• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/nfs/dir.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  nfs directory handling functions
7  *
8  * 10 Apr 1996	Added silly rename for unlink	--okir
9  * 28 Sep 1996	Improved directory cache --okir
10  * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11  *              Re-implemented silly rename for unlink, newly implemented
12  *              silly rename for nfs_rename() following the suggestions
13  *              of Olaf Kirch (okir) found in this file.
14  *              Following Linus comments on my original hack, this version
15  *              depends only on the dcache stuff and doesn't touch the inode
16  *              layer (iput() and friends).
17  *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18  */
19 
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/mm.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
40 
41 #include "delegation.h"
42 #include "iostat.h"
43 #include "internal.h"
44 #include "fscache.h"
45 
46 #include "nfstrace.h"
47 
48 /* #define NFS_DEBUG_VERBOSE 1 */
49 
50 static int nfs_opendir(struct inode *, struct file *);
51 static int nfs_closedir(struct inode *, struct file *);
52 static int nfs_readdir(struct file *, struct dir_context *);
53 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55 static void nfs_readdir_clear_array(struct page*);
56 
57 const struct file_operations nfs_dir_operations = {
58 	.llseek		= nfs_llseek_dir,
59 	.read		= generic_read_dir,
60 	.iterate_shared	= nfs_readdir,
61 	.open		= nfs_opendir,
62 	.release	= nfs_closedir,
63 	.fsync		= nfs_fsync_dir,
64 };
65 
66 const struct address_space_operations nfs_dir_aops = {
67 	.freepage = nfs_readdir_clear_array,
68 };
69 
alloc_nfs_open_dir_context(struct inode * dir,struct rpc_cred * cred)70 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71 {
72 	struct nfs_inode *nfsi = NFS_I(dir);
73 	struct nfs_open_dir_context *ctx;
74 	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 	if (ctx != NULL) {
76 		ctx->duped = 0;
77 		ctx->attr_gencount = nfsi->attr_gencount;
78 		ctx->dir_cookie = 0;
79 		ctx->dup_cookie = 0;
80 		ctx->cred = get_rpccred(cred);
81 		spin_lock(&dir->i_lock);
82 		list_add(&ctx->list, &nfsi->open_files);
83 		spin_unlock(&dir->i_lock);
84 		return ctx;
85 	}
86 	return  ERR_PTR(-ENOMEM);
87 }
88 
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)89 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90 {
91 	spin_lock(&dir->i_lock);
92 	list_del(&ctx->list);
93 	spin_unlock(&dir->i_lock);
94 	put_rpccred(ctx->cred);
95 	kfree(ctx);
96 }
97 
98 /*
99  * Open file
100  */
101 static int
nfs_opendir(struct inode * inode,struct file * filp)102 nfs_opendir(struct inode *inode, struct file *filp)
103 {
104 	int res = 0;
105 	struct nfs_open_dir_context *ctx;
106 	struct rpc_cred *cred;
107 
108 	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109 
110 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111 
112 	cred = rpc_lookup_cred();
113 	if (IS_ERR(cred))
114 		return PTR_ERR(cred);
115 	ctx = alloc_nfs_open_dir_context(inode, cred);
116 	if (IS_ERR(ctx)) {
117 		res = PTR_ERR(ctx);
118 		goto out;
119 	}
120 	filp->private_data = ctx;
121 	if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 		/* This is a mountpoint, so d_revalidate will never
123 		 * have been called, so we need to refresh the
124 		 * inode (for close-open consistency) ourselves.
125 		 */
126 		__nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 	}
128 out:
129 	put_rpccred(cred);
130 	return res;
131 }
132 
133 static int
nfs_closedir(struct inode * inode,struct file * filp)134 nfs_closedir(struct inode *inode, struct file *filp)
135 {
136 	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
137 	return 0;
138 }
139 
140 struct nfs_cache_array_entry {
141 	u64 cookie;
142 	u64 ino;
143 	struct qstr string;
144 	unsigned char d_type;
145 };
146 
147 struct nfs_cache_array {
148 	atomic_t refcount;
149 	int size;
150 	int eof_index;
151 	u64 last_cookie;
152 	struct nfs_cache_array_entry array[0];
153 };
154 
155 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
156 typedef struct {
157 	struct file	*file;
158 	struct page	*page;
159 	struct dir_context *ctx;
160 	unsigned long	page_index;
161 	u64		*dir_cookie;
162 	u64		last_cookie;
163 	loff_t		current_index;
164 	decode_dirent_t	decode;
165 
166 	unsigned long	timestamp;
167 	unsigned long	gencount;
168 	unsigned int	cache_entry_index;
169 	unsigned int	plus:1;
170 	unsigned int	eof:1;
171 } nfs_readdir_descriptor_t;
172 
173 /*
174  * The caller is responsible for calling nfs_readdir_release_array(page)
175  */
176 static
nfs_readdir_get_array(struct page * page)177 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
178 {
179 	void *ptr;
180 	if (page == NULL)
181 		return ERR_PTR(-EIO);
182 	ptr = kmap(page);
183 	if (ptr == NULL)
184 		return ERR_PTR(-ENOMEM);
185 	return ptr;
186 }
187 
188 static
nfs_readdir_release_array(struct page * page)189 void nfs_readdir_release_array(struct page *page)
190 {
191 	kunmap(page);
192 }
193 
194 /*
195  * we are freeing strings created by nfs_add_to_readdir_array()
196  */
197 static
nfs_readdir_clear_array(struct page * page)198 void nfs_readdir_clear_array(struct page *page)
199 {
200 	struct nfs_cache_array *array;
201 	int i;
202 
203 	array = kmap_atomic(page);
204 	if (atomic_dec_and_test(&array->refcount))
205 		for (i = 0; i < array->size; i++)
206 			kfree(array->array[i].string.name);
207 	kunmap_atomic(array);
208 }
209 
grab_page(struct page * page)210 static bool grab_page(struct page *page)
211 {
212 	struct nfs_cache_array *array = kmap_atomic(page);
213 	bool res = atomic_inc_not_zero(&array->refcount);
214 	kunmap_atomic(array);
215 	return res;
216 }
217 
218 /*
219  * the caller is responsible for freeing qstr.name
220  * when called by nfs_readdir_add_to_array, the strings will be freed in
221  * nfs_clear_readdir_array()
222  */
223 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)224 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
225 {
226 	string->len = len;
227 	string->name = kmemdup(name, len, GFP_KERNEL);
228 	if (string->name == NULL)
229 		return -ENOMEM;
230 	/*
231 	 * Avoid a kmemleak false positive. The pointer to the name is stored
232 	 * in a page cache page which kmemleak does not scan.
233 	 */
234 	kmemleak_not_leak(string->name);
235 	string->hash = full_name_hash(NULL, name, len);
236 	return 0;
237 }
238 
239 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)240 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
241 {
242 	struct nfs_cache_array *array = nfs_readdir_get_array(page);
243 	struct nfs_cache_array_entry *cache_entry;
244 	int ret;
245 
246 	if (IS_ERR(array))
247 		return PTR_ERR(array);
248 
249 	cache_entry = &array->array[array->size];
250 
251 	/* Check that this entry lies within the page bounds */
252 	ret = -ENOSPC;
253 	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
254 		goto out;
255 
256 	cache_entry->cookie = entry->prev_cookie;
257 	cache_entry->ino = entry->ino;
258 	cache_entry->d_type = entry->d_type;
259 	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
260 	if (ret)
261 		goto out;
262 	array->last_cookie = entry->cookie;
263 	array->size++;
264 	if (entry->eof != 0)
265 		array->eof_index = array->size;
266 out:
267 	nfs_readdir_release_array(page);
268 	return ret;
269 }
270 
271 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)272 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
273 {
274 	loff_t diff = desc->ctx->pos - desc->current_index;
275 	unsigned int index;
276 
277 	if (diff < 0)
278 		goto out_eof;
279 	if (diff >= array->size) {
280 		if (array->eof_index >= 0)
281 			goto out_eof;
282 		return -EAGAIN;
283 	}
284 
285 	index = (unsigned int)diff;
286 	*desc->dir_cookie = array->array[index].cookie;
287 	desc->cache_entry_index = index;
288 	return 0;
289 out_eof:
290 	desc->eof = 1;
291 	return -EBADCOOKIE;
292 }
293 
294 static bool
nfs_readdir_inode_mapping_valid(struct nfs_inode * nfsi)295 nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
296 {
297 	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
298 		return false;
299 	smp_rmb();
300 	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
301 }
302 
303 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)304 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
305 {
306 	int i;
307 	loff_t new_pos;
308 	int status = -EAGAIN;
309 
310 	for (i = 0; i < array->size; i++) {
311 		if (array->array[i].cookie == *desc->dir_cookie) {
312 			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
313 			struct nfs_open_dir_context *ctx = desc->file->private_data;
314 
315 			new_pos = desc->current_index + i;
316 			if (ctx->attr_gencount != nfsi->attr_gencount ||
317 			    !nfs_readdir_inode_mapping_valid(nfsi)) {
318 				ctx->duped = 0;
319 				ctx->attr_gencount = nfsi->attr_gencount;
320 			} else if (new_pos < desc->ctx->pos) {
321 				if (ctx->duped > 0
322 				    && ctx->dup_cookie == *desc->dir_cookie) {
323 					if (printk_ratelimit()) {
324 						pr_notice("NFS: directory %pD2 contains a readdir loop."
