• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/oom_kill.c
3  *
4  *  Copyright (C)  1998,2000  Rik van Riel
5  *	Thanks go out to Claus Fischer for some serious inspiration and
6  *	for goading me into coding this file...
7  *  Copyright (C)  2010  Google, Inc.
8  *	Rewritten by David Rientjes
9  *
10  *  The routines in this file are used to kill a process when
11  *  we're seriously out of memory. This gets called from __alloc_pages()
12  *  in mm/page_alloc.c when we really run out of memory.
13  *
14  *  Since we won't call these routines often (on a well-configured
15  *  machine) this file will double as a 'coding guide' and a signpost
16  *  for newbie kernel hackers. It features several pointers to major
17  *  kernel subsystems and hints as to where to find out what things do.
18  */
19 
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40 #include <linux/mmu_notifier.h>
41 
42 #include <asm/tlb.h>
43 #include "internal.h"
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/oom.h>
47 
48 int sysctl_panic_on_oom;
49 int sysctl_oom_kill_allocating_task;
50 int sysctl_oom_dump_tasks = 1;
51 
52 DEFINE_MUTEX(oom_lock);
53 
54 #ifdef CONFIG_NUMA
55 /**
56  * has_intersects_mems_allowed() - check task eligiblity for kill
57  * @start: task struct of which task to consider
58  * @mask: nodemask passed to page allocator for mempolicy ooms
59  *
60  * Task eligibility is determined by whether or not a candidate task, @tsk,
61  * shares the same mempolicy nodes as current if it is bound by such a policy
62  * and whether or not it has the same set of allowed cpuset nodes.
63  */
has_intersects_mems_allowed(struct task_struct * start,const nodemask_t * mask)64 static bool has_intersects_mems_allowed(struct task_struct *start,
65 					const nodemask_t *mask)
66 {
67 	struct task_struct *tsk;
68 	bool ret = false;
69 
70 	rcu_read_lock();
71 	for_each_thread(start, tsk) {
72 		if (mask) {
73 			/*
74 			 * If this is a mempolicy constrained oom, tsk's
75 			 * cpuset is irrelevant.  Only return true if its
76 			 * mempolicy intersects current, otherwise it may be
77 			 * needlessly killed.
78 			 */
79 			ret = mempolicy_nodemask_intersects(tsk, mask);
80 		} else {
81 			/*
82 			 * This is not a mempolicy constrained oom, so only
83 			 * check the mems of tsk's cpuset.
84 			 */
85 			ret = cpuset_mems_allowed_intersects(current, tsk);
86 		}
87 		if (ret)
88 			break;
89 	}
90 	rcu_read_unlock();
91 
92 	return ret;
93 }
94 #else
has_intersects_mems_allowed(struct task_struct * tsk,const nodemask_t * mask)95 static bool has_intersects_mems_allowed(struct task_struct *tsk,
96 					const nodemask_t *mask)
97 {
98 	return true;
99 }
100 #endif /* CONFIG_NUMA */
101 
102 /*
103  * The process p may have detached its own ->mm while exiting or through
104  * use_mm(), but one or more of its subthreads may still have a valid
105  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
106  * task_lock() held.
107  */
find_lock_task_mm(struct task_struct * p)108 struct task_struct *find_lock_task_mm(struct task_struct *p)
109 {
110 	struct task_struct *t;
111 
112 	rcu_read_lock();
113 
114 	for_each_thread(p, t) {
115 		task_lock(t);
116 		if (likely(t->mm))
117 			goto found;
118 		task_unlock(t);
119 	}
120 	t = NULL;
121 found:
122 	rcu_read_unlock();
123 
124 	return t;
125 }
126 
127 /*
128  * order == -1 means the oom kill is required by sysrq, otherwise only
129  * for display purposes.
130  */
is_sysrq_oom(struct oom_control * oc)131 static inline bool is_sysrq_oom(struct oom_control *oc)
132 {
133 	return oc->order == -1;
134 }
135 
is_memcg_oom(struct oom_control * oc)136 static inline bool is_memcg_oom(struct oom_control *oc)
137 {
138 	return oc->memcg != NULL;
139 }
140 
141 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p,struct mem_cgroup * memcg,const nodemask_t * nodemask)142 static bool oom_unkillable_task(struct task_struct *p,
143 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
144 {
145 	if (is_global_init(p))
146 		return true;
147 	if (p->flags & PF_KTHREAD)
148 		return true;
149 
150 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
151 	if (memcg && !task_in_mem_cgroup(p, memcg))
152 		return true;
153 
154 	/* p may not have freeable memory in nodemask */
155 	if (!has_intersects_mems_allowed(p, nodemask))
156 		return true;
157 
158 	return false;
159 }
160 
161 /**
162  * oom_badness - heuristic function to determine which candidate task to kill
163  * @p: task struct of which task we should calculate
164  * @totalpages: total present RAM allowed for page allocation
165  *
166  * The heuristic for determining which task to kill is made to be as simple and
167  * predictable as possible.  The goal is to return the highest value for the
168  * task consuming the most memory to avoid subsequent oom failures.
