• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
98 
99 /*
100  * Array of node states.
101  */
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 	[N_POSSIBLE] = NODE_MASK_ALL,
104 	[N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 	[N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 	[N_CPU] = { { [0] = 1UL } },
114 #endif	/* NUMA */
115 };
116 EXPORT_SYMBOL(node_states);
117 
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
120 
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
124 
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 
128 /*
129  * A cached value of the page's pageblock's migratetype, used when the page is
130  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132  * Also the migratetype set in the page does not necessarily match the pcplist
133  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134  * other index - this ensures that it will be put on the correct CMA freelist.
135  */
get_pcppage_migratetype(struct page * page)136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 	return page->index;
139 }
140 
set_pcppage_migratetype(struct page * page,int migratetype)141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 	page->index = migratetype;
144 }
145 
146 #ifdef CONFIG_PM_SLEEP
147 /*
148  * The following functions are used by the suspend/hibernate code to temporarily
149  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150  * while devices are suspended.  To avoid races with the suspend/hibernate code,
151  * they should always be called with pm_mutex held (gfp_allowed_mask also should
152  * only be modified with pm_mutex held, unless the suspend/hibernate code is
153  * guaranteed not to run in parallel with that modification).
154  */
155 
156 static gfp_t saved_gfp_mask;
157 
pm_restore_gfp_mask(void)158 void pm_restore_gfp_mask(void)
159 {
160 	WARN_ON(!mutex_is_locked(&pm_mutex));
161 	if (saved_gfp_mask) {
162 		gfp_allowed_mask = saved_gfp_mask;
163 		saved_gfp_mask = 0;
164 	}
165 }
166 
pm_restrict_gfp_mask(void)167 void pm_restrict_gfp_mask(void)
168 {
169 	WARN_ON(!mutex_is_locked(&pm_mutex));
170 	WARN_ON(saved_gfp_mask);
171 	saved_gfp_mask = gfp_allowed_mask;
172 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174 
pm_suspended_storage(void)175 bool pm_suspended_storage(void)
176 {
177 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 		return false;
179 	return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182 
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186 
187 static void __free_pages_ok(struct page *page, unsigned int order);
188 
189 /*
190  * results with 256, 32 in the lowmem_reserve sysctl:
191  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192  *	1G machine -> (16M dma, 784M normal, 224M high)
193  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196  *
197  * TBD: should special case ZONE_DMA32 machines here - in those we normally
198  * don't need any ZONE_NORMAL reservation
199  */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 	 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 	 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 	 32,
209 #endif
210 	 32,
211 };
212 
213 EXPORT_SYMBOL(totalram_pages);
214 
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 	 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 	 "DMA32",
221 #endif
222 	 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 	 "HighMem",
225 #endif
226 	 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 	 "Device",
229 #endif
230 };
231 
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 	"Unmovable",
234 	"Movable",
235 	"Reclaimable",
236 	"HighAtomic",
237 #ifdef CONFIG_CMA
238 	"CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 	"Isolate",
242 #endif
243 };
244 
245 compound_page_dtor * const compound_page_dtors[] = {
246 	NULL,
247 	free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 	free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 	free_transhuge_page,
253 #endif
254 };
255 
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
259 
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263 
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271 
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276 
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283 
284 int page_group_by_mobility_disabled __read_mostly;
285 
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 
288 /*
289  * Determine how many pages need to be initialized durig early boot
290  * (non-deferred initialization).
291  * The value of first_deferred_pfn will be set later, once non-deferred pages
292  * are initialized, but for now set it ULONG_MAX.
293  */
reset_deferred_meminit(pg_data_t * pgdat)294 static inline void reset_deferred_meminit(pg_data_t *pgdat)
295 {
296 	phys_addr_t start_addr, end_addr;
297 	unsigned long max_pgcnt;
298 	unsigned long reserved;
299 
300 	/*
301 	 * Initialise at least 2G of a node but also take into account that
302 	 * two large system hashes that can take up 1GB for 0.25TB/node.
303 	 */
304 	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
305 			(pgdat->node_spanned_pages >> 8));
306 
307 	/*
308 	 * Compensate the all the memblock reservations (e.g. crash kernel)
309 	 * from the initial estimation to make sure we will initialize enough
310 	 * memory to boot.
311 	 */
312 	start_addr = PFN_PHYS(pgdat->node_start_pfn);
313 	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
314 	reserved = memblock_reserved_memory_within(start_addr, end_addr);
315 	max_pgcnt += PHYS_PFN(reserved);
316 
317 	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
318 	pgdat->first_deferred_pfn = ULONG_MAX;
319 }
320 
321 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)322 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
323 {
324 	int nid = early_pfn_to_nid(pfn);
325 
326 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
327 		return true;
328 
329 	return false;
330 }
331 
332 /*
333  * Returns false when the remaining initialisation should be deferred until
334  * later in the boot cycle when it can be parallelised.
335  */
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)336 static inline bool update_defer_init(pg_data_t *pgdat,
337 				unsigned long pfn, unsigned long zone_end,
338 				unsigned long *nr_initialised)
339 {
340 	/* Always populate low zones for address-contrained allocations */
341 	if (zone_end < pgdat_end_pfn(pgdat))
342 		return true;
343 	(*nr_initialised)++;
344 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
345 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
346 		pgdat->first_deferred_pfn = pfn;
347 		return false;
348 	}
349 
350 	return true;
351 }
352 #else
reset_deferred_meminit(pg_data_t * pgdat)353 static inline void reset_deferred_meminit(pg_data_t *pgdat)
354 {
355 }
356 
early_page_uninitialised(unsigned long pfn)357 static inline bool early_page_uninitialised(unsigned long pfn)
358 {
359 	return false;
360 }
361 
update_defer_init(pg_data_t * pgdat,unsigned long pfn,unsigned long zone_end,unsigned long * nr_initialised)362 static inline bool update_defer_init(pg_data_t *pgdat,
363 				unsigned long pfn, unsigned long zone_end,
364 				unsigned long *nr_initialised)
365 {
366 	return true;
367 }
368 #endif
369 
370 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)371 static inline unsigned long *get_pageblock_bitmap(struct page *page,
372 							unsigned long pfn)
373 {
374 #ifdef CONFIG_SPARSEMEM
375 	return __pfn_to_section(pfn)->pageblock_flags;
376 #else
377 	return page_zone(page)->pageblock_flags;
378 #endif /* CONFIG_SPARSEMEM */
379 }
380 
pfn_to_bitidx(struct page * page,unsigned long pfn)381 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
382 {
383 #ifdef CONFIG_SPARSEMEM
384 	pfn &= (PAGES_PER_SECTION-1);
385 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386 #else
387 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
388 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391 
392 /**
393  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
394  * @page: The page within the block of interest
395  * @pfn: The target page frame number
396  * @end_bitidx: The last bit of interest to retrieve
397  * @mask: mask of bits that the caller is interested in
398  *
399  * Return: pageblock_bits flags
400  */
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)401 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
402 					unsigned long pfn,
403 					unsigned long end_bitidx,
404 					unsigned long mask)
405 {
406 	unsigned long *bitmap;
407 	unsigned long bitidx, word_bitidx;
408 	unsigned long word;
409 
410 	bitmap = get_pageblock_bitmap(page, pfn);
411 	bitidx = pfn_to_bitidx(page, pfn);
412 	word_bitidx = bitidx / BITS_PER_LONG;
413 	bitidx &= (BITS_PER_LONG-1);
414 
415 	word = bitmap[word_bitidx];
416 	bitidx += end_bitidx;
417 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
418 }
419 
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)420 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
421 					unsigned long end_bitidx,
422 					unsigned long mask)
423 {
424 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
425 }
426 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)427 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
428 {
429 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
430 }
431 
432 /**
433  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
434  * @page: The page within the block of interest
435  * @flags: The flags to set
436  * @pfn: The target page frame number
437  * @end_bitidx: The last bit of interest
438  * @mask: mask of bits that the caller is interested in
439  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long end_bitidx,unsigned long mask)440 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
441 					unsigned long pfn,
442 					unsigned long end_bitidx,
443 					unsigned long mask)
444 {
445 	unsigned long *bitmap;
446 	unsigned long bitidx, word_bitidx;
447 	unsigned long old_word, word;
448 
449 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
450 
451 	bitmap = get_pageblock_bitmap(page, pfn);
452 	bitidx = pfn_to_bitidx(page, pfn);
453 	word_bitidx = bitidx / BITS_PER_LONG;
454 	bitidx &= (BITS_PER_LONG-1);
455 
456 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
457 
458 	bitidx += end_bitidx;
459 	mask <<= (BITS_PER_LONG - bitidx - 1);
460 	flags <<= (BITS_PER_LONG - bitidx - 1);
461 
462 	word = READ_ONCE(bitmap[word_bitidx]);
463 	for (;;) {
464 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
465 		if (word == old_word)
466 			break;
467 		word = old_word;
468 	}
469 }
470 
set_pageblock_migratetype(struct page * page,int migratetype)471 void set_pageblock_migratetype(struct page *page, int migratetype)
472 {
473 	if (unlikely(page_group_by_mobility_disabled &&
474 		     migratetype < MIGRATE_PCPTYPES))
475 		migratetype = MIGRATE_UNMOVABLE;
476 
477 	set_pageblock_flags_group(page, (unsigned long)migratetype,
478 					PB_migrate, PB_migrate_end);
479 }
480 
481 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)482 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
483 {
484 	int ret = 0;
485 	unsigned seq;
486 	unsigned long pfn = page_to_pfn(page);
487 	unsigned long sp, start_pfn;
488 
489 	do {
490 		seq = zone_span_seqbegin(zone);
491 		start_pfn = zone->zone_start_pfn;
492 		sp = zone->spanned_pages;
493 		if (!zone_spans_pfn(zone, pfn))
494 			ret = 1;
495 	} while (zone_span_seqretry(zone, seq));
496 
497 	if (ret)
498 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
499 			pfn, zone_to_nid(zone), zone->name,
500 			start_pfn, start_pfn + sp);
501 
502 	return ret;
503 }
504 
page_is_consistent(struct zone * zone,struct page * page)505 static int page_is_consistent(struct zone *zone, struct page *page)
506 {
507 	if (!pfn_valid_within(page_to_pfn(page)))
508 		return 0;
509 	if (zone != page_zone(page))
510 		return 0;
511 
512 	return 1;
513 }
514 /*
515  * Temporary debugging check for pages not lying within a given zone.
516  */
bad_range(struct zone * zone,struct page * page)517 static int bad_range(struct zone *zone, struct page *page)
518 {
519 	if (page_outside_zone_boundaries(zone, page))
520 		return 1;
521 	if (!page_is_consistent(zone, page))
522 		return 1;
523 
524 	return 0;
525 }
526 #else
bad_range(struct zone * zone,struct page * page)527 static inline int bad_range(struct zone *zone, struct page *page)
528 {
529 	return 0;
530 }
531 #endif
532 
bad_page(struct page * page,const char * reason,unsigned long bad_flags)533 static void bad_page(struct page *page, const char *reason,
534 		unsigned long bad_flags)
535 {
536 	static unsigned long resume;
537 	static unsigned long nr_shown;
538 	static unsigned long nr_unshown;
539 
540 	/*
541 	 * Allow a burst of 60 reports, then keep quiet for that minute;
542 	 * or allow a steady drip of one report per second.
543 	 */
544 	if (nr_shown == 60) {
545 		if (time_before(jiffies, resume)) {
546 			nr_unshown++;
547 			goto out;
548 		}
549 		if (nr_unshown) {
550 			pr_alert(
551 			      "BUG: Bad page state: %lu messages suppressed\n",
552 				nr_unshown);
553 			nr_unshown = 0;
554 		}
555 		nr_shown = 0;
556 	}
557 	if (nr_shown++ == 0)
558 		resume = jiffies + 60 * HZ;
559 
560 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
561 		current->comm, page_to_pfn(page));
562 	__dump_page(page, reason);
563 	bad_flags &= page->flags;
564 	if (bad_flags)
565 		pr_alert("bad because of flags: %#lx(%pGp)\n",
566 						bad_flags, &bad_flags);
567 	dump_page_owner(page);
568 
569 	print_modules();
570 	dump_stack();
571 out:
572 	/* Leave bad fields for debug, except PageBuddy could make trouble */
573 	page_mapcount_reset(page); /* remove PageBuddy */
574 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
575 }
576 
577 /*
578  * Higher-order pages are called "compound pages".  They are structured thusly:
579  *
580  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
581  *
582  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
583  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
584  *
585  * The first tail page's ->compound_dtor holds the offset in array of compound
586  * page destructors. See compound_page_dtors.
587  *
588  * The first tail page's ->compound_order holds the order of allocation.
589  * This usage means that zero-order pages may not be compound.
590  */
591 
free_compound_page(struct page * page)592 void free_compound_page(struct page *page)
593 {
594 	__free_pages_ok(page, compound_order(page));
595 }
596 
prep_compound_page(struct page * page,unsigned int order)597 void prep_compound_page(struct page *page, unsigned int order)
598 {
599 	int i;
600 	int nr_pages = 1 << order;
601 
602 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
603 	set_compound_order(page, order);
604 	__SetPageHead(page);
605 	for (i = 1; i < nr_pages; i++) {
606 		struct page *p = page + i;
607 		set_page_count(p, 0);
608 		p->mapping = TAIL_MAPPING;
609 		set_compound_head(p, page);
610 	}
611 	atomic_set(compound_mapcount_ptr(page), -1);
612 }
613 
614 #ifdef CONFIG_DEBUG_PAGEALLOC
615 unsigned int _debug_guardpage_minorder;
616 bool _debug_pagealloc_enabled __read_mostly
617 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
618 EXPORT_SYMBOL(_debug_pagealloc_enabled);
619 bool _debug_guardpage_enabled __read_mostly;
620 
early_debug_pagealloc(char * buf)621 static int __init early_debug_pagealloc(char *buf)
622 {
623 	if (!buf)
624 		return -EINVAL;
625 	return kstrtobool(buf, &_debug_pagealloc_enabled);
626 }
627 early_param("debug_pagealloc", early_debug_pagealloc);
628 
need_debug_guardpage(void)629 static bool need_debug_guardpage(void)
630 {
631 	/* If we don't use debug_pagealloc, we don't need guard page */
632 	if (!debug_pagealloc_enabled())
633 		return false;
634 
635 	if (!debug_guardpage_minorder())
636 		return false;
637 
638 	return true;
639 }
640 
init_debug_guardpage(void)641 static void init_debug_guardpage(void)
642 {
643 	if (!debug_pagealloc_enabled())
644 		return;
645 
646 	if (!debug_guardpage_minorder())
647 		return;
648 
649 	_debug_guardpage_enabled = true;
650 }
651 
652 struct page_ext_operations debug_guardpage_ops = {
653 	.need = need_debug_guardpage,
654 	.init = init_debug_guardpage,
655 };
656 
debug_guardpage_minorder_setup(char * buf)657 static int __init debug_guardpage_minorder_setup(char *buf)
658 {
659 	unsigned long res;
660 
661 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
662 		pr_err("Bad debug_guardpage_minorder value\n");
663 		return 0;
664 	}
665 	_debug_guardpage_minorder = res;
666 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
667 	return 0;
668 }
669 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
670 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)671 static inline bool set_page_guard(struct zone *zone, struct page *page,
672 				unsigned int order, int migratetype)
673 {
674 	struct page_ext *page_ext;
675 
676 	if (!debug_guardpage_enabled())
677 		return false;
678 
679 	if (order >= debug_guardpage_minorder())
680 		return false;
681 
682 	page_ext = lookup_page_ext(page);
683 	if (unlikely(!page_ext))
684 		return false;
685 
686 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
687 
688 	INIT_LIST_HEAD(&page->lru);
689 	set_page_private(page, order);
690 	/* Guard pages are not available for any usage */
691 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
692 
693 	return true;
694 }
695 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)696 static inline void clear_page_guard(struct zone *zone, struct page *page,
697 				unsigned int order, int migratetype)
698 {
699 	struct page_ext *page_ext;
700 
701 	if (!debug_guardpage_enabled())
702 		return;
703 
704 	page_ext = lookup_page_ext(page);
705 	if (unlikely(!page_ext))
706 		return;
707 
708 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
709 
710 	set_page_private(page, 0);
711 	if (!is_migrate_isolate(migratetype))
712 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
713 }
714 #else
715 struct page_ext_operations debug_guardpage_ops;
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)716 static inline bool set_page_guard(struct zone *zone, struct page *page,
717 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)718 static inline void clear_page_guard(struct zone *zone, struct page *page,
719 				unsigned int order, int migratetype) {}
720 #endif
721 
set_page_order(struct page * page,unsigned int order)722 static inline void set_page_order(struct page *page, unsigned int order)
723 {
724 	set_page_private(page, order);
725 	__SetPageBuddy(page);
726 }
727 
rmv_page_order(struct page * page)728 static inline void rmv_page_order(struct page *page)
729 {
730 	__ClearPageBuddy(page);
731 	set_page_private(page, 0);
732 }
733 
734 /*
735  * This function checks whether a page is free && is the buddy
736  * we can do coalesce a page and its buddy if
737  * (a) the buddy is not in a hole &&
738  * (b) the buddy is in the buddy system &&
739  * (c) a page and its buddy have the same order &&
740  * (d) a page and its buddy are in the same zone.
741  *
742  * For recording whether a page is in the buddy system, we set ->_mapcount
743  * PAGE_BUDDY_MAPCOUNT_VALUE.
744  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
745  * serialized by zone->lock.
746  *
747  * For recording page's order, we use page_private(page).
748  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)749 static inline int page_is_buddy(struct page *page, struct page *buddy,
750 							unsigned int order)
751 {
752 	if (!pfn_valid_within(page_to_pfn(buddy)))
753 		return 0;
754 
755 	if (page_is_guard(buddy) && page_order(buddy) == order) {
756 		if (page_zone_id(page) != page_zone_id(buddy))
757 			return 0;
758 
759 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
760 
761 		return 1;
762 	}
763 
764 	if (PageBuddy(buddy) && page_order(buddy) == order) {
765 		/*
766 		 * zone check is done late to avoid uselessly
767 		 * calculating zone/node ids for pages that could
768 		 * never merge.
769 		 */
770 		if (page_zone_id(page) != page_zone_id(buddy))
771 			return 0;
772 
773 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
774 
775 		return 1;
776 	}
777 	return 0;
778 }
779 
780 /*
781  * Freeing function for a buddy system allocator.
782  *
783  * The concept of a buddy system is to maintain direct-mapped table
784  * (containing bit values) for memory blocks of various "orders".
785  * The bottom level table contains the map for the smallest allocatable
786  * units of memory (here, pages), and each level above it describes
787  * pairs of units from the levels below, hence, "buddies".
788  * At a high level, all that happens here is marking the table entry
789  * at the bottom level available, and propagating the changes upward
790  * as necessary, plus some accounting needed to play nicely with other
791  * parts of the VM system.
792  * At each level, we keep a list of pages, which are heads of continuous
793  * free pages of length of (1 << order) and marked with _mapcount
794  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
795  * field.
796  * So when we are allocating or freeing one, we can derive the state of the
797  * other.  That is, if we allocate a small block, and both were
798  * free, the remainder of the region must be split into blocks.
799  * If a block is freed, and its buddy is also free, then this
800  * triggers coalescing into a block of larger size.
801  *
802  * -- nyc
803  */
804 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype)805 static inline void __free_one_page(struct page *page,
806 		unsigned long pfn,
807 		struct zone *zone, unsigned int order,
808 		int migratetype)
809 {
810 	unsigned long page_idx;
811 	unsigned long combined_idx;
812 	unsigned long uninitialized_var(buddy_idx);
813 	struct page *buddy;
814 	unsigned int max_order;
815 
816 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
817 
818 	VM_BUG_ON(!zone_is_initialized(zone));
819 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
820 
821 	VM_BUG_ON(migratetype == -1);
822 	if (likely(!is_migrate_isolate(migratetype)))
823 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
824 
825 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
826 
827 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
828 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
829 
830 continue_merging:
831 	while (order < max_order - 1) {
832 		buddy_idx = __find_buddy_index(page_idx, order);
833 		buddy = page + (buddy_idx - page_idx);
834 		if (!page_is_buddy(page, buddy, order))
835 			goto done_merging;
836 		/*
837 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
838 		 * merge with it and move up one order.
839 		 */
840 		if (page_is_guard(buddy)) {
841 			clear_page_guard(zone, buddy, order, migratetype);
842 		} else {
843 			list_del(&buddy->lru);
844 			zone->free_area[order].nr_free--;
845 			rmv_page_order(buddy);
846 		}
847 		combined_idx = buddy_idx & page_idx;
848 		page = page + (combined_idx - page_idx);
849 		page_idx = combined_idx;
850 		order++;
851 	}
852 	if (max_order < MAX_ORDER) {
853 		/* If we are here, it means order is >= pageblock_order.
854 		 * We want to prevent merge between freepages on isolate
855 		 * pageblock and normal pageblock. Without this, pageblock
856 		 * isolation could cause incorrect freepage or CMA accounting.
857 		 *
858 		 * We don't want to hit this code for the more frequent
859 		 * low-order merging.
860 		 */
861 		if (unlikely(has_isolate_pageblock(zone))) {
862 			int buddy_mt;
863 
864 			buddy_idx = __find_buddy_index(page_idx, order);
865 			buddy = page + (buddy_idx - page_idx);
866 			buddy_mt = get_pageblock_migratetype(buddy);
867 
868 			if (migratetype != buddy_mt
869 					&& (is_migrate_isolate(migratetype) ||
870 						is_migrate_isolate(buddy_mt)))
871 				goto done_merging;
872 		}
873 		max_order++;
874 		goto continue_merging;
875 	}
876 
877 done_merging:
878 	set_page_order(page, order);
879 
880 	/*
881 	 * If this is not the largest possible page, check if the buddy
882 	 * of the next-highest order is free. If it is, it's possible
883 	 * that pages are being freed that will coalesce soon. In case,
884 	 * that is happening, add the free page to the tail of the list
885 	 * so it's less likely to be used soon and more likely to be merged
886 	 * as a higher order page
887 	 */
888 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
889 		struct page *higher_page, *higher_buddy;
890 		combined_idx = buddy_idx & page_idx;
891 		higher_page = page + (combined_idx - page_idx);
892 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
893 		higher_buddy = higher_page + (buddy_idx - combined_idx);
894 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
895 			list_add_tail(&page->lru,
896 				&zone->free_area[order].free_list[migratetype]);
897 			goto out;
898 		}
899 	}
900 
901 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
902 out:
903 	zone->free_area[order].nr_free++;
904 }
905 
906 /*
907  * A bad page could be due to a number of fields. Instead of multiple branches,
908  * try and check multiple fields with one check. The caller must do a detailed
909  * check if necessary.
910  */
page_expected_state(struct page * page,unsigned long check_flags)911 static inline bool page_expected_state(struct page *page,
912 					unsigned long check_flags)
913 {
914 	if (unlikely(atomic_read(&page->_mapcount) != -1))
915 		return false;
916 
917 	if (unlikely((unsigned long)page->mapping |
918 			page_ref_count(page) |
919 #ifdef CONFIG_MEMCG
920 			(unsigned long)page->mem_cgroup |
921 #endif
922 			(page->flags & check_flags)))
923 		return false;
924 
925 	return true;
926 }
927 
free_pages_check_bad(struct page * page)928 static void free_pages_check_bad(struct page *page)
929 {
930 	const char *bad_reason;
931 	unsigned long bad_flags;
932 
933 	bad_reason = NULL;
934 	bad_flags = 0;
935 
936 	if (unlikely(atomic_read(&page->_mapcount) != -1))
937 		bad_reason = "nonzero mapcount";
938 	if (unlikely(page->mapping != NULL))
939 		bad_reason = "non-NULL mapping";
940 	if (unlikely(page_ref_count(page) != 0))
941 		bad_reason = "nonzero _refcount";
942 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
943 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
944 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
945 	}
946 #ifdef CONFIG_MEMCG
947 	if (unlikely(page->mem_cgroup))
948 		bad_reason = "page still charged to cgroup";
949 #endif
950 	bad_page(page, bad_reason, bad_flags);
951 }
952 
free_pages_check(struct page * page)953 static inline int free_pages_check(struct page *page)
954 {
955 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
956 		return 0;
957 
958 	/* Something has gone sideways, find it */
959 	free_pages_check_bad(page);
960 	return 1;
961 }
962 
free_tail_pages_check(struct page * head_page,struct page * page)963 static int free_tail_pages_check(struct page *head_page, struct page *page)
964 {
965 	int ret = 1;
966 
967 	/*
968 	 * We rely page->lru.next never has bit 0 set, unless the page
969 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
970 	 */
971 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
972 
973 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
974 		ret = 0;
975 		goto out;
976 	}
977 	switch (page - head_page) {
978 	case 1:
979 		/* the first tail page: ->mapping is compound_mapcount() */
980 		if (unlikely(compound_mapcount(page))) {
981 			bad_page(page, "nonzero compound_mapcount", 0);
982 			goto out;
983 		}
984 		break;
985 	case 2:
986 		/*
987 		 * the second tail page: ->mapping is
988 		 * page_deferred_list().next -- ignore value.
989 		 */
990 		break;
991 	default:
992 		if (page->mapping != TAIL_MAPPING) {
993 			bad_page(page, "corrupted mapping in tail page", 0);
994 			goto out;
995 		}
996 		break;
997 	}
998 	if (unlikely(!PageTail(page))) {
999 		bad_page(page, "PageTail not set", 0);
1000 		goto out;
1001 	}
1002 	if (unlikely(compound_head(page) != head_page)) {
1003 		bad_page(page, "compound_head not consistent", 0);
1004 		goto out;
1005 	}
1006 	ret = 0;
1007 out:
1008 	page->mapping = NULL;
1009 	clear_compound_head(page);
1010 	return ret;
1011 }
1012 
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1013 static __always_inline bool free_pages_prepare(struct page *page,
1014 					unsigned int order, bool check_free)
1015 {
1016 	int bad = 0;
1017 
1018 	VM_BUG_ON_PAGE(PageTail(page), page);
1019 
1020 	trace_mm_page_free(page, order);
1021 	kmemcheck_free_shadow(page, order);
1022 
1023 	/*
1024 	 * Check tail pages before head page information is cleared to
1025 	 * avoid checking PageCompound for order-0 pages.
1026 	 */
1027 	if (unlikely(order)) {
1028 		bool compound = PageCompound(page);
1029 		int i;
1030 
1031 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1032 
1033 		if (compound)
1034 			ClearPageDoubleMap(page);
1035 		for (i = 1; i < (1 << order); i++) {
1036 			if (compound)
1037 				bad += free_tail_pages_check(page, page + i);
1038 			if (unlikely(free_pages_check(page + i))) {
1039 				bad++;
1040 				continue;
1041 			}
1042 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1043 		}
1044 	}
1045 	if (PageMappingFlags(page))
1046 		page->mapping = NULL;
1047 	if (memcg_kmem_enabled() && PageKmemcg(page))
1048 		memcg_kmem_uncharge(page, order);
1049 	if (check_free)
1050 		bad += free_pages_check(page);
1051 	if (bad)
1052 		return false;
1053 
1054 	page_cpupid_reset_last(page);
1055 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1056 	reset_page_owner(page, order);
1057 
1058 	if (!PageHighMem(page)) {
1059 		debug_check_no_locks_freed(page_address(page),
1060 					   PAGE_SIZE << order);
1061 		debug_check_no_obj_freed(page_address(page),
1062 					   PAGE_SIZE << order);
1063 	}
1064 	arch_free_page(page, order);
1065 	kernel_poison_pages(page, 1 << order, 0);
1066 	kernel_map_pages(page, 1 << order, 0);
1067 	kasan_free_pages(page, order);
1068 
1069 	return true;
1070 }
1071 
1072 #ifdef CONFIG_DEBUG_VM
free_pcp_prepare(struct page * page)1073 static inline bool free_pcp_prepare(struct page *page)
1074 {
1075 	return free_pages_prepare(page, 0, true);
1076 }
1077 
bulkfree_pcp_prepare(struct page * page)1078 static inline bool bulkfree_pcp_prepare(struct page *page)
1079 {
1080 	return false;
1081 }
1082 #else
free_pcp_prepare(struct page * page)1083 static bool free_pcp_prepare(struct page *page)
1084 {
1085 	return free_pages_prepare(page, 0, false);
1086 }
1087 
bulkfree_pcp_prepare(struct page * page)1088 static bool bulkfree_pcp_prepare(struct page *page)
1089 {
1090 	return free_pages_check(page);
1091 }
1092 #endif /* CONFIG_DEBUG_VM */
1093 
1094 /*
1095  * Frees a number of pages from the PCP lists
1096  * Assumes all pages on list are in same zone, and of same order.
1097  * count is the number of pages to free.
1098  *
1099  * If the zone was previously in an "all pages pinned" state then look to
1100  * see if this freeing clears that state.
1101  *
1102  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1103  * pinned" detection logic.