325 								"Please contact your server vendor.  "
326 								"The file: %.*s has duplicate cookie %llu\n",
327 								desc->file, array->array[i].string.len,
328 								array->array[i].string.name, *desc->dir_cookie);
329 					}
330 					status = -ELOOP;
331 					goto out;
332 				}
333 				ctx->dup_cookie = *desc->dir_cookie;
334 				ctx->duped = -1;
335 			}
336 			desc->ctx->pos = new_pos;
337 			desc->cache_entry_index = i;
338 			return 0;
339 		}
340 	}
341 	if (array->eof_index >= 0) {
342 		status = -EBADCOOKIE;
343 		if (*desc->dir_cookie == array->last_cookie)
344 			desc->eof = 1;
345 	}
346 out:
347 	return status;
348 }
349 
350 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)351 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
352 {
353 	struct nfs_cache_array *array;
354 	int status;
355 
356 	array = nfs_readdir_get_array(desc->page);
357 	if (IS_ERR(array)) {
358 		status = PTR_ERR(array);
359 		goto out;
360 	}
361 
362 	if (*desc->dir_cookie == 0)
363 		status = nfs_readdir_search_for_pos(array, desc);
364 	else
365 		status = nfs_readdir_search_for_cookie(array, desc);
366 
367 	if (status == -EAGAIN) {
368 		desc->last_cookie = array->last_cookie;
369 		desc->current_index += array->size;
370 		desc->page_index++;
371 	}
372 	nfs_readdir_release_array(desc->page);
373 out:
374 	return status;
375 }
376 
377 /* Fill a page with xdr information before transferring to the cache page */
378 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)379 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
380 			struct nfs_entry *entry, struct file *file, struct inode *inode)
381 {
382 	struct nfs_open_dir_context *ctx = file->private_data;
383 	struct rpc_cred	*cred = ctx->cred;
384 	unsigned long	timestamp, gencount;
385 	int		error;
386 
387  again:
388 	timestamp = jiffies;
389 	gencount = nfs_inc_attr_generation_counter();
390 	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
391 					  NFS_SERVER(inode)->dtsize, desc->plus);
392 	if (error < 0) {
393 		/* We requested READDIRPLUS, but the server doesn't grok it */
394 		if (error == -ENOTSUPP && desc->plus) {
395 			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
396 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
397 			desc->plus = 0;
398 			goto again;
399 		}
400 		goto error;
401 	}
402 	desc->timestamp = timestamp;
403 	desc->gencount = gencount;
404 error:
405 	return error;
406 }
407 
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)408 static int xdr_decode(nfs_readdir_descriptor_t *desc,
409 		      struct nfs_entry *entry, struct xdr_stream *xdr)
410 {
411 	int error;
412 
413 	error = desc->decode(xdr, entry, desc->plus);
414 	if (error)
415 		return error;
416 	entry->fattr->time_start = desc->timestamp;
417 	entry->fattr->gencount = desc->gencount;
418 	return 0;
419 }
420 
421 /* Match file and dirent using either filehandle or fileid
422  * Note: caller is responsible for checking the fsid
423  */
424 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)425 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
426 {
427 	struct inode *inode;
428 	struct nfs_inode *nfsi;
429 
430 	if (d_really_is_negative(dentry))
431 		return 0;
432 
433 	inode = d_inode(dentry);
434 	if (is_bad_inode(inode) || NFS_STALE(inode))
435 		return 0;
436 
437 	nfsi = NFS_I(inode);
438 	if (entry->fattr->fileid != nfsi->fileid)
439 		return 0;
440 	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
441 		return 0;
442 	return 1;
443 }
444 
445 static
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx)446 bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
447 {
448 	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
449 		return false;
450 	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
451 		return true;
452 	if (ctx->pos == 0)
453 		return true;
454 	return false;
455 }
456 
457 /*
458  * This function is called by the lookup code to request the use of
459  * readdirplus to accelerate any future lookups in the same
460  * directory.
461  */
462 static
nfs_advise_use_readdirplus(struct inode * dir)463 void nfs_advise_use_readdirplus(struct inode *dir)
464 {
465 	set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
466 }
467 
468 /*
469  * This function is mainly for use by nfs_getattr().
470  *
471  * If this is an 'ls -l', we want to force use of readdirplus.
472  * Do this by checking if there is an active file descriptor
473  * and calling nfs_advise_use_readdirplus, then forcing a
474  * cache flush.
475  */
nfs_force_use_readdirplus(struct inode * dir)476 void nfs_force_use_readdirplus(struct inode *dir)
477 {
478 	if (!list_empty(&NFS_I(dir)->open_files)) {
479 		nfs_advise_use_readdirplus(dir);
480 		invalidate_mapping_pages(dir->i_mapping, 0, -1);
481 	}
482 }
483 
484 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry)485 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
486 {
487 	struct qstr filename = QSTR_INIT(entry->name, entry->len);
488 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
489 	struct dentry *dentry;
490 	struct dentry *alias;
491 	struct inode *dir = d_inode(parent);
492 	struct inode *inode;
493 	int status;
494 
495 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
496 		return;
497 	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
498 		return;
499 	if (filename.len == 0)
500 		return;
501 	/* Validate that the name doesn't contain any illegal '\0' */
502 	if (strnlen(filename.name, filename.len) != filename.len)
503 		return;
504 	/* ...or '/' */
505 	if (strnchr(filename.name, filename.len, '/'))
506 		return;
507 	if (filename.name[0] == '.') {
508 		if (filename.len == 1)
509 			return;
510 		if (filename.len == 2 && filename.name[1] == '.')
511 			return;
512 	}
513 	filename.hash = full_name_hash(parent, filename.name, filename.len);
514 
515 	dentry = d_lookup(parent, &filename);
516 again:
517 	if (!dentry) {
518 		dentry = d_alloc_parallel(parent, &filename, &wq);
519 		if (IS_ERR(dentry))
520 			return;
521 	}
522 	if (!d_in_lookup(dentry)) {
523 		/* Is there a mountpoint here? If so, just exit */
524 		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
525 					&entry->fattr->fsid))
526 			goto out;
527 		if (nfs_same_file(dentry, entry)) {
528 			if (!entry->fh->size)
529 				goto out;
530 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
531 			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
532 			if (!status)
533 				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
534 			goto out;
535 		} else {
536 			d_invalidate(dentry);
537 			dput(dentry);
538 			dentry = NULL;
539 			goto again;
540 		}
541 	}
542 	if (!entry->fh->size) {
543 		d_lookup_done(dentry);
544 		goto out;
545 	}
546 
547 	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
548 	alias = d_splice_alias(inode, dentry);
549 	d_lookup_done(dentry);
550 	if (alias) {
551 		if (IS_ERR(alias))
552 			goto out;
553 		dput(dentry);
554 		dentry = alias;
555 	}
556 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
557 out:
558 	dput(dentry);
559 }
560 
561 /* Perform conversion from xdr to cache array */
562 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)563 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
564 				struct page **xdr_pages, struct page *page, unsigned int buflen)
565 {
566 	struct xdr_stream stream;
567 	struct xdr_buf buf;
568 	struct page *scratch;
569 	struct nfs_cache_array *array;
570 	unsigned int count = 0;
571 	int status;
572 
573 	scratch = alloc_page(GFP_KERNEL);
574 	if (scratch == NULL)
575 		return -ENOMEM;
576 
577 	if (buflen == 0)
578 		goto out_nopages;
579 
580 	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
581 	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
582 
583 	do {
584 		status = xdr_decode(desc, entry, &stream);
585 		if (status != 0) {
586 			if (status == -EAGAIN)
587 				status = 0;
588 			break;
589 		}
590 
591 		count++;
592 
593 		if (desc->plus != 0)
594 			nfs_prime_dcache(file_dentry(desc->file), entry);
595 
596 		status = nfs_readdir_add_to_array(entry, page);
597 		if (status != 0)
598 			break;
599 	} while (!entry->eof);
600 
601 out_nopages:
602 	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
603 		array = nfs_readdir_get_array(page);
604 		if (!IS_ERR(array)) {
605 			array->eof_index = array->size;
606 			status = 0;
607 			nfs_readdir_release_array(page);
608 		} else
609 			status = PTR_ERR(array);
610 	}
611 
612 	put_page(scratch);
613 	return status;
614 }
615 
616 static
nfs_readdir_free_pages(struct page ** pages,unsigned int npages)617 void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
618 {
619 	unsigned int i;
620 	for (i = 0; i < npages; i++)
621 		put_page(pages[i]);
622 }
623 
624 /*
625  * nfs_readdir_large_page will allocate pages that must be freed with a call
626  * to nfs_readdir_free_pagearray
627  */
628 static
nfs_readdir_alloc_pages(struct page ** pages,unsigned int npages)629 int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
630 {
631 	unsigned int i;
632 
633 	for (i = 0; i < npages; i++) {
634 		struct page *page = alloc_page(GFP_KERNEL);
635 		if (page == NULL)
636 			goto out_freepages;
637 		pages[i] = page;
638 	}
639 	return 0;
640 
641 out_freepages:
642 	nfs_readdir_free_pages(pages, i);
643 	return -ENOMEM;
644 }
645 
646 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)647 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
648 {
649 	struct page *pages[NFS_MAX_READDIR_PAGES];
650 	struct nfs_entry entry;
651 	struct file	*file = desc->file;
652 	struct nfs_cache_array *array;
653 	int status = -ENOMEM;
654 	unsigned int array_size = ARRAY_SIZE(pages);
655 
656 	entry.prev_cookie = 0;
657 	entry.cookie = desc->last_cookie;
658 	entry.eof = 0;
659 	entry.fh = nfs_alloc_fhandle();
660 	entry.fattr = nfs_alloc_fattr();
661 	entry.server = NFS_SERVER(inode);
662 	if (entry.fh == NULL || entry.fattr == NULL)
663 		goto out;
664 
665 	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
666 	if (IS_ERR(entry.label)) {
667 		status = PTR_ERR(entry.label);
668 		goto out;
669 	}
670 
671 	array = nfs_readdir_get_array(page);
672 	if (IS_ERR(array)) {
673 		status = PTR_ERR(array);
674 		goto out_label_free;
675 	}
676 	memset(array, 0, sizeof(struct nfs_cache_array));
677 	atomic_set(&array->refcount, 1);
678 	array->eof_index = -1;
679 
680 	status = nfs_readdir_alloc_pages(pages, array_size);
681 	if (status < 0)
682 		goto out_release_array;
683 	do {
684 		unsigned int pglen;
685 		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
686 
687 		if (status < 0)
688 			break;
689 		pglen = status;
690 		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
691 		if (status < 0) {
692 			if (status == -ENOSPC)
693 				status = 0;
694 			break;
695 		}
696 	} while (array->eof_index < 0);
697 
698 	nfs_readdir_free_pages(pages, array_size);
699 out_release_array:
700 	nfs_readdir_release_array(page);
701 out_label_free:
702 	nfs4_label_free(entry.label);
703 out:
704 	nfs_free_fattr(entry.fattr);
705 	nfs_free_fhandle(entry.fh);
706 	return status;
707 }
708 
709 /*
710  * Now we cache directories properly, by converting xdr information
711  * to an array that can be used for lookups later.  This results in
712  * fewer cache pages, since we can store more information on each page.
