_path, &new_last, &new_type, lookup_flags);
4584 	if (IS_ERR(to)) {
4585 		error = PTR_ERR(to);
4586 		goto exit1;
4587 	}
4588 
4589 	error = -EXDEV;
4590 	if (old_path.mnt != new_path.mnt)
4591 		goto exit2;
4592 
4593 	error = -EBUSY;
4594 	if (old_type != LAST_NORM)
4595 		goto exit2;
4596 
4597 	if (flags & RENAME_NOREPLACE)
4598 		error = -EEXIST;
4599 	if (new_type != LAST_NORM)
4600 		goto exit2;
4601 
4602 	error = mnt_want_write(old_path.mnt);
4603 	if (error)
4604 		goto exit2;
4605 
4606 retry_deleg:
4607 	trap = lock_rename(new_path.dentry, old_path.dentry);
4608 
4609 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4610 	error = PTR_ERR(old_dentry);
4611 	if (IS_ERR(old_dentry))
4612 		goto exit3;
4613 	/* source must exist */
4614 	error = -ENOENT;
4615 	if (d_is_negative(old_dentry))
4616 		goto exit4;
4617 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4618 	error = PTR_ERR(new_dentry);
4619 	if (IS_ERR(new_dentry))
4620 		goto exit4;
4621 	error = -EEXIST;
4622 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4623 		goto exit5;
4624 	if (flags & RENAME_EXCHANGE) {
4625 		error = -ENOENT;
4626 		if (d_is_negative(new_dentry))
4627 			goto exit5;
4628 
4629 		if (!d_is_dir(new_dentry)) {
4630 			error = -ENOTDIR;
4631 			if (new_last.name[new_last.len])
4632 				goto exit5;
4633 		}
4634 	}
4635 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4636 	if (!d_is_dir(old_dentry)) {
4637 		error = -ENOTDIR;
4638 		if (old_last.name[old_last.len])
4639 			goto exit5;
4640 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4641 			goto exit5;
4642 	}
4643 	/* source should not be ancestor of target */
4644 	error = -EINVAL;
4645 	if (old_dentry == trap)
4646 		goto exit5;
4647 	/* target should not be an ancestor of source */
4648 	if (!(flags & RENAME_EXCHANGE))
4649 		error = -ENOTEMPTY;
4650 	if (new_dentry == trap)
4651 		goto exit5;
4652 
4653 	error = security_path_rename(&old_path, old_dentry,
4654 				     &new_path, new_dentry, flags);
4655 	if (error)
4656 		goto exit5;
4657 	error = vfs_rename2(old_path.mnt, old_path.dentry->d_inode, old_dentry,
4658 			   new_path.dentry->d_inode, new_dentry,
4659 			   &delegated_inode, flags);
4660 exit5:
4661 	dput(new_dentry);
4662 exit4:
4663 	dput(old_dentry);
4664 exit3:
4665 	unlock_rename(new_path.dentry, old_path.dentry);
4666 	if (delegated_inode) {
4667 		error = break_deleg_wait(&delegated_inode);
4668 		if (!error)
4669 			goto retry_deleg;
4670 	}
4671 	mnt_drop_write(old_path.mnt);
4672 exit2:
4673 	if (retry_estale(error, lookup_flags))
4674 		should_retry = true;
4675 	path_put(&new_path);
4676 	putname(to);
4677 exit1:
4678 	path_put(&old_path);
4679 	putname(from);
4680 	if (should_retry) {
4681 		should_retry = false;
4682 		lookup_flags |= LOOKUP_REVAL;
4683 		goto retry;
4684 	}
4685 exit:
4686 	return error;
4687 }
4688 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4689 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4690 		int, newdfd, const char __user *, newname)
4691 {
4692 	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4693 }
4694 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4695 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4696 {
4697 	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4698 }
4699 
vfs_whiteout(struct inode * dir,struct dentry * dentry)4700 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4701 {
4702 	int error = may_create(NULL, dir, dentry);
4703 	if (error)
4704 		return error;
4705 
4706 	if (!dir->i_op->mknod)
4707 		return -EPERM;
4708 
4709 	return dir->i_op->mknod(dir, dentry,
4710 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4711 }
4712 EXPORT_SYMBOL(vfs_whiteout);
4713 
readlink_copy(char __user * buffer,int buflen,const char * link)4714 int readlink_copy(char __user *buffer, int buflen, const char *link)
4715 {
4716 	int len = PTR_ERR(link);
4717 	if (IS_ERR(link))
4718 		goto out;
4719 
4720 	len = strlen(link);
4721 	if (len > (unsigned) buflen)
4722 		len = buflen;
4723 	if (copy_to_user(buffer, link, len))
4724 		len = -EFAULT;
4725 out:
4726 	return len;
4727 }
4728 
4729 /*
4730  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4731  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4732  * for any given inode is up to filesystem.
