1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * file.c
5 *
6 * File open, close, extend, truncate
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26 #include <linux/capability.h>
27 #include <linux/fs.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
39 #include <linux/blkdev.h>
40 #include <linux/backing-dev.h>
41
42 #include <cluster/masklog.h>
43
44 #include "ocfs2.h"
45
46 #include "alloc.h"
47 #include "aops.h"
48 #include "dir.h"
49 #include "dlmglue.h"
50 #include "extent_map.h"
51 #include "file.h"
52 #include "sysfile.h"
53 #include "inode.h"
54 #include "ioctl.h"
55 #include "journal.h"
56 #include "locks.h"
57 #include "mmap.h"
58 #include "suballoc.h"
59 #include "super.h"
60 #include "xattr.h"
61 #include "acl.h"
62 #include "quota.h"
63 #include "refcounttree.h"
64 #include "ocfs2_trace.h"
65
66 #include "buffer_head_io.h"
67
ocfs2_init_file_private(struct inode * inode,struct file * file)68 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
69 {
70 struct ocfs2_file_private *fp;
71
72 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
73 if (!fp)
74 return -ENOMEM;
75
76 fp->fp_file = file;
77 mutex_init(&fp->fp_mutex);
78 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
79 file->private_data = fp;
80
81 return 0;
82 }
83
ocfs2_free_file_private(struct inode * inode,struct file * file)84 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
85 {
86 struct ocfs2_file_private *fp = file->private_data;
87 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
88
89 if (fp) {
90 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
91 ocfs2_lock_res_free(&fp->fp_flock);
92 kfree(fp);
93 file->private_data = NULL;
94 }
95 }
96
ocfs2_file_open(struct inode * inode,struct file * file)97 static int ocfs2_file_open(struct inode *inode, struct file *file)
98 {
99 int status;
100 int mode = file->f_flags;
101 struct ocfs2_inode_info *oi = OCFS2_I(inode);
102
103 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
104 (unsigned long long)OCFS2_I(inode)->ip_blkno,
105 file->f_path.dentry->d_name.len,
106 file->f_path.dentry->d_name.name, mode);
107
108 if (file->f_mode & FMODE_WRITE) {
109 status = dquot_initialize(inode);
110 if (status)
111 goto leave;
112 }
113
114 spin_lock(&oi->ip_lock);
115
116 /* Check that the inode hasn't been wiped from disk by another
117 * node. If it hasn't then we're safe as long as we hold the
118 * spin lock until our increment of open count. */
119 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
120 spin_unlock(&oi->ip_lock);
121
122 status = -ENOENT;
123 goto leave;
124 }
125
126 if (mode & O_DIRECT)
127 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
128
129 oi->ip_open_count++;
130 spin_unlock(&oi->ip_lock);
131
132 status = ocfs2_init_file_private(inode, file);
133 if (status) {
134 /*
135 * We want to set open count back if we're failing the
136 * open.
137 */
138 spin_lock(&oi->ip_lock);
139 oi->ip_open_count--;
140 spin_unlock(&oi->ip_lock);
141 }
142
143 leave:
144 return status;
145 }
146
ocfs2_file_release(struct inode * inode,struct file * file)147 static int ocfs2_file_release(struct inode *inode, struct file *file)
148 {
149 struct ocfs2_inode_info *oi = OCFS2_I(inode);
150
151 spin_lock(&oi->ip_lock);
152 if (!--oi->ip_open_count)
153 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
154
155 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
156 oi->ip_blkno,
157 file->f_path.dentry->d_name.len,
158 file->f_path.dentry->d_name.name,
159 oi->ip_open_count);
160 spin_unlock(&oi->ip_lock);
161
162 ocfs2_free_file_private(inode, file);
163
164 return 0;
165 }
166
ocfs2_dir_open(struct inode * inode,struct file * file)167 static int ocfs2_dir_open(struct inode *inode, struct file *file)
168 {
169 return ocfs2_init_file_private(inode, file);
170 }
171
ocfs2_dir_release(struct inode * inode,struct file * file)172 static int ocfs2_dir_release(struct inode *inode, struct file *file)
173 {
174 ocfs2_free_file_private(inode, file);
175 return 0;
176 }
177
ocfs2_sync_file(struct file * file,loff_t start,loff_t end,int datasync)178 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
179 int datasync)
180 {
181 int err = 0;
182 struct inode *inode = file->f_mapping->host;
183 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
184 struct ocfs2_inode_info *oi = OCFS2_I(inode);
185 journal_t *journal = osb->journal->j_journal;
186 int ret;
187 tid_t commit_tid;
188 bool needs_barrier = false;
189
190 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
191 OCFS2_I(inode)->ip_blkno,
192 file->f_path.dentry->d_name.len,
193 file->f_path.dentry->d_name.name,
194 (unsigned long long)datasync);
195
196 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
197 return -EROFS;
198
199 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
200 if (err)
201 return err;
202
203 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
204 if (journal->j_flags & JBD2_BARRIER &&
205 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
206 needs_barrier = true;
207 err = jbd2_complete_transaction(journal, commit_tid);
208 if (needs_barrier) {
209 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
210 if (!err)
211 err = ret;
212 }
213
214 if (err)
215 mlog_errno(err);
216
217 return (err < 0) ? -EIO : 0;
218 }
219
ocfs2_should_update_atime(struct inode * inode,struct vfsmount * vfsmnt)220 int ocfs2_should_update_atime(struct inode *inode,
221 struct vfsmount *vfsmnt)
222 {
223 struct timespec now;
224 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
225
226 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
227 return 0;
228
229 if ((inode->i_flags & S_NOATIME) ||
230 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
231 return 0;
232
233 /*
234 * We can be called with no vfsmnt structure - NFSD will
235 * sometimes do this.
236 *
237 * Note that our action here is different than touch_atime() -
238 * if we can't tell whether this is a noatime mount, then we
239 * don't know whether to trust the value of s_atime_quantum.
240 */
241 if (vfsmnt == NULL)
242 return 0;
243
244 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
245 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
246 return 0;
247
248 if (vfsmnt->mnt_flags & MNT_RELATIME) {
249 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
250 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
251 return 1;
252
253 return 0;
254 }
255
256 now = current_time(inode);
257 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
258 return 0;
259 else
260 return 1;
261 }
262
ocfs2_update_inode_atime(struct inode * inode,struct buffer_head * bh)263 int ocfs2_update_inode_atime(struct inode *inode,
264 struct buffer_head *bh)
265 {
266 int ret;
267 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
268 handle_t *handle;
269 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
270
271 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
272 if (IS_ERR(handle)) {
273 ret = PTR_ERR(handle);
274 mlog_errno(ret);
275 goto out;
276 }
277
278 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
279 OCFS2_JOURNAL_ACCESS_WRITE);
280 if (ret) {
281 mlog_errno(ret);
282 goto out_commit;
283 }
284
285 /*
286 * Don't use ocfs2_mark_inode_dirty() here as we don't always
287 * have i_mutex to guard against concurrent changes to other
288 * inode fields.
289 */
290 inode->i_atime = current_time(inode);
291 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
292 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
293 ocfs2_update_inode_fsync_trans(handle, inode, 0);
294 ocfs2_journal_dirty(handle, bh);
295
296 out_commit:
297 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
298 out:
299 return ret;
300 }
301
ocfs2_set_inode_size(handle_t * handle,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)302 int ocfs2_set_inode_size(handle_t *handle,
303 struct inode *inode,
304 struct buffer_head *fe_bh,
305 u64 new_i_size)
306 {
307 int status;
308
309 i_size_write(inode, new_i_size);
310 inode->i_blocks = ocfs2_inode_sector_count(inode);
311 inode->i_ctime = inode->i_mtime = current_time(inode);
312
313 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
314 if (status < 0) {
315 mlog_errno(status);
316 goto bail;
317 }
318
319 bail:
320 return status;
321 }
322
ocfs2_simple_size_update(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)323 int ocfs2_simple_size_update(struct inode *inode,
324 struct buffer_head *di_bh,
325 u64 new_i_size)
326 {
327 int ret;
328 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
329 handle_t *handle = NULL;
330
331 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
332 if (IS_ERR(handle)) {
333 ret = PTR_ERR(handle);
334 mlog_errno(ret);
335 goto out;
336 }
337
338 ret = ocfs2_set_inode_size(handle, inode, di_bh,
339 new_i_size);
340 if (ret < 0)
341 mlog_errno(ret);
342
343 ocfs2_update_inode_fsync_trans(handle, inode, 0);
344 ocfs2_commit_trans(osb, handle);
345 out:
346 return ret;
347 }
348
ocfs2_cow_file_pos(struct inode * inode,struct buffer_head * fe_bh,u64 offset)349 static int ocfs2_cow_file_pos(struct inode *inode,
350 struct buffer_head *fe_bh,
351 u64 offset)
352 {
353 int status;
354 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
355 unsigned int num_clusters = 0;
356 unsigned int ext_flags = 0;
357
358 /*
359 * If the new offset is aligned to the range of the cluster, there is
360 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
361 * CoW either.