713  * We only need to convert from xdr once so future lookups are much simpler
714  */
715 static
nfs_readdir_filler(nfs_readdir_descriptor_t * desc,struct page * page)716 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
717 {
718 	struct inode	*inode = file_inode(desc->file);
719 	int ret;
720 
721 	ret = nfs_readdir_xdr_to_array(desc, page, inode);
722 	if (ret < 0)
723 		goto error;
724 	SetPageUptodate(page);
725 
726 	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
727 		/* Should never happen */
728 		nfs_zap_mapping(inode, inode->i_mapping);
729 	}
730 	unlock_page(page);
731 	return 0;
732  error:
733 	unlock_page(page);
734 	return ret;
735 }
736 
737 static
cache_page_release(nfs_readdir_descriptor_t * desc)738 void cache_page_release(nfs_readdir_descriptor_t *desc)
739 {
740 	nfs_readdir_clear_array(desc->page);
741 	put_page(desc->page);
742 	desc->page = NULL;
743 }
744 
745 static
get_cache_page(nfs_readdir_descriptor_t * desc)746 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
747 {
748 	struct page *page;
749 
750 	for (;;) {
751 		page = read_cache_page(desc->file->f_mapping,
752 			desc->page_index, (filler_t *)nfs_readdir_filler, desc);
753 		if (IS_ERR(page) || grab_page(page))
754 			break;
755 		put_page(page);
756 	}
757 	return page;
758 }
759 
760 /*
761  * Returns 0 if desc->dir_cookie was found on page desc->page_index
762  */
763 static
find_cache_page(nfs_readdir_descriptor_t * desc)764 int find_cache_page(nfs_readdir_descriptor_t *desc)
765 {
766 	int res;
767 
768 	desc->page = get_cache_page(desc);
769 	if (IS_ERR(desc->page))
770 		return PTR_ERR(desc->page);
771 
772 	res = nfs_readdir_search_array(desc);
773 	if (res != 0)
774 		cache_page_release(desc);
775 	return res;
776 }
777 
778 /* Search for desc->dir_cookie from the beginning of the page cache */
779 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)780 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
781 {
782 	int res;
783 
784 	if (desc->page_index == 0) {
785 		desc->current_index = 0;
786 		desc->last_cookie = 0;
787 	}
788 	do {
789 		res = find_cache_page(desc);
790 	} while (res == -EAGAIN);
791 	return res;
792 }
793 
794 /*
795  * Once we've found the start of the dirent within a page: fill 'er up...
796  */
797 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc)798 int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799 {
800 	struct file	*file = desc->file;
801 	int i = 0;
802 	int res = 0;
803 	struct nfs_cache_array *array = NULL;
804 	struct nfs_open_dir_context *ctx = file->private_data;
805 
806 	array = nfs_readdir_get_array(desc->page);
807 	if (IS_ERR(array)) {
808 		res = PTR_ERR(array);
809 		goto out;
810 	}
811 
812 	for (i = desc->cache_entry_index; i < array->size; i++) {
813 		struct nfs_cache_array_entry *ent;
814 
815 		ent = &array->array[i];
816 		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
817 		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
818 			desc->eof = 1;
819 			break;
820 		}
821 		desc->ctx->pos++;
822 		if (i < (array->size-1))
823 			*desc->dir_cookie = array->array[i+1].cookie;
824 		else
825 			*desc->dir_cookie = array->last_cookie;
826 		if (ctx->duped != 0)
827 			ctx->duped = 1;
828 	}
829 	if (array->eof_index >= 0)
830 		desc->eof = 1;
831 
832 	nfs_readdir_release_array(desc->page);
833 out:
834 	cache_page_release(desc);
835 	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
836 			(unsigned long long)*desc->dir_cookie, res);
837 	return res;
838 }
839 
840 /*
841  * If we cannot find a cookie in our cache, we suspect that this is
842  * because it points to a deleted file, so we ask the server to return
843  * whatever it thinks is the next entry. We then feed this to filldir.
844  * If all goes well, we should then be able to find our way round the
845  * cache on the next call to readdir_search_pagecache();
846  *
847  * NOTE: we cannot add the anonymous page to the pagecache because
848  *	 the data it contains might not be page aligned. Besides,
849  *	 we should already have a complete representation of the
850  *	 directory in the page cache by the time we get here.
851  */
852 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc)853 int uncached_readdir(nfs_readdir_descriptor_t *desc)
854 {
855 	struct page	*page = NULL;
856 	int		status;
857 	struct inode *inode = file_inode(desc->file);
858 	struct nfs_open_dir_context *ctx = desc->file->private_data;
859 
860 	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
861 			(unsigned long long)*desc->dir_cookie);
862 
863 	page = alloc_page(GFP_HIGHUSER);
864 	if (!page) {
865 		status = -ENOMEM;
866 		goto out;
867 	}
868 
869 	desc->page_index = 0;
870 	desc->last_cookie = *desc->dir_cookie;
871 	desc->page = page;
872 	ctx->duped = 0;
873 
874 	status = nfs_readdir_xdr_to_array(desc, page, inode);
875 	if (status < 0)
876 		goto out_release;
877 
878 	status = nfs_do_filldir(desc);
879 
880  out:
881 	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
882 			__func__, status);
883 	return status;
884  out_release:
885 	cache_page_release(desc);
886 	goto out;
887 }
888 
889 /* The file offset position represents the dirent entry number.  A
890    last cookie cache takes care of the common case of reading the
891    whole directory.
892  */
nfs_readdir(struct file * file,struct dir_context * ctx)893 static int nfs_readdir(struct file *file, struct dir_context *ctx)
894 {
895 	struct dentry	*dentry = file_dentry(file);
896 	struct inode	*inode = d_inode(dentry);
897 	nfs_readdir_descriptor_t my_desc,
898 			*desc = &my_desc;
899 	struct nfs_open_dir_context *dir_ctx = file->private_data;
900 	int res = 0;
901 
902 	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
903 			file, (long long)ctx->pos);
904 	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
905 
906 	/*
907 	 * ctx->pos points to the dirent entry number.
908 	 * *desc->dir_cookie has the cookie for the next entry. We have
909 	 * to either find the entry with the appropriate number or
910 	 * revalidate the cookie.
911 	 */
912 	memset(desc, 0, sizeof(*desc));
913 
914 	desc->file = file;
915 	desc->ctx = ctx;
916 	desc->dir_cookie = &dir_ctx->dir_cookie;
917 	desc->decode = NFS_PROTO(inode)->decode_dirent;
918 	desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
919 
920 	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
921 		res = nfs_revalidate_mapping(inode, file->f_mapping);
922 	if (res < 0)
923 		goto out;
924 
925 	do {
926 		res = readdir_search_pagecache(desc);
927 
928 		if (res == -EBADCOOKIE) {
929 			res = 0;
930 			/* This means either end of directory */
931 			if (*desc->dir_cookie && desc->eof == 0) {
932 				/* Or that the server has 'lost' a cookie */
933 				res = uncached_readdir(desc);
934 				if (res == 0)
935 					continue;
936 			}
937 			break;
938 		}
939 		if (res == -ETOOSMALL && desc->plus) {
940 			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
941 			nfs_zap_caches(inode);
942 			desc->page_index = 0;
943 			desc->plus = 0;
944 			desc->eof = 0;
945 			continue;
946 		}
947 		if (res < 0)
948 			break;
949 
950 		res = nfs_do_filldir(desc);
951 		if (res < 0)
952 			break;
953 	} while (!desc->eof);
954 out:
955 	if (res > 0)
956 		res = 0;
957 	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
958 	return res;
959 }
960 
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)961 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
962 {
963 	struct nfs_open_dir_context *dir_ctx = filp->private_data;
964 
965 	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
966 			filp, offset, whence);
967 
968 	switch (whence) {
969 		case 1:
970 			offset += filp->f_pos;
971 		case 0:
972 			if (offset >= 0)
973 				break;
974 		default:
975 			return -EINVAL;
976 	}
977 	if (offset != filp->f_pos) {
978 		filp->f_pos = offset;
979 		dir_ctx->dir_cookie = 0;
980 		dir_ctx->duped = 0;
981 	}
982 	return offset;
983 }
984 
985 /*
986  * All directory operations under NFS are synchronous, so fsync()
987  * is a dummy operation.
988  */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)989 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
990 			 int datasync)
991 {
992 	struct inode *inode = file_inode(filp);
993 
994 	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
995 
996 	inode_lock(inode);
997 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
998 	inode_unlock(inode);
999 	return 0;
1000 }
1001 
1002 /**
1003  * nfs_force_lookup_revalidate - Mark the directory as having changed
1004  * @dir - pointer to directory inode
1005  *
1006  * This forces the revalidation code in nfs_lookup_revalidate() to do a
1007  * full lookup on all child dentries of 'dir' whenever a change occurs
1008  * on the server that might have invalidated our dcache.
1009  *
1010  * The caller should be holding dir->i_lock
1011  */
nfs_force_lookup_revalidate(struct inode * dir)1012 void nfs_force_lookup_revalidate(struct inode *dir)
1013 {
1014 	NFS_I(dir)->cache_change_attribute++;
1015 }
1016 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1017 
1018 /*
1019  * A check for whether or not the parent directory has changed.
1020  * In the case it has, we assume that the dentries are untrustworthy
1021  * and may need to be looked up again.
1022  * If rcu_walk prevents us from performing a full check, return 0.
