1 /*
2 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24
25 /*
26 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27 * irrelevant.
28 */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 struct nd_region_data *ndrd)
36 {
37 int i, j;
38
39 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
42 struct resource *res = &nvdimm->flush_wpq[i];
43 unsigned long pfn = PHYS_PFN(res->start);
44 void __iomem *flush_page;
45
46 /* check if flush hints share a page */
47 for (j = 0; j < i; j++) {
48 struct resource *res_j = &nvdimm->flush_wpq[j];
49 unsigned long pfn_j = PHYS_PFN(res_j->start);
50
51 if (pfn == pfn_j)
52 break;
53 }
54
55 if (j < i)
56 flush_page = (void __iomem *) ((unsigned long)
57 ndrd_get_flush_wpq(ndrd, dimm, j)
58 & PAGE_MASK);
59 else
60 flush_page = devm_nvdimm_ioremap(dev,
61 PFN_PHYS(pfn), PAGE_SIZE);
62 if (!flush_page)
63 return -ENXIO;
64 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
65 + (res->start & ~PAGE_MASK));
66 }
67
68 return 0;
69 }
70
nd_region_activate(struct nd_region * nd_region)71 int nd_region_activate(struct nd_region *nd_region)
72 {
73 int i, j, num_flush = 0;
74 struct nd_region_data *ndrd;
75 struct device *dev = &nd_region->dev;
76 size_t flush_data_size = sizeof(void *);
77
78 nvdimm_bus_lock(&nd_region->dev);
79 for (i = 0; i < nd_region->ndr_mappings; i++) {
80 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
81 struct nvdimm *nvdimm = nd_mapping->nvdimm;
82
83 /* at least one null hint slot per-dimm for the "no-hint" case */
84 flush_data_size += sizeof(void *);
85 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
86 if (!nvdimm->num_flush)
87 continue;
88 flush_data_size += nvdimm->num_flush * sizeof(void *);
89 }
90 nvdimm_bus_unlock(&nd_region->dev);
91
92 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
93 if (!ndrd)
94 return -ENOMEM;
95 dev_set_drvdata(dev, ndrd);
96
97 if (!num_flush)
98 return 0;
99
100 ndrd->hints_shift = ilog2(num_flush);
101 for (i = 0; i < nd_region->ndr_mappings; i++) {
102 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
103 struct nvdimm *nvdimm = nd_mapping->nvdimm;
104 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
105
106 if (rc)
107 return rc;
108 }
109
110 /*
111 * Clear out entries that are duplicates. This should prevent the
112 * extra flushings.
113 */
114 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
115 /* ignore if NULL already */
116 if (!ndrd_get_flush_wpq(ndrd, i, 0))
117 continue;
118
119 for (j = i + 1; j < nd_region->ndr_mappings; j++)
120 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
121 ndrd_get_flush_wpq(ndrd, j, 0))
122 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
123 }
124
125 return 0;
126 }
127
nd_region_release(struct device * dev)128 static void nd_region_release(struct device *dev)
129 {
130 struct nd_region *nd_region = to_nd_region(dev);
131 u16 i;
132
133 for (i = 0; i < nd_region->ndr_mappings; i++) {
134 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
135 struct nvdimm *nvdimm = nd_mapping->nvdimm;
136
137 put_device(&nvdimm->dev);
138 }
139 free_percpu(nd_region->lane);
140 ida_simple_remove(®ion_ida, nd_region->id);
141 if (is_nd_blk(dev))
142 kfree(to_nd_blk_region(dev));
143 else
144 kfree(nd_region);
145 }
146
147 static struct device_type nd_blk_device_type = {
148 .name = "nd_blk",
149 .release = nd_region_release,
150 };
151
152 static struct device_type nd_pmem_device_type = {
153 .name = "nd_pmem",
154 .release = nd_region_release,
155 };
156
157 static struct device_type nd_volatile_device_type = {
158 .name = "nd_volatile",
159 .release = nd_region_release,
160 };
161
is_nd_pmem(struct device * dev)162 bool is_nd_pmem(struct device *dev)
163 {
164 return dev ? dev->type == &nd_pmem_device_type : false;
165 }
166