362 */
363 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
364 return 0;
365
366 status = ocfs2_get_clusters(inode, cpos, &phys,
367 &num_clusters, &ext_flags);
368 if (status) {
369 mlog_errno(status);
370 goto out;
371 }
372
373 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
374 goto out;
375
376 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
377
378 out:
379 return status;
380 }
381
ocfs2_orphan_for_truncate(struct ocfs2_super * osb,struct inode * inode,struct buffer_head * fe_bh,u64 new_i_size)382 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
383 struct inode *inode,
384 struct buffer_head *fe_bh,
385 u64 new_i_size)
386 {
387 int status;
388 handle_t *handle;
389 struct ocfs2_dinode *di;
390 u64 cluster_bytes;
391
392 /*
393 * We need to CoW the cluster contains the offset if it is reflinked
394 * since we will call ocfs2_zero_range_for_truncate later which will
395 * write "0" from offset to the end of the cluster.
396 */
397 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
398 if (status) {
399 mlog_errno(status);
400 return status;
401 }
402
403 /* TODO: This needs to actually orphan the inode in this
404 * transaction. */
405
406 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
407 if (IS_ERR(handle)) {
408 status = PTR_ERR(handle);
409 mlog_errno(status);
410 goto out;
411 }
412
413 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
414 OCFS2_JOURNAL_ACCESS_WRITE);
415 if (status < 0) {
416 mlog_errno(status);
417 goto out_commit;
418 }
419
420 /*
421 * Do this before setting i_size.
422 */
423 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
424 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
425 cluster_bytes);
426 if (status) {
427 mlog_errno(status);
428 goto out_commit;
429 }
430
431 i_size_write(inode, new_i_size);
432 inode->i_ctime = inode->i_mtime = current_time(inode);
433
434 di = (struct ocfs2_dinode *) fe_bh->b_data;
435 di->i_size = cpu_to_le64(new_i_size);
436 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
437 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
438 ocfs2_update_inode_fsync_trans(handle, inode, 0);
439
440 ocfs2_journal_dirty(handle, fe_bh);
441
442 out_commit:
443 ocfs2_commit_trans(osb, handle);
444 out:
445 return status;
446 }
447
ocfs2_truncate_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)448 int ocfs2_truncate_file(struct inode *inode,
449 struct buffer_head *di_bh,
450 u64 new_i_size)
451 {
452 int status = 0;
453 struct ocfs2_dinode *fe = NULL;
454 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
455
456 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
457 * already validated it */
458 fe = (struct ocfs2_dinode *) di_bh->b_data;
459
460 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
461 (unsigned long long)le64_to_cpu(fe->i_size),
462 (unsigned long long)new_i_size);
463
464 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
465 "Inode %llu, inode i_size = %lld != di "
466 "i_size = %llu, i_flags = 0x%x\n",
467 (unsigned long long)OCFS2_I(inode)->ip_blkno,
468 i_size_read(inode),
469 (unsigned long long)le64_to_cpu(fe->i_size),
470 le32_to_cpu(fe->i_flags));
471
472 if (new_i_size > le64_to_cpu(fe->i_size)) {
473 trace_ocfs2_truncate_file_error(
474 (unsigned long long)le64_to_cpu(fe->i_size),
475 (unsigned long long)new_i_size);
476 status = -EINVAL;
477 mlog_errno(status);
478 goto bail;
479 }
480
481 down_write(&OCFS2_I(inode)->ip_alloc_sem);
482
483 ocfs2_resv_discard(&osb->osb_la_resmap,
484 &OCFS2_I(inode)->ip_la_data_resv);
485
486 /*
487 * The inode lock forced other nodes to sync and drop their
488 * pages, which (correctly) happens even if we have a truncate
489 * without allocation change - ocfs2 cluster sizes can be much
490 * greater than page size, so we have to truncate them
491 * anyway.
492 */
493 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
494 truncate_inode_pages(inode->i_mapping, new_i_size);
495
496 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
497 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
498 i_size_read(inode), 1);
499 if (status)
500 mlog_errno(status);
501
502 goto bail_unlock_sem;
503 }
504
505 /* alright, we're going to need to do a full blown alloc size
506 * change. Orphan the inode so that recovery can complete the
507 * truncate if necessary. This does the task of marking
508 * i_size. */
509 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
510 if (status < 0) {
511 mlog_errno(status);
512 goto bail_unlock_sem;
513 }
514
515 status = ocfs2_commit_truncate(osb, inode, di_bh);
516 if (status < 0) {
517 mlog_errno(status);
518 goto bail_unlock_sem;
519 }
520
521 /* TODO: orphan dir cleanup here. */
522 bail_unlock_sem:
523 up_write(&OCFS2_I(inode)->ip_alloc_sem);
524
525 bail:
526 if (!status && OCFS2_I(inode)->ip_clusters == 0)
527 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
528
529 return status;
530 }
531
532 /*
533 * extend file allocation only here.
534 * we'll update all the disk stuff, and oip->alloc_size
535 *
536 * expect stuff to be locked, a transaction started and enough data /
537 * metadata reservations in the contexts.
538 *
539 * Will return -EAGAIN, and a reason if a restart is needed.
540 * If passed in, *reason will always be set, even in error.
541 */
ocfs2_add_inode_data(struct ocfs2_super * osb,struct inode * inode,u32 * logical_offset,u32 clusters_to_add,int mark_unwritten,struct buffer_head * fe_bh,handle_t * handle,struct ocfs2_alloc_context * data_ac,struct ocfs2_alloc_context * meta_ac,enum ocfs2_alloc_restarted * reason_ret)542 int ocfs2_add_inode_data(struct ocfs2_super *osb,
543 struct inode *inode,
544 u32 *logical_offset,
545 u32 clusters_to_add,
546 int mark_unwritten,
547 struct buffer_head *fe_bh,
548 handle_t *handle,
549 struct ocfs2_alloc_context *data_ac,
550 struct ocfs2_alloc_context *meta_ac,
551 enum ocfs2_alloc_restarted *reason_ret)
552 {
553 int ret;
554 struct ocfs2_extent_tree et;
555
556 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
557 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
558 clusters_to_add, mark_unwritten,
559 data_ac, meta_ac, reason_ret);
560
561 return ret;
562 }
563
__ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)564 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
565 u32 clusters_to_add, int mark_unwritten)
566 {
567 int status = 0;
568 int restart_func = 0;
569 int credits;
570 u32 prev_clusters;
571 struct buffer_head *bh = NULL;
572 struct ocfs2_dinode *fe = NULL;
573 handle_t *handle = NULL;
574 struct ocfs2_alloc_context *data_ac = NULL;
575 struct ocfs2_alloc_context *meta_ac = NULL;
576 enum ocfs2_alloc_restarted why = RESTART_NONE;
577 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
578 struct ocfs2_extent_tree et;
579 int did_quota = 0;
580
581 /*
582 * Unwritten extent only exists for file systems which
583 * support holes.
584 */
585 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
586
587 status = ocfs2_read_inode_block(inode, &bh);
588 if (status < 0) {
589 mlog_errno(status);
590 goto leave;
591 }
592 fe = (struct ocfs2_dinode *) bh->b_data;
593
594 restart_all:
595 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
596
597 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
598 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
599 &data_ac, &meta_ac);
600 if (status) {
601 mlog_errno(status);
602 goto leave;
603 }
604
605 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
606 handle = ocfs2_start_trans(osb, credits);
607 if (IS_ERR(handle)) {
608 status = PTR_ERR(handle);
609 handle = NULL;
610 mlog_errno(status);
611 goto leave;
612 }
613
614 restarted_transaction:
615 trace_ocfs2_extend_allocation(
616 (unsigned long long)OCFS2_I(inode)->ip_blkno,
617 (unsigned long long)i_size_read(inode),
618 le32_to_cpu(fe->i_clusters), clusters_to_add,
619 why, restart_func);
620
621 status = dquot_alloc_space_nodirty(inode,
622 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
623 if (status)
624 goto leave;
625 did_quota = 1;
626
627 /* reserve a write to the file entry early on - that we if we
628 * run out of credits in the allocation path, we can still
629 * update i_size. */
630 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
631 OCFS2_JOURNAL_ACCESS_WRITE);
632 if (status < 0) {
633 mlog_errno(status);
634 goto leave;
635 }
636
637 prev_clusters = OCFS2_I(inode)->ip_clusters;
638
639 status = ocfs2_add_inode_data(osb,
640 inode,
641 &logical_start,
642 clusters_to_add,
643 mark_unwritten,
644 bh,
645 handle,
646 data_ac,
647 meta_ac,
648 &why);
649 if ((status < 0) && (status != -EAGAIN)) {
650 if (status != -ENOSPC)
651 mlog_errno(status);
652 goto leave;
653 }
654 ocfs2_update_inode_fsync_trans(handle, inode, 1);
655 ocfs2_journal_dirty(handle, bh);
656
657 spin_lock(&OCFS2_I(inode)->ip_lock);
658 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
659 spin_unlock(&OCFS2_I(inode)->ip_lock);
660 /* Release unused quota reservation */
661 dquot_free_space(inode,
662 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
663 did_quota = 0;
664
665 if (why != RESTART_NONE && clusters_to_add) {
666 if (why == RESTART_META) {
667 restart_func = 1;
668 status = 0;
669 } else {
670 BUG_ON(why != RESTART_TRANS);
671
672 status = ocfs2_allocate_extend_trans(handle, 1);
673 if (status < 0) {
674 /* handle still has to be committed at
675 * this point. */
676 status = -ENOMEM;
677 mlog_errno(status);
678 goto leave;
679 }
680 goto restarted_transaction;
681 }
682 }
683
684 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
685 le32_to_cpu(fe->i_clusters),
686 (unsigned long long)le64_to_cpu(fe->i_size),
687 OCFS2_I(inode)->ip_clusters,
688 (unsigned long long)i_size_read(inode));
689
690 leave:
691 if (status < 0 && did_quota)
692 dquot_free_space(inode,
693 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
694 if (handle) {
695 ocfs2_commit_trans(osb, handle);
696 handle = NULL;
697 }
698 if (data_ac) {
699 ocfs2_free_alloc_context(data_ac);
700 data_ac = NULL;
701 }
702 if (meta_ac) {
703 ocfs2_free_alloc_context(meta_ac);
704 meta_ac = NULL;
705 }
706 if ((!status) && restart_func) {
707 restart_func = 0;
708 goto restart_all;
709 }
710 brelse(bh);
711 bh = NULL;
712
713 return status;
714 }
715
ocfs2_extend_allocation(struct inode * inode,u32 logical_start,u32 clusters_to_add,int mark_unwritten)716 int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
717 u32 clusters_to_add, int mark_unwritten)
718 {
719 return __ocfs2_extend_allocation(inode, logical_start,
720 clusters_to_add, mark_unwritten);
721 }
722
723 /*
724 * While a write will already be ordering the data, a truncate will not.