169  */
oom_badness(struct task_struct * p,struct mem_cgroup * memcg,const nodemask_t * nodemask,unsigned long totalpages)170 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
171 			  const nodemask_t *nodemask, unsigned long totalpages)
172 {
173 	long points;
174 	long adj;
175 
176 	if (oom_unkillable_task(p, memcg, nodemask))
177 		return 0;
178 
179 	p = find_lock_task_mm(p);
180 	if (!p)
181 		return 0;
182 
183 	/*
184 	 * Do not even consider tasks which are explicitly marked oom
185 	 * unkillable or have been already oom reaped or the are in
186 	 * the middle of vfork
187 	 */
188 	adj = (long)p->signal->oom_score_adj;
189 	if (adj == OOM_SCORE_ADJ_MIN ||
190 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
191 			in_vfork(p)) {
192 		task_unlock(p);
193 		return 0;
194 	}
195 
196 	/*
197 	 * The baseline for the badness score is the proportion of RAM that each
198 	 * task's rss, pagetable and swap space use.
199 	 */
200 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
201 		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
202 	task_unlock(p);
203 
204 	/*
205 	 * Root processes get 3% bonus, just like the __vm_enough_memory()
206 	 * implementation used by LSMs.
207 	 */
208 	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
209 		points -= (points * 3) / 100;
210 
211 	/* Normalize to oom_score_adj units */
212 	adj *= totalpages / 1000;
213 	points += adj;
214 
215 	/*
216 	 * Never return 0 for an eligible task regardless of the root bonus and
217 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
218 	 */
219 	return points > 0 ? points : 1;
220 }
221 
222 enum oom_constraint {
223 	CONSTRAINT_NONE,
224 	CONSTRAINT_CPUSET,
225 	CONSTRAINT_MEMORY_POLICY,
226 	CONSTRAINT_MEMCG,
227 };
228 
229 /*
230  * Determine the type of allocation constraint.
231  */
constrained_alloc(struct oom_control * oc)232 static enum oom_constraint constrained_alloc(struct oom_control *oc)
233 {
234 	struct zone *zone;
235 	struct zoneref *z;
236 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
237 	bool cpuset_limited = false;
238 	int nid;
239 
240 	if (is_memcg_oom(oc)) {
241 		oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
242 		return CONSTRAINT_MEMCG;
243 	}
244 
245 	/* Default to all available memory */
246 	oc->totalpages = totalram_pages + total_swap_pages;
247 
248 	if (!IS_ENABLED(CONFIG_NUMA))
249 		return CONSTRAINT_NONE;
250 
251 	if (!oc->zonelist)
252 		return CONSTRAINT_NONE;
253 	/*
254 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
255 	 * to kill current.We have to random task kill in this case.
256 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
257 	 */
258 	if (oc->gfp_mask & __GFP_THISNODE)
259 		return CONSTRAINT_NONE;
260 
261 	/*
262 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
263 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
264 	 * is enforced in get_page_from_freelist().
265 	 */
266 	if (oc->nodemask &&
267 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
268 		oc->totalpages = total_swap_pages;
269 		for_each_node_mask(nid, *oc->nodemask)
270 			oc->totalpages += node_spanned_pages(nid);
271 		return CONSTRAINT_MEMORY_POLICY;
272 	}
273 
274 	/* Check this allocation failure is caused by cpuset's wall function */
275 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
276 			high_zoneidx, oc->nodemask)
277 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
278 			cpuset_limited = true;
279 
280 	if (cpuset_limited) {
281 		oc->totalpages = total_swap_pages;
282 		for_each_node_mask(nid, cpuset_current_mems_allowed)
283 			oc->totalpages += node_spanned_pages(nid);
284 		return CONSTRAINT_CPUSET;
285 	}
286 	return CONSTRAINT_NONE;
287 }
288 
oom_evaluate_task(struct task_struct * task,void * arg)289 static int oom_evaluate_task(struct task_struct *task, void *arg)
290 {
291 	struct oom_control *oc = arg;
292 	unsigned long points;
293 
294 	if (oom_unkillable_task(task, NULL, oc->nodemask))
295 		goto next;
296 
297 	/*
298 	 * This task already has access to memory reserves and is being killed.
