1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/pci.h>
23 #include <linux/netdevice.h>
24 #include <linux/vmalloc.h>
25 #include "liquidio_common.h"
26 #include "octeon_droq.h"
27 #include "octeon_iq.h"
28 #include "response_manager.h"
29 #include "octeon_device.h"
30 #include "octeon_main.h"
31 #include "octeon_network.h"
32 #include "cn66xx_device.h"
33 #include "cn23xx_pf_device.h"
34
35 #define INCR_INSTRQUEUE_PKT_COUNT(octeon_dev_ptr, iq_no, field, count) \
36 (octeon_dev_ptr->instr_queue[iq_no]->stats.field += count)
37
38 struct iq_post_status {
39 int status;
40 int index;
41 };
42
43 static void check_db_timeout(struct work_struct *work);
44 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no);
45
46 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
47
IQ_INSTR_MODE_64B(struct octeon_device * oct,int iq_no)48 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
49 {
50 struct octeon_instr_queue *iq =
51 (struct octeon_instr_queue *)oct->instr_queue[iq_no];
52 return iq->iqcmd_64B;
53 }
54
55 #define IQ_INSTR_MODE_32B(oct, iq_no) (!IQ_INSTR_MODE_64B(oct, iq_no))
56
57 /* Define this to return the request status comaptible to old code */
58 /*#define OCTEON_USE_OLD_REQ_STATUS*/
59
60 /* Return 0 on success, 1 on failure */
octeon_init_instr_queue(struct octeon_device * oct,union oct_txpciq txpciq,u32 num_descs)61 int octeon_init_instr_queue(struct octeon_device *oct,
62 union oct_txpciq txpciq,
63 u32 num_descs)
64 {
65 struct octeon_instr_queue *iq;
66 struct octeon_iq_config *conf = NULL;
67 u32 iq_no = (u32)txpciq.s.q_no;
68 u32 q_size;
69 struct cavium_wq *db_wq;
70 int orig_node = dev_to_node(&oct->pci_dev->dev);
71 int numa_node = cpu_to_node(iq_no % num_online_cpus());
72
73 if (OCTEON_CN6XXX(oct))
74 conf = &(CFG_GET_IQ_CFG(CHIP_FIELD(oct, cn6xxx, conf)));
75 else if (OCTEON_CN23XX_PF(oct))
76 conf = &(CFG_GET_IQ_CFG(CHIP_FIELD(oct, cn23xx_pf, conf)));
77 if (!conf) {
78 dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
79 oct->chip_id);
80 return 1;
81 }
82
83 if (num_descs & (num_descs - 1)) {
84 dev_err(&oct->pci_dev->dev,
85 "Number of descriptors for instr queue %d not in power of 2.\n",
86 iq_no);
87 return 1;
88 }
89
90 q_size = (u32)conf->instr_type * num_descs;
91
92 iq = oct->instr_queue[iq_no];
93
94 iq->oct_dev = oct;
95
96 set_dev_node(&oct->pci_dev->dev, numa_node);
97 iq->base_addr = lio_dma_alloc(oct, q_size,
98 (dma_addr_t *)&iq->base_addr_dma);
99 set_dev_node(&oct->pci_dev->dev, orig_node);
100 if (!iq->base_addr)
101 iq->base_addr = lio_dma_alloc(oct, q_size,
102 (dma_addr_t *)&iq->base_addr_dma);
103 if (!iq->base_addr) {
104 dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
105 iq_no);
106 return 1;
107 }
108
109 iq->max_count = num_descs;
110
111 /* Initialize a list to holds requests that have been posted to Octeon
112 * but has yet to be fetched by octeon
113 */
114 iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
115 numa_node);
116 if (!iq->request_list)
117 iq->request_list = vmalloc(sizeof(*iq->request_list) *
118 num_descs);
119 if (!iq->request_list) {
120 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
121 dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
122 iq_no);
123 return 1;
124 }
125
126 memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
127
128 dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
129 iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
130
131 iq->txpciq.u64 = txpciq.u64;
132 iq->fill_threshold = (u32)conf->db_min;
133 iq->fill_cnt = 0;
134 iq->host_write_index = 0;
135 iq->octeon_read_index = 0;
136 iq->flush_index = 0;
137 iq->last_db_time = 0;
138 iq->do_auto_flush = 1;
139 iq->db_timeout = (u32)conf->db_timeout;
140 atomic_set(&iq->instr_pending, 0);
141