1104  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1105 static void free_pcppages_bulk(struct zone *zone, int count,
1106 					struct per_cpu_pages *pcp)
1107 {
1108 	int migratetype = 0;
1109 	int batch_free = 0;
1110 	unsigned long nr_scanned;
1111 	bool isolated_pageblocks;
1112 
1113 	spin_lock(&zone->lock);
1114 	isolated_pageblocks = has_isolate_pageblock(zone);
1115 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1116 	if (nr_scanned)
1117 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1118 
1119 	while (count) {
1120 		struct page *page;
1121 		struct list_head *list;
1122 
1123 		/*
1124 		 * Remove pages from lists in a round-robin fashion. A
1125 		 * batch_free count is maintained that is incremented when an
1126 		 * empty list is encountered.  This is so more pages are freed
1127 		 * off fuller lists instead of spinning excessively around empty
1128 		 * lists
1129 		 */
1130 		do {
1131 			batch_free++;
1132 			if (++migratetype == MIGRATE_PCPTYPES)
1133 				migratetype = 0;
1134 			list = &pcp->lists[migratetype];
1135 		} while (list_empty(list));
1136 
1137 		/* This is the only non-empty list. Free them all. */
1138 		if (batch_free == MIGRATE_PCPTYPES)
1139 			batch_free = count;
1140 
1141 		do {
1142 			int mt;	/* migratetype of the to-be-freed page */
1143 
1144 			page = list_last_entry(list, struct page, lru);
1145 			/* must delete as __free_one_page list manipulates */
1146 			list_del(&page->lru);
1147 
1148 			mt = get_pcppage_migratetype(page);
1149 			/* MIGRATE_ISOLATE page should not go to pcplists */
1150 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 			/* Pageblock could have been isolated meanwhile */
1152 			if (unlikely(isolated_pageblocks))
1153 				mt = get_pageblock_migratetype(page);
1154 
1155 			if (bulkfree_pcp_prepare(page))
1156 				continue;
1157 
1158 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 			trace_mm_page_pcpu_drain(page, 0, mt);
1160 		} while (--count && --batch_free && !list_empty(list));
1161 	}
1162 	spin_unlock(&zone->lock);
1163 }
1164 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype)1165 static void free_one_page(struct zone *zone,
1166 				struct page *page, unsigned long pfn,
1167 				unsigned int order,
1168 				int migratetype)
1169 {
1170 	unsigned long nr_scanned;
1171 	spin_lock(&zone->lock);
1172 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1173 	if (nr_scanned)
1174 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1175 
1176 	if (unlikely(has_isolate_pageblock(zone) ||
1177 		is_migrate_isolate(migratetype))) {
1178 		migratetype = get_pfnblock_migratetype(page, pfn);
1179 	}
1180 	__free_one_page(page, pfn, zone, order, migratetype);
1181 	spin_unlock(&zone->lock);
1182 }
1183 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1184 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1185 				unsigned long zone, int nid)
1186 {
1187 	set_page_links(page, zone, nid, pfn);
1188 	init_page_count(page);
1189 	page_mapcount_reset(page);
1190 	page_cpupid_reset_last(page);
1191 
1192 	INIT_LIST_HEAD(&page->lru);
1193 #ifdef WANT_PAGE_VIRTUAL
1194 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1195 	if (!is_highmem_idx(zone))
1196 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1197 #endif
1198 }
1199 
__init_single_pfn(unsigned long pfn,unsigned long zone,int nid)1200 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1201 					int nid)
1202 {
1203 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1204 }
1205 
1206 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1207 static void init_reserved_page(unsigned long pfn)
1208 {
1209 	pg_data_t *pgdat;
1210 	int nid, zid;
1211 
1212 	if (!early_page_uninitialised(pfn))
1213 		return;
1214 
1215 	nid = early_pfn_to_nid(pfn);
1216 	pgdat = NODE_DATA(nid);
1217 
1218 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1219 		struct zone *zone = &pgdat->node_zones[zid];
1220 
1221 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1222 			break;
1223 	}
1224 	__init_single_pfn(pfn, zid, nid);
1225 }
1226 #else
init_reserved_page(unsigned long pfn)1227 static inline void init_reserved_page(unsigned long pfn)
1228 {
1229 }
1230 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1231 
1232 /*
1233  * Initialised pages do not have PageReserved set. This function is
1234  * called for each range allocated by the bootmem allocator and
1235  * marks the pages PageReserved. The remaining valid pages are later
1236  * sent to the buddy page allocator.
1237  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1238 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1239 {
1240 	unsigned long start_pfn = PFN_DOWN(start);
1241 	unsigned long end_pfn = PFN_UP(end);
1242 
1243 	for (; start_pfn < end_pfn; start_pfn++) {
1244 		if (pfn_valid(start_pfn)) {
1245 			struct page *page = pfn_to_page(start_pfn);
1246 
1247 			init_reserved_page(start_pfn);
1248 
1249 			/* Avoid false-positive PageTail() */
1250 			INIT_LIST_HEAD(&page->lru);
1251 
1252 			SetPageReserved(page);
1253 		}
1254 	}
1255 }
1256 
__free_pages_ok(struct page * page,unsigned int order)1257 static void __free_pages_ok(struct page *page, unsigned int order)
1258 {
1259 	unsigned long flags;
1260 	int migratetype;
1261 	unsigned long pfn = page_to_pfn(page);
1262 
1263 	if (!free_pages_prepare(page, order, true))
1264 		return;
1265 
1266 	migratetype = get_pfnblock_migratetype(page, pfn);
1267 	local_irq_save(flags);
1268 	__count_vm_events(PGFREE, 1 << order);
1269 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1270 	local_irq_restore(flags);
1271 }
1272 
__free_pages_boot_core(struct page * page,unsigned int order)1273 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1274 {
1275 	unsigned int nr_pages = 1 << order;
1276 	struct page *p = page;
1277 	unsigned int loop;
1278 
1279 	prefetchw(p);
1280 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1281 		prefetchw(p + 1);
1282 		__ClearPageReserved(p);
1283 		set_page_count(p, 0);
1284 	}
1285 	__ClearPageReserved(p);
1286 	set_page_count(p, 0);
1287 
1288 	page_zone(page)->managed_pages += nr_pages;
1289 	set_page_refcounted(page);
1290 	__free_pages(page, order);
1291 }
1292 
1293 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1294 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1295 
1296 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1297 
early_pfn_to_nid(unsigned long pfn)1298 int __meminit early_pfn_to_nid(unsigned long pfn)
1299 {
1300 	static DEFINE_SPINLOCK(early_pfn_lock);
1301 	int nid;
1302 
1303 	spin_lock(&early_pfn_lock);
1304 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1305 	if (nid < 0)
1306 		nid = first_online_node;
1307 	spin_unlock(&early_pfn_lock);
1308 
1309 	return nid;
1310 }
1311 #endif
1312 
1313 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1314 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 					struct mminit_pfnnid_cache *state)
1316 {
1317 	int nid;
1318 
1319 	nid = __early_pfn_to_nid(pfn, state);
1320 	if (nid >= 0 && nid != node)
1321 		return false;
1322 	return true;
1323 }
1324 
1325 /* Only safe to use early in boot when initialisation is single-threaded */
early_pfn_in_nid(unsigned long pfn,int node)1326 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1327 {
1328 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1329 }
1330 
1331 #else
1332 
early_pfn_in_nid(unsigned long pfn,int node)1333 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1334 {
1335 	return true;
1336 }
meminit_pfn_in_nid(unsigned long pfn,int node,struct mminit_pfnnid_cache * state)1337 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1338 					struct mminit_pfnnid_cache *state)
1339 {
1340 	return true;
1341 }
1342 #endif
1343 
1344 
__free_pages_bootmem(struct page * page,unsigned long pfn,unsigned int order)1345 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1346 							unsigned int order)
1347 {
1348 	if (early_page_uninitialised(pfn))
1349 		return;
1350 	return __free_pages_boot_core(page, order);
1351 }
1352 
1353 /*
1354  * Check that the whole (or subset of) a pageblock given by the interval of
1355  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1356  * with the migration of free compaction scanner. The scanners then need to
1357  * use only pfn_valid_within() check for arches that allow holes within
1358  * pageblocks.
1359  *
1360  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1361  *
1362  * It's possible on some configurations to have a setup like node0 node1 node0
1363  * i.e. it's possible that all pages within a zones range of pages do not
1364  * belong to a single zone. We assume that a border between node0 and node1
1365  * can occur within a single pageblock, but not a node0 node1 node0
1366  * interleaving within a single pageblock. It is therefore sufficient to check
1367  * the first and last page of a pageblock and avoid checking each individual
1368  * page in a pageblock.
1369  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1370 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1371 				     unsigned long end_pfn, struct zone *zone)
1372 {
1373 	struct page *start_page;
1374 	struct page *end_page;
1375 
1376 	/* end_pfn is one past the range we are checking */
1377 	end_pfn--;
1378 
1379 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1380 		return NULL;
1381 
1382 	start_page = pfn_to_page(start_pfn);
1383 
1384 	if (page_zone(start_page) != zone)
1385 		return NULL;
1386 
1387 	end_page = pfn_to_page(end_pfn);
1388 
1389 	/* This gives a shorter code than deriving page_zone(end_page) */
1390 	if (page_zone_id(start_page) != page_zone_id(end_page))
1391 		return NULL;
1392 
1393 	return start_page;
1394 }
1395 
set_zone_contiguous(struct zone * zone)1396 void set_zone_contiguous(struct zone *zone)
1397 {
1398 	unsigned long block_start_pfn = zone->zone_start_pfn;
1399 	unsigned long block_end_pfn;
1400 
1401 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 	for (; block_start_pfn < zone_end_pfn(zone);
1403 			block_start_pfn = block_end_pfn,
1404 			 block_end_pfn += pageblock_nr_pages) {
1405 
1406 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407 
1408 		if (!__pageblock_pfn_to_page(block_start_pfn,
1409 					     block_end_pfn, zone))
1410 			return;
1411 	}
1412 
1413 	/* We confirm that there is no hole */
1414 	zone->contiguous = true;
1415 }
1416 
clear_zone_contiguous(struct zone * zone)1417 void clear_zone_contiguous(struct zone *zone)
1418 {
1419 	zone->contiguous = false;
1420 }
1421 
1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(struct page * page,unsigned long pfn,int nr_pages)1423 static void __init deferred_free_range(struct page *page,
1424 					unsigned long pfn, int nr_pages)
1425 {
1426 	int i;
1427 
1428 	if (!page)
1429 		return;
1430 
1431 	/* Free a large naturally-aligned chunk if possible */
1432 	if (nr_pages == pageblock_nr_pages &&
1433 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1434 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1435 		__free_pages_boot_core(page, pageblock_order);
1436 		return;
1437 	}
1438 
1439 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1440 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1441 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1442 		__free_pages_boot_core(page, 0);
1443 	}
1444 }
1445 
1446 /* Completion tracking for deferred_init_memmap() threads */
1447 static atomic_t pgdat_init_n_undone __initdata;
1448 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1449 
pgdat_init_report_one_done(void)1450 static inline void __init pgdat_init_report_one_done(void)
1451 {
1452 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1453 		complete(&pgdat_init_all_done_comp);
1454 }
1455 
1456 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1457 static int __init deferred_init_memmap(void *data)
1458 {
1459 	pg_data_t *pgdat = data;
1460 	int nid = pgdat->node_id;
1461 	struct mminit_pfnnid_cache nid_init_state = { };
1462 	unsigned long start = jiffies;
1463 	unsigned long nr_pages = 0;
1464 	unsigned long walk_start, walk_end;
1465 	int i, zid;
1466 	struct zone *zone;
1467 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1468 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1469 
1470 	if (first_init_pfn == ULONG_MAX) {
1471 		pgdat_init_report_one_done();
1472 		return 0;
1473 	}
1474 
1475 	/* Bind memory initialisation thread to a local node if possible */
1476 	if (!cpumask_empty(cpumask))
1477 		set_cpus_allowed_ptr(current, cpumask);
1478 
1479 	/* Sanity check boundaries */
1480 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1481 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1482 	pgdat->first_deferred_pfn = ULONG_MAX;
1483 
1484 	/* Only the highest zone is deferred so find it */
1485 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1486 		zone = pgdat->node_zones + zid;
1487 		if (first_init_pfn < zone_end_pfn(zone))
1488 			break;
1489 	}
1490 
1491 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1492 		unsigned long pfn, end_pfn;
1493 		struct page *page = NULL;
1494 		struct page *free_base_page = NULL;
1495 		unsigned long free_base_pfn = 0;
1496 		int nr_to_free = 0;
1497 
1498 		end_pfn = min(walk_end, zone_end_pfn(zone));
1499 		pfn = first_init_pfn;
1500 		if (pfn < walk_start)
1501 			pfn = walk_start;
1502 		if (pfn < zone->zone_start_pfn)
1503 			pfn = zone->zone_start_pfn;
1504 
1505 		for (; pfn < end_pfn; pfn++) {
1506 			if (!pfn_valid_within(pfn))
1507 				goto free_range;
1508 
1509 			/*
1510 			 * Ensure pfn_valid is checked every
1511 			 * pageblock_nr_pages for memory holes
1512 			 */
1513 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1514 				if (!pfn_valid(pfn)) {
1515 					page = NULL;
1516 					goto free_range;
1517 				}
1518 			}
1519 
1520 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1521 				page = NULL;
1522 				goto free_range;
1523 			}
1524 
1525 			/* Minimise pfn page lookups and scheduler checks */
1526 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1527 				page++;
1528 			} else {
1529 				nr_pages += nr_to_free;
1530 				deferred_free_range(free_base_page,
1531 						free_base_pfn, nr_to_free);
1532 				free_base_page = NULL;
1533 				free_base_pfn = nr_to_free = 0;
1534 
1535 				page = pfn_to_page(pfn);
1536 				cond_resched();
1537 			}
1538 
1539 			if (page->flags) {
1540 				VM_BUG_ON(page_zone(page) != zone);
1541 				goto free_range;
1542 			}
1543 
1544 			__init_single_page(page, pfn, zid, nid);
1545 			if (!free_base_page) {
1546 				free_base_page = page;
1547 				free_base_pfn = pfn;
1548 				nr_to_free = 0;
1549 			}
1550 			nr_to_free++;
1551 
1552 			/* Where possible, batch up pages for a single free */
1553 			continue;
1554 free_range:
1555 			/* Free the current block of pages to allocator */
1556 			nr_pages += nr_to_free;
1557 			deferred_free_range(free_base_page, free_base_pfn,
1558 								nr_to_free);
1559 			free_base_page = NULL;
1560 			free_base_pfn = nr_to_free = 0;
1561 		}
1562 		/* Free the last block of pages to allocator */
1563 		nr_pages += nr_to_free;
1564 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1565 
1566 		first_init_pfn = max(end_pfn, first_init_pfn);
1567 	}
1568 
1569 	/* Sanity check that the next zone really is unpopulated */
1570 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1571 
1572 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1573 					jiffies_to_msecs(jiffies - start));
1574 
1575 	pgdat_init_report_one_done();
1576 	return 0;
1577 }
1578 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1579 
page_alloc_init_late(void)1580 void __init page_alloc_init_late(void)
1581 {
1582 	struct zone *zone;
1583 
1584 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1585 	int nid;
1586 
1587 	/* There will be num_node_state(N_MEMORY) threads */
1588 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1589 	for_each_node_state(nid, N_MEMORY) {
1590 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1591 	}
1592 
1593 	/* Block until all are initialised */
1594 	wait_for_completion(&pgdat_init_all_done_comp);
1595 
1596 	/* Reinit limits that are based on free pages after the kernel is up */
1597 	files_maxfiles_init();
1598 #endif
1599 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1600 	/* Discard memblock private memory */
1601 	memblock_discard();
1602 #endif
1603 
1604 	for_each_populated_zone(zone)
1605 		set_zone_contiguous(zone);
1606 }
1607 
1608 #ifdef CONFIG_CMA
1609 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)1610 void __init init_cma_reserved_pageblock(struct page *page)
1611 {
1612 	unsigned i = pageblock_nr_pages;
1613 	struct page *p = page;
1614 
1615 	do {
1616 		__ClearPageReserved(p);
1617 		set_page_count(p, 0);
1618 	} while (++p, --i);
1619 
1620 	set_pageblock_migratetype(page, MIGRATE_CMA);
1621 
1622 	if (pageblock_order >= MAX_ORDER) {
1623 		i = pageblock_nr_pages;
1624 		p = page;
1625 		do {
1626 			set_page_refcounted(p);
1627 			__free_pages(p, MAX_ORDER - 1);
1628 			p += MAX_ORDER_NR_PAGES;
1629 		} while (i -= MAX_ORDER_NR_PAGES);
1630 	} else {
1631 		set_page_refcounted(page);
1632 		__free_pages(page, pageblock_order);
1633 	}
1634 
1635 	adjust_managed_page_count(page, pageblock_nr_pages);
1636 }
1637 #endif
1638 
1639 /*
1640  * The order of subdivision here is critical for the IO subsystem.
1641  * Please do not alter this order without good reasons and regression
1642  * testing. Specifically, as large blocks of memory are subdivided,
1643  * the order in which smaller blocks are delivered depends on the order
1644  * they're subdivided in this function. This is the primary factor
1645  * influencing the order in which pages are delivered to the IO
1646  * subsystem according to empirical testing, and this is also justified
1647  * by considering the behavior of a buddy system containing a single
1648  * large block of memory acted on by a series of small allocations.
1649  * This behavior is a critical factor in sglist merging's success.
1650  *
1651  * -- nyc
1652  */
expand(struct zone * zone,struct page * page,int low,int high,struct free_area * area,int migratetype)1653 static inline void expand(struct zone *zone, struct page *page,
1654 	int low, int high, struct free_area *area,
1655 	int migratetype)
1656 {
1657 	unsigned long size = 1 << high;
1658 
1659 	while (high > low) {
1660 		area--;
1661 		high--;
1662 		size >>= 1;
1663 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1664 
1665 		/*
1666 		 * Mark as guard pages (or page), that will allow to
1667 		 * merge back to allocator when buddy will be freed.
1668 		 * Corresponding page table entries will not be touched,
1669 		 * pages will stay not present in virtual address space
1670 		 */
1671 		if (set_page_guard(zone, &page[size], high, migratetype))
1672 			continue;
1673 
1674 		list_add(&page[size].lru, &area->free_list[migratetype]);
1675 		area->nr_free++;
1676 		set_page_order(&page[size], high);
1677 	}
1678 }
1679 
check_new_page_bad(struct page * page)1680 static void check_new_page_bad(struct page *page)
1681 {
1682 	const char *bad_reason = NULL;
1683 	unsigned long bad_flags = 0;
1684 
1685 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1686 		bad_reason = "nonzero mapcount";
1687 	if (unlikely(page->mapping != NULL))
1688 		bad_reason = "non-NULL mapping";
1689 	if (unlikely(page_ref_count(page) != 0))
1690 		bad_reason = "nonzero _count";
1691 	if (unlikely(page->flags & __PG_HWPOISON)) {
1692 		bad_reason = "HWPoisoned (hardware-corrupted)";
1693 		bad_flags = __PG_HWPOISON;
1694 		/* Don't complain about hwpoisoned pages */
1695 		page_mapcount_reset(page); /* remove PageBuddy */
1696 		return;
1697 	}
1698 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1699 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1700 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1701 	}
1702 #ifdef CONFIG_MEMCG
1703 	if (unlikely(page->mem_cgroup))
1704 		bad_reason = "page still charged to cgroup";
1705 #endif
1706 	bad_page(page, bad_reason, bad_flags);
1707 }
1708 
1709 /*
1710  * This page is about to be returned from the page allocator
1711  */
check_new_page(struct page * page)1712 static inline int check_new_page(struct page *page)
1713 {
1714 	if (likely(page_expected_state(page,
1715 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1716 		return 0;
1717 
1718 	check_new_page_bad(page);
1719 	return 1;
1720 }
1721 
free_pages_prezeroed(bool poisoned)1722 static inline bool free_pages_prezeroed(bool poisoned)
1723 {
1724 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1725 		page_poisoning_enabled() && poisoned;
1726 }
1727 
1728 #ifdef CONFIG_DEBUG_VM
check_pcp_refill(struct page * page)1729 static bool check_pcp_refill(struct page *page)
1730 {
1731 	return false;
1732 }
1733 
check_new_pcp(struct page * page)1734 static bool check_new_pcp(struct page *page)
1735 {
1736 	return check_new_page(page);
1737 }
1738 #else
check_pcp_refill(struct page * page)1739 static bool check_pcp_refill(struct page *page)
1740 {
1741 	return check_new_page(page);
1742 }
check_new_pcp(struct page * page)1743 static bool check_new_pcp(struct page *page)
1744 {
1745 	return false;
1746 }
1747 #endif /* CONFIG_DEBUG_VM */
1748 
check_new_pages(struct page * page,unsigned int order)1749 static bool check_new_pages(struct page *page, unsigned int order)
1750 {
1751 	int i;
1752 	for (i = 0; i < (1 << order); i++) {
1753 		struct page *p = page + i;
1754 
1755 		if (unlikely(check_new_page(p)))
1756 			return true;
1757 	}
1758 
1759 	return false;
1760 }
1761 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)1762 inline void post_alloc_hook(struct page *page, unsigned int order,
1763 				gfp_t gfp_flags)
1764 {
1765 	set_page_private(page, 0);
1766 	set_page_refcounted(page);
1767 
1768 	arch_alloc_page(page, order);
1769 	kernel_map_pages(page, 1 << order, 1);
1770 	kernel_poison_pages(page, 1 << order, 1);
1771 	kasan_alloc_pages(page, order);
1772 	set_page_owner(page, order, gfp_flags);
1773 }
1774 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)1775 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1776 							unsigned int alloc_flags)
1777 {
1778 	int i;
1779 	bool poisoned = true;
1780 
1781 	for (i = 0; i < (1 << order); i++) {
1782 		struct page *p = page + i;
1783 		if (poisoned)
1784 			poisoned &= page_is_poisoned(p);
1785 	}
1786 
1787 	post_alloc_hook(page, order, gfp_flags);
1788 
1789 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1790 		for (i = 0; i < (1 << order); i++)
1791 			clear_highpage(page + i);
1792 
1793 	if (order && (gfp_flags & __GFP_COMP))
1794 		prep_compound_page(page, order);
1795 
1796 	/*
1797 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1798 	 * allocate the page. The expectation is that the caller is taking
1799 	 * steps that will free more memory. The caller should avoid the page
1800 	 * being used for !PFMEMALLOC purposes.
1801 	 */
1802 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1803 		set_page_pfmemalloc(page);
1804 	else
1805 		clear_page_pfmemalloc(page);
1806 }
1807 
1808 /*
1809  * Go through the free lists for the given migratetype and remove
1810  * the smallest available page from the freelists
1811  */
1812 static inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)1813 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1814 						int migratetype)
1815 {
1816 	unsigned int current_order;
1817 	struct free_area *area;
1818 	struct page *page;
1819 
1820 	/* Find a page of the appropriate size in the preferred list */
1821 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1822 		area = &(zone->free_area[current_order]);
1823 		page = list_first_entry_or_null(&area->free_list[migratetype],
1824 							struct page, lru);
1825 		if (!page)
1826 			continue;
1827 		list_del(&page->lru);
1828 		rmv_page_order(page);
1829 		area->nr_free--;
1830 		expand(zone, page, order, current_order, area, migratetype);
1831 		set_pcppage_migratetype(page, migratetype);
1832 		return page;
1833 	}
1834 
1835 	return NULL;
1836 }
1837 
1838 
1839 /*
1840  * This array describes the order lists are fallen back to when
1841  * the free lists for the desirable migrate type are depleted
1842  */
1843 static int fallbacks[MIGRATE_TYPES][4] = {
1844 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1845 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1846 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1847 #ifdef CONFIG_CMA
1848 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1849 #endif
1850 #ifdef CONFIG_MEMORY_ISOLATION
1851 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1852 #endif
1853 };
1854 
1855 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1856 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1857 					unsigned int order)
1858 {
1859 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1860 }
1861 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)1862 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1863 					unsigned int order) { return NULL; }
1864 #endif
1865 
1866 /*
1867  * Move the free pages in a range to the free lists of the requested type.
1868  * Note that start_page and end_pages are not aligned on a pageblock
1869  * boundary. If alignment is required, use move_freepages_block()
1870  */
move_freepages(struct zone * zone,struct page * start_page,struct page * end_page,int migratetype)1871 int move_freepages(struct zone *zone,
1872 			  struct page *start_page, struct page *end_page,
1873 			  int migratetype)
1874 {
1875 	struct page *page;
1876 	unsigned int order;
1877 	int pages_moved = 0;
1878 
1879 #ifndef CONFIG_HOLES_IN_ZONE
1880 	/*
1881 	 * page_zone is not safe to call in this context when
1882 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1883 	 * anyway as we check zone boundaries in move_freepages_block().
1884 	 * Remove at a later date when no bug reports exist related to
1885 	 * grouping pages by mobility
1886 	 */
1887 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1888 #endif
1889 
1890 	for (page = start_page; page <= end_page;) {
1891 		if (!pfn_valid_within(page_to_pfn(page))) {
1892 			page++;
1893 			continue;
1894 		}
1895 
1896 		/* Make sure we are not inadvertently changing nodes */
1897 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1898 
1899 		if (!PageBuddy(page)) {
1900 			page++;
1901 			continue;
1902 		}
1903 
1904 		order = page_order(page);
1905 		list_move(&page->lru,
1906 			  &zone->free_area[order].free_list[migratetype]);
1907 		page += 1 << order;
1908 		pages_moved += 1 << order;
1909 	}
1910 
1911 	return pages_moved;
1912 }
1913 
move_freepages_block(struct zone * zone,struct page * page,int migratetype)1914 int move_freepages_block(struct zone *zone, struct page *page,
1915 				int migratetype)
1916 {
1917 	unsigned long start_pfn, end_pfn;
1918 	struct page *start_page, *end_page;
1919 
1920 	start_pfn = page_to_pfn(page);
1921 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1922 	start_page = pfn_to_page(start_pfn);
1923 	end_page = start_page + pageblock_nr_pages - 1;
1924 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1925 
1926 	/* Do not cross zone boundaries */
1927 	if (!zone_spans_pfn(zone, start_pfn))
1928 		start_page = page;
1929 	if (!zone_spans_pfn(zone, end_pfn))
1930 		return 0;
1931 
1932 	return move_freepages(zone, start_page, end_page, migratetype);
1933 }
1934 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)1935 static void change_pageblock_range(struct page *pageblock_page,
1936 					int start_order, int migratetype)
1937 {
1938 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1939 
1940 	while (nr_pageblocks--) {
1941 		set_pageblock_migratetype(pageblock_page, migratetype);
1942 		pageblock_page += pageblock_nr_pages;
1943 	}
1944 }
1945 
1946 /*
1947  * When we are falling back to another migratetype during allocation, try to
1948  * steal extra free pages from the same pageblocks to satisfy further
1949  * allocations, instead of polluting multiple pageblocks.
1950  *
1951  * If we are stealing a relatively large buddy page, it is likely there will
1952  * be more free pages in the pageblock, so try to steal them all. For
1953  * reclaimable and unmovable allocations, we steal regardless of page size,
1954  * as fragmentation caused by those allocations polluting movable pageblocks
1955  * is worse than movable allocations stealing from unmovable and reclaimable
1956  * pageblocks.
1957  */
can_steal_fallback(unsigned int order,int start_mt)1958 static bool can_steal_fallback(unsigned int order, int start_mt)
1959 {
1960 	/*
1961 	 * Leaving this order check is intended, although there is
1962 	 * relaxed order check in next check. The reason is that
1963 	 * we can actually steal whole pageblock if this condition met,
1964 	 * but, below check doesn't guarantee it and that is just heuristic
1965 	 * so could be changed anytime.
1966 	 */
1967 	if (order >= pageblock_order)
1968 		return true;
1969 
1970 	if (order >= pageblock_order / 2 ||
1971 		start_mt == MIGRATE_RECLAIMABLE ||
1972 		start_mt == MIGRATE_UNMOVABLE ||
1973 		page_group_by_mobility_disabled)
1974 		return true;
1975 
1976 	return false;
1977 }
1978 
1979 /*
1980  * This function implements actual steal behaviour. If order is large enough,
1981  * we can steal whole pageblock. If not, we first move freepages in this
1982  * pageblock and check whether half of pages are moved or not. If half of
1983  * pages are moved, we can change migratetype of pageblock and permanently
1984  * use it's pages as requested migratetype in the future.
1985  */
steal_suitable_fallback(struct zone * zone,struct page * page,int start_type)1986 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1987 							  int start_type)
1988 {
1989 	unsigned int current_order = page_order(page);
1990 	int pages;
1991 
1992 	/* Take ownership for orders >= pageblock_order */
1993 	if (current_order >= pageblock_order) {
1994 		change_pageblock_range(page, current_order, start_type);
1995 		return;
1996 	}
1997 
1998 	pages = move_freepages_block(zone, page, start_type);
1999 
2000 	/* Claim the whole block if over half of it is free */
2001 	if (pages >= (1 << (pageblock_order-1)) ||
2002 			page_group_by_mobility_disabled)
2003 		set_pageblock_migratetype(page, start_type);
2004 }
2005 
2006 /*
2007  * Check whether there is a suitable fallback freepage with requested order.
2008  * If only_stealable is true, this function returns fallback_mt only if
2009  * we can steal other freepages all together. This would help to reduce
2010  * fragmentation due to mixed migratetype pages in one pageblock.
2011  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2012 int find_suitable_fallback(struct free_area *area, unsigned int order,
2013 			int migratetype, bool only_stealable, bool *can_steal)
2014 {
2015 	int i;
2016 	int fallback_mt;
2017 
2018 	if (area->nr_free == 0)
2019 		return -1;
2020 
2021 	*can_steal = false;
2022 	for (i = 0;; i++) {
2023 		fallback_mt = fallbacks[migratetype][i];
2024 		if (fallback_mt == MIGRATE_TYPES)
2025 			break;
2026 
2027 		if (list_empty(&area->free_list[fallback_mt]))
2028 			continue;
2029 
2030 		if (can_steal_fallback(order, migratetype))
2031 			*can_steal = true;
2032 
2033 		if (!only_stealable)
2034 			return fallback_mt;
2035 
2036 		if (*can_steal)
2037 			return fallback_mt;
2038 	}
2039 
2040 	return -1;
2041 }
2042 
2043 /*
2044  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2045  * there are no empty page blocks that contain a page with a suitable order
2046  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2047 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2048 				unsigned int alloc_order)
2049 {
2050 	int mt;
2051 	unsigned long max_managed, flags;
2052 
2053 	/*
2054 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2055 	 * Check is race-prone but harmless.
