1 /*
2 * Derived from arch/i386/kernel/irq.c
3 * Copyright (C) 1992 Linus Torvalds
4 * Adapted from arch/i386 by Gary Thomas
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Updated and modified by Cort Dougan <cort@fsmlabs.com>
7 * Copyright (C) 1996-2001 Cort Dougan
8 * Adapted for Power Macintosh by Paul Mackerras
9 * Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 *
16 * This file contains the code used to make IRQ descriptions in the
17 * device tree to actual irq numbers on an interrupt controller
18 * driver.
19 */
20
21 #define pr_fmt(fmt) "OF: " fmt
22
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_pci.h>
30 #include <linux/string.h>
31 #include <linux/slab.h>
32
33 /**
34 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
35 * @dev: Device node of the device whose interrupt is to be mapped
36 * @index: Index of the interrupt to map
37 *
38 * This function is a wrapper that chains of_irq_parse_one() and
39 * irq_create_of_mapping() to make things easier to callers
40 */
irq_of_parse_and_map(struct device_node * dev,int index)41 unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
42 {
43 struct of_phandle_args oirq;
44
45 if (of_irq_parse_one(dev, index, &oirq))
46 return 0;
47
48 return irq_create_of_mapping(&oirq);
49 }
50 EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
51
52 /**
53 * of_irq_find_parent - Given a device node, find its interrupt parent node
54 * @child: pointer to device node
55 *
56 * Returns a pointer to the interrupt parent node, or NULL if the interrupt
57 * parent could not be determined.
58 */
of_irq_find_parent(struct device_node * child)59 struct device_node *of_irq_find_parent(struct device_node *child)
60 {
61 struct device_node *p;
62 const __be32 *parp;
63
64 if (!of_node_get(child))
65 return NULL;
66
67 do {
68 parp = of_get_property(child, "interrupt-parent", NULL);
69 if (parp == NULL)
70 p = of_get_parent(child);
71 else {
72 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
73 p = of_node_get(of_irq_dflt_pic);
74 else
75 p = of_find_node_by_phandle(be32_to_cpup(parp));
76 }
77 of_node_put(child);
78 child = p;
79 } while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
80
81 return p;
82 }
83 EXPORT_SYMBOL_GPL(of_irq_find_parent);
84
85 /**
86 * of_irq_parse_raw - Low level interrupt tree parsing
87 * @parent: the device interrupt parent
88 * @addr: address specifier (start of "reg" property of the device) in be32 format
89 * @out_irq: structure of_irq updated by this function
90 *
91 * Returns 0 on success and a negative number on error
92 *
93 * This function is a low-level interrupt tree walking function. It
94 * can be used to do a partial walk with synthetized reg and interrupts
95 * properties, for example when resolving PCI interrupts when no device
96 * node exist for the parent. It takes an interrupt specifier structure as
97 * input, walks the tree looking for any interrupt-map properties, translates
98 * the specifier for each map, and then returns the translated map.
99 */
of_irq_parse_raw(const __be32 * addr,struct of_phandle_args * out_irq)100 int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
101 {
102 struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
103 __be32 initial_match_array[MAX_PHANDLE_ARGS];
104 const __be32 *match_array = initial_match_array;
105 const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
106 u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
107 int imaplen, match, i;
108
109 #ifdef DEBUG
110 of_print_phandle_args("of_irq_parse_raw: ", out_irq);
111 #endif
112
113 ipar = of_node_get(out_irq->np);
114
115 /* First get the #interrupt-cells property of the current cursor
116 * that tells us how to interpret the passed-in intspec. If there
117 * is none, we are nice and just walk up the tree
118 */
119 do {
120 tmp = of_get_property(ipar, "#interrupt-cells", NULL);
121 if (tmp != NULL) {
122 intsize = be32_to_cpu(*tmp);
123 break;
124 }
125 tnode = ipar;
126 ipar = of_irq_find_parent(ipar);
127 of_node_put(tnode);
128 } while (ipar);
129 if (ipar == NULL) {
130 pr_debug(" -> no parent found !\n");
131 goto fail;
132 }
133
134 pr_debug("of_irq_parse_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize);
135
136 if (out_irq->args_count != intsize)
137 return -EINVAL;
138
139 /* Look for this #address-cells. We have to implement the old linux
140 * trick of looking for the parent here as some device-trees rely on it
141 */
142 old = of_node_get(ipar);
143 do {