142 /* Initialize the spinlock for this instruction queue */
143 spin_lock_init(&iq->lock);
144 spin_lock_init(&iq->post_lock);
145
146 spin_lock_init(&iq->iq_flush_running_lock);
147
148 oct->io_qmask.iq |= (1ULL << iq_no);
149
150 /* Set the 32B/64B mode for each input queue */
151 oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
152 iq->iqcmd_64B = (conf->instr_type == 64);
153
154 oct->fn_list.setup_iq_regs(oct, iq_no);
155
156 oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
157 WQ_MEM_RECLAIM,
158 0);
159 if (!oct->check_db_wq[iq_no].wq) {
160 lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
161 dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
162 iq_no);
163 return 1;
164 }
165
166 db_wq = &oct->check_db_wq[iq_no];
167
168 INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
169 db_wq->wk.ctxptr = oct;
170 db_wq->wk.ctxul = iq_no;
171 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
172
173 return 0;
174 }
175
octeon_delete_instr_queue(struct octeon_device * oct,u32 iq_no)176 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
177 {
178 u64 desc_size = 0, q_size;
179 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
180
181 cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
182 destroy_workqueue(oct->check_db_wq[iq_no].wq);
183
184 if (OCTEON_CN6XXX(oct))
185 desc_size =
186 CFG_GET_IQ_INSTR_TYPE(CHIP_FIELD(oct, cn6xxx, conf));
187 else if (OCTEON_CN23XX_PF(oct))
188 desc_size =
189 CFG_GET_IQ_INSTR_TYPE(CHIP_FIELD(oct, cn23xx_pf, conf));
190
191 vfree(iq->request_list);
192
193 if (iq->base_addr) {
194 q_size = iq->max_count * desc_size;
195 lio_dma_free(oct, (u32)q_size, iq->base_addr,
196 iq->base_addr_dma);
197 return 0;
198 }
199 return 1;
200 }
201
202 /* Return 0 on success, 1 on failure */
octeon_setup_iq(struct octeon_device * oct,int ifidx,int q_index,union oct_txpciq txpciq,u32 num_descs,void * app_ctx)203 int octeon_setup_iq(struct octeon_device *oct,
204 int ifidx,
205 int q_index,
206 union oct_txpciq txpciq,
207 u32 num_descs,
208 void *app_ctx)
209 {
210 u32 iq_no = (u32)txpciq.s.q_no;
211 int numa_node = cpu_to_node(iq_no % num_online_cpus());
212
213 if (oct->instr_queue[iq_no]) {
214 dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
215 iq_no);
216 oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
217 oct->instr_queue[iq_no]->app_ctx = app_ctx;
218 return 0;
219 }
220 oct->instr_queue[iq_no] =
221 vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
222 if (!oct->instr_queue[iq_no])
223 oct->instr_queue[iq_no] =
224 vmalloc(sizeof(struct octeon_instr_queue));
225 if (!oct->instr_queue[iq_no])
226 return 1;
227
228 memset(oct->instr_queue[iq_no], 0,
229 sizeof(struct octeon_instr_queue));
230
231 oct->instr_queue[iq_no]->q_index = q_index;
232 oct->instr_queue[iq_no]->app_ctx = app_ctx;
233 oct->instr_queue[iq_no]->ifidx = ifidx;
234
235 if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
236 vfree(oct->instr_queue[iq_no]);
237 oct->instr_queue[iq_no] = NULL;
238 return 1;
239 }
240
241 oct->num_iqs++;
242 oct->fn_list.enable_io_queues(oct);
243 return 0;
244 }
245
lio_wait_for_instr_fetch(struct octeon_device * oct)246 int lio_wait_for_instr_fetch(struct octeon_device *oct)
247 {
248 int i, retry = 1000, pending, instr_cnt = 0;
249
250 do {
251 instr_cnt = 0;
252
253 /*for (i = 0; i < oct->num_iqs; i++) {*/
254 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
255 if (!(oct->io_qmask.iq & (1ULL << i)))
256 continue;
257 pending =
258 atomic_read(&oct->
259 instr_queue[i]->instr_pending);
260 if (pending)
261 __check_db_timeout(oct, i);
262 instr_cnt += pending;
263 }
264
265 if (instr_cnt == 0)
266 break;
267
268 schedule_timeout_uninterruptible(1);
269
270 } while (retry-- && instr_cnt);
271
272 return instr_cnt;
