• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * page.c - buffer/page management specific to NILFS
3  *
4  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * Written by Ryusuke Konishi and Seiji Kihara.
17  */
18 
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/swap.h>
22 #include <linux/bitops.h>
23 #include <linux/page-flags.h>
24 #include <linux/list.h>
25 #include <linux/highmem.h>
26 #include <linux/pagevec.h>
27 #include <linux/gfp.h>
28 #include "nilfs.h"
29 #include "page.h"
30 #include "mdt.h"
31 
32 
33 #define NILFS_BUFFER_INHERENT_BITS					\
34 	(BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) |	\
35 	 BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked))
36 
37 static struct buffer_head *
__nilfs_get_page_block(struct page * page,unsigned long block,pgoff_t index,int blkbits,unsigned long b_state)38 __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
39 		       int blkbits, unsigned long b_state)
40 
41 {
42 	unsigned long first_block;
43 	struct buffer_head *bh;
44 
45 	if (!page_has_buffers(page))
46 		create_empty_buffers(page, 1 << blkbits, b_state);
47 
48 	first_block = (unsigned long)index << (PAGE_SHIFT - blkbits);
49 	bh = nilfs_page_get_nth_block(page, block - first_block);
50 
51 	touch_buffer(bh);
52 	wait_on_buffer(bh);
53 	return bh;
54 }
55 
nilfs_grab_buffer(struct inode * inode,struct address_space * mapping,unsigned long blkoff,unsigned long b_state)56 struct buffer_head *nilfs_grab_buffer(struct inode *inode,
57 				      struct address_space *mapping,
58 				      unsigned long blkoff,
59 				      unsigned long b_state)
60 {
61 	int blkbits = inode->i_blkbits;
62 	pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits);
63 	struct page *page;
64 	struct buffer_head *bh;
65 
66 	page = grab_cache_page(mapping, index);
67 	if (unlikely(!page))
68 		return NULL;
69 
70 	bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
71 	if (unlikely(!bh)) {
72 		unlock_page(page);
73 		put_page(page);
74 		return NULL;
75 	}
76 	return bh;
77 }
78 
79 /**
80  * nilfs_forget_buffer - discard dirty state
81  * @inode: owner inode of the buffer
82  * @bh: buffer head of the buffer to be discarded
83  */
nilfs_forget_buffer(struct buffer_head * bh)84 void nilfs_forget_buffer(struct buffer_head *bh)
85 {
86 	struct page *page = bh->b_page;
87 	const unsigned long clear_bits =
88 		(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
89 		 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
90 		 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
91 
92 	lock_buffer(bh);
93 	set_mask_bits(&bh->b_state, clear_bits, 0);
94 	if (nilfs_page_buffers_clean(page))
95 		__nilfs_clear_page_dirty(page);
96 
97 	bh->b_blocknr = -1;
98 	ClearPageUptodate(page);
99 	ClearPageMappedToDisk(page);
100 	unlock_buffer(bh);
101 	brelse(bh);
102 }
103 
104 /**
105  * nilfs_copy_buffer -- copy buffer data and flags
106  * @dbh: destination buffer
107  * @sbh: source buffer
108  */
nilfs_copy_buffer(struct buffer_head * dbh,struct buffer_head * sbh)109 void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
110 {
111 	void *kaddr0, *kaddr1;
112 	unsigned long bits;
113 	struct page *spage = sbh->b_page, *dpage = dbh->b_page;
114 	struct buffer_head *bh;
115 
116 	kaddr0 = kmap_atomic(spage);
117 	kaddr1 = kmap_atomic(dpage);
118 	memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
119 	kunmap_atomic(kaddr1);
120 	kunmap_atomic(kaddr0);
121 
122 	dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
123 	dbh->b_blocknr = sbh->b_blocknr;
124 	dbh->b_bdev = sbh->b_bdev;
125 
126 	bh = dbh;
127 	bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped));
128 	while ((bh = bh->b_this_page) != dbh) {
129 		lock_buffer(bh);
130 		bits &= bh->b_state;
131 		unlock_buffer(bh);
132 	}
133 	if (bits & BIT(BH_Uptodate))
134 		SetPageUptodate(dpage);
135 	else
136 		ClearPageUptodate(dpage);
137 	if (bits & BIT(BH_Mapped))
138 		SetPageMappedToDisk(dpage);
139 	else
140 		ClearPageMappedToDisk(dpage);
141 }
142 
143 /**
144  * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
145  * @page: page to be checked
146  *
147  * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
148  * Otherwise, it returns non-zero value.
