• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/scatterlist.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/hash.h>
18 #include <linux/pmem.h>
19 #include <linux/sort.h>
20 #include <linux/io.h>
21 #include <linux/nd.h>
22 #include "nd-core.h"
23 #include "nd.h"
24 
25 /*
26  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
27  * irrelevant.
28  */
29 #include <linux/io-64-nonatomic-hi-lo.h>
30 
31 static DEFINE_IDA(region_ida);
32 static DEFINE_PER_CPU(int, flush_idx);
33 
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)34 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
35 		struct nd_region_data *ndrd)
36 {
37 	int i, j;
38 
39 	dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
40 			nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
41 	for (i = 0; i < (1 << ndrd->hints_shift); i++) {
42 		struct resource *res = &nvdimm->flush_wpq[i];
43 		unsigned long pfn = PHYS_PFN(res->start);
44 		void __iomem *flush_page;
45 
46 		/* check if flush hints share a page */
47 		for (j = 0; j < i; j++) {
48 			struct resource *res_j = &nvdimm->flush_wpq[j];
49 			unsigned long pfn_j = PHYS_PFN(res_j->start);
50 
51 			if (pfn == pfn_j)
52 				break;
53 		}
54 
55 		if (j < i)
56 			flush_page = (void __iomem *) ((unsigned long)
57 					ndrd_get_flush_wpq(ndrd, dimm, j)
58 					& PAGE_MASK);
59 		else
60 			flush_page = devm_nvdimm_ioremap(dev,
61 					PFN_PHYS(pfn), PAGE_SIZE);
62 		if (!flush_page)
63 			return -ENXIO;
64 		ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
65 				+ (res->start & ~PAGE_MASK));
66 	}
67 
68 	return 0;
69 }
70 
nd_region_activate(struct nd_region * nd_region)71 int nd_region_activate(struct nd_region *nd_region)
72 {
73 	int i, j, num_flush = 0;
74 	struct nd_region_data *ndrd;
75 	struct device *dev = &nd_region->dev;
76 	size_t flush_data_size = sizeof(void *);
77 
78 	nvdimm_bus_lock(&nd_region->dev);
79 	for (i = 0; i < nd_region->ndr_mappings; i++) {
80 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
81 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
82 
83 		/* at least one null hint slot per-dimm for the "no-hint" case */
84 		flush_data_size += sizeof(void *);
85 		num_flush = min_not_zero(num_flush, nvdimm->num_flush);
86 		if (!nvdimm->num_flush)
87 			continue;
88 		flush_data_size += nvdimm->num_flush * sizeof(void *);
89 	}
90 	nvdimm_bus_unlock(&nd_region->dev);
91 
92 	ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
93 	if (!ndrd)
94 		return -ENOMEM;
95 	dev_set_drvdata(dev, ndrd);
96 
97 	if (!num_flush)
98 		return 0;
99 
100 	ndrd->hints_shift = ilog2(num_flush);
101 	for (i = 0; i < nd_region->ndr_mappings; i++) {
102 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
103 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
104 		int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
105 
106 		if (rc)
107 			return rc;
108 	}
109 
110 	/*
111 	 * Clear out entries that are duplicates. This should prevent the
112 	 * extra flushings.