2056 	 */
2057 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2058 	if (zone->nr_reserved_highatomic >= max_managed)
2059 		return;
2060 
2061 	spin_lock_irqsave(&zone->lock, flags);
2062 
2063 	/* Recheck the nr_reserved_highatomic limit under the lock */
2064 	if (zone->nr_reserved_highatomic >= max_managed)
2065 		goto out_unlock;
2066 
2067 	/* Yoink! */
2068 	mt = get_pageblock_migratetype(page);
2069 	if (mt != MIGRATE_HIGHATOMIC &&
2070 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2071 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2072 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2073 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2074 	}
2075 
2076 out_unlock:
2077 	spin_unlock_irqrestore(&zone->lock, flags);
2078 }
2079 
2080 /*
2081  * Used when an allocation is about to fail under memory pressure. This
2082  * potentially hurts the reliability of high-order allocations when under
2083  * intense memory pressure but failed atomic allocations should be easier
2084  * to recover from than an OOM.
2085  */
unreserve_highatomic_pageblock(const struct alloc_context * ac)2086 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2087 {
2088 	struct zonelist *zonelist = ac->zonelist;
2089 	unsigned long flags;
2090 	struct zoneref *z;
2091 	struct zone *zone;
2092 	struct page *page;
2093 	int order;
2094 
2095 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2096 								ac->nodemask) {
2097 		/* Preserve at least one pageblock */
2098 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2099 			continue;
2100 
2101 		spin_lock_irqsave(&zone->lock, flags);
2102 		for (order = 0; order < MAX_ORDER; order++) {
2103 			struct free_area *area = &(zone->free_area[order]);
2104 
2105 			page = list_first_entry_or_null(
2106 					&area->free_list[MIGRATE_HIGHATOMIC],
2107 					struct page, lru);
2108 			if (!page)
2109 				continue;
2110 
2111 			/*
2112 			 * In page freeing path, migratetype change is racy so
2113 			 * we can counter several free pages in a pageblock
2114 			 * in this loop althoug we changed the pageblock type
2115 			 * from highatomic to ac->migratetype. So we should
2116 			 * adjust the count once.
2117 			 */
2118 			if (get_pageblock_migratetype(page) ==
2119 							MIGRATE_HIGHATOMIC) {
2120 				/*
2121 				 * It should never happen but changes to
2122 				 * locking could inadvertently allow a per-cpu
2123 				 * drain to add pages to MIGRATE_HIGHATOMIC
2124 				 * while unreserving so be safe and watch for
2125 				 * underflows.
2126 				 */
2127 				zone->nr_reserved_highatomic -= min(
2128 						pageblock_nr_pages,
2129 						zone->nr_reserved_highatomic);
2130 			}
2131 
2132 			/*
2133 			 * Convert to ac->migratetype and avoid the normal
2134 			 * pageblock stealing heuristics. Minimally, the caller
2135 			 * is doing the work and needs the pages. More
2136 			 * importantly, if the block was always converted to
2137 			 * MIGRATE_UNMOVABLE or another type then the number
2138 			 * of pageblocks that cannot be completely freed
2139 			 * may increase.
2140 			 */
2141 			set_pageblock_migratetype(page, ac->migratetype);
2142 			move_freepages_block(zone, page, ac->migratetype);
2143 			spin_unlock_irqrestore(&zone->lock, flags);
2144 			return;
2145 		}
2146 		spin_unlock_irqrestore(&zone->lock, flags);
2147 	}
2148 }
2149 
2150 /* Remove an element from the buddy allocator from the fallback list */
2151 static inline struct page *
__rmqueue_fallback(struct zone * zone,unsigned int order,int start_migratetype)2152 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2153 {
2154 	struct free_area *area;
2155 	unsigned int current_order;
2156 	struct page *page;
2157 	int fallback_mt;
2158 	bool can_steal;
2159 
2160 	/* Find the largest possible block of pages in the other list */
2161 	for (current_order = MAX_ORDER-1;
2162 				current_order >= order && current_order <= MAX_ORDER-1;
2163 				--current_order) {
2164 		area = &(zone->free_area[current_order]);
2165 		fallback_mt = find_suitable_fallback(area, current_order,
2166 				start_migratetype, false, &can_steal);
2167 		if (fallback_mt == -1)
2168 			continue;
2169 
2170 		page = list_first_entry(&area->free_list[fallback_mt],
2171 						struct page, lru);
2172 		if (can_steal)
2173 			steal_suitable_fallback(zone, page, start_migratetype);
2174 
2175 		/* Remove the page from the freelists */
2176 		area->nr_free--;
2177 		list_del(&page->lru);
2178 		rmv_page_order(page);
2179 
2180 		expand(zone, page, order, current_order, area,
2181 					start_migratetype);
2182 		/*
2183 		 * The pcppage_migratetype may differ from pageblock's
2184 		 * migratetype depending on the decisions in
2185 		 * find_suitable_fallback(). This is OK as long as it does not
2186 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2187 		 * fallback only via special __rmqueue_cma_fallback() function
2188 		 */
2189 		set_pcppage_migratetype(page, start_migratetype);
2190 
2191 		trace_mm_page_alloc_extfrag(page, order, current_order,
2192 			start_migratetype, fallback_mt);
2193 
2194 		return page;
2195 	}
2196 
2197 	return NULL;
2198 }
2199 
2200 /*
2201  * Do the hard work of removing an element from the buddy allocator.
2202  * Call me with the zone->lock already held.
2203  */
__rmqueue(struct zone * zone,unsigned int order,int migratetype)2204 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2205 				int migratetype)
2206 {
2207 	struct page *page;
2208 
2209 	page = __rmqueue_smallest(zone, order, migratetype);
2210 	if (unlikely(!page)) {
2211 		if (migratetype == MIGRATE_MOVABLE)
2212 			page = __rmqueue_cma_fallback(zone, order);
2213 
2214 		if (!page)
2215 			page = __rmqueue_fallback(zone, order, migratetype);
2216 	}
2217 
2218 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2219 	return page;
2220 }
2221 
2222 /*
2223  * Obtain a specified number of elements from the buddy allocator, all under
2224  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2225  * Returns the number of new pages which were placed at *list.
2226  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,bool cold)2227 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2228 			unsigned long count, struct list_head *list,
2229 			int migratetype, bool cold)
2230 {
2231 	int i, alloced = 0;
2232 
2233 	spin_lock(&zone->lock);
2234 	for (i = 0; i < count; ++i) {
2235 		struct page *page = __rmqueue(zone, order, migratetype);
2236 		if (unlikely(page == NULL))
2237 			break;
2238 
2239 		if (unlikely(check_pcp_refill(page)))
2240 			continue;
2241 
2242 		/*
2243 		 * Split buddy pages returned by expand() are received here
2244 		 * in physical page order. The page is added to the callers and
2245 		 * list and the list head then moves forward. From the callers
2246 		 * perspective, the linked list is ordered by page number in
2247 		 * some conditions. This is useful for IO devices that can
2248 		 * merge IO requests if the physical pages are ordered
2249 		 * properly.
2250 		 */
2251 		if (likely(!cold))
2252 			list_add(&page->lru, list);
2253 		else
2254 			list_add_tail(&page->lru, list);
2255 		list = &page->lru;
2256 		alloced++;
2257 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2258 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2259 					      -(1 << order));
2260 	}
2261 
2262 	/*
2263 	 * i pages were removed from the buddy list even if some leak due
2264 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2265 	 * on i. Do not confuse with 'alloced' which is the number of
2266 	 * pages added to the pcp list.
2267 	 */
2268 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2269 	spin_unlock(&zone->lock);
2270 	return alloced;
2271 }
2272 
2273 #ifdef CONFIG_NUMA
2274 /*
2275  * Called from the vmstat counter updater to drain pagesets of this
2276  * currently executing processor on remote nodes after they have
2277  * expired.
2278  *
2279  * Note that this function must be called with the thread pinned to
2280  * a single processor.
2281  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2282 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2283 {
2284 	unsigned long flags;
2285 	int to_drain, batch;
2286 
2287 	local_irq_save(flags);
2288 	batch = READ_ONCE(pcp->batch);
2289 	to_drain = min(pcp->count, batch);
2290 	if (to_drain > 0) {
2291 		free_pcppages_bulk(zone, to_drain, pcp);
2292 		pcp->count -= to_drain;
2293 	}
2294 	local_irq_restore(flags);
2295 }
2296 #endif
2297 
2298 /*
2299  * Drain pcplists of the indicated processor and zone.
2300  *
2301  * The processor must either be the current processor and the
2302  * thread pinned to the current processor or a processor that
2303  * is not online.
2304  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2305 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2306 {
2307 	unsigned long flags;
2308 	struct per_cpu_pageset *pset;
2309 	struct per_cpu_pages *pcp;
2310 
2311 	local_irq_save(flags);
2312 	pset = per_cpu_ptr(zone->pageset, cpu);
2313 
2314 	pcp = &pset->pcp;
2315 	if (pcp->count) {
2316 		free_pcppages_bulk(zone, pcp->count, pcp);
2317 		pcp->count = 0;
2318 	}
2319 	local_irq_restore(flags);
2320 }
2321 
2322 /*
2323  * Drain pcplists of all zones on the indicated processor.
2324  *
2325  * The processor must either be the current processor and the
2326  * thread pinned to the current processor or a processor that
2327  * is not online.
2328  */
drain_pages(unsigned int cpu)2329 static void drain_pages(unsigned int cpu)
2330 {
2331 	struct zone *zone;
2332 
2333 	for_each_populated_zone(zone) {
2334 		drain_pages_zone(cpu, zone);
2335 	}
2336 }
2337 
2338 /*
2339  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2340  *
2341  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2342  * the single zone's pages.
2343  */
drain_local_pages(void * z)2344 void drain_local_pages(void *z)
2345 {
2346 	struct zone *zone = (struct zone *)z;
2347 	int cpu = smp_processor_id();
2348 
2349 	if (zone)
2350 		drain_pages_zone(cpu, zone);
2351 	else
2352 		drain_pages(cpu);
2353 }
2354 
2355 /*
2356  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2357  *
2358  * When zone parameter is non-NULL, spill just the single zone's pages.
2359  *
2360  * Note that this code is protected against sending an IPI to an offline
2361  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2362  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2363  * nothing keeps CPUs from showing up after we populated the cpumask and
2364  * before the call to on_each_cpu_mask().
2365  */
drain_all_pages(struct zone * zone)2366 void drain_all_pages(struct zone *zone)
2367 {
2368 	int cpu;
2369 
2370 	/*
2371 	 * Allocate in the BSS so we wont require allocation in
2372 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2373 	 */
2374 	static cpumask_t cpus_with_pcps;
2375 
2376 	/*
2377 	 * We don't care about racing with CPU hotplug event
2378 	 * as offline notification will cause the notified
2379 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2380 	 * disables preemption as part of its processing
2381 	 */
2382 	for_each_online_cpu(cpu) {
2383 		struct per_cpu_pageset *pcp;
2384 		struct zone *z;
2385 		bool has_pcps = false;
2386 
2387 		if (zone) {
2388 			pcp = per_cpu_ptr(zone->pageset, cpu);
2389 			if (pcp->pcp.count)
2390 				has_pcps = true;
2391 		} else {
2392 			for_each_populated_zone(z) {
2393 				pcp = per_cpu_ptr(z->pageset, cpu);
2394 				if (pcp->pcp.count) {
2395 					has_pcps = true;
2396 					break;
2397 				}
2398 			}
2399 		}
2400 
2401 		if (has_pcps)
2402 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2403 		else
2404 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2405 	}
2406 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, zone, 1);
2407 }
2408 
2409 #ifdef CONFIG_HIBERNATION
2410 
mark_free_pages(struct zone * zone)2411 void mark_free_pages(struct zone *zone)
2412 {
2413 	unsigned long pfn, max_zone_pfn;
2414 	unsigned long flags;
2415 	unsigned int order, t;
2416 	struct page *page;
2417 
2418 	if (zone_is_empty(zone))
2419 		return;
2420 
2421 	spin_lock_irqsave(&zone->lock, flags);
2422 
2423 	max_zone_pfn = zone_end_pfn(zone);
2424 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2425 		if (pfn_valid(pfn)) {
2426 			page = pfn_to_page(pfn);
2427 
2428 			if (page_zone(page) != zone)
2429 				continue;
2430 
2431 			if (!swsusp_page_is_forbidden(page))
2432 				swsusp_unset_page_free(page);
2433 		}
2434 
2435 	for_each_migratetype_order(order, t) {
2436 		list_for_each_entry(page,
2437 				&zone->free_area[order].free_list[t], lru) {
2438 			unsigned long i;
2439 
2440 			pfn = page_to_pfn(page);
2441 			for (i = 0; i < (1UL << order); i++)
2442 				swsusp_set_page_free(pfn_to_page(pfn + i));
2443 		}
2444 	}
2445 	spin_unlock_irqrestore(&zone->lock, flags);
2446 }
2447 #endif /* CONFIG_PM */
2448 
2449 /*
2450  * Free a 0-order page
2451  * cold == true ? free a cold page : free a hot page
2452  */
free_hot_cold_page(struct page * page,bool cold)2453 void free_hot_cold_page(struct page *page, bool cold)
2454 {
2455 	struct zone *zone = page_zone(page);
2456 	struct per_cpu_pages *pcp;
2457 	unsigned long flags;
2458 	unsigned long pfn = page_to_pfn(page);
2459 	int migratetype;
2460 
2461 	if (!free_pcp_prepare(page))
2462 		return;
2463 
2464 	migratetype = get_pfnblock_migratetype(page, pfn);
2465 	set_pcppage_migratetype(page, migratetype);
2466 	local_irq_save(flags);
2467 	__count_vm_event(PGFREE);
2468 
2469 	/*
2470 	 * We only track unmovable, reclaimable and movable on pcp lists.
2471 	 * Free ISOLATE pages back to the allocator because they are being
2472 	 * offlined but treat RESERVE as movable pages so we can get those
2473 	 * areas back if necessary. Otherwise, we may have to free
2474 	 * excessively into the page allocator
2475 	 */
2476 	if (migratetype >= MIGRATE_PCPTYPES) {
2477 		if (unlikely(is_migrate_isolate(migratetype))) {
2478 			free_one_page(zone, page, pfn, 0, migratetype);
2479 			goto out;
2480 		}
2481 		migratetype = MIGRATE_MOVABLE;
2482 	}
2483 
2484 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2485 	if (!cold)
2486 		list_add(&page->lru, &pcp->lists[migratetype]);
2487 	else
2488 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2489 	pcp->count++;
2490 	if (pcp->count >= pcp->high) {
2491 		unsigned long batch = READ_ONCE(pcp->batch);
2492 		free_pcppages_bulk(zone, batch, pcp);
2493 		pcp->count -= batch;
2494 	}
2495 
2496 out:
2497 	local_irq_restore(flags);
2498 }
2499 
2500 /*
2501  * Free a list of 0-order pages
2502  */
free_hot_cold_page_list(struct list_head * list,bool cold)2503 void free_hot_cold_page_list(struct list_head *list, bool cold)
2504 {
2505 	struct page *page, *next;
2506 
2507 	list_for_each_entry_safe(page, next, list, lru) {
2508 		trace_mm_page_free_batched(page, cold);
2509 		free_hot_cold_page(page, cold);
2510 	}
2511 }
2512 
2513 /*
2514  * split_page takes a non-compound higher-order page, and splits it into
2515  * n (1<<order) sub-pages: page[0..n]
2516  * Each sub-page must be freed individually.
2517  *
2518  * Note: this is probably too low level an operation for use in drivers.
2519  * Please consult with lkml before using this in your driver.
2520  */
split_page(struct page * page,unsigned int order)2521 void split_page(struct page *page, unsigned int order)
2522 {
2523 	int i;
2524 
2525 	VM_BUG_ON_PAGE(PageCompound(page), page);
2526 	VM_BUG_ON_PAGE(!page_count(page), page);
2527 
2528 #ifdef CONFIG_KMEMCHECK
2529 	/*
2530 	 * Split shadow pages too, because free(page[0]) would
2531 	 * otherwise free the whole shadow.
2532 	 */
2533 	if (kmemcheck_page_is_tracked(page))
2534 		split_page(virt_to_page(page[0].shadow), order);
2535 #endif
2536 
2537 	for (i = 1; i < (1 << order); i++)
2538 		set_page_refcounted(page + i);
2539 	split_page_owner(page, order);
2540 }
2541 EXPORT_SYMBOL_GPL(split_page);
2542 
__isolate_free_page(struct page * page,unsigned int order)2543 int __isolate_free_page(struct page *page, unsigned int order)
2544 {
2545 	unsigned long watermark;
2546 	struct zone *zone;
2547 	int mt;
2548 
2549 	BUG_ON(!PageBuddy(page));
2550 
2551 	zone = page_zone(page);
2552 	mt = get_pageblock_migratetype(page);
2553 
2554 	if (!is_migrate_isolate(mt)) {
2555 		/*
2556 		 * Obey watermarks as if the page was being allocated. We can
2557 		 * emulate a high-order watermark check with a raised order-0
2558 		 * watermark, because we already know our high-order page
2559 		 * exists.
2560 		 */
2561 		watermark = min_wmark_pages(zone) + (1UL << order);
2562 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2563 			return 0;
2564 
2565 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2566 	}
2567 
2568 	/* Remove page from free list */
2569 	list_del(&page->lru);
2570 	zone->free_area[order].nr_free--;
2571 	rmv_page_order(page);
2572 
2573 	/*
2574 	 * Set the pageblock if the isolated page is at least half of a
2575 	 * pageblock
2576 	 */
2577 	if (order >= pageblock_order - 1) {
2578 		struct page *endpage = page + (1 << order) - 1;
2579 		for (; page < endpage; page += pageblock_nr_pages) {
2580 			int mt = get_pageblock_migratetype(page);
2581 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2582 				set_pageblock_migratetype(page,
2583 							  MIGRATE_MOVABLE);
2584 		}
2585 	}
2586 
2587 
2588 	return 1UL << order;
2589 }
2590 
2591 /*
2592  * Update NUMA hit/miss statistics
2593  *
2594  * Must be called with interrupts disabled.
2595  */
zone_statistics(struct zone * preferred_zone,struct zone * z,gfp_t flags)2596 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2597 								gfp_t flags)
2598 {
2599 #ifdef CONFIG_NUMA
2600 	enum zone_stat_item local_stat = NUMA_LOCAL;
2601 
2602 	if (z->node != numa_node_id())
2603 		local_stat = NUMA_OTHER;
2604 
2605 	if (z->node == preferred_zone->node)
2606 		__inc_zone_state(z, NUMA_HIT);
2607 	else {
2608 		__inc_zone_state(z, NUMA_MISS);
2609 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2610 	}
2611 	__inc_zone_state(z, local_stat);
2612 #endif
2613 }
2614 
2615 /*
2616  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2617  */
2618 static inline
buffered_rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)2619 struct page *buffered_rmqueue(struct zone *preferred_zone,
2620 			struct zone *zone, unsigned int order,
2621 			gfp_t gfp_flags, unsigned int alloc_flags,
2622 			int migratetype)
2623 {
2624 	unsigned long flags;
2625 	struct page *page;
2626 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2627 
2628 	if (likely(order == 0)) {
2629 		struct per_cpu_pages *pcp;
2630 		struct list_head *list;
2631 
2632 		local_irq_save(flags);
2633 		do {
2634 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2635 			list = &pcp->lists[migratetype];
2636 			if (list_empty(list)) {
2637 				pcp->count += rmqueue_bulk(zone, 0,
2638 						pcp->batch, list,
2639 						migratetype, cold);
2640 				if (unlikely(list_empty(list)))
2641 					goto failed;
2642 			}
2643 
2644 			if (cold)
2645 				page = list_last_entry(list, struct page, lru);
2646 			else
2647 				page = list_first_entry(list, struct page, lru);
2648 
2649 			list_del(&page->lru);
2650 			pcp->count--;
2651 
2652 		} while (check_new_pcp(page));
2653 	} else {
2654 		/*
2655 		 * We most definitely don't want callers attempting to
2656 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2657 		 */
2658 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2659 		spin_lock_irqsave(&zone->lock, flags);
2660 
2661 		do {
2662 			page = NULL;
2663 			if (alloc_flags & ALLOC_HARDER) {
2664 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2665 				if (page)
2666 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2667 			}
2668 			if (!page)
2669 				page = __rmqueue(zone, order, migratetype);
2670 		} while (page && check_new_pages(page, order));
2671 		spin_unlock(&zone->lock);
2672 		if (!page)
2673 			goto failed;
2674 		__mod_zone_freepage_state(zone, -(1 << order),
2675 					  get_pcppage_migratetype(page));
2676 	}
2677 
2678 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2679 	zone_statistics(preferred_zone, zone, gfp_flags);
2680 	local_irq_restore(flags);
2681 
2682 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2683 	return page;
2684 
2685 failed:
2686 	local_irq_restore(flags);
2687 	return NULL;
2688 }
2689 
2690 #ifdef CONFIG_FAIL_PAGE_ALLOC
2691 
2692 static struct {
2693 	struct fault_attr attr;
2694 
2695 	bool ignore_gfp_highmem;
2696 	bool ignore_gfp_reclaim;
2697 	u32 min_order;
2698 } fail_page_alloc = {
2699 	.attr = FAULT_ATTR_INITIALIZER,
2700 	.ignore_gfp_reclaim = true,
2701 	.ignore_gfp_highmem = true,
2702 	.min_order = 1,
2703 };
2704 
setup_fail_page_alloc(char * str)2705 static int __init setup_fail_page_alloc(char *str)
2706 {
2707 	return setup_fault_attr(&fail_page_alloc.attr, str);
2708 }
2709 __setup("fail_page_alloc=", setup_fail_page_alloc);
2710 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2711 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2712 {
2713 	if (order < fail_page_alloc.min_order)
2714 		return false;
2715 	if (gfp_mask & __GFP_NOFAIL)
2716 		return false;
2717 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2718 		return false;
2719 	if (fail_page_alloc.ignore_gfp_reclaim &&
2720 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2721 		return false;
2722 
2723 	return should_fail(&fail_page_alloc.attr, 1 << order);
2724 }
2725 
2726 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2727 
fail_page_alloc_debugfs(void)2728 static int __init fail_page_alloc_debugfs(void)
2729 {
2730 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2731 	struct dentry *dir;
2732 
2733 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2734 					&fail_page_alloc.attr);
2735 	if (IS_ERR(dir))
2736 		return PTR_ERR(dir);
2737 
2738 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2739 				&fail_page_alloc.ignore_gfp_reclaim))
2740 		goto fail;
2741 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2742 				&fail_page_alloc.ignore_gfp_highmem))
2743 		goto fail;
2744 	if (!debugfs_create_u32("min-order", mode, dir,
2745 				&fail_page_alloc.min_order))
2746 		goto fail;
2747 
2748 	return 0;
2749 fail:
2750 	debugfs_remove_recursive(dir);
2751 
2752 	return -ENOMEM;
2753 }
2754 
2755 late_initcall(fail_page_alloc_debugfs);
2756 
2757 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2758 
2759 #else /* CONFIG_FAIL_PAGE_ALLOC */
2760 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)2761 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2762 {
2763 	return false;
2764 }
2765 
2766 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2767 
2768 /*
2769  * Return true if free base pages are above 'mark'. For high-order checks it
2770  * will return true of the order-0 watermark is reached and there is at least
2771  * one free page of a suitable size. Checking now avoids taking the zone lock
2772  * to check in the allocation paths if no pages are free.
2773  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags,long free_pages)2774 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2775 			 int classzone_idx, unsigned int alloc_flags,
2776 			 long free_pages)
2777 {
2778 	long min = mark;
2779 	int o;
2780 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2781 
2782 	/* free_pages may go negative - that's OK */
2783 	free_pages -= (1 << order) - 1;
2784 
2785 	if (alloc_flags & ALLOC_HIGH)
2786 		min -= min / 2;
2787 
2788 	/*
2789 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2790 	 * the high-atomic reserves. This will over-estimate the size of the
2791 	 * atomic reserve but it avoids a search.
2792 	 */
2793 	if (likely(!alloc_harder))
2794 		free_pages -= z->nr_reserved_highatomic;
2795 	else
2796 		min -= min / 4;
2797 
2798 #ifdef CONFIG_CMA
2799 	/* If allocation can't use CMA areas don't use free CMA pages */
2800 	if (!(alloc_flags & ALLOC_CMA))
2801 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2802 #endif
2803 
2804 	/*
2805 	 * Check watermarks for an order-0 allocation request. If these
2806 	 * are not met, then a high-order request also cannot go ahead
2807 	 * even if a suitable page happened to be free.
2808 	 */
2809 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2810 		return false;
2811 
2812 	/* If this is an order-0 request then the watermark is fine */
2813 	if (!order)
2814 		return true;
2815 
2816 	/* For a high-order request, check at least one suitable page is free */
2817 	for (o = order; o < MAX_ORDER; o++) {
2818 		struct free_area *area = &z->free_area[o];
2819 		int mt;
2820 
2821 		if (!area->nr_free)
2822 			continue;
2823 
2824 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2825 			if (!list_empty(&area->free_list[mt]))
2826 				return true;
2827 		}
2828 
2829 #ifdef CONFIG_CMA
2830 		if ((alloc_flags & ALLOC_CMA) &&
2831 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2832 			return true;
2833 		}
2834 #endif
2835 		if (alloc_harder &&
2836 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
2837 			return true;
2838 	}
2839 	return false;
2840 }
2841 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)2842 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2843 		      int classzone_idx, unsigned int alloc_flags)
2844 {
2845 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2846 					zone_page_state(z, NR_FREE_PAGES));
2847 }
2848 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx,unsigned int alloc_flags)2849 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2850 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2851 {
2852 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2853 	long cma_pages = 0;
2854 
2855 #ifdef CONFIG_CMA
2856 	/* If allocation can't use CMA areas don't use free CMA pages */
2857 	if (!(alloc_flags & ALLOC_CMA))
2858 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2859 #endif
2860 
2861 	/*
2862 	 * Fast check for order-0 only. If this fails then the reserves
2863 	 * need to be calculated. There is a corner case where the check
2864 	 * passes but only the high-order atomic reserve are free. If
2865 	 * the caller is !atomic then it'll uselessly search the free
2866 	 * list. That corner case is then slower but it is harmless.
2867 	 */
2868 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2869 		return true;
2870 
2871 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2872 					free_pages);
2873 }
2874 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int classzone_idx)2875 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2876 			unsigned long mark, int classzone_idx)
2877 {
2878 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2879 
2880 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2881 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2882 
2883 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2884 								free_pages);
2885 }
2886 
2887 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2888 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2889 {
2890 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2891 				RECLAIM_DISTANCE;
2892 }
2893 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)2894 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2895 {
2896 	return true;
2897 }
2898 #endif	/* CONFIG_NUMA */
2899 
2900 /*
2901  * get_page_from_freelist goes through the zonelist trying to allocate
2902  * a page.
2903  */
2904 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)2905 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2906 						const struct alloc_context *ac)
2907 {
2908 	struct zoneref *z = ac->preferred_zoneref;
2909 	struct zone *zone;
2910 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2911 
2912 	/*
2913 	 * Scan zonelist, looking for a zone with enough free.
2914 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2915 	 */
2916 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2917 								ac->nodemask) {
2918 		struct page *page;
2919 		unsigned long mark;
2920 
2921 		if (cpusets_enabled() &&
2922 			(alloc_flags & ALLOC_CPUSET) &&
2923 			!__cpuset_zone_allowed(zone, gfp_mask))
2924 				continue;
2925 		/*
2926 		 * When allocating a page cache page for writing, we
2927 		 * want to get it from a node that is within its dirty
2928 		 * limit, such that no single node holds more than its
2929 		 * proportional share of globally allowed dirty pages.
2930 		 * The dirty limits take into account the node's
2931 		 * lowmem reserves and high watermark so that kswapd
2932 		 * should be able to balance it without having to
2933 		 * write pages from its LRU list.
2934 		 *
2935 		 * XXX: For now, allow allocations to potentially
2936 		 * exceed the per-node dirty limit in the slowpath
2937 		 * (spread_dirty_pages unset) before going into reclaim,
2938 		 * which is important when on a NUMA setup the allowed
2939 		 * nodes are together not big enough to reach the
2940 		 * global limit.  The proper fix for these situations
2941 		 * will require awareness of nodes in the
2942 		 * dirty-throttling and the flusher threads.