273 }
274
275 static inline void
ring_doorbell(struct octeon_device * oct,struct octeon_instr_queue * iq)276 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
277 {
278 if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
279 writel(iq->fill_cnt, iq->doorbell_reg);
280 /* make sure doorbell write goes through */
281 mmiowb();
282 iq->fill_cnt = 0;
283 iq->last_db_time = jiffies;
284 return;
285 }
286 }
287
__copy_cmd_into_iq(struct octeon_instr_queue * iq,u8 * cmd)288 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
289 u8 *cmd)
290 {
291 u8 *iqptr, cmdsize;
292
293 cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
294 iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
295
296 memcpy(iqptr, cmd, cmdsize);
297 }
298
299 static inline struct iq_post_status
__post_command2(struct octeon_instr_queue * iq,u8 * cmd)300 __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
301 {
302 struct iq_post_status st;
303
304 st.status = IQ_SEND_OK;
305
306 /* This ensures that the read index does not wrap around to the same
307 * position if queue gets full before Octeon could fetch any instr.
308 */
309 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
310 st.status = IQ_SEND_FAILED;
311 st.index = -1;
312 return st;
313 }
314
315 if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
316 st.status = IQ_SEND_STOP;
317
318 __copy_cmd_into_iq(iq, cmd);
319
320 /* "index" is returned, host_write_index is modified. */
321 st.index = iq->host_write_index;
322 INCR_INDEX_BY1(iq->host_write_index, iq->max_count);
323 iq->fill_cnt++;
324
325 /* Flush the command into memory. We need to be sure the data is in
326 * memory before indicating that the instruction is pending.
327 */
328 wmb();
329
330 atomic_inc(&iq->instr_pending);
331
332 return st;
333 }
334
335 int
octeon_register_reqtype_free_fn(struct octeon_device * oct,int reqtype,void (* fn)(void *))336 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
337 void (*fn)(void *))
338 {
339 if (reqtype > REQTYPE_LAST) {
340 dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
341 __func__, reqtype);
342 return -EINVAL;
343 }
344
345 reqtype_free_fn[oct->octeon_id][reqtype] = fn;
346
347 return 0;
348 }
349
350 static inline void
__add_to_request_list(struct octeon_instr_queue * iq,int idx,void * buf,int reqtype)351 __add_to_request_list(struct octeon_instr_queue *iq,
352 int idx, void *buf, int reqtype)
353 {
354 iq->request_list[idx].buf = buf;
355 iq->request_list[idx].reqtype = reqtype;
356 }
357
358 /* Can only run in process context */
359 int
lio_process_iq_request_list(struct octeon_device * oct,struct octeon_instr_queue * iq,u32 napi_budget)360 lio_process_iq_request_list(struct octeon_device *oct,
361 struct octeon_instr_queue *iq, u32 napi_budget)
362 {
363 int reqtype;
364 void *buf;
365 u32 old = iq->flush_index;
366 u32 inst_count = 0;
367 unsigned int pkts_compl = 0, bytes_compl = 0;
368 struct octeon_soft_command *sc;
369 struct octeon_instr_irh *irh;
370 unsigned long flags;
371
372 while (old != iq->octeon_read_index) {
373 reqtype = iq->request_list[old].reqtype;
374 buf = iq->request_list[old].buf;
375
376 if (reqtype == REQTYPE_NONE)
377 goto skip_this;
378
379 octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
380 &bytes_compl);
381
382 switch (reqtype) {
383 case REQTYPE_NORESP_NET:
384 case REQTYPE_NORESP_NET_SG:
385 case REQTYPE_RESP_NET_SG:
386 reqtype_free_fn[oct->octeon_id][reqtype](buf);
387 break;
388 case REQTYPE_RESP_NET:
389 case REQTYPE_SOFT_COMMAND:
390 sc = buf;
391
392 if (OCTEON_CN23XX_PF(oct))
393 irh = (struct octeon_instr_irh *)
394 &sc->cmd.cmd3.irh;
395 else
396 irh = (struct octeon_instr_irh *)
397 &sc->cmd.cmd2.irh;
398 if (irh->rflag) {
399 /* We're expecting a response from Octeon.