is_nd_blk(struct device * dev)167 bool is_nd_blk(struct device *dev)
168 {
169 return dev ? dev->type == &nd_blk_device_type : false;
170 }
171
to_nd_region(struct device * dev)172 struct nd_region *to_nd_region(struct device *dev)
173 {
174 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
175
176 WARN_ON(dev->type->release != nd_region_release);
177 return nd_region;
178 }
179 EXPORT_SYMBOL_GPL(to_nd_region);
180
to_nd_blk_region(struct device * dev)181 struct nd_blk_region *to_nd_blk_region(struct device *dev)
182 {
183 struct nd_region *nd_region = to_nd_region(dev);
184
185 WARN_ON(!is_nd_blk(dev));
186 return container_of(nd_region, struct nd_blk_region, nd_region);
187 }
188 EXPORT_SYMBOL_GPL(to_nd_blk_region);
189
nd_region_provider_data(struct nd_region * nd_region)190 void *nd_region_provider_data(struct nd_region *nd_region)
191 {
192 return nd_region->provider_data;
193 }
194 EXPORT_SYMBOL_GPL(nd_region_provider_data);
195
nd_blk_region_provider_data(struct nd_blk_region * ndbr)196 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
197 {
198 return ndbr->blk_provider_data;
199 }
200 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
201
nd_blk_region_set_provider_data(struct nd_blk_region * ndbr,void * data)202 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
203 {
204 ndbr->blk_provider_data = data;
205 }
206 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
207
208 /**
209 * nd_region_to_nstype() - region to an integer namespace type
210 * @nd_region: region-device to interrogate
211 *
212 * This is the 'nstype' attribute of a region as well, an input to the
213 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
214 * namespace devices with namespace drivers.
215 */
nd_region_to_nstype(struct nd_region * nd_region)216 int nd_region_to_nstype(struct nd_region *nd_region)
217 {
218 if (is_nd_pmem(&nd_region->dev)) {
219 u16 i, alias;
220
221 for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
222 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
223 struct nvdimm *nvdimm = nd_mapping->nvdimm;
224
225 if (nvdimm->flags & NDD_ALIASING)
226 alias++;
227 }
228 if (alias)
229 return ND_DEVICE_NAMESPACE_PMEM;
230 else
231 return ND_DEVICE_NAMESPACE_IO;
232 } else if (is_nd_blk(&nd_region->dev)) {
233 return ND_DEVICE_NAMESPACE_BLK;
234 }
235
236 return 0;
237 }
238 EXPORT_SYMBOL(nd_region_to_nstype);
239
size_show(struct device * dev,struct device_attribute * attr,char * buf)240 static ssize_t size_show(struct device *dev,
241 struct device_attribute *attr, char *buf)
242 {
243 struct nd_region *nd_region = to_nd_region(dev);
244 unsigned long long size = 0;
245
246 if (is_nd_pmem(dev)) {
247 size = nd_region->ndr_size;
248 } else if (nd_region->ndr_mappings == 1) {
249 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
250
251 size = nd_mapping->size;
252 }
253
254 return sprintf(buf, "%llu\n", size);
255 }
256 static DEVICE_ATTR_RO(size);
257
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)258 static ssize_t mappings_show(struct device *dev,
259 struct device_attribute *attr, char *buf)
260 {
261 struct nd_region *nd_region = to_nd_region(dev);
262
263 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
264 }
265 static DEVICE_ATTR_RO(mappings);
266
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)267 static ssize_t nstype_show(struct device *dev,
268 struct device_attribute *attr, char *buf)
269 {
270 struct nd_region *nd_region = to_nd_region(dev);
271
272 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
273 }
274 static DEVICE_ATTR_RO(nstype);
275
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)276 static ssize_t set_cookie_show(struct device *dev,
277 struct device_attribute *attr, char *buf)
278 {
279 struct nd_region *nd_region = to_nd_region(dev);