725 * Thus, we need to explicitly order the zeroed pages.
726 */
ocfs2_zero_start_ordered_transaction(struct inode * inode,struct buffer_head * di_bh)727 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
728 struct buffer_head *di_bh)
729 {
730 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
731 handle_t *handle = NULL;
732 int ret = 0;
733
734 if (!ocfs2_should_order_data(inode))
735 goto out;
736
737 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
738 if (IS_ERR(handle)) {
739 ret = -ENOMEM;
740 mlog_errno(ret);
741 goto out;
742 }
743
744 ret = ocfs2_jbd2_file_inode(handle, inode);
745 if (ret < 0) {
746 mlog_errno(ret);
747 goto out;
748 }
749
750 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
751 OCFS2_JOURNAL_ACCESS_WRITE);
752 if (ret)
753 mlog_errno(ret);
754 ocfs2_update_inode_fsync_trans(handle, inode, 1);
755
756 out:
757 if (ret) {
758 if (!IS_ERR(handle))
759 ocfs2_commit_trans(osb, handle);
760 handle = ERR_PTR(ret);
761 }
762 return handle;
763 }
764
765 /* Some parts of this taken from generic_cont_expand, which turned out
766 * to be too fragile to do exactly what we need without us having to
767 * worry about recursive locking in ->write_begin() and ->write_end(). */
ocfs2_write_zero_page(struct inode * inode,u64 abs_from,u64 abs_to,struct buffer_head * di_bh)768 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
769 u64 abs_to, struct buffer_head *di_bh)
770 {
771 struct address_space *mapping = inode->i_mapping;
772 struct page *page;
773 unsigned long index = abs_from >> PAGE_SHIFT;
774 handle_t *handle;
775 int ret = 0;
776 unsigned zero_from, zero_to, block_start, block_end;
777 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
778
779 BUG_ON(abs_from >= abs_to);
780 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
781 BUG_ON(abs_from & (inode->i_blkbits - 1));
782
783 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
784 if (IS_ERR(handle)) {
785 ret = PTR_ERR(handle);
786 goto out;
787 }
788
789 page = find_or_create_page(mapping, index, GFP_NOFS);
790 if (!page) {
791 ret = -ENOMEM;
792 mlog_errno(ret);
793 goto out_commit_trans;
794 }
795
796 /* Get the offsets within the page that we want to zero */
797 zero_from = abs_from & (PAGE_SIZE - 1);
798 zero_to = abs_to & (PAGE_SIZE - 1);
799 if (!zero_to)
800 zero_to = PAGE_SIZE;
801
802 trace_ocfs2_write_zero_page(
803 (unsigned long long)OCFS2_I(inode)->ip_blkno,
804 (unsigned long long)abs_from,
805 (unsigned long long)abs_to,
806 index, zero_from, zero_to);
807
808 /* We know that zero_from is block aligned */
809 for (block_start = zero_from; block_start < zero_to;
810 block_start = block_end) {
811 block_end = block_start + i_blocksize(inode);
812
813 /*
814 * block_start is block-aligned. Bump it by one to force
815 * __block_write_begin and block_commit_write to zero the
816 * whole block.
817 */
818 ret = __block_write_begin(page, block_start + 1, 0,
819 ocfs2_get_block);
820 if (ret < 0) {
821 mlog_errno(ret);
822 goto out_unlock;
823 }
824
825
826 /* must not update i_size! */
827 ret = block_commit_write(page, block_start + 1,
828 block_start + 1);
829 if (ret < 0)
830 mlog_errno(ret);
831 else
832 ret = 0;
833 }
834
835 /*
836 * fs-writeback will release the dirty pages without page lock
837 * whose offset are over inode size, the release happens at
838 * block_write_full_page().
839 */
840 i_size_write(inode, abs_to);
841 inode->i_blocks = ocfs2_inode_sector_count(inode);
842 di->i_size = cpu_to_le64((u64)i_size_read(inode));
843 inode->i_mtime = inode->i_ctime = current_time(inode);
844 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
845 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
846 di->i_mtime_nsec = di->i_ctime_nsec;
847 if (handle) {
848 ocfs2_journal_dirty(handle, di_bh);
849 ocfs2_update_inode_fsync_trans(handle, inode, 1);
850 }
851
852 out_unlock:
853 unlock_page(page);
854 put_page(page);
855 out_commit_trans:
856 if (handle)
857 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
858 out:
859 return ret;
860 }
861
862 /*
863 * Find the next range to zero. We do this in terms of bytes because
864 * that's what ocfs2_zero_extend() wants, and it is dealing with the
865 * pagecache. We may return multiple extents.
866 *
867 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
868 * needs to be zeroed. range_start and range_end return the next zeroing
869 * range. A subsequent call should pass the previous range_end as its
870 * zero_start. If range_end is 0, there's nothing to do.
871 *
872 * Unwritten extents are skipped over. Refcounted extents are CoWd.
873 */
ocfs2_zero_extend_get_range(struct inode * inode,struct buffer_head * di_bh,u64 zero_start,u64 zero_end,u64 * range_start,u64 * range_end)874 static int ocfs2_zero_extend_get_range(struct inode *inode,
875 struct buffer_head *di_bh,
876 u64 zero_start, u64 zero_end,
877 u64 *range_start, u64 *range_end)
878 {
879 int rc = 0, needs_cow = 0;
880 u32 p_cpos, zero_clusters = 0;
881 u32 zero_cpos =
882 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
883 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
884 unsigned int num_clusters = 0;
885 unsigned int ext_flags = 0;
886
887 while (zero_cpos < last_cpos) {
888 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
889 &num_clusters, &ext_flags);
890 if (rc) {
891 mlog_errno(rc);
892 goto out;
893 }
894
895 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
896 zero_clusters = num_clusters;
897 if (ext_flags & OCFS2_EXT_REFCOUNTED)
898 needs_cow = 1;
899 break;
900 }
901
902 zero_cpos += num_clusters;
903 }
904 if (!zero_clusters) {
905 *range_end = 0;
906 goto out;
907 }
908
909 while ((zero_cpos + zero_clusters) < last_cpos) {
910 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
911 &p_cpos, &num_clusters,
912 &ext_flags);
913 if (rc) {
914 mlog_errno(rc);
915 goto out;
916 }
917
918 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
919 break;
920 if (ext_flags & OCFS2_EXT_REFCOUNTED)
921 needs_cow = 1;
922 zero_clusters += num_clusters;
923 }
924 if ((zero_cpos + zero_clusters) > last_cpos)
925 zero_clusters = last_cpos - zero_cpos;
926
927 if (needs_cow) {
928 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
929 zero_clusters, UINT_MAX);
930 if (rc) {
931 mlog_errno(rc);
932 goto out;
933 }
934 }
935
936 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
937 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
938 zero_cpos + zero_clusters);
939
940 out:
941 return rc;
942 }
943
944 /*
945 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
946 * has made sure that the entire range needs zeroing.
947 */
ocfs2_zero_extend_range(struct inode * inode,u64 range_start,u64 range_end,struct buffer_head * di_bh)948 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
949 u64 range_end, struct buffer_head *di_bh)
950 {
951 int rc = 0;
952 u64 next_pos;
953 u64 zero_pos = range_start;
954
955 trace_ocfs2_zero_extend_range(
956 (unsigned long long)OCFS2_I(inode)->ip_blkno,
957 (unsigned long long)range_start,
958 (unsigned long long)range_end);
959 BUG_ON(range_start >= range_end);
960
961 while (zero_pos < range_end) {
962 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
963 if (next_pos > range_end)
964 next_pos = range_end;
965 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
966 if (rc < 0) {
967 mlog_errno(rc);
968 break;
969 }
970 zero_pos = next_pos;
971
972 /*
973 * Very large extends have the potential to lock up
974 * the cpu for extended periods of time.
