• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 const char *pci_power_names[] = {
37 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40 
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43 
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46 
47 unsigned int pci_pm_d3_delay;
48 
49 static void pci_pme_list_scan(struct work_struct *work);
50 
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54 
55 struct pci_pme_device {
56 	struct list_head list;
57 	struct pci_dev *dev;
58 };
59 
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61 
pci_dev_d3_sleep(struct pci_dev * dev)62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 	unsigned int delay = dev->d3_delay;
65 
66 	if (delay < pci_pm_d3_delay)
67 		delay = pci_pm_d3_delay;
68 
69 	msleep(delay);
70 }
71 
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
75 
76 #define DEFAULT_CARDBUS_IO_SIZE		(256)
77 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
81 
82 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_BUS_SIZE	1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
90 
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
92 
93 /*
94  * The default CLS is used if arch didn't set CLS explicitly and not
95  * all pci devices agree on the same value.  Arch can override either
96  * the dfl or actual value as it sees fit.  Don't forget this is
97  * measured in 32-bit words, not bytes.
98  */
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
101 
102 /*
103  * If we set up a device for bus mastering, we need to check the latency
104  * timer as certain BIOSes forget to set it properly.
105  */
106 unsigned int pcibios_max_latency = 255;
107 
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
110 
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
115 
pcie_port_pm_setup(char * str)116 static int __init pcie_port_pm_setup(char *str)
117 {
118 	if (!strcmp(str, "off"))
119 		pci_bridge_d3_disable = true;
120 	else if (!strcmp(str, "force"))
121 		pci_bridge_d3_force = true;
122 	return 1;
123 }
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
125 
126 /**
127  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128  * @bus: pointer to PCI bus structure to search
129  *
130  * Given a PCI bus, returns the highest PCI bus number present in the set
131  * including the given PCI bus and its list of child PCI buses.
132  */
pci_bus_max_busnr(struct pci_bus * bus)133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
134 {
135 	struct pci_bus *tmp;
136 	unsigned char max, n;
137 
138 	max = bus->busn_res.end;
139 	list_for_each_entry(tmp, &bus->children, node) {
140 		n = pci_bus_max_busnr(tmp);
141 		if (n > max)
142 			max = n;
143 	}
144 	return max;
145 }
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
147 
148 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
150 {
151 	struct resource *res = &pdev->resource[bar];
152 
153 	/*
154 	 * Make sure the BAR is actually a memory resource, not an IO resource
155 	 */
156 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 		return NULL;
159 	}
160 	return ioremap_nocache(res->start, resource_size(res));
161 }
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
163 
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
165 {
166 	/*
167 	 * Make sure the BAR is actually a memory resource, not an IO resource
168 	 */
169 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 		WARN_ON(1);
171 		return NULL;
172 	}
173 	return ioremap_wc(pci_resource_start(pdev, bar),
174 			  pci_resource_len(pdev, bar));
175 }
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
178 
179 
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 				   u8 pos, int cap, int *ttl)
182 {
183 	u8 id;
184 	u16 ent;
185 
186 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
187 
188 	while ((*ttl)--) {
189 		if (pos < 0x40)
190 			break;
191 		pos &= ~3;
192 		pci_bus_read_config_word(bus, devfn, pos, &ent);
193 
194 		id = ent & 0xff;
195 		if (id == 0xff)
196 			break;
197 		if (id == cap)
198 			return pos;
199 		pos = (ent >> 8);
200 	}
201 	return 0;
202 }
203 
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 			       u8 pos, int cap)
206 {
207 	int ttl = PCI_FIND_CAP_TTL;
208 
209 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
210 }
211 
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
213 {
214 	return __pci_find_next_cap(dev->bus, dev->devfn,
215 				   pos + PCI_CAP_LIST_NEXT, cap);
216 }
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
218 
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 				    unsigned int devfn, u8 hdr_type)
221 {
222 	u16 status;
223 
224 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 	if (!(status & PCI_STATUS_CAP_LIST))
226 		return 0;
227 
228 	switch (hdr_type) {
229 	case PCI_HEADER_TYPE_NORMAL:
230 	case PCI_HEADER_TYPE_BRIDGE:
231 		return PCI_CAPABILITY_LIST;
232 	case PCI_HEADER_TYPE_CARDBUS:
233 		return PCI_CB_CAPABILITY_LIST;
234 	}
235 
236 	return 0;
237 }
238 
239 /**
240  * pci_find_capability - query for devices' capabilities
241  * @dev: PCI device to query
242  * @cap: capability code
243  *
244  * Tell if a device supports a given PCI capability.