299 	 * Don't allow any other task to have access to the reserves unless
300 	 * the task has MMF_OOM_SKIP because chances that it would release
301 	 * any memory is quite low.
302 	 */
303 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
304 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
305 			goto next;
306 		goto abort;
307 	}
308 
309 	/*
310 	 * If task is allocating a lot of memory and has been marked to be
311 	 * killed first if it triggers an oom, then select it.
312 	 */
313 	if (oom_task_origin(task)) {
314 		points = ULONG_MAX;
315 		goto select;
316 	}
317 
318 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
319 	if (!points || points < oc->chosen_points)
320 		goto next;
321 
322 	/* Prefer thread group leaders for display purposes */
323 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
324 		goto next;
325 select:
326 	if (oc->chosen)
327 		put_task_struct(oc->chosen);
328 	get_task_struct(task);
329 	oc->chosen = task;
330 	oc->chosen_points = points;
331 next:
332 	return 0;
333 abort:
334 	if (oc->chosen)
335 		put_task_struct(oc->chosen);
336 	oc->chosen = (void *)-1UL;
337 	return 1;
338 }
339 
340 /*
341  * Simple selection loop. We choose the process with the highest number of
342  * 'points'. In case scan was aborted, oc->chosen is set to -1.
343  */
select_bad_process(struct oom_control * oc)344 static void select_bad_process(struct oom_control *oc)
345 {
346 	if (is_memcg_oom(oc))
347 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
348 	else {
349 		struct task_struct *p;
350 
351 		rcu_read_lock();
352 		for_each_process(p)
353 			if (oom_evaluate_task(p, oc))
354 				break;
355 		rcu_read_unlock();
356 	}
357 
358 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
359 }
360 
361 /**
362  * dump_tasks - dump current memory state of all system tasks
363  * @memcg: current's memory controller, if constrained
364  * @nodemask: nodemask passed to page allocator for mempolicy ooms
365  *
366  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
367  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
368  * are not shown.
369  * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
370  * swapents, oom_score_adj value, and name.
371  */
dump_tasks(struct mem_cgroup * memcg,const nodemask_t * nodemask)372 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
373 {
374 	struct task_struct *p;
375 	struct task_struct *task;
376 
377 	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
378 	rcu_read_lock();
379 	for_each_process(p) {
380 		if (oom_unkillable_task(p, memcg, nodemask))
381 			continue;
382 
383 		task = find_lock_task_mm(p);
384 		if (!task) {
385 			/*
386 			 * This is a kthread or all of p's threads have already
387 			 * detached their mm's.  There's no need to report
388 			 * them; they can't be oom killed anyway.
389 			 */
390 			continue;
391 		}
392 
393 		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
394 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
395 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
396 			atomic_long_read(&task->mm->nr_ptes),
397 			mm_nr_pmds(task->mm),
398 			get_mm_counter(task->mm, MM_SWAPENTS),
399 			task->signal->oom_score_adj, task->comm);
400 		task_unlock(task);
401 	}
402 	rcu_read_unlock();
403 }
404 
dump_header(struct oom_control * oc,struct task_struct * p)405 static void dump_header(struct oom_control *oc, struct task_struct *p)
406 {
407 	nodemask_t *nm = (oc->nodemask) ? oc->nodemask : &cpuset_current_mems_allowed;
408 
409 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), nodemask=%*pbl, order=%d, oom_score_adj=%hd\n",
410 		current->comm, oc->gfp_mask, &oc->gfp_mask,
411 		nodemask_pr_args(nm), oc->order,
412 		current->signal->oom_score_adj);
413 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
414 		pr_warn("COMPACTION is disabled!!!\n");
415 
416 	cpuset_print_current_mems_allowed();
417 	dump_stack();
418 	if (oc->memcg)
419 		mem_cgroup_print_oom_info(oc->memcg, p);
420 	else
421 		show_mem(SHOW_MEM_FILTER_NODES);
422 	if (sysctl_oom_dump_tasks)
423 		dump_tasks(oc->memcg, oc->nodemask);
424 }
425 
426 /*
427  * Number of OOM victims in flight
428  */
429 static atomic_t oom_victims = ATOMIC_INIT(0);
430 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
431 
432 static bool oom_killer_disabled __read_mostly;
433 
434 #define K(x) ((x) << (PAGE_SHIFT-10))
435 
436 /*
437  * task->mm can be NULL if the task is the exited group leader.  So to
438  * determine whether the task is using a particular mm, we examine all the
439  * task's threads: if one of those is using this mm then this task was also
440  * using it.