1023  */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1024 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1025 			      int rcu_walk)
1026 {
1027 	int ret;
1028 
1029 	if (IS_ROOT(dentry))
1030 		return 1;
1031 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1032 		return 0;
1033 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1034 		return 0;
1035 	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1036 	if (rcu_walk)
1037 		ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1038 	else
1039 		ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1040 	if (ret < 0)
1041 		return 0;
1042 	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1043 		return 0;
1044 	return 1;
1045 }
1046 
1047 /*
1048  * Use intent information to check whether or not we're going to do
1049  * an O_EXCL create using this path component.
1050  */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1051 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1052 {
1053 	if (NFS_PROTO(dir)->version == 2)
1054 		return 0;
1055 	return flags & LOOKUP_EXCL;
1056 }
1057 
1058 /*
1059  * Inode and filehandle revalidation for lookups.
1060  *
1061  * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1062  * or if the intent information indicates that we're about to open this
1063  * particular file and the "nocto" mount flag is not set.
1064  *
1065  */
1066 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1067 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1068 {
1069 	struct nfs_server *server = NFS_SERVER(inode);
1070 	int ret;
1071 
1072 	if (IS_AUTOMOUNT(inode))
1073 		return 0;
1074 	/* VFS wants an on-the-wire revalidation */
1075 	if (flags & LOOKUP_REVAL)
1076 		goto out_force;
1077 	/* This is an open(2) */
1078 	if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1079 	    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1080 		goto out_force;
1081 out:
1082 	return (inode->i_nlink == 0) ? -ENOENT : 0;
1083 out_force:
1084 	if (flags & LOOKUP_RCU)
1085 		return -ECHILD;
1086 	ret = __nfs_revalidate_inode(server, inode);
1087 	if (ret != 0)
1088 		return ret;
1089 	goto out;
1090 }
1091 
1092 /*
1093  * We judge how long we want to trust negative
1094  * dentries by looking at the parent inode mtime.
1095  *
1096  * If parent mtime has changed, we revalidate, else we wait for a
1097  * period corresponding to the parent's attribute cache timeout value.
1098  *
1099  * If LOOKUP_RCU prevents us from performing a full check, return 1
1100  * suggesting a reval is needed.
1101  */
1102 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1103 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1104 		       unsigned int flags)
1105 {
1106 	/* Don't revalidate a negative dentry if we're creating a new file */
1107 	if (flags & LOOKUP_CREATE)
1108 		return 0;
1109 	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1110 		return 1;
1111 	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1112 }
1113 
1114 /*
1115  * This is called every time the dcache has a lookup hit,
1116  * and we should check whether we can really trust that
1117  * lookup.
1118  *
1119  * NOTE! The hit can be a negative hit too, don't assume
1120  * we have an inode!
1121  *
1122  * If the parent directory is seen to have changed, we throw out the
1123  * cached dentry and do a new lookup.
1124  */
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1125 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1126 {
1127 	struct inode *dir;
1128 	struct inode *inode;
1129 	struct dentry *parent;
1130 	struct nfs_fh *fhandle = NULL;
1131 	struct nfs_fattr *fattr = NULL;
1132 	struct nfs4_label *label = NULL;
1133 	int error;
1134 
1135 	if (flags & LOOKUP_RCU) {
1136 		parent = ACCESS_ONCE(dentry->d_parent);
1137 		dir = d_inode_rcu(parent);
1138 		if (!dir)
1139 			return -ECHILD;
1140 	} else {
1141 		parent = dget_parent(dentry);
1142 		dir = d_inode(parent);
1143 	}
1144 	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1145 	inode = d_inode(dentry);
1146 
1147 	if (!inode) {
1148 		if (nfs_neg_need_reval(dir, dentry, flags)) {
1149 			if (flags & LOOKUP_RCU)
1150 				return -ECHILD;
1151 			goto out_bad;
1152 		}
1153 		goto out_valid_noent;
1154 	}
1155 
1156 	if (is_bad_inode(inode)) {
1157 		if (flags & LOOKUP_RCU)
1158 			return -ECHILD;
1159 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1160 				__func__, dentry);
1161 		goto out_bad;
1162 	}
1163 
1164 	if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1165 		goto out_set_verifier;
1166 
1167 	/* Force a full look up iff the parent directory has changed */
1168 	if (!nfs_is_exclusive_create(dir, flags) &&
1169 	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1170 		error = nfs_lookup_verify_inode(inode, flags);
1171 		if (error) {
1172 			if (flags & LOOKUP_RCU)
1173 				return -ECHILD;
1174 			if (error == -ESTALE)
1175 				goto out_zap_parent;
1176 			goto out_error;
1177 		}
1178 		goto out_valid;
1179 	}
1180 
1181 	if (flags & LOOKUP_RCU)
1182 		return -ECHILD;
1183 
1184 	if (NFS_STALE(inode))
1185 		goto out_bad;
1186 
1187 	error = -ENOMEM;
1188 	fhandle = nfs_alloc_fhandle();
1189 	fattr = nfs_alloc_fattr();
1190 	if (fhandle == NULL || fattr == NULL)
1191 		goto out_error;
1192 
1193 	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1194 	if (IS_ERR(label))
1195 		goto out_error;
1196 
1197 	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1198 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1199 	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1200 	if (error == -ESTALE || error == -ENOENT)
1201 		goto out_bad;
1202 	if (error)
1203 		goto out_error;
1204 	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1205 		goto out_bad;
1206 	if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1207 		goto out_bad;
1208 
1209 	nfs_setsecurity(inode, fattr, label);
1210 
1211 	nfs_free_fattr(fattr);
1212 	nfs_free_fhandle(fhandle);
1213 	nfs4_label_free(label);
1214 
1215 out_set_verifier:
1216 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1217  out_valid:
1218 	/* Success: notify readdir to use READDIRPLUS */
1219 	nfs_advise_use_readdirplus(dir);
1220  out_valid_noent:
1221 	if (flags & LOOKUP_RCU) {
1222 		if (parent != ACCESS_ONCE(dentry->d_parent))
1223 			return -ECHILD;
1224 	} else
1225 		dput(parent);
1226 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1227 			__func__, dentry);
1228 	return 1;
1229 out_zap_parent:
1230 	nfs_zap_caches(dir);
1231  out_bad:
1232 	WARN_ON(flags & LOOKUP_RCU);
1233 	nfs_free_fattr(fattr);
1234 	nfs_free_fhandle(fhandle);
1235 	nfs4_label_free(label);
1236 	nfs_mark_for_revalidate(dir);
1237 	if (inode && S_ISDIR(inode->i_mode)) {
1238 		/* Purge readdir caches. */
1239 		nfs_zap_caches(inode);
1240 		/*
1241 		 * We can't d_drop the root of a disconnected tree:
1242 		 * its d_hash is on the s_anon list and d_drop() would hide
1243 		 * it from shrink_dcache_for_unmount(), leading to busy
1244 		 * inodes on unmount and further oopses.
1245 		 */
1246 		if (IS_ROOT(dentry))
1247 			goto out_valid;
1248 	}
1249 	dput(parent);
1250 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1251 			__func__, dentry);
1252 	return 0;
1253 out_error:
1254 	WARN_ON(flags & LOOKUP_RCU);
1255 	nfs_free_fattr(fattr);
1256 	nfs_free_fhandle(fhandle);
1257 	nfs4_label_free(label);
1258 	dput(parent);
1259 	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1260 			__func__, dentry, error);
1261 	return error;
1262 }
1263 
1264 /*
1265  * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1266  * when we don't really care about the dentry name. This is called when a
1267  * pathwalk ends on a dentry that was not found via a normal lookup in the
1268  * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1269  *
1270  * In this situation, we just want to verify that the inode itself is OK
1271  * since the dentry might have changed on the server.
1272  */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1273 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1274 {
1275 	int error;
1276 	struct inode *inode = d_inode(dentry);
1277 
1278 	/*
1279 	 * I believe we can only get a negative dentry here in the case of a
1280 	 * procfs-style symlink. Just assume it's correct for now, but we may
1281 	 * eventually need to do something more here.
1282 	 */
1283 	if (!inode) {
1284 		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1285 				__func__, dentry);
1286 		return 1;
1287 	}
1288 
1289 	if (is_bad_inode(inode)) {
1290 		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1291 				__func__, dentry);
1292 		return 0;
1293 	}
1294 
1295 	error = nfs_lookup_verify_inode(inode, flags);
1296 	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1297 			__func__, inode->i_ino, error ? "invalid" : "valid");
1298 	return !error;
1299 }
1300 
1301 /*
1302  * This is called from dput() when d_count is going to 0.
1303  */
nfs_dentry_delete(const struct dentry * dentry)1304 static int nfs_dentry_delete(const struct dentry *dentry)
1305 {
1306 	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1307 		dentry, dentry->d_flags);
1308 
1309 	/* Unhash any dentry with a stale inode */
1310 	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1311 		return 1;
1312 
1313 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1314 		/* Unhash it, so that ->d_iput() would be called */
1315 		return 1;
1316 	}
1317 	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1318 		/* Unhash it, so that ancestors of killed async unlink
1319 		 * files will be cleaned up during umount */
1320 		return 1;
1321 	}
1322 	return 0;
1323 
1324 }
1325 
1326 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1327 static void nfs_drop_nlink(struct inode *inode)
1328 {
1329 	spin_lock(&inode->i_lock);
1330 	/* drop the inode if we're reasonably sure this is the last link */
1331 	if (inode->i_nlink == 1)
1332 		clear_nlink(inode);
1333 	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1334 	spin_unlock(&inode->i_lock);
1335 }
1336 
1337 /*
1338  * Called when the dentry loses inode.
1339  * We use it to clean up silly-renamed files.