4733  */
generic_readlink(struct dentry * dentry,char __user * buffer,int buflen)4734 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4735 {
4736 	DEFINE_DELAYED_CALL(done);
4737 	struct inode *inode = d_inode(dentry);
4738 	const char *link = inode->i_link;
4739 	int res;
4740 
4741 	if (!link) {
4742 		link = inode->i_op->get_link(dentry, inode, &done);
4743 		if (IS_ERR(link))
4744 			return PTR_ERR(link);
4745 	}
4746 	res = readlink_copy(buffer, buflen, link);
4747 	do_delayed_call(&done);
4748 	return res;
4749 }
4750 EXPORT_SYMBOL(generic_readlink);
4751 
4752 /**
4753  * vfs_get_link - get symlink body
4754  * @dentry: dentry on which to get symbolic link
4755  * @done: caller needs to free returned data with this
4756  *
4757  * Calls security hook and i_op->get_link() on the supplied inode.
4758  *
4759  * It does not touch atime.  That's up to the caller if necessary.
4760  *
4761  * Does not work on "special" symlinks like /proc/$$/fd/N
4762  */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4763 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4764 {
4765 	const char *res = ERR_PTR(-EINVAL);
4766 	struct inode *inode = d_inode(dentry);
4767 
4768 	if (d_is_symlink(dentry)) {
4769 		res = ERR_PTR(security_inode_readlink(dentry));
4770 		if (!res)
4771 			res = inode->i_op->get_link(dentry, inode, done);
4772 	}
4773 	return res;
4774 }
4775 EXPORT_SYMBOL(vfs_get_link);
4776 
4777 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)4778 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4779 			  struct delayed_call *callback)
4780 {
4781 	char *kaddr;
4782 	struct page *page;
4783 	struct address_space *mapping = inode->i_mapping;
4784 
4785 	if (!dentry) {
4786 		page = find_get_page(mapping, 0);
4787 		if (!page)
4788 			return ERR_PTR(-ECHILD);
4789 		if (!PageUptodate(page)) {
4790 			put_page(page);
4791 			return ERR_PTR(-ECHILD);
4792 		}
4793 	} else {
4794 		page = read_mapping_page(mapping, 0, NULL);
4795 		if (IS_ERR(page))
4796 			return (char*)page;
4797 	}
4798 	set_delayed_call(callback, page_put_link, page);
4799 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4800 	kaddr = page_address(page);
4801 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4802 	return kaddr;
4803 }
4804 
4805 EXPORT_SYMBOL(page_get_link);
4806 
page_put_link(void * arg)4807 void page_put_link(void *arg)
4808 {
4809 	put_page(arg);
4810 }
4811 EXPORT_SYMBOL(page_put_link);
4812 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4813 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4814 {
4815 	DEFINE_DELAYED_CALL(done);
4816 	int res = readlink_copy(buffer, buflen,
4817 				page_get_link(dentry, d_inode(dentry),
4818 					      &done));
4819 	do_delayed_call(&done);
4820 	return res;
4821 }
4822 EXPORT_SYMBOL(page_readlink);
4823 
4824 /*
4825  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4826  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4827 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4828 {
4829 	struct address_space *mapping = inode->i_mapping;
4830 	struct page *page;
4831 	void *fsdata;
4832 	int err;
4833 	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4834 	if (nofs)
4835 		flags |= AOP_FLAG_NOFS;
4836 
4837 retry:
4838 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4839 				flags, &page, &fsdata);
4840 	if (err)
4841 		goto fail;
4842 
4843 	memcpy(page_address(page), symname, len-1);
4844 
4845 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4846 							page, fsdata);
4847 	if (err < 0)
4848 		goto fail;
4849 	if (err < len-1)
4850 		goto retry;
4851 
4852 	mark_inode_dirty(inode);
4853 	return 0;
4854 fail:
4855 	return err;
4856 }
4857 EXPORT_SYMBOL(__page_symlink);
4858 
page_symlink(struct inode * inode,const char * symname,int len)4859 int page_symlink(struct inode *inode, const char *symname, int len)
4860 {
4861 	return __page_symlink(inode, symname, len,
4862 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4863 }
4864 EXPORT_SYMBOL(page_symlink);
4865 
4866 const struct inode_operations page_symlink_inode_operations = {
4867 	.readlink	= generic_readlink,
4868 	.get_link	= page_get_link,
4869 };
4870 EXPORT_SYMBOL(page_symlink_inode_operations);
4871