280 struct nd_interleave_set *nd_set = nd_region->nd_set;
281
282 if (is_nd_pmem(dev) && nd_set)
283 /* pass, should be precluded by region_visible */;
284 else
285 return -ENXIO;
286
287 return sprintf(buf, "%#llx\n", nd_set->cookie);
288 }
289 static DEVICE_ATTR_RO(set_cookie);
290
nd_region_available_dpa(struct nd_region * nd_region)291 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
292 {
293 resource_size_t blk_max_overlap = 0, available, overlap;
294 int i;
295
296 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
297
298 retry:
299 available = 0;
300 overlap = blk_max_overlap;
301 for (i = 0; i < nd_region->ndr_mappings; i++) {
302 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
303 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
304
305 /* if a dimm is disabled the available capacity is zero */
306 if (!ndd)
307 return 0;
308
309 if (is_nd_pmem(&nd_region->dev)) {
310 available += nd_pmem_available_dpa(nd_region,
311 nd_mapping, &overlap);
312 if (overlap > blk_max_overlap) {
313 blk_max_overlap = overlap;
314 goto retry;
315 }
316 } else if (is_nd_blk(&nd_region->dev))
317 available += nd_blk_available_dpa(nd_region);
318 }
319
320 return available;
321 }
322
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)323 static ssize_t available_size_show(struct device *dev,
324 struct device_attribute *attr, char *buf)
325 {
326 struct nd_region *nd_region = to_nd_region(dev);
327 unsigned long long available = 0;
328
329 /*
330 * Flush in-flight updates and grab a snapshot of the available
331 * size. Of course, this value is potentially invalidated the
332 * memory nvdimm_bus_lock() is dropped, but that's userspace's
333 * problem to not race itself.
334 */
335 nvdimm_bus_lock(dev);
336 wait_nvdimm_bus_probe_idle(dev);
337 available = nd_region_available_dpa(nd_region);
338 nvdimm_bus_unlock(dev);
339
340 return sprintf(buf, "%llu\n", available);
341 }
342 static DEVICE_ATTR_RO(available_size);
343
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)344 static ssize_t init_namespaces_show(struct device *dev,
345 struct device_attribute *attr, char *buf)
346 {
347 struct nd_region_data *ndrd = dev_get_drvdata(dev);
348 ssize_t rc;
349
350 nvdimm_bus_lock(dev);
351 if (ndrd)
352 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
353 else
354 rc = -ENXIO;
355 nvdimm_bus_unlock(dev);
356
357 return rc;
358 }
359 static DEVICE_ATTR_RO(init_namespaces);
360
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)361 static ssize_t namespace_seed_show(struct device *dev,
362 struct device_attribute *attr, char *buf)
363 {
364 struct nd_region *nd_region = to_nd_region(dev);
365 ssize_t rc;
366
367 nvdimm_bus_lock(dev);
368 if (nd_region->ns_seed)
369 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
370 else
371 rc = sprintf(buf, "\n");
372 nvdimm_bus_unlock(dev);
373 return rc;
374 }
375 static DEVICE_ATTR_RO(namespace_seed);
376
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)377 static ssize_t btt_seed_show(struct device *dev,
378 struct device_attribute *attr, char *buf)
379 {
380 struct nd_region *nd_region = to_nd_region(dev);
381 ssize_t rc;
382
383 nvdimm_bus_lock(dev);
384 if (nd_region->btt_seed)
385 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
386 else
387 rc = sprintf(buf, "\n");
388 nvdimm_bus_unlock(dev);
389
390 return rc;
391 }
392 static DEVICE_ATTR_RO(btt_seed);
393
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)394 static ssize_t pfn_seed_show(struct device *dev,
395 struct device_attribute *attr, char *buf)
396 {
397 struct nd_region *nd_region = to_nd_region(dev);
398 ssize_t rc;
399
400 nvdimm_bus_lock(dev);
401 if (nd_region->pfn_seed)
402 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
403 else
404 rc = sprintf(buf, "\n");