113 	 */
114 	for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
115 		/* ignore if NULL already */
116 		if (!ndrd_get_flush_wpq(ndrd, i, 0))
117 			continue;
118 
119 		for (j = i + 1; j < nd_region->ndr_mappings; j++)
120 			if (ndrd_get_flush_wpq(ndrd, i, 0) ==
121 			    ndrd_get_flush_wpq(ndrd, j, 0))
122 				ndrd_set_flush_wpq(ndrd, j, 0, NULL);
123 	}
124 
125 	return 0;
126 }
127 
nd_region_release(struct device * dev)128 static void nd_region_release(struct device *dev)
129 {
130 	struct nd_region *nd_region = to_nd_region(dev);
131 	u16 i;
132 
133 	for (i = 0; i < nd_region->ndr_mappings; i++) {
134 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
135 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
136 
137 		put_device(&nvdimm->dev);
138 	}
139 	free_percpu(nd_region->lane);
140 	ida_simple_remove(&region_ida, nd_region->id);
141 	if (is_nd_blk(dev))
142 		kfree(to_nd_blk_region(dev));
143 	else
144 		kfree(nd_region);
145 }
146 
147 static struct device_type nd_blk_device_type = {
148 	.name = "nd_blk",
149 	.release = nd_region_release,
150 };
151 
152 static struct device_type nd_pmem_device_type = {
153 	.name = "nd_pmem",
154 	.release = nd_region_release,
155 };
156 
157 static struct device_type nd_volatile_device_type = {
158 	.name = "nd_volatile",
159 	.release = nd_region_release,
160 };
161 
is_nd_pmem(struct device * dev)162 bool is_nd_pmem(struct device *dev)
163 {
164 	return dev ? dev->type == &nd_pmem_device_type : false;
165 }
166 
is_nd_blk(struct device * dev)167 bool is_nd_blk(struct device *dev)
168 {
169 	return dev ? dev->type == &nd_blk_device_type : false;
170 }
171 
to_nd_region(struct device * dev)172 struct nd_region *to_nd_region(struct device *dev)
173 {
174 	struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
175 
176 	WARN_ON(dev->type->release != nd_region_release);
177 	return nd_region;
178 }
179 EXPORT_SYMBOL_GPL(to_nd_region);
180 
to_nd_blk_region(struct device * dev)181 struct nd_blk_region *to_nd_blk_region(struct device *dev)
182 {
183 	struct nd_region *nd_region = to_nd_region(dev);
184 
185 	WARN_ON(!is_nd_blk(dev));
186 	return container_of(nd_region, struct nd_blk_region, nd_region);
187 }
188 EXPORT_SYMBOL_GPL(to_nd_blk_region);
189 
nd_region_provider_data(struct nd_region * nd_region)190 void *nd_region_provider_data(struct nd_region *nd_region)
191 {
192 	return nd_region->provider_data;
193 }
194 EXPORT_SYMBOL_GPL(nd_region_provider_data);
195 
nd_blk_region_provider_data(struct nd_blk_region * ndbr)196 void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
197 {
198 	return ndbr->blk_provider_data;
199 }
200 EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
201 
nd_blk_region_set_provider_data(struct nd_blk_region * ndbr,void * data)202 void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
203 {
204 	ndbr->blk_provider_data = data;
205 }
206 EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
207 
208 /**
209  * nd_region_to_nstype() - region to an integer namespace type
210  * @nd_region: region-device to interrogate
211  *
212  * This is the 'nstype' attribute of a region as well, an input to the
213  * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
214  * namespace devices with namespace drivers.
215  */
nd_region_to_nstype(struct nd_region * nd_region)216 int nd_region_to_nstype(struct nd_region *nd_region)
217 {
218 	if (is_nd_pmem(&nd_region->dev)) {
219 		u16 i, alias;
220 
221 		for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
222 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
223 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
224 
225 			if (nvdimm->flags & NDD_ALIASING)
226 				alias++;
227 		}
228 		if (alias)
229 			return ND_DEVICE_NAMESPACE_PMEM;
230 		else
231 			return ND_DEVICE_NAMESPACE_IO;
232 	} else if (is_nd_blk(&nd_region->dev)) {
233 		return ND_DEVICE_NAMESPACE_BLK;
234 	}
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL(nd_region_to_nstype);
239 
size_show(struct device * dev,struct device_attribute * attr,char * buf)240 static ssize_t size_show(struct device *dev,
241 		struct device_attribute *attr, char *buf)
242 {
243 	struct nd_region *nd_region = to_nd_region(dev);
244 	unsigned long long size = 0;
245 
246 	if (is_nd_pmem(dev)) {
247 		size = nd_region->ndr_size;
248 	} else if (nd_region->ndr_mappings == 1) {
249 		struct nd_mapping *nd_mapping = &nd_region->mapping[0];
250 
