1
2 #define pr_fmt(fmt) "OF: " fmt
3
4 #include <linux/device.h>
5 #include <linux/io.h>
6 #include <linux/ioport.h>
7 #include <linux/module.h>
8 #include <linux/of_address.h>
9 #include <linux/pci.h>
10 #include <linux/pci_regs.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/string.h>
14
15 /* Max address size we deal with */
16 #define OF_MAX_ADDR_CELLS 4
17 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
18 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
19
20 static struct of_bus *of_match_bus(struct device_node *np);
21 static int __of_address_to_resource(struct device_node *dev,
22 const __be32 *addrp, u64 size, unsigned int flags,
23 const char *name, struct resource *r);
24
25 /* Debug utility */
26 #ifdef DEBUG
of_dump_addr(const char * s,const __be32 * addr,int na)27 static void of_dump_addr(const char *s, const __be32 *addr, int na)
28 {
29 pr_debug("%s", s);
30 while (na--)
31 pr_cont(" %08x", be32_to_cpu(*(addr++)));
32 pr_cont("\n");
33 }
34 #else
of_dump_addr(const char * s,const __be32 * addr,int na)35 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
36 #endif
37
38 /* Callbacks for bus specific translators */
39 struct of_bus {
40 const char *name;
41 const char *addresses;
42 int (*match)(struct device_node *parent);
43 void (*count_cells)(struct device_node *child,
44 int *addrc, int *sizec);
45 u64 (*map)(__be32 *addr, const __be32 *range,
46 int na, int ns, int pna);
47 int (*translate)(__be32 *addr, u64 offset, int na);
48 unsigned int (*get_flags)(const __be32 *addr);
49 };
50
51 /*
52 * Default translator (generic bus)
53 */
54
of_bus_default_count_cells(struct device_node * dev,int * addrc,int * sizec)55 static void of_bus_default_count_cells(struct device_node *dev,
56 int *addrc, int *sizec)
57 {
58 if (addrc)
59 *addrc = of_n_addr_cells(dev);
60 if (sizec)
61 *sizec = of_n_size_cells(dev);
62 }
63
of_bus_default_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)64 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
65 int na, int ns, int pna)
66 {
67 u64 cp, s, da;
68
69 cp = of_read_number(range, na);
70 s = of_read_number(range + na + pna, ns);
71 da = of_read_number(addr, na);
72
73 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
74 (unsigned long long)cp, (unsigned long long)s,
75 (unsigned long long)da);
76
77 if (da < cp || da >= (cp + s))
78 return OF_BAD_ADDR;
79 return da - cp;
80 }
81
of_bus_default_translate(__be32 * addr,u64 offset,int na)82 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
83 {
84 u64 a = of_read_number(addr, na);
85 memset(addr, 0, na * 4);
86 a += offset;
87 if (na > 1)
88 addr[na - 2] = cpu_to_be32(a >> 32);
89 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
90
91 return 0;
92 }
93
of_bus_default_get_flags(const __be32 * addr)94 static unsigned int of_bus_default_get_flags(const __be32 *addr)
95 {
96 return IORESOURCE_MEM;
97 }
98
99 #ifdef CONFIG_OF_ADDRESS_PCI
100 /*
101 * PCI bus specific translator
102 */
103
of_bus_pci_match(struct device_node * np)104 static int of_bus_pci_match(struct device_node *np)
105 {
106 /*
107 * "pciex" is PCI Express
108 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
109 * "ht" is hypertransport
110 */
111 return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
112 !strcmp(np->type, "vci") || !strcmp(np->type, "ht");
113 }
114
of_bus_pci_count_cells(struct device_node * np,int * addrc,int * sizec)115 static void of_bus_pci_count_cells(struct device_node *np,
116 int *addrc, int *sizec)
117 {
118 if (addrc)
119 *addrc = 3;
120 if (sizec)
121 *sizec = 2;
122 }
123
of_bus_pci_get_flags(const __be32 * addr)124 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
125 {
126 unsigned int flags = 0;
127 u32 w = be32_to_cpup(addr);
128
129 switch((w >> 24) & 0x03) {
130 case 0x01:
131 flags |= IORESOURCE_IO;
132 break;
133 case 0x02: /* 32 bits */
134 case 0x03: /* 64 bits */
135 flags |= IORESOURCE_MEM;
136 break;
137 }
138 if (w & 0x40000000)
139 flags |= IORESOURCE_PREFETCH;
140 return flags;
141 }
142
of_bus_pci_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)143 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
144 int pna)
145 {
146 u64 cp, s, da;
147 unsigned int af, rf;
148
149 af = of_bus_pci_get_flags(addr);
150 rf = of_bus_pci_get_flags(range);
151
152 /* Check address type match */
153 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
154 return OF_BAD_ADDR;
155
156 /* Read address values, skipping high cell */
157 cp = of_read_number(range + 1, na - 1);
158 s = of_read_number(range + na + pna, ns);
159 da = of_read_number(addr + 1, na - 1);