441  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)442 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
443 {
444 	struct task_struct *t;
445 
446 	for_each_thread(p, t) {
447 		struct mm_struct *t_mm = READ_ONCE(t->mm);
448 		if (t_mm)
449 			return t_mm == mm;
450 	}
451 	return false;
452 }
453 
454 
455 #ifdef CONFIG_MMU
456 /*
457  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
458  * victim (if that is possible) to help the OOM killer to move on.
459  */
460 static struct task_struct *oom_reaper_th;
461 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
462 static struct task_struct *oom_reaper_list;
463 static DEFINE_SPINLOCK(oom_reaper_lock);
464 
__oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)465 static bool __oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
466 {
467 	struct mmu_gather tlb;
468 	struct vm_area_struct *vma;
469 	struct zap_details details = {.check_swap_entries = true,
470 				      .ignore_dirty = true};
471 	bool ret = true;
472 
473 	/*
474 	 * We have to make sure to not race with the victim exit path
475 	 * and cause premature new oom victim selection:
476 	 * __oom_reap_task_mm		exit_mm
477 	 *   mmget_not_zero
478 	 *				  mmput
479 	 *				    atomic_dec_and_test
480 	 *				  exit_oom_victim
481 	 *				[...]
482 	 *				out_of_memory
483 	 *				  select_bad_process
484 	 *				    # no TIF_MEMDIE task selects new victim
485 	 *  unmap_page_range # frees some memory
486 	 */
487 	mutex_lock(&oom_lock);
488 
489 	if (!down_read_trylock(&mm->mmap_sem)) {
490 		ret = false;
491 		goto unlock_oom;
492 	}
493 
494 	/*
495 	 * If the mm has notifiers then we would need to invalidate them around
496 	 * unmap_page_range and that is risky because notifiers can sleep and
497 	 * what they do is basically undeterministic.  So let's have a short
498 	 * sleep to give the oom victim some more time.
499 	 * TODO: we really want to get rid of this ugly hack and make sure that
500 	 * notifiers cannot block for unbounded amount of time and add
501 	 * mmu_notifier_invalidate_range_{start,end} around unmap_page_range
502 	 */
503 	if (mm_has_notifiers(mm)) {
504 		up_read(&mm->mmap_sem);
505 		schedule_timeout_idle(HZ);
506 		goto unlock_oom;
507 	}
508 
509 	/*
510 	 * increase mm_users only after we know we will reap something so
511 	 * that the mmput_async is called only when we have reaped something
512 	 * and delayed __mmput doesn't matter that much
513 	 */
514 	if (!mmget_not_zero(mm)) {
515 		up_read(&mm->mmap_sem);
516 		goto unlock_oom;
517 	}
518 
519 	/*
520 	 * Tell all users of get_user/copy_from_user etc... that the content
521 	 * is no longer stable. No barriers really needed because unmapping
522 	 * should imply barriers already and the reader would hit a page fault
523 	 * if it stumbled over a reaped memory.
524 	 */
525 	set_bit(MMF_UNSTABLE, &mm->flags);
526 
527 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
528 		if (is_vm_hugetlb_page(vma))
529 			continue;
530 
531 		/*
532 		 * mlocked VMAs require explicit munlocking before unmap.
533 		 * Let's keep it simple here and skip such VMAs.
534 		 */
535 		if (vma->vm_flags & VM_LOCKED)
536 			continue;
537 
538 		/*
539 		 * Only anonymous pages have a good chance to be dropped
540 		 * without additional steps which we cannot afford as we
541 		 * are OOM already.
542 		 *
543 		 * We do not even care about fs backed pages because all
544 		 * which are reclaimable have already been reclaimed and
545 		 * we do not want to block exit_mmap by keeping mm ref
546 		 * count elevated without a good reason.
