1 /*
2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2001,2002 Richard Russon
6 *
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/stddef.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/spinlock.h>
29 #include <linux/blkdev.h> /* For bdev_logical_block_size(). */
30 #include <linux/backing-dev.h>
31 #include <linux/buffer_head.h>
32 #include <linux/vfs.h>
33 #include <linux/moduleparam.h>
34 #include <linux/bitmap.h>
35
36 #include "sysctl.h"
37 #include "logfile.h"
38 #include "quota.h"
39 #include "usnjrnl.h"
40 #include "dir.h"
41 #include "debug.h"
42 #include "index.h"
43 #include "inode.h"
44 #include "aops.h"
45 #include "layout.h"
46 #include "malloc.h"
47 #include "ntfs.h"
48
49 /* Number of mounted filesystems which have compression enabled. */
50 static unsigned long ntfs_nr_compression_users;
51
52 /* A global default upcase table and a corresponding reference count. */
53 static ntfschar *default_upcase;
54 static unsigned long ntfs_nr_upcase_users;
55
56 /* Error constants/strings used in inode.c::ntfs_show_options(). */
57 typedef enum {
58 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
59 ON_ERRORS_PANIC = 0x01,
60 ON_ERRORS_REMOUNT_RO = 0x02,
61 ON_ERRORS_CONTINUE = 0x04,
62 /* Optional, can be combined with any of the above. */
63 ON_ERRORS_RECOVER = 0x10,
64 } ON_ERRORS_ACTIONS;
65
66 const option_t on_errors_arr[] = {
67 { ON_ERRORS_PANIC, "panic" },
68 { ON_ERRORS_REMOUNT_RO, "remount-ro", },
69 { ON_ERRORS_CONTINUE, "continue", },
70 { ON_ERRORS_RECOVER, "recover" },
71 { 0, NULL }
72 };
73
74 /**
75 * simple_getbool -
76 *
77 * Copied from old ntfs driver (which copied from vfat driver).
78 */
simple_getbool(char * s,bool * setval)79 static int simple_getbool(char *s, bool *setval)
80 {
81 if (s) {
82 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
83 *setval = true;
84 else if (!strcmp(s, "0") || !strcmp(s, "no") ||
85 !strcmp(s, "false"))
86 *setval = false;
87 else
88 return 0;
89 } else
90 *setval = true;
91 return 1;
92 }
93
94 /**
95 * parse_options - parse the (re)mount options
96 * @vol: ntfs volume
97 * @opt: string containing the (re)mount options
98 *
99 * Parse the recognized options in @opt for the ntfs volume described by @vol.
100 */
parse_options(ntfs_volume * vol,char * opt)101 static bool parse_options(ntfs_volume *vol, char *opt)
102 {
103 char *p, *v, *ov;
104 static char *utf8 = "utf8";
105 int errors = 0, sloppy = 0;
106 kuid_t uid = INVALID_UID;
107 kgid_t gid = INVALID_GID;
108 umode_t fmask = (umode_t)-1, dmask = (umode_t)-1;
109 int mft_zone_multiplier = -1, on_errors = -1;
110 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
111 struct nls_table *nls_map = NULL, *old_nls;
112
113 /* I am lazy... (-8 */
114 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
115 if (!strcmp(p, option)) { \
116 if (!v || !*v) \
117 variable = default_value; \
118 else { \
119 variable = simple_strtoul(ov = v, &v, 0); \
120 if (*v) \
121 goto needs_val; \
122 } \
123 }
124 #define NTFS_GETOPT(option, variable) \
125 if (!strcmp(p, option)) { \
126 if (!v || !*v) \
127 goto needs_arg; \
128 variable = simple_strtoul(ov = v, &v, 0); \
129 if (*v) \
130 goto needs_val; \
131 }
132 #define NTFS_GETOPT_UID(option, variable) \
133 if (!strcmp(p, option)) { \
134 uid_t uid_value; \
135 if (!v || !*v) \
136 goto needs_arg; \
137 uid_value = simple_strtoul(ov = v, &v, 0); \
138 if (*v) \
139 goto needs_val; \
140 variable = make_kuid(current_user_ns(), uid_value); \
141 if (!uid_valid(variable)) \
142 goto needs_val; \
143 }
144 #define NTFS_GETOPT_GID(option, variable) \
145 if (!strcmp(p, option)) { \
146 gid_t gid_value; \
147 if (!v || !*v) \
148 goto needs_arg; \
149 gid_value = simple_strtoul(ov = v, &v, 0); \
150 if (*v) \
151 goto needs_val; \
152 variable = make_kgid(current_user_ns(), gid_value); \
153 if (!gid_valid(variable)) \
154 goto needs_val; \
155 }
156 #define NTFS_GETOPT_OCTAL(option, variable) \
157 if (!strcmp(p, option)) { \
158 if (!v || !*v) \
159 goto needs_arg; \
160 variable = simple_strtoul(ov = v, &v, 8); \
161 if (*v) \
162 goto needs_val; \
163 }
164 #define NTFS_GETOPT_BOOL(option, variable) \
165 if (!strcmp(p, option)) { \
166 bool val; \
167 if (!simple_getbool(v, &val)) \
168 goto needs_bool; \
169 variable = val; \
170 }
171 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
172 if (!strcmp(p, option)) { \
173 int _i; \
174 if (!v || !*v) \
175 goto needs_arg; \
176 ov = v; \
177 if (variable == -1) \
178 variable = 0; \
179 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
180 if (!strcmp(opt_array[_i].str, v)) { \
181 variable |= opt_array[_i].val; \
182 break; \
183 } \
184 if (!opt_array[_i].str || !*opt_array[_i].str) \
185 goto needs_val; \
186 }
187 if (!opt || !*opt)
188 goto no_mount_options;
189 ntfs_debug("Entering with mount options string: %s", opt);
190 while ((p = strsep(&opt, ","))) {
191 if ((v = strchr(p, '=')))
192 *v++ = 0;
193 NTFS_GETOPT_UID("uid", uid)
194 else NTFS_GETOPT_GID("gid", gid)
195 else NTFS_GETOPT_OCTAL("umask", fmask = dmask)
196 else NTFS_GETOPT_OCTAL("fmask", fmask)
197 else NTFS_GETOPT_OCTAL("dmask", dmask)
198 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
199 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, true)
200 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
201 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
202 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
203 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
204 on_errors_arr)
205 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
206 ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
207 p);
208 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
209 if (!strcmp(p, "iocharset"))
210 ntfs_warning(vol->sb, "Option iocharset is "
211 "deprecated. Please use "
212 "option nls=<charsetname> in "
213 "the future.");
214 if (!v || !*v)
215 goto needs_arg;
216 use_utf8:
217 old_nls = nls_map;
218 nls_map = load_nls(v);
219 if (!nls_map) {
220 if (!old_nls) {
221 ntfs_error(vol->sb, "NLS character set "
222 "%s not found.", v);
223 return false;
224 }
225 ntfs_error(vol->sb, "NLS character set %s not "
226 "found. Using previous one %s.",
227 v, old_nls->charset);
228 nls_map = old_nls;
229 } else /* nls_map */ {
230 unload_nls(old_nls);
231 }
232 } else if (!strcmp(p, "utf8")) {
233 bool val = false;
234 ntfs_warning(vol->sb, "Option utf8 is no longer "
235 "supported, using option nls=utf8. Please "
236 "use option nls=utf8 in the future and "
237 "make sure utf8 is compiled either as a "
238 "module or into the kernel.");
239 if (!v || !*v)
240 val = true;
241 else if (!simple_getbool(v, &val))
242 goto needs_bool;
243 if (val) {
244 v = utf8;
245 goto use_utf8;
246 }
247 } else {
248 ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
249 if (errors < INT_MAX)
250 errors++;
251 }
252 #undef NTFS_GETOPT_OPTIONS_ARRAY
253 #undef NTFS_GETOPT_BOOL
254 #undef NTFS_GETOPT
255 #undef NTFS_GETOPT_WITH_DEFAULT
256 }
257 no_mount_options:
258 if (errors && !sloppy)
259 return false;
260 if (sloppy)
261 ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
262 "unrecognized mount option(s) and continuing.");
263 /* Keep this first! */
264 if (on_errors != -1) {
265 if (!on_errors) {
266 ntfs_error(vol->sb, "Invalid errors option argument "
267 "or bug in options parser.");
268 return false;
269 }
270 }
271 if (nls_map) {
272 if (vol->nls_map && vol->nls_map != nls_map) {
273 ntfs_error(vol->sb, "Cannot change NLS character set "
274 "on remount.");
275 return false;
276 } /* else (!vol->nls_map) */
277 ntfs_debug("Using NLS character set %s.", nls_map->charset);
278 vol->nls_map = nls_map;
279 } else /* (!nls_map) */ {
280 if (!vol->nls_map) {
281 vol->nls_map = load_nls_default();
282 if (!vol->nls_map) {
283 ntfs_error(vol->sb, "Failed to load default "
284 "NLS character set.");
285 return false;
286 }
287 ntfs_debug("Using default NLS character set (%s).",
288 vol->nls_map->charset);
289 }
290 }
291 if (mft_zone_multiplier != -1) {
292 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
293 mft_zone_multiplier) {
294 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
295 "on remount.");
296 return false;
297 }
298 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
299 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
300 "Using default value, i.e. 1.");
301 mft_zone_multiplier = 1;
302 }
303 vol->mft_zone_multiplier = mft_zone_multiplier;
304 }
305 if (!vol->mft_zone_multiplier)
306 vol->mft_zone_multiplier = 1;
307 if (on_errors != -1)
308 vol->on_errors = on_errors;
309 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
310 vol->on_errors |= ON_ERRORS_CONTINUE;
311 if (uid_valid(uid))
312 vol->uid = uid;
313 if (gid_valid(gid))
314 vol->gid = gid;
315 if (fmask != (umode_t)-1)
316 vol->fmask = fmask;
317 if (dmask != (umode_t)-1)
318 vol->dmask = dmask;
319 if (show_sys_files != -1) {
320 if (show_sys_files)
321 NVolSetShowSystemFiles(vol);
322 else
323 NVolClearShowSystemFiles(vol);
324 }
325 if (case_sensitive != -1) {
326 if (case_sensitive)
327 NVolSetCaseSensitive(vol);
328 else
329 NVolClearCaseSensitive(vol);
330 }
331 if (disable_sparse != -1) {
332 if (disable_sparse)
333 NVolClearSparseEnabled(vol);
334 else {
335 if (!NVolSparseEnabled(vol) &&
336 vol->major_ver && vol->major_ver < 3)
337 ntfs_warning(vol->sb, "Not enabling sparse "
338 "support due to NTFS volume "
339 "version %i.%i (need at least "
340 "version 3.0).", vol->major_ver,
341 vol->minor_ver);
342 else
343 NVolSetSparseEnabled(vol);
344 }
345 }
346 return true;
347 needs_arg:
348 ntfs_error(vol->sb, "The %s option requires an argument.", p);
349 return false;
350 needs_bool:
351 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
352 return false;
353 needs_val:
354 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
355 return false;
356 }
357
358 #ifdef NTFS_RW
359
360 /**
361 * ntfs_write_volume_flags - write new flags to the volume information flags
362 * @vol: ntfs volume on which to modify the flags
363 * @flags: new flags value for the volume information flags
364 *
365 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
366 * instead (see below).
367 *
368 * Replace the volume information flags on the volume @vol with the value
369 * supplied in @flags. Note, this overwrites the volume information flags, so
370 * make sure to combine the flags you want to modify with the old flags and use
371 * the result when calling ntfs_write_volume_flags().
372 *
373 * Return 0 on success and -errno on error.
374 */
ntfs_write_volume_flags(ntfs_volume * vol,const VOLUME_FLAGS flags)375 static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
376 {
377 ntfs_inode *ni = NTFS_I(vol->vol_ino);
378 MFT_RECORD *m;
379 VOLUME_INFORMATION *vi;
380 ntfs_attr_search_ctx *ctx;
381 int err;
382
383 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
384 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
385 if (vol->vol_flags == flags)
386 goto done;
387 BUG_ON(!ni);
388 m = map_mft_record(ni);
389 if (IS_ERR(m)) {
390 err = PTR_ERR(m);
391 goto err_out;
392 }
393 ctx = ntfs_attr_get_search_ctx(ni, m);
394 if (!ctx) {
395 err = -ENOMEM;
396 goto put_unm_err_out;
397 }
398 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
399 ctx);
400 if (err)
401 goto put_unm_err_out;
402 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
403 le16_to_cpu(ctx->attr->data.resident.value_offset));
404 vol->vol_flags = vi->flags = flags;
405 flush_dcache_mft_record_page(ctx->ntfs_ino);
406 mark_mft_record_dirty(ctx->ntfs_ino);
407 ntfs_attr_put_search_ctx(ctx);
408 unmap_mft_record(ni);
409 done:
410 ntfs_debug("Done.");
411 return 0;
412 put_unm_err_out:
413 if (ctx)
414 ntfs_attr_put_search_ctx(ctx);
415 unmap_mft_record(ni);
416 err_out:
417 ntfs_error(vol->sb, "Failed with error code %i.", -err);
418 return err;
419 }
420
421 /**
422 * ntfs_set_volume_flags - set bits in the volume information flags
423 * @vol: ntfs volume on which to modify the flags
424 * @flags: flags to set on the volume
425 *
426 * Set the bits in @flags in the volume information flags on the volume @vol.
427 *
428 * Return 0 on success and -errno on error.
429 */
ntfs_set_volume_flags(ntfs_volume * vol,VOLUME_FLAGS flags)430 static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
431 {
432 flags &= VOLUME_FLAGS_MASK;
433 return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
434 }
435
436 /**
437 * ntfs_clear_volume_flags - clear bits in the volume information flags
438 * @vol: ntfs volume on which to modify the flags
439 * @flags: flags to clear on the volume
440 *
441 * Clear the bits in @flags in the volume information flags on the volume @vol.
442 *
443 * Return 0 on success and -errno on error.
444 */
ntfs_clear_volume_flags(ntfs_volume * vol,VOLUME_FLAGS flags)445 static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
446 {
447 flags &= VOLUME_FLAGS_MASK;
448 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
449 return ntfs_write_volume_flags(vol, flags);
450 }
451
452 #endif /* NTFS_RW */
453
454 /**
455 * ntfs_remount - change the mount options of a mounted ntfs filesystem
456 * @sb: superblock of mounted ntfs filesystem
457 * @flags: remount flags
458 * @opt: remount options string
459 *
460 * Change the mount options of an already mounted ntfs filesystem.
461 *
462 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
463 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
464 * @sb->s_flags are not changed.
465 */
ntfs_remount(struct super_block * sb,int * flags,char * opt)466 static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
467 {
468 ntfs_volume *vol = NTFS_SB(sb);
469
470 ntfs_debug("Entering with remount options string: %s", opt);
471
472 sync_filesystem(sb);
473
474 #ifndef NTFS_RW
475 /* For read-only compiled driver, enforce read-only flag. */
476 *flags |= MS_RDONLY;
477 #else /* NTFS_RW */
478 /*
479 * For the read-write compiled driver, if we are remounting read-write,
480 * make sure there are no volume errors and that no unsupported volume
481 * flags are set. Also, empty the logfile journal as it would become
482 * stale as soon as something is written to the volume and mark the
483 * volume dirty so that chkdsk is run if the volume is not umounted
484 * cleanly. Finally, mark the quotas out of date so Windows rescans
485 * the volume on boot and updates them.