245  * Returns the address of the requested capability structure within the
246  * device's PCI configuration space or 0 in case the device does not
247  * support it.  Possible values for @cap:
248  *
249  *  %PCI_CAP_ID_PM           Power Management
250  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
251  *  %PCI_CAP_ID_VPD          Vital Product Data
252  *  %PCI_CAP_ID_SLOTID       Slot Identification
253  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
254  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
255  *  %PCI_CAP_ID_PCIX         PCI-X
256  *  %PCI_CAP_ID_EXP          PCI Express
257  */
pci_find_capability(struct pci_dev * dev,int cap)258 int pci_find_capability(struct pci_dev *dev, int cap)
259 {
260 	int pos;
261 
262 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 	if (pos)
264 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
265 
266 	return pos;
267 }
268 EXPORT_SYMBOL(pci_find_capability);
269 
270 /**
271  * pci_bus_find_capability - query for devices' capabilities
272  * @bus:   the PCI bus to query
273  * @devfn: PCI device to query
274  * @cap:   capability code
275  *
276  * Like pci_find_capability() but works for pci devices that do not have a
277  * pci_dev structure set up yet.
278  *
279  * Returns the address of the requested capability structure within the
280  * device's PCI configuration space or 0 in case the device does not
281  * support it.
282  */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
284 {
285 	int pos;
286 	u8 hdr_type;
287 
288 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
289 
290 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 	if (pos)
292 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
293 
294 	return pos;
295 }
296 EXPORT_SYMBOL(pci_bus_find_capability);
297 
298 /**
299  * pci_find_next_ext_capability - Find an extended capability
300  * @dev: PCI device to query
301  * @start: address at which to start looking (0 to start at beginning of list)
302  * @cap: capability code
303  *
304  * Returns the address of the next matching extended capability structure
305  * within the device's PCI configuration space or 0 if the device does
306  * not support it.  Some capabilities can occur several times, e.g., the
307  * vendor-specific capability, and this provides a way to find them all.
308  */
pci_find_next_ext_capability(struct pci_dev * dev,int start,int cap)309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
310 {
311 	u32 header;
312 	int ttl;
313 	int pos = PCI_CFG_SPACE_SIZE;
314 
315 	/* minimum 8 bytes per capability */
316 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
317 
318 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 		return 0;
320 
321 	if (start)
322 		pos = start;
323 
324 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 		return 0;
326 
327 	/*
328 	 * If we have no capabilities, this is indicated by cap ID,
329 	 * cap version and next pointer all being 0.
330 	 */
331 	if (header == 0)
332 		return 0;
333 
334 	while (ttl-- > 0) {
335 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 			return pos;
337 
338 		pos = PCI_EXT_CAP_NEXT(header);
339 		if (pos < PCI_CFG_SPACE_SIZE)
340 			break;
341 
342 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 			break;
344 	}
345 
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
349 
350 /**
351  * pci_find_ext_capability - Find an extended capability
352  * @dev: PCI device to query
353  * @cap: capability code
354  *
355  * Returns the address of the requested extended capability structure
356  * within the device's PCI configuration space or 0 if the device does
357  * not support it.  Possible values for @cap:
358  *
359  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
360  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
361  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
362  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
363  */
pci_find_ext_capability(struct pci_dev * dev,int cap)364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
365 {
366 	return pci_find_next_ext_capability(dev, 0, cap);
367 }
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
369 
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
371 {
372 	int rc, ttl = PCI_FIND_CAP_TTL;
373 	u8 cap, mask;
374 
375 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 		mask = HT_3BIT_CAP_MASK;
377 	else
378 		mask = HT_5BIT_CAP_MASK;
379 
380 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 				      PCI_CAP_ID_HT, &ttl);
382 	while (pos) {
383 		rc = pci_read_config_byte(dev, pos + 3, &cap);
384 		if (rc != PCIBIOS_SUCCESSFUL)
385 			return 0;
386 
387 		if ((cap & mask) == ht_cap)
388 			return pos;
389 
390 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 					      pos + PCI_CAP_LIST_NEXT,
392 					      PCI_CAP_ID_HT, &ttl);
393 	}
394 
395 	return 0;
396 }
397 /**
398  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399  * @dev: PCI device to query
400  * @pos: Position from which to continue searching
401  * @ht_cap: Hypertransport capability code
402  *
403  * To be used in conjunction with pci_find_ht_capability() to search for
404  * all capabilities matching @ht_cap. @pos should always be a value returned
405  * from pci_find_ht_capability().
406  *
407  * NB. To be 100% safe against broken PCI devices, the caller should take
408  * steps to avoid an infinite loop.
409  */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
411 {
412 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
413 }
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
415 
416 /**
417  * pci_find_ht_capability - query a device's Hypertransport capabilities
418  * @dev: PCI device to query
419  * @ht_cap: Hypertransport capability code
420  *
421  * Tell if a device supports a given Hypertransport capability.
422  * Returns an address within the device's PCI configuration space
423  * or 0 in case the device does not support the request capability.
424  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425  * which has a Hypertransport capability matching @ht_cap.
426  */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
428 {
429 	int pos;
430 
431 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 	if (pos)
433 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
434 
435 	return pos;
436 }
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
438 
439 /**
440  * pci_find_parent_resource - return resource region of parent bus of given region
441  * @dev: PCI device structure contains resources to be searched
442  * @res: child resource record for which parent is sought
443  *
444  *  For given resource region of given device, return the resource
445  *  region of parent bus the given region is contained in.