547 		 */
548 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
549 			tlb_gather_mmu(&tlb, mm, vma->vm_start, vma->vm_end);
550 			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
551 					 &details);
552 			tlb_finish_mmu(&tlb, vma->vm_start, vma->vm_end);
553 		}
554 	}
555 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
556 			task_pid_nr(tsk), tsk->comm,
557 			K(get_mm_counter(mm, MM_ANONPAGES)),
558 			K(get_mm_counter(mm, MM_FILEPAGES)),
559 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
560 	up_read(&mm->mmap_sem);
561 
562 	/*
563 	 * Drop our reference but make sure the mmput slow path is called from a
564 	 * different context because we shouldn't risk we get stuck there and
565 	 * put the oom_reaper out of the way.
566 	 */
567 	mmput_async(mm);
568 unlock_oom:
569 	mutex_unlock(&oom_lock);
570 	return ret;
571 }
572 
573 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)574 static void oom_reap_task(struct task_struct *tsk)
575 {
576 	int attempts = 0;
577 	struct mm_struct *mm = tsk->signal->oom_mm;
578 
579 	/* Retry the down_read_trylock(mmap_sem) a few times */
580 	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task_mm(tsk, mm))
581 		schedule_timeout_idle(HZ/10);
582 
583 	if (attempts <= MAX_OOM_REAP_RETRIES)
584 		goto done;
585 
586 
587 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
588 		task_pid_nr(tsk), tsk->comm);
589 	debug_show_all_locks();
590 
591 done:
592 	tsk->oom_reaper_list = NULL;
593 
594 	/*
595 	 * Hide this mm from OOM killer because it has been either reaped or
596 	 * somebody can't call up_write(mmap_sem).
597 	 */
598 	set_bit(MMF_OOM_SKIP, &mm->flags);
599 
600 	/* Drop a reference taken by wake_oom_reaper */
601 	put_task_struct(tsk);
602 }
603 
oom_reaper(void * unused)604 static int oom_reaper(void *unused)
605 {
606 	while (true) {
607 		struct task_struct *tsk = NULL;
608 
609 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
610 		spin_lock(&oom_reaper_lock);
611 		if (oom_reaper_list != NULL) {
612 			tsk = oom_reaper_list;
613 			oom_reaper_list = tsk->oom_reaper_list;
614 		}
615 		spin_unlock(&oom_reaper_lock);
616 
617 		if (tsk)
618 			oom_reap_task(tsk);
619 	}
620 
621 	return 0;
622 }
623 
wake_oom_reaper(struct task_struct * tsk)624 static void wake_oom_reaper(struct task_struct *tsk)
625 {
626 	if (!oom_reaper_th)
627 		return;
628 
629 	/* tsk is already queued? */
630 	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
631 		return;
632 
633 	get_task_struct(tsk);
634 
635 	spin_lock(&oom_reaper_lock);
636 	tsk->oom_reaper_list = oom_reaper_list;
637 	oom_reaper_list = tsk;
638 	spin_unlock(&oom_reaper_lock);
639 	wake_up(&oom_reaper_wait);
640 }
641 
oom_init(void)642 static int __init oom_init(void)
643 {
644 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
645 	if (IS_ERR(oom_reaper_th)) {
646 		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
647 				PTR_ERR(oom_reaper_th));
648 		oom_reaper_th = NULL;
649 	}
650 	return 0;
651 }
subsys_initcall(oom_init)652 subsys_initcall(oom_init)
653 #else
654 static inline void wake_oom_reaper(struct task_struct *tsk)
655 {
656 }
657 #endif /* CONFIG_MMU */
658 
659 /**
660  * mark_oom_victim - mark the given task as OOM victim
661  * @tsk: task to mark
662  *
663  * Has to be called with oom_lock held and never after
664  * oom has been disabled already.
665  *
666  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
667  * under task_lock or operate on the current).
668  */
669 static void mark_oom_victim(struct task_struct *tsk)
670 {
671 	struct mm_struct *mm = tsk->mm;
672 
673 	WARN_ON(oom_killer_disabled);
674 	/* OOM killer might race with memcg OOM */
675 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
676 		return;
677 
678 	/* oom_mm is bound to the signal struct life time. */
679 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
680 		atomic_inc(&tsk->signal->oom_mm->mm_count);
681 
682 	/*
683 	 * Make sure that the task is woken up from uninterruptible sleep
684 	 * if it is frozen because OOM killer wouldn't be able to free
685 	 * any memory and livelock. freezing_slow_path will tell the freezer
686 	 * that TIF_MEMDIE tasks should be ignored.