975 */
976 cond_resched();
977 }
978
979 return rc;
980 }
981
ocfs2_zero_extend(struct inode * inode,struct buffer_head * di_bh,loff_t zero_to_size)982 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
983 loff_t zero_to_size)
984 {
985 int ret = 0;
986 u64 zero_start, range_start = 0, range_end = 0;
987 struct super_block *sb = inode->i_sb;
988
989 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
990 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
991 (unsigned long long)zero_start,
992 (unsigned long long)i_size_read(inode));
993 while (zero_start < zero_to_size) {
994 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
995 zero_to_size,
996 &range_start,
997 &range_end);
998 if (ret) {
999 mlog_errno(ret);
1000 break;
1001 }
1002 if (!range_end)
1003 break;
1004 /* Trim the ends */
1005 if (range_start < zero_start)
1006 range_start = zero_start;
1007 if (range_end > zero_to_size)
1008 range_end = zero_to_size;
1009
1010 ret = ocfs2_zero_extend_range(inode, range_start,
1011 range_end, di_bh);
1012 if (ret) {
1013 mlog_errno(ret);
1014 break;
1015 }
1016 zero_start = range_end;
1017 }
1018
1019 return ret;
1020 }
1021
ocfs2_extend_no_holes(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size,u64 zero_to)1022 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1023 u64 new_i_size, u64 zero_to)
1024 {
1025 int ret;
1026 u32 clusters_to_add;
1027 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1028
1029 /*
1030 * Only quota files call this without a bh, and they can't be
1031 * refcounted.
1032 */
1033 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1034 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1035
1036 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1037 if (clusters_to_add < oi->ip_clusters)
1038 clusters_to_add = 0;
1039 else
1040 clusters_to_add -= oi->ip_clusters;
1041
1042 if (clusters_to_add) {
1043 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1044 clusters_to_add, 0);
1045 if (ret) {
1046 mlog_errno(ret);
1047 goto out;
1048 }
1049 }
1050
1051 /*
1052 * Call this even if we don't add any clusters to the tree. We
1053 * still need to zero the area between the old i_size and the
1054 * new i_size.
1055 */
1056 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1057 if (ret < 0)
1058 mlog_errno(ret);
1059
1060 out:
1061 return ret;
1062 }
1063
ocfs2_extend_file(struct inode * inode,struct buffer_head * di_bh,u64 new_i_size)1064 static int ocfs2_extend_file(struct inode *inode,
1065 struct buffer_head *di_bh,
1066 u64 new_i_size)
1067 {
1068 int ret = 0;
1069 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1070
1071 BUG_ON(!di_bh);
1072
1073 /* setattr sometimes calls us like this. */
1074 if (new_i_size == 0)
1075 goto out;
1076
1077 if (i_size_read(inode) == new_i_size)
1078 goto out;
1079 BUG_ON(new_i_size < i_size_read(inode));
1080
1081 /*
1082 * The alloc sem blocks people in read/write from reading our
1083 * allocation until we're done changing it. We depend on
1084 * i_mutex to block other extend/truncate calls while we're
1085 * here. We even have to hold it for sparse files because there
1086 * might be some tail zeroing.
1087 */
1088 down_write(&oi->ip_alloc_sem);
1089
1090 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1091 /*
1092 * We can optimize small extends by keeping the inodes
1093 * inline data.
1094 */
1095 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1096 up_write(&oi->ip_alloc_sem);
1097 goto out_update_size;
1098 }
1099
1100 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1101 if (ret) {
1102 up_write(&oi->ip_alloc_sem);
1103 mlog_errno(ret);
1104 goto out;
1105 }
1106 }
1107
1108 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1109 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1110 else
1111 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1112 new_i_size);
1113
1114 up_write(&oi->ip_alloc_sem);
1115
1116 if (ret < 0) {
1117 mlog_errno(ret);
1118 goto out;
1119 }
1120
1121 out_update_size:
1122 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1123 if (ret < 0)
1124 mlog_errno(ret);
1125
1126 out:
1127 return ret;
1128 }
1129
ocfs2_setattr(struct dentry * dentry,struct iattr * attr)1130 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1131 {
1132 int status = 0, size_change;
1133 int inode_locked = 0;
1134 struct inode *inode = d_inode(dentry);
1135 struct super_block *sb = inode->i_sb;
1136 struct ocfs2_super *osb = OCFS2_SB(sb);
1137 struct buffer_head *bh = NULL;
1138 handle_t *handle = NULL;
1139 struct dquot *transfer_to[MAXQUOTAS] = { };
1140 int qtype;
1141
1142 trace_ocfs2_setattr(inode, dentry,
1143 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1144 dentry->d_name.len, dentry->d_name.name,
1145 attr->ia_valid, attr->ia_mode,
1146 from_kuid(&init_user_ns, attr->ia_uid),
1147 from_kgid(&init_user_ns, attr->ia_gid));
1148
1149 /* ensuring we don't even attempt to truncate a symlink */
1150 if (S_ISLNK(inode->i_mode))
1151 attr->ia_valid &= ~ATTR_SIZE;
1152
1153 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1154 | ATTR_GID | ATTR_UID | ATTR_MODE)
1155 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1156 return 0;
1157
1158 status = setattr_prepare(dentry, attr);
1159 if (status)
1160 return status;
1161
1162 if (is_quota_modification(inode, attr)) {
1163 status = dquot_initialize(inode);
1164 if (status)
1165 return status;
1166 }
1167 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1168 if (size_change) {
1169 /*
1170 * Here we should wait dio to finish before inode lock
1171 * to avoid a deadlock between ocfs2_setattr() and
1172 * ocfs2_dio_end_io_write()
1173 */
1174 inode_dio_wait(inode);
1175
1176 status = ocfs2_rw_lock(inode, 1);
1177 if (status < 0) {
1178 mlog_errno(status);
1179 goto bail;
1180 }
1181 }
1182
1183 status = ocfs2_inode_lock(inode, &bh, 1);
1184 if (status < 0) {
1185 if (status != -ENOENT)
1186 mlog_errno(status);
1187 goto bail_unlock_rw;
1188 }
1189 inode_locked = 1;
1190
1191 if (size_change) {
1192 status = inode_newsize_ok(inode, attr->ia_size);
1193 if (status)
1194 goto bail_unlock;
1195
1196 if (i_size_read(inode) >= attr->ia_size) {
1197 if (ocfs2_should_order_data(inode)) {
1198 status = ocfs2_begin_ordered_truncate(inode,
1199 attr->ia_size);
1200 if (status)
1201 goto bail_unlock;
1202 }
1203 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1204 } else
1205 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1206 if (status < 0) {
1207 if (status != -ENOSPC)
1208 mlog_errno(status);
1209 status = -ENOSPC;
1210 goto bail_unlock;
1211 }
1212 }
1213
1214 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1215 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1216 /*
1217 * Gather pointers to quota structures so that allocation /
1218 * freeing of quota structures happens here and not inside
1219 * dquot_transfer() where we have problems with lock ordering
1220 */
1221 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1222 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1223 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1224 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1225 if (IS_ERR(transfer_to[USRQUOTA])) {
1226 status = PTR_ERR(transfer_to[USRQUOTA]);
1227 goto bail_unlock;
1228 }
1229 }
1230 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1231 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1232 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1233 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1234 if (IS_ERR(transfer_to[GRPQUOTA])) {
1235 status = PTR_ERR(transfer_to[GRPQUOTA]);
1236 goto bail_unlock;
1237 }
1238 }
1239 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1240 2 * ocfs2_quota_trans_credits(sb));
1241 if (IS_ERR(handle)) {
1242 status = PTR_ERR(handle);
1243 mlog_errno(status);
1244 goto bail_unlock;
1245 }
1246 status = __dquot_transfer(inode, transfer_to);
1247 if (status < 0)
1248 goto bail_commit;
1249 } else {
1250 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1251 if (IS_ERR(handle)) {
1252 status = PTR_ERR(handle);
1253 mlog_errno(status);
1254 goto bail_unlock;
1255 }
1256 }
1257
1258 setattr_copy(inode, attr);
1259 mark_inode_dirty(inode);
1260
1261 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1262 if (status < 0)
1263 mlog_errno(status);
1264
1265 bail_commit:
1266 ocfs2_commit_trans(osb, handle);
1267 bail_unlock:
1268 if (status) {
1269 ocfs2_inode_unlock(inode, 1);
1270 inode_locked = 0;
1271 }
1272 bail_unlock_rw:
1273 if (size_change)
1274 ocfs2_rw_unlock(inode, 1);
1275 bail:
1276
1277 /* Release quota pointers in case we acquired them */
1278 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1279 dqput(transfer_to[qtype]);
1280
1281 if (!status && attr->ia_valid & ATTR_MODE) {
1282 status = ocfs2_acl_chmod(inode, bh);
1283 if (status < 0)
1284 mlog_errno(status);
1285 }
1286 if (inode_locked)
1287 ocfs2_inode_unlock(inode, 1);
1288
1289 brelse(bh);
1290 return status;
1291 }
1292
ocfs2_getattr(struct vfsmount * mnt,struct dentry * dentry,struct kstat * stat)1293 int ocfs2_getattr(struct vfsmount *mnt,
1294 struct dentry *dentry,
1295 struct kstat *stat)
1296 {
1297 struct inode *inode = d_inode(dentry);
1298 struct super_block *sb = dentry->d_sb;
1299 struct ocfs2_super *osb = sb->s_fs_info;
1300 int err;
1301
1302 err = ocfs2_inode_revalidate(dentry);
1303 if (err) {
1304 if (err != -ENOENT)
1305 mlog_errno(err);
1306 goto bail;
1307 }
1308
1309 generic_fillattr(inode, stat);
1310 /*
1311 * If there is inline data in the inode, the inode will normally not
1312 * have data blocks allocated (it may have an external xattr block).