2943 		 */
2944 		if (ac->spread_dirty_pages) {
2945 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
2946 				continue;
2947 
2948 			if (!node_dirty_ok(zone->zone_pgdat)) {
2949 				last_pgdat_dirty_limit = zone->zone_pgdat;
2950 				continue;
2951 			}
2952 		}
2953 
2954 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2955 		if (!zone_watermark_fast(zone, order, mark,
2956 				       ac_classzone_idx(ac), alloc_flags)) {
2957 			int ret;
2958 
2959 			/* Checked here to keep the fast path fast */
2960 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2961 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2962 				goto try_this_zone;
2963 
2964 			if (node_reclaim_mode == 0 ||
2965 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2966 				continue;
2967 
2968 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2969 			switch (ret) {
2970 			case NODE_RECLAIM_NOSCAN:
2971 				/* did not scan */
2972 				continue;
2973 			case NODE_RECLAIM_FULL:
2974 				/* scanned but unreclaimable */
2975 				continue;
2976 			default:
2977 				/* did we reclaim enough */
2978 				if (zone_watermark_ok(zone, order, mark,
2979 						ac_classzone_idx(ac), alloc_flags))
2980 					goto try_this_zone;
2981 
2982 				continue;
2983 			}
2984 		}
2985 
2986 try_this_zone:
2987 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2988 				gfp_mask, alloc_flags, ac->migratetype);
2989 		if (page) {
2990 			prep_new_page(page, order, gfp_mask, alloc_flags);
2991 
2992 			/*
2993 			 * If this is a high-order atomic allocation then check
2994 			 * if the pageblock should be reserved for the future
2995 			 */
2996 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2997 				reserve_highatomic_pageblock(page, zone, order);
2998 
2999 			return page;
3000 		}
3001 	}
3002 
3003 	return NULL;
3004 }
3005 
3006 /*
3007  * Large machines with many possible nodes should not always dump per-node
3008  * meminfo in irq context.
3009  */
should_suppress_show_mem(void)3010 static inline bool should_suppress_show_mem(void)
3011 {
3012 	bool ret = false;
3013 
3014 #if NODES_SHIFT > 8
3015 	ret = in_interrupt();
3016 #endif
3017 	return ret;
3018 }
3019 
3020 static DEFINE_RATELIMIT_STATE(nopage_rs,
3021 		DEFAULT_RATELIMIT_INTERVAL,
3022 		DEFAULT_RATELIMIT_BURST);
3023 
warn_alloc(gfp_t gfp_mask,const char * fmt,...)3024 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3025 {
3026 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3027 	struct va_format vaf;
3028 	va_list args;
3029 
3030 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3031 	    debug_guardpage_minorder() > 0)
3032 		return;
3033 
3034 	/*
3035 	 * This documents exceptions given to allocations in certain
3036 	 * contexts that are allowed to allocate outside current's set
3037 	 * of allowed nodes.
3038 	 */
3039 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3040 		if (test_thread_flag(TIF_MEMDIE) ||
3041 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3042 			filter &= ~SHOW_MEM_FILTER_NODES;
3043 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3044 		filter &= ~SHOW_MEM_FILTER_NODES;
3045 
3046 	pr_warn("%s: ", current->comm);
3047 
3048 	va_start(args, fmt);
3049 	vaf.fmt = fmt;
3050 	vaf.va = &args;
3051 	pr_cont("%pV", &vaf);
3052 	va_end(args);
3053 
3054 	pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3055 
3056 	dump_stack();
3057 	if (!should_suppress_show_mem())
3058 		show_mem(filter);
3059 }
3060 
3061 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)3062 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3063 	const struct alloc_context *ac, unsigned long *did_some_progress)
3064 {
3065 	struct oom_control oc = {
3066 		.zonelist = ac->zonelist,
3067 		.nodemask = ac->nodemask,
3068 		.memcg = NULL,
3069 		.gfp_mask = gfp_mask,
3070 		.order = order,
3071 	};
3072 	struct page *page;
3073 
3074 	*did_some_progress = 0;
3075 
3076 	/*
3077 	 * Acquire the oom lock.  If that fails, somebody else is
3078 	 * making progress for us.
3079 	 */
3080 	if (!mutex_trylock(&oom_lock)) {
3081 		*did_some_progress = 1;
3082 		schedule_timeout_uninterruptible(1);
3083 		return NULL;
3084 	}
3085 
3086 	/*
3087 	 * Go through the zonelist yet one more time, keep very high watermark
3088 	 * here, this is only to catch a parallel oom killing, we must fail if
3089 	 * we're still under heavy pressure.
3090 	 */
3091 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3092 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3093 	if (page)
3094 		goto out;
3095 
3096 	if (!(gfp_mask & __GFP_NOFAIL)) {
3097 		/* Coredumps can quickly deplete all memory reserves */
3098 		if (current->flags & PF_DUMPCORE)
3099 			goto out;
3100 		/* The OOM killer will not help higher order allocs */
3101 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3102 			goto out;
3103 		/* The OOM killer does not needlessly kill tasks for lowmem */
3104 		if (ac->high_zoneidx < ZONE_NORMAL)
3105 			goto out;
3106 		if (pm_suspended_storage())
3107 			goto out;
3108 		/*
3109 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3110 		 * other request to make a forward progress.
3111 		 * We are in an unfortunate situation where out_of_memory cannot
3112 		 * do much for this context but let's try it to at least get
3113 		 * access to memory reserved if the current task is killed (see
3114 		 * out_of_memory). Once filesystems are ready to handle allocation
3115 		 * failures more gracefully we should just bail out here.
3116 		 */
3117 
3118 		/* The OOM killer may not free memory on a specific node */
3119 		if (gfp_mask & __GFP_THISNODE)
3120 			goto out;
3121 	}
3122 	/* Exhausted what can be done so it's blamo time */
3123 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3124 		*did_some_progress = 1;
3125 
3126 		if (gfp_mask & __GFP_NOFAIL) {
3127 			page = get_page_from_freelist(gfp_mask, order,
3128 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3129 			/*
3130 			 * fallback to ignore cpuset restriction if our nodes
3131 			 * are depleted
3132 			 */
3133 			if (!page)
3134 				page = get_page_from_freelist(gfp_mask, order,
3135 					ALLOC_NO_WATERMARKS, ac);
3136 		}
3137 	}
3138 out:
3139 	mutex_unlock(&oom_lock);
3140 	return page;
3141 }
3142 
3143 /*
3144  * Maximum number of compaction retries wit a progress before OOM
3145  * killer is consider as the only way to move forward.
3146  */
3147 #define MAX_COMPACT_RETRIES 16
3148 
3149 #ifdef CONFIG_COMPACTION
3150 /* Try memory compaction for high-order allocations before reclaim */
3151 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3152 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3153 		unsigned int alloc_flags, const struct alloc_context *ac,
3154 		enum compact_priority prio, enum compact_result *compact_result)
3155 {
3156 	struct page *page;
3157 	unsigned int noreclaim_flag = current->flags & PF_MEMALLOC;
3158 
3159 	if (!order)
3160 		return NULL;
3161 
3162 	current->flags |= PF_MEMALLOC;
3163 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3164 									prio);
3165 	current->flags = (current->flags & ~PF_MEMALLOC) | noreclaim_flag;
3166 
3167 	if (*compact_result <= COMPACT_INACTIVE)
3168 		return NULL;
3169 
3170 	/*
3171 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3172 	 * count a compaction stall
3173 	 */
3174 	count_vm_event(COMPACTSTALL);
3175 
3176 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3177 
3178 	if (page) {
3179 		struct zone *zone = page_zone(page);
3180 
3181 		zone->compact_blockskip_flush = false;
3182 		compaction_defer_reset(zone, order, true);
3183 		count_vm_event(COMPACTSUCCESS);
3184 		return page;
3185 	}
3186 
3187 	/*
3188 	 * It's bad if compaction run occurs and fails. The most likely reason
3189 	 * is that pages exist, but not enough to satisfy watermarks.
3190 	 */
3191 	count_vm_event(COMPACTFAIL);
3192 
3193 	cond_resched();
3194 
3195 	return NULL;
3196 }
3197 
3198 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3199 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3200 		     enum compact_result compact_result,
3201 		     enum compact_priority *compact_priority,
3202 		     int *compaction_retries)
3203 {
3204 	int max_retries = MAX_COMPACT_RETRIES;
3205 	int min_priority;
3206 
3207 	if (!order)
3208 		return false;
3209 
3210 	if (compaction_made_progress(compact_result))
3211 		(*compaction_retries)++;
3212 
3213 	/*
3214 	 * compaction considers all the zone as desperately out of memory
3215 	 * so it doesn't really make much sense to retry except when the
3216 	 * failure could be caused by insufficient priority
3217 	 */
3218 	if (compaction_failed(compact_result))
3219 		goto check_priority;
3220 
3221 	/*
3222 	 * make sure the compaction wasn't deferred or didn't bail out early
3223 	 * due to locks contention before we declare that we should give up.
3224 	 * But do not retry if the given zonelist is not suitable for
3225 	 * compaction.
3226 	 */
3227 	if (compaction_withdrawn(compact_result))
3228 		return compaction_zonelist_suitable(ac, order, alloc_flags);
3229 
3230 	/*
3231 	 * !costly requests are much more important than __GFP_REPEAT
3232 	 * costly ones because they are de facto nofail and invoke OOM
3233 	 * killer to move on while costly can fail and users are ready
3234 	 * to cope with that. 1/4 retries is rather arbitrary but we
3235 	 * would need much more detailed feedback from compaction to
3236 	 * make a better decision.
3237 	 */
3238 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3239 		max_retries /= 4;
3240 	if (*compaction_retries <= max_retries)
3241 		return true;
3242 
3243 	/*
3244 	 * Make sure there are attempts at the highest priority if we exhausted
3245 	 * all retries or failed at the lower priorities.
3246 	 */
3247 check_priority:
3248 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3249 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3250 	if (*compact_priority > min_priority) {
3251 		(*compact_priority)--;
3252 		*compaction_retries = 0;
3253 		return true;
3254 	}
3255 	return false;
3256 }
3257 #else
3258 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)3259 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3260 		unsigned int alloc_flags, const struct alloc_context *ac,
3261 		enum compact_priority prio, enum compact_result *compact_result)
3262 {
3263 	*compact_result = COMPACT_SKIPPED;
3264 	return NULL;
3265 }
3266 
3267 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)3268 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3269 		     enum compact_result compact_result,
3270 		     enum compact_priority *compact_priority,
3271 		     int *compaction_retries)
3272 {
3273 	struct zone *zone;
3274 	struct zoneref *z;
3275 
3276 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3277 		return false;
3278 
3279 	/*
3280 	 * There are setups with compaction disabled which would prefer to loop
3281 	 * inside the allocator rather than hit the oom killer prematurely.
3282 	 * Let's give them a good hope and keep retrying while the order-0
3283 	 * watermarks are OK.
3284 	 */
3285 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3286 					ac->nodemask) {
3287 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3288 					ac_classzone_idx(ac), alloc_flags))
3289 			return true;
3290 	}
3291 	return false;
3292 }
3293 #endif /* CONFIG_COMPACTION */
3294 
3295 /* Perform direct synchronous page reclaim */
3296 static int
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)3297 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3298 					const struct alloc_context *ac)
3299 {
3300 	struct reclaim_state reclaim_state;
3301 	int progress;
3302 
3303 	cond_resched();
3304 
3305 	/* We now go into synchronous reclaim */
3306 	cpuset_memory_pressure_bump();
3307 	current->flags |= PF_MEMALLOC;
3308 	lockdep_set_current_reclaim_state(gfp_mask);
3309 	reclaim_state.reclaimed_slab = 0;
3310 	current->reclaim_state = &reclaim_state;
3311 
3312 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3313 								ac->nodemask);
3314 
3315 	current->reclaim_state = NULL;
3316 	lockdep_clear_current_reclaim_state();
3317 	current->flags &= ~PF_MEMALLOC;
3318 
3319 	cond_resched();
3320 
3321 	return progress;
3322 }
3323 
3324 /* The really slow allocator path where we enter direct reclaim */
3325 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)3326 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3327 		unsigned int alloc_flags, const struct alloc_context *ac,
3328 		unsigned long *did_some_progress)
3329 {
3330 	struct page *page = NULL;
3331 	bool drained = false;
3332 
3333 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3334 	if (unlikely(!(*did_some_progress)))
3335 		return NULL;
3336 
3337 retry:
3338 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3339 
3340 	/*
3341 	 * If an allocation failed after direct reclaim, it could be because
3342 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3343 	 * Shrink them them and try again
3344 	 */
3345 	if (!page && !drained) {
3346 		unreserve_highatomic_pageblock(ac);
3347 		drain_all_pages(NULL);
3348 		drained = true;
3349 		goto retry;
3350 	}
3351 
3352 	return page;
3353 }
3354 
wake_all_kswapds(unsigned int order,const struct alloc_context * ac)3355 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3356 {
3357 	struct zoneref *z;
3358 	struct zone *zone;
3359 	pg_data_t *last_pgdat = NULL;
3360 
3361 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3362 					ac->high_zoneidx, ac->nodemask) {
3363 		if (last_pgdat != zone->zone_pgdat)
3364 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3365 		last_pgdat = zone->zone_pgdat;
3366 	}
3367 }
3368 
3369 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)3370 gfp_to_alloc_flags(gfp_t gfp_mask)
3371 {
3372 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3373 
3374 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3375 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3376 
3377 	/*
3378 	 * The caller may dip into page reserves a bit more if the caller
3379 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3380 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3381 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3382 	 */
3383 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3384 
3385 	if (gfp_mask & __GFP_ATOMIC) {
3386 		/*
3387 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3388 		 * if it can't schedule.
3389 		 */
3390 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3391 			alloc_flags |= ALLOC_HARDER;
3392 		/*
3393 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3394 		 * comment for __cpuset_node_allowed().
3395 		 */
3396 		alloc_flags &= ~ALLOC_CPUSET;
3397 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3398 		alloc_flags |= ALLOC_HARDER;
3399 
3400 #ifdef CONFIG_CMA
3401 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3402 		alloc_flags |= ALLOC_CMA;
3403 #endif
3404 	return alloc_flags;
3405 }
3406 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)3407 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3408 {
3409 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3410 		return false;
3411 
3412 	if (gfp_mask & __GFP_MEMALLOC)
3413 		return true;
3414 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3415 		return true;
3416 	if (!in_interrupt() &&
3417 			((current->flags & PF_MEMALLOC) ||
3418 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3419 		return true;
3420 
3421 	return false;
3422 }
3423 
3424 /*
3425  * Checks whether it makes sense to retry the reclaim to make a forward progress
3426  * for the given allocation request.
3427  * The reclaim feedback represented by did_some_progress (any progress during
3428  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3429  * any progress in a row) is considered as well as the reclaimable pages on the
3430  * applicable zone list (with a backoff mechanism which is a function of
3431  * no_progress_loops).
3432  *
3433  * Returns true if a retry is viable or false to enter the oom path.
3434  */
3435 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)3436 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3437 		     struct alloc_context *ac, int alloc_flags,
3438 		     bool did_some_progress, int *no_progress_loops)
3439 {
3440 	struct zone *zone;
3441 	struct zoneref *z;
3442 
3443 	/*
3444 	 * Costly allocations might have made a progress but this doesn't mean
3445 	 * their order will become available due to high fragmentation so
3446 	 * always increment the no progress counter for them
3447 	 */
3448 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3449 		*no_progress_loops = 0;
3450 	else
3451 		(*no_progress_loops)++;
3452 
3453 	/*
3454 	 * Make sure we converge to OOM if we cannot make any progress
3455 	 * several times in the row.
3456 	 */
3457 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3458 		return false;
3459 
3460 	/*
3461 	 * Keep reclaiming pages while there is a chance this will lead
3462 	 * somewhere.  If none of the target zones can satisfy our allocation
3463 	 * request even if all reclaimable pages are considered then we are
3464 	 * screwed and have to go OOM.
3465 	 */
3466 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3467 					ac->nodemask) {
3468 		unsigned long available;
3469 		unsigned long reclaimable;
3470 
3471 		available = reclaimable = zone_reclaimable_pages(zone);
3472 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3473 					  MAX_RECLAIM_RETRIES);
3474 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3475 
3476 		/*
3477 		 * Would the allocation succeed if we reclaimed the whole
3478 		 * available?
3479 		 */
3480 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3481 				ac_classzone_idx(ac), alloc_flags, available)) {
3482 			/*
3483 			 * If we didn't make any progress and have a lot of
3484 			 * dirty + writeback pages then we should wait for
3485 			 * an IO to complete to slow down the reclaim and
3486 			 * prevent from pre mature OOM
3487 			 */
3488 			if (!did_some_progress) {
3489 				unsigned long write_pending;
3490 
3491 				write_pending = zone_page_state_snapshot(zone,
3492 							NR_ZONE_WRITE_PENDING);
3493 
3494 				if (2 * write_pending > reclaimable) {
3495 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3496 					return true;
3497 				}
3498 			}
3499 
3500 			/*
3501 			 * Memory allocation/reclaim might be called from a WQ
3502 			 * context and the current implementation of the WQ
3503 			 * concurrency control doesn't recognize that
3504 			 * a particular WQ is congested if the worker thread is
3505 			 * looping without ever sleeping. Therefore we have to
3506 			 * do a short sleep here rather than calling
3507 			 * cond_resched().
3508 			 */
3509 			if (current->flags & PF_WQ_WORKER)
3510 				schedule_timeout_uninterruptible(1);
3511 			else
3512 				cond_resched();
3513 
3514 			return true;
3515 		}
3516 	}
3517 
3518 	return false;
3519 }
3520 
3521 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)3522 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3523 						struct alloc_context *ac)
3524 {
3525 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3526 	struct page *page = NULL;
3527 	unsigned int alloc_flags;
3528 	unsigned long did_some_progress;
3529 	enum compact_priority compact_priority;
3530 	enum compact_result compact_result;
3531 	int compaction_retries;
3532 	int no_progress_loops;
3533 	unsigned long alloc_start = jiffies;
3534 	unsigned int stall_timeout = 10 * HZ;
3535 	unsigned int cpuset_mems_cookie;
3536 
3537 	/*
3538 	 * In the slowpath, we sanity check order to avoid ever trying to
3539 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3540 	 * be using allocators in order of preference for an area that is
3541 	 * too large.
3542 	 */
3543 	if (order >= MAX_ORDER) {
3544 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3545 		return NULL;
3546 	}
3547 
3548 	/*
3549 	 * We also sanity check to catch abuse of atomic reserves being used by
3550 	 * callers that are not in atomic context.
3551 	 */
3552 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3553 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3554 		gfp_mask &= ~__GFP_ATOMIC;
3555 
3556 retry_cpuset:
3557 	compaction_retries = 0;
3558 	no_progress_loops = 0;
3559 	compact_priority = DEF_COMPACT_PRIORITY;
3560 	cpuset_mems_cookie = read_mems_allowed_begin();
3561 	/*
3562 	 * We need to recalculate the starting point for the zonelist iterator
3563 	 * because we might have used different nodemask in the fast path, or
3564 	 * there was a cpuset modification and we are retrying - otherwise we
3565 	 * could end up iterating over non-eligible zones endlessly.
3566 	 */
3567 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3568 					ac->high_zoneidx, ac->nodemask);
3569 	if (!ac->preferred_zoneref->zone)
3570 		goto nopage;
3571 
3572 
3573 	/*
3574 	 * The fast path uses conservative alloc_flags to succeed only until
3575 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3576 	 * alloc_flags precisely. So we do that now.
3577 	 */
3578 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3579 
3580 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3581 		wake_all_kswapds(order, ac);
3582 
3583 	/*
3584 	 * The adjusted alloc_flags might result in immediate success, so try
3585 	 * that first
3586 	 */
3587 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3588 	if (page)
3589 		goto got_pg;
3590 
3591 	/*
3592 	 * For costly allocations, try direct compaction first, as it's likely
3593 	 * that we have enough base pages and don't need to reclaim. Don't try
3594 	 * that for allocations that are allowed to ignore watermarks, as the
3595 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3596 	 */
3597 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3598 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3599 		page = __alloc_pages_direct_compact(gfp_mask, order,
3600 						alloc_flags, ac,
3601 						INIT_COMPACT_PRIORITY,
3602 						&compact_result);
3603 		if (page)
3604 			goto got_pg;
3605 
3606 		/*
3607 		 * Checks for costly allocations with __GFP_NORETRY, which
3608 		 * includes THP page fault allocations
3609 		 */
3610 		if (gfp_mask & __GFP_NORETRY) {
3611 			/*
3612 			 * If compaction is deferred for high-order allocations,
3613 			 * it is because sync compaction recently failed. If
3614 			 * this is the case and the caller requested a THP
3615 			 * allocation, we do not want to heavily disrupt the
3616 			 * system, so we fail the allocation instead of entering
3617 			 * direct reclaim.
3618 			 */
3619 			if (compact_result == COMPACT_DEFERRED)
3620 				goto nopage;
3621 
3622 			/*
3623 			 * Looks like reclaim/compaction is worth trying, but
3624 			 * sync compaction could be very expensive, so keep
3625 			 * using async compaction.
3626 			 */
3627 			compact_priority = INIT_COMPACT_PRIORITY;
3628 		}
3629 	}
3630 
3631 retry:
3632 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3633 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3634 		wake_all_kswapds(order, ac);
3635 
3636 	if (gfp_pfmemalloc_allowed(gfp_mask))
3637 		alloc_flags = ALLOC_NO_WATERMARKS;
3638 
3639 	/*
3640 	 * Reset the zonelist iterators if memory policies can be ignored.
3641 	 * These allocations are high priority and system rather than user
3642 	 * orientated.
3643 	 */
3644 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3645 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3646 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3647 					ac->high_zoneidx, ac->nodemask);
3648 	}
3649 
3650 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3651 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3652 	if (page)
3653 		goto got_pg;
3654 
3655 	/* Caller is not willing to reclaim, we can't balance anything */
3656 	if (!can_direct_reclaim) {
3657 		/*
3658 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3659 		 * of any new users that actually allow this type of allocation
3660 		 * to fail.
3661 		 */
3662 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3663 		goto nopage;
3664 	}
3665 
3666 	/* Avoid recursion of direct reclaim */
3667 	if (current->flags & PF_MEMALLOC) {
3668 		/*
3669 		 * __GFP_NOFAIL request from this context is rather bizarre
3670 		 * because we cannot reclaim anything and only can loop waiting
3671 		 * for somebody to do a work for us.
3672 		 */
3673 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3674 			cond_resched();
3675 			goto retry;
3676 		}
3677 		goto nopage;
3678 	}
3679 
3680 	/* Avoid allocations with no watermarks from looping endlessly */
3681 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3682 		goto nopage;
3683 
3684 
3685 	/* Try direct reclaim and then allocating */
3686 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3687 							&did_some_progress);
3688 	if (page)
3689 		goto got_pg;
3690 
3691 	/* Try direct compaction and then allocating */
3692 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3693 					compact_priority, &compact_result);
3694 	if (page)
3695 		goto got_pg;
3696 
3697 	/* Do not loop if specifically requested */
3698 	if (gfp_mask & __GFP_NORETRY)
3699 		goto nopage;
3700 
3701 	/*
3702 	 * Do not retry costly high order allocations unless they are
3703 	 * __GFP_REPEAT
3704 	 */
3705 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3706 		goto nopage;
3707 
3708 	/* Make sure we know about allocations which stall for too long */
3709 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3710 		warn_alloc(gfp_mask,
3711 			"page allocation stalls for %ums, order:%u",
3712 			jiffies_to_msecs(jiffies-alloc_start), order);
3713 		stall_timeout += 10 * HZ;
3714 	}
3715 
3716 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3717 				 did_some_progress > 0, &no_progress_loops))
3718 		goto retry;
3719 
3720 	/*
3721 	 * It doesn't make any sense to retry for the compaction if the order-0
3722 	 * reclaim is not able to make any progress because the current
3723 	 * implementation of the compaction depends on the sufficient amount
3724 	 * of free memory (see __compaction_suitable)
3725 	 */
3726 	if (did_some_progress > 0 &&
3727 			should_compact_retry(ac, order, alloc_flags,
3728 				compact_result, &compact_priority,
3729 				&compaction_retries))
3730 		goto retry;
3731 
3732 	/*
3733 	 * It's possible we raced with cpuset update so the OOM would be
3734 	 * premature (see below the nopage: label for full explanation).
3735 	 */
3736 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3737 		goto retry_cpuset;
3738 
3739 	/* Reclaim has failed us, start killing things */
3740 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3741 	if (page)
3742 		goto got_pg;
3743 
3744 	/* Retry as long as the OOM killer is making progress */
3745 	if (did_some_progress) {
3746 		no_progress_loops = 0;
3747 		goto retry;
3748 	}
3749 
3750 nopage:
3751 	/*
3752 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3753 	 * possible to race with parallel threads in such a way that our
3754 	 * allocation can fail while the mask is being updated. If we are about
3755 	 * to fail, check if the cpuset changed during allocation and if so,
3756 	 * retry.
3757 	 */
3758 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3759 		goto retry_cpuset;
3760 
3761 	warn_alloc(gfp_mask,
3762 			"page allocation failure: order:%u", order);
3763 got_pg:
3764 	return page;
3765 }
3766 
3767 /*
3768  * This is the 'heart' of the zoned buddy allocator.
3769  */
3770 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,struct zonelist * zonelist,nodemask_t * nodemask)3771 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3772 			struct zonelist *zonelist, nodemask_t *nodemask)
3773 {
3774 	struct page *page;
3775 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3776 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3777 	struct alloc_context ac = {
3778 		.high_zoneidx = gfp_zone(gfp_mask),
3779 		.zonelist = zonelist,
3780 		.nodemask = nodemask,
3781 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3782 	};
3783 
3784 	if (cpusets_enabled()) {
3785 		alloc_mask |= __GFP_HARDWALL;
3786 		alloc_flags |= ALLOC_CPUSET;
3787 		if (!ac.nodemask)
3788 			ac.nodemask = &cpuset_current_mems_allowed;
3789 	}
3790 
3791 	gfp_mask &= gfp_allowed_mask;
3792 
3793 	lockdep_trace_alloc(gfp_mask);
3794 
3795 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3796 
3797 	if (should_fail_alloc_page(gfp_mask, order))
3798 		return NULL;
3799 
3800 	/*
3801 	 * Check the zones suitable for the gfp_mask contain at least one
3802 	 * valid zone. It's possible to have an empty zonelist as a result
3803 	 * of __GFP_THISNODE and a memoryless node
3804 	 */
3805 	if (unlikely(!zonelist->_zonerefs->zone))
3806 		return NULL;
3807 
3808 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3809 		alloc_flags |= ALLOC_CMA;
3810 
3811 	/* Dirty zone balancing only done in the fast path */
3812 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3813 
3814 	/*
3815 	 * The preferred zone is used for statistics but crucially it is
3816 	 * also used as the starting point for the zonelist iterator. It
3817 	 * may get reset for allocations that ignore memory policies.
3818 	 */
3819 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3820 					ac.high_zoneidx, ac.nodemask);
3821 	if (!ac.preferred_zoneref->zone) {
3822 		page = NULL;
3823 		/*
3824 		 * This might be due to race with cpuset_current_mems_allowed
3825 		 * update, so make sure we retry with original nodemask in the
3826 		 * slow path.
3827 		 */
3828 		goto no_zone;
3829 	}
3830 
3831 	/* First allocation attempt */
3832 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3833 	if (likely(page))
3834 		goto out;
3835 
3836 no_zone:
3837 	/*
3838 	 * Runtime PM, block IO and its error handling path can deadlock
3839 	 * because I/O on the device might not complete.
3840 	 */
3841 	alloc_mask = memalloc_noio_flags(gfp_mask);
3842 	ac.spread_dirty_pages = false;
3843 
3844 	/*
3845 	 * Restore the original nodemask if it was potentially replaced with
3846 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3847 	 */
3848 	if (unlikely(ac.nodemask != nodemask))
3849 		ac.nodemask = nodemask;
3850 
3851 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3852 
3853 out:
3854 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3855 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3856 		__free_pages(page, order);
3857 		page = NULL;
3858 	}
3859 
3860 	if (kmemcheck_enabled && page)
3861 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3862 
3863 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3864 
3865 	return page;
3866 }
3867 EXPORT_SYMBOL(__alloc_pages_nodemask);
3868 
3869 /*
3870  * Common helper functions.
3871  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)3872 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3873 {
3874 	struct page *page;
3875 
3876 	/*
3877 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3878 	 * a highmem page
3879 	 */
3880 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3881 
3882 	page = alloc_pages(gfp_mask, order);
3883 	if (!page)
3884 		return 0;
3885 	return (unsigned long) page_address(page);
3886 }
3887 EXPORT_SYMBOL(__get_free_pages);
3888 
get_zeroed_page(gfp_t gfp_mask)3889 unsigned long get_zeroed_page(gfp_t gfp_mask)
3890 {
3891 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3892 }
3893 EXPORT_SYMBOL(get_zeroed_page);
3894 
__free_pages(struct page * page,unsigned int order)3895 void __free_pages(struct page *page, unsigned int order)
3896 {
3897 	if (put_page_testzero(page)) {
3898 		if (order == 0)
3899 			free_hot_cold_page(page, false);
3900 		else
3901 			__free_pages_ok(page, order);
3902 	}
3903 }
3904 
3905 EXPORT_SYMBOL(__free_pages);
3906 
free_pages(unsigned long addr,unsigned int order)3907 void free_pages(unsigned long addr, unsigned int order)
3908 {
3909 	if (addr != 0) {
3910 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3911 		__free_pages(virt_to_page((void *)addr), order);
3912 	}
3913 }
3914 
3915 EXPORT_SYMBOL(free_pages);
3916 
3917 /*
3918  * Page Fragment:
3919  *  An arbitrary-length arbitrary-offset area of memory which resides
3920  *  within a 0 or higher order page.  Multiple fragments within that page
3921  *  are individually refcounted, in the page's reference counter.