251 		size = nd_mapping->size;
252 	}
253 
254 	return sprintf(buf, "%llu\n", size);
255 }
256 static DEVICE_ATTR_RO(size);
257 
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)258 static ssize_t mappings_show(struct device *dev,
259 		struct device_attribute *attr, char *buf)
260 {
261 	struct nd_region *nd_region = to_nd_region(dev);
262 
263 	return sprintf(buf, "%d\n", nd_region->ndr_mappings);
264 }
265 static DEVICE_ATTR_RO(mappings);
266 
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)267 static ssize_t nstype_show(struct device *dev,
268 		struct device_attribute *attr, char *buf)
269 {
270 	struct nd_region *nd_region = to_nd_region(dev);
271 
272 	return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
273 }
274 static DEVICE_ATTR_RO(nstype);
275 
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)276 static ssize_t set_cookie_show(struct device *dev,
277 		struct device_attribute *attr, char *buf)
278 {
279 	struct nd_region *nd_region = to_nd_region(dev);
280 	struct nd_interleave_set *nd_set = nd_region->nd_set;
281 
282 	if (is_nd_pmem(dev) && nd_set)
283 		/* pass, should be precluded by region_visible */;
284 	else
285 		return -ENXIO;
286 
287 	return sprintf(buf, "%#llx\n", nd_set->cookie);
288 }
289 static DEVICE_ATTR_RO(set_cookie);
290 
nd_region_available_dpa(struct nd_region * nd_region)291 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
292 {
293 	resource_size_t blk_max_overlap = 0, available, overlap;
294 	int i;
295 
296 	WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
297 
298  retry:
299 	available = 0;
300 	overlap = blk_max_overlap;
301 	for (i = 0; i < nd_region->ndr_mappings; i++) {
302 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
303 		struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
304 
305 		/* if a dimm is disabled the available capacity is zero */
306 		if (!ndd)
307 			return 0;
308 
309 		if (is_nd_pmem(&nd_region->dev)) {
310 			available += nd_pmem_available_dpa(nd_region,
311 					nd_mapping, &overlap);
312 			if (overlap > blk_max_overlap) {
313 				blk_max_overlap = overlap;
314 				goto retry;
315 			}
316 		} else if (is_nd_blk(&nd_region->dev))
317 			available += nd_blk_available_dpa(nd_region);
318 	}
319 
320 	return available;
321 }
322 
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)323 static ssize_t available_size_show(struct device *dev,
324 		struct device_attribute *attr, char *buf)
325 {
326 	struct nd_region *nd_region = to_nd_region(dev);
327 	unsigned long long available = 0;
328 
329 	/*
330 	 * Flush in-flight updates and grab a snapshot of the available
331 	 * size.  Of course, this value is potentially invalidated the
332 	 * memory nvdimm_bus_lock() is dropped, but that's userspace's
333 	 * problem to not race itself.
334 	 */
335 	nvdimm_bus_lock(dev);
336 	wait_nvdimm_bus_probe_idle(dev);
337 	available = nd_region_available_dpa(nd_region);
338 	nvdimm_bus_unlock(dev);
339 
340 	return sprintf(buf, "%llu\n", available);
341 }
342 static DEVICE_ATTR_RO(available_size);
343 
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)344 static ssize_t init_namespaces_show(struct device *dev,
345 		struct device_attribute *attr, char *buf)
346 {
347 	struct nd_region_data *ndrd = dev_get_drvdata(dev);
348 	ssize_t rc;
349 
350 	nvdimm_bus_lock(dev);
351 	if (ndrd)
352 		rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
353 	else
354 		rc = -ENXIO;
355 	nvdimm_bus_unlock(dev);
356 
357 	return rc;
358 }
359 static DEVICE_ATTR_RO(init_namespaces);
360 
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)361 static ssize_t namespace_seed_show(struct device *dev,
362 		struct device_attribute *attr, char *buf)
363 {
364 	struct nd_region *nd_region = to_nd_region(dev);
365 	ssize_t rc;
366 
367 	nvdimm_bus_lock(dev);
368 	if (nd_region->ns_seed)
369 		rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
370 	else
371 		rc = sprintf(buf, "\n");
372 	nvdimm_bus_unlock(dev);
373 	return rc;
374 }
375 static DEVICE_ATTR_RO(namespace_seed);
376 
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)377 static ssize_t btt_seed_show(struct device *dev,
378 		struct device_attribute *attr, char *buf)
379 {
380 	struct nd_region *nd_region = to_nd_region(dev);
381 	ssize_t rc;
382 
383 	nvdimm_bus_lock(dev);
384 	if (nd_region->btt_seed)
385 		rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
386 	else
387 		rc = sprintf(buf, "\n");
