1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40 #include <linux/mmu_notifier.h>
41
42 #include <asm/tlb.h>
43 #include "internal.h"
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/oom.h>
47
48 int sysctl_panic_on_oom;
49 int sysctl_oom_kill_allocating_task;
50 int sysctl_oom_dump_tasks = 1;
51
52 DEFINE_MUTEX(oom_lock);
53
54 #ifdef CONFIG_NUMA
55 /**
56 * has_intersects_mems_allowed() - check task eligiblity for kill
57 * @start: task struct of which task to consider
58 * @mask: nodemask passed to page allocator for mempolicy ooms
59 *
60 * Task eligibility is determined by whether or not a candidate task, @tsk,
61 * shares the same mempolicy nodes as current if it is bound by such a policy
62 * and whether or not it has the same set of allowed cpuset nodes.
63 */
has_intersects_mems_allowed(struct task_struct * start,const nodemask_t * mask)64 static bool has_intersects_mems_allowed(struct task_struct *start,
65 const nodemask_t *mask)
66 {
67 struct task_struct *tsk;
68 bool ret = false;
69
70 rcu_read_lock();
71 for_each_thread(start, tsk) {
72 if (mask) {
73 /*
74 * If this is a mempolicy constrained oom, tsk's
75 * cpuset is irrelevant. Only return true if its
76 * mempolicy intersects current, otherwise it may be
77 * needlessly killed.
78 */
79 ret = mempolicy_nodemask_intersects(tsk, mask);
80 } else {
81 /*
82 * This is not a mempolicy constrained oom, so only
83 * check the mems of tsk's cpuset.
84 */
85 ret = cpuset_mems_allowed_intersects(current, tsk);
86 }
87 if (ret)
88 break;
89 }
90 rcu_read_unlock();
91
92 return ret;
93 }
94 #else
has_intersects_mems_allowed(struct task_struct * tsk,const nodemask_t * mask)95 static bool has_intersects_mems_allowed(struct task_struct *tsk,
96 const nodemask_t *mask)
97 {
98 return true;
99 }
100 #endif /* CONFIG_NUMA */
101
102 /*
103 * The process p may have detached its own ->mm while exiting or through
104 * use_mm(), but one or more of its subthreads may still have a valid
105 * pointer. Return p, or any of its subthreads with a valid ->mm, with
106 * task_lock() held.
107 */
find_lock_task_mm(struct task_struct * p)108 struct task_struct *find_lock_task_mm(struct task_struct *p)
109 {
110 struct task_struct *t;
111
112 rcu_read_lock();
113
114 for_each_thread(p, t) {
115 task_lock(t);
116 if (likely(t->mm))
117 goto found;
118 task_unlock(t);
119 }
120 t = NULL;
121 found:
122 rcu_read_unlock();
123
124 return t;
125 }
126
127 /*
128 * order == -1 means the oom kill is required by sysrq, otherwise only
129 * for display purposes.
130 */
is_sysrq_oom(struct oom_control * oc)131 static inline bool is_sysrq_oom(struct oom_control *oc)
132 {
133 return oc->order == -1;
134 }
135
is_memcg_oom(struct oom_control * oc)136 static inline bool is_memcg_oom(struct oom_control *oc)
137 {
138 return oc->memcg != NULL;
139 }
140
141 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p,struct mem_cgroup * memcg,const nodemask_t * nodemask)142 static bool oom_unkillable_task(struct task_struct *p,
143 struct mem_cgroup *memcg, const nodemask_t *nodemask)
144 {
145 if (is_global_init(p))
146 return true;
147 if (p->flags & PF_KTHREAD)
148 return true;
149
150 /* When mem_cgroup_out_of_memory() and p is not member of the group */
151 if (memcg && !task_in_mem_cgroup(p, memcg))
152 return true;
153
154 /* p may not have freeable memory in nodemask */
155 if (!has_intersects_mems_allowed(p, nodemask))
156 return true;
157
158 return false;
159 }
160
161 /**
162 * oom_badness - heuristic function to determine which candidate task to kill
163 * @p: task struct of which task we should calculate
164 * @totalpages: total present RAM allowed for page allocation
165 *
166 * The heuristic for determining which task to kill is made to be as simple and
167 * predictable as possible. The goal is to return the highest value for the
168 * task consuming the most memory to avoid subsequent oom failures.