687 	 */
688 	__thaw_task(tsk);
689 	atomic_inc(&oom_victims);
690 }
691 
692 /**
693  * exit_oom_victim - note the exit of an OOM victim
694  */
exit_oom_victim(void)695 void exit_oom_victim(void)
696 {
697 	clear_thread_flag(TIF_MEMDIE);
698 
699 	if (!atomic_dec_return(&oom_victims))
700 		wake_up_all(&oom_victims_wait);
701 }
702 
703 /**
704  * oom_killer_enable - enable OOM killer
705  */
oom_killer_enable(void)706 void oom_killer_enable(void)
707 {
708 	oom_killer_disabled = false;
709 }
710 
711 /**
712  * oom_killer_disable - disable OOM killer
713  * @timeout: maximum timeout to wait for oom victims in jiffies
714  *
715  * Forces all page allocations to fail rather than trigger OOM killer.
716  * Will block and wait until all OOM victims are killed or the given
717  * timeout expires.
718  *
719  * The function cannot be called when there are runnable user tasks because
720  * the userspace would see unexpected allocation failures as a result. Any
721  * new usage of this function should be consulted with MM people.
722  *
723  * Returns true if successful and false if the OOM killer cannot be
724  * disabled.
725  */
oom_killer_disable(signed long timeout)726 bool oom_killer_disable(signed long timeout)
727 {
728 	signed long ret;
729 
730 	/*
731 	 * Make sure to not race with an ongoing OOM killer. Check that the
732 	 * current is not killed (possibly due to sharing the victim's memory).
733 	 */
734 	if (mutex_lock_killable(&oom_lock))
735 		return false;
736 	oom_killer_disabled = true;
737 	mutex_unlock(&oom_lock);
738 
739 	ret = wait_event_interruptible_timeout(oom_victims_wait,
740 			!atomic_read(&oom_victims), timeout);
741 	if (ret <= 0) {
742 		oom_killer_enable();
743 		return false;
744 	}
745 
746 	return true;
747 }
748 
__task_will_free_mem(struct task_struct * task)749 static inline bool __task_will_free_mem(struct task_struct *task)
750 {
751 	struct signal_struct *sig = task->signal;
752 
753 	/*
754 	 * A coredumping process may sleep for an extended period in exit_mm(),
755 	 * so the oom killer cannot assume that the process will promptly exit
756 	 * and release memory.
757 	 */
758 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
759 		return false;
760 
761 	if (sig->flags & SIGNAL_GROUP_EXIT)
762 		return true;
763 
764 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
765 		return true;
766 
767 	return false;
768 }
769 
770 /*
771  * Checks whether the given task is dying or exiting and likely to
772  * release its address space. This means that all threads and processes
773  * sharing the same mm have to be killed or exiting.
774  * Caller has to make sure that task->mm is stable (hold task_lock or
775  * it operates on the current).
776  */
task_will_free_mem(struct task_struct * task)777 static bool task_will_free_mem(struct task_struct *task)
778 {
779 	struct mm_struct *mm = task->mm;
780 	struct task_struct *p;
781 	bool ret = true;
782 
783 	/*
784 	 * Skip tasks without mm because it might have passed its exit_mm and
785 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
786 	 * on that for now. We can consider find_lock_task_mm in future.
787 	 */
788 	if (!mm)
789 		return false;
790 
791 	if (!__task_will_free_mem(task))
792 		return false;
793 
794 	/*
795 	 * This task has already been drained by the oom reaper so there are
796 	 * only small chances it will free some more
797 	 */
798 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
799 		return false;
800 
801 	if (atomic_read(&mm->mm_users) <= 1)
802 		return true;
803 
804 	/*
805 	 * Make sure that all tasks which share the mm with the given tasks
806 	 * are dying as well to make sure that a) nobody pins its mm and
807 	 * b) the task is also reapable by the oom reaper.