388 	nvdimm_bus_unlock(dev);
389 
390 	return rc;
391 }
392 static DEVICE_ATTR_RO(btt_seed);
393 
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)394 static ssize_t pfn_seed_show(struct device *dev,
395 		struct device_attribute *attr, char *buf)
396 {
397 	struct nd_region *nd_region = to_nd_region(dev);
398 	ssize_t rc;
399 
400 	nvdimm_bus_lock(dev);
401 	if (nd_region->pfn_seed)
402 		rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
403 	else
404 		rc = sprintf(buf, "\n");
405 	nvdimm_bus_unlock(dev);
406 
407 	return rc;
408 }
409 static DEVICE_ATTR_RO(pfn_seed);
410 
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)411 static ssize_t dax_seed_show(struct device *dev,
412 		struct device_attribute *attr, char *buf)
413 {
414 	struct nd_region *nd_region = to_nd_region(dev);
415 	ssize_t rc;
416 
417 	nvdimm_bus_lock(dev);
418 	if (nd_region->dax_seed)
419 		rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
420 	else
421 		rc = sprintf(buf, "\n");
422 	nvdimm_bus_unlock(dev);
423 
424 	return rc;
425 }
426 static DEVICE_ATTR_RO(dax_seed);
427 
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)428 static ssize_t read_only_show(struct device *dev,
429 		struct device_attribute *attr, char *buf)
430 {
431 	struct nd_region *nd_region = to_nd_region(dev);
432 
433 	return sprintf(buf, "%d\n", nd_region->ro);
434 }
435 
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)436 static ssize_t read_only_store(struct device *dev,
437 		struct device_attribute *attr, const char *buf, size_t len)
438 {
439 	bool ro;
440 	int rc = strtobool(buf, &ro);
441 	struct nd_region *nd_region = to_nd_region(dev);
442 
443 	if (rc)
444 		return rc;
445 
446 	nd_region->ro = ro;
447 	return len;
448 }
449 static DEVICE_ATTR_RW(read_only);
450 
451 static struct attribute *nd_region_attributes[] = {
452 	&dev_attr_size.attr,
453 	&dev_attr_nstype.attr,
454 	&dev_attr_mappings.attr,
455 	&dev_attr_btt_seed.attr,
456 	&dev_attr_pfn_seed.attr,
457 	&dev_attr_dax_seed.attr,
458 	&dev_attr_read_only.attr,
459 	&dev_attr_set_cookie.attr,
460 	&dev_attr_available_size.attr,
461 	&dev_attr_namespace_seed.attr,
462 	&dev_attr_init_namespaces.attr,
463 	NULL,
464 };
465 
region_visible(struct kobject * kobj,struct attribute * a,int n)466 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
467 {
468 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
469 	struct nd_region *nd_region = to_nd_region(dev);
470 	struct nd_interleave_set *nd_set = nd_region->nd_set;
471 	int type = nd_region_to_nstype(nd_region);
472 
473 	if (!is_nd_pmem(dev) && a == &dev_attr_pfn_seed.attr)
474 		return 0;
475 
476 	if (!is_nd_pmem(dev) && a == &dev_attr_dax_seed.attr)
477 		return 0;
478 
479 	if (a != &dev_attr_set_cookie.attr
480 			&& a != &dev_attr_available_size.attr)
481 		return a->mode;
482 
483 	if ((type == ND_DEVICE_NAMESPACE_PMEM
484 				|| type == ND_DEVICE_NAMESPACE_BLK)
485 			&& a == &dev_attr_available_size.attr)
486 		return a->mode;
487 	else if (is_nd_pmem(dev) && nd_set)
488 		return a->mode;
489 
490 	return 0;
491 }
492 
493 struct attribute_group nd_region_attribute_group = {
494 	.attrs = nd_region_attributes,
495 	.is_visible = region_visible,
496 };
497 EXPORT_SYMBOL_GPL(nd_region_attribute_group);
498 
nd_region_interleave_set_cookie(struct nd_region * nd_region)499 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region)
500 {
501 	struct nd_interleave_set *nd_set = nd_region->nd_set;
502 
503 	if (nd_set)
504 		return nd_set->cookie;
505 	return 0;
506 }
507 
nd_region_interleave_set_altcookie(struct nd_region * nd_region)508 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
509 {
510 	struct nd_interleave_set *nd_set = nd_region->nd_set;
511 
512 	if (nd_set)
513 		return nd_set->altcookie;
514 	return 0;
515 }
516 
nd_mapping_free_labels(struct nd_mapping * nd_mapping)517 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
518 {
519 	struct nd_label_ent *label_ent, *e;
520 
521 	WARN_ON(!mutex_is_locked(&nd_mapping->lock));
522 	list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
523 		list_del(&label_ent->list);
524 		kfree(label_ent);
525 	}
526 }
527 
528 /*
529  * Upon successful probe/remove, take/release a reference on the
530  * associated interleave set (if present), and plant new btt + namespace
531  * seeds.  Also, on the removal of a BLK region, notify the provider to
532  * disable the region.