1340  */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1341 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1342 {
1343 	if (S_ISDIR(inode->i_mode))
1344 		/* drop any readdir cache as it could easily be old */
1345 		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1346 
1347 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1348 		nfs_complete_unlink(dentry, inode);
1349 		nfs_drop_nlink(inode);
1350 	}
1351 	iput(inode);
1352 }
1353 
nfs_d_release(struct dentry * dentry)1354 static void nfs_d_release(struct dentry *dentry)
1355 {
1356 	/* free cached devname value, if it survived that far */
1357 	if (unlikely(dentry->d_fsdata)) {
1358 		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1359 			WARN_ON(1);
1360 		else
1361 			kfree(dentry->d_fsdata);
1362 	}
1363 }
1364 
1365 const struct dentry_operations nfs_dentry_operations = {
1366 	.d_revalidate	= nfs_lookup_revalidate,
1367 	.d_weak_revalidate	= nfs_weak_revalidate,
1368 	.d_delete	= nfs_dentry_delete,
1369 	.d_iput		= nfs_dentry_iput,
1370 	.d_automount	= nfs_d_automount,
1371 	.d_release	= nfs_d_release,
1372 };
1373 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1374 
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1375 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1376 {
1377 	struct dentry *res;
1378 	struct inode *inode = NULL;
1379 	struct nfs_fh *fhandle = NULL;
1380 	struct nfs_fattr *fattr = NULL;
1381 	struct nfs4_label *label = NULL;
1382 	int error;
1383 
1384 	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1385 	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1386 
1387 	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1388 		return ERR_PTR(-ENAMETOOLONG);
1389 
1390 	/*
1391 	 * If we're doing an exclusive create, optimize away the lookup
1392 	 * but don't hash the dentry.
1393 	 */
1394 	if (nfs_is_exclusive_create(dir, flags))
1395 		return NULL;
1396 
1397 	res = ERR_PTR(-ENOMEM);
1398 	fhandle = nfs_alloc_fhandle();
1399 	fattr = nfs_alloc_fattr();
1400 	if (fhandle == NULL || fattr == NULL)
1401 		goto out;
1402 
1403 	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1404 	if (IS_ERR(label))
1405 		goto out;
1406 
1407 	trace_nfs_lookup_enter(dir, dentry, flags);
1408 	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1409 	if (error == -ENOENT)
1410 		goto no_entry;
1411 	if (error < 0) {
1412 		res = ERR_PTR(error);
1413 		goto out_label;
1414 	}
1415 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1416 	res = ERR_CAST(inode);
1417 	if (IS_ERR(res))
1418 		goto out_label;
1419 
1420 	/* Success: notify readdir to use READDIRPLUS */
1421 	nfs_advise_use_readdirplus(dir);
1422 
1423 no_entry:
1424 	res = d_splice_alias(inode, dentry);
1425 	if (res != NULL) {
1426 		if (IS_ERR(res))
1427 			goto out_label;
1428 		dentry = res;
1429 	}
1430 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1431 out_label:
1432 	trace_nfs_lookup_exit(dir, dentry, flags, error);
1433 	nfs4_label_free(label);
1434 out:
1435 	nfs_free_fattr(fattr);
1436 	nfs_free_fhandle(fhandle);
1437 	return res;
1438 }
1439 EXPORT_SYMBOL_GPL(nfs_lookup);
1440 
1441 #if IS_ENABLED(CONFIG_NFS_V4)
1442 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1443 
1444 const struct dentry_operations nfs4_dentry_operations = {
1445 	.d_revalidate	= nfs4_lookup_revalidate,
1446 	.d_weak_revalidate	= nfs_weak_revalidate,
1447 	.d_delete	= nfs_dentry_delete,
1448 	.d_iput		= nfs_dentry_iput,
1449 	.d_automount	= nfs_d_automount,
1450 	.d_release	= nfs_d_release,
1451 };
1452 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1453 
flags_to_mode(int flags)1454 static fmode_t flags_to_mode(int flags)
1455 {
1456 	fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1457 	if ((flags & O_ACCMODE) != O_WRONLY)
1458 		res |= FMODE_READ;
1459 	if ((flags & O_ACCMODE) != O_RDONLY)
1460 		res |= FMODE_WRITE;
1461 	return res;
1462 }
1463 
create_nfs_open_context(struct dentry * dentry,int open_flags)1464 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1465 {
1466 	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1467 }
1468 
do_open(struct inode * inode,struct file * filp)1469 static int do_open(struct inode *inode, struct file *filp)
1470 {
1471 	nfs_fscache_open_file(inode, filp);
1472 	return 0;
1473 }
1474 
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags,int * opened)1475 static int nfs_finish_open(struct nfs_open_context *ctx,
1476 			   struct dentry *dentry,
1477 			   struct file *file, unsigned open_flags,
1478 			   int *opened)
1479 {
1480 	int err;
1481 
1482 	err = finish_open(file, dentry, do_open, opened);
1483 	if (err)
1484 		goto out;
1485 	nfs_file_set_open_context(file, ctx);
1486 
1487 out:
1488 	return err;
1489 }
1490 
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode,int * opened)1491 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1492 		    struct file *file, unsigned open_flags,
1493 		    umode_t mode, int *opened)
1494 {
1495 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1496 	struct nfs_open_context *ctx;
1497 	struct dentry *res;
1498 	struct iattr attr = { .ia_valid = ATTR_OPEN };
1499 	struct inode *inode;
1500 	unsigned int lookup_flags = 0;
1501 	bool switched = false;
1502 	int err;
1503 
1504 	/* Expect a negative dentry */
1505 	BUG_ON(d_inode(dentry));
1506 
1507 	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1508 			dir->i_sb->s_id, dir->i_ino, dentry);
1509 
1510 	err = nfs_check_flags(open_flags);
1511 	if (err)
1512 		return err;
1513 
1514 	/* NFS only supports OPEN on regular files */
1515 	if ((open_flags & O_DIRECTORY)) {
1516 		if (!d_in_lookup(dentry)) {
1517 			/*
1518 			 * Hashed negative dentry with O_DIRECTORY: dentry was
1519 			 * revalidated and is fine, no need to perform lookup
1520 			 * again
1521 			 */
1522 			return -ENOENT;
1523 		}
1524 		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1525 		goto no_open;
1526 	}
1527 
1528 	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1529 		return -ENAMETOOLONG;
1530 
1531 	if (open_flags & O_CREAT) {
1532 		attr.ia_valid |= ATTR_MODE;
1533 		attr.ia_mode = mode & ~current_umask();
1534 	}
1535 	if (open_flags & O_TRUNC) {
1536 		attr.ia_valid |= ATTR_SIZE;
1537 		attr.ia_size = 0;
1538 	}
1539 
1540 	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1541 		d_drop(dentry);
1542 		switched = true;
1543 		dentry = d_alloc_parallel(dentry->d_parent,
1544 					  &dentry->d_name, &wq);
1545 		if (IS_ERR(dentry))
1546 			return PTR_ERR(dentry);
1547 		if (unlikely(!d_in_lookup(dentry)))
1548 			return finish_no_open(file, dentry);
1549 	}
1550 
1551 	ctx = create_nfs_open_context(dentry, open_flags);
1552 	err = PTR_ERR(ctx);
1553 	if (IS_ERR(ctx))
1554 		goto out;
1555 
1556 	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1557 	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1558 	if (IS_ERR(inode)) {
1559 		err = PTR_ERR(inode);
1560 		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1561 		put_nfs_open_context(ctx);
1562 		d_drop(dentry);
1563 		switch (err) {
1564 		case -ENOENT:
1565 			d_add(dentry, NULL);
1566 			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1567 			break;
1568 		case -EISDIR:
1569 		case -ENOTDIR:
1570 			goto no_open;
1571 		case -ELOOP:
1572 			if (!(open_flags & O_NOFOLLOW))
1573 				goto no_open;
1574 			break;
1575 			/* case -EINVAL: */
1576 		default:
1577 			break;
1578 		}
1579 		goto out;
1580 	}
1581 
1582 	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1583 	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1584 	put_nfs_open_context(ctx);
1585 out:
1586 	if (unlikely(switched)) {
1587 		d_lookup_done(dentry);
1588 		dput(dentry);
1589 	}
1590 	return err;
1591 
1592 no_open:
1593 	res = nfs_lookup(dir, dentry, lookup_flags);
1594 	if (switched) {
1595 		d_lookup_done(dentry);
1596 		if (!res)
1597 			res = dentry;
1598 		else
1599 			dput(dentry);
1600 	}
1601 	if (IS_ERR(res))
1602 		return PTR_ERR(res);
1603 	return finish_no_open(file, res);
1604 }
1605 EXPORT_SYMBOL_GPL(nfs_atomic_open);
1606 
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)1607 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1608 {
1609 	struct inode *inode;
1610 	int ret = 0;
1611 
1612 	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1613 		goto no_open;
1614 	if (d_mountpoint(dentry))
1615 		goto no_open;
1616 	if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1617 		goto no_open;
1618 
1619 	inode = d_inode(dentry);
1620 
1621 	/* We can't create new files in nfs_open_revalidate(), so we
1622 	 * optimize away revalidation of negative dentries.
1623 	 */
1624 	if (inode == NULL) {
1625 		struct dentry *parent;
1626 		struct inode *dir;
1627 
1628 		if (flags & LOOKUP_RCU) {
1629 			parent = ACCESS_ONCE(dentry->d_parent);
1630 			dir = d_inode_rcu(parent);
1631 			if (!dir)
1632 				return -ECHILD;
1633 		} else {
1634 			parent = dget_parent(dentry);
1635 			dir = d_inode(parent);
1636 		}
1637 		if (!nfs_neg_need_reval(dir, dentry, flags))
1638 			ret = 1;
1639 		else if (flags & LOOKUP_RCU)
1640 			ret = -ECHILD;
1641 		if (!(flags & LOOKUP_RCU))
1642 			dput(parent);
1643 		else if (parent != ACCESS_ONCE(dentry->d_parent))
1644 			return -ECHILD;
1645 		goto out;
1646 	}
1647 
1648 	/* NFS only supports OPEN on regular files */
1649 	if (!S_ISREG(inode->i_mode))
1650 		goto no_open;
1651 	/* We cannot do exclusive creation on a positive dentry */
1652 	if (flags & LOOKUP_EXCL)
1653 		goto no_open;
1654 
1655 	/* Let f_op->open() actually open (and revalidate) the file */
1656 	ret = 1;
1657 
1658 out:
1659 	return ret;
1660 
1661 no_open:
1662 	return nfs_lookup_revalidate(dentry, flags);
1663 }
1664 
1665 #endif /* CONFIG_NFSV4 */
1666 
1667 /*
1668  * Code common to create, mkdir, and mknod.