169 */
oom_badness(struct task_struct * p,struct mem_cgroup * memcg,const nodemask_t * nodemask,unsigned long totalpages)170 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
171 const nodemask_t *nodemask, unsigned long totalpages)
172 {
173 long points;
174 long adj;
175
176 if (oom_unkillable_task(p, memcg, nodemask))
177 return 0;
178
179 p = find_lock_task_mm(p);
180 if (!p)
181 return 0;
182
183 /*
184 * Do not even consider tasks which are explicitly marked oom
185 * unkillable or have been already oom reaped or the are in
186 * the middle of vfork
187 */
188 adj = (long)p->signal->oom_score_adj;
189 if (adj == OOM_SCORE_ADJ_MIN ||
190 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
191 in_vfork(p)) {
192 task_unlock(p);
193 return 0;
194 }
195
196 /*
197 * The baseline for the badness score is the proportion of RAM that each
198 * task's rss, pagetable and swap space use.
199 */
200 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
201 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
202 task_unlock(p);
203
204 /*
205 * Root processes get 3% bonus, just like the __vm_enough_memory()
206 * implementation used by LSMs.
207 */
208 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
209 points -= (points * 3) / 100;
210
211 /* Normalize to oom_score_adj units */
212 adj *= totalpages / 1000;
213 points += adj;
214
215 /*
216 * Never return 0 for an eligible task regardless of the root bonus and
217 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
218 */
219 return points > 0 ? points : 1;
220 }
221
222 enum oom_constraint {
223 CONSTRAINT_NONE,
224 CONSTRAINT_CPUSET,
225 CONSTRAINT_MEMORY_POLICY,
226 CONSTRAINT_MEMCG,
227 };
228
229 /*
230 * Determine the type of allocation constraint.
231 */
constrained_alloc(struct oom_control * oc)232 static enum oom_constraint constrained_alloc(struct oom_control *oc)
233 {
234 struct zone *zone;
235 struct zoneref *z;
236 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
237 bool cpuset_limited = false;
238 int nid;
239
240 if (is_memcg_oom(oc)) {
241 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
242 return CONSTRAINT_MEMCG;
243 }
244
245 /* Default to all available memory */
246 oc->totalpages = totalram_pages + total_swap_pages;
247
248 if (!IS_ENABLED(CONFIG_NUMA))
249 return CONSTRAINT_NONE;
250
251 if (!oc->zonelist)
252 return CONSTRAINT_NONE;
253 /*
254 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
255 * to kill current.We have to random task kill in this case.
256 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
257 */
258 if (oc->gfp_mask & __GFP_THISNODE)
259 return CONSTRAINT_NONE;
260
261 /*
262 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
263 * the page allocator means a mempolicy is in effect. Cpuset policy
264 * is enforced in get_page_from_freelist().
265 */
266 if (oc->nodemask &&
267 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
268 oc->totalpages = total_swap_pages;
269 for_each_node_mask(nid, *oc->nodemask)
270 oc->totalpages += node_spanned_pages(nid);
271 return CONSTRAINT_MEMORY_POLICY;
272 }
273
274 /* Check this allocation failure is caused by cpuset's wall function */
275 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
276 high_zoneidx, oc->nodemask)
277 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
278 cpuset_limited = true;
279
280 if (cpuset_limited) {
281 oc->totalpages = total_swap_pages;
282 for_each_node_mask(nid, cpuset_current_mems_allowed)
283 oc->totalpages += node_spanned_pages(nid);
284 return CONSTRAINT_CPUSET;
285 }
286 return CONSTRAINT_NONE;
287 }
288
oom_evaluate_task(struct task_struct * task,void * arg)289 static int oom_evaluate_task(struct task_struct *task, void *arg)
290 {
291 struct oom_control *oc = arg;
292 unsigned long points;
293
294 if (oom_unkillable_task(task, NULL, oc->nodemask))
295 goto next;
296
297 /*
298 * This task already has access to memory reserves and is being killed.