400 * It's up to lio_process_ordered_list() to
401 * process sc. Add sc to the ordered soft
402 * command response list because we expect
403 * a response from Octeon.
404 */
405 spin_lock_irqsave
406 (&oct->response_list
407 [OCTEON_ORDERED_SC_LIST].lock,
408 flags);
409 atomic_inc(&oct->response_list
410 [OCTEON_ORDERED_SC_LIST].
411 pending_req_count);
412 list_add_tail(&sc->node, &oct->response_list
413 [OCTEON_ORDERED_SC_LIST].head);
414 spin_unlock_irqrestore
415 (&oct->response_list
416 [OCTEON_ORDERED_SC_LIST].lock,
417 flags);
418 } else {
419 if (sc->callback) {
420 /* This callback must not sleep */
421 sc->callback(oct, OCTEON_REQUEST_DONE,
422 sc->callback_arg);
423 }
424 }
425 break;
426 default:
427 dev_err(&oct->pci_dev->dev,
428 "%s Unknown reqtype: %d buf: %p at idx %d\n",
429 __func__, reqtype, buf, old);
430 }
431
432 iq->request_list[old].buf = NULL;
433 iq->request_list[old].reqtype = 0;
434
435 skip_this:
436 inst_count++;
437 INCR_INDEX_BY1(old, iq->max_count);
438
439 if ((napi_budget) && (inst_count >= napi_budget))
440 break;
441 }
442 if (bytes_compl)
443 octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
444 bytes_compl);
445 iq->flush_index = old;
446
447 return inst_count;
448 }
449
450 /* Can only be called from process context */
451 int
octeon_flush_iq(struct octeon_device * oct,struct octeon_instr_queue * iq,u32 pending_thresh,u32 napi_budget)452 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
453 u32 pending_thresh, u32 napi_budget)
454 {
455 u32 inst_processed = 0;
456 u32 tot_inst_processed = 0;
457 int tx_done = 1;
458
459 if (!spin_trylock(&iq->iq_flush_running_lock))
460 return tx_done;
461
462 spin_lock_bh(&iq->lock);
463
464 iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
465
466 if (atomic_read(&iq->instr_pending) >= (s32)pending_thresh) {
467 do {
468 /* Process any outstanding IQ packets. */
469 if (iq->flush_index == iq->octeon_read_index)
470 break;
471
472 if (napi_budget)
473 inst_processed = lio_process_iq_request_list
474 (oct, iq,
475 napi_budget - tot_inst_processed);
476 else
477 inst_processed =
478 lio_process_iq_request_list(oct, iq, 0);
479
480 if (inst_processed) {
481 atomic_sub(inst_processed, &iq->instr_pending);
482 iq->stats.instr_processed += inst_processed;
483 }
484
485 tot_inst_processed += inst_processed;
486 inst_processed = 0;
487
488 } while (tot_inst_processed < napi_budget);
489
490 if (napi_budget && (tot_inst_processed >= napi_budget))
491 tx_done = 0;
492 }
493
494 iq->last_db_time = jiffies;
495
496 spin_unlock_bh(&iq->lock);
497
498 spin_unlock(&iq->iq_flush_running_lock);
499
500 return tx_done;
501 }
502
503 /* Process instruction queue after timeout.