160
161 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
162 (unsigned long long)cp, (unsigned long long)s,
163 (unsigned long long)da);
164
165 if (da < cp || da >= (cp + s))
166 return OF_BAD_ADDR;
167 return da - cp;
168 }
169
of_bus_pci_translate(__be32 * addr,u64 offset,int na)170 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
171 {
172 return of_bus_default_translate(addr + 1, offset, na - 1);
173 }
174 #endif /* CONFIG_OF_ADDRESS_PCI */
175
176 #ifdef CONFIG_PCI
of_get_pci_address(struct device_node * dev,int bar_no,u64 * size,unsigned int * flags)177 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
178 unsigned int *flags)
179 {
180 const __be32 *prop;
181 unsigned int psize;
182 struct device_node *parent;
183 struct of_bus *bus;
184 int onesize, i, na, ns;
185
186 /* Get parent & match bus type */
187 parent = of_get_parent(dev);
188 if (parent == NULL)
189 return NULL;
190 bus = of_match_bus(parent);
191 if (strcmp(bus->name, "pci")) {
192 of_node_put(parent);
193 return NULL;
194 }
195 bus->count_cells(dev, &na, &ns);
196 of_node_put(parent);
197 if (!OF_CHECK_ADDR_COUNT(na))
198 return NULL;
199
200 /* Get "reg" or "assigned-addresses" property */
201 prop = of_get_property(dev, bus->addresses, &psize);
202 if (prop == NULL)
203 return NULL;
204 psize /= 4;
205
206 onesize = na + ns;
207 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
208 u32 val = be32_to_cpu(prop[0]);
209 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
210 if (size)
211 *size = of_read_number(prop + na, ns);
212 if (flags)
213 *flags = bus->get_flags(prop);
214 return prop;
215 }
216 }
217 return NULL;
218 }
219 EXPORT_SYMBOL(of_get_pci_address);
220
of_pci_address_to_resource(struct device_node * dev,int bar,struct resource * r)221 int of_pci_address_to_resource(struct device_node *dev, int bar,
222 struct resource *r)
223 {
224 const __be32 *addrp;
225 u64 size;
226 unsigned int flags;
227
228 addrp = of_get_pci_address(dev, bar, &size, &flags);
229 if (addrp == NULL)
230 return -EINVAL;
231 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
232 }
233 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
234
of_pci_range_parser_init(struct of_pci_range_parser * parser,struct device_node * node)235 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
236 struct device_node *node)
237 {
238 const int na = 3, ns = 2;
239 int rlen;
240
241 parser->node = node;
242 parser->pna = of_n_addr_cells(node);
243 parser->np = parser->pna + na + ns;
244
245 parser->range = of_get_property(node, "ranges", &rlen);
246 if (parser->range == NULL)
247 return -ENOENT;
248
249 parser->end = parser->range + rlen / sizeof(__be32);
250
251 return 0;
252 }
253 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
254
of_pci_range_parser_one(struct of_pci_range_parser * parser,struct of_pci_range * range)255 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
256 struct of_pci_range *range)
257 {
258 const int na = 3, ns = 2;
259
260 if (!range)
261 return NULL;
262
263 if (!parser->range || parser->range + parser->np > parser->end)
264 return NULL;
265
266 range->pci_space = be32_to_cpup(parser->range);
267 range->flags = of_bus_pci_get_flags(parser->range);
268 range->pci_addr = of_read_number(parser->range + 1, ns);
269 range->cpu_addr = of_translate_address(parser->node,
270 parser->range + na);
271 range->size = of_read_number(parser->range + parser->pna + na, ns);
272
273 parser->range += parser->np;
274
275 /* Now consume following elements while they are contiguous */
276 while (parser->range + parser->np <= parser->end) {
277 u32 flags, pci_space;
278 u64 pci_addr, cpu_addr, size;
279
280 pci_space = be32_to_cpup(parser->range);
281 flags = of_bus_pci_get_flags(parser->range);
282 pci_addr = of_read_number(parser->range + 1, ns);
283 cpu_addr = of_translate_address(parser->node,
284 parser->range + na);
285 size = of_read_number(parser->range + parser->pna + na, ns);
286
287 if (flags != range->flags)
288 break;
289 if (pci_addr != range->pci_addr + range->size ||
290 cpu_addr != range->cpu_addr + range->size)
291 break;
292
293 range->size += size;
294 parser->range += parser->np;
295 }
296
297 return range;
298 }
299 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
300
301 /*
302 * of_pci_range_to_resource - Create a resource from an of_pci_range
303 * @range: the PCI range that describes the resource
304 * @np: device node where the range belongs to
305 * @res: pointer to a valid resource that will be updated to
306 * reflect the values contained in the range.