486 *
487 * When remounting read-only, mark the volume clean if no volume errors
488 * have occurred.
489 */
490 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
491 static const char *es = ". Cannot remount read-write.";
492
493 /* Remounting read-write. */
494 if (NVolErrors(vol)) {
495 ntfs_error(sb, "Volume has errors and is read-only%s",
496 es);
497 return -EROFS;
498 }
499 if (vol->vol_flags & VOLUME_IS_DIRTY) {
500 ntfs_error(sb, "Volume is dirty and read-only%s", es);
501 return -EROFS;
502 }
503 if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
504 ntfs_error(sb, "Volume has been modified by chkdsk "
505 "and is read-only%s", es);
506 return -EROFS;
507 }
508 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
509 ntfs_error(sb, "Volume has unsupported flags set "
510 "(0x%x) and is read-only%s",
511 (unsigned)le16_to_cpu(vol->vol_flags),
512 es);
513 return -EROFS;
514 }
515 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
516 ntfs_error(sb, "Failed to set dirty bit in volume "
517 "information flags%s", es);
518 return -EROFS;
519 }
520 #if 0
521 // TODO: Enable this code once we start modifying anything that
522 // is different between NTFS 1.2 and 3.x...
523 /* Set NT4 compatibility flag on newer NTFS version volumes. */
524 if ((vol->major_ver > 1)) {
525 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
526 ntfs_error(sb, "Failed to set NT4 "
527 "compatibility flag%s", es);
528 NVolSetErrors(vol);
529 return -EROFS;
530 }
531 }
532 #endif
533 if (!ntfs_empty_logfile(vol->logfile_ino)) {
534 ntfs_error(sb, "Failed to empty journal $LogFile%s",
535 es);
536 NVolSetErrors(vol);
537 return -EROFS;
538 }
539 if (!ntfs_mark_quotas_out_of_date(vol)) {
540 ntfs_error(sb, "Failed to mark quotas out of date%s",
541 es);
542 NVolSetErrors(vol);
543 return -EROFS;
544 }
545 if (!ntfs_stamp_usnjrnl(vol)) {
546 ntfs_error(sb, "Failed to stamp transaction log "
547 "($UsnJrnl)%s", es);
548 NVolSetErrors(vol);
549 return -EROFS;
550 }
551 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
552 /* Remounting read-only. */
553 if (!NVolErrors(vol)) {
554 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
555 ntfs_warning(sb, "Failed to clear dirty bit "
556 "in volume information "
557 "flags. Run chkdsk.");
558 }
559 }
560 #endif /* NTFS_RW */
561
562 // TODO: Deal with *flags.
563
564 if (!parse_options(vol, opt))
565 return -EINVAL;
566
567 ntfs_debug("Done.");
568 return 0;
569 }
570
571 /**
572 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
573 * @sb: Super block of the device to which @b belongs.
574 * @b: Boot sector of device @sb to check.
575 * @silent: If 'true', all output will be silenced.
576 *
577 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
578 * sector. Returns 'true' if it is valid and 'false' if not.
579 *
580 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
581 * is 'true'.
582 */
is_boot_sector_ntfs(const struct super_block * sb,const NTFS_BOOT_SECTOR * b,const bool silent)583 static bool is_boot_sector_ntfs(const struct super_block *sb,
584 const NTFS_BOOT_SECTOR *b, const bool silent)
585 {
586 /*
587 * Check that checksum == sum of u32 values from b to the checksum
588 * field. If checksum is zero, no checking is done. We will work when
589 * the checksum test fails, since some utilities update the boot sector
590 * ignoring the checksum which leaves the checksum out-of-date. We
591 * report a warning if this is the case.
592 */
593 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
594 le32 *u;
595 u32 i;
596
597 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
598 i += le32_to_cpup(u);
599 if (le32_to_cpu(b->checksum) != i)
600 ntfs_warning(sb, "Invalid boot sector checksum.");
601 }
602 /* Check OEMidentifier is "NTFS " */
603 if (b->oem_id != magicNTFS)
604 goto not_ntfs;
605 /* Check bytes per sector value is between 256 and 4096. */
606 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
607 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
608 goto not_ntfs;
609 /* Check sectors per cluster value is valid. */
610 switch (b->bpb.sectors_per_cluster) {
611 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
612 break;
613 default:
614 goto not_ntfs;
615 }
616 /* Check the cluster size is not above the maximum (64kiB). */
617 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
618 b->bpb.sectors_per_cluster > NTFS_MAX_CLUSTER_SIZE)
619 goto not_ntfs;
620 /* Check reserved/unused fields are really zero. */
621 if (le16_to_cpu(b->bpb.reserved_sectors) ||
622 le16_to_cpu(b->bpb.root_entries) ||
623 le16_to_cpu(b->bpb.sectors) ||
624 le16_to_cpu(b->bpb.sectors_per_fat) ||
625 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
626 goto not_ntfs;
627 /* Check clusters per file mft record value is valid. */
628 if ((u8)b->clusters_per_mft_record < 0xe1 ||
629 (u8)b->clusters_per_mft_record > 0xf7)
630 switch (b->clusters_per_mft_record) {
631 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
632 break;
633 default:
634 goto not_ntfs;
635 }
636 /* Check clusters per index block value is valid. */
637 if ((u8)b->clusters_per_index_record < 0xe1 ||
638 (u8)b->clusters_per_index_record > 0xf7)
639 switch (b->clusters_per_index_record) {
640 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
641 break;
642 default:
643 goto not_ntfs;
644 }
645 /*
646 * Check for valid end of sector marker. We will work without it, but
647 * many BIOSes will refuse to boot from a bootsector if the magic is
648 * incorrect, so we emit a warning.
649 */
650 if (!silent && b->end_of_sector_marker != cpu_to_le16(0xaa55))
651 ntfs_warning(sb, "Invalid end of sector marker.");
652 return true;
653 not_ntfs:
654 return false;
655 }
656
657 /**
658 * read_ntfs_boot_sector - read the NTFS boot sector of a device
659 * @sb: super block of device to read the boot sector from
660 * @silent: if true, suppress all output
661 *
662 * Reads the boot sector from the device and validates it. If that fails, tries
663 * to read the backup boot sector, first from the end of the device a-la NT4 and
664 * later and then from the middle of the device a-la NT3.51 and before.
665 *
666 * If a valid boot sector is found but it is not the primary boot sector, we
667 * repair the primary boot sector silently (unless the device is read-only or
668 * the primary boot sector is not accessible).
669 *
670 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
671 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
672 * to their respective values.
673 *
674 * Return the unlocked buffer head containing the boot sector or NULL on error.
675 */
read_ntfs_boot_sector(struct super_block * sb,const int silent)676 static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
677 const int silent)
678 {
679 const char *read_err_str = "Unable to read %s boot sector.";
680 struct buffer_head *bh_primary, *bh_backup;
681 sector_t nr_blocks = NTFS_SB(sb)->nr_blocks;
682
683 /* Try to read primary boot sector. */
684 if ((bh_primary = sb_bread(sb, 0))) {
685 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
686 bh_primary->b_data, silent))
687 return bh_primary;
688 if (!silent)
689 ntfs_error(sb, "Primary boot sector is invalid.");
690 } else if (!silent)
691 ntfs_error(sb, read_err_str, "primary");
692 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
693 if (bh_primary)
694 brelse(bh_primary);
695 if (!silent)
696 ntfs_error(sb, "Mount option errors=recover not used. "
697 "Aborting without trying to recover.");
698 return NULL;
699 }
700 /* Try to read NT4+ backup boot sector. */
701 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
702 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
703 bh_backup->b_data, silent))
704 goto hotfix_primary_boot_sector;
705 brelse(bh_backup);
706 } else if (!silent)
707 ntfs_error(sb, read_err_str, "backup");
708 /* Try to read NT3.51- backup boot sector. */
709 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
710 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
711 bh_backup->b_data, silent))
712 goto hotfix_primary_boot_sector;
713 if (!silent)
714 ntfs_error(sb, "Could not find a valid backup boot "
715 "sector.");
716 brelse(bh_backup);
717 } else if (!silent)
718 ntfs_error(sb, read_err_str, "backup");
719 /* We failed. Cleanup and return. */
720 if (bh_primary)
721 brelse(bh_primary);
722 return NULL;
723 hotfix_primary_boot_sector:
724 if (bh_primary) {
725 /*
726 * If we managed to read sector zero and the volume is not
727 * read-only, copy the found, valid backup boot sector to the
728 * primary boot sector. Note we only copy the actual boot
729 * sector structure, not the actual whole device sector as that
730 * may be bigger and would potentially damage the $Boot system
731 * file (FIXME: Would be nice to know if the backup boot sector
732 * on a large sector device contains the whole boot loader or
733 * just the first 512 bytes).
734 */
735 if (!(sb->s_flags & MS_RDONLY)) {
736 ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
737 "boot sector from backup copy.");
738 memcpy(bh_primary->b_data, bh_backup->b_data,
739 NTFS_BLOCK_SIZE);
740 mark_buffer_dirty(bh_primary);
741 sync_dirty_buffer(bh_primary);
742 if (buffer_uptodate(bh_primary)) {
743 brelse(bh_backup);
744 return bh_primary;
745 }
746 ntfs_error(sb, "Hot-fix: Device write error while "
747 "recovering primary boot sector.");
748 } else {
749 ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
750 "sector failed: Read-only mount.");
751 }
752 brelse(bh_primary);
753 }
754 ntfs_warning(sb, "Using backup boot sector.");
755 return bh_backup;
756 }
757
758 /**
759 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
760 * @vol: volume structure to initialise with data from boot sector
761 * @b: boot sector to parse
762 *
763 * Parse the ntfs boot sector @b and store all imporant information therein in
764 * the ntfs super block @vol. Return 'true' on success and 'false' on error.
765 */
parse_ntfs_boot_sector(ntfs_volume * vol,const NTFS_BOOT_SECTOR * b)766 static bool parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
767 {
768 unsigned int sectors_per_cluster_bits, nr_hidden_sects;
769 int clusters_per_mft_record, clusters_per_index_record;
770 s64 ll;
771
772 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
773 vol->sector_size_bits = ffs(vol->sector_size) - 1;
774 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
775 vol->sector_size);
776 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
777 vol->sector_size_bits);
778 if (vol->sector_size < vol->sb->s_blocksize) {
779 ntfs_error(vol->sb, "Sector size (%i) is smaller than the "
780 "device block size (%lu). This is not "
781 "supported. Sorry.", vol->sector_size,
782 vol->sb->s_blocksize);
783 return false;
784 }
785 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
786 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
787 ntfs_debug("sectors_per_cluster_bits = 0x%x",
788 sectors_per_cluster_bits);
789 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
790 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
791 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
792 vol->cluster_size_mask = vol->cluster_size - 1;
793 vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
794 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
795 vol->cluster_size);
796 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
797 ntfs_debug("vol->cluster_size_bits = %i", vol->cluster_size_bits);
798 if (vol->cluster_size < vol->sector_size) {
799 ntfs_error(vol->sb, "Cluster size (%i) is smaller than the "
800 "sector size (%i). This is not supported. "
801 "Sorry.", vol->cluster_size, vol->sector_size);
802 return false;
803 }
804 clusters_per_mft_record = b->clusters_per_mft_record;
805 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
806 clusters_per_mft_record, clusters_per_mft_record);
807 if (clusters_per_mft_record > 0)
808 vol->mft_record_size = vol->cluster_size <<
809 (ffs(clusters_per_mft_record) - 1);
810 else
811 /*
812 * When mft_record_size < cluster_size, clusters_per_mft_record
813 * = -log2(mft_record_size) bytes. mft_record_size normaly is
814 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
815 */
816 vol->mft_record_size = 1 << -clusters_per_mft_record;
817 vol->mft_record_size_mask = vol->mft_record_size - 1;
818 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
819 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
820 vol->mft_record_size);
821 ntfs_debug("vol->mft_record_size_mask = 0x%x",
822 vol->mft_record_size_mask);
823 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
824 vol->mft_record_size_bits, vol->mft_record_size_bits);
825 /*
826 * We cannot support mft record sizes above the PAGE_SIZE since
827 * we store $MFT/$DATA, the table of mft records in the page cache.
828 */
829 if (vol->mft_record_size > PAGE_SIZE) {
830 ntfs_error(vol->sb, "Mft record size (%i) exceeds the "
831 "PAGE_SIZE on your system (%lu). "
832 "This is not supported. Sorry.",
833 vol->mft_record_size, PAGE_SIZE);
834 return false;
835 }
836 /* We cannot support mft record sizes below the sector size. */
837 if (vol->mft_record_size < vol->sector_size) {
838 ntfs_error(vol->sb, "Mft record size (%i) is smaller than the "
839 "sector size (%i). This is not supported. "
840 "Sorry.", vol->mft_record_size,
841 vol->sector_size);
842 return false;
843 }
844 clusters_per_index_record = b->clusters_per_index_record;
845 ntfs_debug("clusters_per_index_record = %i (0x%x)",
846 clusters_per_index_record, clusters_per_index_record);
847 if (clusters_per_index_record > 0)
848 vol->index_record_size = vol->cluster_size <<
849 (ffs(clusters_per_index_record) - 1);
850 else
851 /*
852 * When index_record_size < cluster_size,
853 * clusters_per_index_record = -log2(index_record_size) bytes.
854 * index_record_size normaly equals 4096 bytes, which is
855 * encoded as 0xF4 (-12 in decimal).
856 */
857 vol->index_record_size = 1 << -clusters_per_index_record;
858 vol->index_record_size_mask = vol->index_record_size - 1;
859 vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
860 ntfs_debug("vol->index_record_size = %i (0x%x)",
861 vol->index_record_size, vol->index_record_size);
862 ntfs_debug("vol->index_record_size_mask = 0x%x",
863 vol->index_record_size_mask);
864 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
865 vol->index_record_size_bits,
866 vol->index_record_size_bits);
867 /* We cannot support index record sizes below the sector size. */
868 if (vol->index_record_size < vol->sector_size) {
869 ntfs_error(vol->sb, "Index record size (%i) is smaller than "
870 "the sector size (%i). This is not "
871 "supported. Sorry.", vol->index_record_size,
872 vol->sector_size);
873 return false;
874 }
875 /*
876 * Get the size of the volume in clusters and check for 64-bit-ness.
877 * Windows currently only uses 32 bits to save the clusters so we do
878 * the same as it is much faster on 32-bit CPUs.
879 */
880 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
881 if ((u64)ll >= 1ULL << 32) {
882 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
883 return false;
884 }
885 vol->nr_clusters = ll;
886 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
887 /*
888 * On an architecture where unsigned long is 32-bits, we restrict the
889 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
890 * will hopefully optimize the whole check away.