149  */
nilfs_page_buffers_clean(struct page * page)150 int nilfs_page_buffers_clean(struct page *page)
151 {
152 	struct buffer_head *bh, *head;
153 
154 	bh = head = page_buffers(page);
155 	do {
156 		if (buffer_dirty(bh))
157 			return 0;
158 		bh = bh->b_this_page;
159 	} while (bh != head);
160 	return 1;
161 }
162 
nilfs_page_bug(struct page * page)163 void nilfs_page_bug(struct page *page)
164 {
165 	struct address_space *m;
166 	unsigned long ino;
167 
168 	if (unlikely(!page)) {
169 		printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
170 		return;
171 	}
172 
173 	m = page->mapping;
174 	ino = m ? m->host->i_ino : 0;
175 
176 	printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
177 	       "mapping=%p ino=%lu\n",
178 	       page, page_ref_count(page),
179 	       (unsigned long long)page->index, page->flags, m, ino);
180 
181 	if (page_has_buffers(page)) {
182 		struct buffer_head *bh, *head;
183 		int i = 0;
184 
185 		bh = head = page_buffers(page);
186 		do {
187 			printk(KERN_CRIT
188 			       " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
189 			       i++, bh, atomic_read(&bh->b_count),
190 			       (unsigned long long)bh->b_blocknr, bh->b_state);
191 			bh = bh->b_this_page;
192 		} while (bh != head);
193 	}
194 }
195 
196 /**
197  * nilfs_copy_page -- copy the page with buffers
198  * @dst: destination page
199  * @src: source page
200  * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
201  *
202  * This function is for both data pages and btnode pages.  The dirty flag
203  * should be treated by caller.  The page must not be under i/o.
204  * Both src and dst page must be locked
205  */
nilfs_copy_page(struct page * dst,struct page * src,int copy_dirty)206 static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
207 {
208 	struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
209 	unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
210 
211 	BUG_ON(PageWriteback(dst));
212 
213 	sbh = sbufs = page_buffers(src);
214 	if (!page_has_buffers(dst))
215 		create_empty_buffers(dst, sbh->b_size, 0);
216 
217 	if (copy_dirty)
218 		mask |= BIT(BH_Dirty);
219 
220 	dbh = dbufs = page_buffers(dst);
221 	do {
222 		lock_buffer(sbh);
223 		lock_buffer(dbh);
224 		dbh->b_state = sbh->b_state & mask;
225 		dbh->b_blocknr = sbh->b_blocknr;
226 		dbh->b_bdev = sbh->b_bdev;
227 		sbh = sbh->b_this_page;
228 		dbh = dbh->b_this_page;
229 	} while (dbh != dbufs);
230 
231 	copy_highpage(dst, src);
232 
233 	if (PageUptodate(src) && !PageUptodate(dst))
234 		SetPageUptodate(dst);
235 	else if (!PageUptodate(src) && PageUptodate(dst))
236 		ClearPageUptodate(dst);
237 	if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
238 		SetPageMappedToDisk(dst);
239 	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
240 		ClearPageMappedToDisk(dst);
241 
242 	do {
243 		unlock_buffer(sbh);
244 		unlock_buffer(dbh);
245 		sbh = sbh->b_this_page;
246 		dbh = dbh->b_this_page;
247 	} while (dbh != dbufs);
248 }
249 
nilfs_copy_dirty_pages(struct address_space * dmap,struct address_space * smap)250 int nilfs_copy_dirty_pages(struct address_space *dmap,
251 			   struct address_space *smap)
252 {
253 	struct pagevec pvec;
254 	unsigned int i;
255 	pgoff_t index = 0;
256 	int err = 0;
257 
258 	pagevec_init(&pvec, 0);
259 repeat:
260 	if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
261 				PAGEVEC_SIZE))
262 		return 0;
263 
264 	for (i = 0; i < pagevec_count(&pvec); i++) {
265 		struct page *page = pvec.pages[i], *dpage;
266 
267 		lock_page(page);
268 		if (unlikely(!PageDirty(page)))
269 			NILFS_PAGE_BUG(page, "inconsistent dirty state");
270 
271 		dpage = grab_cache_page(dmap, page->index);
272 		if (unlikely(!dpage)) {
273 			/* No empty page is added to the page cache */
274 			err = -ENOMEM;
275 			unlock_page(page);
276 			break;
277 		}
278 		if (unlikely(!page_has_buffers(page)))
279 			NILFS_PAGE_BUG(page,
280 				       "found empty page in dat page cache");
281 
282 		nilfs_copy_page(dpage, page, 1);
283 		__set_page_dirty_nobuffers(dpage);
284 
285 		unlock_page(dpage);
286 		put_page(dpage);
287 		unlock_page(page);
288 	}
289 	pagevec_release(&pvec);
290 	cond_resched();
291 
292 	if (likely(!err))
293 		goto repeat;
294 	return err;
295 }
296 
297 /**
298  * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
299  * @dmap: destination page cache
300  * @smap: source page cache
301  *
302  * No pages must no be added to the cache during this process.