446  */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 					  struct resource *res)
449 {
450 	const struct pci_bus *bus = dev->bus;
451 	struct resource *r;
452 	int i;
453 
454 	pci_bus_for_each_resource(bus, r, i) {
455 		if (!r)
456 			continue;
457 		if (res->start && resource_contains(r, res)) {
458 
459 			/*
460 			 * If the window is prefetchable but the BAR is
461 			 * not, the allocator made a mistake.
462 			 */
463 			if (r->flags & IORESOURCE_PREFETCH &&
464 			    !(res->flags & IORESOURCE_PREFETCH))
465 				return NULL;
466 
467 			/*
468 			 * If we're below a transparent bridge, there may
469 			 * be both a positively-decoded aperture and a
470 			 * subtractively-decoded region that contain the BAR.
471 			 * We want the positively-decoded one, so this depends
472 			 * on pci_bus_for_each_resource() giving us those
473 			 * first.
474 			 */
475 			return r;
476 		}
477 	}
478 	return NULL;
479 }
480 EXPORT_SYMBOL(pci_find_parent_resource);
481 
482 /**
483  * pci_find_resource - Return matching PCI device resource
484  * @dev: PCI device to query
485  * @res: Resource to look for
486  *
487  * Goes over standard PCI resources (BARs) and checks if the given resource
488  * is partially or fully contained in any of them. In that case the
489  * matching resource is returned, %NULL otherwise.
490  */
pci_find_resource(struct pci_dev * dev,struct resource * res)491 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
492 {
493 	int i;
494 
495 	for (i = 0; i < PCI_ROM_RESOURCE; i++) {
496 		struct resource *r = &dev->resource[i];
497 
498 		if (r->start && resource_contains(r, res))
499 			return r;
500 	}
501 
502 	return NULL;
503 }
504 EXPORT_SYMBOL(pci_find_resource);
505 
506 /**
507  * pci_find_pcie_root_port - return PCIe Root Port
508  * @dev: PCI device to query
509  *
510  * Traverse up the parent chain and return the PCIe Root Port PCI Device
511  * for a given PCI Device.
512  */
pci_find_pcie_root_port(struct pci_dev * dev)513 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
514 {
515 	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
516 
517 	bridge = pci_upstream_bridge(dev);
518 	while (bridge && pci_is_pcie(bridge)) {
519 		highest_pcie_bridge = bridge;
520 		bridge = pci_upstream_bridge(bridge);
521 	}
522 
523 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
524 		return NULL;
525 
526 	return highest_pcie_bridge;
527 }
528 EXPORT_SYMBOL(pci_find_pcie_root_port);
529 
530 /**
531  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
532  * @dev: the PCI device to operate on
533  * @pos: config space offset of status word
534  * @mask: mask of bit(s) to care about in status word
535  *
536  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
537  */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)538 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
539 {
540 	int i;
541 
542 	/* Wait for Transaction Pending bit clean */
543 	for (i = 0; i < 4; i++) {
544 		u16 status;
545 		if (i)
546 			msleep((1 << (i - 1)) * 100);
547 
548 		pci_read_config_word(dev, pos, &status);
549 		if (!(status & mask))
550 			return 1;
551 	}
552 
553 	return 0;
554 }
555 
556 /**
557  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
558  * @dev: PCI device to have its BARs restored
559  *
560  * Restore the BAR values for a given device, so as to make it
561  * accessible by its driver.
562  */
pci_restore_bars(struct pci_dev * dev)563 static void pci_restore_bars(struct pci_dev *dev)
564 {
565 	int i;
566 
567 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
568 		pci_update_resource(dev, i);
569 }
570 
571 static const struct pci_platform_pm_ops *pci_platform_pm;
572 
pci_set_platform_pm(const struct pci_platform_pm_ops * ops)573 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
574 {
575 	if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
576 	    !ops->choose_state  || !ops->sleep_wake || !ops->run_wake  ||
577 	    !ops->need_resume)
578 		return -EINVAL;
579 	pci_platform_pm = ops;
580 	return 0;
581 }
582 
platform_pci_power_manageable(struct pci_dev * dev)583 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
584 {
585 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
586 }
587 
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)588 static inline int platform_pci_set_power_state(struct pci_dev *dev,
589 					       pci_power_t t)
590 {
591 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
592 }
593 
platform_pci_get_power_state(struct pci_dev * dev)594 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
595 {
596 	return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
597 }
598 
platform_pci_choose_state(struct pci_dev * dev)599 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
600 {
601 	return pci_platform_pm ?
602 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
603 }
604 
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)605 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
606 {
607 	return pci_platform_pm ?
608 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
609 }
610 
platform_pci_run_wake(struct pci_dev * dev,bool enable)611 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
612 {
613 	return pci_platform_pm ?