405 nvdimm_bus_unlock(dev);
406
407 return rc;
408 }
409 static DEVICE_ATTR_RO(pfn_seed);
410
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)411 static ssize_t dax_seed_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
413 {
414 struct nd_region *nd_region = to_nd_region(dev);
415 ssize_t rc;
416
417 nvdimm_bus_lock(dev);
418 if (nd_region->dax_seed)
419 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
420 else
421 rc = sprintf(buf, "\n");
422 nvdimm_bus_unlock(dev);
423
424 return rc;
425 }
426 static DEVICE_ATTR_RO(dax_seed);
427
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)428 static ssize_t read_only_show(struct device *dev,
429 struct device_attribute *attr, char *buf)
430 {
431 struct nd_region *nd_region = to_nd_region(dev);
432
433 return sprintf(buf, "%d\n", nd_region->ro);
434 }
435
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)436 static ssize_t read_only_store(struct device *dev,
437 struct device_attribute *attr, const char *buf, size_t len)
438 {
439 bool ro;
440 int rc = strtobool(buf, &ro);
441 struct nd_region *nd_region = to_nd_region(dev);
442
443 if (rc)
444 return rc;
445
446 nd_region->ro = ro;
447 return len;
448 }
449 static DEVICE_ATTR_RW(read_only);
450
451 static struct attribute *nd_region_attributes[] = {
452 &dev_attr_size.attr,
453 &dev_attr_nstype.attr,
454 &dev_attr_mappings.attr,
455 &dev_attr_btt_seed.attr,
456 &dev_attr_pfn_seed.attr,
457 &dev_attr_dax_seed.attr,
458 &dev_attr_read_only.attr,
459 &dev_attr_set_cookie.attr,
460 &dev_attr_available_size.attr,
461 &dev_attr_namespace_seed.attr,
462 &dev_attr_init_namespaces.attr,
463 NULL,
464 };
465
region_visible(struct kobject * kobj,struct attribute * a,int n)466 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
467 {
468 struct device *dev = container_of(kobj, typeof(*dev), kobj);
469 struct nd_region *nd_region = to_nd_region(dev);
470 struct nd_interleave_set *nd_set = nd_region->nd_set;
471 int type = nd_region_to_nstype(nd_region);
472
473 if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
474 return 0;
475
476 if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
477 return 0;
478
479 if (a != &dev_attr_set_cookie.attr
480 && a != &dev_attr_available_size.attr)
481 return a->mode;
482
483 if ((type == ND_DEVICE_NAMESPACE_PMEM
484 || type == ND_DEVICE_NAMESPACE_BLK)
485 && a == &dev_attr_available_size.attr)
486 return a->mode;
487 else if (is_nd_pmem(dev) && nd_set)
488 return a->mode;
489
490 return 0;
491 }
492
493 struct attribute_group nd_region_attribute_group = {
494 .attrs = nd_region_attributes,
495 .is_visible = region_visible,
496 };
497 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
498
nd_region_interleave_set_cookie(struct nd_region * nd_region)499 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
500 {
501 struct nd_interleave_set *nd_set = nd_region->nd_set;
502
503 if (nd_set)
504 return nd_set->cookie;
505 return 0;
506 }
507
nd_region_interleave_set_altcookie(struct nd_region * nd_region)508 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
509 {
510 struct nd_interleave_set *nd_set = nd_region->nd_set;
511
512 if (nd_set)
513 return nd_set->altcookie;
514 return 0;
515 }
516
nd_mapping_free_labels(struct nd_mapping * nd_mapping)517 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
518 {
519 struct nd_label_ent *label_ent, *e;
520
521 WARN_ON(!mutex_is_locked(&nd_mapping->lock));
522 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
523 list_del(&label_ent->list);
524 kfree(label_ent);
525 }
526 }
527
528 /*
529 * Upon successful probe/remove, take/release a reference on the
530 * associated interleave set (if present), and plant new btt + namespace
531 * seeds. Also, on the removal of a BLK region, notify the provider to
532 * disable the region.