144 tmp = of_get_property(old, "#address-cells", NULL);
145 tnode = of_get_parent(old);
146 of_node_put(old);
147 old = tnode;
148 } while (old && tmp == NULL);
149 of_node_put(old);
150 old = NULL;
151 addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
152
153 pr_debug(" -> addrsize=%d\n", addrsize);
154
155 /* Range check so that the temporary buffer doesn't overflow */
156 if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS))
157 goto fail;
158
159 /* Precalculate the match array - this simplifies match loop */
160 for (i = 0; i < addrsize; i++)
161 initial_match_array[i] = addr ? addr[i] : 0;
162 for (i = 0; i < intsize; i++)
163 initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
164
165 /* Now start the actual "proper" walk of the interrupt tree */
166 while (ipar != NULL) {
167 /* Now check if cursor is an interrupt-controller and if it is
168 * then we are done
169 */
170 if (of_get_property(ipar, "interrupt-controller", NULL) !=
171 NULL) {
172 pr_debug(" -> got it !\n");
173 return 0;
174 }
175
176 /*
177 * interrupt-map parsing does not work without a reg
178 * property when #address-cells != 0
179 */
180 if (addrsize && !addr) {
181 pr_debug(" -> no reg passed in when needed !\n");
182 goto fail;
183 }
184
185 /* Now look for an interrupt-map */
186 imap = of_get_property(ipar, "interrupt-map", &imaplen);
187 /* No interrupt map, check for an interrupt parent */
188 if (imap == NULL) {
189 pr_debug(" -> no map, getting parent\n");
190 newpar = of_irq_find_parent(ipar);
191 goto skiplevel;
192 }
193 imaplen /= sizeof(u32);
194
195 /* Look for a mask */
196 imask = of_get_property(ipar, "interrupt-map-mask", NULL);
197 if (!imask)
198 imask = dummy_imask;
199
200 /* Parse interrupt-map */
201 match = 0;
202 while (imaplen > (addrsize + intsize + 1) && !match) {
203 /* Compare specifiers */
204 match = 1;
205 for (i = 0; i < (addrsize + intsize); i++, imaplen--)
206 match &= !((match_array[i] ^ *imap++) & imask[i]);
207
208 pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
209
210 /* Get the interrupt parent */
211 if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
212 newpar = of_node_get(of_irq_dflt_pic);
213 else
214 newpar = of_find_node_by_phandle(be32_to_cpup(imap));
215 imap++;
216 --imaplen;
217
218 /* Check if not found */
219 if (newpar == NULL) {
220 pr_debug(" -> imap parent not found !\n");
221 goto fail;
222 }
223
224 if (!of_device_is_available(newpar))
225 match = 0;
226
227 /* Get #interrupt-cells and #address-cells of new
228 * parent
229 */
230 tmp = of_get_property(newpar, "#interrupt-cells", NULL);
231 if (tmp == NULL) {
232 pr_debug(" -> parent lacks #interrupt-cells!\n");
233 goto fail;
234 }
235 newintsize = be32_to_cpu(*tmp);
236 tmp = of_get_property(newpar, "#address-cells", NULL);
237 newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);
238
239 pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
240 newintsize, newaddrsize);
241
242 /* Check for malformed properties */
243 if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS))
244 goto fail;
245 if (imaplen < (newaddrsize + newintsize))
246 goto fail;
247
248 imap += newaddrsize + newintsize;
249 imaplen -= newaddrsize + newintsize;
250
251 pr_debug(" -> imaplen=%d\n", imaplen);
252 }
253 if (!match)
254 goto fail;
255
256 /*
257 * Successfully parsed an interrrupt-map translation; copy new
258 * interrupt specifier into the out_irq structure
259 */
260 match_array = imap - newaddrsize - newintsize;
261 for (i = 0; i < newintsize; i++)
262 out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
263 out_irq->args_count = intsize = newintsize;
264 addrsize = newaddrsize;
265
266 skiplevel:
267 /* Iterate again with new parent */
268 out_irq->np = newpar;
269 pr_debug(" -> new parent: %s\n", of_node_full_name(newpar));
270 of_node_put(ipar);
271 ipar = newpar;
272 newpar = NULL;
273 }
274 fail:
275 of_node_put(ipar);
276 of_node_put(newpar);
277
278 return -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(of_irq_parse_raw);
281
282 /**
283 * of_irq_parse_one - Resolve an interrupt for a device
284 * @device: the device whose interrupt is to be resolved
285 * @index: index of the interrupt to resolve
286 * @out_irq: structure of_irq filled by this function
287 *
288 * This function resolves an interrupt for a node by walking the interrupt tree,
289 * finding which interrupt controller node it is attached to, and returning the
290 * interrupt specifier that can be used to retrieve a Linux IRQ number.