891 */
892 if (sizeof(unsigned long) < 8) {
893 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
894 ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
895 "large for this architecture. "
896 "Maximum supported is 2TiB. Sorry.",
897 (unsigned long long)ll >> (40 -
898 vol->cluster_size_bits));
899 return false;
900 }
901 }
902 ll = sle64_to_cpu(b->mft_lcn);
903 if (ll >= vol->nr_clusters) {
904 ntfs_error(vol->sb, "MFT LCN (%lli, 0x%llx) is beyond end of "
905 "volume. Weird.", (unsigned long long)ll,
906 (unsigned long long)ll);
907 return false;
908 }
909 vol->mft_lcn = ll;
910 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
911 ll = sle64_to_cpu(b->mftmirr_lcn);
912 if (ll >= vol->nr_clusters) {
913 ntfs_error(vol->sb, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
914 "of volume. Weird.", (unsigned long long)ll,
915 (unsigned long long)ll);
916 return false;
917 }
918 vol->mftmirr_lcn = ll;
919 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
920 #ifdef NTFS_RW
921 /*
922 * Work out the size of the mft mirror in number of mft records. If the
923 * cluster size is less than or equal to the size taken by four mft
924 * records, the mft mirror stores the first four mft records. If the
925 * cluster size is bigger than the size taken by four mft records, the
926 * mft mirror contains as many mft records as will fit into one
927 * cluster.
928 */
929 if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
930 vol->mftmirr_size = 4;
931 else
932 vol->mftmirr_size = vol->cluster_size >>
933 vol->mft_record_size_bits;
934 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
935 #endif /* NTFS_RW */
936 vol->serial_no = le64_to_cpu(b->volume_serial_number);
937 ntfs_debug("vol->serial_no = 0x%llx",
938 (unsigned long long)vol->serial_no);
939 return true;
940 }
941
942 /**
943 * ntfs_setup_allocators - initialize the cluster and mft allocators
944 * @vol: volume structure for which to setup the allocators
945 *
946 * Setup the cluster (lcn) and mft allocators to the starting values.
947 */
ntfs_setup_allocators(ntfs_volume * vol)948 static void ntfs_setup_allocators(ntfs_volume *vol)
949 {
950 #ifdef NTFS_RW
951 LCN mft_zone_size, mft_lcn;
952 #endif /* NTFS_RW */
953
954 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
955 vol->mft_zone_multiplier);
956 #ifdef NTFS_RW
957 /* Determine the size of the MFT zone. */
958 mft_zone_size = vol->nr_clusters;
959 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
960 case 4:
961 mft_zone_size >>= 1; /* 50% */
962 break;
963 case 3:
964 mft_zone_size = (mft_zone_size +
965 (mft_zone_size >> 1)) >> 2; /* 37.5% */
966 break;
967 case 2:
968 mft_zone_size >>= 2; /* 25% */
969 break;
970 /* case 1: */
971 default:
972 mft_zone_size >>= 3; /* 12.5% */
973 break;
974 }
975 /* Setup the mft zone. */
976 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
977 ntfs_debug("vol->mft_zone_pos = 0x%llx",
978 (unsigned long long)vol->mft_zone_pos);
979 /*
980 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
981 * source) and if the actual mft_lcn is in the expected place or even
982 * further to the front of the volume, extend the mft_zone to cover the
983 * beginning of the volume as well. This is in order to protect the
984 * area reserved for the mft bitmap as well within the mft_zone itself.
985 * On non-standard volumes we do not protect it as the overhead would
986 * be higher than the speed increase we would get by doing it.
987 */
988 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
989 if (mft_lcn * vol->cluster_size < 16 * 1024)
990 mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
991 vol->cluster_size;
992 if (vol->mft_zone_start <= mft_lcn)
993 vol->mft_zone_start = 0;
994 ntfs_debug("vol->mft_zone_start = 0x%llx",
995 (unsigned long long)vol->mft_zone_start);
996 /*
997 * Need to cap the mft zone on non-standard volumes so that it does
998 * not point outside the boundaries of the volume. We do this by
999 * halving the zone size until we are inside the volume.
1000 */
1001 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1002 while (vol->mft_zone_end >= vol->nr_clusters) {
1003 mft_zone_size >>= 1;
1004 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
1005 }
1006 ntfs_debug("vol->mft_zone_end = 0x%llx",
1007 (unsigned long long)vol->mft_zone_end);
1008 /*
1009 * Set the current position within each data zone to the start of the
1010 * respective zone.
1011 */
1012 vol->data1_zone_pos = vol->mft_zone_end;
1013 ntfs_debug("vol->data1_zone_pos = 0x%llx",
1014 (unsigned long long)vol->data1_zone_pos);
1015 vol->data2_zone_pos = 0;
1016 ntfs_debug("vol->data2_zone_pos = 0x%llx",
1017 (unsigned long long)vol->data2_zone_pos);
1018
1019 /* Set the mft data allocation position to mft record 24. */
1020 vol->mft_data_pos = 24;
1021 ntfs_debug("vol->mft_data_pos = 0x%llx",
1022 (unsigned long long)vol->mft_data_pos);
1023 #endif /* NTFS_RW */
1024 }
1025
1026 #ifdef NTFS_RW
1027
1028 /**
1029 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1030 * @vol: ntfs super block describing device whose mft mirror to load
1031 *
1032 * Return 'true' on success or 'false' on error.
1033 */
load_and_init_mft_mirror(ntfs_volume * vol)1034 static bool load_and_init_mft_mirror(ntfs_volume *vol)
1035 {
1036 struct inode *tmp_ino;
1037 ntfs_inode *tmp_ni;
1038
1039 ntfs_debug("Entering.");
1040 /* Get mft mirror inode. */
1041 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
1042 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1043 if (!IS_ERR(tmp_ino))
1044 iput(tmp_ino);
1045 /* Caller will display error message. */
1046 return false;
1047 }
1048 /*
1049 * Re-initialize some specifics about $MFTMirr's inode as
1050 * ntfs_read_inode() will have set up the default ones.
1051 */
1052 /* Set uid and gid to root. */
1053 tmp_ino->i_uid = GLOBAL_ROOT_UID;
1054 tmp_ino->i_gid = GLOBAL_ROOT_GID;
1055 /* Regular file. No access for anyone. */
1056 tmp_ino->i_mode = S_IFREG;
1057 /* No VFS initiated operations allowed for $MFTMirr. */
1058 tmp_ino->i_op = &ntfs_empty_inode_ops;
1059 tmp_ino->i_fop = &ntfs_empty_file_ops;
1060 /* Put in our special address space operations. */
1061 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
1062 tmp_ni = NTFS_I(tmp_ino);
1063 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1064 NInoSetMstProtected(tmp_ni);
1065 NInoSetSparseDisabled(tmp_ni);
1066 /*
1067 * Set up our little cheat allowing us to reuse the async read io
1068 * completion handler for directories.
1069 */
1070 tmp_ni->itype.index.block_size = vol->mft_record_size;
1071 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1072 vol->mftmirr_ino = tmp_ino;
1073 ntfs_debug("Done.");
1074 return true;
1075 }
1076
1077 /**
1078 * check_mft_mirror - compare contents of the mft mirror with the mft
1079 * @vol: ntfs super block describing device whose mft mirror to check
1080 *
1081 * Return 'true' on success or 'false' on error.
1082 *
1083 * Note, this function also results in the mft mirror runlist being completely
1084 * mapped into memory. The mft mirror write code requires this and will BUG()
1085 * should it find an unmapped runlist element.
1086 */
check_mft_mirror(ntfs_volume * vol)1087 static bool check_mft_mirror(ntfs_volume *vol)
1088 {
1089 struct super_block *sb = vol->sb;
1090 ntfs_inode *mirr_ni;
1091 struct page *mft_page, *mirr_page;
1092 u8 *kmft, *kmirr;
1093 runlist_element *rl, rl2[2];
1094 pgoff_t index;
1095 int mrecs_per_page, i;
1096
1097 ntfs_debug("Entering.");
1098 /* Compare contents of $MFT and $MFTMirr. */
1099 mrecs_per_page = PAGE_SIZE / vol->mft_record_size;
1100 BUG_ON(!mrecs_per_page);
1101 BUG_ON(!vol->mftmirr_size);
1102 mft_page = mirr_page = NULL;
1103 kmft = kmirr = NULL;
1104 index = i = 0;
1105 do {
1106 u32 bytes;
1107
1108 /* Switch pages if necessary. */
1109 if (!(i % mrecs_per_page)) {
1110 if (index) {
1111 ntfs_unmap_page(mft_page);
1112 ntfs_unmap_page(mirr_page);
1113 }
1114 /* Get the $MFT page. */
1115 mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1116 index);
1117 if (IS_ERR(mft_page)) {
1118 ntfs_error(sb, "Failed to read $MFT.");
1119 return false;
1120 }
1121 kmft = page_address(mft_page);
1122 /* Get the $MFTMirr page. */
1123 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1124 index);
1125 if (IS_ERR(mirr_page)) {
1126 ntfs_error(sb, "Failed to read $MFTMirr.");
1127 goto mft_unmap_out;
1128 }
1129 kmirr = page_address(mirr_page);
1130 ++index;
1131 }
1132 /* Do not check the record if it is not in use. */
1133 if (((MFT_RECORD*)kmft)->flags & MFT_RECORD_IN_USE) {
1134 /* Make sure the record is ok. */
1135 if (ntfs_is_baad_recordp((le32*)kmft)) {
1136 ntfs_error(sb, "Incomplete multi sector "
1137 "transfer detected in mft "
1138 "record %i.", i);
1139 mm_unmap_out:
1140 ntfs_unmap_page(mirr_page);
1141 mft_unmap_out:
1142 ntfs_unmap_page(mft_page);
1143 return false;
1144 }
1145 }
1146 /* Do not check the mirror record if it is not in use. */
1147 if (((MFT_RECORD*)kmirr)->flags & MFT_RECORD_IN_USE) {
1148 if (ntfs_is_baad_recordp((le32*)kmirr)) {
1149 ntfs_error(sb, "Incomplete multi sector "
1150 "transfer detected in mft "
1151 "mirror record %i.", i);
1152 goto mm_unmap_out;
1153 }
1154 }
1155 /* Get the amount of data in the current record. */
1156 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1157 if (bytes < sizeof(MFT_RECORD_OLD) ||
1158 bytes > vol->mft_record_size ||
1159 ntfs_is_baad_recordp((le32*)kmft)) {
1160 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1161 if (bytes < sizeof(MFT_RECORD_OLD) ||
1162 bytes > vol->mft_record_size ||
1163 ntfs_is_baad_recordp((le32*)kmirr))
1164 bytes = vol->mft_record_size;
1165 }
1166 /* Compare the two records. */
1167 if (memcmp(kmft, kmirr, bytes)) {
1168 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1169 "match. Run ntfsfix or chkdsk.", i);
1170 goto mm_unmap_out;
1171 }
1172 kmft += vol->mft_record_size;
1173 kmirr += vol->mft_record_size;
1174 } while (++i < vol->mftmirr_size);
1175 /* Release the last pages. */
1176 ntfs_unmap_page(mft_page);
1177 ntfs_unmap_page(mirr_page);
1178
1179 /* Construct the mft mirror runlist by hand. */
1180 rl2[0].vcn = 0;
1181 rl2[0].lcn = vol->mftmirr_lcn;
1182 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1183 vol->cluster_size - 1) / vol->cluster_size;
1184 rl2[1].vcn = rl2[0].length;
1185 rl2[1].lcn = LCN_ENOENT;
1186 rl2[1].length = 0;
1187 /*
1188 * Because we have just read all of the mft mirror, we know we have
1189 * mapped the full runlist for it.
1190 */
1191 mirr_ni = NTFS_I(vol->mftmirr_ino);
1192 down_read(&mirr_ni->runlist.lock);
1193 rl = mirr_ni->runlist.rl;
1194 /* Compare the two runlists. They must be identical. */
1195 i = 0;
1196 do {
1197 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1198 rl2[i].length != rl[i].length) {
1199 ntfs_error(sb, "$MFTMirr location mismatch. "
1200 "Run chkdsk.");
1201 up_read(&mirr_ni->runlist.lock);
1202 return false;
1203 }
1204 } while (rl2[i++].length);
1205 up_read(&mirr_ni->runlist.lock);
1206 ntfs_debug("Done.");
1207 return true;
1208 }
1209
1210 /**
1211 * load_and_check_logfile - load and check the logfile inode for a volume
1212 * @vol: ntfs super block describing device whose logfile to load
1213 *
1214 * Return 'true' on success or 'false' on error.
1215 */
load_and_check_logfile(ntfs_volume * vol,RESTART_PAGE_HEADER ** rp)1216 static bool load_and_check_logfile(ntfs_volume *vol,
1217 RESTART_PAGE_HEADER **rp)
1218 {
1219 struct inode *tmp_ino;
1220
1221 ntfs_debug("Entering.");
1222 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1223 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1224 if (!IS_ERR(tmp_ino))
1225 iput(tmp_ino);
1226 /* Caller will display error message. */
1227 return false;
1228 }
1229 if (!ntfs_check_logfile(tmp_ino, rp)) {
1230 iput(tmp_ino);
1231 /* ntfs_check_logfile() will have displayed error output. */
1232 return false;
1233 }
1234 NInoSetSparseDisabled(NTFS_I(tmp_ino));
1235 vol->logfile_ino = tmp_ino;
1236 ntfs_debug("Done.");
1237 return true;
1238 }
1239
1240 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1241
1242 /**
1243 * check_windows_hibernation_status - check if Windows is suspended on a volume
1244 * @vol: ntfs super block of device to check
1245 *
1246 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1247 * looking for the file hiberfil.sys in the root directory of the volume. If
1248 * the file is not present Windows is definitely not suspended.
1249 *
1250 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1251 * definitely suspended (this volume is not the system volume). Caveat: on a
1252 * system with many volumes it is possible that the < 4kiB check is bogus but
1253 * for now this should do fine.
1254 *
1255 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1256 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1257 * Windows is definitely suspended. If it is completely full of zeroes,
1258 * Windows is definitely not hibernated. Any other case is treated as if
1259 * Windows is suspended. This caters for the above mentioned caveat of a
1260 * system with many volumes where no "hibr" magic would be present and there is
1261 * no zero header.
1262 *
1263 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1264 * hibernated on the volume, and -errno on error.
1265 */
check_windows_hibernation_status(ntfs_volume * vol)1266 static int check_windows_hibernation_status(ntfs_volume *vol)
1267 {
1268 MFT_REF mref;
1269 struct inode *vi;
1270 struct page *page;
1271 u32 *kaddr, *kend;
1272 ntfs_name *name = NULL;
1273 int ret = 1;
1274 static const ntfschar hiberfil[13] = { cpu_to_le16('h'),
1275 cpu_to_le16('i'), cpu_to_le16('b'),
1276 cpu_to_le16('e'), cpu_to_le16('r'),
1277 cpu_to_le16('f'), cpu_to_le16('i'),
1278 cpu_to_le16('l'), cpu_to_le16('.'),
1279 cpu_to_le16('s'), cpu_to_le16('y'),
1280 cpu_to_le16('s'), 0 };
1281
1282 ntfs_debug("Entering.");
1283 /*
1284 * Find the inode number for the hibernation file by looking up the
1285 * filename hiberfil.sys in the root directory.