808 	 */
809 	rcu_read_lock();
810 	for_each_process(p) {
811 		if (!process_shares_mm(p, mm))
812 			continue;
813 		if (same_thread_group(task, p))
814 			continue;
815 		ret = __task_will_free_mem(p);
816 		if (!ret)
817 			break;
818 	}
819 	rcu_read_unlock();
820 
821 	return ret;
822 }
823 
oom_kill_process(struct oom_control * oc,const char * message)824 static void oom_kill_process(struct oom_control *oc, const char *message)
825 {
826 	struct task_struct *p = oc->chosen;
827 	unsigned int points = oc->chosen_points;
828 	struct task_struct *victim = p;
829 	struct task_struct *child;
830 	struct task_struct *t;
831 	struct mm_struct *mm;
832 	unsigned int victim_points = 0;
833 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
834 					      DEFAULT_RATELIMIT_BURST);
835 	bool can_oom_reap = true;
836 
837 	/*
838 	 * If the task is already exiting, don't alarm the sysadmin or kill
839 	 * its children or threads, just set TIF_MEMDIE so it can die quickly
840 	 */
841 	task_lock(p);
842 	if (task_will_free_mem(p)) {
843 		mark_oom_victim(p);
844 		wake_oom_reaper(p);
845 		task_unlock(p);
846 		put_task_struct(p);
847 		return;
848 	}
849 	task_unlock(p);
850 
851 	if (__ratelimit(&oom_rs))
852 		dump_header(oc, p);
853 
854 	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
855 		message, task_pid_nr(p), p->comm, points);
856 
857 	/*
858 	 * If any of p's children has a different mm and is eligible for kill,
859 	 * the one with the highest oom_badness() score is sacrificed for its
860 	 * parent.  This attempts to lose the minimal amount of work done while
861 	 * still freeing memory.
862 	 */
863 	read_lock(&tasklist_lock);
864 	for_each_thread(p, t) {
865 		list_for_each_entry(child, &t->children, sibling) {
866 			unsigned int child_points;
867 
868 			if (process_shares_mm(child, p->mm))
869 				continue;
870 			/*
871 			 * oom_badness() returns 0 if the thread is unkillable
872 			 */
873 			child_points = oom_badness(child,
874 				oc->memcg, oc->nodemask, oc->totalpages);
875 			if (child_points > victim_points) {
876 				put_task_struct(victim);
877 				victim = child;
878 				victim_points = child_points;
879 				get_task_struct(victim);
880 			}
881 		}
882 	}
883 	read_unlock(&tasklist_lock);
884 
885 	p = find_lock_task_mm(victim);
886 	if (!p) {
887 		put_task_struct(victim);
888 		return;
889 	} else if (victim != p) {
890 		get_task_struct(p);
891 		put_task_struct(victim);
892 		victim = p;
893 	}
894 
895 	/* Get a reference to safely compare mm after task_unlock(victim) */
896 	mm = victim->mm;
897 	atomic_inc(&mm->mm_count);
898 	/*
899 	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
900 	 * the OOM victim from depleting the memory reserves from the user
901 	 * space under its control.
902 	 */
903 	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
904 	mark_oom_victim(victim);
905 	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
906 		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
907 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
908 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
909 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
910 	task_unlock(victim);
911 
912 	/*
913 	 * Kill all user processes sharing victim->mm in other thread groups, if
914 	 * any.  They don't get access to memory reserves, though, to avoid
915 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
916 	 * oom killed thread cannot exit because it requires the semaphore and
917 	 * its contended by another thread trying to allocate memory itself.
918 	 * That thread will now get access to memory reserves since it has a
919 	 * pending fatal signal.
920 	 */
921 	rcu_read_lock();
922 	for_each_process(p) {
923 		if (!process_shares_mm(p, mm))
924 			continue;
925 		if (same_thread_group(p, victim))
926 			continue;
927 		if (is_global_init(p)) {
928 			can_oom_reap = false;
929 			set_bit(MMF_OOM_SKIP, &mm->flags);
930 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
931 					task_pid_nr(victim), victim->comm,
932 					task_pid_nr(p), p->comm);
933 			continue;
934 		}
935 		/*
936 		 * No use_mm() user needs to read from the userspace so we are
937 		 * ok to reap it.
938 		 */
939 		if (unlikely(p->flags & PF_KTHREAD))
940 			continue;
941 		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
942 	}
943 	rcu_read_unlock();
944 
945 	if (can_oom_reap)
946 		wake_oom_reaper(victim);
947 
948 	mmdrop(mm);
949 	put_task_struct(victim);
950 }
951 #undef K
952 
953 /*
954  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
955  */
check_panic_on_oom(struct oom_control * oc,enum oom_constraint constraint)956 static void check_panic_on_oom(struct oom_control *oc,
957 			       enum oom_constraint constraint)
958 {
959 	if (likely(!sysctl_panic_on_oom))
960 		return;
961 	if (sysctl_panic_on_oom != 2) {
962 		/*
963 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
964 		 * does not panic for cpuset, mempolicy, or memcg allocation
965 		 * failures.