307 *
308 * Returns EINVAL if the range cannot be converted to resource.
309 *
310 * Note that if the range is an IO range, the resource will be converted
311 * using pci_address_to_pio() which can fail if it is called too early or
312 * if the range cannot be matched to any host bridge IO space (our case here).
313 * To guard against that we try to register the IO range first.
314 * If that fails we know that pci_address_to_pio() will do too.
315 */
of_pci_range_to_resource(struct of_pci_range * range,struct device_node * np,struct resource * res)316 int of_pci_range_to_resource(struct of_pci_range *range,
317 struct device_node *np, struct resource *res)
318 {
319 int err;
320 res->flags = range->flags;
321 res->parent = res->child = res->sibling = NULL;
322 res->name = np->full_name;
323
324 if (res->flags & IORESOURCE_IO) {
325 unsigned long port;
326 err = pci_register_io_range(range->cpu_addr, range->size);
327 if (err)
328 goto invalid_range;
329 port = pci_address_to_pio(range->cpu_addr);
330 if (port == (unsigned long)-1) {
331 err = -EINVAL;
332 goto invalid_range;
333 }
334 res->start = port;
335 } else {
336 if ((sizeof(resource_size_t) < 8) &&
337 upper_32_bits(range->cpu_addr)) {
338 err = -EINVAL;
339 goto invalid_range;
340 }
341
342 res->start = range->cpu_addr;
343 }
344 res->end = res->start + range->size - 1;
345 return 0;
346
347 invalid_range:
348 res->start = (resource_size_t)OF_BAD_ADDR;
349 res->end = (resource_size_t)OF_BAD_ADDR;
350 return err;
351 }
352 #endif /* CONFIG_PCI */
353
354 /*
355 * ISA bus specific translator
356 */
357
of_bus_isa_match(struct device_node * np)358 static int of_bus_isa_match(struct device_node *np)
359 {
360 return !strcmp(np->name, "isa");
361 }
362
of_bus_isa_count_cells(struct device_node * child,int * addrc,int * sizec)363 static void of_bus_isa_count_cells(struct device_node *child,
364 int *addrc, int *sizec)
365 {
366 if (addrc)
367 *addrc = 2;
368 if (sizec)
369 *sizec = 1;
370 }
371
of_bus_isa_map(__be32 * addr,const __be32 * range,int na,int ns,int pna)372 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
373 int pna)
374 {
375 u64 cp, s, da;
376
377 /* Check address type match */
378 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
379 return OF_BAD_ADDR;
380
381 /* Read address values, skipping high cell */
382 cp = of_read_number(range + 1, na - 1);
383 s = of_read_number(range + na + pna, ns);
384 da = of_read_number(addr + 1, na - 1);
385
386 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
387 (unsigned long long)cp, (unsigned long long)s,
388 (unsigned long long)da);
389
390 if (da < cp || da >= (cp + s))
391 return OF_BAD_ADDR;
392 return da - cp;
393 }
394
of_bus_isa_translate(__be32 * addr,u64 offset,int na)395 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
396 {
397 return of_bus_default_translate(addr + 1, offset, na - 1);
398 }
399
of_bus_isa_get_flags(const __be32 * addr)400 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
401 {
402 unsigned int flags = 0;
403 u32 w = be32_to_cpup(addr);