533 */
nd_region_notify_driver_action(struct nvdimm_bus * nvdimm_bus,struct device * dev,bool probe)534 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
535 struct device *dev, bool probe)
536 {
537 struct nd_region *nd_region;
538
539 if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
540 int i;
541
542 nd_region = to_nd_region(dev);
543 for (i = 0; i < nd_region->ndr_mappings; i++) {
544 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
545 struct nvdimm_drvdata *ndd = nd_mapping->ndd;
546 struct nvdimm *nvdimm = nd_mapping->nvdimm;
547
548 mutex_lock(&nd_mapping->lock);
549 nd_mapping_free_labels(nd_mapping);
550 mutex_unlock(&nd_mapping->lock);
551
552 put_ndd(ndd);
553 nd_mapping->ndd = NULL;
554 if (ndd)
555 atomic_dec(&nvdimm->busy);
556 }
557
558 if (is_nd_pmem(dev))
559 return;
560 }
561 if (dev->parent && (is_nd_blk(dev->parent) || is_nd_pmem(dev->parent))
562 && probe) {
563 nd_region = to_nd_region(dev->parent);
564 nvdimm_bus_lock(dev);
565 if (nd_region->ns_seed == dev)
566 nd_region_create_ns_seed(nd_region);
567 nvdimm_bus_unlock(dev);
568 }
569 if (is_nd_btt(dev) && probe) {
570 struct nd_btt *nd_btt = to_nd_btt(dev);
571
572 nd_region = to_nd_region(dev->parent);
573 nvdimm_bus_lock(dev);
574 if (nd_region->btt_seed == dev)
575 nd_region_create_btt_seed(nd_region);
576 if (nd_region->ns_seed == &nd_btt->ndns->dev)
577 nd_region_create_ns_seed(nd_region);
578 nvdimm_bus_unlock(dev);
579 }
580 if (is_nd_pfn(dev) && probe) {
581 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
582
583 nd_region = to_nd_region(dev->parent);
584 nvdimm_bus_lock(dev);
585 if (nd_region->pfn_seed == dev)
586 nd_region_create_pfn_seed(nd_region);
587 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
588 nd_region_create_ns_seed(nd_region);
589 nvdimm_bus_unlock(dev);
590 }
591 if (is_nd_dax(dev) && probe) {
592 struct nd_dax *nd_dax = to_nd_dax(dev);
593
594 nd_region = to_nd_region(dev->parent);
595 nvdimm_bus_lock(dev);
596 if (nd_region->dax_seed == dev)
597 nd_region_create_dax_seed(nd_region);
598 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
599 nd_region_create_ns_seed(nd_region);
600 nvdimm_bus_unlock(dev);
601 }
602 }
603
nd_region_probe_success(struct nvdimm_bus * nvdimm_bus,struct device * dev)604 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
605 {
606 nd_region_notify_driver_action(nvdimm_bus, dev, true);
607 }
608
nd_region_disable(struct nvdimm_bus * nvdimm_bus,struct device * dev)609 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
610 {
611 nd_region_notify_driver_action(nvdimm_bus, dev, false);
612 }
613
mappingN(struct device * dev,char * buf,int n)614 static ssize_t mappingN(struct device *dev, char *buf, int n)
615 {
616 struct nd_region *nd_region = to_nd_region(dev);
617 struct nd_mapping *nd_mapping;
618 struct nvdimm *nvdimm;
619
620 if (n >= nd_region->ndr_mappings)
621 return -ENXIO;
622 nd_mapping = &nd_region->mapping[n];
623 nvdimm = nd_mapping->nvdimm;
624
625 return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
626 nd_mapping->start, nd_mapping->size);
627 }
628
629 #define REGION_MAPPING(idx) \
630 static ssize_t mapping##idx##_show(struct device *dev, \
631 struct device_attribute *attr, char *buf) \
632 { \
633 return mappingN(dev, buf, idx); \
634 } \
635 static DEVICE_ATTR_RO(mapping##idx)
636
637 /*
638 * 32 should be enough for a while, even in the presence of socket
639 * interleave a 32-way interleave set is a degenerate case.