1313 * Report at least one sector for such files, so tools like tar, rsync,
1314 * others don't incorrectly think the file is completely sparse.
1315 */
1316 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1317 stat->blocks += (stat->size + 511)>>9;
1318
1319 /* We set the blksize from the cluster size for performance */
1320 stat->blksize = osb->s_clustersize;
1321
1322 bail:
1323 return err;
1324 }
1325
ocfs2_permission(struct inode * inode,int mask)1326 int ocfs2_permission(struct inode *inode, int mask)
1327 {
1328 int ret;
1329
1330 if (mask & MAY_NOT_BLOCK)
1331 return -ECHILD;
1332
1333 ret = ocfs2_inode_lock(inode, NULL, 0);
1334 if (ret) {
1335 if (ret != -ENOENT)
1336 mlog_errno(ret);
1337 goto out;
1338 }
1339
1340 ret = generic_permission(inode, mask);
1341
1342 ocfs2_inode_unlock(inode, 0);
1343 out:
1344 return ret;
1345 }
1346
__ocfs2_write_remove_suid(struct inode * inode,struct buffer_head * bh)1347 static int __ocfs2_write_remove_suid(struct inode *inode,
1348 struct buffer_head *bh)
1349 {
1350 int ret;
1351 handle_t *handle;
1352 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1353 struct ocfs2_dinode *di;
1354
1355 trace_ocfs2_write_remove_suid(
1356 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1357 inode->i_mode);
1358
1359 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1360 if (IS_ERR(handle)) {
1361 ret = PTR_ERR(handle);
1362 mlog_errno(ret);
1363 goto out;
1364 }
1365
1366 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1367 OCFS2_JOURNAL_ACCESS_WRITE);
1368 if (ret < 0) {
1369 mlog_errno(ret);
1370 goto out_trans;
1371 }
1372
1373 inode->i_mode &= ~S_ISUID;
1374 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1375 inode->i_mode &= ~S_ISGID;
1376
1377 di = (struct ocfs2_dinode *) bh->b_data;
1378 di->i_mode = cpu_to_le16(inode->i_mode);
1379 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1380
1381 ocfs2_journal_dirty(handle, bh);
1382
1383 out_trans:
1384 ocfs2_commit_trans(osb, handle);
1385 out:
1386 return ret;
1387 }
1388
ocfs2_write_remove_suid(struct inode * inode)1389 static int ocfs2_write_remove_suid(struct inode *inode)
1390 {
1391 int ret;
1392 struct buffer_head *bh = NULL;
1393
1394 ret = ocfs2_read_inode_block(inode, &bh);
1395 if (ret < 0) {
1396 mlog_errno(ret);
1397 goto out;
1398 }
1399
1400 ret = __ocfs2_write_remove_suid(inode, bh);
1401 out:
1402 brelse(bh);
1403 return ret;
1404 }
1405
1406 /*
1407 * Allocate enough extents to cover the region starting at byte offset
1408 * start for len bytes. Existing extents are skipped, any extents
1409 * added are marked as "unwritten".
1410 */
ocfs2_allocate_unwritten_extents(struct inode * inode,u64 start,u64 len)1411 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1412 u64 start, u64 len)
1413 {
1414 int ret;
1415 u32 cpos, phys_cpos, clusters, alloc_size;
1416 u64 end = start + len;
1417 struct buffer_head *di_bh = NULL;
1418
1419 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1420 ret = ocfs2_read_inode_block(inode, &di_bh);
1421 if (ret) {
1422 mlog_errno(ret);
1423 goto out;
1424 }
1425
1426 /*
1427 * Nothing to do if the requested reservation range
1428 * fits within the inode.
1429 */
1430 if (ocfs2_size_fits_inline_data(di_bh, end))
1431 goto out;
1432
1433 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1434 if (ret) {
1435 mlog_errno(ret);
1436 goto out;
1437 }
1438 }
1439
1440 /*
1441 * We consider both start and len to be inclusive.
1442 */
1443 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1444 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1445 clusters -= cpos;
1446
1447 while (clusters) {
1448 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1449 &alloc_size, NULL);
1450 if (ret) {
1451 mlog_errno(ret);
1452 goto out;
1453 }
1454
1455 /*
1456 * Hole or existing extent len can be arbitrary, so
1457 * cap it to our own allocation request.
1458 */
1459 if (alloc_size > clusters)
1460 alloc_size = clusters;
1461
1462 if (phys_cpos) {
1463 /*
1464 * We already have an allocation at this
1465 * region so we can safely skip it.
1466 */
1467 goto next;
1468 }
1469
1470 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1471 if (ret) {
1472 if (ret != -ENOSPC)
1473 mlog_errno(ret);
1474 goto out;
1475 }
1476
1477 next:
1478 cpos += alloc_size;
1479 clusters -= alloc_size;
1480 }
1481
1482 ret = 0;
1483 out:
1484
1485 brelse(di_bh);
1486 return ret;
1487 }
1488
1489 /*
1490 * Truncate a byte range, avoiding pages within partial clusters. This
1491 * preserves those pages for the zeroing code to write to.
1492 */
ocfs2_truncate_cluster_pages(struct inode * inode,u64 byte_start,u64 byte_len)1493 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1494 u64 byte_len)
1495 {
1496 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1497 loff_t start, end;
1498 struct address_space *mapping = inode->i_mapping;
1499
1500 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1501 end = byte_start + byte_len;
1502 end = end & ~(osb->s_clustersize - 1);
1503
1504 if (start < end) {
1505 unmap_mapping_range(mapping, start, end - start, 0);
1506 truncate_inode_pages_range(mapping, start, end - 1);
1507 }
1508 }
1509
ocfs2_zero_partial_clusters(struct inode * inode,u64 start,u64 len)1510 static int ocfs2_zero_partial_clusters(struct inode *inode,
1511 u64 start, u64 len)
1512 {
1513 int ret = 0;
1514 u64 tmpend = 0;
1515 u64 end = start + len;
1516 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1517 unsigned int csize = osb->s_clustersize;
1518 handle_t *handle;
1519
1520 /*
1521 * The "start" and "end" values are NOT necessarily part of
1522 * the range whose allocation is being deleted. Rather, this
1523 * is what the user passed in with the request. We must zero
1524 * partial clusters here. There's no need to worry about
1525 * physical allocation - the zeroing code knows to skip holes.
1526 */
1527 trace_ocfs2_zero_partial_clusters(
1528 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1529 (unsigned long long)start, (unsigned long long)end);
1530
1531 /*
1532 * If both edges are on a cluster boundary then there's no
1533 * zeroing required as the region is part of the allocation to
1534 * be truncated.
1535 */
1536 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1537 goto out;
1538
1539 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1540 if (IS_ERR(handle)) {
1541 ret = PTR_ERR(handle);
1542 mlog_errno(ret);
1543 goto out;
1544 }
1545
1546 /*
1547 * If start is on a cluster boundary and end is somewhere in another
1548 * cluster, we have not COWed the cluster starting at start, unless
1549 * end is also within the same cluster. So, in this case, we skip this
1550 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1551 * to the next one.
1552 */
1553 if ((start & (csize - 1)) != 0) {
1554 /*
1555 * We want to get the byte offset of the end of the 1st
1556 * cluster.
1557 */
1558 tmpend = (u64)osb->s_clustersize +
1559 (start & ~(osb->s_clustersize - 1));
1560 if (tmpend > end)
1561 tmpend = end;
1562
1563 trace_ocfs2_zero_partial_clusters_range1(
1564 (unsigned long long)start,
1565 (unsigned long long)tmpend);
1566
1567 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1568 tmpend);
1569 if (ret)
1570 mlog_errno(ret);
1571 }
1572
1573 if (tmpend < end) {
1574 /*
1575 * This may make start and end equal, but the zeroing
1576 * code will skip any work in that case so there's no
1577 * need to catch it up here.
1578 */
1579 start = end & ~(osb->s_clustersize - 1);
1580
1581 trace_ocfs2_zero_partial_clusters_range2(
1582 (unsigned long long)start, (unsigned long long)end);
1583
1584 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1585 if (ret)
1586 mlog_errno(ret);
1587 }
1588 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1589
1590 ocfs2_commit_trans(osb, handle);
1591 out:
1592 return ret;
1593 }
1594
ocfs2_find_rec(struct ocfs2_extent_list * el,u32 pos)1595 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1596 {
1597 int i;
1598 struct ocfs2_extent_rec *rec = NULL;
1599
1600 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1601
1602 rec = &el->l_recs[i];
1603
1604 if (le32_to_cpu(rec->e_cpos) < pos)
1605 break;
1606 }
1607
1608 return i;
1609 }
1610
1611 /*
1612 * Helper to calculate the punching pos and length in one run, we handle the
1613 * following three cases in order:
1614 *
1615 * - remove the entire record
1616 * - remove a partial record
1617 * - no record needs to be removed (hole-punching completed)
1618 */
ocfs2_calc_trunc_pos(struct inode * inode,struct ocfs2_extent_list * el,struct ocfs2_extent_rec * rec,u32 trunc_start,u32 * trunc_cpos,u32 * trunc_len,u32 * trunc_end,u64 * blkno,int * done)1619 static void ocfs2_calc_trunc_pos(struct inode *inode,
1620 struct ocfs2_extent_list *el,
1621 struct ocfs2_extent_rec *rec,
1622 u32 trunc_start, u32 *trunc_cpos,
1623 u32 *trunc_len, u32 *trunc_end,
1624 u64 *blkno, int *done)
1625 {
1626 int ret = 0;
1627 u32 coff, range;
1628
1629 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1630
1631 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1632 /*
1633 * remove an entire extent record.