404
405 if (w & 1)
406 flags |= IORESOURCE_IO;
407 else
408 flags |= IORESOURCE_MEM;
409 return flags;
410 }
411
412 /*
413 * Array of bus specific translators
414 */
415
416 static struct of_bus of_busses[] = {
417 #ifdef CONFIG_OF_ADDRESS_PCI
418 /* PCI */
419 {
420 .name = "pci",
421 .addresses = "assigned-addresses",
422 .match = of_bus_pci_match,
423 .count_cells = of_bus_pci_count_cells,
424 .map = of_bus_pci_map,
425 .translate = of_bus_pci_translate,
426 .get_flags = of_bus_pci_get_flags,
427 },
428 #endif /* CONFIG_OF_ADDRESS_PCI */
429 /* ISA */
430 {
431 .name = "isa",
432 .addresses = "reg",
433 .match = of_bus_isa_match,
434 .count_cells = of_bus_isa_count_cells,
435 .map = of_bus_isa_map,
436 .translate = of_bus_isa_translate,
437 .get_flags = of_bus_isa_get_flags,
438 },
439 /* Default */
440 {
441 .name = "default",
442 .addresses = "reg",
443 .match = NULL,
444 .count_cells = of_bus_default_count_cells,
445 .map = of_bus_default_map,
446 .translate = of_bus_default_translate,
447 .get_flags = of_bus_default_get_flags,
448 },
449 };
450
of_match_bus(struct device_node * np)451 static struct of_bus *of_match_bus(struct device_node *np)
452 {
453 int i;
454
455 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
456 if (!of_busses[i].match || of_busses[i].match(np))
457 return &of_busses[i];
458 BUG();
459 return NULL;
460 }
461
of_empty_ranges_quirk(struct device_node * np)462 static int of_empty_ranges_quirk(struct device_node *np)
463 {
464 if (IS_ENABLED(CONFIG_PPC)) {
465 /* To save cycles, we cache the result for global "Mac" setting */
466 static int quirk_state = -1;
467
468 /* PA-SEMI sdc DT bug */
469 if (of_device_is_compatible(np, "1682m-sdc"))
470 return true;
471
472 /* Make quirk cached */
473 if (quirk_state < 0)
474 quirk_state =
475 of_machine_is_compatible("Power Macintosh") ||
476 of_machine_is_compatible("MacRISC");
477 return quirk_state;
478 }
479 return false;
480 }
481
of_translate_one(struct device_node * parent,struct of_bus * bus,struct of_bus * pbus,__be32 * addr,int na,int ns,int pna,const char * rprop)482 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
483 struct of_bus *pbus, __be32 *addr,
484 int na, int ns, int pna, const char *rprop)
485 {
486 const __be32 *ranges;
487 unsigned int rlen;
488 int rone;
489 u64 offset = OF_BAD_ADDR;
490
491 /*
492 * Normally, an absence of a "ranges" property means we are
493 * crossing a non-translatable boundary, and thus the addresses
494 * below the current cannot be converted to CPU physical ones.
495 * Unfortunately, while this is very clear in the spec, it's not
496 * what Apple understood, and they do have things like /uni-n or
497 * /ht nodes with no "ranges" property and a lot of perfectly
498 * useable mapped devices below them. Thus we treat the absence of
499 * "ranges" as equivalent to an empty "ranges" property which means
500 * a 1:1 translation at that level. It's up to the caller not to try
501 * to translate addresses that aren't supposed to be translated in
502 * the first place. --BenH.