533  */
nd_region_notify_driver_action(struct nvdimm_bus * nvdimm_bus,struct device * dev,bool probe)534 static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
535 		struct device *dev, bool probe)
536 {
537 	struct nd_region *nd_region;
538 
539 	if (!probe && (is_nd_pmem(dev) || is_nd_blk(dev))) {
540 		int i;
541 
542 		nd_region = to_nd_region(dev);
543 		for (i = 0; i < nd_region->ndr_mappings; i++) {
544 			struct nd_mapping *nd_mapping = &nd_region->mapping[i];
545 			struct nvdimm_drvdata *ndd = nd_mapping->ndd;
546 			struct nvdimm *nvdimm = nd_mapping->nvdimm;
547 
548 			mutex_lock(&nd_mapping->lock);
549 			nd_mapping_free_labels(nd_mapping);
550 			mutex_unlock(&nd_mapping->lock);
551 
552 			put_ndd(ndd);
553 			nd_mapping->ndd = NULL;
554 			if (ndd)
555 				atomic_dec(&nvdimm->busy);
556 		}
557 
558 		if (is_nd_pmem(dev))
559 			return;
560 	}
561 	if (dev->parent && (is_nd_blk(dev->parent) || is_nd_pmem(dev->parent))
562 			&& probe) {
563 		nd_region = to_nd_region(dev->parent);
564 		nvdimm_bus_lock(dev);
565 		if (nd_region->ns_seed == dev)
566 			nd_region_create_ns_seed(nd_region);
567 		nvdimm_bus_unlock(dev);
568 	}
569 	if (is_nd_btt(dev) && probe) {
570 		struct nd_btt *nd_btt = to_nd_btt(dev);
571 
572 		nd_region = to_nd_region(dev->parent);
573 		nvdimm_bus_lock(dev);
574 		if (nd_region->btt_seed == dev)
575 			nd_region_create_btt_seed(nd_region);
576 		if (nd_region->ns_seed == &nd_btt->ndns->dev)
577 			nd_region_create_ns_seed(nd_region);
578 		nvdimm_bus_unlock(dev);
579 	}
580 	if (is_nd_pfn(dev) && probe) {
581 		struct nd_pfn *nd_pfn = to_nd_pfn(dev);
582 
583 		nd_region = to_nd_region(dev->parent);
584 		nvdimm_bus_lock(dev);
585 		if (nd_region->pfn_seed == dev)
586 			nd_region_create_pfn_seed(nd_region);
587 		if (nd_region->ns_seed == &nd_pfn->ndns->dev)
588 			nd_region_create_ns_seed(nd_region);
589 		nvdimm_bus_unlock(dev);
590 	}
591 	if (is_nd_dax(dev) && probe) {
592 		struct nd_dax *nd_dax = to_nd_dax(dev);
593 
594 		nd_region = to_nd_region(dev->parent);
595 		nvdimm_bus_lock(dev);
596 		if (nd_region->dax_seed == dev)
597 			nd_region_create_dax_seed(nd_region);
598 		if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
599 			nd_region_create_ns_seed(nd_region);
600 		nvdimm_bus_unlock(dev);
601 	}
602 }
603 
nd_region_probe_success(struct nvdimm_bus * nvdimm_bus,struct device * dev)604 void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
605 {
606 	nd_region_notify_driver_action(nvdimm_bus, dev, true);
607 }
608 
nd_region_disable(struct nvdimm_bus * nvdimm_bus,struct device * dev)609 void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
610 {
611 	nd_region_notify_driver_action(nvdimm_bus, dev, false);
612 }
613 
mappingN(struct device * dev,char * buf,int n)614 static ssize_t mappingN(struct device *dev, char *buf, int n)
615 {
616 	struct nd_region *nd_region = to_nd_region(dev);
617 	struct nd_mapping *nd_mapping;
618 	struct nvdimm *nvdimm;
619 
620 	if (n >= nd_region->ndr_mappings)
621 		return -ENXIO;
622 	nd_mapping = &nd_region->mapping[n];
623 	nvdimm = nd_mapping->nvdimm;
624 
625 	return sprintf(buf, "%s,%llu,%llu\n", dev_name(&nvdimm->dev),
626 			nd_mapping->start, nd_mapping->size);
627 }
628 
629 #define REGION_MAPPING(idx) \
630 static ssize_t mapping##idx##_show(struct device *dev,		\
631 		struct device_attribute *attr, char *buf)	\
632 {								\
633 	return mappingN(dev, buf, idx);				\
634 }								\
635 static DEVICE_ATTR_RO(mapping##idx)
636 
637 /*
638  * 32 should be enough for a while, even in the presence of socket
639  * interleave a 32-way interleave set is a degenerate case.