1634 */
1635 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1636 /*
1637 * Skip holes if any.
1638 */
1639 if (range < *trunc_end)
1640 *trunc_end = range;
1641 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1642 *blkno = le64_to_cpu(rec->e_blkno);
1643 *trunc_end = le32_to_cpu(rec->e_cpos);
1644 } else if (range > trunc_start) {
1645 /*
1646 * remove a partial extent record, which means we're
1647 * removing the last extent record.
1648 */
1649 *trunc_cpos = trunc_start;
1650 /*
1651 * skip hole if any.
1652 */
1653 if (range < *trunc_end)
1654 *trunc_end = range;
1655 *trunc_len = *trunc_end - trunc_start;
1656 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1657 *blkno = le64_to_cpu(rec->e_blkno) +
1658 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1659 *trunc_end = trunc_start;
1660 } else {
1661 /*
1662 * It may have two following possibilities:
1663 *
1664 * - last record has been removed
1665 * - trunc_start was within a hole
1666 *
1667 * both two cases mean the completion of hole punching.
1668 */
1669 ret = 1;
1670 }
1671
1672 *done = ret;
1673 }
1674
ocfs2_remove_inode_range(struct inode * inode,struct buffer_head * di_bh,u64 byte_start,u64 byte_len)1675 static int ocfs2_remove_inode_range(struct inode *inode,
1676 struct buffer_head *di_bh, u64 byte_start,
1677 u64 byte_len)
1678 {
1679 int ret = 0, flags = 0, done = 0, i;
1680 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1681 u32 cluster_in_el;
1682 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1683 struct ocfs2_cached_dealloc_ctxt dealloc;
1684 struct address_space *mapping = inode->i_mapping;
1685 struct ocfs2_extent_tree et;
1686 struct ocfs2_path *path = NULL;
1687 struct ocfs2_extent_list *el = NULL;
1688 struct ocfs2_extent_rec *rec = NULL;
1689 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1690 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1691
1692 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1693 ocfs2_init_dealloc_ctxt(&dealloc);
1694
1695 trace_ocfs2_remove_inode_range(
1696 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1697 (unsigned long long)byte_start,
1698 (unsigned long long)byte_len);
1699
1700 if (byte_len == 0)
1701 return 0;
1702
1703 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1704 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1705 byte_start + byte_len, 0);
1706 if (ret) {
1707 mlog_errno(ret);
1708 goto out;
1709 }
1710 /*
1711 * There's no need to get fancy with the page cache
1712 * truncate of an inline-data inode. We're talking
1713 * about less than a page here, which will be cached
1714 * in the dinode buffer anyway.
1715 */
1716 unmap_mapping_range(mapping, 0, 0, 0);
1717 truncate_inode_pages(mapping, 0);
1718 goto out;
1719 }
1720
1721 /*
1722 * For reflinks, we may need to CoW 2 clusters which might be
1723 * partially zero'd later, if hole's start and end offset were
1724 * within one cluster(means is not exactly aligned to clustersize).
1725 */
1726
1727 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1728
1729 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1730 if (ret) {
1731 mlog_errno(ret);
1732 goto out;
1733 }
1734
1735 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1736 if (ret) {
1737 mlog_errno(ret);
1738 goto out;
1739 }
1740 }
1741
1742 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1743 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1744 cluster_in_el = trunc_end;
1745
1746 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1747 if (ret) {
1748 mlog_errno(ret);
1749 goto out;
1750 }
1751
1752 path = ocfs2_new_path_from_et(&et);
1753 if (!path) {
1754 ret = -ENOMEM;
1755 mlog_errno(ret);
1756 goto out;
1757 }
1758
1759 while (trunc_end > trunc_start) {
1760
1761 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1762 cluster_in_el);
1763 if (ret) {
1764 mlog_errno(ret);
1765 goto out;
1766 }
1767
1768 el = path_leaf_el(path);
1769
1770 i = ocfs2_find_rec(el, trunc_end);
1771 /*
1772 * Need to go to previous extent block.
1773 */
1774 if (i < 0) {
1775 if (path->p_tree_depth == 0)
1776 break;
1777
1778 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1779 path,
1780 &cluster_in_el);
1781 if (ret) {
1782 mlog_errno(ret);
1783 goto out;
1784 }
1785
1786 /*
1787 * We've reached the leftmost extent block,
1788 * it's safe to leave.
1789 */
1790 if (cluster_in_el == 0)
1791 break;
1792
1793 /*
1794 * The 'pos' searched for previous extent block is
1795 * always one cluster less than actual trunc_end.
1796 */
1797 trunc_end = cluster_in_el + 1;
1798
1799 ocfs2_reinit_path(path, 1);
1800
1801 continue;
1802
1803 } else
1804 rec = &el->l_recs[i];
1805
1806 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1807 &trunc_len, &trunc_end, &blkno, &done);
1808 if (done)
1809 break;
1810
1811 flags = rec->e_flags;
1812 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1813
1814 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1815 phys_cpos, trunc_len, flags,
1816 &dealloc, refcount_loc, false);
1817 if (ret < 0) {
1818 mlog_errno(ret);
1819 goto out;
1820 }
1821
1822 cluster_in_el = trunc_end;
1823
1824 ocfs2_reinit_path(path, 1);
1825 }
1826
1827 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1828
1829 out:
1830 ocfs2_free_path(path);
1831 ocfs2_schedule_truncate_log_flush(osb, 1);
1832 ocfs2_run_deallocs(osb, &dealloc);
1833
1834 return ret;
1835 }
1836
1837 /*
1838 * Parts of this function taken from xfs_change_file_space()
1839 */
__ocfs2_change_file_space(struct file * file,struct inode * inode,loff_t f_pos,unsigned int cmd,struct ocfs2_space_resv * sr,int change_size)1840 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1841 loff_t f_pos, unsigned int cmd,
1842 struct ocfs2_space_resv *sr,
1843 int change_size)
1844 {
1845 int ret;
1846 s64 llen;
1847 loff_t size;
1848 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1849 struct buffer_head *di_bh = NULL;
1850 handle_t *handle;
1851 unsigned long long max_off = inode->i_sb->s_maxbytes;
1852
1853 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1854 return -EROFS;
1855
1856 inode_lock(inode);
1857
1858 /*
1859 * This prevents concurrent writes on other nodes
1860 */
1861 ret = ocfs2_rw_lock(inode, 1);
1862 if (ret) {
1863 mlog_errno(ret);
1864 goto out;
1865 }
1866
1867 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1868 if (ret) {
1869 mlog_errno(ret);
1870 goto out_rw_unlock;
1871 }
1872
1873 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1874 ret = -EPERM;
1875 goto out_inode_unlock;
1876 }
1877
1878 switch (sr->l_whence) {
1879 case 0: /*SEEK_SET*/
1880 break;
1881 case 1: /*SEEK_CUR*/
1882 sr->l_start += f_pos;
1883 break;
1884 case 2: /*SEEK_END*/
1885 sr->l_start += i_size_read(inode);
1886 break;
1887 default:
1888 ret = -EINVAL;
1889 goto out_inode_unlock;
1890 }
1891 sr->l_whence = 0;
1892
1893 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1894
1895 if (sr->l_start < 0
1896 || sr->l_start > max_off
1897 || (sr->l_start + llen) < 0
1898 || (sr->l_start + llen) > max_off) {
1899 ret = -EINVAL;
1900 goto out_inode_unlock;
1901 }
1902 size = sr->l_start + sr->l_len;
1903
1904 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1905 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1906 if (sr->l_len <= 0) {
1907 ret = -EINVAL;
1908 goto out_inode_unlock;
1909 }
1910 }
1911
1912 if (file && should_remove_suid(file->f_path.dentry)) {
1913 ret = __ocfs2_write_remove_suid(inode, di_bh);
1914 if (ret) {
1915 mlog_errno(ret);
1916 goto out_inode_unlock;
1917 }
1918 }
1919
1920 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1921 switch (cmd) {
1922 case OCFS2_IOC_RESVSP:
1923 case OCFS2_IOC_RESVSP64:
1924 /*
1925 * This takes unsigned offsets, but the signed ones we
1926 * pass have been checked against overflow above.