3922  *
3923  * The page_frag functions below provide a simple allocation framework for
3924  * page fragments.  This is used by the network stack and network device
3925  * drivers to provide a backing region of memory for use as either an
3926  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3927  */
__page_frag_refill(struct page_frag_cache * nc,gfp_t gfp_mask)3928 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3929 				       gfp_t gfp_mask)
3930 {
3931 	struct page *page = NULL;
3932 	gfp_t gfp = gfp_mask;
3933 
3934 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3935 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3936 		    __GFP_NOMEMALLOC;
3937 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3938 				PAGE_FRAG_CACHE_MAX_ORDER);
3939 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3940 #endif
3941 	if (unlikely(!page))
3942 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3943 
3944 	nc->va = page ? page_address(page) : NULL;
3945 
3946 	return page;
3947 }
3948 
__alloc_page_frag(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)3949 void *__alloc_page_frag(struct page_frag_cache *nc,
3950 			unsigned int fragsz, gfp_t gfp_mask)
3951 {
3952 	unsigned int size = PAGE_SIZE;
3953 	struct page *page;
3954 	int offset;
3955 
3956 	if (unlikely(!nc->va)) {
3957 refill:
3958 		page = __page_frag_refill(nc, gfp_mask);
3959 		if (!page)
3960 			return NULL;
3961 
3962 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3963 		/* if size can vary use size else just use PAGE_SIZE */
3964 		size = nc->size;
3965 #endif
3966 		/* Even if we own the page, we do not use atomic_set().
3967 		 * This would break get_page_unless_zero() users.
3968 		 */
3969 		page_ref_add(page, size - 1);
3970 
3971 		/* reset page count bias and offset to start of new frag */
3972 		nc->pfmemalloc = page_is_pfmemalloc(page);
3973 		nc->pagecnt_bias = size;
3974 		nc->offset = size;
3975 	}
3976 
3977 	offset = nc->offset - fragsz;
3978 	if (unlikely(offset < 0)) {
3979 		page = virt_to_page(nc->va);
3980 
3981 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3982 			goto refill;
3983 
3984 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3985 		/* if size can vary use size else just use PAGE_SIZE */
3986 		size = nc->size;
3987 #endif
3988 		/* OK, page count is 0, we can safely set it */
3989 		set_page_count(page, size);
3990 
3991 		/* reset page count bias and offset to start of new frag */
3992 		nc->pagecnt_bias = size;
3993 		offset = size - fragsz;
3994 	}
3995 
3996 	nc->pagecnt_bias--;
3997 	nc->offset = offset;
3998 
3999 	return nc->va + offset;
4000 }
4001 EXPORT_SYMBOL(__alloc_page_frag);
4002 
4003 /*
4004  * Frees a page fragment allocated out of either a compound or order 0 page.
4005  */
__free_page_frag(void * addr)4006 void __free_page_frag(void *addr)
4007 {
4008 	struct page *page = virt_to_head_page(addr);
4009 
4010 	if (unlikely(put_page_testzero(page)))
4011 		__free_pages_ok(page, compound_order(page));
4012 }
4013 EXPORT_SYMBOL(__free_page_frag);
4014 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)4015 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4016 		size_t size)
4017 {
4018 	if (addr) {
4019 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4020 		unsigned long used = addr + PAGE_ALIGN(size);
4021 
4022 		split_page(virt_to_page((void *)addr), order);
4023 		while (used < alloc_end) {
4024 			free_page(used);
4025 			used += PAGE_SIZE;
4026 		}
4027 	}
4028 	return (void *)addr;
4029 }
4030 
4031 /**
4032  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4033  * @size: the number of bytes to allocate
4034  * @gfp_mask: GFP flags for the allocation
4035  *
4036  * This function is similar to alloc_pages(), except that it allocates the
4037  * minimum number of pages to satisfy the request.  alloc_pages() can only
4038  * allocate memory in power-of-two pages.
4039  *
4040  * This function is also limited by MAX_ORDER.
4041  *
4042  * Memory allocated by this function must be released by free_pages_exact().
4043  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)4044 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4045 {
4046 	unsigned int order = get_order(size);
4047 	unsigned long addr;
4048 
4049 	addr = __get_free_pages(gfp_mask, order);
4050 	return make_alloc_exact(addr, order, size);
4051 }
4052 EXPORT_SYMBOL(alloc_pages_exact);
4053 
4054 /**
4055  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4056  *			   pages on a node.
4057  * @nid: the preferred node ID where memory should be allocated
4058  * @size: the number of bytes to allocate
4059  * @gfp_mask: GFP flags for the allocation
4060  *
4061  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4062  * back.
4063  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)4064 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4065 {
4066 	unsigned int order = get_order(size);
4067 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4068 	if (!p)
4069 		return NULL;
4070 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4071 }
4072 
4073 /**
4074  * free_pages_exact - release memory allocated via alloc_pages_exact()
4075  * @virt: the value returned by alloc_pages_exact.
4076  * @size: size of allocation, same value as passed to alloc_pages_exact().
4077  *
4078  * Release the memory allocated by a previous call to alloc_pages_exact.
4079  */
free_pages_exact(void * virt,size_t size)4080 void free_pages_exact(void *virt, size_t size)
4081 {
4082 	unsigned long addr = (unsigned long)virt;
4083 	unsigned long end = addr + PAGE_ALIGN(size);
4084 
4085 	while (addr < end) {
4086 		free_page(addr);
4087 		addr += PAGE_SIZE;
4088 	}
4089 }
4090 EXPORT_SYMBOL(free_pages_exact);
4091 
4092 /**
4093  * nr_free_zone_pages - count number of pages beyond high watermark
4094  * @offset: The zone index of the highest zone
4095  *
4096  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4097  * high watermark within all zones at or below a given zone index.  For each
4098  * zone, the number of pages is calculated as:
4099  *     managed_pages - high_pages
4100  */
nr_free_zone_pages(int offset)4101 static unsigned long nr_free_zone_pages(int offset)
4102 {
4103 	struct zoneref *z;
4104 	struct zone *zone;
4105 
4106 	/* Just pick one node, since fallback list is circular */
4107 	unsigned long sum = 0;
4108 
4109 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4110 
4111 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4112 		unsigned long size = zone->managed_pages;
4113 		unsigned long high = high_wmark_pages(zone);
4114 		if (size > high)
4115 			sum += size - high;
4116 	}
4117 
4118 	return sum;
4119 }
4120 
4121 /**
4122  * nr_free_buffer_pages - count number of pages beyond high watermark
4123  *
4124  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4125  * watermark within ZONE_DMA and ZONE_NORMAL.
4126  */
nr_free_buffer_pages(void)4127 unsigned long nr_free_buffer_pages(void)
4128 {
4129 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4130 }
4131 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4132 
4133 /**
4134  * nr_free_pagecache_pages - count number of pages beyond high watermark
4135  *
4136  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4137  * high watermark within all zones.
4138  */
nr_free_pagecache_pages(void)4139 unsigned long nr_free_pagecache_pages(void)
4140 {
4141 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4142 }
4143 
show_node(struct zone * zone)4144 static inline void show_node(struct zone *zone)
4145 {
4146 	if (IS_ENABLED(CONFIG_NUMA))
4147 		printk("Node %d ", zone_to_nid(zone));
4148 }
4149 
si_mem_available(void)4150 long si_mem_available(void)
4151 {
4152 	long available;
4153 	unsigned long pagecache;
4154 	unsigned long wmark_low = 0;
4155 	unsigned long pages[NR_LRU_LISTS];
4156 	struct zone *zone;
4157 	int lru;
4158 
4159 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4160 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4161 
4162 	for_each_zone(zone)
4163 		wmark_low += zone->watermark[WMARK_LOW];
4164 
4165 	/*
4166 	 * Estimate the amount of memory available for userspace allocations,
4167 	 * without causing swapping.
4168 	 */
4169 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4170 
4171 	/*
4172 	 * Not all the page cache can be freed, otherwise the system will
4173 	 * start swapping. Assume at least half of the page cache, or the
4174 	 * low watermark worth of cache, needs to stay.
4175 	 */
4176 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4177 	pagecache -= min(pagecache / 2, wmark_low);
4178 	available += pagecache;
4179 
4180 	/*
4181 	 * Part of the reclaimable slab consists of items that are in use,
4182 	 * and cannot be freed. Cap this estimate at the low watermark.
4183 	 */
4184 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4185 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4186 
4187 	if (available < 0)
4188 		available = 0;
4189 	return available;
4190 }
4191 EXPORT_SYMBOL_GPL(si_mem_available);
4192 
si_meminfo(struct sysinfo * val)4193 void si_meminfo(struct sysinfo *val)
4194 {
4195 	val->totalram = totalram_pages;
4196 	val->sharedram = global_node_page_state(NR_SHMEM);
4197 	val->freeram = global_page_state(NR_FREE_PAGES);
4198 	val->bufferram = nr_blockdev_pages();
4199 	val->totalhigh = totalhigh_pages;
4200 	val->freehigh = nr_free_highpages();
4201 	val->mem_unit = PAGE_SIZE;
4202 }
4203 
4204 EXPORT_SYMBOL(si_meminfo);
4205 
4206 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)4207 void si_meminfo_node(struct sysinfo *val, int nid)
4208 {
4209 	int zone_type;		/* needs to be signed */
4210 	unsigned long managed_pages = 0;
4211 	unsigned long managed_highpages = 0;
4212 	unsigned long free_highpages = 0;
4213 	pg_data_t *pgdat = NODE_DATA(nid);
4214 
4215 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4216 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4217 	val->totalram = managed_pages;
4218 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4219 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4220 #ifdef CONFIG_HIGHMEM
4221 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4222 		struct zone *zone = &pgdat->node_zones[zone_type];
4223 
4224 		if (is_highmem(zone)) {
4225 			managed_highpages += zone->managed_pages;
4226 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4227 		}
4228 	}
4229 	val->totalhigh = managed_highpages;
4230 	val->freehigh = free_highpages;
4231 #else
4232 	val->totalhigh = managed_highpages;
4233 	val->freehigh = free_highpages;
4234 #endif
4235 	val->mem_unit = PAGE_SIZE;
4236 }
4237 #endif
4238 
4239 /*
4240  * Determine whether the node should be displayed or not, depending on whether
4241  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4242  */
skip_free_areas_node(unsigned int flags,int nid)4243 bool skip_free_areas_node(unsigned int flags, int nid)
4244 {
4245 	bool ret = false;
4246 	unsigned int cpuset_mems_cookie;
4247 
4248 	if (!(flags & SHOW_MEM_FILTER_NODES))
4249 		goto out;
4250 
4251 	do {
4252 		cpuset_mems_cookie = read_mems_allowed_begin();
4253 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4254 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4255 out:
4256 	return ret;
4257 }
4258 
4259 #define K(x) ((x) << (PAGE_SHIFT-10))
4260 
show_migration_types(unsigned char type)4261 static void show_migration_types(unsigned char type)
4262 {
4263 	static const char types[MIGRATE_TYPES] = {
4264 		[MIGRATE_UNMOVABLE]	= 'U',
4265 		[MIGRATE_MOVABLE]	= 'M',
4266 		[MIGRATE_RECLAIMABLE]	= 'E',
4267 		[MIGRATE_HIGHATOMIC]	= 'H',
4268 #ifdef CONFIG_CMA
4269 		[MIGRATE_CMA]		= 'C',
4270 #endif
4271 #ifdef CONFIG_MEMORY_ISOLATION
4272 		[MIGRATE_ISOLATE]	= 'I',
4273 #endif
4274 	};
4275 	char tmp[MIGRATE_TYPES + 1];
4276 	char *p = tmp;
4277 	int i;
4278 
4279 	for (i = 0; i < MIGRATE_TYPES; i++) {
4280 		if (type & (1 << i))
4281 			*p++ = types[i];
4282 	}
4283 
4284 	*p = '\0';
4285 	printk(KERN_CONT "(%s) ", tmp);
4286 }
4287 
4288 /*
4289  * Show free area list (used inside shift_scroll-lock stuff)
4290  * We also calculate the percentage fragmentation. We do this by counting the
4291  * memory on each free list with the exception of the first item on the list.
4292  *
4293  * Bits in @filter:
4294  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4295  *   cpuset.
4296  */
show_free_areas(unsigned int filter)4297 void show_free_areas(unsigned int filter)
4298 {
4299 	unsigned long free_pcp = 0;
4300 	int cpu;
4301 	struct zone *zone;
4302 	pg_data_t *pgdat;
4303 
4304 	for_each_populated_zone(zone) {
4305 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4306 			continue;
4307 
4308 		for_each_online_cpu(cpu)
4309 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4310 	}
4311 
4312 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4313 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4314 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4315 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4316 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4317 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4318 		global_node_page_state(NR_ACTIVE_ANON),
4319 		global_node_page_state(NR_INACTIVE_ANON),
4320 		global_node_page_state(NR_ISOLATED_ANON),
4321 		global_node_page_state(NR_ACTIVE_FILE),
4322 		global_node_page_state(NR_INACTIVE_FILE),
4323 		global_node_page_state(NR_ISOLATED_FILE),
4324 		global_node_page_state(NR_UNEVICTABLE),
4325 		global_node_page_state(NR_FILE_DIRTY),
4326 		global_node_page_state(NR_WRITEBACK),
4327 		global_node_page_state(NR_UNSTABLE_NFS),
4328 		global_page_state(NR_SLAB_RECLAIMABLE),
4329 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4330 		global_node_page_state(NR_FILE_MAPPED),
4331 		global_node_page_state(NR_SHMEM),
4332 		global_page_state(NR_PAGETABLE),
4333 		global_page_state(NR_BOUNCE),
4334 		global_page_state(NR_FREE_PAGES),
4335 		free_pcp,
4336 		global_page_state(NR_FREE_CMA_PAGES));
4337 
4338 	for_each_online_pgdat(pgdat) {
4339 		printk("Node %d"
4340 			" active_anon:%lukB"
4341 			" inactive_anon:%lukB"
4342 			" active_file:%lukB"
4343 			" inactive_file:%lukB"
4344 			" unevictable:%lukB"
4345 			" isolated(anon):%lukB"
4346 			" isolated(file):%lukB"
4347 			" mapped:%lukB"
4348 			" dirty:%lukB"
4349 			" writeback:%lukB"
4350 			" shmem:%lukB"
4351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4352 			" shmem_thp: %lukB"
4353 			" shmem_pmdmapped: %lukB"
4354 			" anon_thp: %lukB"
4355 #endif
4356 			" writeback_tmp:%lukB"
4357 			" unstable:%lukB"
4358 			" pages_scanned:%lu"
4359 			" all_unreclaimable? %s"
4360 			"\n",
4361 			pgdat->node_id,
4362 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4363 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4364 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4365 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4366 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4367 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4368 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4369 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4370 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4371 			K(node_page_state(pgdat, NR_WRITEBACK)),
4372 			K(node_page_state(pgdat, NR_SHMEM)),
4373 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4374 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4375 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4376 					* HPAGE_PMD_NR),
4377 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4378 #endif
4379 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4380 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4381 			node_page_state(pgdat, NR_PAGES_SCANNED),
4382 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4383 				"yes" : "no");
4384 	}
4385 
4386 	for_each_populated_zone(zone) {
4387 		int i;
4388 
4389 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4390 			continue;
4391 
4392 		free_pcp = 0;
4393 		for_each_online_cpu(cpu)
4394 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4395 
4396 		show_node(zone);
4397 		printk(KERN_CONT
4398 			"%s"
4399 			" free:%lukB"
4400 			" min:%lukB"
4401 			" low:%lukB"
4402 			" high:%lukB"
4403 			" active_anon:%lukB"
4404 			" inactive_anon:%lukB"
4405 			" active_file:%lukB"
4406 			" inactive_file:%lukB"
4407 			" unevictable:%lukB"
4408 			" writepending:%lukB"
4409 			" present:%lukB"
4410 			" managed:%lukB"
4411 			" mlocked:%lukB"
4412 			" slab_reclaimable:%lukB"
4413 			" slab_unreclaimable:%lukB"
4414 			" kernel_stack:%lukB"
4415 			" pagetables:%lukB"
4416 			" bounce:%lukB"
4417 			" free_pcp:%lukB"
4418 			" local_pcp:%ukB"
4419 			" free_cma:%lukB"
4420 			"\n",
4421 			zone->name,
4422 			K(zone_page_state(zone, NR_FREE_PAGES)),
4423 			K(min_wmark_pages(zone)),
4424 			K(low_wmark_pages(zone)),
4425 			K(high_wmark_pages(zone)),
4426 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4427 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4428 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4429 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4430 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4431 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4432 			K(zone->present_pages),
4433 			K(zone->managed_pages),
4434 			K(zone_page_state(zone, NR_MLOCK)),
4435 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4436 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4437 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4438 			K(zone_page_state(zone, NR_PAGETABLE)),
4439 			K(zone_page_state(zone, NR_BOUNCE)),
4440 			K(free_pcp),
4441 			K(this_cpu_read(zone->pageset->pcp.count)),
4442 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4443 		printk("lowmem_reserve[]:");
4444 		for (i = 0; i < MAX_NR_ZONES; i++)
4445 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4446 		printk(KERN_CONT "\n");
4447 	}
4448 
4449 	for_each_populated_zone(zone) {
4450 		unsigned int order;
4451 		unsigned long nr[MAX_ORDER], flags, total = 0;
4452 		unsigned char types[MAX_ORDER];
4453 
4454 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4455 			continue;
4456 		show_node(zone);
4457 		printk(KERN_CONT "%s: ", zone->name);
4458 
4459 		spin_lock_irqsave(&zone->lock, flags);
4460 		for (order = 0; order < MAX_ORDER; order++) {
4461 			struct free_area *area = &zone->free_area[order];
4462 			int type;
4463 
4464 			nr[order] = area->nr_free;
4465 			total += nr[order] << order;
4466 
4467 			types[order] = 0;
4468 			for (type = 0; type < MIGRATE_TYPES; type++) {
4469 				if (!list_empty(&area->free_list[type]))
4470 					types[order] |= 1 << type;
4471 			}
4472 		}
4473 		spin_unlock_irqrestore(&zone->lock, flags);
4474 		for (order = 0; order < MAX_ORDER; order++) {
4475 			printk(KERN_CONT "%lu*%lukB ",
4476 			       nr[order], K(1UL) << order);
4477 			if (nr[order])
4478 				show_migration_types(types[order]);
4479 		}
4480 		printk(KERN_CONT "= %lukB\n", K(total));
4481 	}
4482 
4483 	hugetlb_show_meminfo();
4484 
4485 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4486 
4487 	show_swap_cache_info();
4488 }
4489 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)4490 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4491 {
4492 	zoneref->zone = zone;
4493 	zoneref->zone_idx = zone_idx(zone);
4494 }
4495 
4496 /*
4497  * Builds allocation fallback zone lists.
4498  *
4499  * Add all populated zones of a node to the zonelist.
4500  */
build_zonelists_node(pg_data_t * pgdat,struct zonelist * zonelist,int nr_zones)4501 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4502 				int nr_zones)
4503 {
4504 	struct zone *zone;
4505 	enum zone_type zone_type = MAX_NR_ZONES;
4506 
4507 	do {
4508 		zone_type--;
4509 		zone = pgdat->node_zones + zone_type;
4510 		if (managed_zone(zone)) {
4511 			zoneref_set_zone(zone,
4512 				&zonelist->_zonerefs[nr_zones++]);
4513 			check_highest_zone(zone_type);
4514 		}
4515 	} while (zone_type);
4516 
4517 	return nr_zones;
4518 }
4519 
4520 
4521 /*
4522  *  zonelist_order:
4523  *  0 = automatic detection of better ordering.
4524  *  1 = order by ([node] distance, -zonetype)
4525  *  2 = order by (-zonetype, [node] distance)
4526  *
4527  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4528  *  the same zonelist. So only NUMA can configure this param.
4529  */
4530 #define ZONELIST_ORDER_DEFAULT  0
4531 #define ZONELIST_ORDER_NODE     1
4532 #define ZONELIST_ORDER_ZONE     2
4533 
4534 /* zonelist order in the kernel.
4535  * set_zonelist_order() will set this to NODE or ZONE.
4536  */
4537 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4538 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4539 
4540 
4541 #ifdef CONFIG_NUMA
4542 /* The value user specified ....changed by config */
4543 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4544 /* string for sysctl */
4545 #define NUMA_ZONELIST_ORDER_LEN	16
4546 char numa_zonelist_order[16] = "default";
4547 
4548 /*
4549  * interface for configure zonelist ordering.
4550  * command line option "numa_zonelist_order"
4551  *	= "[dD]efault	- default, automatic configuration.
4552  *	= "[nN]ode 	- order by node locality, then by zone within node
4553  *	= "[zZ]one      - order by zone, then by locality within zone
4554  */
4555 
__parse_numa_zonelist_order(char * s)4556 static int __parse_numa_zonelist_order(char *s)
4557 {
4558 	if (*s == 'd' || *s == 'D') {
4559 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4560 	} else if (*s == 'n' || *s == 'N') {
4561 		user_zonelist_order = ZONELIST_ORDER_NODE;
4562 	} else if (*s == 'z' || *s == 'Z') {
4563 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4564 	} else {
4565 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4566 		return -EINVAL;
4567 	}
4568 	return 0;
4569 }
4570 
setup_numa_zonelist_order(char * s)4571 static __init int setup_numa_zonelist_order(char *s)
4572 {
4573 	int ret;
4574 
4575 	if (!s)
4576 		return 0;
4577 
4578 	ret = __parse_numa_zonelist_order(s);
4579 	if (ret == 0)
4580 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4581 
4582 	return ret;
4583 }
4584 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4585 
4586 /*
4587  * sysctl handler for numa_zonelist_order
4588  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)4589 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4590 		void __user *buffer, size_t *length,
4591 		loff_t *ppos)
4592 {
4593 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4594 	int ret;
4595 	static DEFINE_MUTEX(zl_order_mutex);
4596 
4597 	mutex_lock(&zl_order_mutex);
4598 	if (write) {
4599 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4600 			ret = -EINVAL;
4601 			goto out;
4602 		}
4603 		strcpy(saved_string, (char *)table->data);
4604 	}
4605 	ret = proc_dostring(table, write, buffer, length, ppos);
4606 	if (ret)
4607 		goto out;
4608 	if (write) {
4609 		int oldval = user_zonelist_order;
4610 
4611 		ret = __parse_numa_zonelist_order((char *)table->data);
4612 		if (ret) {
4613 			/*
4614 			 * bogus value.  restore saved string
4615 			 */
4616 			strncpy((char *)table->data, saved_string,
4617 				NUMA_ZONELIST_ORDER_LEN);
4618 			user_zonelist_order = oldval;
4619 		} else if (oldval != user_zonelist_order) {
4620 			mutex_lock(&zonelists_mutex);
4621 			build_all_zonelists(NULL, NULL);
4622 			mutex_unlock(&zonelists_mutex);
4623 		}
4624 	}
4625 out:
4626 	mutex_unlock(&zl_order_mutex);
4627 	return ret;
4628 }
4629 
4630 
4631 #define MAX_NODE_LOAD (nr_online_nodes)
4632 static int node_load[MAX_NUMNODES];
4633 
4634 /**
4635  * find_next_best_node - find the next node that should appear in a given node's fallback list
4636  * @node: node whose fallback list we're appending
4637  * @used_node_mask: nodemask_t of already used nodes
4638  *
4639  * We use a number of factors to determine which is the next node that should
4640  * appear on a given node's fallback list.  The node should not have appeared
4641  * already in @node's fallback list, and it should be the next closest node
4642  * according to the distance array (which contains arbitrary distance values
4643  * from each node to each node in the system), and should also prefer nodes
4644  * with no CPUs, since presumably they'll have very little allocation pressure
4645  * on them otherwise.
4646  * It returns -1 if no node is found.
4647  */
find_next_best_node(int node,nodemask_t * used_node_mask)4648 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4649 {
4650 	int n, val;
4651 	int min_val = INT_MAX;
4652 	int best_node = NUMA_NO_NODE;
4653 	const struct cpumask *tmp = cpumask_of_node(0);
4654 
4655 	/* Use the local node if we haven't already */
4656 	if (!node_isset(node, *used_node_mask)) {
4657 		node_set(node, *used_node_mask);
4658 		return node;
4659 	}
4660 
4661 	for_each_node_state(n, N_MEMORY) {
4662 
4663 		/* Don't want a node to appear more than once */
4664 		if (node_isset(n, *used_node_mask))
4665 			continue;
4666 
4667 		/* Use the distance array to find the distance */
4668 		val = node_distance(node, n);
4669 
4670 		/* Penalize nodes under us ("prefer the next node") */
4671 		val += (n < node);
4672 
4673 		/* Give preference to headless and unused nodes */
4674 		tmp = cpumask_of_node(n);
4675 		if (!cpumask_empty(tmp))
4676 			val += PENALTY_FOR_NODE_WITH_CPUS;
4677 
4678 		/* Slight preference for less loaded node */
4679 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4680 		val += node_load[n];
4681 
4682 		if (val < min_val) {
4683 			min_val = val;
4684 			best_node = n;
4685 		}
4686 	}
4687 
4688 	if (best_node >= 0)
4689 		node_set(best_node, *used_node_mask);
4690 
4691 	return best_node;
4692 }
4693 
4694 
4695 /*
4696  * Build zonelists ordered by node and zones within node.
4697  * This results in maximum locality--normal zone overflows into local
4698  * DMA zone, if any--but risks exhausting DMA zone.
4699  */
build_zonelists_in_node_order(pg_data_t * pgdat,int node)4700 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4701 {
4702 	int j;
4703 	struct zonelist *zonelist;
4704 
4705 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4706 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4707 		;
4708 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4709 	zonelist->_zonerefs[j].zone = NULL;
4710 	zonelist->_zonerefs[j].zone_idx = 0;
4711 }
4712 
4713 /*
4714  * Build gfp_thisnode zonelists
4715  */
build_thisnode_zonelists(pg_data_t * pgdat)4716 static void build_thisnode_zonelists(pg_data_t *pgdat)
4717 {
4718 	int j;
4719 	struct zonelist *zonelist;
4720 
4721 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4722 	j = build_zonelists_node(pgdat, zonelist, 0);
4723 	zonelist->_zonerefs[j].zone = NULL;
4724 	zonelist->_zonerefs[j].zone_idx = 0;
4725 }
4726 
4727 /*
4728  * Build zonelists ordered by zone and nodes within zones.
4729  * This results in conserving DMA zone[s] until all Normal memory is
4730  * exhausted, but results in overflowing to remote node while memory
4731  * may still exist in local DMA zone.
4732  */
4733 static int node_order[MAX_NUMNODES];
4734 
build_zonelists_in_zone_order(pg_data_t * pgdat,int nr_nodes)4735 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4736 {
4737 	int pos, j, node;
4738 	int zone_type;		/* needs to be signed */
4739 	struct zone *z;
4740 	struct zonelist *zonelist;
4741 
4742 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4743 	pos = 0;
4744 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4745 		for (j = 0; j < nr_nodes; j++) {
4746 			node = node_order[j];
4747 			z = &NODE_DATA(node)->node_zones[zone_type];
4748 			if (managed_zone(z)) {
4749 				zoneref_set_zone(z,
4750 					&zonelist->_zonerefs[pos++]);
4751 				check_highest_zone(zone_type);
4752 			}
4753 		}
4754 	}
4755 	zonelist->_zonerefs[pos].zone = NULL;
4756 	zonelist->_zonerefs[pos].zone_idx = 0;
4757 }
4758 
4759 #if defined(CONFIG_64BIT)
4760 /*
4761  * Devices that require DMA32/DMA are relatively rare and do not justify a
4762  * penalty to every machine in case the specialised case applies. Default
4763  * to Node-ordering on 64-bit NUMA machines
4764  */
default_zonelist_order(void)4765 static int default_zonelist_order(void)
4766 {
4767 	return ZONELIST_ORDER_NODE;
4768 }
4769 #else
4770 /*
4771  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4772  * by the kernel. If processes running on node 0 deplete the low memory zone
4773  * then reclaim will occur more frequency increasing stalls and potentially
4774  * be easier to OOM if a large percentage of the zone is under writeback or
4775  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4776  * Hence, default to zone ordering on 32-bit.
4777  */
default_zonelist_order(void)4778 static int default_zonelist_order(void)
4779 {
4780 	return ZONELIST_ORDER_ZONE;
4781 }
4782 #endif /* CONFIG_64BIT */
4783 
set_zonelist_order(void)4784 static void set_zonelist_order(void)
4785 {
4786 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4787 		current_zonelist_order = default_zonelist_order();
4788 	else
4789 		current_zonelist_order = user_zonelist_order;
4790 }
4791 
build_zonelists(pg_data_t * pgdat)4792 static void build_zonelists(pg_data_t *pgdat)
4793 {
4794 	int i, node, load;
4795 	nodemask_t used_mask;
4796 	int local_node, prev_node;
4797 	struct zonelist *zonelist;
4798 	unsigned int order = current_zonelist_order;
4799 
4800 	/* initialize zonelists */
4801 	for (i = 0; i < MAX_ZONELISTS; i++) {
4802 		zonelist = pgdat->node_zonelists + i;
4803 		zonelist->_zonerefs[0].zone = NULL;
4804 		zonelist->_zonerefs[0].zone_idx = 0;
4805 	}
4806 
4807 	/* NUMA-aware ordering of nodes */
4808 	local_node = pgdat->node_id;
4809 	load = nr_online_nodes;
4810 	prev_node = local_node;
4811 	nodes_clear(used_mask);
4812 
4813 	memset(node_order, 0, sizeof(node_order));
4814 	i = 0;
4815 
4816 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4817 		/*
4818 		 * We don't want to pressure a particular node.
4819 		 * So adding penalty to the first node in same
4820 		 * distance group to make it round-robin.