503 *
504 * As far as we know, this damage only exists on Apple machines, so
505 * This code is only enabled on powerpc. --gcl
506 */
507 ranges = of_get_property(parent, rprop, &rlen);
508 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
509 pr_debug("no ranges; cannot translate\n");
510 return 1;
511 }
512 if (ranges == NULL || rlen == 0) {
513 offset = of_read_number(addr, na);
514 memset(addr, 0, pna * 4);
515 pr_debug("empty ranges; 1:1 translation\n");
516 goto finish;
517 }
518
519 pr_debug("walking ranges...\n");
520
521 /* Now walk through the ranges */
522 rlen /= 4;
523 rone = na + pna + ns;
524 for (; rlen >= rone; rlen -= rone, ranges += rone) {
525 offset = bus->map(addr, ranges, na, ns, pna);
526 if (offset != OF_BAD_ADDR)
527 break;
528 }
529 if (offset == OF_BAD_ADDR) {
530 pr_debug("not found !\n");
531 return 1;
532 }
533 memcpy(addr, ranges + na, 4 * pna);
534
535 finish:
536 of_dump_addr("parent translation for:", addr, pna);
537 pr_debug("with offset: %llx\n", (unsigned long long)offset);
538
539 /* Translate it into parent bus space */
540 return pbus->translate(addr, offset, pna);
541 }
542
543 /*
544 * Translate an address from the device-tree into a CPU physical address,
545 * this walks up the tree and applies the various bus mappings on the
546 * way.
547 *
548 * Note: We consider that crossing any level with #size-cells == 0 to mean
549 * that translation is impossible (that is we are not dealing with a value
550 * that can be mapped to a cpu physical address). This is not really specified
551 * that way, but this is traditionally the way IBM at least do things
552 */
__of_translate_address(struct device_node * dev,const __be32 * in_addr,const char * rprop)553 static u64 __of_translate_address(struct device_node *dev,
554 const __be32 *in_addr, const char *rprop)
555 {
556 struct device_node *parent = NULL;
557 struct of_bus *bus, *pbus;
558 __be32 addr[OF_MAX_ADDR_CELLS];
559 int na, ns, pna, pns;
560 u64 result = OF_BAD_ADDR;
561
562 pr_debug("** translation for device %s **\n", of_node_full_name(dev));
563
564 /* Increase refcount at current level */
565 of_node_get(dev);
566
567 /* Get parent & match bus type */
568 parent = of_get_parent(dev);
569 if (parent == NULL)
570 goto bail;
571 bus = of_match_bus(parent);
572
573 /* Count address cells & copy address locally */
574 bus->count_cells(dev, &na, &ns);
575 if (!OF_CHECK_COUNTS(na, ns)) {
576 pr_debug("Bad cell count for %s\n", of_node_full_name(dev));
577 goto bail;
578 }
579 memcpy(addr, in_addr, na * 4);
580
581 pr_debug("bus is %s (na=%d, ns=%d) on %s\n",
582 bus->name, na, ns, of_node_full_name(parent));
583 of_dump_addr("translating address:", addr, na);
584
585 /* Translate */
586 for (;;) {
587 /* Switch to parent bus */
588 of_node_put(dev);
589 dev = parent;
590 parent = of_get_parent(dev);
591
592 /* If root, we have finished */
593 if (parent == NULL) {
594 pr_debug("reached root node\n");
595 result = of_read_number(addr, na);
596 break;
597 }
598
599 /* Get new parent bus and counts */
600 pbus = of_match_bus(parent);
601 pbus->count_cells(dev, &pna, &pns);
602 if (!OF_CHECK_COUNTS(pna, pns)) {
603 pr_err("Bad cell count for %s\n",
604 of_node_full_name(dev));
605 break;
606 }
607
608 pr_debug("parent bus is %s (na=%d, ns=%d) on %s\n",
609 pbus->name, pna, pns, of_node_full_name(parent));
610
611 /* Apply bus translation */
612 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
613 break;
614
615 /* Complete the move up one level */
616 na = pna;
617 ns = pns;
618 bus = pbus;
619
620 of_dump_addr("one level translation:", addr, na);
621 }
622 bail:
623 of_node_put(parent);
624 of_node_put(dev);
625
626 return result;
627 }
628
of_translate_address(struct device_node * dev,const __be32 * in_addr)629 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
630 {
631 return __of_translate_address(dev, in_addr, "ranges");
632 }
633 EXPORT_SYMBOL(of_translate_address);
634
of_translate_dma_address(struct device_node * dev,const __be32 * in_addr)635 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