640  */
641 REGION_MAPPING(0);
642 REGION_MAPPING(1);
643 REGION_MAPPING(2);
644 REGION_MAPPING(3);
645 REGION_MAPPING(4);
646 REGION_MAPPING(5);
647 REGION_MAPPING(6);
648 REGION_MAPPING(7);
649 REGION_MAPPING(8);
650 REGION_MAPPING(9);
651 REGION_MAPPING(10);
652 REGION_MAPPING(11);
653 REGION_MAPPING(12);
654 REGION_MAPPING(13);
655 REGION_MAPPING(14);
656 REGION_MAPPING(15);
657 REGION_MAPPING(16);
658 REGION_MAPPING(17);
659 REGION_MAPPING(18);
660 REGION_MAPPING(19);
661 REGION_MAPPING(20);
662 REGION_MAPPING(21);
663 REGION_MAPPING(22);
664 REGION_MAPPING(23);
665 REGION_MAPPING(24);
666 REGION_MAPPING(25);
667 REGION_MAPPING(26);
668 REGION_MAPPING(27);
669 REGION_MAPPING(28);
670 REGION_MAPPING(29);
671 REGION_MAPPING(30);
672 REGION_MAPPING(31);
673 
mapping_visible(struct kobject * kobj,struct attribute * a,int n)674 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
675 {
676 	struct device *dev = container_of(kobj, struct device, kobj);
677 	struct nd_region *nd_region = to_nd_region(dev);
678 
679 	if (n < nd_region->ndr_mappings)
680 		return a->mode;
681 	return 0;
682 }
683 
684 static struct attribute *mapping_attributes[] = {
685 	&dev_attr_mapping0.attr,
686 	&dev_attr_mapping1.attr,
687 	&dev_attr_mapping2.attr,
688 	&dev_attr_mapping3.attr,
689 	&dev_attr_mapping4.attr,
690 	&dev_attr_mapping5.attr,
691 	&dev_attr_mapping6.attr,
692 	&dev_attr_mapping7.attr,
693 	&dev_attr_mapping8.attr,
694 	&dev_attr_mapping9.attr,
695 	&dev_attr_mapping10.attr,
696 	&dev_attr_mapping11.attr,
697 	&dev_attr_mapping12.attr,
698 	&dev_attr_mapping13.attr,
699 	&dev_attr_mapping14.attr,
700 	&dev_attr_mapping15.attr,
701 	&dev_attr_mapping16.attr,
702 	&dev_attr_mapping17.attr,
703 	&dev_attr_mapping18.attr,
704 	&dev_attr_mapping19.attr,
705 	&dev_attr_mapping20.attr,
706 	&dev_attr_mapping21.attr,
707 	&dev_attr_mapping22.attr,
708 	&dev_attr_mapping23.attr,
709 	&dev_attr_mapping24.attr,
710 	&dev_attr_mapping25.attr,
711 	&dev_attr_mapping26.attr,
712 	&dev_attr_mapping27.attr,
713 	&dev_attr_mapping28.attr,
714 	&dev_attr_mapping29.attr,
715 	&dev_attr_mapping30.attr,
716 	&dev_attr_mapping31.attr,
717 	NULL,
718 };
719 
720 struct attribute_group nd_mapping_attribute_group = {
721 	.is_visible = mapping_visible,
722 	.attrs = mapping_attributes,
723 };
724 EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
725 
nd_blk_region_init(struct nd_region * nd_region)726 int nd_blk_region_init(struct nd_region *nd_region)
727 {
728 	struct device *dev = &nd_region->dev;
729 	struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
730 
731 	if (!is_nd_blk(dev))
732 		return 0;
733 
734 	if (nd_region->ndr_mappings < 1) {
735 		dev_err(dev, "invalid BLK region\n");
736 		return -ENXIO;
737 	}
738 
739 	return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
740 }
741 
742 /**
743  * nd_region_acquire_lane - allocate and lock a lane
744  * @nd_region: region id and number of lanes possible
745  *
746  * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
747  * We optimize for the common case where there are 256 lanes, one
748  * per-cpu.  For larger systems we need to lock to share lanes.  For now
749  * this implementation assumes the cost of maintaining an allocator for
750  * free lanes is on the order of the lock hold time, so it implements a
751  * static lane = cpu % num_lanes mapping.