1286 */
1287 inode_lock(vol->root_ino);
1288 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->root_ino), hiberfil, 12,
1289 &name);
1290 inode_unlock(vol->root_ino);
1291 if (IS_ERR_MREF(mref)) {
1292 ret = MREF_ERR(mref);
1293 /* If the file does not exist, Windows is not hibernated. */
1294 if (ret == -ENOENT) {
1295 ntfs_debug("hiberfil.sys not present. Windows is not "
1296 "hibernated on the volume.");
1297 return 0;
1298 }
1299 /* A real error occurred. */
1300 ntfs_error(vol->sb, "Failed to find inode number for "
1301 "hiberfil.sys.");
1302 return ret;
1303 }
1304 /* We do not care for the type of match that was found. */
1305 kfree(name);
1306 /* Get the inode. */
1307 vi = ntfs_iget(vol->sb, MREF(mref));
1308 if (IS_ERR(vi) || is_bad_inode(vi)) {
1309 if (!IS_ERR(vi))
1310 iput(vi);
1311 ntfs_error(vol->sb, "Failed to load hiberfil.sys.");
1312 return IS_ERR(vi) ? PTR_ERR(vi) : -EIO;
1313 }
1314 if (unlikely(i_size_read(vi) < NTFS_HIBERFIL_HEADER_SIZE)) {
1315 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1316 "Windows is hibernated on the volume. This "
1317 "is not the system volume.", i_size_read(vi));
1318 goto iput_out;
1319 }
1320 page = ntfs_map_page(vi->i_mapping, 0);
1321 if (IS_ERR(page)) {
1322 ntfs_error(vol->sb, "Failed to read from hiberfil.sys.");
1323 ret = PTR_ERR(page);
1324 goto iput_out;
1325 }
1326 kaddr = (u32*)page_address(page);
1327 if (*(le32*)kaddr == cpu_to_le32(0x72626968)/*'hibr'*/) {
1328 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1329 "hibernated on the volume. This is the "
1330 "system volume.");
1331 goto unm_iput_out;
1332 }
1333 kend = kaddr + NTFS_HIBERFIL_HEADER_SIZE/sizeof(*kaddr);
1334 do {
1335 if (unlikely(*kaddr)) {
1336 ntfs_debug("hiberfil.sys is larger than 4kiB "
1337 "(0x%llx), does not contain the "
1338 "\"hibr\" magic, and does not have a "
1339 "zero header. Windows is hibernated "
1340 "on the volume. This is not the "
1341 "system volume.", i_size_read(vi));
1342 goto unm_iput_out;
1343 }
1344 } while (++kaddr < kend);
1345 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1346 "hibernated on the volume. This is the system "
1347 "volume.");
1348 ret = 0;
1349 unm_iput_out:
1350 ntfs_unmap_page(page);
1351 iput_out:
1352 iput(vi);
1353 return ret;
1354 }
1355
1356 /**
1357 * load_and_init_quota - load and setup the quota file for a volume if present
1358 * @vol: ntfs super block describing device whose quota file to load
1359 *
1360 * Return 'true' on success or 'false' on error. If $Quota is not present, we
1361 * leave vol->quota_ino as NULL and return success.
1362 */
load_and_init_quota(ntfs_volume * vol)1363 static bool load_and_init_quota(ntfs_volume *vol)
1364 {
1365 MFT_REF mref;
1366 struct inode *tmp_ino;
1367 ntfs_name *name = NULL;
1368 static const ntfschar Quota[7] = { cpu_to_le16('$'),
1369 cpu_to_le16('Q'), cpu_to_le16('u'),
1370 cpu_to_le16('o'), cpu_to_le16('t'),
1371 cpu_to_le16('a'), 0 };
1372 static ntfschar Q[3] = { cpu_to_le16('$'),
1373 cpu_to_le16('Q'), 0 };
1374
1375 ntfs_debug("Entering.");
1376 /*
1377 * Find the inode number for the quota file by looking up the filename
1378 * $Quota in the extended system files directory $Extend.
1379 */
1380 inode_lock(vol->extend_ino);
1381 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1382 &name);
1383 inode_unlock(vol->extend_ino);
1384 if (IS_ERR_MREF(mref)) {
1385 /*
1386 * If the file does not exist, quotas are disabled and have
1387 * never been enabled on this volume, just return success.
1388 */
1389 if (MREF_ERR(mref) == -ENOENT) {
1390 ntfs_debug("$Quota not present. Volume does not have "
1391 "quotas enabled.");
1392 /*
1393 * No need to try to set quotas out of date if they are
1394 * not enabled.
1395 */
1396 NVolSetQuotaOutOfDate(vol);
1397 return true;
1398 }
1399 /* A real error occurred. */
1400 ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1401 return false;
1402 }
1403 /* We do not care for the type of match that was found. */
1404 kfree(name);
1405 /* Get the inode. */
1406 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1407 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1408 if (!IS_ERR(tmp_ino))
1409 iput(tmp_ino);
1410 ntfs_error(vol->sb, "Failed to load $Quota.");
1411 return false;
1412 }
1413 vol->quota_ino = tmp_ino;
1414 /* Get the $Q index allocation attribute. */
1415 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1416 if (IS_ERR(tmp_ino)) {
1417 ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1418 return false;
1419 }
1420 vol->quota_q_ino = tmp_ino;
1421 ntfs_debug("Done.");
1422 return true;
1423 }
1424
1425 /**
1426 * load_and_init_usnjrnl - load and setup the transaction log if present
1427 * @vol: ntfs super block describing device whose usnjrnl file to load
1428 *
1429 * Return 'true' on success or 'false' on error.
1430 *
1431 * If $UsnJrnl is not present or in the process of being disabled, we set
1432 * NVolUsnJrnlStamped() and return success.
1433 *
1434 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1435 * i.e. transaction logging has only just been enabled or the journal has been
1436 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1437 * and return success.
1438 */
load_and_init_usnjrnl(ntfs_volume * vol)1439 static bool load_and_init_usnjrnl(ntfs_volume *vol)
1440 {
1441 MFT_REF mref;
1442 struct inode *tmp_ino;
1443 ntfs_inode *tmp_ni;
1444 struct page *page;
1445 ntfs_name *name = NULL;
1446 USN_HEADER *uh;
1447 static const ntfschar UsnJrnl[9] = { cpu_to_le16('$'),
1448 cpu_to_le16('U'), cpu_to_le16('s'),
1449 cpu_to_le16('n'), cpu_to_le16('J'),
1450 cpu_to_le16('r'), cpu_to_le16('n'),
1451 cpu_to_le16('l'), 0 };
1452 static ntfschar Max[5] = { cpu_to_le16('$'),
1453 cpu_to_le16('M'), cpu_to_le16('a'),
1454 cpu_to_le16('x'), 0 };
1455 static ntfschar J[3] = { cpu_to_le16('$'),
1456 cpu_to_le16('J'), 0 };
1457
1458 ntfs_debug("Entering.");
1459 /*
1460 * Find the inode number for the transaction log file by looking up the
1461 * filename $UsnJrnl in the extended system files directory $Extend.
1462 */
1463 inode_lock(vol->extend_ino);
1464 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), UsnJrnl, 8,
1465 &name);
1466 inode_unlock(vol->extend_ino);
1467 if (IS_ERR_MREF(mref)) {
1468 /*
1469 * If the file does not exist, transaction logging is disabled,
1470 * just return success.
1471 */
1472 if (MREF_ERR(mref) == -ENOENT) {
1473 ntfs_debug("$UsnJrnl not present. Volume does not "
1474 "have transaction logging enabled.");
1475 not_enabled:
1476 /*
1477 * No need to try to stamp the transaction log if
1478 * transaction logging is not enabled.
1479 */
1480 NVolSetUsnJrnlStamped(vol);
1481 return true;
1482 }
1483 /* A real error occurred. */
1484 ntfs_error(vol->sb, "Failed to find inode number for "
1485 "$UsnJrnl.");
1486 return false;
1487 }
1488 /* We do not care for the type of match that was found. */
1489 kfree(name);
1490 /* Get the inode. */
1491 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1492 if (unlikely(IS_ERR(tmp_ino) || is_bad_inode(tmp_ino))) {
1493 if (!IS_ERR(tmp_ino))
1494 iput(tmp_ino);
1495 ntfs_error(vol->sb, "Failed to load $UsnJrnl.");
1496 return false;
1497 }
1498 vol->usnjrnl_ino = tmp_ino;
1499 /*
1500 * If the transaction log is in the process of being deleted, we can
1501 * ignore it.
1502 */
1503 if (unlikely(vol->vol_flags & VOLUME_DELETE_USN_UNDERWAY)) {
1504 ntfs_debug("$UsnJrnl in the process of being disabled. "
1505 "Volume does not have transaction logging "
1506 "enabled.");
1507 goto not_enabled;
1508 }
1509 /* Get the $DATA/$Max attribute. */
1510 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, Max, 4);
1511 if (IS_ERR(tmp_ino)) {
1512 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$Max "
1513 "attribute.");
1514 return false;
1515 }
1516 vol->usnjrnl_max_ino = tmp_ino;
1517 if (unlikely(i_size_read(tmp_ino) < sizeof(USN_HEADER))) {
1518 ntfs_error(vol->sb, "Found corrupt $UsnJrnl/$DATA/$Max "
1519 "attribute (size is 0x%llx but should be at "
1520 "least 0x%zx bytes).", i_size_read(tmp_ino),
1521 sizeof(USN_HEADER));
1522 return false;
1523 }
1524 /* Get the $DATA/$J attribute. */
1525 tmp_ino = ntfs_attr_iget(vol->usnjrnl_ino, AT_DATA, J, 2);
1526 if (IS_ERR(tmp_ino)) {
1527 ntfs_error(vol->sb, "Failed to load $UsnJrnl/$DATA/$J "
1528 "attribute.");
1529 return false;
1530 }
1531 vol->usnjrnl_j_ino = tmp_ino;
1532 /* Verify $J is non-resident and sparse. */
1533 tmp_ni = NTFS_I(vol->usnjrnl_j_ino);
1534 if (unlikely(!NInoNonResident(tmp_ni) || !NInoSparse(tmp_ni))) {
1535 ntfs_error(vol->sb, "$UsnJrnl/$DATA/$J attribute is resident "
1536 "and/or not sparse.");
1537 return false;
1538 }
1539 /* Read the USN_HEADER from $DATA/$Max. */
1540 page = ntfs_map_page(vol->usnjrnl_max_ino->i_mapping, 0);
1541 if (IS_ERR(page)) {
1542 ntfs_error(vol->sb, "Failed to read from $UsnJrnl/$DATA/$Max "
1543 "attribute.");
1544 return false;
1545 }
1546 uh = (USN_HEADER*)page_address(page);
1547 /* Sanity check the $Max. */
1548 if (unlikely(sle64_to_cpu(uh->allocation_delta) >
1549 sle64_to_cpu(uh->maximum_size))) {
1550 ntfs_error(vol->sb, "Allocation delta (0x%llx) exceeds "
1551 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1552 (long long)sle64_to_cpu(uh->allocation_delta),
1553 (long long)sle64_to_cpu(uh->maximum_size));
1554 ntfs_unmap_page(page);
1555 return false;
1556 }
1557 /*
1558 * If the transaction log has been stamped and nothing has been written
1559 * to it since, we do not need to stamp it.
1560 */
1561 if (unlikely(sle64_to_cpu(uh->lowest_valid_usn) >=
1562 i_size_read(vol->usnjrnl_j_ino))) {
1563 if (likely(sle64_to_cpu(uh->lowest_valid_usn) ==
1564 i_size_read(vol->usnjrnl_j_ino))) {
1565 ntfs_unmap_page(page);
1566 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1567 "logged since it was last stamped. "
1568 "Treating this as if the volume does "
1569 "not have transaction logging "
1570 "enabled.");
1571 goto not_enabled;
1572 }
1573 ntfs_error(vol->sb, "$UsnJrnl has lowest valid usn (0x%llx) "
1574 "which is out of bounds (0x%llx). $UsnJrnl "
1575 "is corrupt.",
1576 (long long)sle64_to_cpu(uh->lowest_valid_usn),
1577 i_size_read(vol->usnjrnl_j_ino));
1578 ntfs_unmap_page(page);
1579 return false;
1580 }
1581 ntfs_unmap_page(page);
1582 ntfs_debug("Done.");
1583 return true;
1584 }
1585
1586 /**
1587 * load_and_init_attrdef - load the attribute definitions table for a volume
1588 * @vol: ntfs super block describing device whose attrdef to load
1589 *
1590 * Return 'true' on success or 'false' on error.
1591 */
load_and_init_attrdef(ntfs_volume * vol)1592 static bool load_and_init_attrdef(ntfs_volume *vol)
1593 {
1594 loff_t i_size;
1595 struct super_block *sb = vol->sb;
1596 struct inode *ino;
1597 struct page *page;
1598 pgoff_t index, max_index;
1599 unsigned int size;
1600
1601 ntfs_debug("Entering.");
1602 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1603 ino = ntfs_iget(sb, FILE_AttrDef);
1604 if (IS_ERR(ino) || is_bad_inode(ino)) {
1605 if (!IS_ERR(ino))
1606 iput(ino);
1607 goto failed;
1608 }
1609 NInoSetSparseDisabled(NTFS_I(ino));
1610 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1611 i_size = i_size_read(ino);
1612 if (i_size <= 0 || i_size > 0x7fffffff)
1613 goto iput_failed;
1614 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1615 if (!vol->attrdef)
1616 goto iput_failed;
1617 index = 0;
1618 max_index = i_size >> PAGE_SHIFT;
1619 size = PAGE_SIZE;
1620 while (index < max_index) {
1621 /* Read the attrdef table and copy it into the linear buffer. */
1622 read_partial_attrdef_page:
1623 page = ntfs_map_page(ino->i_mapping, index);
1624 if (IS_ERR(page))
1625 goto free_iput_failed;
1626 memcpy((u8*)vol->attrdef + (index++ << PAGE_SHIFT),
1627 page_address(page), size);
1628 ntfs_unmap_page(page);
1629 };
1630 if (size == PAGE_SIZE) {
1631 size = i_size & ~PAGE_MASK;
1632 if (size)
1633 goto read_partial_attrdef_page;
1634 }
1635 vol->attrdef_size = i_size;
1636 ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1637 iput(ino);
1638 return true;
1639 free_iput_failed:
1640 ntfs_free(vol->attrdef);
1641 vol->attrdef = NULL;
1642 iput_failed:
1643 iput(ino);
1644 failed:
1645 ntfs_error(sb, "Failed to initialize attribute definition table.");
1646 return false;
1647 }
1648
1649 #endif /* NTFS_RW */
1650
1651 /**
1652 * load_and_init_upcase - load the upcase table for an ntfs volume
1653 * @vol: ntfs super block describing device whose upcase to load
1654 *
1655 * Return 'true' on success or 'false' on error.