303  * This must be ensured by the caller.
304  */
nilfs_copy_back_pages(struct address_space * dmap,struct address_space * smap)305 void nilfs_copy_back_pages(struct address_space *dmap,
306 			   struct address_space *smap)
307 {
308 	struct pagevec pvec;
309 	unsigned int i, n;
310 	pgoff_t index = 0;
311 	int err;
312 
313 	pagevec_init(&pvec, 0);
314 repeat:
315 	n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
316 	if (!n)
317 		return;
318 	index = pvec.pages[n - 1]->index + 1;
319 
320 	for (i = 0; i < pagevec_count(&pvec); i++) {
321 		struct page *page = pvec.pages[i], *dpage;
322 		pgoff_t offset = page->index;
323 
324 		lock_page(page);
325 		dpage = find_lock_page(dmap, offset);
326 		if (dpage) {
327 			/* override existing page on the destination cache */
328 			WARN_ON(PageDirty(dpage));
329 			nilfs_copy_page(dpage, page, 0);
330 			unlock_page(dpage);
331 			put_page(dpage);
332 		} else {
333 			struct page *page2;
334 
335 			/* move the page to the destination cache */
336 			spin_lock_irq(&smap->tree_lock);
337 			page2 = radix_tree_delete(&smap->page_tree, offset);
338 			WARN_ON(page2 != page);
339 
340 			smap->nrpages--;
341 			spin_unlock_irq(&smap->tree_lock);
342 
343 			spin_lock_irq(&dmap->tree_lock);
344 			err = radix_tree_insert(&dmap->page_tree, offset, page);
345 			if (unlikely(err < 0)) {
346 				WARN_ON(err == -EEXIST);
347 				page->mapping = NULL;
348 				put_page(page); /* for cache */
349 			} else {
350 				page->mapping = dmap;
351 				dmap->nrpages++;
352 				if (PageDirty(page))
353 					radix_tree_tag_set(&dmap->page_tree,
354 							   offset,
355 							   PAGECACHE_TAG_DIRTY);
356 			}
357 			spin_unlock_irq(&dmap->tree_lock);
358 		}
359 		unlock_page(page);
360 	}
361 	pagevec_release(&pvec);
362 	cond_resched();
363 
364 	goto repeat;
365 }
366 
367 /**
368  * nilfs_clear_dirty_pages - discard dirty pages in address space
369  * @mapping: address space with dirty pages for discarding
370  * @silent: suppress [true] or print [false] warning messages
371  */
nilfs_clear_dirty_pages(struct address_space * mapping,bool silent)372 void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
373 {
374 	struct pagevec pvec;
375 	unsigned int i;
376 	pgoff_t index = 0;
377 
378 	pagevec_init(&pvec, 0);
379 
380 	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
381 				  PAGEVEC_SIZE)) {
382 		for (i = 0; i < pagevec_count(&pvec); i++) {
383 			struct page *page = pvec.pages[i];
384 
385 			lock_page(page);
386 			nilfs_clear_dirty_page(page, silent);
387 			unlock_page(page);
388 		}
389 		pagevec_release(&pvec);
390 		cond_resched();
391 	}
392 }
393 
394 /**
395  * nilfs_clear_dirty_page - discard dirty page
396  * @page: dirty page that will be discarded
397  * @silent: suppress [true] or print [false] warning messages
398  */
nilfs_clear_dirty_page(struct page * page,bool silent)399 void nilfs_clear_dirty_page(struct page *page, bool silent)
400 {
401 	struct inode *inode = page->mapping->host;
402 	struct super_block *sb = inode->i_sb;
403 
404 	BUG_ON(!PageLocked(page));
405 
406 	if (!silent)
407 		nilfs_msg(sb, KERN_WARNING,
408 			  "discard dirty page: offset=%lld, ino=%lu",
409 			  page_offset(page), inode->i_ino);
410 
411 	ClearPageUptodate(page);
412 	ClearPageMappedToDisk(page);
413 
414 	if (page_has_buffers(page)) {
415 		struct buffer_head *bh, *head;
416 		const unsigned long clear_bits =
417 			(BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
418 			 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
419 			 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
420 
421 		bh = head = page_buffers(page);
422 		do {
423 			lock_buffer(bh);
424 			if (!silent)
425 				nilfs_msg(sb, KERN_WARNING,
426 					  "discard dirty block: blocknr=%llu, size=%zu",
427 					  (u64)bh->b_blocknr, bh->b_size);
428 
429 			set_mask_bits(&bh->b_state, clear_bits, 0);
430 			unlock_buffer(bh);
431 		} while (bh = bh->b_this_page, bh != head);
432 	}
433 
434 	__nilfs_clear_page_dirty(page);
435 }
436 
nilfs_page_count_clean_buffers(struct page * page,unsigned int from,unsigned int to)437 unsigned int nilfs_page_count_clean_buffers(struct page *page,
438 					    unsigned int from, unsigned int to)
439 {
440 	unsigned int block_start, block_end;
441 	struct buffer_head *bh, *head;
442 	unsigned int nc = 0;
443 
444 	for (bh = head = page_buffers(page), block_start = 0;
445 	     bh != head || !block_start;
446 	     block_start = block_end, bh = bh->b_this_page) {
447 		block_end = block_start + bh->b_size;
448 		if (block_end > from && block_start < to && !buffer_dirty(bh))
449 			nc++;
450 	}
451 	return nc;
452 }
453 
nilfs_mapping_init(struct address_space * mapping,struct inode * inode)454 void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
455 {
456 	mapping->host = inode;
457 	mapping->flags = 0;
458 	mapping_set_gfp_mask(mapping, GFP_NOFS);
459 	mapping->private_data = NULL;
460 	mapping->a_ops = &empty_aops;
461 }
462 
463 /*
464  * NILFS2 needs clear_page_dirty() in the following two cases:
465  *
466  * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
467  *    page dirty flags when it copies back pages from the shadow cache
468  *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
469  *    (dat->{i_mapping,i_btnode_cache}).