4821 		 */
4822 		if (node_distance(local_node, node) !=
4823 		    node_distance(local_node, prev_node))
4824 			node_load[node] = load;
4825 
4826 		prev_node = node;
4827 		load--;
4828 		if (order == ZONELIST_ORDER_NODE)
4829 			build_zonelists_in_node_order(pgdat, node);
4830 		else
4831 			node_order[i++] = node;	/* remember order */
4832 	}
4833 
4834 	if (order == ZONELIST_ORDER_ZONE) {
4835 		/* calculate node order -- i.e., DMA last! */
4836 		build_zonelists_in_zone_order(pgdat, i);
4837 	}
4838 
4839 	build_thisnode_zonelists(pgdat);
4840 }
4841 
4842 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4843 /*
4844  * Return node id of node used for "local" allocations.
4845  * I.e., first node id of first zone in arg node's generic zonelist.
4846  * Used for initializing percpu 'numa_mem', which is used primarily
4847  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4848  */
local_memory_node(int node)4849 int local_memory_node(int node)
4850 {
4851 	struct zoneref *z;
4852 
4853 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4854 				   gfp_zone(GFP_KERNEL),
4855 				   NULL);
4856 	return z->zone->node;
4857 }
4858 #endif
4859 
4860 static void setup_min_unmapped_ratio(void);
4861 static void setup_min_slab_ratio(void);
4862 #else	/* CONFIG_NUMA */
4863 
set_zonelist_order(void)4864 static void set_zonelist_order(void)
4865 {
4866 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4867 }
4868 
build_zonelists(pg_data_t * pgdat)4869 static void build_zonelists(pg_data_t *pgdat)
4870 {
4871 	int node, local_node;
4872 	enum zone_type j;
4873 	struct zonelist *zonelist;
4874 
4875 	local_node = pgdat->node_id;
4876 
4877 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4878 	j = build_zonelists_node(pgdat, zonelist, 0);
4879 
4880 	/*
4881 	 * Now we build the zonelist so that it contains the zones
4882 	 * of all the other nodes.
4883 	 * We don't want to pressure a particular node, so when
4884 	 * building the zones for node N, we make sure that the
4885 	 * zones coming right after the local ones are those from
4886 	 * node N+1 (modulo N)
4887 	 */
4888 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4889 		if (!node_online(node))
4890 			continue;
4891 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4892 	}
4893 	for (node = 0; node < local_node; node++) {
4894 		if (!node_online(node))
4895 			continue;
4896 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4897 	}
4898 
4899 	zonelist->_zonerefs[j].zone = NULL;
4900 	zonelist->_zonerefs[j].zone_idx = 0;
4901 }
4902 
4903 #endif	/* CONFIG_NUMA */
4904 
4905 /*
4906  * Boot pageset table. One per cpu which is going to be used for all
4907  * zones and all nodes. The parameters will be set in such a way
4908  * that an item put on a list will immediately be handed over to
4909  * the buddy list. This is safe since pageset manipulation is done
4910  * with interrupts disabled.
4911  *
4912  * The boot_pagesets must be kept even after bootup is complete for
4913  * unused processors and/or zones. They do play a role for bootstrapping
4914  * hotplugged processors.
4915  *
4916  * zoneinfo_show() and maybe other functions do
4917  * not check if the processor is online before following the pageset pointer.
4918  * Other parts of the kernel may not check if the zone is available.
4919  */
4920 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4921 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4922 static void setup_zone_pageset(struct zone *zone);
4923 
4924 /*
4925  * Global mutex to protect against size modification of zonelists
4926  * as well as to serialize pageset setup for the new populated zone.
4927  */
4928 DEFINE_MUTEX(zonelists_mutex);
4929 
4930 /* return values int ....just for stop_machine() */
__build_all_zonelists(void * data)4931 static int __build_all_zonelists(void *data)
4932 {
4933 	int nid;
4934 	int cpu;
4935 	pg_data_t *self = data;
4936 
4937 #ifdef CONFIG_NUMA
4938 	memset(node_load, 0, sizeof(node_load));
4939 #endif
4940 
4941 	if (self && !node_online(self->node_id)) {
4942 		build_zonelists(self);
4943 	}
4944 
4945 	for_each_online_node(nid) {
4946 		pg_data_t *pgdat = NODE_DATA(nid);
4947 
4948 		build_zonelists(pgdat);
4949 	}
4950 
4951 	/*
4952 	 * Initialize the boot_pagesets that are going to be used
4953 	 * for bootstrapping processors. The real pagesets for
4954 	 * each zone will be allocated later when the per cpu
4955 	 * allocator is available.
4956 	 *
4957 	 * boot_pagesets are used also for bootstrapping offline
4958 	 * cpus if the system is already booted because the pagesets
4959 	 * are needed to initialize allocators on a specific cpu too.
4960 	 * F.e. the percpu allocator needs the page allocator which
4961 	 * needs the percpu allocator in order to allocate its pagesets
4962 	 * (a chicken-egg dilemma).
4963 	 */
4964 	for_each_possible_cpu(cpu) {
4965 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4966 
4967 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4968 		/*
4969 		 * We now know the "local memory node" for each node--
4970 		 * i.e., the node of the first zone in the generic zonelist.
4971 		 * Set up numa_mem percpu variable for on-line cpus.  During
4972 		 * boot, only the boot cpu should be on-line;  we'll init the
4973 		 * secondary cpus' numa_mem as they come on-line.  During
4974 		 * node/memory hotplug, we'll fixup all on-line cpus.
4975 		 */
4976 		if (cpu_online(cpu))
4977 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4978 #endif
4979 	}
4980 
4981 	return 0;
4982 }
4983 
4984 static noinline void __init
build_all_zonelists_init(void)4985 build_all_zonelists_init(void)
4986 {
4987 	__build_all_zonelists(NULL);
4988 	mminit_verify_zonelist();
4989 	cpuset_init_current_mems_allowed();
4990 }
4991 
4992 /*
4993  * Called with zonelists_mutex held always
4994  * unless system_state == SYSTEM_BOOTING.
4995  *
4996  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4997  * [we're only called with non-NULL zone through __meminit paths] and
4998  * (2) call of __init annotated helper build_all_zonelists_init
4999  * [protected by SYSTEM_BOOTING].
5000  */
build_all_zonelists(pg_data_t * pgdat,struct zone * zone)5001 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5002 {
5003 	set_zonelist_order();
5004 
5005 	if (system_state == SYSTEM_BOOTING) {
5006 		build_all_zonelists_init();
5007 	} else {
5008 #ifdef CONFIG_MEMORY_HOTPLUG
5009 		if (zone)
5010 			setup_zone_pageset(zone);
5011 #endif
5012 		/* we have to stop all cpus to guarantee there is no user
5013 		   of zonelist */
5014 		stop_machine(__build_all_zonelists, pgdat, NULL);
5015 		/* cpuset refresh routine should be here */
5016 	}
5017 	vm_total_pages = nr_free_pagecache_pages();
5018 	/*
5019 	 * Disable grouping by mobility if the number of pages in the
5020 	 * system is too low to allow the mechanism to work. It would be
5021 	 * more accurate, but expensive to check per-zone. This check is
5022 	 * made on memory-hotadd so a system can start with mobility
5023 	 * disabled and enable it later
5024 	 */
5025 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5026 		page_group_by_mobility_disabled = 1;
5027 	else
5028 		page_group_by_mobility_disabled = 0;
5029 
5030 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5031 		nr_online_nodes,
5032 		zonelist_order_name[current_zonelist_order],
5033 		page_group_by_mobility_disabled ? "off" : "on",
5034 		vm_total_pages);
5035 #ifdef CONFIG_NUMA
5036 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5037 #endif
5038 }
5039 
5040 /*
5041  * Initially all pages are reserved - free ones are freed
5042  * up by free_all_bootmem() once the early boot process is
5043  * done. Non-atomic initialization, single-pass.
5044  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,enum memmap_context context)5045 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5046 		unsigned long start_pfn, enum memmap_context context)
5047 {
5048 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5049 	unsigned long end_pfn = start_pfn + size;
5050 	pg_data_t *pgdat = NODE_DATA(nid);
5051 	unsigned long pfn;
5052 	unsigned long nr_initialised = 0;
5053 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5054 	struct memblock_region *r = NULL, *tmp;
5055 #endif
5056 
5057 	if (highest_memmap_pfn < end_pfn - 1)
5058 		highest_memmap_pfn = end_pfn - 1;
5059 
5060 	/*
5061 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5062 	 * memory
5063 	 */
5064 	if (altmap && start_pfn == altmap->base_pfn)
5065 		start_pfn += altmap->reserve;
5066 
5067 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5068 		/*
5069 		 * There can be holes in boot-time mem_map[]s handed to this
5070 		 * function.  They do not exist on hotplugged memory.
5071 		 */
5072 		if (context != MEMMAP_EARLY)
5073 			goto not_early;
5074 
5075 		if (!early_pfn_valid(pfn))
5076 			continue;
5077 		if (!early_pfn_in_nid(pfn, nid))
5078 			continue;
5079 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5080 			break;
5081 
5082 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5083 		/*
5084 		 * Check given memblock attribute by firmware which can affect
5085 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5086 		 * mirrored, it's an overlapped memmap init. skip it.
5087 		 */
5088 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5089 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5090 				for_each_memblock(memory, tmp)
5091 					if (pfn < memblock_region_memory_end_pfn(tmp))
5092 						break;
5093 				r = tmp;
5094 			}
5095 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5096 			    memblock_is_mirror(r)) {
5097 				/* already initialized as NORMAL */
5098 				pfn = memblock_region_memory_end_pfn(r);
5099 				continue;
5100 			}
5101 		}
5102 #endif
5103 
5104 not_early:
5105 		/*
5106 		 * Mark the block movable so that blocks are reserved for
5107 		 * movable at startup. This will force kernel allocations
5108 		 * to reserve their blocks rather than leaking throughout
5109 		 * the address space during boot when many long-lived
5110 		 * kernel allocations are made.
5111 		 *
5112 		 * bitmap is created for zone's valid pfn range. but memmap
5113 		 * can be created for invalid pages (for alignment)
5114 		 * check here not to call set_pageblock_migratetype() against
5115 		 * pfn out of zone.
5116 		 */
5117 		if (!(pfn & (pageblock_nr_pages - 1))) {
5118 			struct page *page = pfn_to_page(pfn);
5119 
5120 			__init_single_page(page, pfn, zone, nid);
5121 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5122 		} else {
5123 			__init_single_pfn(pfn, zone, nid);
5124 		}
5125 	}
5126 }
5127 
zone_init_free_lists(struct zone * zone)5128 static void __meminit zone_init_free_lists(struct zone *zone)
5129 {
5130 	unsigned int order, t;
5131 	for_each_migratetype_order(order, t) {
5132 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5133 		zone->free_area[order].nr_free = 0;
5134 	}
5135 }
5136 
5137 #ifndef __HAVE_ARCH_MEMMAP_INIT
5138 #define memmap_init(size, nid, zone, start_pfn) \
5139 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5140 #endif
5141 
zone_batchsize(struct zone * zone)5142 static int zone_batchsize(struct zone *zone)
5143 {
5144 #ifdef CONFIG_MMU
5145 	int batch;
5146 
5147 	/*
5148 	 * The per-cpu-pages pools are set to around 1000th of the
5149 	 * size of the zone.  But no more than 1/2 of a meg.
5150 	 *
5151 	 * OK, so we don't know how big the cache is.  So guess.
5152 	 */
5153 	batch = zone->managed_pages / 1024;
5154 	if (batch * PAGE_SIZE > 512 * 1024)
5155 		batch = (512 * 1024) / PAGE_SIZE;
5156 	batch /= 4;		/* We effectively *= 4 below */
5157 	if (batch < 1)
5158 		batch = 1;
5159 
5160 	/*
5161 	 * Clamp the batch to a 2^n - 1 value. Having a power
5162 	 * of 2 value was found to be more likely to have
5163 	 * suboptimal cache aliasing properties in some cases.
5164 	 *
5165 	 * For example if 2 tasks are alternately allocating
5166 	 * batches of pages, one task can end up with a lot
5167 	 * of pages of one half of the possible page colors
5168 	 * and the other with pages of the other colors.
5169 	 */
5170 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5171 
5172 	return batch;
5173 
5174 #else
5175 	/* The deferral and batching of frees should be suppressed under NOMMU
5176 	 * conditions.
5177 	 *
5178 	 * The problem is that NOMMU needs to be able to allocate large chunks
5179 	 * of contiguous memory as there's no hardware page translation to
5180 	 * assemble apparent contiguous memory from discontiguous pages.
5181 	 *
5182 	 * Queueing large contiguous runs of pages for batching, however,
5183 	 * causes the pages to actually be freed in smaller chunks.  As there
5184 	 * can be a significant delay between the individual batches being
5185 	 * recycled, this leads to the once large chunks of space being
5186 	 * fragmented and becoming unavailable for high-order allocations.
5187 	 */
5188 	return 0;
5189 #endif
5190 }
5191 
5192 /*
5193  * pcp->high and pcp->batch values are related and dependent on one another:
5194  * ->batch must never be higher then ->high.
5195  * The following function updates them in a safe manner without read side
5196  * locking.
5197  *
5198  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5199  * those fields changing asynchronously (acording the the above rule).
5200  *
5201  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5202  * outside of boot time (or some other assurance that no concurrent updaters
5203  * exist).
5204  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)5205 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5206 		unsigned long batch)
5207 {
5208        /* start with a fail safe value for batch */
5209 	pcp->batch = 1;
5210 	smp_wmb();
5211 
5212        /* Update high, then batch, in order */
5213 	pcp->high = high;
5214 	smp_wmb();
5215 
5216 	pcp->batch = batch;
5217 }
5218 
5219 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)5220 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5221 {
5222 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5223 }
5224 
pageset_init(struct per_cpu_pageset * p)5225 static void pageset_init(struct per_cpu_pageset *p)
5226 {
5227 	struct per_cpu_pages *pcp;
5228 	int migratetype;
5229 
5230 	memset(p, 0, sizeof(*p));
5231 
5232 	pcp = &p->pcp;
5233 	pcp->count = 0;
5234 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5235 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5236 }
5237 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)5238 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5239 {
5240 	pageset_init(p);
5241 	pageset_set_batch(p, batch);
5242 }
5243 
5244 /*
5245  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5246  * to the value high for the pageset p.
5247  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)5248 static void pageset_set_high(struct per_cpu_pageset *p,
5249 				unsigned long high)
5250 {
5251 	unsigned long batch = max(1UL, high / 4);
5252 	if ((high / 4) > (PAGE_SHIFT * 8))
5253 		batch = PAGE_SHIFT * 8;
5254 
5255 	pageset_update(&p->pcp, high, batch);
5256 }
5257 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)5258 static void pageset_set_high_and_batch(struct zone *zone,
5259 				       struct per_cpu_pageset *pcp)
5260 {
5261 	if (percpu_pagelist_fraction)
5262 		pageset_set_high(pcp,
5263 			(zone->managed_pages /
5264 				percpu_pagelist_fraction));
5265 	else
5266 		pageset_set_batch(pcp, zone_batchsize(zone));
5267 }
5268 
zone_pageset_init(struct zone * zone,int cpu)5269 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5270 {
5271 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5272 
5273 	pageset_init(pcp);
5274 	pageset_set_high_and_batch(zone, pcp);
5275 }
5276 
setup_zone_pageset(struct zone * zone)5277 static void __meminit setup_zone_pageset(struct zone *zone)
5278 {
5279 	int cpu;
5280 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5281 	for_each_possible_cpu(cpu)
5282 		zone_pageset_init(zone, cpu);
5283 }
5284 
5285 /*
5286  * Allocate per cpu pagesets and initialize them.
5287  * Before this call only boot pagesets were available.
5288  */
setup_per_cpu_pageset(void)5289 void __init setup_per_cpu_pageset(void)
5290 {
5291 	struct pglist_data *pgdat;
5292 	struct zone *zone;
5293 
5294 	for_each_populated_zone(zone)
5295 		setup_zone_pageset(zone);
5296 
5297 	for_each_online_pgdat(pgdat)
5298 		pgdat->per_cpu_nodestats =
5299 			alloc_percpu(struct per_cpu_nodestat);
5300 }
5301 
zone_pcp_init(struct zone * zone)5302 static __meminit void zone_pcp_init(struct zone *zone)
5303 {
5304 	/*
5305 	 * per cpu subsystem is not up at this point. The following code
5306 	 * relies on the ability of the linker to provide the
5307 	 * offset of a (static) per cpu variable into the per cpu area.
5308 	 */
5309 	zone->pageset = &boot_pageset;
5310 
5311 	if (populated_zone(zone))
5312 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5313 			zone->name, zone->present_pages,
5314 					 zone_batchsize(zone));
5315 }
5316 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)5317 int __meminit init_currently_empty_zone(struct zone *zone,
5318 					unsigned long zone_start_pfn,
5319 					unsigned long size)
5320 {
5321 	struct pglist_data *pgdat = zone->zone_pgdat;
5322 
5323 	pgdat->nr_zones = zone_idx(zone) + 1;
5324 
5325 	zone->zone_start_pfn = zone_start_pfn;
5326 
5327 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5328 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5329 			pgdat->node_id,
5330 			(unsigned long)zone_idx(zone),
5331 			zone_start_pfn, (zone_start_pfn + size));
5332 
5333 	zone_init_free_lists(zone);
5334 	zone->initialized = 1;
5335 
5336 	return 0;
5337 }
5338 
5339 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5340 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5341 
5342 /*
5343  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5344  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)5345 int __meminit __early_pfn_to_nid(unsigned long pfn,
5346 					struct mminit_pfnnid_cache *state)
5347 {
5348 	unsigned long start_pfn, end_pfn;
5349 	int nid;
5350 
5351 	if (state->last_start <= pfn && pfn < state->last_end)
5352 		return state->last_nid;
5353 
5354 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5355 	if (nid != -1) {
5356 		state->last_start = start_pfn;
5357 		state->last_end = end_pfn;
5358 		state->last_nid = nid;
5359 	}
5360 
5361 	return nid;
5362 }
5363 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5364 
5365 /**
5366  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5367  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5368  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5369  *
5370  * If an architecture guarantees that all ranges registered contain no holes
5371  * and may be freed, this this function may be used instead of calling
5372  * memblock_free_early_nid() manually.
5373  */
free_bootmem_with_active_regions(int nid,unsigned long max_low_pfn)5374 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5375 {
5376 	unsigned long start_pfn, end_pfn;
5377 	int i, this_nid;
5378 
5379 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5380 		start_pfn = min(start_pfn, max_low_pfn);
5381 		end_pfn = min(end_pfn, max_low_pfn);
5382 
5383 		if (start_pfn < end_pfn)
5384 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5385 					(end_pfn - start_pfn) << PAGE_SHIFT,
5386 					this_nid);
5387 	}
5388 }
5389 
5390 /**
5391  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5392  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5393  *
5394  * If an architecture guarantees that all ranges registered contain no holes and may
5395  * be freed, this function may be used instead of calling memory_present() manually.
5396  */
sparse_memory_present_with_active_regions(int nid)5397 void __init sparse_memory_present_with_active_regions(int nid)
5398 {
5399 	unsigned long start_pfn, end_pfn;
5400 	int i, this_nid;
5401 
5402 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5403 		memory_present(this_nid, start_pfn, end_pfn);
5404 }
5405 
5406 /**
5407  * get_pfn_range_for_nid - Return the start and end page frames for a node
5408  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5409  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5410  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5411  *
5412  * It returns the start and end page frame of a node based on information
5413  * provided by memblock_set_node(). If called for a node
5414  * with no available memory, a warning is printed and the start and end
5415  * PFNs will be 0.
5416  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)5417 void __meminit get_pfn_range_for_nid(unsigned int nid,
5418 			unsigned long *start_pfn, unsigned long *end_pfn)
5419 {
5420 	unsigned long this_start_pfn, this_end_pfn;
5421 	int i;
5422 
5423 	*start_pfn = -1UL;
5424 	*end_pfn = 0;
5425 
5426 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5427 		*start_pfn = min(*start_pfn, this_start_pfn);
5428 		*end_pfn = max(*end_pfn, this_end_pfn);
5429 	}
5430 
5431 	if (*start_pfn == -1UL)
5432 		*start_pfn = 0;
5433 }
5434 
5435 /*
5436  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5437  * assumption is made that zones within a node are ordered in monotonic
5438  * increasing memory addresses so that the "highest" populated zone is used
5439  */
find_usable_zone_for_movable(void)5440 static void __init find_usable_zone_for_movable(void)
5441 {
5442 	int zone_index;
5443 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5444 		if (zone_index == ZONE_MOVABLE)
5445 			continue;
5446 
5447 		if (arch_zone_highest_possible_pfn[zone_index] >
5448 				arch_zone_lowest_possible_pfn[zone_index])
5449 			break;
5450 	}
5451 
5452 	VM_BUG_ON(zone_index == -1);
5453 	movable_zone = zone_index;
5454 }
5455 
5456 /*
5457  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5458  * because it is sized independent of architecture. Unlike the other zones,
5459  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5460  * in each node depending on the size of each node and how evenly kernelcore
5461  * is distributed. This helper function adjusts the zone ranges
5462  * provided by the architecture for a given node by using the end of the
5463  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5464  * zones within a node are in order of monotonic increases memory addresses
5465  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)5466 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5467 					unsigned long zone_type,
5468 					unsigned long node_start_pfn,
5469 					unsigned long node_end_pfn,
5470 					unsigned long *zone_start_pfn,
5471 					unsigned long *zone_end_pfn)
5472 {
5473 	/* Only adjust if ZONE_MOVABLE is on this node */
5474 	if (zone_movable_pfn[nid]) {
5475 		/* Size ZONE_MOVABLE */
5476 		if (zone_type == ZONE_MOVABLE) {
5477 			*zone_start_pfn = zone_movable_pfn[nid];
5478 			*zone_end_pfn = min(node_end_pfn,
5479 				arch_zone_highest_possible_pfn[movable_zone]);
5480 
5481 		/* Adjust for ZONE_MOVABLE starting within this range */
5482 		} else if (!mirrored_kernelcore &&
5483 			*zone_start_pfn < zone_movable_pfn[nid] &&
5484 			*zone_end_pfn > zone_movable_pfn[nid]) {
5485 			*zone_end_pfn = zone_movable_pfn[nid];
5486 
5487 		/* Check if this whole range is within ZONE_MOVABLE */
5488 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5489 			*zone_start_pfn = *zone_end_pfn;
5490 	}
5491 }
5492 
5493 /*
5494  * Return the number of pages a zone spans in a node, including holes
5495  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5496  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * ignored)5497 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5498 					unsigned long zone_type,
5499 					unsigned long node_start_pfn,
5500 					unsigned long node_end_pfn,
5501 					unsigned long *zone_start_pfn,
5502 					unsigned long *zone_end_pfn,
5503 					unsigned long *ignored)
5504 {
5505 	/* When hotadd a new node from cpu_up(), the node should be empty */
5506 	if (!node_start_pfn && !node_end_pfn)
5507 		return 0;
5508 
5509 	/* Get the start and end of the zone */
5510 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5511 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5512 	adjust_zone_range_for_zone_movable(nid, zone_type,
5513 				node_start_pfn, node_end_pfn,
5514 				zone_start_pfn, zone_end_pfn);
5515 
5516 	/* Check that this node has pages within the zone's required range */
5517 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5518 		return 0;
5519 
5520 	/* Move the zone boundaries inside the node if necessary */
5521 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5522 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5523 
5524 	/* Return the spanned pages */
5525 	return *zone_end_pfn - *zone_start_pfn;
5526 }
5527 
5528 /*
5529  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5530  * then all holes in the requested range will be accounted for.
5531  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)5532 unsigned long __meminit __absent_pages_in_range(int nid,
5533 				unsigned long range_start_pfn,
5534 				unsigned long range_end_pfn)
5535 {
5536 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5537 	unsigned long start_pfn, end_pfn;
5538 	int i;
5539 
5540 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5541 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5542 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5543 		nr_absent -= end_pfn - start_pfn;
5544 	}
5545 	return nr_absent;
5546 }
5547 
5548 /**
5549  * absent_pages_in_range - Return number of page frames in holes within a range
5550  * @start_pfn: The start PFN to start searching for holes
5551  * @end_pfn: The end PFN to stop searching for holes
5552  *
5553  * It returns the number of pages frames in memory holes within a range.
5554  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)5555 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5556 							unsigned long end_pfn)
5557 {
5558 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5559 }
5560 
5561 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * ignored)5562 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5563 					unsigned long zone_type,
5564 					unsigned long node_start_pfn,
5565 					unsigned long node_end_pfn,
5566 					unsigned long *ignored)
5567 {
5568 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5569 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5570 	unsigned long zone_start_pfn, zone_end_pfn;
5571 	unsigned long nr_absent;
5572 
5573 	/* When hotadd a new node from cpu_up(), the node should be empty */
5574 	if (!node_start_pfn && !node_end_pfn)
5575 		return 0;
5576 
5577 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5578 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5579 
5580 	adjust_zone_range_for_zone_movable(nid, zone_type,
5581 			node_start_pfn, node_end_pfn,
5582 			&zone_start_pfn, &zone_end_pfn);
5583 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5584 
5585 	/*
5586 	 * ZONE_MOVABLE handling.
5587 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5588 	 * and vice versa.
5589 	 */
5590 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5591 		unsigned long start_pfn, end_pfn;
5592 		struct memblock_region *r;
5593 
5594 		for_each_memblock(memory, r) {
5595 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5596 					  zone_start_pfn, zone_end_pfn);
5597 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5598 					zone_start_pfn, zone_end_pfn);
5599 
5600 			if (zone_type == ZONE_MOVABLE &&
5601 			    memblock_is_mirror(r))
5602 				nr_absent += end_pfn - start_pfn;
5603 
5604 			if (zone_type == ZONE_NORMAL &&
5605 			    !memblock_is_mirror(r))
5606 				nr_absent += end_pfn - start_pfn;
5607 		}
5608 	}
5609 
5610 	return nr_absent;
5611 }
5612 
5613 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn,unsigned long * zones_size)5614 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5615 					unsigned long zone_type,
5616 					unsigned long node_start_pfn,
5617 					unsigned long node_end_pfn,
5618 					unsigned long *zone_start_pfn,
5619 					unsigned long *zone_end_pfn,
5620 					unsigned long *zones_size)
5621 {
5622 	unsigned int zone;
5623 
5624 	*zone_start_pfn = node_start_pfn;
5625 	for (zone = 0; zone < zone_type; zone++)
5626 		*zone_start_pfn += zones_size[zone];
5627 
5628 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5629 
5630 	return zones_size[zone_type];
5631 }
5632 
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zholes_size)5633 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5634 						unsigned long zone_type,
5635 						unsigned long node_start_pfn,
5636 						unsigned long node_end_pfn,
5637 						unsigned long *zholes_size)
5638 {
5639 	if (!zholes_size)
5640 		return 0;
5641 
5642 	return zholes_size[zone_type];
5643 }
5644 
5645 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5646 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zones_size,unsigned long * zholes_size)5647 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5648 						unsigned long node_start_pfn,
5649 						unsigned long node_end_pfn,
5650 						unsigned long *zones_size,
5651 						unsigned long *zholes_size)
5652 {
5653 	unsigned long realtotalpages = 0, totalpages = 0;
5654 	enum zone_type i;
5655 
5656 	for (i = 0; i < MAX_NR_ZONES; i++) {
5657 		struct zone *zone = pgdat->node_zones + i;
5658 		unsigned long zone_start_pfn, zone_end_pfn;
5659 		unsigned long size, real_size;
5660 
5661 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5662 						  node_start_pfn,
5663 						  node_end_pfn,
5664 						  &zone_start_pfn,
5665 						  &zone_end_pfn,
5666 						  zones_size);
5667 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5668 						  node_start_pfn, node_end_pfn,
5669 						  zholes_size);
5670 		if (size)
5671 			zone->zone_start_pfn = zone_start_pfn;
5672 		else
5673 			zone->zone_start_pfn = 0;
5674 		zone->spanned_pages = size;
5675 		zone->present_pages = real_size;
5676 
5677 		totalpages += size;
5678 		realtotalpages += real_size;
5679 	}
5680 
5681 	pgdat->node_spanned_pages = totalpages;
5682 	pgdat->node_present_pages = realtotalpages;
5683 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5684 							realtotalpages);
5685 }
5686 
5687 #ifndef CONFIG_SPARSEMEM
5688 /*
5689  * Calculate the size of the zone->blockflags rounded to an unsigned long
5690  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5691  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5692  * round what is now in bits to nearest long in bits, then return it in
5693  * bytes.
5694  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)5695 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5696 {
5697 	unsigned long usemapsize;
5698 
5699 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5700 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5701 	usemapsize = usemapsize >> pageblock_order;
5702 	usemapsize *= NR_PAGEBLOCK_BITS;
5703 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5704 
5705 	return usemapsize / 8;
5706 }
5707 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)5708 static void __init setup_usemap(struct pglist_data *pgdat,
5709 				struct zone *zone,
5710 				unsigned long zone_start_pfn,
5711 				unsigned long zonesize)
5712 {
5713 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5714 	zone->pageblock_flags = NULL;
5715 	if (usemapsize)
5716 		zone->pageblock_flags =
5717 			memblock_virt_alloc_node_nopanic(usemapsize,
5718 							 pgdat->node_id);
5719 }
5720 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)5721 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5722 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5723 #endif /* CONFIG_SPARSEMEM */
5724 
5725 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5726 
5727 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)5728 void __paginginit set_pageblock_order(void)
5729 {
5730 	unsigned int order;
5731 
5732 	/* Check that pageblock_nr_pages has not already been setup */
5733 	if (pageblock_order)
5734 		return;
5735 
5736 	if (HPAGE_SHIFT > PAGE_SHIFT)
5737 		order = HUGETLB_PAGE_ORDER;
5738 	else
5739 		order = MAX_ORDER - 1;
5740 
5741 	/*
5742 	 * Assume the largest contiguous order of interest is a huge page.