1656 */
load_and_init_upcase(ntfs_volume * vol)1657 static bool load_and_init_upcase(ntfs_volume *vol)
1658 {
1659 loff_t i_size;
1660 struct super_block *sb = vol->sb;
1661 struct inode *ino;
1662 struct page *page;
1663 pgoff_t index, max_index;
1664 unsigned int size;
1665 int i, max;
1666
1667 ntfs_debug("Entering.");
1668 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1669 ino = ntfs_iget(sb, FILE_UpCase);
1670 if (IS_ERR(ino) || is_bad_inode(ino)) {
1671 if (!IS_ERR(ino))
1672 iput(ino);
1673 goto upcase_failed;
1674 }
1675 /*
1676 * The upcase size must not be above 64k Unicode characters, must not
1677 * be zero and must be a multiple of sizeof(ntfschar).
1678 */
1679 i_size = i_size_read(ino);
1680 if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1681 i_size > 64ULL * 1024 * sizeof(ntfschar))
1682 goto iput_upcase_failed;
1683 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1684 if (!vol->upcase)
1685 goto iput_upcase_failed;
1686 index = 0;
1687 max_index = i_size >> PAGE_SHIFT;
1688 size = PAGE_SIZE;
1689 while (index < max_index) {
1690 /* Read the upcase table and copy it into the linear buffer. */
1691 read_partial_upcase_page:
1692 page = ntfs_map_page(ino->i_mapping, index);
1693 if (IS_ERR(page))
1694 goto iput_upcase_failed;
1695 memcpy((char*)vol->upcase + (index++ << PAGE_SHIFT),
1696 page_address(page), size);
1697 ntfs_unmap_page(page);
1698 };
1699 if (size == PAGE_SIZE) {
1700 size = i_size & ~PAGE_MASK;
1701 if (size)
1702 goto read_partial_upcase_page;
1703 }
1704 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1705 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1706 i_size, 64 * 1024 * sizeof(ntfschar));
1707 iput(ino);
1708 mutex_lock(&ntfs_lock);
1709 if (!default_upcase) {
1710 ntfs_debug("Using volume specified $UpCase since default is "
1711 "not present.");
1712 mutex_unlock(&ntfs_lock);
1713 return true;
1714 }
1715 max = default_upcase_len;
1716 if (max > vol->upcase_len)
1717 max = vol->upcase_len;
1718 for (i = 0; i < max; i++)
1719 if (vol->upcase[i] != default_upcase[i])
1720 break;
1721 if (i == max) {
1722 ntfs_free(vol->upcase);
1723 vol->upcase = default_upcase;
1724 vol->upcase_len = max;
1725 ntfs_nr_upcase_users++;
1726 mutex_unlock(&ntfs_lock);
1727 ntfs_debug("Volume specified $UpCase matches default. Using "
1728 "default.");
1729 return true;
1730 }
1731 mutex_unlock(&ntfs_lock);
1732 ntfs_debug("Using volume specified $UpCase since it does not match "
1733 "the default.");
1734 return true;
1735 iput_upcase_failed:
1736 iput(ino);
1737 ntfs_free(vol->upcase);
1738 vol->upcase = NULL;
1739 upcase_failed:
1740 mutex_lock(&ntfs_lock);
1741 if (default_upcase) {
1742 vol->upcase = default_upcase;
1743 vol->upcase_len = default_upcase_len;
1744 ntfs_nr_upcase_users++;
1745 mutex_unlock(&ntfs_lock);
1746 ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1747 "default.");
1748 return true;
1749 }
1750 mutex_unlock(&ntfs_lock);
1751 ntfs_error(sb, "Failed to initialize upcase table.");
1752 return false;
1753 }
1754
1755 /*
1756 * The lcn and mft bitmap inodes are NTFS-internal inodes with
1757 * their own special locking rules:
1758 */
1759 static struct lock_class_key
1760 lcnbmp_runlist_lock_key, lcnbmp_mrec_lock_key,
1761 mftbmp_runlist_lock_key, mftbmp_mrec_lock_key;
1762
1763 /**
1764 * load_system_files - open the system files using normal functions
1765 * @vol: ntfs super block describing device whose system files to load
1766 *
1767 * Open the system files with normal access functions and complete setting up
1768 * the ntfs super block @vol.
1769 *
1770 * Return 'true' on success or 'false' on error.
1771 */
load_system_files(ntfs_volume * vol)1772 static bool load_system_files(ntfs_volume *vol)
1773 {
1774 struct super_block *sb = vol->sb;
1775 MFT_RECORD *m;
1776 VOLUME_INFORMATION *vi;
1777 ntfs_attr_search_ctx *ctx;
1778 #ifdef NTFS_RW
1779 RESTART_PAGE_HEADER *rp;
1780 int err;
1781 #endif /* NTFS_RW */
1782
1783 ntfs_debug("Entering.");
1784 #ifdef NTFS_RW
1785 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1786 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1787 static const char *es1 = "Failed to load $MFTMirr";
1788 static const char *es2 = "$MFTMirr does not match $MFT";
1789 static const char *es3 = ". Run ntfsfix and/or chkdsk.";
1790
1791 /* If a read-write mount, convert it to a read-only mount. */
1792 if (!(sb->s_flags & MS_RDONLY)) {
1793 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1794 ON_ERRORS_CONTINUE))) {
1795 ntfs_error(sb, "%s and neither on_errors="
1796 "continue nor on_errors="
1797 "remount-ro was specified%s",
1798 !vol->mftmirr_ino ? es1 : es2,
1799 es3);
1800 goto iput_mirr_err_out;
1801 }
1802 sb->s_flags |= MS_RDONLY;
1803 ntfs_error(sb, "%s. Mounting read-only%s",
1804 !vol->mftmirr_ino ? es1 : es2, es3);
1805 } else
1806 ntfs_warning(sb, "%s. Will not be able to remount "
1807 "read-write%s",
1808 !vol->mftmirr_ino ? es1 : es2, es3);
1809 /* This will prevent a read-write remount. */
1810 NVolSetErrors(vol);
1811 }
1812 #endif /* NTFS_RW */
1813 /* Get mft bitmap attribute inode. */
1814 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1815 if (IS_ERR(vol->mftbmp_ino)) {
1816 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1817 goto iput_mirr_err_out;
1818 }
1819 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->runlist.lock,
1820 &mftbmp_runlist_lock_key);
1821 lockdep_set_class(&NTFS_I(vol->mftbmp_ino)->mrec_lock,
1822 &mftbmp_mrec_lock_key);
1823 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1824 if (!load_and_init_upcase(vol))
1825 goto iput_mftbmp_err_out;
1826 #ifdef NTFS_RW
1827 /*
1828 * Read attribute definitions table and setup @vol->attrdef and
1829 * @vol->attrdef_size.
1830 */
1831 if (!load_and_init_attrdef(vol))
1832 goto iput_upcase_err_out;
1833 #endif /* NTFS_RW */
1834 /*
1835 * Get the cluster allocation bitmap inode and verify the size, no
1836 * need for any locking at this stage as we are already running
1837 * exclusively as we are mount in progress task.
1838 */
1839 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1840 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1841 if (!IS_ERR(vol->lcnbmp_ino))
1842 iput(vol->lcnbmp_ino);
1843 goto bitmap_failed;
1844 }
1845 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->runlist.lock,
1846 &lcnbmp_runlist_lock_key);
1847 lockdep_set_class(&NTFS_I(vol->lcnbmp_ino)->mrec_lock,
1848 &lcnbmp_mrec_lock_key);
1849
1850 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
1851 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1852 iput(vol->lcnbmp_ino);
1853 bitmap_failed:
1854 ntfs_error(sb, "Failed to load $Bitmap.");
1855 goto iput_attrdef_err_out;
1856 }
1857 /*
1858 * Get the volume inode and setup our cache of the volume flags and
1859 * version.
1860 */
1861 vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1862 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1863 if (!IS_ERR(vol->vol_ino))
1864 iput(vol->vol_ino);
1865 volume_failed:
1866 ntfs_error(sb, "Failed to load $Volume.");
1867 goto iput_lcnbmp_err_out;
1868 }
1869 m = map_mft_record(NTFS_I(vol->vol_ino));
1870 if (IS_ERR(m)) {
1871 iput_volume_failed:
1872 iput(vol->vol_ino);
1873 goto volume_failed;
1874 }
1875 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1876 ntfs_error(sb, "Failed to get attribute search context.");
1877 goto get_ctx_vol_failed;
1878 }
1879 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1880 ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1881 err_put_vol:
1882 ntfs_attr_put_search_ctx(ctx);
1883 get_ctx_vol_failed:
1884 unmap_mft_record(NTFS_I(vol->vol_ino));
1885 goto iput_volume_failed;
1886 }
1887 vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1888 le16_to_cpu(ctx->attr->data.resident.value_offset));
1889 /* Some bounds checks. */
1890 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1891 le32_to_cpu(ctx->attr->data.resident.value_length) >
1892 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1893 goto err_put_vol;
1894 /* Copy the volume flags and version to the ntfs_volume structure. */
1895 vol->vol_flags = vi->flags;
1896 vol->major_ver = vi->major_ver;
1897 vol->minor_ver = vi->minor_ver;
1898 ntfs_attr_put_search_ctx(ctx);
1899 unmap_mft_record(NTFS_I(vol->vol_ino));
1900 pr_info("volume version %i.%i.\n", vol->major_ver,
1901 vol->minor_ver);
1902 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1903 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1904 "volume version %i.%i (need at least version "
1905 "3.0).", vol->major_ver, vol->minor_ver);
1906 NVolClearSparseEnabled(vol);
1907 }
1908 #ifdef NTFS_RW
1909 /* Make sure that no unsupported volume flags are set. */
1910 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1911 static const char *es1a = "Volume is dirty";
1912 static const char *es1b = "Volume has been modified by chkdsk";
1913 static const char *es1c = "Volume has unsupported flags set";
1914 static const char *es2a = ". Run chkdsk and mount in Windows.";
1915 static const char *es2b = ". Mount in Windows.";
1916 const char *es1, *es2;
1917
1918 es2 = es2a;
1919 if (vol->vol_flags & VOLUME_IS_DIRTY)
1920 es1 = es1a;
1921 else if (vol->vol_flags & VOLUME_MODIFIED_BY_CHKDSK) {
1922 es1 = es1b;
1923 es2 = es2b;
1924 } else {
1925 es1 = es1c;
1926 ntfs_warning(sb, "Unsupported volume flags 0x%x "
1927 "encountered.",
1928 (unsigned)le16_to_cpu(vol->vol_flags));
1929 }
1930 /* If a read-write mount, convert it to a read-only mount. */
1931 if (!(sb->s_flags & MS_RDONLY)) {
1932 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1933 ON_ERRORS_CONTINUE))) {
1934 ntfs_error(sb, "%s and neither on_errors="
1935 "continue nor on_errors="
1936 "remount-ro was specified%s",
1937 es1, es2);
1938 goto iput_vol_err_out;
1939 }
1940 sb->s_flags |= MS_RDONLY;
1941 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1942 } else
1943 ntfs_warning(sb, "%s. Will not be able to remount "
1944 "read-write%s", es1, es2);
1945 /*
1946 * Do not set NVolErrors() because ntfs_remount() re-checks the
1947 * flags which we need to do in case any flags have changed.
1948 */
1949 }
1950 /*
1951 * Get the inode for the logfile, check it and determine if the volume
1952 * was shutdown cleanly.
1953 */
1954 rp = NULL;
1955 if (!load_and_check_logfile(vol, &rp) ||
1956 !ntfs_is_logfile_clean(vol->logfile_ino, rp)) {
1957 static const char *es1a = "Failed to load $LogFile";
1958 static const char *es1b = "$LogFile is not clean";
1959 static const char *es2 = ". Mount in Windows.";
1960 const char *es1;
1961
1962 es1 = !vol->logfile_ino ? es1a : es1b;
1963 /* If a read-write mount, convert it to a read-only mount. */
1964 if (!(sb->s_flags & MS_RDONLY)) {
1965 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1966 ON_ERRORS_CONTINUE))) {
1967 ntfs_error(sb, "%s and neither on_errors="
1968 "continue nor on_errors="
1969 "remount-ro was specified%s",
1970 es1, es2);
1971 if (vol->logfile_ino) {
1972 BUG_ON(!rp);
1973 ntfs_free(rp);
1974 }
1975 goto iput_logfile_err_out;
1976 }
1977 sb->s_flags |= MS_RDONLY;
1978 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1979 } else
1980 ntfs_warning(sb, "%s. Will not be able to remount "
1981 "read-write%s", es1, es2);
1982 /* This will prevent a read-write remount. */
1983 NVolSetErrors(vol);
1984 }
1985 ntfs_free(rp);
1986 #endif /* NTFS_RW */
1987 /* Get the root directory inode so we can do path lookups. */
1988 vol->root_ino = ntfs_iget(sb, FILE_root);
1989 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1990 if (!IS_ERR(vol->root_ino))
1991 iput(vol->root_ino);
1992 ntfs_error(sb, "Failed to load root directory.");
1993 goto iput_logfile_err_out;
1994 }
1995 #ifdef NTFS_RW
1996 /*
1997 * Check if Windows is suspended to disk on the target volume. If it
1998 * is hibernated, we must not write *anything* to the disk so set
1999 * NVolErrors() without setting the dirty volume flag and mount
2000 * read-only. This will prevent read-write remounting and it will also
2001 * prevent all writes.
2002 */
2003 err = check_windows_hibernation_status(vol);
2004 if (unlikely(err)) {
2005 static const char *es1a = "Failed to determine if Windows is "
2006 "hibernated";
2007 static const char *es1b = "Windows is hibernated";
2008 static const char *es2 = ". Run chkdsk.";
2009 const char *es1;
2010
2011 es1 = err < 0 ? es1a : es1b;
2012 /* If a read-write mount, convert it to a read-only mount. */
2013 if (!(sb->s_flags & MS_RDONLY)) {
2014 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2015 ON_ERRORS_CONTINUE))) {
2016 ntfs_error(sb, "%s and neither on_errors="
2017 "continue nor on_errors="
2018 "remount-ro was specified%s",
2019 es1, es2);
2020 goto iput_root_err_out;
2021 }
2022 sb->s_flags |= MS_RDONLY;
2023 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2024 } else
2025 ntfs_warning(sb, "%s. Will not be able to remount "
2026 "read-write%s", es1, es2);
2027 /* This will prevent a read-write remount. */
2028 NVolSetErrors(vol);
2029 }
2030 /* If (still) a read-write mount, mark the volume dirty. */
2031 if (!(sb->s_flags & MS_RDONLY) &&
2032 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
2033 static const char *es1 = "Failed to set dirty bit in volume "
2034 "information flags";
2035 static const char *es2 = ". Run chkdsk.";
2036
2037 /* Convert to a read-only mount. */
2038 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2039 ON_ERRORS_CONTINUE))) {
2040 ntfs_error(sb, "%s and neither on_errors=continue nor "
2041 "on_errors=remount-ro was specified%s",
2042 es1, es2);
2043 goto iput_root_err_out;
2044 }
2045 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2046 sb->s_flags |= MS_RDONLY;
2047 /*
2048 * Do not set NVolErrors() because ntfs_remount() might manage
2049 * to set the dirty flag in which case all would be well.