966 		 */
967 		if (constraint != CONSTRAINT_NONE)
968 			return;
969 	}
970 	/* Do not panic for oom kills triggered by sysrq */
971 	if (is_sysrq_oom(oc))
972 		return;
973 	dump_header(oc, NULL);
974 	panic("Out of memory: %s panic_on_oom is enabled\n",
975 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
976 }
977 
978 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
979 
register_oom_notifier(struct notifier_block * nb)980 int register_oom_notifier(struct notifier_block *nb)
981 {
982 	return blocking_notifier_chain_register(&oom_notify_list, nb);
983 }
984 EXPORT_SYMBOL_GPL(register_oom_notifier);
985 
unregister_oom_notifier(struct notifier_block * nb)986 int unregister_oom_notifier(struct notifier_block *nb)
987 {
988 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
989 }
990 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
991 
992 /**
993  * out_of_memory - kill the "best" process when we run out of memory
994  * @oc: pointer to struct oom_control
995  *
996  * If we run out of memory, we have the choice between either
997  * killing a random task (bad), letting the system crash (worse)
998  * OR try to be smart about which process to kill. Note that we
999  * don't have to be perfect here, we just have to be good.
1000  */
out_of_memory(struct oom_control * oc)1001 bool out_of_memory(struct oom_control *oc)
1002 {
1003 	unsigned long freed = 0;
1004 	enum oom_constraint constraint = CONSTRAINT_NONE;
1005 
1006 	if (oom_killer_disabled)
1007 		return false;
1008 
1009 	if (!is_memcg_oom(oc)) {
1010 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1011 		if (freed > 0)
1012 			/* Got some memory back in the last second. */
1013 			return true;
1014 	}
1015 
1016 	/*
1017 	 * If current has a pending SIGKILL or is exiting, then automatically
1018 	 * select it.  The goal is to allow it to allocate so that it may
1019 	 * quickly exit and free its memory.
1020 	 */
1021 	if (task_will_free_mem(current)) {
1022 		mark_oom_victim(current);
1023 		wake_oom_reaper(current);
1024 		return true;
1025 	}
1026 
1027 	/*
1028 	 * The OOM killer does not compensate for IO-less reclaim.
1029 	 * pagefault_out_of_memory lost its gfp context so we have to
1030 	 * make sure exclude 0 mask - all other users should have at least
1031 	 * ___GFP_DIRECT_RECLAIM to get here.
1032 	 */
1033 	if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1034 		return true;
1035 
1036 	/*
1037 	 * Check if there were limitations on the allocation (only relevant for
1038 	 * NUMA and memcg) that may require different handling.
1039 	 */
1040 	constraint = constrained_alloc(oc);
1041 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1042 		oc->nodemask = NULL;
1043 	check_panic_on_oom(oc, constraint);
1044 
1045 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1046 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1047 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1048 		get_task_struct(current);
1049 		oc->chosen = current;
1050 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1051 		return true;
1052 	}
1053 
1054 	select_bad_process(oc);
1055 	/* Found nothing?!?! Either we hang forever, or we panic. */
1056 	if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
1057 		dump_header(oc, NULL);
1058 		panic("Out of memory and no killable processes...\n");
1059 	}
1060 	if (oc->chosen && oc->chosen != (void *)-1UL) {
1061 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1062 				 "Memory cgroup out of memory");
1063 		/*
1064 		 * Give the killed process a good chance to exit before trying
1065 		 * to allocate memory again.
1066 		 */
1067 		schedule_timeout_killable(1);
1068 	}
1069 	return !!oc->chosen;
1070 }
1071 
1072 /*
1073  * The pagefault handler calls here because it is out of memory, so kill a
1074  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1075  * killing is already in progress so do nothing.
1076  */
pagefault_out_of_memory(void)1077 void pagefault_out_of_memory(void)
1078 {
1079 	struct oom_control oc = {
1080 		.zonelist = NULL,
1081 		.nodemask = NULL,
1082 		.memcg = NULL,
1083 		.gfp_mask = 0,
1084 		.order = 0,
1085 	};
1086 
1087 	if (mem_cgroup_oom_synchronize(true))
1088 		return;
1089 
1090 	if (!mutex_trylock(&oom_lock))
1091 		return;
1092 	out_of_memory(&oc);
1093 	mutex_unlock(&oom_lock);
1094 }
1095