504 * This routine gets called from a workqueue or when removing the module.
505 */
__check_db_timeout(struct octeon_device * oct,u64 iq_no)506 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
507 {
508 struct octeon_instr_queue *iq;
509 u64 next_time;
510
511 if (!oct)
512 return;
513
514 iq = oct->instr_queue[iq_no];
515 if (!iq)
516 return;
517
518 /* return immediately, if no work pending */
519 if (!atomic_read(&iq->instr_pending))
520 return;
521 /* If jiffies - last_db_time < db_timeout do nothing */
522 next_time = iq->last_db_time + iq->db_timeout;
523 if (!time_after(jiffies, (unsigned long)next_time))
524 return;
525 iq->last_db_time = jiffies;
526
527 /* Flush the instruction queue */
528 octeon_flush_iq(oct, iq, 1, 0);
529
530 lio_enable_irq(NULL, iq);
531 }
532
533 /* Called by the Poll thread at regular intervals to check the instruction
534 * queue for commands to be posted and for commands that were fetched by Octeon.
535 */
check_db_timeout(struct work_struct * work)536 static void check_db_timeout(struct work_struct *work)
537 {
538 struct cavium_wk *wk = (struct cavium_wk *)work;
539 struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
540 u64 iq_no = wk->ctxul;
541 struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
542 u32 delay = 10;
543
544 __check_db_timeout(oct, iq_no);
545 queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
546 }
547
548 int
octeon_send_command(struct octeon_device * oct,u32 iq_no,u32 force_db,void * cmd,void * buf,u32 datasize,u32 reqtype)549 octeon_send_command(struct octeon_device *oct, u32 iq_no,
550 u32 force_db, void *cmd, void *buf,
551 u32 datasize, u32 reqtype)
552 {
553 struct iq_post_status st;
554 struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
555
556 /* Get the lock and prevent other tasks and tx interrupt handler from
557 * running.
558 */
559 spin_lock_bh(&iq->post_lock);
560
561 st = __post_command2(iq, cmd);
562
563 if (st.status != IQ_SEND_FAILED) {
564 octeon_report_sent_bytes_to_bql(buf, reqtype);
565 __add_to_request_list(iq, st.index, buf, reqtype);
566 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
567 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
568
569 if (force_db)
570 ring_doorbell(oct, iq);
571 } else {
572 INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
573 }
574
575 spin_unlock_bh(&iq->post_lock);
576
577 /* This is only done here to expedite packets being flushed
578 * for cases where there are no IQ completion interrupts.
579 */
580 /*if (iq->do_auto_flush)*/
581 /* octeon_flush_iq(oct, iq, 2, 0);*/
582
583 return st.status;
584 }
585
586 void
octeon_prepare_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc,u8 opcode,u8 subcode,u32 irh_ossp,u64 ossp0,u64 ossp1)587 octeon_prepare_soft_command(struct octeon_device *oct,
588 struct octeon_soft_command *sc,
589 u8 opcode,
590 u8 subcode,
591 u32 irh_ossp,
592 u64 ossp0,
593 u64 ossp1)
594 {
595 struct octeon_config *oct_cfg;
596 struct octeon_instr_ih2 *ih2;
597 struct octeon_instr_ih3 *ih3;
598 struct octeon_instr_pki_ih3 *pki_ih3;
599 struct octeon_instr_irh *irh;
600 struct octeon_instr_rdp *rdp;
601
602 WARN_ON(opcode > 15);
603 WARN_ON(subcode > 127);
604
605 oct_cfg = octeon_get_conf(oct);
606
607 if (OCTEON_CN23XX_PF(oct)) {
608 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
609
610 ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
611