2050 */
2051 }
2052 #if 0
2053 // TODO: Enable this code once we start modifying anything that is
2054 // different between NTFS 1.2 and 3.x...
2055 /*
2056 * If (still) a read-write mount, set the NT4 compatibility flag on
2057 * newer NTFS version volumes.
2058 */
2059 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
2060 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
2061 static const char *es1 = "Failed to set NT4 compatibility flag";
2062 static const char *es2 = ". Run chkdsk.";
2063
2064 /* Convert to a read-only mount. */
2065 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2066 ON_ERRORS_CONTINUE))) {
2067 ntfs_error(sb, "%s and neither on_errors=continue nor "
2068 "on_errors=remount-ro was specified%s",
2069 es1, es2);
2070 goto iput_root_err_out;
2071 }
2072 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2073 sb->s_flags |= MS_RDONLY;
2074 NVolSetErrors(vol);
2075 }
2076 #endif
2077 /* If (still) a read-write mount, empty the logfile. */
2078 if (!(sb->s_flags & MS_RDONLY) &&
2079 !ntfs_empty_logfile(vol->logfile_ino)) {
2080 static const char *es1 = "Failed to empty $LogFile";
2081 static const char *es2 = ". Mount in Windows.";
2082
2083 /* Convert to a read-only mount. */
2084 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2085 ON_ERRORS_CONTINUE))) {
2086 ntfs_error(sb, "%s and neither on_errors=continue nor "
2087 "on_errors=remount-ro was specified%s",
2088 es1, es2);
2089 goto iput_root_err_out;
2090 }
2091 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2092 sb->s_flags |= MS_RDONLY;
2093 NVolSetErrors(vol);
2094 }
2095 #endif /* NTFS_RW */
2096 /* If on NTFS versions before 3.0, we are done. */
2097 if (unlikely(vol->major_ver < 3))
2098 return true;
2099 /* NTFS 3.0+ specific initialization. */
2100 /* Get the security descriptors inode. */
2101 vol->secure_ino = ntfs_iget(sb, FILE_Secure);
2102 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
2103 if (!IS_ERR(vol->secure_ino))
2104 iput(vol->secure_ino);
2105 ntfs_error(sb, "Failed to load $Secure.");
2106 goto iput_root_err_out;
2107 }
2108 // TODO: Initialize security.
2109 /* Get the extended system files' directory inode. */
2110 vol->extend_ino = ntfs_iget(sb, FILE_Extend);
2111 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
2112 if (!IS_ERR(vol->extend_ino))
2113 iput(vol->extend_ino);
2114 ntfs_error(sb, "Failed to load $Extend.");
2115 goto iput_sec_err_out;
2116 }
2117 #ifdef NTFS_RW
2118 /* Find the quota file, load it if present, and set it up. */
2119 if (!load_and_init_quota(vol)) {
2120 static const char *es1 = "Failed to load $Quota";
2121 static const char *es2 = ". Run chkdsk.";
2122
2123 /* If a read-write mount, convert it to a read-only mount. */
2124 if (!(sb->s_flags & MS_RDONLY)) {
2125 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2126 ON_ERRORS_CONTINUE))) {
2127 ntfs_error(sb, "%s and neither on_errors="
2128 "continue nor on_errors="
2129 "remount-ro was specified%s",
2130 es1, es2);
2131 goto iput_quota_err_out;
2132 }
2133 sb->s_flags |= MS_RDONLY;
2134 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2135 } else
2136 ntfs_warning(sb, "%s. Will not be able to remount "
2137 "read-write%s", es1, es2);
2138 /* This will prevent a read-write remount. */
2139 NVolSetErrors(vol);
2140 }
2141 /* If (still) a read-write mount, mark the quotas out of date. */
2142 if (!(sb->s_flags & MS_RDONLY) &&
2143 !ntfs_mark_quotas_out_of_date(vol)) {
2144 static const char *es1 = "Failed to mark quotas out of date";
2145 static const char *es2 = ". Run chkdsk.";
2146
2147 /* Convert to a read-only mount. */
2148 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2149 ON_ERRORS_CONTINUE))) {
2150 ntfs_error(sb, "%s and neither on_errors=continue nor "
2151 "on_errors=remount-ro was specified%s",
2152 es1, es2);
2153 goto iput_quota_err_out;
2154 }
2155 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2156 sb->s_flags |= MS_RDONLY;
2157 NVolSetErrors(vol);
2158 }
2159 /*
2160 * Find the transaction log file ($UsnJrnl), load it if present, check
2161 * it, and set it up.
2162 */
2163 if (!load_and_init_usnjrnl(vol)) {
2164 static const char *es1 = "Failed to load $UsnJrnl";
2165 static const char *es2 = ". Run chkdsk.";
2166
2167 /* If a read-write mount, convert it to a read-only mount. */
2168 if (!(sb->s_flags & MS_RDONLY)) {
2169 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2170 ON_ERRORS_CONTINUE))) {
2171 ntfs_error(sb, "%s and neither on_errors="
2172 "continue nor on_errors="
2173 "remount-ro was specified%s",
2174 es1, es2);
2175 goto iput_usnjrnl_err_out;
2176 }
2177 sb->s_flags |= MS_RDONLY;
2178 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2179 } else
2180 ntfs_warning(sb, "%s. Will not be able to remount "
2181 "read-write%s", es1, es2);
2182 /* This will prevent a read-write remount. */
2183 NVolSetErrors(vol);
2184 }
2185 /* If (still) a read-write mount, stamp the transaction log. */
2186 if (!(sb->s_flags & MS_RDONLY) && !ntfs_stamp_usnjrnl(vol)) {
2187 static const char *es1 = "Failed to stamp transaction log "
2188 "($UsnJrnl)";
2189 static const char *es2 = ". Run chkdsk.";
2190
2191 /* Convert to a read-only mount. */
2192 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
2193 ON_ERRORS_CONTINUE))) {
2194 ntfs_error(sb, "%s and neither on_errors=continue nor "
2195 "on_errors=remount-ro was specified%s",
2196 es1, es2);
2197 goto iput_usnjrnl_err_out;
2198 }
2199 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
2200 sb->s_flags |= MS_RDONLY;
2201 NVolSetErrors(vol);
2202 }
2203 #endif /* NTFS_RW */
2204 return true;
2205 #ifdef NTFS_RW
2206 iput_usnjrnl_err_out:
2207 iput(vol->usnjrnl_j_ino);
2208 iput(vol->usnjrnl_max_ino);
2209 iput(vol->usnjrnl_ino);
2210 iput_quota_err_out:
2211 iput(vol->quota_q_ino);
2212 iput(vol->quota_ino);
2213 iput(vol->extend_ino);
2214 #endif /* NTFS_RW */
2215 iput_sec_err_out:
2216 iput(vol->secure_ino);
2217 iput_root_err_out:
2218 iput(vol->root_ino);
2219 iput_logfile_err_out:
2220 #ifdef NTFS_RW
2221 iput(vol->logfile_ino);
2222 iput_vol_err_out:
2223 #endif /* NTFS_RW */
2224 iput(vol->vol_ino);
2225 iput_lcnbmp_err_out:
2226 iput(vol->lcnbmp_ino);
2227 iput_attrdef_err_out:
2228 vol->attrdef_size = 0;
2229 if (vol->attrdef) {
2230 ntfs_free(vol->attrdef);
2231 vol->attrdef = NULL;
2232 }
2233 #ifdef NTFS_RW
2234 iput_upcase_err_out:
2235 #endif /* NTFS_RW */
2236 vol->upcase_len = 0;
2237 mutex_lock(&ntfs_lock);
2238 if (vol->upcase == default_upcase) {
2239 ntfs_nr_upcase_users--;
2240 vol->upcase = NULL;
2241 }
2242 mutex_unlock(&ntfs_lock);
2243 if (vol->upcase) {
2244 ntfs_free(vol->upcase);
2245 vol->upcase = NULL;
2246 }
2247 iput_mftbmp_err_out:
2248 iput(vol->mftbmp_ino);
2249 iput_mirr_err_out:
2250 #ifdef NTFS_RW
2251 iput(vol->mftmirr_ino);
2252 #endif /* NTFS_RW */
2253 return false;
2254 }
2255
2256 /**
2257 * ntfs_put_super - called by the vfs to unmount a volume
2258 * @sb: vfs superblock of volume to unmount
2259 *
2260 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2261 * the volume is being unmounted (umount system call has been invoked) and it
2262 * releases all inodes and memory belonging to the NTFS specific part of the
2263 * super block.
2264 */
ntfs_put_super(struct super_block * sb)2265 static void ntfs_put_super(struct super_block *sb)
2266 {
2267 ntfs_volume *vol = NTFS_SB(sb);
2268
2269 ntfs_debug("Entering.");
2270
2271 #ifdef NTFS_RW
2272 /*
2273 * Commit all inodes while they are still open in case some of them
2274 * cause others to be dirtied.
2275 */
2276 ntfs_commit_inode(vol->vol_ino);
2277
2278 /* NTFS 3.0+ specific. */
2279 if (vol->major_ver >= 3) {
2280 if (vol->usnjrnl_j_ino)
2281 ntfs_commit_inode(vol->usnjrnl_j_ino);
2282 if (vol->usnjrnl_max_ino)
2283 ntfs_commit_inode(vol->usnjrnl_max_ino);
2284 if (vol->usnjrnl_ino)
2285 ntfs_commit_inode(vol->usnjrnl_ino);
2286 if (vol->quota_q_ino)
2287 ntfs_commit_inode(vol->quota_q_ino);
2288 if (vol->quota_ino)
2289 ntfs_commit_inode(vol->quota_ino);
2290 if (vol->extend_ino)
2291 ntfs_commit_inode(vol->extend_ino);
2292 if (vol->secure_ino)
2293 ntfs_commit_inode(vol->secure_ino);
2294 }
2295
2296 ntfs_commit_inode(vol->root_ino);
2297
2298 down_write(&vol->lcnbmp_lock);
2299 ntfs_commit_inode(vol->lcnbmp_ino);
2300 up_write(&vol->lcnbmp_lock);
2301
2302 down_write(&vol->mftbmp_lock);
2303 ntfs_commit_inode(vol->mftbmp_ino);
2304 up_write(&vol->mftbmp_lock);
2305
2306 if (vol->logfile_ino)
2307 ntfs_commit_inode(vol->logfile_ino);
2308
2309 if (vol->mftmirr_ino)
2310 ntfs_commit_inode(vol->mftmirr_ino);
2311 ntfs_commit_inode(vol->mft_ino);
2312
2313 /*
2314 * If a read-write mount and no volume errors have occurred, mark the
2315 * volume clean. Also, re-commit all affected inodes.
2316 */
2317 if (!(sb->s_flags & MS_RDONLY)) {
2318 if (!NVolErrors(vol)) {
2319 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
2320 ntfs_warning(sb, "Failed to clear dirty bit "
2321 "in volume information "
2322 "flags. Run chkdsk.");
2323 ntfs_commit_inode(vol->vol_ino);
2324 ntfs_commit_inode(vol->root_ino);
2325 if (vol->mftmirr_ino)
2326 ntfs_commit_inode(vol->mftmirr_ino);
2327 ntfs_commit_inode(vol->mft_ino);
2328 } else {
2329 ntfs_warning(sb, "Volume has errors. Leaving volume "
2330 "marked dirty. Run chkdsk.");
2331 }
2332 }
2333 #endif /* NTFS_RW */
2334
2335 iput(vol->vol_ino);
2336 vol->vol_ino = NULL;
2337
2338 /* NTFS 3.0+ specific clean up. */
2339 if (vol->major_ver >= 3) {
2340 #ifdef NTFS_RW
2341 if (vol->usnjrnl_j_ino) {
2342 iput(vol->usnjrnl_j_ino);
2343 vol->usnjrnl_j_ino = NULL;
2344 }
2345 if (vol->usnjrnl_max_ino) {
2346 iput(vol->usnjrnl_max_ino);
2347 vol->usnjrnl_max_ino = NULL;
2348 }
2349 if (vol->usnjrnl_ino) {
2350 iput(vol->usnjrnl_ino);
2351 vol->usnjrnl_ino = NULL;
2352 }
2353 if (vol->quota_q_ino) {
2354 iput(vol->quota_q_ino);
2355 vol->quota_q_ino = NULL;
2356 }
2357 if (vol->quota_ino) {
2358 iput(vol->quota_ino);
2359 vol->quota_ino = NULL;
2360 }
2361 #endif /* NTFS_RW */
2362 if (vol->extend_ino) {
2363 iput(vol->extend_ino);
2364 vol->extend_ino = NULL;
2365 }
2366 if (vol->secure_ino) {
2367 iput(vol->secure_ino);
2368 vol->secure_ino = NULL;
2369 }
2370 }
2371
2372 iput(vol->root_ino);
2373 vol->root_ino = NULL;
2374
2375 down_write(&vol->lcnbmp_lock);
2376 iput(vol->lcnbmp_ino);
2377 vol->lcnbmp_ino = NULL;
2378 up_write(&vol->lcnbmp_lock);
2379
2380 down_write(&vol->mftbmp_lock);
2381 iput(vol->mftbmp_ino);
2382 vol->mftbmp_ino = NULL;
2383 up_write(&vol->mftbmp_lock);
2384
2385 #ifdef NTFS_RW
2386 if (vol->logfile_ino) {
2387 iput(vol->logfile_ino);
2388 vol->logfile_ino = NULL;
2389 }
2390 if (vol->mftmirr_ino) {
2391 /* Re-commit the mft mirror and mft just in case. */
2392 ntfs_commit_inode(vol->mftmirr_ino);
2393 ntfs_commit_inode(vol->mft_ino);
2394 iput(vol->mftmirr_ino);
2395 vol->mftmirr_ino = NULL;
2396 }
2397 /*
2398 * We should have no dirty inodes left, due to
2399 * mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2400 * the underlying mft records are written out and cleaned.
2401 */
2402 ntfs_commit_inode(vol->mft_ino);
2403 write_inode_now(vol->mft_ino, 1);
2404 #endif /* NTFS_RW */
2405
2406 iput(vol->mft_ino);
2407 vol->mft_ino = NULL;
2408
2409 /* Throw away the table of attribute definitions. */
2410 vol->attrdef_size = 0;
2411 if (vol->attrdef) {
2412 ntfs_free(vol->attrdef);
2413 vol->attrdef = NULL;
2414 }
2415 vol->upcase_len = 0;
2416 /*
2417 * Destroy the global default upcase table if necessary. Also decrease
2418 * the number of upcase users if we are a user.