291 */
of_irq_parse_one(struct device_node * device,int index,struct of_phandle_args * out_irq)292 int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
293 {
294 struct device_node *p;
295 const __be32 *intspec, *tmp, *addr;
296 u32 intsize, intlen;
297 int i, res;
298
299 pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index);
300
301 /* OldWorld mac stuff is "special", handle out of line */
302 if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
303 return of_irq_parse_oldworld(device, index, out_irq);
304
305 /* Get the reg property (if any) */
306 addr = of_get_property(device, "reg", NULL);
307
308 /* Try the new-style interrupts-extended first */
309 res = of_parse_phandle_with_args(device, "interrupts-extended",
310 "#interrupt-cells", index, out_irq);
311 if (!res)
312 return of_irq_parse_raw(addr, out_irq);
313
314 /* Get the interrupts property */
315 intspec = of_get_property(device, "interrupts", &intlen);
316 if (intspec == NULL)
317 return -EINVAL;
318
319 intlen /= sizeof(*intspec);
320
321 pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);
322
323 /* Look for the interrupt parent. */
324 p = of_irq_find_parent(device);
325 if (p == NULL)
326 return -EINVAL;
327
328 /* Get size of interrupt specifier */
329 tmp = of_get_property(p, "#interrupt-cells", NULL);
330 if (tmp == NULL) {
331 res = -EINVAL;
332 goto out;
333 }
334 intsize = be32_to_cpu(*tmp);
335
336 pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);
337
338 /* Check index */
339 if ((index + 1) * intsize > intlen) {
340 res = -EINVAL;
341 goto out;
342 }
343
344 /* Copy intspec into irq structure */
345 intspec += index * intsize;
346 out_irq->np = p;
347 out_irq->args_count = intsize;
348 for (i = 0; i < intsize; i++)
349 out_irq->args[i] = be32_to_cpup(intspec++);
350
351 /* Check if there are any interrupt-map translations to process */
352 res = of_irq_parse_raw(addr, out_irq);
353 out:
354 of_node_put(p);
355 return res;
356 }
357 EXPORT_SYMBOL_GPL(of_irq_parse_one);
358
359 /**
360 * of_irq_to_resource - Decode a node's IRQ and return it as a resource
361 * @dev: pointer to device tree node
362 * @index: zero-based index of the irq
363 * @r: pointer to resource structure to return result into.
364 */
of_irq_to_resource(struct device_node * dev,int index,struct resource * r)365 int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
366 {
367 int irq = irq_of_parse_and_map(dev, index);
368
369 /* Only dereference the resource if both the
370 * resource and the irq are valid. */
371 if (r && irq) {
372 const char *name = NULL;
373
374 memset(r, 0, sizeof(*r));
375 /*
376 * Get optional "interrupt-names" property to add a name
377 * to the resource.
378 */
379 of_property_read_string_index(dev, "interrupt-names", index,
380 &name);
381
382 r->start = r->end = irq;
383 r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
384 r->name = name ? name : of_node_full_name(dev);
385 }
386
387 return irq;
388 }
389 EXPORT_SYMBOL_GPL(of_irq_to_resource);
390
391 /**
392 * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number
393 * @dev: pointer to device tree node
394 * @index: zero-based index of the IRQ
395 *
396 * Returns Linux IRQ number on success, or 0 on the IRQ mapping failure, or
397 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
398 * of any other failure.
399 */
of_irq_get(struct device_node * dev,int index)400 int of_irq_get(struct device_node *dev, int index)
401 {
402 int rc;
403 struct of_phandle_args oirq;
404 struct irq_domain *domain;
405
406 rc = of_irq_parse_one(dev, index, &oirq);
407 if (rc)
408 return rc;
409
410 domain = irq_find_host(oirq.np);
411 if (!domain)
412 return -EPROBE_DEFER;
413
414 return irq_create_of_mapping(&oirq);
415 }
416 EXPORT_SYMBOL_GPL(of_irq_get);
417
418 /**
419 * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number
420 * @dev: pointer to device tree node
421 * @name: IRQ name
422 *
423 * Returns Linux IRQ number on success, or 0 on the IRQ mapping failure, or
424 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
425 * of any other failure.