5743 	 * This value may be variable depending on boot parameters on IA64 and
5744 	 * powerpc.
5745 	 */
5746 	pageblock_order = order;
5747 }
5748 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5749 
5750 /*
5751  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5752  * is unused as pageblock_order is set at compile-time. See
5753  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5754  * the kernel config
5755  */
set_pageblock_order(void)5756 void __paginginit set_pageblock_order(void)
5757 {
5758 }
5759 
5760 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5761 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)5762 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5763 						   unsigned long present_pages)
5764 {
5765 	unsigned long pages = spanned_pages;
5766 
5767 	/*
5768 	 * Provide a more accurate estimation if there are holes within
5769 	 * the zone and SPARSEMEM is in use. If there are holes within the
5770 	 * zone, each populated memory region may cost us one or two extra
5771 	 * memmap pages due to alignment because memmap pages for each
5772 	 * populated regions may not naturally algined on page boundary.
5773 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5774 	 */
5775 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5776 	    IS_ENABLED(CONFIG_SPARSEMEM))
5777 		pages = present_pages;
5778 
5779 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5780 }
5781 
5782 /*
5783  * Set up the zone data structures:
5784  *   - mark all pages reserved
5785  *   - mark all memory queues empty
5786  *   - clear the memory bitmaps
5787  *
5788  * NOTE: pgdat should get zeroed by caller.
5789  */
free_area_init_core(struct pglist_data * pgdat)5790 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5791 {
5792 	enum zone_type j;
5793 	int nid = pgdat->node_id;
5794 	int ret;
5795 
5796 	pgdat_resize_init(pgdat);
5797 #ifdef CONFIG_NUMA_BALANCING
5798 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5799 	pgdat->numabalancing_migrate_nr_pages = 0;
5800 	pgdat->numabalancing_migrate_next_window = jiffies;
5801 #endif
5802 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5803 	spin_lock_init(&pgdat->split_queue_lock);
5804 	INIT_LIST_HEAD(&pgdat->split_queue);
5805 	pgdat->split_queue_len = 0;
5806 #endif
5807 	init_waitqueue_head(&pgdat->kswapd_wait);
5808 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5809 #ifdef CONFIG_COMPACTION
5810 	init_waitqueue_head(&pgdat->kcompactd_wait);
5811 #endif
5812 	pgdat_page_ext_init(pgdat);
5813 	spin_lock_init(&pgdat->lru_lock);
5814 	lruvec_init(node_lruvec(pgdat));
5815 
5816 	for (j = 0; j < MAX_NR_ZONES; j++) {
5817 		struct zone *zone = pgdat->node_zones + j;
5818 		unsigned long size, realsize, freesize, memmap_pages;
5819 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5820 
5821 		size = zone->spanned_pages;
5822 		realsize = freesize = zone->present_pages;
5823 
5824 		/*
5825 		 * Adjust freesize so that it accounts for how much memory
5826 		 * is used by this zone for memmap. This affects the watermark
5827 		 * and per-cpu initialisations
5828 		 */
5829 		memmap_pages = calc_memmap_size(size, realsize);
5830 		if (!is_highmem_idx(j)) {
5831 			if (freesize >= memmap_pages) {
5832 				freesize -= memmap_pages;
5833 				if (memmap_pages)
5834 					printk(KERN_DEBUG
5835 					       "  %s zone: %lu pages used for memmap\n",
5836 					       zone_names[j], memmap_pages);
5837 			} else
5838 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5839 					zone_names[j], memmap_pages, freesize);
5840 		}
5841 
5842 		/* Account for reserved pages */
5843 		if (j == 0 && freesize > dma_reserve) {
5844 			freesize -= dma_reserve;
5845 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5846 					zone_names[0], dma_reserve);
5847 		}
5848 
5849 		if (!is_highmem_idx(j))
5850 			nr_kernel_pages += freesize;
5851 		/* Charge for highmem memmap if there are enough kernel pages */
5852 		else if (nr_kernel_pages > memmap_pages * 2)
5853 			nr_kernel_pages -= memmap_pages;
5854 		nr_all_pages += freesize;
5855 
5856 		/*
5857 		 * Set an approximate value for lowmem here, it will be adjusted
5858 		 * when the bootmem allocator frees pages into the buddy system.
5859 		 * And all highmem pages will be managed by the buddy system.
5860 		 */
5861 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5862 #ifdef CONFIG_NUMA
5863 		zone->node = nid;
5864 #endif
5865 		zone->name = zone_names[j];
5866 		zone->zone_pgdat = pgdat;
5867 		spin_lock_init(&zone->lock);
5868 		zone_seqlock_init(zone);
5869 		zone_pcp_init(zone);
5870 
5871 		if (!size)
5872 			continue;
5873 
5874 		set_pageblock_order();
5875 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5876 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5877 		BUG_ON(ret);
5878 		memmap_init(size, nid, j, zone_start_pfn);
5879 	}
5880 }
5881 
alloc_node_mem_map(struct pglist_data * pgdat)5882 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5883 {
5884 	unsigned long __maybe_unused start = 0;
5885 	unsigned long __maybe_unused offset = 0;
5886 
5887 	/* Skip empty nodes */
5888 	if (!pgdat->node_spanned_pages)
5889 		return;
5890 
5891 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5892 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5893 	offset = pgdat->node_start_pfn - start;
5894 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5895 	if (!pgdat->node_mem_map) {
5896 		unsigned long size, end;
5897 		struct page *map;
5898 
5899 		/*
5900 		 * The zone's endpoints aren't required to be MAX_ORDER
5901 		 * aligned but the node_mem_map endpoints must be in order
5902 		 * for the buddy allocator to function correctly.
5903 		 */
5904 		end = pgdat_end_pfn(pgdat);
5905 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5906 		size =  (end - start) * sizeof(struct page);
5907 		map = alloc_remap(pgdat->node_id, size);
5908 		if (!map)
5909 			map = memblock_virt_alloc_node_nopanic(size,
5910 							       pgdat->node_id);
5911 		pgdat->node_mem_map = map + offset;
5912 	}
5913 #ifndef CONFIG_NEED_MULTIPLE_NODES
5914 	/*
5915 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5916 	 */
5917 	if (pgdat == NODE_DATA(0)) {
5918 		mem_map = NODE_DATA(0)->node_mem_map;
5919 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5920 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5921 			mem_map -= offset;
5922 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5923 	}
5924 #endif
5925 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5926 }
5927 
free_area_init_node(int nid,unsigned long * zones_size,unsigned long node_start_pfn,unsigned long * zholes_size)5928 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5929 		unsigned long node_start_pfn, unsigned long *zholes_size)
5930 {
5931 	pg_data_t *pgdat = NODE_DATA(nid);
5932 	unsigned long start_pfn = 0;
5933 	unsigned long end_pfn = 0;
5934 
5935 	/* pg_data_t should be reset to zero when it's allocated */
5936 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5937 
5938 	pgdat->node_id = nid;
5939 	pgdat->node_start_pfn = node_start_pfn;
5940 	pgdat->per_cpu_nodestats = NULL;
5941 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5942 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5943 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5944 		(u64)start_pfn << PAGE_SHIFT,
5945 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5946 #else
5947 	start_pfn = node_start_pfn;
5948 #endif
5949 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5950 				  zones_size, zholes_size);
5951 
5952 	alloc_node_mem_map(pgdat);
5953 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5954 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5955 		nid, (unsigned long)pgdat,
5956 		(unsigned long)pgdat->node_mem_map);
5957 #endif
5958 
5959 	reset_deferred_meminit(pgdat);
5960 	free_area_init_core(pgdat);
5961 }
5962 
5963 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5964 
5965 #if MAX_NUMNODES > 1
5966 /*
5967  * Figure out the number of possible node ids.
5968  */
setup_nr_node_ids(void)5969 void __init setup_nr_node_ids(void)
5970 {
5971 	unsigned int highest;
5972 
5973 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5974 	nr_node_ids = highest + 1;
5975 }
5976 #endif
5977 
5978 /**
5979  * node_map_pfn_alignment - determine the maximum internode alignment
5980  *
5981  * This function should be called after node map is populated and sorted.
5982  * It calculates the maximum power of two alignment which can distinguish
5983  * all the nodes.
5984  *
5985  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5986  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5987  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5988  * shifted, 1GiB is enough and this function will indicate so.
5989  *
5990  * This is used to test whether pfn -> nid mapping of the chosen memory
5991  * model has fine enough granularity to avoid incorrect mapping for the
5992  * populated node map.
5993  *
5994  * Returns the determined alignment in pfn's.  0 if there is no alignment
5995  * requirement (single node).
5996  */
node_map_pfn_alignment(void)5997 unsigned long __init node_map_pfn_alignment(void)
5998 {
5999 	unsigned long accl_mask = 0, last_end = 0;
6000 	unsigned long start, end, mask;
6001 	int last_nid = -1;
6002 	int i, nid;
6003 
6004 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6005 		if (!start || last_nid < 0 || last_nid == nid) {
6006 			last_nid = nid;
6007 			last_end = end;
6008 			continue;
6009 		}
6010 
6011 		/*
6012 		 * Start with a mask granular enough to pin-point to the
6013 		 * start pfn and tick off bits one-by-one until it becomes
6014 		 * too coarse to separate the current node from the last.
6015 		 */
6016 		mask = ~((1 << __ffs(start)) - 1);
6017 		while (mask && last_end <= (start & (mask << 1)))
6018 			mask <<= 1;
6019 
6020 		/* accumulate all internode masks */
6021 		accl_mask |= mask;
6022 	}
6023 
6024 	/* convert mask to number of pages */
6025 	return ~accl_mask + 1;
6026 }
6027 
6028 /* Find the lowest pfn for a node */
find_min_pfn_for_node(int nid)6029 static unsigned long __init find_min_pfn_for_node(int nid)
6030 {
6031 	unsigned long min_pfn = ULONG_MAX;
6032 	unsigned long start_pfn;
6033 	int i;
6034 
6035 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6036 		min_pfn = min(min_pfn, start_pfn);
6037 
6038 	if (min_pfn == ULONG_MAX) {
6039 		pr_warn("Could not find start_pfn for node %d\n", nid);
6040 		return 0;
6041 	}
6042 
6043 	return min_pfn;
6044 }
6045 
6046 /**
6047  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6048  *
6049  * It returns the minimum PFN based on information provided via
6050  * memblock_set_node().
6051  */
find_min_pfn_with_active_regions(void)6052 unsigned long __init find_min_pfn_with_active_regions(void)
6053 {
6054 	return find_min_pfn_for_node(MAX_NUMNODES);
6055 }
6056 
6057 /*
6058  * early_calculate_totalpages()
6059  * Sum pages in active regions for movable zone.
6060  * Populate N_MEMORY for calculating usable_nodes.
6061  */
early_calculate_totalpages(void)6062 static unsigned long __init early_calculate_totalpages(void)
6063 {
6064 	unsigned long totalpages = 0;
6065 	unsigned long start_pfn, end_pfn;
6066 	int i, nid;
6067 
6068 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6069 		unsigned long pages = end_pfn - start_pfn;
6070 
6071 		totalpages += pages;
6072 		if (pages)
6073 			node_set_state(nid, N_MEMORY);
6074 	}
6075 	return totalpages;
6076 }
6077 
6078 /*
6079  * Find the PFN the Movable zone begins in each node. Kernel memory
6080  * is spread evenly between nodes as long as the nodes have enough
6081  * memory. When they don't, some nodes will have more kernelcore than
6082  * others
6083  */
find_zone_movable_pfns_for_nodes(void)6084 static void __init find_zone_movable_pfns_for_nodes(void)
6085 {
6086 	int i, nid;
6087 	unsigned long usable_startpfn;
6088 	unsigned long kernelcore_node, kernelcore_remaining;
6089 	/* save the state before borrow the nodemask */
6090 	nodemask_t saved_node_state = node_states[N_MEMORY];
6091 	unsigned long totalpages = early_calculate_totalpages();
6092 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6093 	struct memblock_region *r;
6094 
6095 	/* Need to find movable_zone earlier when movable_node is specified. */
6096 	find_usable_zone_for_movable();
6097 
6098 	/*
6099 	 * If movable_node is specified, ignore kernelcore and movablecore
6100 	 * options.
6101 	 */
6102 	if (movable_node_is_enabled()) {
6103 		for_each_memblock(memory, r) {
6104 			if (!memblock_is_hotpluggable(r))
6105 				continue;
6106 
6107 			nid = r->nid;
6108 
6109 			usable_startpfn = PFN_DOWN(r->base);
6110 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6111 				min(usable_startpfn, zone_movable_pfn[nid]) :
6112 				usable_startpfn;
6113 		}
6114 
6115 		goto out2;
6116 	}
6117 
6118 	/*
6119 	 * If kernelcore=mirror is specified, ignore movablecore option
6120 	 */
6121 	if (mirrored_kernelcore) {
6122 		bool mem_below_4gb_not_mirrored = false;
6123 
6124 		for_each_memblock(memory, r) {
6125 			if (memblock_is_mirror(r))
6126 				continue;
6127 
6128 			nid = r->nid;
6129 
6130 			usable_startpfn = memblock_region_memory_base_pfn(r);
6131 
6132 			if (usable_startpfn < 0x100000) {
6133 				mem_below_4gb_not_mirrored = true;
6134 				continue;
6135 			}
6136 
6137 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6138 				min(usable_startpfn, zone_movable_pfn[nid]) :
6139 				usable_startpfn;
6140 		}
6141 
6142 		if (mem_below_4gb_not_mirrored)
6143 			pr_warn("This configuration results in unmirrored kernel memory.");
6144 
6145 		goto out2;
6146 	}
6147 
6148 	/*
6149 	 * If movablecore=nn[KMG] was specified, calculate what size of
6150 	 * kernelcore that corresponds so that memory usable for
6151 	 * any allocation type is evenly spread. If both kernelcore
6152 	 * and movablecore are specified, then the value of kernelcore
6153 	 * will be used for required_kernelcore if it's greater than
6154 	 * what movablecore would have allowed.
6155 	 */
6156 	if (required_movablecore) {
6157 		unsigned long corepages;
6158 
6159 		/*
6160 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6161 		 * was requested by the user
6162 		 */
6163 		required_movablecore =
6164 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6165 		required_movablecore = min(totalpages, required_movablecore);
6166 		corepages = totalpages - required_movablecore;
6167 
6168 		required_kernelcore = max(required_kernelcore, corepages);
6169 	}
6170 
6171 	/*
6172 	 * If kernelcore was not specified or kernelcore size is larger
6173 	 * than totalpages, there is no ZONE_MOVABLE.
6174 	 */
6175 	if (!required_kernelcore || required_kernelcore >= totalpages)
6176 		goto out;
6177 
6178 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6179 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6180 
6181 restart:
6182 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6183 	kernelcore_node = required_kernelcore / usable_nodes;
6184 	for_each_node_state(nid, N_MEMORY) {
6185 		unsigned long start_pfn, end_pfn;
6186 
6187 		/*
6188 		 * Recalculate kernelcore_node if the division per node
6189 		 * now exceeds what is necessary to satisfy the requested
6190 		 * amount of memory for the kernel
6191 		 */
6192 		if (required_kernelcore < kernelcore_node)
6193 			kernelcore_node = required_kernelcore / usable_nodes;
6194 
6195 		/*
6196 		 * As the map is walked, we track how much memory is usable
6197 		 * by the kernel using kernelcore_remaining. When it is
6198 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6199 		 */
6200 		kernelcore_remaining = kernelcore_node;
6201 
6202 		/* Go through each range of PFNs within this node */
6203 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6204 			unsigned long size_pages;
6205 
6206 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6207 			if (start_pfn >= end_pfn)
6208 				continue;
6209 
6210 			/* Account for what is only usable for kernelcore */
6211 			if (start_pfn < usable_startpfn) {
6212 				unsigned long kernel_pages;
6213 				kernel_pages = min(end_pfn, usable_startpfn)
6214 								- start_pfn;
6215 
6216 				kernelcore_remaining -= min(kernel_pages,
6217 							kernelcore_remaining);
6218 				required_kernelcore -= min(kernel_pages,
6219 							required_kernelcore);
6220 
6221 				/* Continue if range is now fully accounted */
6222 				if (end_pfn <= usable_startpfn) {
6223 
6224 					/*
6225 					 * Push zone_movable_pfn to the end so
6226 					 * that if we have to rebalance
6227 					 * kernelcore across nodes, we will
6228 					 * not double account here
6229 					 */
6230 					zone_movable_pfn[nid] = end_pfn;
6231 					continue;
6232 				}
6233 				start_pfn = usable_startpfn;
6234 			}
6235 
6236 			/*
6237 			 * The usable PFN range for ZONE_MOVABLE is from
6238 			 * start_pfn->end_pfn. Calculate size_pages as the
6239 			 * number of pages used as kernelcore
6240 			 */
6241 			size_pages = end_pfn - start_pfn;
6242 			if (size_pages > kernelcore_remaining)
6243 				size_pages = kernelcore_remaining;
6244 			zone_movable_pfn[nid] = start_pfn + size_pages;
6245 
6246 			/*
6247 			 * Some kernelcore has been met, update counts and
6248 			 * break if the kernelcore for this node has been
6249 			 * satisfied
6250 			 */
6251 			required_kernelcore -= min(required_kernelcore,
6252 								size_pages);
6253 			kernelcore_remaining -= size_pages;
6254 			if (!kernelcore_remaining)
6255 				break;
6256 		}
6257 	}
6258 
6259 	/*
6260 	 * If there is still required_kernelcore, we do another pass with one
6261 	 * less node in the count. This will push zone_movable_pfn[nid] further
6262 	 * along on the nodes that still have memory until kernelcore is
6263 	 * satisfied
6264 	 */
6265 	usable_nodes--;
6266 	if (usable_nodes && required_kernelcore > usable_nodes)
6267 		goto restart;
6268 
6269 out2:
6270 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6271 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6272 		zone_movable_pfn[nid] =
6273 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6274 
6275 out:
6276 	/* restore the node_state */
6277 	node_states[N_MEMORY] = saved_node_state;
6278 }
6279 
6280 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)6281 static void check_for_memory(pg_data_t *pgdat, int nid)
6282 {
6283 	enum zone_type zone_type;
6284 
6285 	if (N_MEMORY == N_NORMAL_MEMORY)
6286 		return;
6287 
6288 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6289 		struct zone *zone = &pgdat->node_zones[zone_type];
6290 		if (populated_zone(zone)) {
6291 			node_set_state(nid, N_HIGH_MEMORY);
6292 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6293 			    zone_type <= ZONE_NORMAL)
6294 				node_set_state(nid, N_NORMAL_MEMORY);
6295 			break;
6296 		}
6297 	}
6298 }
6299 
6300 /**
6301  * free_area_init_nodes - Initialise all pg_data_t and zone data
6302  * @max_zone_pfn: an array of max PFNs for each zone
6303  *
6304  * This will call free_area_init_node() for each active node in the system.
6305  * Using the page ranges provided by memblock_set_node(), the size of each
6306  * zone in each node and their holes is calculated. If the maximum PFN
6307  * between two adjacent zones match, it is assumed that the zone is empty.
6308  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6309  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6310  * starts where the previous one ended. For example, ZONE_DMA32 starts
6311  * at arch_max_dma_pfn.
6312  */
free_area_init_nodes(unsigned long * max_zone_pfn)6313 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6314 {
6315 	unsigned long start_pfn, end_pfn;
6316 	int i, nid;
6317 
6318 	/* Record where the zone boundaries are */
6319 	memset(arch_zone_lowest_possible_pfn, 0,
6320 				sizeof(arch_zone_lowest_possible_pfn));
6321 	memset(arch_zone_highest_possible_pfn, 0,
6322 				sizeof(arch_zone_highest_possible_pfn));
6323 
6324 	start_pfn = find_min_pfn_with_active_regions();
6325 
6326 	for (i = 0; i < MAX_NR_ZONES; i++) {
6327 		if (i == ZONE_MOVABLE)
6328 			continue;
6329 
6330 		end_pfn = max(max_zone_pfn[i], start_pfn);
6331 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6332 		arch_zone_highest_possible_pfn[i] = end_pfn;
6333 
6334 		start_pfn = end_pfn;
6335 	}
6336 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6337 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6338 
6339 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6340 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6341 	find_zone_movable_pfns_for_nodes();
6342 
6343 	/* Print out the zone ranges */
6344 	pr_info("Zone ranges:\n");
6345 	for (i = 0; i < MAX_NR_ZONES; i++) {
6346 		if (i == ZONE_MOVABLE)
6347 			continue;
6348 		pr_info("  %-8s ", zone_names[i]);
6349 		if (arch_zone_lowest_possible_pfn[i] ==
6350 				arch_zone_highest_possible_pfn[i])
6351 			pr_cont("empty\n");
6352 		else
6353 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6354 				(u64)arch_zone_lowest_possible_pfn[i]
6355 					<< PAGE_SHIFT,
6356 				((u64)arch_zone_highest_possible_pfn[i]
6357 					<< PAGE_SHIFT) - 1);
6358 	}
6359 
6360 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6361 	pr_info("Movable zone start for each node\n");
6362 	for (i = 0; i < MAX_NUMNODES; i++) {
6363 		if (zone_movable_pfn[i])
6364 			pr_info("  Node %d: %#018Lx\n", i,
6365 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6366 	}
6367 
6368 	/* Print out the early node map */
6369 	pr_info("Early memory node ranges\n");
6370 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6371 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6372 			(u64)start_pfn << PAGE_SHIFT,
6373 			((u64)end_pfn << PAGE_SHIFT) - 1);
6374 
6375 	/* Initialise every node */
6376 	mminit_verify_pageflags_layout();
6377 	setup_nr_node_ids();
6378 	for_each_online_node(nid) {
6379 		pg_data_t *pgdat = NODE_DATA(nid);
6380 		free_area_init_node(nid, NULL,
6381 				find_min_pfn_for_node(nid), NULL);
6382 
6383 		/* Any memory on that node */
6384 		if (pgdat->node_present_pages)
6385 			node_set_state(nid, N_MEMORY);
6386 		check_for_memory(pgdat, nid);
6387 	}
6388 }
6389 
cmdline_parse_core(char * p,unsigned long * core)6390 static int __init cmdline_parse_core(char *p, unsigned long *core)
6391 {
6392 	unsigned long long coremem;
6393 	if (!p)
6394 		return -EINVAL;
6395 
6396 	coremem = memparse(p, &p);
6397 	*core = coremem >> PAGE_SHIFT;
6398 
6399 	/* Paranoid check that UL is enough for the coremem value */
6400 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6401 
6402 	return 0;
6403 }
6404 
6405 /*
6406  * kernelcore=size sets the amount of memory for use for allocations that
6407  * cannot be reclaimed or migrated.
6408  */
cmdline_parse_kernelcore(char * p)6409 static int __init cmdline_parse_kernelcore(char *p)
6410 {
6411 	/* parse kernelcore=mirror */
6412 	if (parse_option_str(p, "mirror")) {
6413 		mirrored_kernelcore = true;
6414 		return 0;
6415 	}
6416 
6417 	return cmdline_parse_core(p, &required_kernelcore);
6418 }
6419 
6420 /*
6421  * movablecore=size sets the amount of memory for use for allocations that
6422  * can be reclaimed or migrated.
6423  */
cmdline_parse_movablecore(char * p)6424 static int __init cmdline_parse_movablecore(char *p)
6425 {
6426 	return cmdline_parse_core(p, &required_movablecore);
6427 }
6428 
6429 early_param("kernelcore", cmdline_parse_kernelcore);
6430 early_param("movablecore", cmdline_parse_movablecore);
6431 
6432 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6433 
adjust_managed_page_count(struct page * page,long count)6434 void adjust_managed_page_count(struct page *page, long count)
6435 {
6436 	spin_lock(&managed_page_count_lock);
6437 	page_zone(page)->managed_pages += count;
6438 	totalram_pages += count;
6439 #ifdef CONFIG_HIGHMEM
6440 	if (PageHighMem(page))
6441 		totalhigh_pages += count;
6442 #endif
6443 	spin_unlock(&managed_page_count_lock);
6444 }
6445 EXPORT_SYMBOL(adjust_managed_page_count);
6446 
free_reserved_area(void * start,void * end,int poison,char * s)6447 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6448 {
6449 	void *pos;
6450 	unsigned long pages = 0;
6451 
6452 	start = (void *)PAGE_ALIGN((unsigned long)start);
6453 	end = (void *)((unsigned long)end & PAGE_MASK);
6454 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6455 		if ((unsigned int)poison <= 0xFF)
6456 			memset(pos, poison, PAGE_SIZE);
6457 		free_reserved_page(virt_to_page(pos));
6458 	}
6459 
6460 	if (pages && s)
6461 		pr_info("Freeing %s memory: %ldK\n",
6462 			s, pages << (PAGE_SHIFT - 10));
6463 
6464 	return pages;
6465 }
6466 EXPORT_SYMBOL(free_reserved_area);
6467 
6468 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)6469 void free_highmem_page(struct page *page)
6470 {
6471 	__free_reserved_page(page);
6472 	totalram_pages++;
6473 	page_zone(page)->managed_pages++;
6474 	totalhigh_pages++;
6475 }
6476 #endif
6477 
6478 
mem_init_print_info(const char * str)6479 void __init mem_init_print_info(const char *str)
6480 {
6481 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6482 	unsigned long init_code_size, init_data_size;
6483 
6484 	physpages = get_num_physpages();
6485 	codesize = _etext - _stext;
6486 	datasize = _edata - _sdata;
6487 	rosize = __end_rodata - __start_rodata;
6488 	bss_size = __bss_stop - __bss_start;
6489 	init_data_size = __init_end - __init_begin;
6490 	init_code_size = _einittext - _sinittext;
6491 
6492 	/*
6493 	 * Detect special cases and adjust section sizes accordingly:
6494 	 * 1) .init.* may be embedded into .data sections
6495 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6496 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6497 	 * 3) .rodata.* may be embedded into .text or .data sections.
6498 	 */
6499 #define adj_init_size(start, end, size, pos, adj) \
6500 	do { \
6501 		if (start <= pos && pos < end && size > adj) \
6502 			size -= adj; \
6503 	} while (0)
6504 
6505 	adj_init_size(__init_begin, __init_end, init_data_size,
6506 		     _sinittext, init_code_size);
6507 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6508 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6509 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6510 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6511 
6512 #undef	adj_init_size
6513 
6514 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6515 #ifdef	CONFIG_HIGHMEM
6516 		", %luK highmem"
6517 #endif
6518 		"%s%s)\n",
6519 		nr_free_pages() << (PAGE_SHIFT - 10),
6520 		physpages << (PAGE_SHIFT - 10),
6521 		codesize >> 10, datasize >> 10, rosize >> 10,
6522 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6523 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6524 		totalcma_pages << (PAGE_SHIFT - 10),
6525 #ifdef	CONFIG_HIGHMEM
6526 		totalhigh_pages << (PAGE_SHIFT - 10),
6527 #endif
6528 		str ? ", " : "", str ? str : "");
6529 }
6530 
6531 /**
6532  * set_dma_reserve - set the specified number of pages reserved in the first zone
6533  * @new_dma_reserve: The number of pages to mark reserved
6534  *
6535  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6536  * In the DMA zone, a significant percentage may be consumed by kernel image
6537  * and other unfreeable allocations which can skew the watermarks badly. This
6538  * function may optionally be used to account for unfreeable pages in the
6539  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6540  * smaller per-cpu batchsize.
6541  */
set_dma_reserve(unsigned long new_dma_reserve)6542 void __init set_dma_reserve(unsigned long new_dma_reserve)
6543 {
6544 	dma_reserve = new_dma_reserve;
6545 }
6546 
free_area_init(unsigned long * zones_size)6547 void __init free_area_init(unsigned long *zones_size)
6548 {
6549 	free_area_init_node(0, zones_size,
6550 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6551 }
6552 
page_alloc_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)6553 static int page_alloc_cpu_notify(struct notifier_block *self,
6554 				 unsigned long action, void *hcpu)
6555 {
6556 	int cpu = (unsigned long)hcpu;
6557 
6558 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6559 		lru_add_drain_cpu(cpu);
6560 		drain_pages(cpu);
6561 
6562 		/*
6563 		 * Spill the event counters of the dead processor
6564 		 * into the current processors event counters.
6565 		 * This artificially elevates the count of the current
6566 		 * processor.
6567 		 */
6568 		vm_events_fold_cpu(cpu);
6569 
6570 		/*
6571 		 * Zero the differential counters of the dead processor
6572 		 * so that the vm statistics are consistent.
6573 		 *
6574 		 * This is only okay since the processor is dead and cannot
6575 		 * race with what we are doing.
6576 		 */
6577 		cpu_vm_stats_fold(cpu);
6578 	}
6579 	return NOTIFY_OK;
6580 }
6581 
page_alloc_init(void)6582 void __init page_alloc_init(void)
6583 {
6584 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6585 }
6586 
6587 /*
6588  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6589  *	or min_free_kbytes changes.