640 */
641 REGION_MAPPING(0);
642 REGION_MAPPING(1);
643 REGION_MAPPING(2);
644 REGION_MAPPING(3);
645 REGION_MAPPING(4);
646 REGION_MAPPING(5);
647 REGION_MAPPING(6);
648 REGION_MAPPING(7);
649 REGION_MAPPING(8);
650 REGION_MAPPING(9);
651 REGION_MAPPING(10);
652 REGION_MAPPING(11);
653 REGION_MAPPING(12);
654 REGION_MAPPING(13);
655 REGION_MAPPING(14);
656 REGION_MAPPING(15);
657 REGION_MAPPING(16);
658 REGION_MAPPING(17);
659 REGION_MAPPING(18);
660 REGION_MAPPING(19);
661 REGION_MAPPING(20);
662 REGION_MAPPING(21);
663 REGION_MAPPING(22);
664 REGION_MAPPING(23);
665 REGION_MAPPING(24);
666 REGION_MAPPING(25);
667 REGION_MAPPING(26);
668 REGION_MAPPING(27);
669 REGION_MAPPING(28);
670 REGION_MAPPING(29);
671 REGION_MAPPING(30);
672 REGION_MAPPING(31);
673
mapping_visible(struct kobject * kobj,struct attribute * a,int n)674 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
675 {
676 struct device *dev = container_of(kobj, struct device, kobj);
677 struct nd_region *nd_region = to_nd_region(dev);
678
679 if (n < nd_region->ndr_mappings)
680 return a->mode;
681 return 0;
682 }
683
684 static struct attribute *mapping_attributes[] = {
685 &dev_attr_mapping0.attr,
686 &dev_attr_mapping1.attr,
687 &dev_attr_mapping2.attr,
688 &dev_attr_mapping3.attr,
689 &dev_attr_mapping4.attr,
690 &dev_attr_mapping5.attr,
691 &dev_attr_mapping6.attr,
692 &dev_attr_mapping7.attr,
693 &dev_attr_mapping8.attr,
694 &dev_attr_mapping9.attr,
695 &dev_attr_mapping10.attr,
696 &dev_attr_mapping11.attr,
697 &dev_attr_mapping12.attr,
698 &dev_attr_mapping13.attr,
699 &dev_attr_mapping14.attr,
700 &dev_attr_mapping15.attr,
701 &dev_attr_mapping16.attr,
702 &dev_attr_mapping17.attr,
703 &dev_attr_mapping18.attr,
704 &dev_attr_mapping19.attr,
705 &dev_attr_mapping20.attr,
706 &dev_attr_mapping21.attr,
707 &dev_attr_mapping22.attr,
708 &dev_attr_mapping23.attr,
709 &dev_attr_mapping24.attr,
710 &dev_attr_mapping25.attr,
711 &dev_attr_mapping26.attr,
712 &dev_attr_mapping27.attr,
713 &dev_attr_mapping28.attr,
714 &dev_attr_mapping29.attr,
715 &dev_attr_mapping30.attr,
716 &dev_attr_mapping31.attr,
717 NULL,
718 };
719
720 struct attribute_group nd_mapping_attribute_group = {
721 .is_visible = mapping_visible,
722 .attrs = mapping_attributes,
723 };
724 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
725
nd_blk_region_init(struct nd_region * nd_region)726 int nd_blk_region_init(struct nd_region *nd_region)
727 {
728 struct device *dev = &nd_region->dev;
729 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
730
731 if (!is_nd_blk(dev))
732 return 0;
733
734 if (nd_region->ndr_mappings < 1) {
735 dev_err(dev, "invalid BLK region\n");
736 return -ENXIO;
737 }
738
739 return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
740 }
741
742 /**
743 * nd_region_acquire_lane - allocate and lock a lane
744 * @nd_region: region id and number of lanes possible
745 *
746 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
747 * We optimize for the common case where there are 256 lanes, one
748 * per-cpu. For larger systems we need to lock to share lanes. For now
749 * this implementation assumes the cost of maintaining an allocator for
750 * free lanes is on the order of the lock hold time, so it implements a
751 * static lane = cpu % num_lanes mapping.