614 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
615 }
616 
platform_pci_need_resume(struct pci_dev * dev)617 static inline bool platform_pci_need_resume(struct pci_dev *dev)
618 {
619 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
620 }
621 
622 /**
623  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
624  *                           given PCI device
625  * @dev: PCI device to handle.
626  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
627  *
628  * RETURN VALUE:
629  * -EINVAL if the requested state is invalid.
630  * -EIO if device does not support PCI PM or its PM capabilities register has a
631  * wrong version, or device doesn't support the requested state.
632  * 0 if device already is in the requested state.
633  * 0 if device's power state has been successfully changed.
634  */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)635 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
636 {
637 	u16 pmcsr;
638 	bool need_restore = false;
639 
640 	/* Check if we're already there */
641 	if (dev->current_state == state)
642 		return 0;
643 
644 	if (!dev->pm_cap)
645 		return -EIO;
646 
647 	if (state < PCI_D0 || state > PCI_D3hot)
648 		return -EINVAL;
649 
650 	/* Validate current state:
651 	 * Can enter D0 from any state, but if we can only go deeper
652 	 * to sleep if we're already in a low power state
653 	 */
654 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
655 	    && dev->current_state > state) {
656 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
657 			dev->current_state, state);
658 		return -EINVAL;
659 	}
660 
661 	/* check if this device supports the desired state */
662 	if ((state == PCI_D1 && !dev->d1_support)
663 	   || (state == PCI_D2 && !dev->d2_support))
664 		return -EIO;
665 
666 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
667 
668 	/* If we're (effectively) in D3, force entire word to 0.
669 	 * This doesn't affect PME_Status, disables PME_En, and
670 	 * sets PowerState to 0.
671 	 */
672 	switch (dev->current_state) {
673 	case PCI_D0:
674 	case PCI_D1:
675 	case PCI_D2:
676 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
677 		pmcsr |= state;
678 		break;
679 	case PCI_D3hot:
680 	case PCI_D3cold:
681 	case PCI_UNKNOWN: /* Boot-up */
682 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
683 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
684 			need_restore = true;
685 		/* Fall-through: force to D0 */
686 	default:
687 		pmcsr = 0;
688 		break;
689 	}
690 
691 	/* enter specified state */
692 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
693 
694 	/* Mandatory power management transition delays */
695 	/* see PCI PM 1.1 5.6.1 table 18 */
696 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
697 		pci_dev_d3_sleep(dev);
698 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
699 		udelay(PCI_PM_D2_DELAY);
700 
701 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
702 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
703 	if (dev->current_state != state && printk_ratelimit())
704 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
705 			 dev->current_state);
706 
707 	/*
708 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
709 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
710 	 * from D3hot to D0 _may_ perform an internal reset, thereby
711 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
712 	 * For example, at least some versions of the 3c905B and the
713 	 * 3c556B exhibit this behaviour.
714 	 *
715 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
716 	 * devices in a D3hot state at boot.  Consequently, we need to
717 	 * restore at least the BARs so that the device will be
718 	 * accessible to its driver.
719 	 */
720 	if (need_restore)
721 		pci_restore_bars(dev);
722 
723 	if (dev->bus->self)
724 		pcie_aspm_pm_state_change(dev->bus->self);
725 
726 	return 0;
727 }
728 
729 /**
730  * pci_update_current_state - Read power state of given device and cache it
731  * @dev: PCI device to handle.
732  * @state: State to cache in case the device doesn't have the PM capability
733  *
734  * The power state is read from the PMCSR register, which however is
735  * inaccessible in D3cold.  The platform firmware is therefore queried first
736  * to detect accessibility of the register.  In case the platform firmware
737  * reports an incorrect state or the device isn't power manageable by the
738  * platform at all, we try to detect D3cold by testing accessibility of the
739  * vendor ID in config space.
740  */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)741 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
742 {
743 	if (platform_pci_get_power_state(dev) == PCI_D3cold ||
744 	    !pci_device_is_present(dev)) {
745 		dev->current_state = PCI_D3cold;
746 	} else if (dev->pm_cap) {
747 		u16 pmcsr;
748 
749 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
750 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
751 	} else {
752 		dev->current_state = state;
753 	}
754 }
755 
756 /**
757  * pci_power_up - Put the given device into D0 forcibly
758  * @dev: PCI device to power up
759  */
pci_power_up(struct pci_dev * dev)760 void pci_power_up(struct pci_dev *dev)
761 {
762 	if (platform_pci_power_manageable(dev))
763 		platform_pci_set_power_state(dev, PCI_D0);
764 
765 	pci_raw_set_power_state(dev, PCI_D0);
766 	pci_update_current_state(dev, PCI_D0);
767 }
768 
769 /**
770  * pci_platform_power_transition - Use platform to change device power state
771  * @dev: PCI device to handle.
772  * @state: State to put the device into.