1927 */
1928 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1929 sr->l_len);
1930 break;
1931 case OCFS2_IOC_UNRESVSP:
1932 case OCFS2_IOC_UNRESVSP64:
1933 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1934 sr->l_len);
1935 break;
1936 default:
1937 ret = -EINVAL;
1938 }
1939 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1940 if (ret) {
1941 mlog_errno(ret);
1942 goto out_inode_unlock;
1943 }
1944
1945 /*
1946 * We update c/mtime for these changes
1947 */
1948 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1949 if (IS_ERR(handle)) {
1950 ret = PTR_ERR(handle);
1951 mlog_errno(ret);
1952 goto out_inode_unlock;
1953 }
1954
1955 if (change_size && i_size_read(inode) < size)
1956 i_size_write(inode, size);
1957
1958 inode->i_ctime = inode->i_mtime = current_time(inode);
1959 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1960 if (ret < 0)
1961 mlog_errno(ret);
1962
1963 if (file && (file->f_flags & O_SYNC))
1964 handle->h_sync = 1;
1965
1966 ocfs2_commit_trans(osb, handle);
1967
1968 out_inode_unlock:
1969 brelse(di_bh);
1970 ocfs2_inode_unlock(inode, 1);
1971 out_rw_unlock:
1972 ocfs2_rw_unlock(inode, 1);
1973
1974 out:
1975 inode_unlock(inode);
1976 return ret;
1977 }
1978
ocfs2_change_file_space(struct file * file,unsigned int cmd,struct ocfs2_space_resv * sr)1979 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1980 struct ocfs2_space_resv *sr)
1981 {
1982 struct inode *inode = file_inode(file);
1983 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1984 int ret;
1985
1986 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1987 !ocfs2_writes_unwritten_extents(osb))
1988 return -ENOTTY;
1989 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1990 !ocfs2_sparse_alloc(osb))
1991 return -ENOTTY;
1992
1993 if (!S_ISREG(inode->i_mode))
1994 return -EINVAL;
1995
1996 if (!(file->f_mode & FMODE_WRITE))
1997 return -EBADF;
1998
1999 ret = mnt_want_write_file(file);
2000 if (ret)
2001 return ret;
2002 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2003 mnt_drop_write_file(file);
2004 return ret;
2005 }
2006
ocfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2007 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2008 loff_t len)
2009 {
2010 struct inode *inode = file_inode(file);
2011 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2012 struct ocfs2_space_resv sr;
2013 int change_size = 1;
2014 int cmd = OCFS2_IOC_RESVSP64;
2015
2016 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2017 return -EOPNOTSUPP;
2018 if (!ocfs2_writes_unwritten_extents(osb))
2019 return -EOPNOTSUPP;
2020
2021 if (mode & FALLOC_FL_KEEP_SIZE)
2022 change_size = 0;
2023
2024 if (mode & FALLOC_FL_PUNCH_HOLE)
2025 cmd = OCFS2_IOC_UNRESVSP64;
2026
2027 sr.l_whence = 0;
2028 sr.l_start = (s64)offset;
2029 sr.l_len = (s64)len;
2030
2031 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2032 change_size);
2033 }
2034
ocfs2_check_range_for_refcount(struct inode * inode,loff_t pos,size_t count)2035 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2036 size_t count)
2037 {
2038 int ret = 0;
2039 unsigned int extent_flags;
2040 u32 cpos, clusters, extent_len, phys_cpos;
2041 struct super_block *sb = inode->i_sb;
2042
2043 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2044 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2045 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2046 return 0;
2047
2048 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2049 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2050
2051 while (clusters) {
2052 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2053 &extent_flags);
2054 if (ret < 0) {
2055 mlog_errno(ret);
2056 goto out;
2057 }
2058
2059 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2060 ret = 1;
2061 break;
2062 }
2063
2064 if (extent_len > clusters)
2065 extent_len = clusters;
2066
2067 clusters -= extent_len;
2068 cpos += extent_len;
2069 }
2070 out:
2071 return ret;
2072 }
2073
ocfs2_is_io_unaligned(struct inode * inode,size_t count,loff_t pos)2074 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2075 {
2076 int blockmask = inode->i_sb->s_blocksize - 1;
2077 loff_t final_size = pos + count;
2078
2079 if ((pos & blockmask) || (final_size & blockmask))
2080 return 1;
2081 return 0;
2082 }
2083
ocfs2_prepare_inode_for_refcount(struct inode * inode,struct file * file,loff_t pos,size_t count,int * meta_level)2084 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2085 struct file *file,
2086 loff_t pos, size_t count,
2087 int *meta_level)
2088 {
2089 int ret;
2090 struct buffer_head *di_bh = NULL;
2091 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2092 u32 clusters =
2093 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2094
2095 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2096 if (ret) {
2097 mlog_errno(ret);
2098 goto out;
2099 }
2100
2101 *meta_level = 1;
2102
2103 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2104 if (ret)
2105 mlog_errno(ret);
2106 out:
2107 brelse(di_bh);
2108 return ret;
2109 }
2110
ocfs2_prepare_inode_for_write(struct file * file,loff_t pos,size_t count)2111 static int ocfs2_prepare_inode_for_write(struct file *file,
2112 loff_t pos,
2113 size_t count)
2114 {
2115 int ret = 0, meta_level = 0;
2116 struct dentry *dentry = file->f_path.dentry;
2117 struct inode *inode = d_inode(dentry);
2118 loff_t end;
2119
2120 /*
2121 * We start with a read level meta lock and only jump to an ex
2122 * if we need to make modifications here.
2123 */
2124 for(;;) {
2125 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2126 if (ret < 0) {
2127 meta_level = -1;
2128 mlog_errno(ret);
2129 goto out;
2130 }
2131
2132 /* Clear suid / sgid if necessary. We do this here
2133 * instead of later in the write path because
2134 * remove_suid() calls ->setattr without any hint that
2135 * we may have already done our cluster locking. Since
2136 * ocfs2_setattr() *must* take cluster locks to
2137 * proceed, this will lead us to recursively lock the
2138 * inode. There's also the dinode i_size state which
2139 * can be lost via setattr during extending writes (we
2140 * set inode->i_size at the end of a write. */
2141 if (should_remove_suid(dentry)) {
2142 if (meta_level == 0) {
2143 ocfs2_inode_unlock(inode, meta_level);
2144 meta_level = 1;
2145 continue;
2146 }
2147
2148 ret = ocfs2_write_remove_suid(inode);
2149 if (ret < 0) {
2150 mlog_errno(ret);
2151 goto out_unlock;
2152 }
2153 }
2154
2155 end = pos + count;
2156
2157 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2158 if (ret == 1) {
2159 ocfs2_inode_unlock(inode, meta_level);
2160 meta_level = -1;
2161
2162 ret = ocfs2_prepare_inode_for_refcount(inode,
2163 file,
2164 pos,
2165 count,
2166 &meta_level);
2167 }
2168
2169 if (ret < 0) {
2170 mlog_errno(ret);
2171 goto out_unlock;
2172 }
2173
2174 break;
2175 }
2176
2177 out_unlock:
2178 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2179 pos, count);
2180
2181 if (meta_level >= 0)
2182 ocfs2_inode_unlock(inode, meta_level);
2183
2184 out:
2185 return ret;
2186 }
2187
ocfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2188 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2189 struct iov_iter *from)
2190 {
2191 int direct_io, rw_level;
2192 ssize_t written = 0;
2193 ssize_t ret;
2194 size_t count = iov_iter_count(from);
2195 struct file *file = iocb->ki_filp;
2196 struct inode *inode = file_inode(file);
2197 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2198 int full_coherency = !(osb->s_mount_opt &
2199 OCFS2_MOUNT_COHERENCY_BUFFERED);
2200 void *saved_ki_complete = NULL;
2201 int append_write = ((iocb->ki_pos + count) >=
2202 i_size_read(inode) ? 1 : 0);
2203
2204 trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
2205 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2206 file->f_path.dentry->d_name.len,
2207 file->f_path.dentry->d_name.name,
2208 (unsigned int)from->nr_segs); /* GRRRRR */
2209
2210 if (count == 0)
2211 return 0;
2212
2213 direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2214
2215 inode_lock(inode);
2216
2217 /*
2218 * Concurrent O_DIRECT writes are allowed with
2219 * mount_option "coherency=buffered".
2220 * For append write, we must take rw EX.
2221 */
2222 rw_level = (!direct_io || full_coherency || append_write);
2223
2224 ret = ocfs2_rw_lock(inode, rw_level);
2225 if (ret < 0) {
2226 mlog_errno(ret);
2227 goto out_mutex;
2228 }
2229
2230 /*
2231 * O_DIRECT writes with "coherency=full" need to take EX cluster
2232 * inode_lock to guarantee coherency.
2233 */
2234 if (direct_io && full_coherency) {
2235 /*
2236 * We need to take and drop the inode lock to force
2237 * other nodes to drop their caches. Buffered I/O
2238 * already does this in write_begin().
2239 */
2240 ret = ocfs2_inode_lock(inode, NULL, 1);
2241 if (ret < 0) {
2242 mlog_errno(ret);
2243 goto out;
2244 }
2245
2246 ocfs2_inode_unlock(inode, 1);
2247 }
2248
2249 ret = generic_write_checks(iocb, from);
2250 if (ret <= 0) {
2251 if (ret)
2252 mlog_errno(ret);
2253 goto out;
2254 }
2255 count = ret;
2256
2257 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count);
2258 if (ret < 0) {
2259 mlog_errno(ret);
2260 goto out;
2261 }
2262
2263 if (direct_io && !is_sync_kiocb(iocb) &&
2264 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2265 /*
2266 * Make it a sync io if it's an unaligned aio.