299 * Don't allow any other task to have access to the reserves unless
300 * the task has MMF_OOM_SKIP because chances that it would release
301 * any memory is quite low.
302 */
303 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
304 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
305 goto next;
306 goto abort;
307 }
308
309 /*
310 * If task is allocating a lot of memory and has been marked to be
311 * killed first if it triggers an oom, then select it.
312 */
313 if (oom_task_origin(task)) {
314 points = ULONG_MAX;
315 goto select;
316 }
317
318 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
319 if (!points || points < oc->chosen_points)
320 goto next;
321
322 /* Prefer thread group leaders for display purposes */
323 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
324 goto next;
325 select:
326 if (oc->chosen)
327 put_task_struct(oc->chosen);
328 get_task_struct(task);
329 oc->chosen = task;
330 oc->chosen_points = points;
331 next:
332 return 0;
333 abort:
334 if (oc->chosen)
335 put_task_struct(oc->chosen);
336 oc->chosen = (void *)-1UL;
337 return 1;
338 }
339
340 /*
341 * Simple selection loop. We choose the process with the highest number of
342 * 'points'. In case scan was aborted, oc->chosen is set to -1.
343 */
select_bad_process(struct oom_control * oc)344 static void select_bad_process(struct oom_control *oc)
345 {
346 if (is_memcg_oom(oc))
347 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
348 else {
349 struct task_struct *p;
350
351 rcu_read_lock();
352 for_each_process(p)
353 if (oom_evaluate_task(p, oc))
354 break;
355 rcu_read_unlock();
356 }
357
358 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
359 }
360
361 /**
362 * dump_tasks - dump current memory state of all system tasks
363 * @memcg: current's memory controller, if constrained
364 * @nodemask: nodemask passed to page allocator for mempolicy ooms
365 *
366 * Dumps the current memory state of all eligible tasks. Tasks not in the same
367 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
368 * are not shown.
369 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
370 * swapents, oom_score_adj value, and name.
371 */
dump_tasks(struct mem_cgroup * memcg,const nodemask_t * nodemask)372 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
373 {
374 struct task_struct *p;
375 struct task_struct *task;
376
377 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
378 rcu_read_lock();
379 for_each_process(p) {
380 if (oom_unkillable_task(p, memcg, nodemask))
381 continue;
382
383 task = find_lock_task_mm(p);
384 if (!task) {
385 /*
386 * This is a kthread or all of p's threads have already
387 * detached their mm's. There's no need to report
388 * them; they can't be oom killed anyway.
389 */
390 continue;
391 }
392
393 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
394 task->pid, from_kuid(&init_user_ns, task_uid(task)),
395 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
396 atomic_long_read(&task->mm->nr_ptes),
397 mm_nr_pmds(task->mm),
398 get_mm_counter(task->mm, MM_SWAPENTS),
399 task->signal->oom_score_adj, task->comm);
400 task_unlock(task);
401 }
402 rcu_read_unlock();
403 }
404
dump_header(struct oom_control * oc,struct task_struct * p)405 static void dump_header(struct oom_control *oc, struct task_struct *p)
406 {
407 nodemask_t *nm = (oc->nodemask) ? oc->nodemask : &cpuset_current_mems_allowed;
408
409 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
410 current->comm, oc->gfp_mask, &oc->gfp_mask,
411 nodemask_pr_args(nm), oc->order,
412 current->signal->oom_score_adj);
413 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
414 pr_warn("COMPACTION is disabled!!!\n");
415
416 cpuset_print_current_mems_allowed();
417 dump_stack();
418 if (oc->memcg)
419 mem_cgroup_print_oom_info(oc->memcg, p);
420 else
421 show_mem(SHOW_MEM_FILTER_NODES);
422 if (sysctl_oom_dump_tasks)
423 dump_tasks(oc->memcg, oc->nodemask);
424 }
425
426 /*
427 * Number of OOM victims in flight
428 */
429 static atomic_t oom_victims = ATOMIC_INIT(0);
430 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
431
432 static bool oom_killer_disabled __read_mostly;
433
434 #define K(x) ((x) << (PAGE_SHIFT-10))
435
436 /*
437 * task->mm can be NULL if the task is the exited group leader. So to
438 * determine whether the task is using a particular mm, we examine all the
439 * task's threads: if one of those is using this mm then this task was also
440 * using it.