773  */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)774 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
775 {
776 	int error;
777 
778 	if (platform_pci_power_manageable(dev)) {
779 		error = platform_pci_set_power_state(dev, state);
780 		if (!error)
781 			pci_update_current_state(dev, state);
782 	} else
783 		error = -ENODEV;
784 
785 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
786 		dev->current_state = PCI_D0;
787 
788 	return error;
789 }
790 
791 /**
792  * pci_wakeup - Wake up a PCI device
793  * @pci_dev: Device to handle.
794  * @ign: ignored parameter
795  */
pci_wakeup(struct pci_dev * pci_dev,void * ign)796 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
797 {
798 	pci_wakeup_event(pci_dev);
799 	pm_request_resume(&pci_dev->dev);
800 	return 0;
801 }
802 
803 /**
804  * pci_wakeup_bus - Walk given bus and wake up devices on it
805  * @bus: Top bus of the subtree to walk.
806  */
pci_wakeup_bus(struct pci_bus * bus)807 static void pci_wakeup_bus(struct pci_bus *bus)
808 {
809 	if (bus)
810 		pci_walk_bus(bus, pci_wakeup, NULL);
811 }
812 
813 /**
814  * __pci_start_power_transition - Start power transition of a PCI device
815  * @dev: PCI device to handle.
816  * @state: State to put the device into.
817  */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)818 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
819 {
820 	if (state == PCI_D0) {
821 		pci_platform_power_transition(dev, PCI_D0);
822 		/*
823 		 * Mandatory power management transition delays, see
824 		 * PCI Express Base Specification Revision 2.0 Section
825 		 * 6.6.1: Conventional Reset.  Do not delay for
826 		 * devices powered on/off by corresponding bridge,
827 		 * because have already delayed for the bridge.
828 		 */
829 		if (dev->runtime_d3cold) {
830 			msleep(dev->d3cold_delay);
831 			/*
832 			 * When powering on a bridge from D3cold, the
833 			 * whole hierarchy may be powered on into
834 			 * D0uninitialized state, resume them to give
835 			 * them a chance to suspend again
836 			 */
837 			pci_wakeup_bus(dev->subordinate);
838 		}
839 	}
840 }
841 
842 /**
843  * __pci_dev_set_current_state - Set current state of a PCI device
844  * @dev: Device to handle
845  * @data: pointer to state to be set
846  */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)847 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
848 {
849 	pci_power_t state = *(pci_power_t *)data;
850 
851 	dev->current_state = state;
852 	return 0;
853 }
854 
855 /**
856  * __pci_bus_set_current_state - Walk given bus and set current state of devices
857  * @bus: Top bus of the subtree to walk.
858  * @state: state to be set
859  */
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)860 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
861 {
862 	if (bus)
863 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
864 }
865 
866 /**
867  * __pci_complete_power_transition - Complete power transition of a PCI device
868  * @dev: PCI device to handle.
869  * @state: State to put the device into.
870  *
871  * This function should not be called directly by device drivers.
872  */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)873 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
874 {
875 	int ret;
876 
877 	if (state <= PCI_D0)
878 		return -EINVAL;
879 	ret = pci_platform_power_transition(dev, state);
880 	/* Power off the bridge may power off the whole hierarchy */
881 	if (!ret && state == PCI_D3cold)
882 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
883 	return ret;
884 }
885 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
886 
887 /**
888  * pci_set_power_state - Set the power state of a PCI device
889  * @dev: PCI device to handle.
890  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
891  *
892  * Transition a device to a new power state, using the platform firmware and/or
893  * the device's PCI PM registers.
894  *
895  * RETURN VALUE:
896  * -EINVAL if the requested state is invalid.
897  * -EIO if device does not support PCI PM or its PM capabilities register has a
898  * wrong version, or device doesn't support the requested state.
899  * 0 if device already is in the requested state.
900  * 0 if device's power state has been successfully changed.
901  */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)902 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
903 {
904 	int error;
905 
906 	/* bound the state we're entering */
907 	if (state > PCI_D3cold)
908 		state = PCI_D3cold;
909 	else if (state < PCI_D0)
910 		state = PCI_D0;
911 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
912 		/*
913 		 * If the device or the parent bridge do not support PCI PM,
914 		 * ignore the request if we're doing anything other than putting
915 		 * it into D0 (which would only happen on boot).
916 		 */
917 		return 0;
918 
919 	/* Check if we're already there */
920 	if (dev->current_state == state)
921 		return 0;
922 
923 	__pci_start_power_transition(dev, state);
924 
925 	/* This device is quirked not to be put into D3, so
926 	   don't put it in D3 */
927 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
928 		return 0;
929 
930 	/*
931 	 * To put device in D3cold, we put device into D3hot in native
932 	 * way, then put device into D3cold with platform ops
933 	 */
934 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
935 					PCI_D3hot : state);
936 
937 	if (!__pci_complete_power_transition(dev, state))
938 		error = 0;
939 
940 	return error;
941 }
942 EXPORT_SYMBOL(pci_set_power_state);
943 
944 /**
945  * pci_choose_state - Choose the power state of a PCI device
946  * @dev: PCI device to be suspended
947  * @state: target sleep state for the whole system. This is the value
948  *	that is passed to suspend() function.