2267 */
2268 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2269 }
2270
2271 /* communicate with ocfs2_dio_end_io */
2272 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2273
2274 written = __generic_file_write_iter(iocb, from);
2275 /* buffered aio wouldn't have proper lock coverage today */
2276 BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2277
2278 /*
2279 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2280 * function pointer which is called when o_direct io completes so that
2281 * it can unlock our rw lock.
2282 * Unfortunately there are error cases which call end_io and others
2283 * that don't. so we don't have to unlock the rw_lock if either an
2284 * async dio is going to do it in the future or an end_io after an
2285 * error has already done it.
2286 */
2287 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2288 rw_level = -1;
2289 }
2290
2291 if (unlikely(written <= 0))
2292 goto out;
2293
2294 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2295 IS_SYNC(inode)) {
2296 ret = filemap_fdatawrite_range(file->f_mapping,
2297 iocb->ki_pos - written,
2298 iocb->ki_pos - 1);
2299 if (ret < 0)
2300 written = ret;
2301
2302 if (!ret) {
2303 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2304 if (ret < 0)
2305 written = ret;
2306 }
2307
2308 if (!ret)
2309 ret = filemap_fdatawait_range(file->f_mapping,
2310 iocb->ki_pos - written,
2311 iocb->ki_pos - 1);
2312 }
2313
2314 out:
2315 if (saved_ki_complete)
2316 xchg(&iocb->ki_complete, saved_ki_complete);
2317
2318 if (rw_level != -1)
2319 ocfs2_rw_unlock(inode, rw_level);
2320
2321 out_mutex:
2322 inode_unlock(inode);
2323
2324 if (written)
2325 ret = written;
2326 return ret;
2327 }
2328
ocfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2329 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2330 struct iov_iter *to)
2331 {
2332 int ret = 0, rw_level = -1, lock_level = 0;
2333 struct file *filp = iocb->ki_filp;
2334 struct inode *inode = file_inode(filp);
2335
2336 trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
2337 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2338 filp->f_path.dentry->d_name.len,
2339 filp->f_path.dentry->d_name.name,
2340 to->nr_segs); /* GRRRRR */
2341
2342
2343 if (!inode) {
2344 ret = -EINVAL;
2345 mlog_errno(ret);
2346 goto bail;
2347 }
2348
2349 /*
2350 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2351 * need locks to protect pending reads from racing with truncate.
2352 */
2353 if (iocb->ki_flags & IOCB_DIRECT) {
2354 ret = ocfs2_rw_lock(inode, 0);
2355 if (ret < 0) {
2356 mlog_errno(ret);
2357 goto bail;
2358 }
2359 rw_level = 0;
2360 /* communicate with ocfs2_dio_end_io */
2361 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2362 }
2363
2364 /*
2365 * We're fine letting folks race truncates and extending
2366 * writes with read across the cluster, just like they can
2367 * locally. Hence no rw_lock during read.
2368 *
2369 * Take and drop the meta data lock to update inode fields
2370 * like i_size. This allows the checks down below
2371 * generic_file_aio_read() a chance of actually working.
2372 */
2373 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
2374 if (ret < 0) {
2375 mlog_errno(ret);
2376 goto bail;
2377 }
2378 ocfs2_inode_unlock(inode, lock_level);
2379
2380 ret = generic_file_read_iter(iocb, to);
2381 trace_generic_file_aio_read_ret(ret);
2382
2383 /* buffered aio wouldn't have proper lock coverage today */
2384 BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
2385
2386 /* see ocfs2_file_write_iter */
2387 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2388 rw_level = -1;
2389 }
2390
2391 bail:
2392 if (rw_level != -1)
2393 ocfs2_rw_unlock(inode, rw_level);
2394
2395 return ret;
2396 }
2397
2398 /* Refer generic_file_llseek_unlocked() */
ocfs2_file_llseek(struct file * file,loff_t offset,int whence)2399 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2400 {
2401 struct inode *inode = file->f_mapping->host;
2402 int ret = 0;
2403
2404 inode_lock(inode);
2405
2406 switch (whence) {
2407 case SEEK_SET:
2408 break;
2409 case SEEK_END:
2410 /* SEEK_END requires the OCFS2 inode lock for the file
2411 * because it references the file's size.
2412 */
2413 ret = ocfs2_inode_lock(inode, NULL, 0);
2414 if (ret < 0) {
2415 mlog_errno(ret);
2416 goto out;
2417 }
2418 offset += i_size_read(inode);
2419 ocfs2_inode_unlock(inode, 0);
2420 break;
2421 case SEEK_CUR:
2422 if (offset == 0) {
2423 offset = file->f_pos;
2424 goto out;
2425 }
2426 offset += file->f_pos;
2427 break;
2428 case SEEK_DATA:
2429 case SEEK_HOLE:
2430 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2431 if (ret)
2432 goto out;
2433 break;
2434 default:
2435 ret = -EINVAL;
2436 goto out;
2437 }
2438
2439 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2440
2441 out:
2442 inode_unlock(inode);
2443 if (ret)
2444 return ret;
2445 return offset;
2446 }
2447
2448 const struct inode_operations ocfs2_file_iops = {
2449 .setattr = ocfs2_setattr,
2450 .getattr = ocfs2_getattr,
2451 .permission = ocfs2_permission,
2452 .listxattr = ocfs2_listxattr,
2453 .fiemap = ocfs2_fiemap,
2454 .get_acl = ocfs2_iop_get_acl,
2455 .set_acl = ocfs2_iop_set_acl,
2456 };
2457
2458 const struct inode_operations ocfs2_special_file_iops = {
2459 .setattr = ocfs2_setattr,
2460 .getattr = ocfs2_getattr,
2461 .permission = ocfs2_permission,
2462 .get_acl = ocfs2_iop_get_acl,
2463 .set_acl = ocfs2_iop_set_acl,
2464 };
2465
2466 /*
2467 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2468 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2469 */
2470 const struct file_operations ocfs2_fops = {
2471 .llseek = ocfs2_file_llseek,
2472 .mmap = ocfs2_mmap,
2473 .fsync = ocfs2_sync_file,
2474 .release = ocfs2_file_release,
2475 .open = ocfs2_file_open,
2476 .read_iter = ocfs2_file_read_iter,
2477 .write_iter = ocfs2_file_write_iter,
2478 .unlocked_ioctl = ocfs2_ioctl,
2479 #ifdef CONFIG_COMPAT
2480 .compat_ioctl = ocfs2_compat_ioctl,
2481 #endif
2482 .lock = ocfs2_lock,
2483 .flock = ocfs2_flock,
2484 .splice_read = generic_file_splice_read,
2485 .splice_write = iter_file_splice_write,
2486 .fallocate = ocfs2_fallocate,
2487 };
2488
2489 const struct file_operations ocfs2_dops = {
2490 .llseek = generic_file_llseek,
2491 .read = generic_read_dir,
2492 .iterate = ocfs2_readdir,
2493 .fsync = ocfs2_sync_file,
2494 .release = ocfs2_dir_release,
2495 .open = ocfs2_dir_open,
2496 .unlocked_ioctl = ocfs2_ioctl,
2497 #ifdef CONFIG_COMPAT
2498 .compat_ioctl = ocfs2_compat_ioctl,
2499 #endif
2500 .lock = ocfs2_lock,
2501 .flock = ocfs2_flock,
2502 };
2503
2504 /*
2505 * POSIX-lockless variants of our file_operations.
2506 *
2507 * These will be used if the underlying cluster stack does not support
2508 * posix file locking, if the user passes the "localflocks" mount
2509 * option, or if we have a local-only fs.
2510 *
2511 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2512 * so we still want it in the case of no stack support for
2513 * plocks. Internally, it will do the right thing when asked to ignore
2514 * the cluster.
2515 */
2516 const struct file_operations ocfs2_fops_no_plocks = {
2517 .llseek = ocfs2_file_llseek,
2518 .mmap = ocfs2_mmap,
2519 .fsync = ocfs2_sync_file,
2520 .release = ocfs2_file_release,
2521 .open = ocfs2_file_open,
2522 .read_iter = ocfs2_file_read_iter,
2523 .write_iter = ocfs2_file_write_iter,
2524 .unlocked_ioctl = ocfs2_ioctl,
2525 #ifdef CONFIG_COMPAT
2526 .compat_ioctl = ocfs2_compat_ioctl,
2527 #endif
2528 .flock = ocfs2_flock,
2529 .splice_read = generic_file_splice_read,
2530 .splice_write = iter_file_splice_write,
2531 .fallocate = ocfs2_fallocate,
2532 };
2533
2534 const struct file_operations ocfs2_dops_no_plocks = {
2535 .llseek = generic_file_llseek,
2536 .read = generic_read_dir,
2537 .iterate = ocfs2_readdir,
2538 .fsync = ocfs2_sync_file,
2539 .release = ocfs2_dir_release,
2540 .open = ocfs2_dir_open,
2541 .unlocked_ioctl = ocfs2_ioctl,
2542 #ifdef CONFIG_COMPAT
2543 .compat_ioctl = ocfs2_compat_ioctl,
2544 #endif
2545 .flock = ocfs2_flock,
2546 };
2547