441 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)442 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
443 {
444 struct task_struct *t;
445
446 for_each_thread(p, t) {
447 struct mm_struct *t_mm = READ_ONCE(t->mm);
448 if (t_mm)
449 return t_mm == mm;
450 }
451 return false;
452 }
453
454
455 #ifdef CONFIG_MMU
456 /*
457 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
458 * victim (if that is possible) to help the OOM killer to move on.
459 */
460 static struct task_struct *oom_reaper_th;
461 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
462 static struct task_struct *oom_reaper_list;
463 static DEFINE_SPINLOCK(oom_reaper_lock);
464
__oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)465 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
466 {
467 struct mmu_gather tlb;
468 struct vm_area_struct *vma;
469 struct zap_details details = {.check_swap_entries = true,
470 .ignore_dirty = true};
471 bool ret = true;
472
473 /*
474 * We have to make sure to not race with the victim exit path
475 * and cause premature new oom victim selection:
476 * __oom_reap_task_mm exit_mm
477 * mmget_not_zero
478 * mmput
479 * atomic_dec_and_test
480 * exit_oom_victim
481 * [...]
482 * out_of_memory
483 * select_bad_process
484 * # no TIF_MEMDIE task selects new victim
485 * unmap_page_range # frees some memory
486 */
487 mutex_lock(&oom_lock);
488
489 if (!down_read_trylock(&mm->mmap_sem)) {
490 ret = false;
491 goto unlock_oom;
492 }
493
494 /*
495 * If the mm has notifiers then we would need to invalidate them around
496 * unmap_page_range and that is risky because notifiers can sleep and
497 * what they do is basically undeterministic. So let's have a short
498 * sleep to give the oom victim some more time.
499 * TODO: we really want to get rid of this ugly hack and make sure that
500 * notifiers cannot block for unbounded amount of time and add
501 * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
502 */
503 if (mm_has_notifiers(mm)) {
504 up_read(&mm->mmap_sem);
505 schedule_timeout_idle(HZ);
506 goto unlock_oom;
507 }
508
509 /*
510 * increase mm_users only after we know we will reap something so
511 * that the mmput_async is called only when we have reaped something
512 * and delayed __mmput doesn't matter that much
513 */
514 if (!mmget_not_zero(mm)) {
515 up_read(&mm->mmap_sem);
516 goto unlock_oom;
517 }
518
519 /*
520 * Tell all users of get_user/copy_from_user etc... that the content
521 * is no longer stable. No barriers really needed because unmapping
522 * should imply barriers already and the reader would hit a page fault
523 * if it stumbled over a reaped memory.
524 */
525 set_bit(MMF_UNSTABLE, &mm->flags);
526
527 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
528 if (is_vm_hugetlb_page(vma))
529 continue;
530
531 /*
532 * mlocked VMAs require explicit munlocking before unmap.
533 * Let's keep it simple here and skip such VMAs.
534 */
535 if (vma->vm_flags & VM_LOCKED)
536 continue;
537
538 /*
539 * Only anonymous pages have a good chance to be dropped
540 * without additional steps which we cannot afford as we
541 * are OOM already.
542 *
543 * We do not even care about fs backed pages because all
544 * which are reclaimable have already been reclaimed and
545 * we do not want to block exit_mmap by keeping mm ref
546 * count elevated without a good reason.
547 */
548 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
549 tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
550 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
551 &details);
552 tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);
553 }
554 }
555 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
556 task_pid_nr(tsk), tsk->comm,
557 K(get_mm_counter(mm, MM_ANONPAGES)),
558 K(get_mm_counter(mm, MM_FILEPAGES)),
559 K(get_mm_counter(mm, MM_SHMEMPAGES)));
560 up_read(&mm->mmap_sem);
561
562 /*
563 * Drop our reference but make sure the mmput slow path is called from a
564 * different context because we shouldn't risk we get stuck there and
565 * put the oom_reaper out of the way.