2419 */
2420 mutex_lock(&ntfs_lock);
2421 if (vol->upcase == default_upcase) {
2422 ntfs_nr_upcase_users--;
2423 vol->upcase = NULL;
2424 }
2425 if (!ntfs_nr_upcase_users && default_upcase) {
2426 ntfs_free(default_upcase);
2427 default_upcase = NULL;
2428 }
2429 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2430 free_compression_buffers();
2431 mutex_unlock(&ntfs_lock);
2432 if (vol->upcase) {
2433 ntfs_free(vol->upcase);
2434 vol->upcase = NULL;
2435 }
2436
2437 unload_nls(vol->nls_map);
2438
2439 sb->s_fs_info = NULL;
2440 kfree(vol);
2441 }
2442
2443 /**
2444 * get_nr_free_clusters - return the number of free clusters on a volume
2445 * @vol: ntfs volume for which to obtain free cluster count
2446 *
2447 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2448 * actually calculate the number of clusters in use instead because this
2449 * allows us to not care about partial pages as these will be just zero filled
2450 * and hence not be counted as allocated clusters.
2451 *
2452 * The only particularity is that clusters beyond the end of the logical ntfs
2453 * volume will be marked as allocated to prevent errors which means we have to
2454 * discount those at the end. This is important as the cluster bitmap always
2455 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2456 * the logical volume and marked in use when they are not as they do not exist.
2457 *
2458 * If any pages cannot be read we assume all clusters in the erroring pages are
2459 * in use. This means we return an underestimate on errors which is better than
2460 * an overestimate.
2461 */
get_nr_free_clusters(ntfs_volume * vol)2462 static s64 get_nr_free_clusters(ntfs_volume *vol)
2463 {
2464 s64 nr_free = vol->nr_clusters;
2465 struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
2466 struct page *page;
2467 pgoff_t index, max_index;
2468
2469 ntfs_debug("Entering.");
2470 /* Serialize accesses to the cluster bitmap. */
2471 down_read(&vol->lcnbmp_lock);
2472 /*
2473 * Convert the number of bits into bytes rounded up, then convert into
2474 * multiples of PAGE_SIZE, rounding up so that if we have one
2475 * full and one partial page max_index = 2.
2476 */
2477 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_SIZE - 1) >>
2478 PAGE_SHIFT;
2479 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2480 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2481 max_index, PAGE_SIZE / 4);
2482 for (index = 0; index < max_index; index++) {
2483 unsigned long *kaddr;
2484
2485 /*
2486 * Read the page from page cache, getting it from backing store
2487 * if necessary, and increment the use count.
2488 */
2489 page = read_mapping_page(mapping, index, NULL);
2490 /* Ignore pages which errored synchronously. */
2491 if (IS_ERR(page)) {
2492 ntfs_debug("read_mapping_page() error. Skipping "
2493 "page (index 0x%lx).", index);
2494 nr_free -= PAGE_SIZE * 8;
2495 continue;
2496 }
2497 kaddr = kmap_atomic(page);
2498 /*
2499 * Subtract the number of set bits. If this
2500 * is the last page and it is partial we don't really care as
2501 * it just means we do a little extra work but it won't affect
2502 * the result as all out of range bytes are set to zero by
2503 * ntfs_readpage().
2504 */
2505 nr_free -= bitmap_weight(kaddr,
2506 PAGE_SIZE * BITS_PER_BYTE);
2507 kunmap_atomic(kaddr);
2508 put_page(page);
2509 }
2510 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2511 /*
2512 * Fixup for eventual bits outside logical ntfs volume (see function
2513 * description above).
2514 */
2515 if (vol->nr_clusters & 63)
2516 nr_free += 64 - (vol->nr_clusters & 63);
2517 up_read(&vol->lcnbmp_lock);
2518 /* If errors occurred we may well have gone below zero, fix this. */
2519 if (nr_free < 0)
2520 nr_free = 0;
2521 ntfs_debug("Exiting.");
2522 return nr_free;
2523 }
2524
2525 /**
2526 * __get_nr_free_mft_records - return the number of free inodes on a volume
2527 * @vol: ntfs volume for which to obtain free inode count
2528 * @nr_free: number of mft records in filesystem
2529 * @max_index: maximum number of pages containing set bits
2530 *
2531 * Calculate the number of free mft records (inodes) on the mounted NTFS
2532 * volume @vol. We actually calculate the number of mft records in use instead
2533 * because this allows us to not care about partial pages as these will be just
2534 * zero filled and hence not be counted as allocated mft record.
2535 *
2536 * If any pages cannot be read we assume all mft records in the erroring pages
2537 * are in use. This means we return an underestimate on errors which is better
2538 * than an overestimate.
2539 *
2540 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2541 */
__get_nr_free_mft_records(ntfs_volume * vol,s64 nr_free,const pgoff_t max_index)2542 static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2543 s64 nr_free, const pgoff_t max_index)
2544 {
2545 struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2546 struct page *page;
2547 pgoff_t index;
2548
2549 ntfs_debug("Entering.");
2550 /* Use multiples of 4 bytes, thus max_size is PAGE_SIZE / 4. */
2551 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2552 "0x%lx.", max_index, PAGE_SIZE / 4);
2553 for (index = 0; index < max_index; index++) {
2554 unsigned long *kaddr;
2555
2556 /*
2557 * Read the page from page cache, getting it from backing store
2558 * if necessary, and increment the use count.
2559 */
2560 page = read_mapping_page(mapping, index, NULL);
2561 /* Ignore pages which errored synchronously. */
2562 if (IS_ERR(page)) {
2563 ntfs_debug("read_mapping_page() error. Skipping "
2564 "page (index 0x%lx).", index);
2565 nr_free -= PAGE_SIZE * 8;
2566 continue;
2567 }
2568 kaddr = kmap_atomic(page);
2569 /*
2570 * Subtract the number of set bits. If this
2571 * is the last page and it is partial we don't really care as
2572 * it just means we do a little extra work but it won't affect
2573 * the result as all out of range bytes are set to zero by
2574 * ntfs_readpage().
2575 */
2576 nr_free -= bitmap_weight(kaddr,
2577 PAGE_SIZE * BITS_PER_BYTE);
2578 kunmap_atomic(kaddr);
2579 put_page(page);
2580 }
2581 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2582 index - 1);
2583 /* If errors occurred we may well have gone below zero, fix this. */
2584 if (nr_free < 0)
2585 nr_free = 0;
2586 ntfs_debug("Exiting.");
2587 return nr_free;
2588 }
2589
2590 /**
2591 * ntfs_statfs - return information about mounted NTFS volume
2592 * @dentry: dentry from mounted volume
2593 * @sfs: statfs structure in which to return the information
2594 *
2595 * Return information about the mounted NTFS volume @dentry in the statfs structure
2596 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2597 * called). We interpret the values to be correct of the moment in time at
2598 * which we are called. Most values are variable otherwise and this isn't just
2599 * the free values but the totals as well. For example we can increase the
2600 * total number of file nodes if we run out and we can keep doing this until
2601 * there is no more space on the volume left at all.
2602 *
2603 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2604 * ustat system calls.
2605 *
2606 * Return 0 on success or -errno on error.
2607 */
ntfs_statfs(struct dentry * dentry,struct kstatfs * sfs)2608 static int ntfs_statfs(struct dentry *dentry, struct kstatfs *sfs)
2609 {
2610 struct super_block *sb = dentry->d_sb;
2611 s64 size;
2612 ntfs_volume *vol = NTFS_SB(sb);
2613 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2614 pgoff_t max_index;
2615 unsigned long flags;
2616
2617 ntfs_debug("Entering.");
2618 /* Type of filesystem. */
2619 sfs->f_type = NTFS_SB_MAGIC;
2620 /* Optimal transfer block size. */
2621 sfs->f_bsize = PAGE_SIZE;
2622 /*
2623 * Total data blocks in filesystem in units of f_bsize and since
2624 * inodes are also stored in data blocs ($MFT is a file) this is just
2625 * the total clusters.
2626 */
2627 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2628 PAGE_SHIFT;
2629 /* Free data blocks in filesystem in units of f_bsize. */
2630 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2631 PAGE_SHIFT;
2632 if (size < 0LL)
2633 size = 0LL;
2634 /* Free blocks avail to non-superuser, same as above on NTFS. */
2635 sfs->f_bavail = sfs->f_bfree = size;
2636 /* Serialize accesses to the inode bitmap. */
2637 down_read(&vol->mftbmp_lock);
2638 read_lock_irqsave(&mft_ni->size_lock, flags);
2639 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2640 /*
2641 * Convert the maximum number of set bits into bytes rounded up, then
2642 * convert into multiples of PAGE_SIZE, rounding up so that if we
2643 * have one full and one partial page max_index = 2.
2644 */
2645 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2646 + 7) >> 3) + PAGE_SIZE - 1) >> PAGE_SHIFT;
2647 read_unlock_irqrestore(&mft_ni->size_lock, flags);
2648 /* Number of inodes in filesystem (at this point in time). */
2649 sfs->f_files = size;
2650 /* Free inodes in fs (based on current total count). */
2651 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
2652 up_read(&vol->mftbmp_lock);
2653 /*
2654 * File system id. This is extremely *nix flavour dependent and even
2655 * within Linux itself all fs do their own thing. I interpret this to
2656 * mean a unique id associated with the mounted fs and not the id
2657 * associated with the filesystem driver, the latter is already given
2658 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2659 * volume serial number splitting it into two 32-bit parts. We enter
2660 * the least significant 32-bits in f_fsid[0] and the most significant
2661 * 32-bits in f_fsid[1].
2662 */
2663 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2664 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2665 /* Maximum length of filenames. */
2666 sfs->f_namelen = NTFS_MAX_NAME_LEN;
2667 return 0;
2668 }
2669
2670 #ifdef NTFS_RW
ntfs_write_inode(struct inode * vi,struct writeback_control * wbc)2671 static int ntfs_write_inode(struct inode *vi, struct writeback_control *wbc)
2672 {
2673 return __ntfs_write_inode(vi, wbc->sync_mode == WB_SYNC_ALL);
2674 }
2675 #endif
2676
2677 /**
2678 * The complete super operations.
2679 */
2680 static const struct super_operations ntfs_sops = {
2681 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
2682 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2683 #ifdef NTFS_RW
2684 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
2685 disk. */
2686 #endif /* NTFS_RW */
2687 .put_super = ntfs_put_super, /* Syscall: umount. */
2688 .statfs = ntfs_statfs, /* Syscall: statfs */
2689 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
2690 .evict_inode = ntfs_evict_big_inode, /* VFS: Called when an inode is
2691 removed from memory. */
2692 .show_options = ntfs_show_options, /* Show mount options in
2693 proc. */
2694 };
2695
2696 /**
2697 * ntfs_fill_super - mount an ntfs filesystem
2698 * @sb: super block of ntfs filesystem to mount
2699 * @opt: string containing the mount options
2700 * @silent: silence error output
2701 *
2702 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2703 * with the mount otions in @data with the NTFS filesystem.
2704 *
2705 * If @silent is true, remain silent even if errors are detected. This is used
2706 * during bootup, when the kernel tries to mount the root filesystem with all
2707 * registered filesystems one after the other until one succeeds. This implies
2708 * that all filesystems except the correct one will quite correctly and
2709 * expectedly return an error, but nobody wants to see error messages when in
2710 * fact this is what is supposed to happen.
2711 *
2712 * NOTE: @sb->s_flags contains the mount options flags.
2713 */
ntfs_fill_super(struct super_block * sb,void * opt,const int silent)2714 static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2715 {
2716 ntfs_volume *vol;
2717 struct buffer_head *bh;
2718 struct inode *tmp_ino;
2719 int blocksize, result;
2720
2721 /*
2722 * We do a pretty difficult piece of bootstrap by reading the
2723 * MFT (and other metadata) from disk into memory. We'll only
2724 * release this metadata during umount, so the locking patterns
2725 * observed during bootstrap do not count. So turn off the
2726 * observation of locking patterns (strictly for this context
2727 * only) while mounting NTFS. [The validator is still active
2728 * otherwise, even for this context: it will for example record
2729 * lock class registrations.]
2730 */
2731 lockdep_off();
2732 ntfs_debug("Entering.");
2733 #ifndef NTFS_RW
2734 sb->s_flags |= MS_RDONLY;
2735 #endif /* ! NTFS_RW */
2736 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2737 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2738 vol = NTFS_SB(sb);
2739 if (!vol) {
2740 if (!silent)
2741 ntfs_error(sb, "Allocation of NTFS volume structure "
2742 "failed. Aborting mount...");
2743 lockdep_on();
2744 return -ENOMEM;
2745 }
2746 /* Initialize ntfs_volume structure. */
2747 *vol = (ntfs_volume) {
2748 .sb = sb,
2749 /*
2750 * Default is group and other don't have any access to files or
2751 * directories while owner has full access. Further, files by
2752 * default are not executable but directories are of course
2753 * browseable.
2754 */
2755 .fmask = 0177,
2756 .dmask = 0077,
2757 };
2758 init_rwsem(&vol->mftbmp_lock);
2759 init_rwsem(&vol->lcnbmp_lock);
2760
2761 /* By default, enable sparse support. */
2762 NVolSetSparseEnabled(vol);
2763
2764 /* Important to get the mount options dealt with now. */
2765 if (!parse_options(vol, (char*)opt))
2766 goto err_out_now;
2767
2768 /* We support sector sizes up to the PAGE_SIZE. */
2769 if (bdev_logical_block_size(sb->s_bdev) > PAGE_SIZE) {
2770 if (!silent)
2771 ntfs_error(sb, "Device has unsupported sector size "
2772 "(%i). The maximum supported sector "
2773 "size on this architecture is %lu "
2774 "bytes.",
2775 bdev_logical_block_size(sb->s_bdev),
2776 PAGE_SIZE);
2777 goto err_out_now;
2778 }
2779 /*
2780 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2781 * sector size, whichever is bigger.
2782 */
2783 blocksize = sb_min_blocksize(sb, NTFS_BLOCK_SIZE);
2784 if (blocksize < NTFS_BLOCK_SIZE) {
2785 if (!silent)
2786 ntfs_error(sb, "Unable to set device block size.");
2787 goto err_out_now;
2788 }
2789 BUG_ON(blocksize != sb->s_blocksize);
2790 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2791 blocksize, sb->s_blocksize_bits);
2792 /* Determine the size of the device in units of block_size bytes. */
2793 if (!i_size_read(sb->s_bdev->bd_inode)) {
2794 if (!silent)
2795 ntfs_error(sb, "Unable to determine device size.");
2796 goto err_out_now;
2797 }
2798 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2799 sb->s_blocksize_bits;
2800 /* Read the boot sector and return unlocked buffer head to it. */
2801 if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2802 if (!silent)
2803 ntfs_error(sb, "Not an NTFS volume.");
2804 goto err_out_now;
2805 }
2806 /*
2807 * Extract the data from the boot sector and setup the ntfs volume
2808 * using it.
2809 */
2810 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2811 brelse(bh);
2812 if (!result) {
2813 if (!silent)
2814 ntfs_error(sb, "Unsupported NTFS filesystem.");
2815 goto err_out_now;
2816 }
2817 /*
2818 * If the boot sector indicates a sector size bigger than the current
2819 * device block size, switch the device block size to the sector size.