612 pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
613
614 pki_ih3->w = 1;
615 pki_ih3->raw = 1;
616 pki_ih3->utag = 1;
617 pki_ih3->uqpg =
618 oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
619 pki_ih3->utt = 1;
620 pki_ih3->tag = LIO_CONTROL;
621 pki_ih3->tagtype = ATOMIC_TAG;
622 pki_ih3->qpg =
623 oct->instr_queue[sc->iq_no]->txpciq.s.qpg;
624 pki_ih3->pm = 0x7;
625 pki_ih3->sl = 8;
626
627 if (sc->datasize)
628 ih3->dlengsz = sc->datasize;
629
630 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
631 irh->opcode = opcode;
632 irh->subcode = subcode;
633
634 /* opcode/subcode specific parameters (ossp) */
635 irh->ossp = irh_ossp;
636 sc->cmd.cmd3.ossp[0] = ossp0;
637 sc->cmd.cmd3.ossp[1] = ossp1;
638
639 if (sc->rdatasize) {
640 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
641 rdp->pcie_port = oct->pcie_port;
642 rdp->rlen = sc->rdatasize;
643
644 irh->rflag = 1;
645 /*PKI IH3*/
646 /* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
647 ih3->fsz = LIO_SOFTCMDRESP_IH3;
648 } else {
649 irh->rflag = 0;
650 /*PKI IH3*/
651 /* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
652 ih3->fsz = LIO_PCICMD_O3;
653 }
654
655 } else {
656 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
657 ih2->tagtype = ATOMIC_TAG;
658 ih2->tag = LIO_CONTROL;
659 ih2->raw = 1;
660 ih2->grp = CFG_GET_CTRL_Q_GRP(oct_cfg);
661
662 if (sc->datasize) {
663 ih2->dlengsz = sc->datasize;
664 ih2->rs = 1;
665 }
666
667 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
668 irh->opcode = opcode;
669 irh->subcode = subcode;
670
671 /* opcode/subcode specific parameters (ossp) */
672 irh->ossp = irh_ossp;
673 sc->cmd.cmd2.ossp[0] = ossp0;
674 sc->cmd.cmd2.ossp[1] = ossp1;
675
676 if (sc->rdatasize) {
677 rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
678 rdp->pcie_port = oct->pcie_port;
679 rdp->rlen = sc->rdatasize;
680
681 irh->rflag = 1;
682 /* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
683 ih2->fsz = LIO_SOFTCMDRESP_IH2;
684 } else {
685 irh->rflag = 0;
686 /* irh + ossp[0] + ossp[1] = 24 bytes */
687 ih2->fsz = LIO_PCICMD_O2;
688 }
689 }
690 }
691
octeon_send_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc)692 int octeon_send_soft_command(struct octeon_device *oct,
693 struct octeon_soft_command *sc)
694 {
695 struct octeon_instr_ih2 *ih2;
696 struct octeon_instr_ih3 *ih3;
697 struct octeon_instr_irh *irh;
698 u32 len;
699
700 if (OCTEON_CN23XX_PF(oct)) {
701 ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
702 if (ih3->dlengsz) {
703 WARN_ON(!sc->dmadptr);
704 sc->cmd.cmd3.dptr = sc->dmadptr;
705 }
706 irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
707 if (irh->rflag) {
708 WARN_ON(!sc->dmarptr);
709 WARN_ON(!sc->status_word);
710 *sc->status_word = COMPLETION_WORD_INIT;
711 sc->cmd.cmd3.rptr = sc->dmarptr;
712 }
713 len = (u32)ih3->dlengsz;
714 } else {
715 ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
716 if (ih2->dlengsz) {
717 WARN_ON(!sc->dmadptr);
718 sc->cmd.cmd2.dptr = sc->dmadptr;
719 }
720 irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
721 if (irh->rflag) {
722 WARN_ON(!sc->dmarptr);
723 WARN_ON(!sc->status_word);
724 *sc->status_word = COMPLETION_WORD_INIT;
725 sc->cmd.cmd2.rptr = sc->dmarptr;
726 }
727 len = (u32)ih2->dlengsz;
728 }
729
730 if (sc->wait_time)
731 sc->timeout = jiffies + sc->wait_time;
732
733 return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