752 *
753 * In the case of a BTT instance on top of a BLK namespace a lane may be
754 * acquired recursively. We lock on the first instance.
755 *
756 * In the case of a BTT instance on top of PMEM, we only acquire a lane
757 * for the BTT metadata updates.
758 */
nd_region_acquire_lane(struct nd_region * nd_region)759 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
760 {
761 unsigned int cpu, lane;
762
763 cpu = get_cpu();
764 if (nd_region->num_lanes < nr_cpu_ids) {
765 struct nd_percpu_lane *ndl_lock, *ndl_count;
766
767 lane = cpu % nd_region->num_lanes;
768 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
769 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
770 if (ndl_count->count++ == 0)
771 spin_lock(&ndl_lock->lock);
772 } else
773 lane = cpu;
774
775 return lane;
776 }
777 EXPORT_SYMBOL(nd_region_acquire_lane);
778
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)779 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
780 {
781 if (nd_region->num_lanes < nr_cpu_ids) {
782 unsigned int cpu = get_cpu();
783 struct nd_percpu_lane *ndl_lock, *ndl_count;
784
785 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
786 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
787 if (--ndl_count->count == 0)
788 spin_unlock(&ndl_lock->lock);
789 put_cpu();
790 }
791 put_cpu();
792 }
793 EXPORT_SYMBOL(nd_region_release_lane);
794
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,struct device_type * dev_type,const char * caller)795 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
796 struct nd_region_desc *ndr_desc, struct device_type *dev_type,
797 const char *caller)
798 {
799 struct nd_region *nd_region;
800 struct device *dev;
801 void *region_buf;
802 unsigned int i;
803 int ro = 0;
804
805 for (i = 0; i < ndr_desc->num_mappings; i++) {
806 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
807 struct nvdimm *nvdimm = mapping->nvdimm;
808
809 if ((mapping->start | mapping->size) % SZ_4K) {
810 dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
811 caller, dev_name(&nvdimm->dev), i);
812
813 return NULL;
814 }
815
816 if (nvdimm->flags & NDD_UNARMED)
817 ro = 1;
818 }
819
820 if (dev_type == &nd_blk_device_type) {
821 struct nd_blk_region_desc *ndbr_desc;
822 struct nd_blk_region *ndbr;
823
824 ndbr_desc = to_blk_region_desc(ndr_desc);
825 ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
826 * ndr_desc->num_mappings,
827 GFP_KERNEL);
828 if (ndbr) {
829 nd_region = &ndbr->nd_region;
830 ndbr->enable = ndbr_desc->enable;
831 ndbr->do_io = ndbr_desc->do_io;
832 }
833 region_buf = ndbr;
834 } else {
835 nd_region = kzalloc(sizeof(struct nd_region)
836 + sizeof(struct nd_mapping)
837 * ndr_desc->num_mappings,
838 GFP_KERNEL);
839 region_buf = nd_region;
840 }
841
842 if (!region_buf)
843 return NULL;
844 nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL);
845 if (nd_region->id < 0)
846 goto err_id;
847
848 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
849 if (!nd_region->lane)
850 goto err_percpu;
851
852 for (i = 0; i < nr_cpu_ids; i++) {
853 struct nd_percpu_lane *ndl;
854
855 ndl = per_cpu_ptr(nd_region->lane, i);
856 spin_lock_init(&ndl->lock);
857 ndl->count = 0;
858 }
859
860 for (i = 0; i < ndr_desc->num_mappings; i++) {
861 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
862 struct nvdimm *nvdimm = mapping->nvdimm;
863
864 nd_region->mapping[i].nvdimm = nvdimm;
865 nd_region->mapping[i].start = mapping->start;
866 nd_region->mapping[i].size = mapping->size;
867 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
868 mutex_init(&nd_region->mapping[i].lock);
869
870 get_device(&nvdimm->dev);
871 }
872 nd_region->ndr_mappings = ndr_desc->num_mappings;
873 nd_region->provider_data = ndr_desc->provider_data;
874 nd_region->nd_set = ndr_desc->nd_set;
875 nd_region->num_lanes = ndr_desc->num_lanes;
876 nd_region->flags = ndr_desc->flags;
877 nd_region->ro = ro;