566 */
567 mmput_async(mm);
568 unlock_oom:
569 mutex_unlock(&oom_lock);
570 return ret;
571 }
572
573 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)574 static void oom_reap_task(struct task_struct *tsk)
575 {
576 int attempts = 0;
577 struct mm_struct *mm = tsk->signal->oom_mm;
578
579 /* Retry the down_read_trylock(mmap_sem) a few times */
580 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
581 schedule_timeout_idle(HZ/10);
582
583 if (attempts <= MAX_OOM_REAP_RETRIES)
584 goto done;
585
586
587 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
588 task_pid_nr(tsk), tsk->comm);
589 debug_show_all_locks();
590
591 done:
592 tsk->oom_reaper_list = NULL;
593
594 /*
595 * Hide this mm from OOM killer because it has been either reaped or
596 * somebody can't call up_write(mmap_sem).
597 */
598 set_bit(MMF_OOM_SKIP, &mm->flags);
599
600 /* Drop a reference taken by wake_oom_reaper */
601 put_task_struct(tsk);
602 }
603
oom_reaper(void * unused)604 static int oom_reaper(void *unused)
605 {
606 while (true) {
607 struct task_struct *tsk = NULL;
608
609 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
610 spin_lock(&oom_reaper_lock);
611 if (oom_reaper_list != NULL) {
612 tsk = oom_reaper_list;
613 oom_reaper_list = tsk->oom_reaper_list;
614 }
615 spin_unlock(&oom_reaper_lock);
616
617 if (tsk)
618 oom_reap_task(tsk);
619 }
620
621 return 0;
622 }
623
wake_oom_reaper(struct task_struct * tsk)624 static void wake_oom_reaper(struct task_struct *tsk)
625 {
626 if (!oom_reaper_th)
627 return;
628
629 /* tsk is already queued? */
630 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
631 return;
632
633 get_task_struct(tsk);
634
635 spin_lock(&oom_reaper_lock);
636 tsk->oom_reaper_list = oom_reaper_list;
637 oom_reaper_list = tsk;
638 spin_unlock(&oom_reaper_lock);
639 wake_up(&oom_reaper_wait);
640 }
641
oom_init(void)642 static int __init oom_init(void)
643 {
644 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
645 if (IS_ERR(oom_reaper_th)) {
646 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
647 PTR_ERR(oom_reaper_th));
648 oom_reaper_th = NULL;
649 }
650 return 0;
651 }
subsys_initcall(oom_init)652 subsys_initcall(oom_init)
653 #else
654 static inline void wake_oom_reaper(struct task_struct *tsk)
655 {
656 }
657 #endif /* CONFIG_MMU */
658
659 /**
660 * mark_oom_victim - mark the given task as OOM victim
661 * @tsk: task to mark
662 *
663 * Has to be called with oom_lock held and never after
664 * oom has been disabled already.
665 *
666 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
667 * under task_lock or operate on the current).
668 */
669 static void mark_oom_victim(struct task_struct *tsk)
670 {
671 struct mm_struct *mm = tsk->mm;
672
673 WARN_ON(oom_killer_disabled);
674 /* OOM killer might race with memcg OOM */
675 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
676 return;
677
678 /* oom_mm is bound to the signal struct life time. */
679 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
680 atomic_inc(&tsk->signal->oom_mm->mm_count);
681
682 /*
683 * Make sure that the task is woken up from uninterruptible sleep
684 * if it is frozen because OOM killer wouldn't be able to free
685 * any memory and livelock. freezing_slow_path will tell the freezer
686 * that TIF_MEMDIE tasks should be ignored.