734 len, REQTYPE_SOFT_COMMAND));
735 }
736
octeon_setup_sc_buffer_pool(struct octeon_device * oct)737 int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
738 {
739 int i;
740 u64 dma_addr;
741 struct octeon_soft_command *sc;
742
743 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
744 spin_lock_init(&oct->sc_buf_pool.lock);
745 atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
746
747 for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
748 sc = (struct octeon_soft_command *)
749 lio_dma_alloc(oct,
750 SOFT_COMMAND_BUFFER_SIZE,
751 (dma_addr_t *)&dma_addr);
752 if (!sc)
753 return 1;
754
755 sc->dma_addr = dma_addr;
756 sc->size = SOFT_COMMAND_BUFFER_SIZE;
757
758 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
759 }
760
761 return 0;
762 }
763
octeon_free_sc_buffer_pool(struct octeon_device * oct)764 int octeon_free_sc_buffer_pool(struct octeon_device *oct)
765 {
766 struct list_head *tmp, *tmp2;
767 struct octeon_soft_command *sc;
768
769 spin_lock_bh(&oct->sc_buf_pool.lock);
770
771 list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
772 list_del(tmp);
773
774 sc = (struct octeon_soft_command *)tmp;
775
776 lio_dma_free(oct, sc->size, sc, sc->dma_addr);
777 }
778
779 INIT_LIST_HEAD(&oct->sc_buf_pool.head);
780
781 spin_unlock_bh(&oct->sc_buf_pool.lock);
782
783 return 0;
784 }
785
octeon_alloc_soft_command(struct octeon_device * oct,u32 datasize,u32 rdatasize,u32 ctxsize)786 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
787 u32 datasize,
788 u32 rdatasize,
789 u32 ctxsize)
790 {
791 u64 dma_addr;
792 u32 size;
793 u32 offset = sizeof(struct octeon_soft_command);
794 struct octeon_soft_command *sc = NULL;
795 struct list_head *tmp;
796
797 WARN_ON((offset + datasize + rdatasize + ctxsize) >
798 SOFT_COMMAND_BUFFER_SIZE);
799
800 spin_lock_bh(&oct->sc_buf_pool.lock);
801
802 if (list_empty(&oct->sc_buf_pool.head)) {
803 spin_unlock_bh(&oct->sc_buf_pool.lock);
804 return NULL;
805 }
806
807 list_for_each(tmp, &oct->sc_buf_pool.head)
808 break;
809
810 list_del(tmp);
811
812 atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
813
814 spin_unlock_bh(&oct->sc_buf_pool.lock);
815
816 sc = (struct octeon_soft_command *)tmp;
817
818 dma_addr = sc->dma_addr;
819 size = sc->size;
820
821 memset(sc, 0, sc->size);
822
823 sc->dma_addr = dma_addr;
824 sc->size = size;
825
826 if (ctxsize) {
827 sc->ctxptr = (u8 *)sc + offset;
828 sc->ctxsize = ctxsize;
829 }
830
831 /* Start data at 128 byte boundary */
832 offset = (offset + ctxsize + 127) & 0xffffff80;
833
834 if (datasize) {
835 sc->virtdptr = (u8 *)sc + offset;
836 sc->dmadptr = dma_addr + offset;
837 sc->datasize = datasize;
838 }
839
840 /* Start rdata at 128 byte boundary */
841 offset = (offset + datasize + 127) & 0xffffff80;
842
843 if (rdatasize) {
844 WARN_ON(rdatasize < 16);
845 sc->virtrptr = (u8 *)sc + offset;
846 sc->dmarptr = dma_addr + offset;
847 sc->rdatasize = rdatasize;
848 sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
849 }
850
851 return sc;
852 }
853
octeon_free_soft_command(struct octeon_device * oct,struct octeon_soft_command * sc)854 void octeon_free_soft_command(struct octeon_device *oct,
855 struct octeon_soft_command *sc)
856 {
857 spin_lock_bh(&oct->sc_buf_pool.lock);
858
859 list_add_tail(&sc->node, &oct->sc_buf_pool.head);
860
861 atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
862
863 spin_unlock_bh(&oct->sc_buf_pool.lock);
864 }
865