636 {
637 return __of_translate_address(dev, in_addr, "dma-ranges");
638 }
639 EXPORT_SYMBOL(of_translate_dma_address);
640
of_get_address(struct device_node * dev,int index,u64 * size,unsigned int * flags)641 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
642 unsigned int *flags)
643 {
644 const __be32 *prop;
645 unsigned int psize;
646 struct device_node *parent;
647 struct of_bus *bus;
648 int onesize, i, na, ns;
649
650 /* Get parent & match bus type */
651 parent = of_get_parent(dev);
652 if (parent == NULL)
653 return NULL;
654 bus = of_match_bus(parent);
655 bus->count_cells(dev, &na, &ns);
656 of_node_put(parent);
657 if (!OF_CHECK_ADDR_COUNT(na))
658 return NULL;
659
660 /* Get "reg" or "assigned-addresses" property */
661 prop = of_get_property(dev, bus->addresses, &psize);
662 if (prop == NULL)
663 return NULL;
664 psize /= 4;
665
666 onesize = na + ns;
667 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
668 if (i == index) {
669 if (size)
670 *size = of_read_number(prop + na, ns);
671 if (flags)
672 *flags = bus->get_flags(prop);
673 return prop;
674 }
675 return NULL;
676 }
677 EXPORT_SYMBOL(of_get_address);
678
__of_address_to_resource(struct device_node * dev,const __be32 * addrp,u64 size,unsigned int flags,const char * name,struct resource * r)679 static int __of_address_to_resource(struct device_node *dev,
680 const __be32 *addrp, u64 size, unsigned int flags,
681 const char *name, struct resource *r)
682 {
683 u64 taddr;
684
685 if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
686 return -EINVAL;
687 taddr = of_translate_address(dev, addrp);
688 if (taddr == OF_BAD_ADDR)
689 return -EINVAL;
690 memset(r, 0, sizeof(struct resource));
691 if (flags & IORESOURCE_IO) {
692 unsigned long port;
693 port = pci_address_to_pio(taddr);
694 if (port == (unsigned long)-1)
695 return -EINVAL;
696 r->start = port;
697 r->end = port + size - 1;
698 } else {
699 r->start = taddr;
700 r->end = taddr + size - 1;
701 }
702 r->flags = flags;
703 r->name = name ? name : dev->full_name;
704
705 return 0;
706 }
707
708 /**
709 * of_address_to_resource - Translate device tree address and return as resource
710 *
711 * Note that if your address is a PIO address, the conversion will fail if
712 * the physical address can't be internally converted to an IO token with
713 * pci_address_to_pio(), that is because it's either called to early or it
714 * can't be matched to any host bridge IO space
715 */
of_address_to_resource(struct device_node * dev,int index,struct resource * r)716 int of_address_to_resource(struct device_node *dev, int index,
717 struct resource *r)
718 {
719 const __be32 *addrp;
720 u64 size;
721 unsigned int flags;
722 const char *name = NULL;
723
724 addrp = of_get_address(dev, index, &size, &flags);
725 if (addrp == NULL)
726 return -EINVAL;
727
728 /* Get optional "reg-names" property to add a name to a resource */
729 of_property_read_string_index(dev, "reg-names", index, &name);
730
731 return __of_address_to_resource(dev, addrp, size, flags, name, r);
732 }
733 EXPORT_SYMBOL_GPL(of_address_to_resource);
734
of_find_matching_node_by_address(struct device_node * from,const struct of_device_id * matches,u64 base_address)735 struct device_node *of_find_matching_node_by_address(struct device_node *from,
736 const struct of_device_id *matches,
737 u64 base_address)
738 {
739 struct device_node *dn = of_find_matching_node(from, matches);
740 struct resource res;
741
742 while (dn) {
743 if (!of_address_to_resource(dn, 0, &res) &&
744 res.start == base_address)
745 return dn;
746
747 dn = of_find_matching_node(dn, matches);
748 }
749
750 return NULL;
751 }
752
753
754 /**
755 * of_iomap - Maps the memory mapped IO for a given device_node
756 * @device: the device whose io range will be mapped
757 * @index: index of the io range
758 *
759 * Returns a pointer to the mapped memory
760 */
of_iomap(struct device_node * np,int index)761 void __iomem *of_iomap(struct device_node *np, int index)
762 {
763 struct resource res;
764
765 if (of_address_to_resource(np, index, &res))