949  *
950  * Returns PCI power state suitable for given device and given system
951  * message.
952  */
953 
pci_choose_state(struct pci_dev * dev,pm_message_t state)954 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
955 {
956 	pci_power_t ret;
957 
958 	if (!dev->pm_cap)
959 		return PCI_D0;
960 
961 	ret = platform_pci_choose_state(dev);
962 	if (ret != PCI_POWER_ERROR)
963 		return ret;
964 
965 	switch (state.event) {
966 	case PM_EVENT_ON:
967 		return PCI_D0;
968 	case PM_EVENT_FREEZE:
969 	case PM_EVENT_PRETHAW:
970 		/* REVISIT both freeze and pre-thaw "should" use D0 */
971 	case PM_EVENT_SUSPEND:
972 	case PM_EVENT_HIBERNATE:
973 		return PCI_D3hot;
974 	default:
975 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
976 			 state.event);
977 		BUG();
978 	}
979 	return PCI_D0;
980 }
981 EXPORT_SYMBOL(pci_choose_state);
982 
983 #define PCI_EXP_SAVE_REGS	7
984 
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)985 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
986 						       u16 cap, bool extended)
987 {
988 	struct pci_cap_saved_state *tmp;
989 
990 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
991 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
992 			return tmp;
993 	}
994 	return NULL;
995 }
996 
pci_find_saved_cap(struct pci_dev * dev,char cap)997 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
998 {
999 	return _pci_find_saved_cap(dev, cap, false);
1000 }
1001 
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1002 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1003 {
1004 	return _pci_find_saved_cap(dev, cap, true);
1005 }
1006 
pci_save_pcie_state(struct pci_dev * dev)1007 static int pci_save_pcie_state(struct pci_dev *dev)
1008 {
1009 	int i = 0;
1010 	struct pci_cap_saved_state *save_state;
1011 	u16 *cap;
1012 
1013 	if (!pci_is_pcie(dev))
1014 		return 0;
1015 
1016 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1017 	if (!save_state) {
1018 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1019 		return -ENOMEM;
1020 	}
1021 
1022 	cap = (u16 *)&save_state->cap.data[0];
1023 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1024 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1025 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1026 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1027 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1028 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1029 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1030 
1031 	return 0;
1032 }
1033 
pci_restore_pcie_state(struct pci_dev * dev)1034 static void pci_restore_pcie_state(struct pci_dev *dev)
1035 {
1036 	int i = 0;
1037 	struct pci_cap_saved_state *save_state;
1038 	u16 *cap;
1039 
1040 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1041 	if (!save_state)
1042 		return;
1043 
1044 	cap = (u16 *)&save_state->cap.data[0];
1045 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1046 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1047 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1048 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1049 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1050 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1051 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1052 }
1053 
1054 
pci_save_pcix_state(struct pci_dev * dev)1055 static int pci_save_pcix_state(struct pci_dev *dev)
1056 {
1057 	int pos;
1058 	struct pci_cap_saved_state *save_state;
1059 
1060 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1061 	if (!pos)
1062 		return 0;
1063 
1064 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1065 	if (!save_state) {
1066 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1067 		return -ENOMEM;
1068 	}
1069 
1070 	pci_read_config_word(dev, pos + PCI_X_CMD,
1071 			     (u16 *)save_state->cap.data);
1072 
1073 	return 0;
1074 }
1075 
pci_restore_pcix_state(struct pci_dev * dev)1076 static void pci_restore_pcix_state(struct pci_dev *dev)
1077 {
1078 	int i = 0, pos;
1079 	struct pci_cap_saved_state *save_state;
1080 	u16 *cap;
1081 
1082 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1083 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1084 	if (!save_state || !pos)
1085 		return;
1086 	cap = (u16 *)&save_state->cap.data[0];
1087 
1088 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1089 }
1090 
1091 
1092 /**
1093  * pci_save_state - save the PCI configuration space of a device before suspending
1094  * @dev: - PCI device that we're dealing with
1095  */
pci_save_state(struct pci_dev * dev)1096 int pci_save_state(struct pci_dev *dev)
1097 {
1098 	int i;
1099 	/* XXX: 100% dword access ok here? */
1100 	for (i = 0; i < 16; i++)
1101 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1102 	dev->state_saved = true;
1103 
1104 	i = pci_save_pcie_state(dev);
1105 	if (i != 0)
1106 		return i;
1107 
1108 	i = pci_save_pcix_state(dev);
1109 	if (i != 0)
1110 		return i;
1111 
1112 	return pci_save_vc_state(dev);