6590  */
calculate_totalreserve_pages(void)6591 static void calculate_totalreserve_pages(void)
6592 {
6593 	struct pglist_data *pgdat;
6594 	unsigned long reserve_pages = 0;
6595 	enum zone_type i, j;
6596 
6597 	for_each_online_pgdat(pgdat) {
6598 
6599 		pgdat->totalreserve_pages = 0;
6600 
6601 		for (i = 0; i < MAX_NR_ZONES; i++) {
6602 			struct zone *zone = pgdat->node_zones + i;
6603 			long max = 0;
6604 
6605 			/* Find valid and maximum lowmem_reserve in the zone */
6606 			for (j = i; j < MAX_NR_ZONES; j++) {
6607 				if (zone->lowmem_reserve[j] > max)
6608 					max = zone->lowmem_reserve[j];
6609 			}
6610 
6611 			/* we treat the high watermark as reserved pages. */
6612 			max += high_wmark_pages(zone);
6613 
6614 			if (max > zone->managed_pages)
6615 				max = zone->managed_pages;
6616 
6617 			pgdat->totalreserve_pages += max;
6618 
6619 			reserve_pages += max;
6620 		}
6621 	}
6622 	totalreserve_pages = reserve_pages;
6623 }
6624 
6625 /*
6626  * setup_per_zone_lowmem_reserve - called whenever
6627  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6628  *	has a correct pages reserved value, so an adequate number of
6629  *	pages are left in the zone after a successful __alloc_pages().
6630  */
setup_per_zone_lowmem_reserve(void)6631 static void setup_per_zone_lowmem_reserve(void)
6632 {
6633 	struct pglist_data *pgdat;
6634 	enum zone_type j, idx;
6635 
6636 	for_each_online_pgdat(pgdat) {
6637 		for (j = 0; j < MAX_NR_ZONES; j++) {
6638 			struct zone *zone = pgdat->node_zones + j;
6639 			unsigned long managed_pages = zone->managed_pages;
6640 
6641 			zone->lowmem_reserve[j] = 0;
6642 
6643 			idx = j;
6644 			while (idx) {
6645 				struct zone *lower_zone;
6646 
6647 				idx--;
6648 
6649 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6650 					sysctl_lowmem_reserve_ratio[idx] = 1;
6651 
6652 				lower_zone = pgdat->node_zones + idx;
6653 				lower_zone->lowmem_reserve[j] = managed_pages /
6654 					sysctl_lowmem_reserve_ratio[idx];
6655 				managed_pages += lower_zone->managed_pages;
6656 			}
6657 		}
6658 	}
6659 
6660 	/* update totalreserve_pages */
6661 	calculate_totalreserve_pages();
6662 }
6663 
__setup_per_zone_wmarks(void)6664 static void __setup_per_zone_wmarks(void)
6665 {
6666 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6667 	unsigned long lowmem_pages = 0;
6668 	struct zone *zone;
6669 	unsigned long flags;
6670 
6671 	/* Calculate total number of !ZONE_HIGHMEM pages */
6672 	for_each_zone(zone) {
6673 		if (!is_highmem(zone))
6674 			lowmem_pages += zone->managed_pages;
6675 	}
6676 
6677 	for_each_zone(zone) {
6678 		u64 tmp;
6679 
6680 		spin_lock_irqsave(&zone->lock, flags);
6681 		tmp = (u64)pages_min * zone->managed_pages;
6682 		do_div(tmp, lowmem_pages);
6683 		if (is_highmem(zone)) {
6684 			/*
6685 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6686 			 * need highmem pages, so cap pages_min to a small
6687 			 * value here.
6688 			 *
6689 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6690 			 * deltas control asynch page reclaim, and so should
6691 			 * not be capped for highmem.
6692 			 */
6693 			unsigned long min_pages;
6694 
6695 			min_pages = zone->managed_pages / 1024;
6696 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6697 			zone->watermark[WMARK_MIN] = min_pages;
6698 		} else {
6699 			/*
6700 			 * If it's a lowmem zone, reserve a number of pages
6701 			 * proportionate to the zone's size.
6702 			 */
6703 			zone->watermark[WMARK_MIN] = tmp;
6704 		}
6705 
6706 		/*
6707 		 * Set the kswapd watermarks distance according to the
6708 		 * scale factor in proportion to available memory, but
6709 		 * ensure a minimum size on small systems.
6710 		 */
6711 		tmp = max_t(u64, tmp >> 2,
6712 			    mult_frac(zone->managed_pages,
6713 				      watermark_scale_factor, 10000));
6714 
6715 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6716 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6717 
6718 		spin_unlock_irqrestore(&zone->lock, flags);
6719 	}
6720 
6721 	/* update totalreserve_pages */
6722 	calculate_totalreserve_pages();
6723 }
6724 
6725 /**
6726  * setup_per_zone_wmarks - called when min_free_kbytes changes
6727  * or when memory is hot-{added|removed}
6728  *
6729  * Ensures that the watermark[min,low,high] values for each zone are set
6730  * correctly with respect to min_free_kbytes.
6731  */
setup_per_zone_wmarks(void)6732 void setup_per_zone_wmarks(void)
6733 {
6734 	mutex_lock(&zonelists_mutex);
6735 	__setup_per_zone_wmarks();
6736 	mutex_unlock(&zonelists_mutex);
6737 }
6738 
6739 /*
6740  * Initialise min_free_kbytes.
6741  *
6742  * For small machines we want it small (128k min).  For large machines
6743  * we want it large (64MB max).  But it is not linear, because network
6744  * bandwidth does not increase linearly with machine size.  We use
6745  *
6746  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6747  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6748  *
6749  * which yields
6750  *
6751  * 16MB:	512k
6752  * 32MB:	724k
6753  * 64MB:	1024k
6754  * 128MB:	1448k
6755  * 256MB:	2048k
6756  * 512MB:	2896k
6757  * 1024MB:	4096k
6758  * 2048MB:	5792k
6759  * 4096MB:	8192k
6760  * 8192MB:	11584k
6761  * 16384MB:	16384k
6762  */
init_per_zone_wmark_min(void)6763 int __meminit init_per_zone_wmark_min(void)
6764 {
6765 	unsigned long lowmem_kbytes;
6766 	int new_min_free_kbytes;
6767 
6768 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6769 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6770 
6771 	if (new_min_free_kbytes > user_min_free_kbytes) {
6772 		min_free_kbytes = new_min_free_kbytes;
6773 		if (min_free_kbytes < 128)
6774 			min_free_kbytes = 128;
6775 		if (min_free_kbytes > 65536)
6776 			min_free_kbytes = 65536;
6777 	} else {
6778 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6779 				new_min_free_kbytes, user_min_free_kbytes);
6780 	}
6781 	setup_per_zone_wmarks();
6782 	refresh_zone_stat_thresholds();
6783 	setup_per_zone_lowmem_reserve();
6784 
6785 #ifdef CONFIG_NUMA
6786 	setup_min_unmapped_ratio();
6787 	setup_min_slab_ratio();
6788 #endif
6789 
6790 	return 0;
6791 }
core_initcall(init_per_zone_wmark_min)6792 core_initcall(init_per_zone_wmark_min)
6793 
6794 /*
6795  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6796  *	that we can call two helper functions whenever min_free_kbytes
6797  *	changes.
6798  */
6799 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6800 	void __user *buffer, size_t *length, loff_t *ppos)
6801 {
6802 	int rc;
6803 
6804 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6805 	if (rc)
6806 		return rc;
6807 
6808 	if (write) {
6809 		user_min_free_kbytes = min_free_kbytes;
6810 		setup_per_zone_wmarks();
6811 	}
6812 	return 0;
6813 }
6814 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6815 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6816 	void __user *buffer, size_t *length, loff_t *ppos)
6817 {
6818 	int rc;
6819 
6820 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6821 	if (rc)
6822 		return rc;
6823 
6824 	if (write)
6825 		setup_per_zone_wmarks();
6826 
6827 	return 0;
6828 }
6829 
6830 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)6831 static void setup_min_unmapped_ratio(void)
6832 {
6833 	pg_data_t *pgdat;
6834 	struct zone *zone;
6835 
6836 	for_each_online_pgdat(pgdat)
6837 		pgdat->min_unmapped_pages = 0;
6838 
6839 	for_each_zone(zone)
6840 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6841 				sysctl_min_unmapped_ratio) / 100;
6842 }
6843 
6844 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6845 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6846 	void __user *buffer, size_t *length, loff_t *ppos)
6847 {
6848 	int rc;
6849 
6850 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6851 	if (rc)
6852 		return rc;
6853 
6854 	setup_min_unmapped_ratio();
6855 
6856 	return 0;
6857 }
6858 
setup_min_slab_ratio(void)6859 static void setup_min_slab_ratio(void)
6860 {
6861 	pg_data_t *pgdat;
6862 	struct zone *zone;
6863 
6864 	for_each_online_pgdat(pgdat)
6865 		pgdat->min_slab_pages = 0;
6866 
6867 	for_each_zone(zone)
6868 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6869 				sysctl_min_slab_ratio) / 100;
6870 }
6871 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6872 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6873 	void __user *buffer, size_t *length, loff_t *ppos)
6874 {
6875 	int rc;
6876 
6877 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6878 	if (rc)
6879 		return rc;
6880 
6881 	setup_min_slab_ratio();
6882 
6883 	return 0;
6884 }
6885 #endif
6886 
6887 /*
6888  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6889  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6890  *	whenever sysctl_lowmem_reserve_ratio changes.
6891  *
6892  * The reserve ratio obviously has absolutely no relation with the
6893  * minimum watermarks. The lowmem reserve ratio can only make sense
6894  * if in function of the boot time zone sizes.
6895  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6896 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6897 	void __user *buffer, size_t *length, loff_t *ppos)
6898 {
6899 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6900 	setup_per_zone_lowmem_reserve();
6901 	return 0;
6902 }
6903 
6904 /*
6905  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6906  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6907  * pagelist can have before it gets flushed back to buddy allocator.
6908  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)6909 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6910 	void __user *buffer, size_t *length, loff_t *ppos)
6911 {
6912 	struct zone *zone;
6913 	int old_percpu_pagelist_fraction;
6914 	int ret;
6915 
6916 	mutex_lock(&pcp_batch_high_lock);
6917 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6918 
6919 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6920 	if (!write || ret < 0)
6921 		goto out;
6922 
6923 	/* Sanity checking to avoid pcp imbalance */
6924 	if (percpu_pagelist_fraction &&
6925 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6926 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6927 		ret = -EINVAL;
6928 		goto out;
6929 	}
6930 
6931 	/* No change? */
6932 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6933 		goto out;
6934 
6935 	for_each_populated_zone(zone) {
6936 		unsigned int cpu;
6937 
6938 		for_each_possible_cpu(cpu)
6939 			pageset_set_high_and_batch(zone,
6940 					per_cpu_ptr(zone->pageset, cpu));
6941 	}
6942 out:
6943 	mutex_unlock(&pcp_batch_high_lock);
6944 	return ret;
6945 }
6946 
6947 #ifdef CONFIG_NUMA
6948 int hashdist = HASHDIST_DEFAULT;
6949 
set_hashdist(char * str)6950 static int __init set_hashdist(char *str)
6951 {
6952 	if (!str)
6953 		return 0;
6954 	hashdist = simple_strtoul(str, &str, 0);
6955 	return 1;
6956 }
6957 __setup("hashdist=", set_hashdist);
6958 #endif
6959 
6960 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6961 /*
6962  * Returns the number of pages that arch has reserved but
6963  * is not known to alloc_large_system_hash().
6964  */
arch_reserved_kernel_pages(void)6965 static unsigned long __init arch_reserved_kernel_pages(void)
6966 {
6967 	return 0;
6968 }
6969 #endif
6970 
6971 /*
6972  * allocate a large system hash table from bootmem
6973  * - it is assumed that the hash table must contain an exact power-of-2
6974  *   quantity of entries
6975  * - limit is the number of hash buckets, not the total allocation size
6976  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)6977 void *__init alloc_large_system_hash(const char *tablename,
6978 				     unsigned long bucketsize,
6979 				     unsigned long numentries,
6980 				     int scale,
6981 				     int flags,
6982 				     unsigned int *_hash_shift,
6983 				     unsigned int *_hash_mask,
6984 				     unsigned long low_limit,
6985 				     unsigned long high_limit)
6986 {
6987 	unsigned long long max = high_limit;
6988 	unsigned long log2qty, size;
6989 	void *table = NULL;
6990 
6991 	/* allow the kernel cmdline to have a say */
6992 	if (!numentries) {
6993 		/* round applicable memory size up to nearest megabyte */
6994 		numentries = nr_kernel_pages;
6995 		numentries -= arch_reserved_kernel_pages();
6996 
6997 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6998 		if (PAGE_SHIFT < 20)
6999 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7000 
7001 		/* limit to 1 bucket per 2^scale bytes of low memory */
7002 		if (scale > PAGE_SHIFT)
7003 			numentries >>= (scale - PAGE_SHIFT);
7004 		else
7005 			numentries <<= (PAGE_SHIFT - scale);
7006 
7007 		/* Make sure we've got at least a 0-order allocation.. */
7008 		if (unlikely(flags & HASH_SMALL)) {
7009 			/* Makes no sense without HASH_EARLY */
7010 			WARN_ON(!(flags & HASH_EARLY));
7011 			if (!(numentries >> *_hash_shift)) {
7012 				numentries = 1UL << *_hash_shift;
7013 				BUG_ON(!numentries);
7014 			}
7015 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7016 			numentries = PAGE_SIZE / bucketsize;
7017 	}
7018 	numentries = roundup_pow_of_two(numentries);
7019 
7020 	/* limit allocation size to 1/16 total memory by default */
7021 	if (max == 0) {
7022 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7023 		do_div(max, bucketsize);
7024 	}
7025 	max = min(max, 0x80000000ULL);
7026 
7027 	if (numentries < low_limit)
7028 		numentries = low_limit;
7029 	if (numentries > max)
7030 		numentries = max;
7031 
7032 	log2qty = ilog2(numentries);
7033 
7034 	do {
7035 		size = bucketsize << log2qty;
7036 		if (flags & HASH_EARLY)
7037 			table = memblock_virt_alloc_nopanic(size, 0);
7038 		else if (hashdist)
7039 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7040 		else {
7041 			/*
7042 			 * If bucketsize is not a power-of-two, we may free
7043 			 * some pages at the end of hash table which
7044 			 * alloc_pages_exact() automatically does
7045 			 */
7046 			if (get_order(size) < MAX_ORDER) {
7047 				table = alloc_pages_exact(size, GFP_ATOMIC);
7048 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7049 			}
7050 		}
7051 	} while (!table && size > PAGE_SIZE && --log2qty);
7052 
7053 	if (!table)
7054 		panic("Failed to allocate %s hash table\n", tablename);
7055 
7056 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7057 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7058 
7059 	if (_hash_shift)
7060 		*_hash_shift = log2qty;
7061 	if (_hash_mask)
7062 		*_hash_mask = (1 << log2qty) - 1;
7063 
7064 	return table;
7065 }
7066 
7067 /*
7068  * This function checks whether pageblock includes unmovable pages or not.
7069  * If @count is not zero, it is okay to include less @count unmovable pages
7070  *
7071  * PageLRU check without isolation or lru_lock could race so that
7072  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7073  * expect this function should be exact.
7074  */
has_unmovable_pages(struct zone * zone,struct page * page,int count,bool skip_hwpoisoned_pages)7075 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7076 			 bool skip_hwpoisoned_pages)
7077 {
7078 	unsigned long pfn, iter, found;
7079 	int mt;
7080 
7081 	/*
7082 	 * For avoiding noise data, lru_add_drain_all() should be called
7083 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7084 	 */
7085 	if (zone_idx(zone) == ZONE_MOVABLE)
7086 		return false;
7087 	mt = get_pageblock_migratetype(page);
7088 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7089 		return false;
7090 
7091 	pfn = page_to_pfn(page);
7092 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7093 		unsigned long check = pfn + iter;
7094 
7095 		if (!pfn_valid_within(check))
7096 			continue;
7097 
7098 		page = pfn_to_page(check);
7099 
7100 		/*
7101 		 * Hugepages are not in LRU lists, but they're movable.
7102 		 * We need not scan over tail pages bacause we don't
7103 		 * handle each tail page individually in migration.
7104 		 */
7105 		if (PageHuge(page)) {
7106 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7107 			continue;
7108 		}
7109 
7110 		/*
7111 		 * We can't use page_count without pin a page
7112 		 * because another CPU can free compound page.
7113 		 * This check already skips compound tails of THP
7114 		 * because their page->_refcount is zero at all time.
7115 		 */
7116 		if (!page_ref_count(page)) {
7117 			if (PageBuddy(page))
7118 				iter += (1 << page_order(page)) - 1;
7119 			continue;
7120 		}
7121 
7122 		/*
7123 		 * The HWPoisoned page may be not in buddy system, and
7124 		 * page_count() is not 0.
7125 		 */
7126 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7127 			continue;
7128 
7129 		if (!PageLRU(page))
7130 			found++;
7131 		/*
7132 		 * If there are RECLAIMABLE pages, we need to check
7133 		 * it.  But now, memory offline itself doesn't call
7134 		 * shrink_node_slabs() and it still to be fixed.
7135 		 */
7136 		/*
7137 		 * If the page is not RAM, page_count()should be 0.
7138 		 * we don't need more check. This is an _used_ not-movable page.
7139 		 *
7140 		 * The problematic thing here is PG_reserved pages. PG_reserved
7141 		 * is set to both of a memory hole page and a _used_ kernel
7142 		 * page at boot.
7143 		 */
7144 		if (found > count)
7145 			return true;
7146 	}
7147 	return false;
7148 }
7149 
is_pageblock_removable_nolock(struct page * page)7150 bool is_pageblock_removable_nolock(struct page *page)
7151 {
7152 	struct zone *zone;
7153 	unsigned long pfn;
7154 
7155 	/*
7156 	 * We have to be careful here because we are iterating over memory
7157 	 * sections which are not zone aware so we might end up outside of
7158 	 * the zone but still within the section.
7159 	 * We have to take care about the node as well. If the node is offline
7160 	 * its NODE_DATA will be NULL - see page_zone.
7161 	 */
7162 	if (!node_online(page_to_nid(page)))
7163 		return false;
7164 
7165 	zone = page_zone(page);
7166 	pfn = page_to_pfn(page);
7167 	if (!zone_spans_pfn(zone, pfn))
7168 		return false;
7169 
7170 	return !has_unmovable_pages(zone, page, 0, true);
7171 }
7172 
7173 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7174 
pfn_max_align_down(unsigned long pfn)7175 static unsigned long pfn_max_align_down(unsigned long pfn)
7176 {
7177 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7178 			     pageblock_nr_pages) - 1);
7179 }
7180 
pfn_max_align_up(unsigned long pfn)7181 static unsigned long pfn_max_align_up(unsigned long pfn)
7182 {
7183 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7184 				pageblock_nr_pages));
7185 }
7186 
7187 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)7188 static int __alloc_contig_migrate_range(struct compact_control *cc,
7189 					unsigned long start, unsigned long end)
7190 {
7191 	/* This function is based on compact_zone() from compaction.c. */
7192 	unsigned long nr_reclaimed;
7193 	unsigned long pfn = start;
7194 	unsigned int tries = 0;
7195 	int ret = 0;
7196 
7197 	migrate_prep();
7198 
7199 	while (pfn < end || !list_empty(&cc->migratepages)) {
7200 		if (fatal_signal_pending(current)) {
7201 			ret = -EINTR;
7202 			break;
7203 		}
7204 
7205 		if (list_empty(&cc->migratepages)) {
7206 			cc->nr_migratepages = 0;
7207 			pfn = isolate_migratepages_range(cc, pfn, end);
7208 			if (!pfn) {
7209 				ret = -EINTR;
7210 				break;
7211 			}
7212 			tries = 0;
7213 		} else if (++tries == 5) {
7214 			ret = ret < 0 ? ret : -EBUSY;
7215 			break;
7216 		}
7217 
7218 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7219 							&cc->migratepages);
7220 		cc->nr_migratepages -= nr_reclaimed;
7221 
7222 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7223 				    NULL, 0, cc->mode, MR_CMA);
7224 	}
7225 	if (ret < 0) {
7226 		putback_movable_pages(&cc->migratepages);
7227 		return ret;
7228 	}
7229 	return 0;
7230 }
7231 
7232 /**
7233  * alloc_contig_range() -- tries to allocate given range of pages
7234  * @start:	start PFN to allocate
7235  * @end:	one-past-the-last PFN to allocate
7236  * @migratetype:	migratetype of the underlaying pageblocks (either
7237  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7238  *			in range must have the same migratetype and it must
7239  *			be either of the two.
7240  *
7241  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7242  * aligned, however it's the caller's responsibility to guarantee that
7243  * we are the only thread that changes migrate type of pageblocks the
7244  * pages fall in.
7245  *
7246  * The PFN range must belong to a single zone.
7247  *
7248  * Returns zero on success or negative error code.  On success all
7249  * pages which PFN is in [start, end) are allocated for the caller and
7250  * need to be freed with free_contig_range().
7251  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype)7252 int alloc_contig_range(unsigned long start, unsigned long end,
7253 		       unsigned migratetype)
7254 {
7255 	unsigned long outer_start, outer_end;
7256 	unsigned int order;
7257 	int ret = 0;
7258 
7259 	struct compact_control cc = {
7260 		.nr_migratepages = 0,
7261 		.order = -1,
7262 		.zone = page_zone(pfn_to_page(start)),
7263 		.mode = MIGRATE_SYNC,
7264 		.ignore_skip_hint = true,
7265 	};
7266 	INIT_LIST_HEAD(&cc.migratepages);
7267 
7268 	/*
7269 	 * What we do here is we mark all pageblocks in range as
7270 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7271 	 * have different sizes, and due to the way page allocator
7272 	 * work, we align the range to biggest of the two pages so
7273 	 * that page allocator won't try to merge buddies from
7274 	 * different pageblocks and change MIGRATE_ISOLATE to some
7275 	 * other migration type.
7276 	 *
7277 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7278 	 * migrate the pages from an unaligned range (ie. pages that
7279 	 * we are interested in).  This will put all the pages in
7280 	 * range back to page allocator as MIGRATE_ISOLATE.
7281 	 *
7282 	 * When this is done, we take the pages in range from page
7283 	 * allocator removing them from the buddy system.  This way
7284 	 * page allocator will never consider using them.
7285 	 *
7286 	 * This lets us mark the pageblocks back as
7287 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7288 	 * aligned range but not in the unaligned, original range are
7289 	 * put back to page allocator so that buddy can use them.
7290 	 */
7291 
7292 	ret = start_isolate_page_range(pfn_max_align_down(start),
7293 				       pfn_max_align_up(end), migratetype,
7294 				       false);
7295 	if (ret)
7296 		return ret;
7297 
7298 	/*
7299 	 * In case of -EBUSY, we'd like to know which page causes problem.
7300 	 * So, just fall through. test_pages_isolated() has a tracepoint
7301 	 * which will report the busy page.
7302 	 *
7303 	 * It is possible that busy pages could become available before
7304 	 * the call to test_pages_isolated, and the range will actually be
7305 	 * allocated.  So, if we fall through be sure to clear ret so that
7306 	 * -EBUSY is not accidentally used or returned to caller.
7307 	 */
7308 	ret = __alloc_contig_migrate_range(&cc, start, end);
7309 	if (ret && ret != -EBUSY)
7310 		goto done;
7311 	ret =0;
7312 
7313 	/*
7314 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7315 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7316 	 * more, all pages in [start, end) are free in page allocator.
7317 	 * What we are going to do is to allocate all pages from
7318 	 * [start, end) (that is remove them from page allocator).
7319 	 *
7320 	 * The only problem is that pages at the beginning and at the
7321 	 * end of interesting range may be not aligned with pages that
7322 	 * page allocator holds, ie. they can be part of higher order
7323 	 * pages.  Because of this, we reserve the bigger range and
7324 	 * once this is done free the pages we are not interested in.
7325 	 *
7326 	 * We don't have to hold zone->lock here because the pages are
7327 	 * isolated thus they won't get removed from buddy.
7328 	 */
7329 
7330 	lru_add_drain_all();
7331 	drain_all_pages(cc.zone);
7332 
7333 	order = 0;
7334 	outer_start = start;
7335 	while (!PageBuddy(pfn_to_page(outer_start))) {
7336 		if (++order >= MAX_ORDER) {
7337 			outer_start = start;
7338 			break;
7339 		}
7340 		outer_start &= ~0UL << order;
7341 	}
7342 
7343 	if (outer_start != start) {
7344 		order = page_order(pfn_to_page(outer_start));
7345 
7346 		/*
7347 		 * outer_start page could be small order buddy page and
7348 		 * it doesn't include start page. Adjust outer_start
7349 		 * in this case to report failed page properly
7350 		 * on tracepoint in test_pages_isolated()
7351 		 */
7352 		if (outer_start + (1UL << order) <= start)
7353 			outer_start = start;
7354 	}
7355 
7356 	/* Make sure the range is really isolated. */
7357 	if (test_pages_isolated(outer_start, end, false)) {
7358 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7359 			__func__, outer_start, end);
7360 		ret = -EBUSY;
7361 		goto done;
7362 	}
7363 
7364 	/* Grab isolated pages from freelists. */
7365 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7366 	if (!outer_end) {
7367 		ret = -EBUSY;
7368 		goto done;
7369 	}
7370 
7371 	/* Free head and tail (if any) */
7372 	if (start != outer_start)
7373 		free_contig_range(outer_start, start - outer_start);
7374 	if (end != outer_end)
7375 		free_contig_range(end, outer_end - end);
7376 
7377 done:
7378 	undo_isolate_page_range(pfn_max_align_down(start),
7379 				pfn_max_align_up(end), migratetype);
7380 	return ret;
7381 }
7382 
free_contig_range(unsigned long pfn,unsigned nr_pages)7383 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7384 {
7385 	unsigned int count = 0;
7386 
7387 	for (; nr_pages--; pfn++) {
7388 		struct page *page = pfn_to_page(pfn);
7389 
7390 		count += page_count(page) != 1;
7391 		__free_page(page);
7392 	}
7393 	WARN(count != 0, "%d pages are still in use!\n", count);
7394 }
7395 #endif
7396 
7397 #ifdef CONFIG_MEMORY_HOTPLUG
7398 /*
7399  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7400  * page high values need to be recalulated.
7401  */
zone_pcp_update(struct zone * zone)7402 void __meminit zone_pcp_update(struct zone *zone)
7403 {
7404 	unsigned cpu;
7405 	mutex_lock(&pcp_batch_high_lock);
7406 	for_each_possible_cpu(cpu)
7407 		pageset_set_high_and_batch(zone,
7408 				per_cpu_ptr(zone->pageset, cpu));
7409 	mutex_unlock(&pcp_batch_high_lock);
7410 }
7411 #endif
7412 
zone_pcp_reset(struct zone * zone)7413 void zone_pcp_reset(struct zone *zone)
7414 {
7415 	unsigned long flags;
7416 	int cpu;
7417 	struct per_cpu_pageset *pset;
7418 
7419 	/* avoid races with drain_pages()  */
7420 	local_irq_save(flags);
7421 	if (zone->pageset != &boot_pageset) {
7422 		for_each_online_cpu(cpu) {
7423 			pset = per_cpu_ptr(zone->pageset, cpu);
7424 			drain_zonestat(zone, pset);
7425 		}
7426 		free_percpu(zone->pageset);
7427 		zone->pageset = &boot_pageset;
7428 	}
7429 	local_irq_restore(flags);
7430 }
7431 
7432 #ifdef CONFIG_MEMORY_HOTREMOVE
7433 /*
7434  * All pages in the range must be in a single zone and isolated
7435  * before calling this.
7436  */
7437 void
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)7438 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7439 {
7440 	struct page *page;
7441 	struct zone *zone;
7442 	unsigned int order, i;
7443 	unsigned long pfn;
7444 	unsigned long flags;
7445 	/* find the first valid pfn */
7446 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7447 		if (pfn_valid(pfn))
7448 			break;
7449 	if (pfn == end_pfn)
7450 		return;
7451 	zone = page_zone(pfn_to_page(pfn));
7452 	spin_lock_irqsave(&zone->lock, flags);
7453 	pfn = start_pfn;
7454 	while (pfn < end_pfn) {
7455 		if (!pfn_valid(pfn)) {
7456 			pfn++;
7457 			continue;
7458 		}
7459 		page = pfn_to_page(pfn);
7460 		/*
7461 		 * The HWPoisoned page may be not in buddy system, and
7462 		 * page_count() is not 0.
7463 		 */
7464 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7465 			pfn++;
7466 			SetPageReserved(page);
7467 			continue;
7468 		}
7469 
7470 		BUG_ON(page_count(page));
7471 		BUG_ON(!PageBuddy(page));
7472 		order = page_order(page);
7473 #ifdef CONFIG_DEBUG_VM
7474 		pr_info("remove from free list %lx %d %lx\n",
7475 			pfn, 1 << order, end_pfn);
7476 #endif
7477 		list_del(&page->lru);
7478 		rmv_page_order(page);
7479 		zone->free_area[order].nr_free--;
7480 		for (i = 0; i < (1 << order); i++)
7481 			SetPageReserved((page+i));
7482 		pfn += (1 << order);
7483 	}
7484 	spin_unlock_irqrestore(&zone->lock, flags);
7485 }
7486 #endif
7487 
is_free_buddy_page(struct page * page)7488 bool is_free_buddy_page(struct page *page)
7489 {
7490 	struct zone *zone = page_zone(page);
7491 	unsigned long pfn = page_to_pfn(page);
7492 	unsigned long flags;
7493 	unsigned int order;
7494 
7495 	spin_lock_irqsave(&zone->lock, flags);
7496 	for (order = 0; order < MAX_ORDER; order++) {
7497 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7498 
7499 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7500 			break;
7501 	}
7502 	spin_unlock_irqrestore(&zone->lock, flags);
7503 
7504 	return order < MAX_ORDER;
7505 }
7506