752  *
753  * In the case of a BTT instance on top of a BLK namespace a lane may be
754  * acquired recursively.  We lock on the first instance.
755  *
756  * In the case of a BTT instance on top of PMEM, we only acquire a lane
757  * for the BTT metadata updates.
758  */
nd_region_acquire_lane(struct nd_region * nd_region)759 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
760 {
761 	unsigned int cpu, lane;
762 
763 	cpu = get_cpu();
764 	if (nd_region->num_lanes < nr_cpu_ids) {
765 		struct nd_percpu_lane *ndl_lock, *ndl_count;
766 
767 		lane = cpu % nd_region->num_lanes;
768 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
769 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
770 		if (ndl_count->count++ == 0)
771 			spin_lock(&ndl_lock->lock);
772 	} else
773 		lane = cpu;
774 
775 	return lane;
776 }
777 EXPORT_SYMBOL(nd_region_acquire_lane);
778 
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)779 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
780 {
781 	if (nd_region->num_lanes < nr_cpu_ids) {
782 		unsigned int cpu = get_cpu();
783 		struct nd_percpu_lane *ndl_lock, *ndl_count;
784 
785 		ndl_count = per_cpu_ptr(nd_region->lane, cpu);
786 		ndl_lock = per_cpu_ptr(nd_region->lane, lane);
787 		if (--ndl_count->count == 0)
788 			spin_unlock(&ndl_lock->lock);
789 		put_cpu();
790 	}
791 	put_cpu();
792 }
793 EXPORT_SYMBOL(nd_region_release_lane);
794 
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,struct device_type * dev_type,const char * caller)795 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
796 		struct nd_region_desc *ndr_desc, struct device_type *dev_type,
797 		const char *caller)
798 {
799 	struct nd_region *nd_region;
800 	struct device *dev;
801 	void *region_buf;
802 	unsigned int i;
803 	int ro = 0;
804 
805 	for (i = 0; i < ndr_desc->num_mappings; i++) {
806 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
807 		struct nvdimm *nvdimm = mapping->nvdimm;
808 
809 		if ((mapping->start | mapping->size) % SZ_4K) {
810 			dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
811 					caller, dev_name(&nvdimm->dev), i);
812 
813 			return NULL;
814 		}
815 
816 		if (nvdimm->flags & NDD_UNARMED)
817 			ro = 1;
818 	}
819 
820 	if (dev_type == &nd_blk_device_type) {
821 		struct nd_blk_region_desc *ndbr_desc;
822 		struct nd_blk_region *ndbr;
823 
824 		ndbr_desc = to_blk_region_desc(ndr_desc);
825 		ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
826 				* ndr_desc->num_mappings,
827 				GFP_KERNEL);
828 		if (ndbr) {
829 			nd_region = &ndbr->nd_region;
830 			ndbr->enable = ndbr_desc->enable;
831 			ndbr->do_io = ndbr_desc->do_io;
832 		}
833 		region_buf = ndbr;
834 	} else {
835 		nd_region = kzalloc(sizeof(struct nd_region)
836 				+ sizeof(struct nd_mapping)
837 				* ndr_desc->num_mappings,
838 				GFP_KERNEL);
839 		region_buf = nd_region;
840 	}
841 
842 	if (!region_buf)
843 		return NULL;
844 	nd_region->id = ida_simple_get(&region_ida, 0, 0, GFP_KERNEL);
845 	if (nd_region->id < 0)
846 		goto err_id;
847 
848 	nd_region->lane = alloc_percpu(struct nd_percpu_lane);
849 	if (!nd_region->lane)
850 		goto err_percpu;
851 
852         for (i = 0; i < nr_cpu_ids; i++) {
853 		struct nd_percpu_lane *ndl;
854 
855 		ndl = per_cpu_ptr(nd_region->lane, i);
856 		spin_lock_init(&ndl->lock);
857 		ndl->count = 0;
858 	}
859 
860 	for (i = 0; i < ndr_desc->num_mappings; i++) {
861 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
862 		struct nvdimm *nvdimm = mapping->nvdimm;
863 
864 		nd_region->mapping[i].nvdimm = nvdimm;
865 		nd_region->mapping[i].start = mapping->start;
866 		nd_region->mapping[i].size = mapping->size;
867 		INIT_LIST_HEAD(&nd_region->mapping[i].labels);
868 		mutex_init(&nd_region->mapping[i].lock);
869 
870 		get_device(&nvdimm->dev);
871 	}
872 	nd_region->ndr_mappings = ndr_desc->num_mappings;
873 	nd_region->provider_data = ndr_desc->provider_data;
874 	nd_region->nd_set = ndr_desc->nd_set;
875 	nd_region->num_lanes = ndr_desc->num_lanes;
876 	nd_region->flags = ndr_desc->flags;
877 	nd_region->ro = ro;