1113 }
1114 EXPORT_SYMBOL(pci_save_state);
1115 
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry)1116 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1117 				     u32 saved_val, int retry)
1118 {
1119 	u32 val;
1120 
1121 	pci_read_config_dword(pdev, offset, &val);
1122 	if (val == saved_val)
1123 		return;
1124 
1125 	for (;;) {
1126 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1127 			offset, val, saved_val);
1128 		pci_write_config_dword(pdev, offset, saved_val);
1129 		if (retry-- <= 0)
1130 			return;
1131 
1132 		pci_read_config_dword(pdev, offset, &val);
1133 		if (val == saved_val)
1134 			return;
1135 
1136 		mdelay(1);
1137 	}
1138 }
1139 
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry)1140 static void pci_restore_config_space_range(struct pci_dev *pdev,
1141 					   int start, int end, int retry)
1142 {
1143 	int index;
1144 
1145 	for (index = end; index >= start; index--)
1146 		pci_restore_config_dword(pdev, 4 * index,
1147 					 pdev->saved_config_space[index],
1148 					 retry);
1149 }
1150 
pci_restore_config_space(struct pci_dev * pdev)1151 static void pci_restore_config_space(struct pci_dev *pdev)
1152 {
1153 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1154 		pci_restore_config_space_range(pdev, 10, 15, 0);
1155 		/* Restore BARs before the command register. */
1156 		pci_restore_config_space_range(pdev, 4, 9, 10);
1157 		pci_restore_config_space_range(pdev, 0, 3, 0);
1158 	} else {
1159 		pci_restore_config_space_range(pdev, 0, 15, 0);
1160 	}
1161 }
1162 
1163 /**
1164  * pci_restore_state - Restore the saved state of a PCI device
1165  * @dev: - PCI device that we're dealing with
1166  */
pci_restore_state(struct pci_dev * dev)1167 void pci_restore_state(struct pci_dev *dev)
1168 {
1169 	if (!dev->state_saved)
1170 		return;
1171 
1172 	/* PCI Express register must be restored first */
1173 	pci_restore_pcie_state(dev);
1174 	pci_restore_ats_state(dev);
1175 	pci_restore_vc_state(dev);
1176 
1177 	pci_cleanup_aer_error_status_regs(dev);
1178 
1179 	pci_restore_config_space(dev);
1180 
1181 	pci_restore_pcix_state(dev);
1182 	pci_restore_msi_state(dev);
1183 
1184 	/* Restore ACS and IOV configuration state */
1185 	pci_enable_acs(dev);
1186 	pci_restore_iov_state(dev);
1187 
1188 	dev->state_saved = false;
1189 }
1190 EXPORT_SYMBOL(pci_restore_state);
1191 
1192 struct pci_saved_state {
1193 	u32 config_space[16];
1194 	struct pci_cap_saved_data cap[0];
1195 };
1196 
1197 /**
1198  * pci_store_saved_state - Allocate and return an opaque struct containing
1199  *			   the device saved state.
1200  * @dev: PCI device that we're dealing with
1201  *
1202  * Return NULL if no state or error.
1203  */
pci_store_saved_state(struct pci_dev * dev)1204 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1205 {
1206 	struct pci_saved_state *state;
1207 	struct pci_cap_saved_state *tmp;
1208 	struct pci_cap_saved_data *cap;
1209 	size_t size;
1210 
1211 	if (!dev->state_saved)
1212 		return NULL;
1213 
1214 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1215 
1216 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1217 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1218 
1219 	state = kzalloc(size, GFP_KERNEL);
1220 	if (!state)
1221 		return NULL;
1222 
1223 	memcpy(state->config_space, dev->saved_config_space,
1224 	       sizeof(state->config_space));
1225 
1226 	cap = state->cap;
1227 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1228 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1229 		memcpy(cap, &tmp->cap, len);
1230 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1231 	}
1232 	/* Empty cap_save terminates list */
1233 
1234 	return state;
1235 }
1236 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1237 
1238 /**
1239  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240  * @dev: PCI device that we're dealing with
1241  * @state: Saved state returned from pci_store_saved_state()
1242  */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1243 int pci_load_saved_state(struct pci_dev *dev,
1244 			 struct pci_saved_state *state)
1245 {
1246 	struct pci_cap_saved_data *cap;
1247 
1248 	dev->state_saved = false;
1249 
1250 	if (!state)
1251 		return 0;
1252 
1253 	memcpy(dev->saved_config_space, state->config_space,
1254 	       sizeof(state->config_space));
1255 
1256 	cap = state->cap;
1257 	while (cap->size) {
1258 		struct pci_cap_saved_state *tmp;
1259 
1260 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1261 		if (!tmp || tmp->cap.size != cap->size)
1262 			return -EINVAL;
1263 
1264 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1265 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1266 		       sizeof(struct pci_cap_saved_data) + cap->size);
1267 	}
1268 
1269 	dev->state_saved = true;
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1273 
1274 /**
1275  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276  *				   and free the memory allocated for it.