1669  */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr,struct nfs4_label * label)1670 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1671 				struct nfs_fattr *fattr,
1672 				struct nfs4_label *label)
1673 {
1674 	struct dentry *parent = dget_parent(dentry);
1675 	struct inode *dir = d_inode(parent);
1676 	struct inode *inode;
1677 	int error = -EACCES;
1678 
1679 	d_drop(dentry);
1680 
1681 	/* We may have been initialized further down */
1682 	if (d_really_is_positive(dentry))
1683 		goto out;
1684 	if (fhandle->size == 0) {
1685 		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1686 		if (error)
1687 			goto out_error;
1688 	}
1689 	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1690 	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1691 		struct nfs_server *server = NFS_SB(dentry->d_sb);
1692 		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1693 		if (error < 0)
1694 			goto out_error;
1695 	}
1696 	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1697 	error = PTR_ERR(inode);
1698 	if (IS_ERR(inode))
1699 		goto out_error;
1700 	d_add(dentry, inode);
1701 out:
1702 	dput(parent);
1703 	return 0;
1704 out_error:
1705 	nfs_mark_for_revalidate(dir);
1706 	dput(parent);
1707 	return error;
1708 }
1709 EXPORT_SYMBOL_GPL(nfs_instantiate);
1710 
1711 /*
1712  * Following a failed create operation, we drop the dentry rather
1713  * than retain a negative dentry. This avoids a problem in the event
1714  * that the operation succeeded on the server, but an error in the
1715  * reply path made it appear to have failed.
1716  */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)1717 int nfs_create(struct inode *dir, struct dentry *dentry,
1718 		umode_t mode, bool excl)
1719 {
1720 	struct iattr attr;
1721 	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1722 	int error;
1723 
1724 	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1725 			dir->i_sb->s_id, dir->i_ino, dentry);
1726 
1727 	attr.ia_mode = mode;
1728 	attr.ia_valid = ATTR_MODE;
1729 
1730 	trace_nfs_create_enter(dir, dentry, open_flags);
1731 	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1732 	trace_nfs_create_exit(dir, dentry, open_flags, error);
1733 	if (error != 0)
1734 		goto out_err;
1735 	return 0;
1736 out_err:
1737 	d_drop(dentry);
1738 	return error;
1739 }
1740 EXPORT_SYMBOL_GPL(nfs_create);
1741 
1742 /*
1743  * See comments for nfs_proc_create regarding failed operations.
1744  */
1745 int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1746 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1747 {
1748 	struct iattr attr;
1749 	int status;
1750 
1751 	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1752 			dir->i_sb->s_id, dir->i_ino, dentry);
1753 
1754 	attr.ia_mode = mode;
1755 	attr.ia_valid = ATTR_MODE;
1756 
1757 	trace_nfs_mknod_enter(dir, dentry);
1758 	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1759 	trace_nfs_mknod_exit(dir, dentry, status);
1760 	if (status != 0)
1761 		goto out_err;
1762 	return 0;
1763 out_err:
1764 	d_drop(dentry);
1765 	return status;
1766 }
1767 EXPORT_SYMBOL_GPL(nfs_mknod);
1768 
1769 /*
1770  * See comments for nfs_proc_create regarding failed operations.
1771  */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1772 int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1773 {
1774 	struct iattr attr;
1775 	int error;
1776 
1777 	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1778 			dir->i_sb->s_id, dir->i_ino, dentry);
1779 
1780 	attr.ia_valid = ATTR_MODE;
1781 	attr.ia_mode = mode | S_IFDIR;
1782 
1783 	trace_nfs_mkdir_enter(dir, dentry);
1784 	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1785 	trace_nfs_mkdir_exit(dir, dentry, error);
1786 	if (error != 0)
1787 		goto out_err;
1788 	return 0;
1789 out_err:
1790 	d_drop(dentry);
1791 	return error;
1792 }
1793 EXPORT_SYMBOL_GPL(nfs_mkdir);
1794 
nfs_dentry_handle_enoent(struct dentry * dentry)1795 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1796 {
1797 	if (simple_positive(dentry))
1798 		d_delete(dentry);
1799 }
1800 
nfs_rmdir(struct inode * dir,struct dentry * dentry)1801 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1802 {
1803 	int error;
1804 
1805 	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1806 			dir->i_sb->s_id, dir->i_ino, dentry);
1807 
1808 	trace_nfs_rmdir_enter(dir, dentry);
1809 	if (d_really_is_positive(dentry)) {
1810 		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1811 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1812 		/* Ensure the VFS deletes this inode */
1813 		switch (error) {
1814 		case 0:
1815 			clear_nlink(d_inode(dentry));
1816 			break;
1817 		case -ENOENT:
1818 			nfs_dentry_handle_enoent(dentry);
1819 		}
1820 		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
1821 	} else
1822 		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1823 	trace_nfs_rmdir_exit(dir, dentry, error);
1824 
1825 	return error;
1826 }
1827 EXPORT_SYMBOL_GPL(nfs_rmdir);
1828 
1829 /*
1830  * Remove a file after making sure there are no pending writes,
1831  * and after checking that the file has only one user.
1832  *
1833  * We invalidate the attribute cache and free the inode prior to the operation
1834  * to avoid possible races if the server reuses the inode.
1835  */
nfs_safe_remove(struct dentry * dentry)1836 static int nfs_safe_remove(struct dentry *dentry)
1837 {
1838 	struct inode *dir = d_inode(dentry->d_parent);
1839 	struct inode *inode = d_inode(dentry);
1840 	int error = -EBUSY;
1841 
1842 	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1843 
1844 	/* If the dentry was sillyrenamed, we simply call d_delete() */
1845 	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1846 		error = 0;
1847 		goto out;
1848 	}
1849 
1850 	trace_nfs_remove_enter(dir, dentry);
1851 	if (inode != NULL) {
1852 		NFS_PROTO(inode)->return_delegation(inode);
1853 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1854 		if (error == 0)
1855 			nfs_drop_nlink(inode);
1856 	} else
1857 		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1858 	if (error == -ENOENT)
1859 		nfs_dentry_handle_enoent(dentry);
1860 	trace_nfs_remove_exit(dir, dentry, error);
1861 out:
1862 	return error;
1863 }
1864 
1865 /*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1866  *  belongs to an active ".nfs..." file and we return -EBUSY.
1867  *
1868  *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1869  */
nfs_unlink(struct inode * dir,struct dentry * dentry)1870 int nfs_unlink(struct inode *dir, struct dentry *dentry)
1871 {
1872 	int error;
1873 	int need_rehash = 0;
1874 
1875 	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1876 		dir->i_ino, dentry);
1877 
1878 	trace_nfs_unlink_enter(dir, dentry);
1879 	spin_lock(&dentry->d_lock);
1880 	if (d_count(dentry) > 1) {
1881 		spin_unlock(&dentry->d_lock);
1882 		/* Start asynchronous writeout of the inode */
1883 		write_inode_now(d_inode(dentry), 0);
1884 		error = nfs_sillyrename(dir, dentry);
1885 		goto out;
1886 	}
1887 	if (!d_unhashed(dentry)) {
1888 		__d_drop(dentry);
1889 		need_rehash = 1;
1890 	}
1891 	spin_unlock(&dentry->d_lock);
1892 	error = nfs_safe_remove(dentry);
1893 	if (!error || error == -ENOENT) {
1894 		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1895 	} else if (need_rehash)
1896 		d_rehash(dentry);
1897 out:
1898 	trace_nfs_unlink_exit(dir, dentry, error);
1899 	return error;
1900 }
1901 EXPORT_SYMBOL_GPL(nfs_unlink);
1902 
1903 /*
1904  * To create a symbolic link, most file systems instantiate a new inode,
1905  * add a page to it containing the path, then write it out to the disk
1906  * using prepare_write/commit_write.
1907  *
1908  * Unfortunately the NFS client can't create the in-core inode first
1909  * because it needs a file handle to create an in-core inode (see
1910  * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1911  * symlink request has completed on the server.
1912  *
1913  * So instead we allocate a raw page, copy the symname into it, then do
1914  * the SYMLINK request with the page as the buffer.  If it succeeds, we
1915  * now have a new file handle and can instantiate an in-core NFS inode
1916  * and move the raw page into its mapping.
1917  */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1918 int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1919 {
1920 	struct page *page;
1921 	char *kaddr;
1922 	struct iattr attr;
1923 	unsigned int pathlen = strlen(symname);
1924 	int error;
1925 
1926 	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1927 		dir->i_ino, dentry, symname);
1928 
1929 	if (pathlen > PAGE_SIZE)
1930 		return -ENAMETOOLONG;
1931 
1932 	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1933 	attr.ia_valid = ATTR_MODE;
1934 
1935 	page = alloc_page(GFP_USER);
1936 	if (!page)
1937 		return -ENOMEM;
1938 
1939 	kaddr = page_address(page);
1940 	memcpy(kaddr, symname, pathlen);
1941 	if (pathlen < PAGE_SIZE)
1942 		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1943 
1944 	trace_nfs_symlink_enter(dir, dentry);
1945 	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1946 	trace_nfs_symlink_exit(dir, dentry, error);
1947 	if (error != 0) {
1948 		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1949 			dir->i_sb->s_id, dir->i_ino,
1950 			dentry, symname, error);
1951 		d_drop(dentry);
1952 		__free_page(page);
1953 		return error;
1954 	}
1955 
1956 	/*
1957 	 * No big deal if we can't add this page to the page cache here.
1958 	 * READLINK will get the missing page from the server if needed.
1959 	 */
1960 	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
1961 							GFP_KERNEL)) {
1962 		SetPageUptodate(page);
1963 		unlock_page(page);
1964 		/*
1965 		 * add_to_page_cache_lru() grabs an extra page refcount.
1966 		 * Drop it here to avoid leaking this page later.