426 */
of_irq_get_byname(struct device_node * dev,const char * name)427 int of_irq_get_byname(struct device_node *dev, const char *name)
428 {
429 int index;
430
431 if (unlikely(!name))
432 return -EINVAL;
433
434 index = of_property_match_string(dev, "interrupt-names", name);
435 if (index < 0)
436 return index;
437
438 return of_irq_get(dev, index);
439 }
440 EXPORT_SYMBOL_GPL(of_irq_get_byname);
441
442 /**
443 * of_irq_count - Count the number of IRQs a node uses
444 * @dev: pointer to device tree node
445 */
of_irq_count(struct device_node * dev)446 int of_irq_count(struct device_node *dev)
447 {
448 struct of_phandle_args irq;
449 int nr = 0;
450
451 while (of_irq_parse_one(dev, nr, &irq) == 0)
452 nr++;
453
454 return nr;
455 }
456
457 /**
458 * of_irq_to_resource_table - Fill in resource table with node's IRQ info
459 * @dev: pointer to device tree node
460 * @res: array of resources to fill in
461 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
462 *
463 * Returns the size of the filled in table (up to @nr_irqs).
464 */
of_irq_to_resource_table(struct device_node * dev,struct resource * res,int nr_irqs)465 int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
466 int nr_irqs)
467 {
468 int i;
469
470 for (i = 0; i < nr_irqs; i++, res++)
471 if (!of_irq_to_resource(dev, i, res))
472 break;
473
474 return i;
475 }
476 EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
477
478 struct of_intc_desc {
479 struct list_head list;
480 of_irq_init_cb_t irq_init_cb;
481 struct device_node *dev;
482 struct device_node *interrupt_parent;
483 };
484
485 /**
486 * of_irq_init - Scan and init matching interrupt controllers in DT
487 * @matches: 0 terminated array of nodes to match and init function to call
488 *
489 * This function scans the device tree for matching interrupt controller nodes,
490 * and calls their initialization functions in order with parents first.
491 */
of_irq_init(const struct of_device_id * matches)492 void __init of_irq_init(const struct of_device_id *matches)
493 {
494 const struct of_device_id *match;
495 struct device_node *np, *parent = NULL;
496 struct of_intc_desc *desc, *temp_desc;
497 struct list_head intc_desc_list, intc_parent_list;
498
499 INIT_LIST_HEAD(&intc_desc_list);
500 INIT_LIST_HEAD(&intc_parent_list);
501
502 for_each_matching_node_and_match(np, matches, &match) {
503 if (!of_find_property(np, "interrupt-controller", NULL) ||
504 !of_device_is_available(np))
505 continue;
506
507 if (WARN(!match->data, "of_irq_init: no init function for %s\n",
508 match->compatible))
509 continue;
510
511 /*
512 * Here, we allocate and populate an of_intc_desc with the node
513 * pointer, interrupt-parent device_node etc.
514 */
515 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
516 if (WARN_ON(!desc)) {
517 of_node_put(np);
518 goto err;
519 }
520
521 desc->irq_init_cb = match->data;
522 desc->dev = of_node_get(np);
523 desc->interrupt_parent = of_irq_find_parent(np);
524 if (desc->interrupt_parent == np)
525 desc->interrupt_parent = NULL;
526 list_add_tail(&desc->list, &intc_desc_list);
527 }
528
529 /*
530 * The root irq controller is the one without an interrupt-parent.
531 * That one goes first, followed by the controllers that reference it,
532 * followed by the ones that reference the 2nd level controllers, etc.
533 */
534 while (!list_empty(&intc_desc_list)) {
535 /*
536 * Process all controllers with the current 'parent'.
537 * First pass will be looking for NULL as the parent.
538 * The assumption is that NULL parent means a root controller.
539 */
540 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
541 int ret;
542
543 if (desc->interrupt_parent != parent)
544 continue;
545
546 list_del(&desc->list);
547
548 of_node_set_flag(desc->dev, OF_POPULATED);
549
550 pr_debug("of_irq_init: init %s (%p), parent %p\n",
551 desc->dev->full_name,
552 desc->dev, desc->interrupt_parent);
553 ret = desc->irq_init_cb(desc->dev,
554 desc->interrupt_parent);
555 if (ret) {
556 of_node_clear_flag(desc->dev, OF_POPULATED);
557 kfree(desc);
558 continue;
559 }
560
561 /*
562 * This one is now set up; add it to the parent list so
563 * its children can get processed in a subsequent pass.