878 nd_region->numa_node = ndr_desc->numa_node;
879 ida_init(&nd_region->ns_ida);
880 ida_init(&nd_region->btt_ida);
881 ida_init(&nd_region->pfn_ida);
882 ida_init(&nd_region->dax_ida);
883 dev = &nd_region->dev;
884 dev_set_name(dev, "region%d", nd_region->id);
885 dev->parent = &nvdimm_bus->dev;
886 dev->type = dev_type;
887 dev->groups = ndr_desc->attr_groups;
888 nd_region->ndr_size = resource_size(ndr_desc->res);
889 nd_region->ndr_start = ndr_desc->res->start;
890 nd_device_register(dev);
891
892 return nd_region;
893
894 err_percpu:
895 ida_simple_remove(®ion_ida, nd_region->id);
896 err_id:
897 kfree(region_buf);
898 return NULL;
899 }
900
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)901 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
902 struct nd_region_desc *ndr_desc)
903 {
904 ndr_desc->num_lanes = ND_MAX_LANES;
905 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
906 __func__);
907 }
908 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
909
nvdimm_blk_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)910 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
911 struct nd_region_desc *ndr_desc)
912 {
913 if (ndr_desc->num_mappings > 1)
914 return NULL;
915 ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
916 return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
917 __func__);
918 }
919 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
920
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)921 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
922 struct nd_region_desc *ndr_desc)
923 {
924 ndr_desc->num_lanes = ND_MAX_LANES;
925 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
926 __func__);
927 }
928 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
929
930 /**
931 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
932 * @nd_region: blk or interleaved pmem region
933 */
nvdimm_flush(struct nd_region * nd_region)934 void nvdimm_flush(struct nd_region *nd_region)
935 {
936 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
937 int i, idx;
938
939 /*
940 * Try to encourage some diversity in flush hint addresses
941 * across cpus assuming a limited number of flush hints.
942 */
943 idx = this_cpu_read(flush_idx);
944 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
945
946 /*
947 * The first wmb() is needed to 'sfence' all previous writes
948 * such that they are architecturally visible for the platform
949 * buffer flush. Note that we've already arranged for pmem
950 * writes to avoid the cache via arch_memcpy_to_pmem(). The
951 * final wmb() ensures ordering for the NVDIMM flush write.
952 */
953 wmb();
954 for (i = 0; i < nd_region->ndr_mappings; i++)
955 if (ndrd_get_flush_wpq(ndrd, i, 0))
956 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
957 wmb();
958 }
959 EXPORT_SYMBOL_GPL(nvdimm_flush);
960
961 /**
962 * nvdimm_has_flush - determine write flushing requirements
963 * @nd_region: blk or interleaved pmem region
964 *
965 * Returns 1 if writes require flushing
966 * Returns 0 if writes do not require flushing
967 * Returns -ENXIO if flushing capability can not be determined
968 */
nvdimm_has_flush(struct nd_region * nd_region)969 int nvdimm_has_flush(struct nd_region *nd_region)
970 {
971 int i;
972
973 /* no nvdimm == flushing capability unknown */
974 if (nd_region->ndr_mappings == 0)
975 return -ENXIO;
976
977 for (i = 0; i < nd_region->ndr_mappings; i++) {
978 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
979 struct nvdimm *nvdimm = nd_mapping->nvdimm;
980
981 /* flush hints present / available */
982 if (nvdimm->num_flush)
983 return 1;
984 }
985
986 /*
987 * The platform defines dimm devices without hints, assume
988 * platform persistence mechanism like ADR
989 */
990 return 0;
991 }
992 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
993
nd_region_devs_exit(void)994 void __exit nd_region_devs_exit(void)
995 {
996 ida_destroy(®ion_ida);
997 }
998