1967 		 */
1968 		put_page(page);
1969 	} else
1970 		__free_page(page);
1971 
1972 	return 0;
1973 }
1974 EXPORT_SYMBOL_GPL(nfs_symlink);
1975 
1976 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)1977 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1978 {
1979 	struct inode *inode = d_inode(old_dentry);
1980 	int error;
1981 
1982 	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1983 		old_dentry, dentry);
1984 
1985 	trace_nfs_link_enter(inode, dir, dentry);
1986 	NFS_PROTO(inode)->return_delegation(inode);
1987 
1988 	d_drop(dentry);
1989 	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1990 	if (error == 0) {
1991 		ihold(inode);
1992 		d_add(dentry, inode);
1993 	}
1994 	trace_nfs_link_exit(inode, dir, dentry, error);
1995 	return error;
1996 }
1997 EXPORT_SYMBOL_GPL(nfs_link);
1998 
1999 /*
2000  * RENAME
2001  * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2002  * different file handle for the same inode after a rename (e.g. when
2003  * moving to a different directory). A fail-safe method to do so would
2004  * be to look up old_dir/old_name, create a link to new_dir/new_name and
2005  * rename the old file using the sillyrename stuff. This way, the original
2006  * file in old_dir will go away when the last process iput()s the inode.
2007  *
2008  * FIXED.
2009  *
2010  * It actually works quite well. One needs to have the possibility for
2011  * at least one ".nfs..." file in each directory the file ever gets
2012  * moved or linked to which happens automagically with the new
2013  * implementation that only depends on the dcache stuff instead of
2014  * using the inode layer
2015  *
2016  * Unfortunately, things are a little more complicated than indicated
2017  * above. For a cross-directory move, we want to make sure we can get
2018  * rid of the old inode after the operation.  This means there must be
2019  * no pending writes (if it's a file), and the use count must be 1.
2020  * If these conditions are met, we can drop the dentries before doing
2021  * the rename.
2022  */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2023 int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2024 	       struct inode *new_dir, struct dentry *new_dentry,
2025 	       unsigned int flags)
2026 {
2027 	struct inode *old_inode = d_inode(old_dentry);
2028 	struct inode *new_inode = d_inode(new_dentry);
2029 	struct dentry *dentry = NULL, *rehash = NULL;
2030 	struct rpc_task *task;
2031 	int error = -EBUSY;
2032 
2033 	if (flags)
2034 		return -EINVAL;
2035 
2036 	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2037 		 old_dentry, new_dentry,
2038 		 d_count(new_dentry));
2039 
2040 	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2041 	/*
2042 	 * For non-directories, check whether the target is busy and if so,
2043 	 * make a copy of the dentry and then do a silly-rename. If the
2044 	 * silly-rename succeeds, the copied dentry is hashed and becomes
2045 	 * the new target.
2046 	 */
2047 	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2048 		/*
2049 		 * To prevent any new references to the target during the
2050 		 * rename, we unhash the dentry in advance.
2051 		 */
2052 		if (!d_unhashed(new_dentry)) {
2053 			d_drop(new_dentry);
2054 			rehash = new_dentry;
2055 		}
2056 
2057 		if (d_count(new_dentry) > 2) {
2058 			int err;
2059 
2060 			/* copy the target dentry's name */
2061 			dentry = d_alloc(new_dentry->d_parent,
2062 					 &new_dentry->d_name);
2063 			if (!dentry)
2064 				goto out;
2065 
2066 			/* silly-rename the existing target ... */
2067 			err = nfs_sillyrename(new_dir, new_dentry);
2068 			if (err)
2069 				goto out;
2070 
2071 			new_dentry = dentry;
2072 			rehash = NULL;
2073 			new_inode = NULL;
2074 		}
2075 	}
2076 
2077 	NFS_PROTO(old_inode)->return_delegation(old_inode);
2078 	if (new_inode != NULL)
2079 		NFS_PROTO(new_inode)->return_delegation(new_inode);
2080 
2081 	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2082 	if (IS_ERR(task)) {
2083 		error = PTR_ERR(task);
2084 		goto out;
2085 	}
2086 
2087 	error = rpc_wait_for_completion_task(task);
2088 	if (error == 0)
2089 		error = task->tk_status;
2090 	rpc_put_task(task);
2091 	nfs_mark_for_revalidate(old_inode);
2092 out:
2093 	if (rehash)
2094 		d_rehash(rehash);
2095 	trace_nfs_rename_exit(old_dir, old_dentry,
2096 			new_dir, new_dentry, error);
2097 	if (!error) {
2098 		if (new_inode != NULL)
2099 			nfs_drop_nlink(new_inode);
2100 		d_move(old_dentry, new_dentry);
2101 		nfs_set_verifier(old_dentry,
2102 					nfs_save_change_attribute(new_dir));
2103 	} else if (error == -ENOENT)
2104 		nfs_dentry_handle_enoent(old_dentry);
2105 
2106 	/* new dentry created? */
2107 	if (dentry)
2108 		dput(dentry);
2109 	return error;
2110 }
2111 EXPORT_SYMBOL_GPL(nfs_rename);
2112 
2113 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2114 static LIST_HEAD(nfs_access_lru_list);
2115 static atomic_long_t nfs_access_nr_entries;
2116 
2117 static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2118 module_param(nfs_access_max_cachesize, ulong, 0644);
2119 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2120 
nfs_access_free_entry(struct nfs_access_entry * entry)2121 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2122 {
2123 	put_rpccred(entry->cred);
2124 	kfree_rcu(entry, rcu_head);
2125 	smp_mb__before_atomic();
2126 	atomic_long_dec(&nfs_access_nr_entries);
2127 	smp_mb__after_atomic();
2128 }
2129 
nfs_access_free_list(struct list_head * head)2130 static void nfs_access_free_list(struct list_head *head)
2131 {
2132 	struct nfs_access_entry *cache;
2133 
2134 	while (!list_empty(head)) {
2135 		cache = list_entry(head->next, struct nfs_access_entry, lru);
2136 		list_del(&cache->lru);
2137 		nfs_access_free_entry(cache);
2138 	}
2139 }
2140 
2141 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2142 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2143 {
2144 	LIST_HEAD(head);
2145 	struct nfs_inode *nfsi, *next;
2146 	struct nfs_access_entry *cache;
2147 	long freed = 0;
2148 
2149 	spin_lock(&nfs_access_lru_lock);
2150 	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2151 		struct inode *inode;
2152 
2153 		if (nr_to_scan-- == 0)
2154 			break;
2155 		inode = &nfsi->vfs_inode;
2156 		spin_lock(&inode->i_lock);
2157 		if (list_empty(&nfsi->access_cache_entry_lru))
2158 			goto remove_lru_entry;
2159 		cache = list_entry(nfsi->access_cache_entry_lru.next,
2160 				struct nfs_access_entry, lru);
2161 		list_move(&cache->lru, &head);
2162 		rb_erase(&cache->rb_node, &nfsi->access_cache);
2163 		freed++;
2164 		if (!list_empty(&nfsi->access_cache_entry_lru))
2165 			list_move_tail(&nfsi->access_cache_inode_lru,
2166 					&nfs_access_lru_list);
2167 		else {
2168 remove_lru_entry:
2169 			list_del_init(&nfsi->access_cache_inode_lru);
2170 			smp_mb__before_atomic();
2171 			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2172 			smp_mb__after_atomic();
2173 		}
2174 		spin_unlock(&inode->i_lock);
2175 	}
2176 	spin_unlock(&nfs_access_lru_lock);
2177 	nfs_access_free_list(&head);
2178 	return freed;
2179 }
2180 
2181 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2182 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2183 {
2184 	int nr_to_scan = sc->nr_to_scan;
2185 	gfp_t gfp_mask = sc->gfp_mask;
2186 
2187 	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2188 		return SHRINK_STOP;
2189 	return nfs_do_access_cache_scan(nr_to_scan);
2190 }
2191 
2192 
2193 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2194 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2195 {
2196 	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2197 }
2198 
2199 static void
nfs_access_cache_enforce_limit(void)2200 nfs_access_cache_enforce_limit(void)
2201 {
2202 	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2203 	unsigned long diff;
2204 	unsigned int nr_to_scan;
2205 
2206 	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2207 		return;
2208 	nr_to_scan = 100;
2209 	diff = nr_entries - nfs_access_max_cachesize;
2210 	if (diff < nr_to_scan)
2211 		nr_to_scan = diff;
2212 	nfs_do_access_cache_scan(nr_to_scan);
2213 }
2214 
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2215 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2216 {
2217 	struct rb_root *root_node = &nfsi->access_cache;
2218 	struct rb_node *n;
2219 	struct nfs_access_entry *entry;
2220 
2221 	/* Unhook entries from the cache */
2222 	while ((n = rb_first(root_node)) != NULL) {
2223 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2224 		rb_erase(n, root_node);
2225 		list_move(&entry->lru, head);
2226 	}
2227 	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2228 }
2229 
nfs_access_zap_cache(struct inode * inode)2230 void nfs_access_zap_cache(struct inode *inode)
2231 {
2232 	LIST_HEAD(head);
2233 
2234 	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2235 		return;
2236 	/* Remove from global LRU init */
2237 	spin_lock(&nfs_access_lru_lock);
2238 	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2239 		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2240 
2241 	spin_lock(&inode->i_lock);
2242 	__nfs_access_zap_cache(NFS_I(inode), &head);
2243 	spin_unlock(&inode->i_lock);
2244 	spin_unlock(&nfs_access_lru_lock);
2245 	nfs_access_free_list(&head);
2246 }
2247 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2248 
nfs_access_search_rbtree(struct inode * inode,struct rpc_cred * cred)2249 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2250 {
2251 	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2252 	struct nfs_access_entry *entry;
2253 
2254 	while (n != NULL) {
2255 		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2256 
2257 		if (cred < entry->cred)
2258 			n = n->rb_left;
2259 		else if (cred > entry->cred)
2260 			n = n->rb_right;
2261 		else
2262 			return entry;
2263 	}
2264 	return NULL;
2265 }
2266 
nfs_access_get_cached(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res,bool may_block)2267 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res, bool may_block)
2268 {
2269 	struct nfs_inode *nfsi = NFS_I(inode);
2270 	struct nfs_access_entry *cache;
2271 	bool retry = true;
2272 	int err;
2273 
2274 	spin_lock(&inode->i_lock);
2275 	for(;;) {
2276 		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2277 			goto out_zap;
2278 		cache = nfs_access_search_rbtree(inode, cred);
2279 		err = -ENOENT;
2280 		if (cache == NULL)
2281 			goto out;
2282 		/* Found an entry, is our attribute cache valid? */
2283 		if (!nfs_attribute_cache_expired(inode) &&
2284 		    !(nfsi->cache_validity & NFS_INO_INVALID_ATTR))
2285 			break;
2286 		err = -ECHILD;
2287 		if (!may_block)
2288 			goto out;
2289 		if (!retry)
2290 			goto out_zap;
2291 		spin_unlock(&inode->i_lock);
2292 		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2293 		if (err)
2294 			return err;
2295 		spin_lock(&inode->i_lock);
2296 		retry = false;
2297 	}
2298 	res->jiffies = cache->jiffies;
2299 	res->cred = cache->cred;
2300 	res->mask = cache->mask;
2301 	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2302 	err = 0;
2303 out:
2304 	spin_unlock(&inode->i_lock);
2305 	return err;
2306 out_zap:
2307 	spin_unlock(&inode->i_lock);
2308 	nfs_access_zap_cache(inode);
2309 	return -ENOENT;
2310 }
2311 
nfs_access_get_cached_rcu(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res)2312 static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2313 {
2314 	/* Only check the most recently returned cache entry,
2315 	 * but do it without locking.