564 */
565 list_add_tail(&desc->list, &intc_parent_list);
566 }
567
568 /* Get the next pending parent that might have children */
569 desc = list_first_entry_or_null(&intc_parent_list,
570 typeof(*desc), list);
571 if (!desc) {
572 pr_err("of_irq_init: children remain, but no parents\n");
573 break;
574 }
575 list_del(&desc->list);
576 parent = desc->dev;
577 kfree(desc);
578 }
579
580 list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
581 list_del(&desc->list);
582 kfree(desc);
583 }
584 err:
585 list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
586 list_del(&desc->list);
587 of_node_put(desc->dev);
588 kfree(desc);
589 }
590 }
591
__of_msi_map_rid(struct device * dev,struct device_node ** np,u32 rid_in)592 static u32 __of_msi_map_rid(struct device *dev, struct device_node **np,
593 u32 rid_in)
594 {
595 struct device *parent_dev;
596 u32 rid_out = rid_in;
597
598 /*
599 * Walk up the device parent links looking for one with a
600 * "msi-map" property.
601 */
602 for (parent_dev = dev; parent_dev; parent_dev = parent_dev->parent)
603 if (!of_pci_map_rid(parent_dev->of_node, rid_in, "msi-map",
604 "msi-map-mask", np, &rid_out))
605 break;
606 return rid_out;
607 }
608
609 /**
610 * of_msi_map_rid - Map a MSI requester ID for a device.
611 * @dev: device for which the mapping is to be done.
612 * @msi_np: device node of the expected msi controller.
613 * @rid_in: unmapped MSI requester ID for the device.
614 *
615 * Walk up the device hierarchy looking for devices with a "msi-map"
616 * property. If found, apply the mapping to @rid_in.
617 *
618 * Returns the mapped MSI requester ID.
619 */
of_msi_map_rid(struct device * dev,struct device_node * msi_np,u32 rid_in)620 u32 of_msi_map_rid(struct device *dev, struct device_node *msi_np, u32 rid_in)
621 {
622 return __of_msi_map_rid(dev, &msi_np, rid_in);
623 }
624
625 /**
626 * of_msi_map_get_device_domain - Use msi-map to find the relevant MSI domain
627 * @dev: device for which the mapping is to be done.
628 * @rid: Requester ID for the device.
629 *
630 * Walk up the device hierarchy looking for devices with a "msi-map"
631 * property.
632 *
633 * Returns: the MSI domain for this device (or NULL on failure)
634 */
of_msi_map_get_device_domain(struct device * dev,u32 rid)635 struct irq_domain *of_msi_map_get_device_domain(struct device *dev, u32 rid)
636 {
637 struct device_node *np = NULL;
638
639 __of_msi_map_rid(dev, &np, rid);
640 return irq_find_matching_host(np, DOMAIN_BUS_PCI_MSI);
641 }
642
643 /**
644 * of_msi_get_domain - Use msi-parent to find the relevant MSI domain
645 * @dev: device for which the domain is requested
646 * @np: device node for @dev
647 * @token: bus type for this domain
648 *
649 * Parse the msi-parent property (both the simple and the complex
650 * versions), and returns the corresponding MSI domain.
651 *
652 * Returns: the MSI domain for this device (or NULL on failure).
653 */
of_msi_get_domain(struct device * dev,struct device_node * np,enum irq_domain_bus_token token)654 struct irq_domain *of_msi_get_domain(struct device *dev,
655 struct device_node *np,
656 enum irq_domain_bus_token token)
657 {
658 struct device_node *msi_np;
659 struct irq_domain *d;
660
661 /* Check for a single msi-parent property */
662 msi_np = of_parse_phandle(np, "msi-parent", 0);
663 if (msi_np && !of_property_read_bool(msi_np, "#msi-cells")) {
664 d = irq_find_matching_host(msi_np, token);
665 if (!d)
666 of_node_put(msi_np);
667 return d;
668 }
669
670 if (token == DOMAIN_BUS_PLATFORM_MSI) {
671 /* Check for the complex msi-parent version */
672 struct of_phandle_args args;
673 int index = 0;
674
675 while (!of_parse_phandle_with_args(np, "msi-parent",
676 "#msi-cells",
677 index, &args)) {
678 d = irq_find_matching_host(args.np, token);
679 if (d)
680 return d;
681
682 of_node_put(args.np);
683 index++;
684 }
685 }
686
687 return NULL;
688 }
689
690 /**
691 * of_msi_configure - Set the msi_domain field of a device
692 * @dev: device structure to associate with an MSI irq domain
693 * @np: device node for that device
694 */
of_msi_configure(struct device * dev,struct device_node * np)695 void of_msi_configure(struct device *dev, struct device_node *np)
696 {
697 dev_set_msi_domain(dev,
698 of_msi_get_domain(dev, np, DOMAIN_BUS_PLATFORM_MSI));
699 }
700