2820 * TODO: It may be possible to support this case even when the set
2821 * below fails, we would just be breaking up the i/o for each sector
2822 * into multiple blocks for i/o purposes but otherwise it should just
2823 * work. However it is safer to leave disabled until someone hits this
2824 * error message and then we can get them to try it without the setting
2825 * so we know for sure that it works.
2826 */
2827 if (vol->sector_size > blocksize) {
2828 blocksize = sb_set_blocksize(sb, vol->sector_size);
2829 if (blocksize != vol->sector_size) {
2830 if (!silent)
2831 ntfs_error(sb, "Unable to set device block "
2832 "size to sector size (%i).",
2833 vol->sector_size);
2834 goto err_out_now;
2835 }
2836 BUG_ON(blocksize != sb->s_blocksize);
2837 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2838 sb->s_blocksize_bits;
2839 ntfs_debug("Changed device block size to %i bytes (block size "
2840 "bits %i) to match volume sector size.",
2841 blocksize, sb->s_blocksize_bits);
2842 }
2843 /* Initialize the cluster and mft allocators. */
2844 ntfs_setup_allocators(vol);
2845 /* Setup remaining fields in the super block. */
2846 sb->s_magic = NTFS_SB_MAGIC;
2847 /*
2848 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2849 * sb->s_maxbytes = ~0ULL >> 1;
2850 * But the kernel uses a long as the page cache page index which on
2851 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2852 * defined to the maximum the page cache page index can cope with
2853 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2854 */
2855 sb->s_maxbytes = MAX_LFS_FILESIZE;
2856 /* Ntfs measures time in 100ns intervals. */
2857 sb->s_time_gran = 100;
2858 /*
2859 * Now load the metadata required for the page cache and our address
2860 * space operations to function. We do this by setting up a specialised
2861 * read_inode method and then just calling the normal iget() to obtain
2862 * the inode for $MFT which is sufficient to allow our normal inode
2863 * operations and associated address space operations to function.
2864 */
2865 sb->s_op = &ntfs_sops;
2866 tmp_ino = new_inode(sb);
2867 if (!tmp_ino) {
2868 if (!silent)
2869 ntfs_error(sb, "Failed to load essential metadata.");
2870 goto err_out_now;
2871 }
2872 tmp_ino->i_ino = FILE_MFT;
2873 insert_inode_hash(tmp_ino);
2874 if (ntfs_read_inode_mount(tmp_ino) < 0) {
2875 if (!silent)
2876 ntfs_error(sb, "Failed to load essential metadata.");
2877 goto iput_tmp_ino_err_out_now;
2878 }
2879 mutex_lock(&ntfs_lock);
2880 /*
2881 * The current mount is a compression user if the cluster size is
2882 * less than or equal 4kiB.
2883 */
2884 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2885 result = allocate_compression_buffers();
2886 if (result) {
2887 ntfs_error(NULL, "Failed to allocate buffers "
2888 "for compression engine.");
2889 ntfs_nr_compression_users--;
2890 mutex_unlock(&ntfs_lock);
2891 goto iput_tmp_ino_err_out_now;
2892 }
2893 }
2894 /*
2895 * Generate the global default upcase table if necessary. Also
2896 * temporarily increment the number of upcase users to avoid race
2897 * conditions with concurrent (u)mounts.
2898 */
2899 if (!default_upcase)
2900 default_upcase = generate_default_upcase();
2901 ntfs_nr_upcase_users++;
2902 mutex_unlock(&ntfs_lock);
2903 /*
2904 * From now on, ignore @silent parameter. If we fail below this line,
2905 * it will be due to a corrupt fs or a system error, so we report it.
2906 */
2907 /*
2908 * Open the system files with normal access functions and complete
2909 * setting up the ntfs super block.
2910 */
2911 if (!load_system_files(vol)) {
2912 ntfs_error(sb, "Failed to load system files.");
2913 goto unl_upcase_iput_tmp_ino_err_out_now;
2914 }
2915
2916 /* We grab a reference, simulating an ntfs_iget(). */
2917 ihold(vol->root_ino);
2918 if ((sb->s_root = d_make_root(vol->root_ino))) {
2919 ntfs_debug("Exiting, status successful.");
2920 /* Release the default upcase if it has no users. */
2921 mutex_lock(&ntfs_lock);
2922 if (!--ntfs_nr_upcase_users && default_upcase) {
2923 ntfs_free(default_upcase);
2924 default_upcase = NULL;
2925 }
2926 mutex_unlock(&ntfs_lock);
2927 sb->s_export_op = &ntfs_export_ops;
2928 lockdep_on();
2929 return 0;
2930 }
2931 ntfs_error(sb, "Failed to allocate root directory.");
2932 /* Clean up after the successful load_system_files() call from above. */
2933 // TODO: Use ntfs_put_super() instead of repeating all this code...
2934 // FIXME: Should mark the volume clean as the error is most likely
2935 // -ENOMEM.
2936 iput(vol->vol_ino);
2937 vol->vol_ino = NULL;
2938 /* NTFS 3.0+ specific clean up. */
2939 if (vol->major_ver >= 3) {
2940 #ifdef NTFS_RW
2941 if (vol->usnjrnl_j_ino) {
2942 iput(vol->usnjrnl_j_ino);
2943 vol->usnjrnl_j_ino = NULL;
2944 }
2945 if (vol->usnjrnl_max_ino) {
2946 iput(vol->usnjrnl_max_ino);
2947 vol->usnjrnl_max_ino = NULL;
2948 }
2949 if (vol->usnjrnl_ino) {
2950 iput(vol->usnjrnl_ino);
2951 vol->usnjrnl_ino = NULL;
2952 }
2953 if (vol->quota_q_ino) {
2954 iput(vol->quota_q_ino);
2955 vol->quota_q_ino = NULL;
2956 }
2957 if (vol->quota_ino) {
2958 iput(vol->quota_ino);
2959 vol->quota_ino = NULL;
2960 }
2961 #endif /* NTFS_RW */
2962 if (vol->extend_ino) {
2963 iput(vol->extend_ino);
2964 vol->extend_ino = NULL;
2965 }
2966 if (vol->secure_ino) {
2967 iput(vol->secure_ino);
2968 vol->secure_ino = NULL;
2969 }
2970 }
2971 iput(vol->root_ino);
2972 vol->root_ino = NULL;
2973 iput(vol->lcnbmp_ino);
2974 vol->lcnbmp_ino = NULL;
2975 iput(vol->mftbmp_ino);
2976 vol->mftbmp_ino = NULL;
2977 #ifdef NTFS_RW
2978 if (vol->logfile_ino) {
2979 iput(vol->logfile_ino);
2980 vol->logfile_ino = NULL;
2981 }
2982 if (vol->mftmirr_ino) {
2983 iput(vol->mftmirr_ino);
2984 vol->mftmirr_ino = NULL;
2985 }
2986 #endif /* NTFS_RW */
2987 /* Throw away the table of attribute definitions. */
2988 vol->attrdef_size = 0;
2989 if (vol->attrdef) {
2990 ntfs_free(vol->attrdef);
2991 vol->attrdef = NULL;
2992 }
2993 vol->upcase_len = 0;
2994 mutex_lock(&ntfs_lock);
2995 if (vol->upcase == default_upcase) {
2996 ntfs_nr_upcase_users--;
2997 vol->upcase = NULL;
2998 }
2999 mutex_unlock(&ntfs_lock);
3000 if (vol->upcase) {
3001 ntfs_free(vol->upcase);
3002 vol->upcase = NULL;
3003 }
3004 if (vol->nls_map) {
3005 unload_nls(vol->nls_map);
3006 vol->nls_map = NULL;
3007 }
3008 /* Error exit code path. */
3009 unl_upcase_iput_tmp_ino_err_out_now:
3010 /*
3011 * Decrease the number of upcase users and destroy the global default
3012 * upcase table if necessary.
3013 */
3014 mutex_lock(&ntfs_lock);
3015 if (!--ntfs_nr_upcase_users && default_upcase) {
3016 ntfs_free(default_upcase);
3017 default_upcase = NULL;
3018 }
3019 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
3020 free_compression_buffers();
3021 mutex_unlock(&ntfs_lock);
3022 iput_tmp_ino_err_out_now:
3023 iput(tmp_ino);
3024 if (vol->mft_ino && vol->mft_ino != tmp_ino)
3025 iput(vol->mft_ino);
3026 vol->mft_ino = NULL;
3027 /* Errors at this stage are irrelevant. */
3028 err_out_now:
3029 sb->s_fs_info = NULL;
3030 kfree(vol);
3031 ntfs_debug("Failed, returning -EINVAL.");
3032 lockdep_on();
3033 return -EINVAL;
3034 }
3035
3036 /*
3037 * This is a slab cache to optimize allocations and deallocations of Unicode
3038 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3039 * (255) Unicode characters + a terminating NULL Unicode character.
3040 */
3041 struct kmem_cache *ntfs_name_cache;
3042
3043 /* Slab caches for efficient allocation/deallocation of inodes. */
3044 struct kmem_cache *ntfs_inode_cache;
3045 struct kmem_cache *ntfs_big_inode_cache;
3046
3047 /* Init once constructor for the inode slab cache. */
ntfs_big_inode_init_once(void * foo)3048 static void ntfs_big_inode_init_once(void *foo)
3049 {
3050 ntfs_inode *ni = (ntfs_inode *)foo;
3051
3052 inode_init_once(VFS_I(ni));
3053 }
3054
3055 /*
3056 * Slab caches to optimize allocations and deallocations of attribute search
3057 * contexts and index contexts, respectively.
3058 */
3059 struct kmem_cache *ntfs_attr_ctx_cache;
3060 struct kmem_cache *ntfs_index_ctx_cache;
3061
3062 /* Driver wide mutex. */
3063 DEFINE_MUTEX(ntfs_lock);
3064
ntfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)3065 static struct dentry *ntfs_mount(struct file_system_type *fs_type,
3066 int flags, const char *dev_name, void *data)
3067 {
3068 return mount_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
3069 }
3070
3071 static struct file_system_type ntfs_fs_type = {
3072 .owner = THIS_MODULE,
3073 .name = "ntfs",
3074 .mount = ntfs_mount,
3075 .kill_sb = kill_block_super,
3076 .fs_flags = FS_REQUIRES_DEV,
3077 };
3078 MODULE_ALIAS_FS("ntfs");
3079
3080 /* Stable names for the slab caches. */
3081 static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
3082 static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
3083 static const char ntfs_name_cache_name[] = "ntfs_name_cache";
3084 static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
3085 static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
3086
init_ntfs_fs(void)3087 static int __init init_ntfs_fs(void)
3088 {
3089 int err = 0;
3090
3091 /* This may be ugly but it results in pretty output so who cares. (-8 */
3092 pr_info("driver " NTFS_VERSION " [Flags: R/"
3093 #ifdef NTFS_RW
3094 "W"
3095 #else
3096 "O"
3097 #endif
3098 #ifdef DEBUG
3099 " DEBUG"
3100 #endif
3101 #ifdef MODULE
3102 " MODULE"
3103 #endif
3104 "].\n");
3105
3106 ntfs_debug("Debug messages are enabled.");
3107
3108 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
3109 sizeof(ntfs_index_context), 0 /* offset */,
3110 SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3111 if (!ntfs_index_ctx_cache) {
3112 pr_crit("Failed to create %s!\n", ntfs_index_ctx_cache_name);
3113 goto ictx_err_out;
3114 }
3115 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
3116 sizeof(ntfs_attr_search_ctx), 0 /* offset */,
3117 SLAB_HWCACHE_ALIGN, NULL /* ctor */);
3118 if (!ntfs_attr_ctx_cache) {
3119 pr_crit("NTFS: Failed to create %s!\n",
3120 ntfs_attr_ctx_cache_name);
3121 goto actx_err_out;
3122 }
3123
3124 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
3125 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
3126 SLAB_HWCACHE_ALIGN, NULL);
3127 if (!ntfs_name_cache) {
3128 pr_crit("Failed to create %s!\n", ntfs_name_cache_name);
3129 goto name_err_out;
3130 }
3131
3132 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
3133 sizeof(ntfs_inode), 0,
3134 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
3135 if (!ntfs_inode_cache) {
3136 pr_crit("Failed to create %s!\n", ntfs_inode_cache_name);
3137 goto inode_err_out;
3138 }
3139
3140 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
3141 sizeof(big_ntfs_inode), 0,
3142 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
3143 SLAB_ACCOUNT, ntfs_big_inode_init_once);
3144 if (!ntfs_big_inode_cache) {
3145 pr_crit("Failed to create %s!\n", ntfs_big_inode_cache_name);
3146 goto big_inode_err_out;
3147 }
3148
3149 /* Register the ntfs sysctls. */
3150 err = ntfs_sysctl(1);
3151 if (err) {
3152 pr_crit("Failed to register NTFS sysctls!\n");
3153 goto sysctl_err_out;
3154 }
3155
3156 err = register_filesystem(&ntfs_fs_type);
3157 if (!err) {
3158 ntfs_debug("NTFS driver registered successfully.");
3159 return 0; /* Success! */
3160 }
3161 pr_crit("Failed to register NTFS filesystem driver!\n");
3162
3163 /* Unregister the ntfs sysctls. */
3164 ntfs_sysctl(0);
3165 sysctl_err_out:
3166 kmem_cache_destroy(ntfs_big_inode_cache);
3167 big_inode_err_out:
3168 kmem_cache_destroy(ntfs_inode_cache);
3169 inode_err_out:
3170 kmem_cache_destroy(ntfs_name_cache);
3171 name_err_out:
3172 kmem_cache_destroy(ntfs_attr_ctx_cache);
3173 actx_err_out:
3174 kmem_cache_destroy(ntfs_index_ctx_cache);
3175 ictx_err_out:
3176 if (!err) {
3177 pr_crit("Aborting NTFS filesystem driver registration...\n");
3178 err = -ENOMEM;
3179 }
3180 return err;
3181 }
3182
exit_ntfs_fs(void)3183 static void __exit exit_ntfs_fs(void)
3184 {
3185 ntfs_debug("Unregistering NTFS driver.");
3186
3187 unregister_filesystem(&ntfs_fs_type);
3188
3189 /*
3190 * Make sure all delayed rcu free inodes are flushed before we
3191 * destroy cache.
3192 */
3193 rcu_barrier();
3194 kmem_cache_destroy(ntfs_big_inode_cache);
3195 kmem_cache_destroy(ntfs_inode_cache);
3196 kmem_cache_destroy(ntfs_name_cache);
3197 kmem_cache_destroy(ntfs_attr_ctx_cache);
3198 kmem_cache_destroy(ntfs_index_ctx_cache);
3199 /* Unregister the ntfs sysctls. */
3200 ntfs_sysctl(0);
3201 }
3202
3203 MODULE_AUTHOR("Anton Altaparmakov <anton@tuxera.com>");
3204 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.");
3205 MODULE_VERSION(NTFS_VERSION);
3206 MODULE_LICENSE("GPL");
3207 #ifdef DEBUG
3208 module_param(debug_msgs, bint, 0);
3209 MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
3210 #endif
3211
3212 module_init(init_ntfs_fs)
3213 module_exit(exit_ntfs_fs)
3214