766 return NULL;
767
768 return ioremap(res.start, resource_size(&res));
769 }
770 EXPORT_SYMBOL(of_iomap);
771
772 /*
773 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
774 * for a given device_node
775 * @device: the device whose io range will be mapped
776 * @index: index of the io range
777 * @name: name of the resource
778 *
779 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
780 * error code on failure. Usage example:
781 *
782 * base = of_io_request_and_map(node, 0, "foo");
783 * if (IS_ERR(base))
784 * return PTR_ERR(base);
785 */
of_io_request_and_map(struct device_node * np,int index,const char * name)786 void __iomem *of_io_request_and_map(struct device_node *np, int index,
787 const char *name)
788 {
789 struct resource res;
790 void __iomem *mem;
791
792 if (of_address_to_resource(np, index, &res))
793 return IOMEM_ERR_PTR(-EINVAL);
794
795 if (!request_mem_region(res.start, resource_size(&res), name))
796 return IOMEM_ERR_PTR(-EBUSY);
797
798 mem = ioremap(res.start, resource_size(&res));
799 if (!mem) {
800 release_mem_region(res.start, resource_size(&res));
801 return IOMEM_ERR_PTR(-ENOMEM);
802 }
803
804 return mem;
805 }
806 EXPORT_SYMBOL(of_io_request_and_map);
807
808 /**
809 * of_dma_get_range - Get DMA range info
810 * @np: device node to get DMA range info
811 * @dma_addr: pointer to store initial DMA address of DMA range
812 * @paddr: pointer to store initial CPU address of DMA range
813 * @size: pointer to store size of DMA range
814 *
815 * Look in bottom up direction for the first "dma-ranges" property
816 * and parse it.
817 * dma-ranges format:
818 * DMA addr (dma_addr) : naddr cells
819 * CPU addr (phys_addr_t) : pna cells
820 * size : nsize cells
821 *
822 * It returns -ENODEV if "dma-ranges" property was not found
823 * for this device in DT.
824 */
of_dma_get_range(struct device_node * np,u64 * dma_addr,u64 * paddr,u64 * size)825 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
826 {
827 struct device_node *node = of_node_get(np);
828 const __be32 *ranges = NULL;
829 int len, naddr, nsize, pna;
830 int ret = 0;
831 u64 dmaaddr;
832
833 if (!node)
834 return -EINVAL;
835
836 while (1) {
837 naddr = of_n_addr_cells(node);
838 nsize = of_n_size_cells(node);
839 node = of_get_next_parent(node);
840 if (!node)
841 break;
842
843 ranges = of_get_property(node, "dma-ranges", &len);
844
845 /* Ignore empty ranges, they imply no translation required */
846 if (ranges && len > 0)
847 break;
848
849 /*
850 * At least empty ranges has to be defined for parent node if
851 * DMA is supported
852 */
853 if (!ranges)
854 break;
855 }
856
857 if (!ranges) {
858 pr_debug("no dma-ranges found for node(%s)\n", np->full_name);
859 ret = -ENODEV;
860 goto out;
861 }
862
863 len /= sizeof(u32);
864
865 pna = of_n_addr_cells(node);
866
867 /* dma-ranges format:
868 * DMA addr : naddr cells
869 * CPU addr : pna cells
870 * size : nsize cells
871 */
872 dmaaddr = of_read_number(ranges, naddr);
873 *paddr = of_translate_dma_address(np, ranges);
874 if (*paddr == OF_BAD_ADDR) {
875 pr_err("translation of DMA address(%pad) to CPU address failed node(%s)\n",
876 dma_addr, np->full_name);
877 ret = -EINVAL;
878 goto out;
879 }
880 *dma_addr = dmaaddr;
881
882 *size = of_read_number(ranges + naddr + pna, nsize);
883
884 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
885 *dma_addr, *paddr, *size);
886
887 out:
888 of_node_put(node);
889
890 return ret;
891 }
892 EXPORT_SYMBOL_GPL(of_dma_get_range);
893
894 /**
895 * of_dma_is_coherent - Check if device is coherent
896 * @np: device node
897 *
898 * It returns true if "dma-coherent" property was found
899 * for this device in DT.
900 */
of_dma_is_coherent(struct device_node * np)901 bool of_dma_is_coherent(struct device_node *np)
902 {
903 struct device_node *node = of_node_get(np);
904
905 while (node) {
906 if (of_property_read_bool(node, "dma-coherent")) {
907 of_node_put(node);
908 return true;
909 }
910 node = of_get_next_parent(node);
911 }
912 of_node_put(node);
913 return false;
914 }
915 EXPORT_SYMBOL_GPL(of_dma_is_coherent);
916