687 */
688 __thaw_task(tsk);
689 atomic_inc(&oom_victims);
690 }
691
692 /**
693 * exit_oom_victim - note the exit of an OOM victim
694 */
exit_oom_victim(void)695 void exit_oom_victim(void)
696 {
697 clear_thread_flag(TIF_MEMDIE);
698
699 if (!atomic_dec_return(&oom_victims))
700 wake_up_all(&oom_victims_wait);
701 }
702
703 /**
704 * oom_killer_enable - enable OOM killer
705 */
oom_killer_enable(void)706 void oom_killer_enable(void)
707 {
708 oom_killer_disabled = false;
709 }
710
711 /**
712 * oom_killer_disable - disable OOM killer
713 * @timeout: maximum timeout to wait for oom victims in jiffies
714 *
715 * Forces all page allocations to fail rather than trigger OOM killer.
716 * Will block and wait until all OOM victims are killed or the given
717 * timeout expires.
718 *
719 * The function cannot be called when there are runnable user tasks because
720 * the userspace would see unexpected allocation failures as a result. Any
721 * new usage of this function should be consulted with MM people.
722 *
723 * Returns true if successful and false if the OOM killer cannot be
724 * disabled.
725 */
oom_killer_disable(signed long timeout)726 bool oom_killer_disable(signed long timeout)
727 {
728 signed long ret;
729
730 /*
731 * Make sure to not race with an ongoing OOM killer. Check that the
732 * current is not killed (possibly due to sharing the victim's memory).
733 */
734 if (mutex_lock_killable(&oom_lock))
735 return false;
736 oom_killer_disabled = true;
737 mutex_unlock(&oom_lock);
738
739 ret = wait_event_interruptible_timeout(oom_victims_wait,
740 !atomic_read(&oom_victims), timeout);
741 if (ret <= 0) {
742 oom_killer_enable();
743 return false;
744 }
745
746 return true;
747 }
748
__task_will_free_mem(struct task_struct * task)749 static inline bool __task_will_free_mem(struct task_struct *task)
750 {
751 struct signal_struct *sig = task->signal;
752
753 /*
754 * A coredumping process may sleep for an extended period in exit_mm(),
755 * so the oom killer cannot assume that the process will promptly exit
756 * and release memory.
757 */
758 if (sig->flags & SIGNAL_GROUP_COREDUMP)
759 return false;
760
761 if (sig->flags & SIGNAL_GROUP_EXIT)
762 return true;
763
764 if (thread_group_empty(task) && (task->flags & PF_EXITING))
765 return true;
766
767 return false;
768 }
769
770 /*
771 * Checks whether the given task is dying or exiting and likely to
772 * release its address space. This means that all threads and processes
773 * sharing the same mm have to be killed or exiting.
774 * Caller has to make sure that task->mm is stable (hold task_lock or
775 * it operates on the current).
776 */
task_will_free_mem(struct task_struct * task)777 static bool task_will_free_mem(struct task_struct *task)
778 {
779 struct mm_struct *mm = task->mm;
780 struct task_struct *p;
781 bool ret = true;
782
783 /*
784 * Skip tasks without mm because it might have passed its exit_mm and
785 * exit_oom_victim. oom_reaper could have rescued that but do not rely
786 * on that for now. We can consider find_lock_task_mm in future.
787 */
788 if (!mm)
789 return false;
790
791 if (!__task_will_free_mem(task))
792 return false;
793
794 /*
795 * This task has already been drained by the oom reaper so there are
796 * only small chances it will free some more
797 */
798 if (test_bit(MMF_OOM_SKIP, &mm->flags))
799 return false;
800
801 if (atomic_read(&mm->mm_users) <= 1)
802 return true;
803
804 /*
805 * Make sure that all tasks which share the mm with the given tasks
806 * are dying as well to make sure that a) nobody pins its mm and
807 * b) the task is also reapable by the oom reaper.