2316 	 */
2317 	struct nfs_inode *nfsi = NFS_I(inode);
2318 	struct nfs_access_entry *cache;
2319 	int err = -ECHILD;
2320 	struct list_head *lh;
2321 
2322 	rcu_read_lock();
2323 	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2324 		goto out;
2325 	lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2326 	cache = list_entry(lh, struct nfs_access_entry, lru);
2327 	if (lh == &nfsi->access_cache_entry_lru ||
2328 	    cred != cache->cred)
2329 		cache = NULL;
2330 	if (cache == NULL)
2331 		goto out;
2332 	err = nfs_revalidate_inode_rcu(NFS_SERVER(inode), inode);
2333 	if (err)
2334 		goto out;
2335 	res->jiffies = cache->jiffies;
2336 	res->cred = cache->cred;
2337 	res->mask = cache->mask;
2338 out:
2339 	rcu_read_unlock();
2340 	return err;
2341 }
2342 
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2343 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2344 {
2345 	struct nfs_inode *nfsi = NFS_I(inode);
2346 	struct rb_root *root_node = &nfsi->access_cache;
2347 	struct rb_node **p = &root_node->rb_node;
2348 	struct rb_node *parent = NULL;
2349 	struct nfs_access_entry *entry;
2350 
2351 	spin_lock(&inode->i_lock);
2352 	while (*p != NULL) {
2353 		parent = *p;
2354 		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2355 
2356 		if (set->cred < entry->cred)
2357 			p = &parent->rb_left;
2358 		else if (set->cred > entry->cred)
2359 			p = &parent->rb_right;
2360 		else
2361 			goto found;
2362 	}
2363 	rb_link_node(&set->rb_node, parent, p);
2364 	rb_insert_color(&set->rb_node, root_node);
2365 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2366 	spin_unlock(&inode->i_lock);
2367 	return;
2368 found:
2369 	rb_replace_node(parent, &set->rb_node, root_node);
2370 	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2371 	list_del(&entry->lru);
2372 	spin_unlock(&inode->i_lock);
2373 	nfs_access_free_entry(entry);
2374 }
2375 
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2376 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2377 {
2378 	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2379 	if (cache == NULL)
2380 		return;
2381 	RB_CLEAR_NODE(&cache->rb_node);
2382 	cache->jiffies = set->jiffies;
2383 	cache->cred = get_rpccred(set->cred);
2384 	cache->mask = set->mask;
2385 
2386 	/* The above field assignments must be visible
2387 	 * before this item appears on the lru.  We cannot easily
2388 	 * use rcu_assign_pointer, so just force the memory barrier.
2389 	 */
2390 	smp_wmb();
2391 	nfs_access_add_rbtree(inode, cache);
2392 
2393 	/* Update accounting */
2394 	smp_mb__before_atomic();
2395 	atomic_long_inc(&nfs_access_nr_entries);
2396 	smp_mb__after_atomic();
2397 
2398 	/* Add inode to global LRU list */
2399 	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2400 		spin_lock(&nfs_access_lru_lock);
2401 		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2402 			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2403 					&nfs_access_lru_list);
2404 		spin_unlock(&nfs_access_lru_lock);
2405 	}
2406 	nfs_access_cache_enforce_limit();
2407 }
2408 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2409 
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)2410 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2411 {
2412 	entry->mask = 0;
2413 	if (access_result & NFS4_ACCESS_READ)
2414 		entry->mask |= MAY_READ;
2415 	if (access_result &
2416 	    (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2417 		entry->mask |= MAY_WRITE;
2418 	if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2419 		entry->mask |= MAY_EXEC;
2420 }
2421 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2422 
nfs_do_access(struct inode * inode,struct rpc_cred * cred,int mask)2423 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2424 {
2425 	struct nfs_access_entry cache;
2426 	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2427 	int status;
2428 
2429 	trace_nfs_access_enter(inode);
2430 
2431 	status = nfs_access_get_cached_rcu(inode, cred, &cache);
2432 	if (status != 0)
2433 		status = nfs_access_get_cached(inode, cred, &cache, may_block);
2434 	if (status == 0)
2435 		goto out_cached;
2436 
2437 	status = -ECHILD;
2438 	if (!may_block)
2439 		goto out;
2440 
2441 	/* Be clever: ask server to check for all possible rights */
2442 	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2443 	cache.cred = cred;
2444 	cache.jiffies = jiffies;
2445 	status = NFS_PROTO(inode)->access(inode, &cache);
2446 	if (status != 0) {
2447 		if (status == -ESTALE) {
2448 			nfs_zap_caches(inode);
2449 			if (!S_ISDIR(inode->i_mode))
2450 				set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2451 		}
2452 		goto out;
2453 	}
2454 	nfs_access_add_cache(inode, &cache);
2455 out_cached:
2456 	if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2457 		status = -EACCES;
2458 out:
2459 	trace_nfs_access_exit(inode, status);
2460 	return status;
2461 }
2462 
nfs_open_permission_mask(int openflags)2463 static int nfs_open_permission_mask(int openflags)
2464 {
2465 	int mask = 0;
2466 
2467 	if (openflags & __FMODE_EXEC) {
2468 		/* ONLY check exec rights */
2469 		mask = MAY_EXEC;
2470 	} else {
2471 		if ((openflags & O_ACCMODE) != O_WRONLY)
2472 			mask |= MAY_READ;
2473 		if ((openflags & O_ACCMODE) != O_RDONLY)
2474 			mask |= MAY_WRITE;
2475 	}
2476 
2477 	return mask;
2478 }
2479 
nfs_may_open(struct inode * inode,struct rpc_cred * cred,int openflags)2480 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2481 {
2482 	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2483 }
2484 EXPORT_SYMBOL_GPL(nfs_may_open);
2485 
nfs_execute_ok(struct inode * inode,int mask)2486 static int nfs_execute_ok(struct inode *inode, int mask)
2487 {
2488 	struct nfs_server *server = NFS_SERVER(inode);
2489 	int ret;
2490 
2491 	if (mask & MAY_NOT_BLOCK)
2492 		ret = nfs_revalidate_inode_rcu(server, inode);
2493 	else
2494 		ret = nfs_revalidate_inode(server, inode);
2495 	if (ret == 0 && !execute_ok(inode))
2496 		ret = -EACCES;
2497 	return ret;
2498 }
2499 
nfs_permission(struct inode * inode,int mask)2500 int nfs_permission(struct inode *inode, int mask)
2501 {
2502 	struct rpc_cred *cred;
2503 	int res = 0;
2504 
2505 	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2506 
2507 	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2508 		goto out;
2509 	/* Is this sys_access() ? */
2510 	if (mask & (MAY_ACCESS | MAY_CHDIR))
2511 		goto force_lookup;
2512 
2513 	switch (inode->i_mode & S_IFMT) {
2514 		case S_IFLNK:
2515 			goto out;
2516 		case S_IFREG:
2517 			if ((mask & MAY_OPEN) &&
2518 			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2519 				return 0;
2520 			break;
2521 		case S_IFDIR:
2522 			/*
2523 			 * Optimize away all write operations, since the server
2524 			 * will check permissions when we perform the op.
2525 			 */
2526 			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2527 				goto out;
2528 	}
2529 
2530 force_lookup:
2531 	if (!NFS_PROTO(inode)->access)
2532 		goto out_notsup;
2533 
2534 	/* Always try fast lookups first */
2535 	rcu_read_lock();
2536 	cred = rpc_lookup_cred_nonblock();
2537 	if (!IS_ERR(cred))
2538 		res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2539 	else
2540 		res = PTR_ERR(cred);
2541 	rcu_read_unlock();
2542 	if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2543 		/* Fast lookup failed, try the slow way */
2544 		cred = rpc_lookup_cred();
2545 		if (!IS_ERR(cred)) {
2546 			res = nfs_do_access(inode, cred, mask);
2547 			put_rpccred(cred);
2548 		} else
2549 			res = PTR_ERR(cred);
2550 	}
2551 out:
2552 	if (!res && (mask & MAY_EXEC))
2553 		res = nfs_execute_ok(inode, mask);
2554 
2555 	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2556 		inode->i_sb->s_id, inode->i_ino, mask, res);
2557 	return res;
2558 out_notsup:
2559 	if (mask & MAY_NOT_BLOCK)
2560 		return -ECHILD;
2561 
2562 	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2563 	if (res == 0)
2564 		res = generic_permission(inode, mask);
2565 	goto out;
2566 }
2567 EXPORT_SYMBOL_GPL(nfs_permission);
2568 
2569 /*
2570  * Local variables:
2571  *  version-control: t
2572  *  kept-new-versions: 5
2573  * End:
2574  */
2575