470  *
471  * 2) Some B-tree operations like insertion or deletion may dispose buffers
472  *    in dirty state, and this needs to cancel the dirty state of their pages.
473  */
__nilfs_clear_page_dirty(struct page * page)474 int __nilfs_clear_page_dirty(struct page *page)
475 {
476 	struct address_space *mapping = page->mapping;
477 
478 	if (mapping) {
479 		spin_lock_irq(&mapping->tree_lock);
480 		if (test_bit(PG_dirty, &page->flags)) {
481 			radix_tree_tag_clear(&mapping->page_tree,
482 					     page_index(page),
483 					     PAGECACHE_TAG_DIRTY);
484 			spin_unlock_irq(&mapping->tree_lock);
485 			return clear_page_dirty_for_io(page);
486 		}
487 		spin_unlock_irq(&mapping->tree_lock);
488 		return 0;
489 	}
490 	return TestClearPageDirty(page);
491 }
492 
493 /**
494  * nilfs_find_uncommitted_extent - find extent of uncommitted data
495  * @inode: inode
496  * @start_blk: start block offset (in)
497  * @blkoff: start offset of the found extent (out)
498  *
499  * This function searches an extent of buffers marked "delayed" which
500  * starts from a block offset equal to or larger than @start_blk.  If
501  * such an extent was found, this will store the start offset in
502  * @blkoff and return its length in blocks.  Otherwise, zero is
503  * returned.
504  */
nilfs_find_uncommitted_extent(struct inode * inode,sector_t start_blk,sector_t * blkoff)505 unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
506 					    sector_t start_blk,
507 					    sector_t *blkoff)
508 {
509 	unsigned int i;
510 	pgoff_t index;
511 	unsigned int nblocks_in_page;
512 	unsigned long length = 0;
513 	sector_t b;
514 	struct pagevec pvec;
515 	struct page *page;
516 
517 	if (inode->i_mapping->nrpages == 0)
518 		return 0;
519 
520 	index = start_blk >> (PAGE_SHIFT - inode->i_blkbits);
521 	nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits);
522 
523 	pagevec_init(&pvec, 0);
524 
525 repeat:
526 	pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
527 					pvec.pages);
528 	if (pvec.nr == 0)
529 		return length;
530 
531 	if (length > 0 && pvec.pages[0]->index > index)
532 		goto out;
533 
534 	b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits);
535 	i = 0;
536 	do {
537 		page = pvec.pages[i];
538 
539 		lock_page(page);
540 		if (page_has_buffers(page)) {
541 			struct buffer_head *bh, *head;
542 
543 			bh = head = page_buffers(page);
544 			do {
545 				if (b < start_blk)
546 					continue;
547 				if (buffer_delay(bh)) {
548 					if (length == 0)
549 						*blkoff = b;
550 					length++;
551 				} else if (length > 0) {
552 					goto out_locked;
553 				}
554 			} while (++b, bh = bh->b_this_page, bh != head);
555 		} else {
556 			if (length > 0)
557 				goto out_locked;
558 
559 			b += nblocks_in_page;
560 		}
561 		unlock_page(page);
562 
563 	} while (++i < pagevec_count(&pvec));
564 
565 	index = page->index + 1;
566 	pagevec_release(&pvec);
567 	cond_resched();
568 	goto repeat;
569 
570 out_locked:
571 	unlock_page(page);
572 out:
573 	pagevec_release(&pvec);
574 	return length;
575 }
576