808 */
809 rcu_read_lock();
810 for_each_process(p) {
811 if (!process_shares_mm(p, mm))
812 continue;
813 if (same_thread_group(task, p))
814 continue;
815 ret = __task_will_free_mem(p);
816 if (!ret)
817 break;
818 }
819 rcu_read_unlock();
820
821 return ret;
822 }
823
oom_kill_process(struct oom_control * oc,const char * message)824 static void oom_kill_process(struct oom_control *oc, const char *message)
825 {
826 struct task_struct *p = oc->chosen;
827 unsigned int points = oc->chosen_points;
828 struct task_struct *victim = p;
829 struct task_struct *child;
830 struct task_struct *t;
831 struct mm_struct *mm;
832 unsigned int victim_points = 0;
833 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
834 DEFAULT_RATELIMIT_BURST);
835 bool can_oom_reap = true;
836
837 /*
838 * If the task is already exiting, don't alarm the sysadmin or kill
839 * its children or threads, just set TIF_MEMDIE so it can die quickly
840 */
841 task_lock(p);
842 if (task_will_free_mem(p)) {
843 mark_oom_victim(p);
844 wake_oom_reaper(p);
845 task_unlock(p);
846 put_task_struct(p);
847 return;
848 }
849 task_unlock(p);
850
851 if (__ratelimit(&oom_rs))
852 dump_header(oc, p);
853
854 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
855 message, task_pid_nr(p), p->comm, points);
856
857 /*
858 * If any of p's children has a different mm and is eligible for kill,
859 * the one with the highest oom_badness() score is sacrificed for its
860 * parent. This attempts to lose the minimal amount of work done while
861 * still freeing memory.
862 */
863 read_lock(&tasklist_lock);
864 for_each_thread(p, t) {
865 list_for_each_entry(child, &t->children, sibling) {
866 unsigned int child_points;
867
868 if (process_shares_mm(child, p->mm))
869 continue;
870 /*
871 * oom_badness() returns 0 if the thread is unkillable
872 */
873 child_points = oom_badness(child,
874 oc->memcg, oc->nodemask, oc->totalpages);
875 if (child_points > victim_points) {
876 put_task_struct(victim);
877 victim = child;
878 victim_points = child_points;
879 get_task_struct(victim);
880 }
881 }
882 }
883 read_unlock(&tasklist_lock);
884
885 p = find_lock_task_mm(victim);
886 if (!p) {
887 put_task_struct(victim);
888 return;
889 } else if (victim != p) {
890 get_task_struct(p);
891 put_task_struct(victim);
892 victim = p;
893 }
894
895 /* Get a reference to safely compare mm after task_unlock(victim) */
896 mm = victim->mm;
897 atomic_inc(&mm->mm_count);
898 /*
899 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
900 * the OOM victim from depleting the memory reserves from the user
901 * space under its control.
902 */
903 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
904 mark_oom_victim(victim);
905 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
906 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
907 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
908 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
909 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
910 task_unlock(victim);
911
912 /*
913 * Kill all user processes sharing victim->mm in other thread groups, if
914 * any. They don't get access to memory reserves, though, to avoid
915 * depletion of all memory. This prevents mm->mmap_sem livelock when an
916 * oom killed thread cannot exit because it requires the semaphore and
917 * its contended by another thread trying to allocate memory itself.
918 * That thread will now get access to memory reserves since it has a
919 * pending fatal signal.
920 */
921 rcu_read_lock();
922 for_each_process(p) {
923 if (!process_shares_mm(p, mm))
924 continue;
925 if (same_thread_group(p, victim))
926 continue;
927 if (is_global_init(p)) {
928 can_oom_reap = false;
929 set_bit(MMF_OOM_SKIP, &mm->flags);
930 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
931 task_pid_nr(victim), victim->comm,
932 task_pid_nr(p), p->comm);
933 continue;
934 }
935 /*
936 * No use_mm() user needs to read from the userspace so we are
937 * ok to reap it.
938 */
939 if (unlikely(p->flags & PF_KTHREAD))
940 continue;
941 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
942 }
943 rcu_read_unlock();
944
945 if (can_oom_reap)
946 wake_oom_reaper(victim);
947
948 mmdrop(mm);
949 put_task_struct(victim);
950 }
951 #undef K
952
953 /*
954 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
955 */
check_panic_on_oom(struct oom_control * oc,enum oom_constraint constraint)956 static void check_panic_on_oom(struct oom_control *oc,
957 enum oom_constraint constraint)
958 {
959 if (likely(!sysctl_panic_on_oom))
960 return;
961 if (sysctl_panic_on_oom != 2) {
962 /*
963 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
964 * does not panic for cpuset, mempolicy, or memcg allocation
965 * failures.