878 	nd_region->numa_node = ndr_desc->numa_node;
879 	ida_init(&nd_region->ns_ida);
880 	ida_init(&nd_region->btt_ida);
881 	ida_init(&nd_region->pfn_ida);
882 	ida_init(&nd_region->dax_ida);
883 	dev = &nd_region->dev;
884 	dev_set_name(dev, "region%d", nd_region->id);
885 	dev->parent = &nvdimm_bus->dev;
886 	dev->type = dev_type;
887 	dev->groups = ndr_desc->attr_groups;
888 	nd_region->ndr_size = resource_size(ndr_desc->res);
889 	nd_region->ndr_start = ndr_desc->res->start;
890 	nd_device_register(dev);
891 
892 	return nd_region;
893 
894  err_percpu:
895 	ida_simple_remove(&region_ida, nd_region->id);
896  err_id:
897 	kfree(region_buf);
898 	return NULL;
899 }
900 
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)901 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
902 		struct nd_region_desc *ndr_desc)
903 {
904 	ndr_desc->num_lanes = ND_MAX_LANES;
905 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
906 			__func__);
907 }
908 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
909 
nvdimm_blk_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)910 struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
911 		struct nd_region_desc *ndr_desc)
912 {
913 	if (ndr_desc->num_mappings > 1)
914 		return NULL;
915 	ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
916 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
917 			__func__);
918 }
919 EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
920 
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)921 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
922 		struct nd_region_desc *ndr_desc)
923 {
924 	ndr_desc->num_lanes = ND_MAX_LANES;
925 	return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
926 			__func__);
927 }
928 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
929 
930 /**
931  * nvdimm_flush - flush any posted write queues between the cpu and pmem media
932  * @nd_region: blk or interleaved pmem region
933  */
nvdimm_flush(struct nd_region * nd_region)934 void nvdimm_flush(struct nd_region *nd_region)
935 {
936 	struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
937 	int i, idx;
938 
939 	/*
940 	 * Try to encourage some diversity in flush hint addresses
941 	 * across cpus assuming a limited number of flush hints.
942 	 */
943 	idx = this_cpu_read(flush_idx);
944 	idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
945 
946 	/*
947 	 * The first wmb() is needed to 'sfence' all previous writes
948 	 * such that they are architecturally visible for the platform
949 	 * buffer flush.  Note that we've already arranged for pmem
950 	 * writes to avoid the cache via arch_memcpy_to_pmem().  The
951 	 * final wmb() ensures ordering for the NVDIMM flush write.
952 	 */
953 	wmb();
954 	for (i = 0; i < nd_region->ndr_mappings; i++)
955 		if (ndrd_get_flush_wpq(ndrd, i, 0))
956 			writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
957 	wmb();
958 }
959 EXPORT_SYMBOL_GPL(nvdimm_flush);
960 
961 /**
962  * nvdimm_has_flush - determine write flushing requirements
963  * @nd_region: blk or interleaved pmem region
964  *
965  * Returns 1 if writes require flushing
966  * Returns 0 if writes do not require flushing
967  * Returns -ENXIO if flushing capability can not be determined
968  */
nvdimm_has_flush(struct nd_region * nd_region)969 int nvdimm_has_flush(struct nd_region *nd_region)
970 {
971 	int i;
972 
973 	/* no nvdimm == flushing capability unknown */
974 	if (nd_region->ndr_mappings == 0)
975 		return -ENXIO;
976 
977 	for (i = 0; i < nd_region->ndr_mappings; i++) {
978 		struct nd_mapping *nd_mapping = &nd_region->mapping[i];
979 		struct nvdimm *nvdimm = nd_mapping->nvdimm;
980 
981 		/* flush hints present / available */
982 		if (nvdimm->num_flush)
983 			return 1;
984 	}
985 
986 	/*
987 	 * The platform defines dimm devices without hints, assume
988 	 * platform persistence mechanism like ADR
989 	 */
990 	return 0;
991 }
992 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
993 
nd_region_devs_exit(void)994 void __exit nd_region_devs_exit(void)
995 {
996 	ida_destroy(&region_ida);
997 }
998