966 */
967 if (constraint != CONSTRAINT_NONE)
968 return;
969 }
970 /* Do not panic for oom kills triggered by sysrq */
971 if (is_sysrq_oom(oc))
972 return;
973 dump_header(oc, NULL);
974 panic("Out of memory: %s panic_on_oom is enabled\n",
975 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
976 }
977
978 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
979
register_oom_notifier(struct notifier_block * nb)980 int register_oom_notifier(struct notifier_block *nb)
981 {
982 return blocking_notifier_chain_register(&oom_notify_list, nb);
983 }
984 EXPORT_SYMBOL_GPL(register_oom_notifier);
985
unregister_oom_notifier(struct notifier_block * nb)986 int unregister_oom_notifier(struct notifier_block *nb)
987 {
988 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
989 }
990 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
991
992 /**
993 * out_of_memory - kill the "best" process when we run out of memory
994 * @oc: pointer to struct oom_control
995 *
996 * If we run out of memory, we have the choice between either
997 * killing a random task (bad), letting the system crash (worse)
998 * OR try to be smart about which process to kill. Note that we
999 * don't have to be perfect here, we just have to be good.
1000 */
out_of_memory(struct oom_control * oc)1001 bool out_of_memory(struct oom_control *oc)
1002 {
1003 unsigned long freed = 0;
1004 enum oom_constraint constraint = CONSTRAINT_NONE;
1005
1006 if (oom_killer_disabled)
1007 return false;
1008
1009 if (!is_memcg_oom(oc)) {
1010 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1011 if (freed > 0)
1012 /* Got some memory back in the last second. */
1013 return true;
1014 }
1015
1016 /*
1017 * If current has a pending SIGKILL or is exiting, then automatically
1018 * select it. The goal is to allow it to allocate so that it may
1019 * quickly exit and free its memory.
1020 */
1021 if (task_will_free_mem(current)) {
1022 mark_oom_victim(current);
1023 wake_oom_reaper(current);
1024 return true;
1025 }
1026
1027 /*
1028 * The OOM killer does not compensate for IO-less reclaim.
1029 * pagefault_out_of_memory lost its gfp context so we have to
1030 * make sure exclude 0 mask - all other users should have at least
1031 * ___GFP_DIRECT_RECLAIM to get here.
1032 */
1033 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1034 return true;
1035
1036 /*
1037 * Check if there were limitations on the allocation (only relevant for
1038 * NUMA and memcg) that may require different handling.
1039 */
1040 constraint = constrained_alloc(oc);
1041 if (constraint != CONSTRAINT_MEMORY_POLICY)
1042 oc->nodemask = NULL;
1043 check_panic_on_oom(oc, constraint);
1044
1045 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1046 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1047 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1048 get_task_struct(current);
1049 oc->chosen = current;
1050 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1051 return true;
1052 }
1053
1054 select_bad_process(oc);
1055 /* Found nothing?!?! Either we hang forever, or we panic. */
1056 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1057 dump_header(oc, NULL);
1058 panic("Out of memory and no killable processes...\n");
1059 }
1060 if (oc->chosen && oc->chosen != (void *)-1UL) {
1061 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1062 "Memory cgroup out of memory");
1063 /*
1064 * Give the killed process a good chance to exit before trying
1065 * to allocate memory again.
1066 */
1067 schedule_timeout_killable(1);
1068 }
1069 return !!oc->chosen;
1070 }
1071
1072 /*
1073 * The pagefault handler calls here because it is out of memory, so kill a
1074 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1075 * killing is already in progress so do nothing.
1076 */
pagefault_out_of_memory(void)1077 void pagefault_out_of_memory(void)
1078 {
1079 struct oom_control oc = {
1080 .zonelist = NULL,
1081 .nodemask = NULL,
1082 .memcg = NULL,
1083 .gfp_mask = 0,
1084 .order = 0,
1085 };
1086
1087 if (mem_cgroup_oom_synchronize(true))
1088 return;
1089
1090 if (!mutex_trylock(&oom_lock))
1091 return;
1092 out_of_memory(&oc);
1093 mutex_unlock(&oom_lock);
1094 }
1095