1277  * @dev: PCI device that we're dealing with
1278  * @state: Pointer to saved state returned from pci_store_saved_state()
1279  */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1280 int pci_load_and_free_saved_state(struct pci_dev *dev,
1281 				  struct pci_saved_state **state)
1282 {
1283 	int ret = pci_load_saved_state(dev, *state);
1284 	kfree(*state);
1285 	*state = NULL;
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1289 
pcibios_enable_device(struct pci_dev * dev,int bars)1290 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1291 {
1292 	return pci_enable_resources(dev, bars);
1293 }
1294 
do_pci_enable_device(struct pci_dev * dev,int bars)1295 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1296 {
1297 	int err;
1298 	struct pci_dev *bridge;
1299 	u16 cmd;
1300 	u8 pin;
1301 
1302 	err = pci_set_power_state(dev, PCI_D0);
1303 	if (err < 0 && err != -EIO)
1304 		return err;
1305 
1306 	bridge = pci_upstream_bridge(dev);
1307 	if (bridge)
1308 		pcie_aspm_powersave_config_link(bridge);
1309 
1310 	err = pcibios_enable_device(dev, bars);
1311 	if (err < 0)
1312 		return err;
1313 	pci_fixup_device(pci_fixup_enable, dev);
1314 
1315 	if (dev->msi_enabled || dev->msix_enabled)
1316 		return 0;
1317 
1318 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1319 	if (pin) {
1320 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1321 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1322 			pci_write_config_word(dev, PCI_COMMAND,
1323 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 /**
1330  * pci_reenable_device - Resume abandoned device
1331  * @dev: PCI device to be resumed
1332  *
1333  *  Note this function is a backend of pci_default_resume and is not supposed
1334  *  to be called by normal code, write proper resume handler and use it instead.
1335  */
pci_reenable_device(struct pci_dev * dev)1336 int pci_reenable_device(struct pci_dev *dev)
1337 {
1338 	if (pci_is_enabled(dev))
1339 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(pci_reenable_device);
1343 
pci_enable_bridge(struct pci_dev * dev)1344 static void pci_enable_bridge(struct pci_dev *dev)
1345 {
1346 	struct pci_dev *bridge;
1347 	int retval;
1348 
1349 	bridge = pci_upstream_bridge(dev);
1350 	if (bridge)
1351 		pci_enable_bridge(bridge);
1352 
1353 	if (pci_is_enabled(dev)) {
1354 		if (!dev->is_busmaster)
1355 			pci_set_master(dev);
1356 		return;
1357 	}
1358 
1359 	retval = pci_enable_device(dev);
1360 	if (retval)
1361 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1362 			retval);
1363 	pci_set_master(dev);
1364 }
1365 
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)1366 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1367 {
1368 	struct pci_dev *bridge;
1369 	int err;
1370 	int i, bars = 0;
1371 
1372 	/*
1373 	 * Power state could be unknown at this point, either due to a fresh
1374 	 * boot or a device removal call.  So get the current power state
1375 	 * so that things like MSI message writing will behave as expected
1376 	 * (e.g. if the device really is in D0 at enable time).
1377 	 */
1378 	if (dev->pm_cap) {
1379 		u16 pmcsr;
1380 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1381 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1382 	}
1383 
1384 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1385 		return 0;		/* already enabled */
1386 
1387 	bridge = pci_upstream_bridge(dev);
1388 	if (bridge)
1389 		pci_enable_bridge(bridge);
1390 
1391 	/* only skip sriov related */
1392 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1393 		if (dev->resource[i].flags & flags)
1394 			bars |= (1 << i);
1395 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1396 		if (dev->resource[i].flags & flags)
1397 			bars |= (1 << i);
1398 
1399 	err = do_pci_enable_device(dev, bars);
1400 	if (err < 0)
1401 		atomic_dec(&dev->enable_cnt);
1402 	return err;
1403 }
1404 
1405 /**
1406  * pci_enable_device_io - Initialize a device for use with IO space
1407  * @dev: PCI device to be initialized
1408  *
1409  *  Initialize device before it's used by a driver. Ask low-level code
1410  *  to enable I/O resources. Wake up the device if it was suspended.
1411  *  Beware, this function can fail.
1412  */
pci_enable_device_io(struct pci_dev * dev)1413 int pci_enable_device_io(struct pci_dev *dev)
1414 {
1415 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1416 }
1417 EXPORT_SYMBOL(pci_enable_device_io);
1418 
1419 /**
1420  * pci_enable_device_mem - Initialize a device for use with Memory space
1421  * @dev: PCI device to be initialized
1422  *
1423  *  Initialize device before it's used by a driver. Ask low-level code
1424  *  to enable Memory resources. Wake up the device if it was suspended.
1425  *  Beware, this function can fail.
1426  */
pci_enable_device_mem(struct pci_dev * dev)1427 int pci_enable_device_mem(struct pci_dev *dev)
1428 {
1429 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1430 }
1431 EXPORT_SYMBOL(pci_enable_device_mem);
1432 
1433 /**
1434  * pci_enable_device - Initialize device before it's used by a driver.
1435  * @dev: PCI device to be initialized
1436  *
1437  *  Initialize device before it's used by a driver. Ask low-level code
1438  *  to enable I/O and memory. Wake up the device if it was suspended.
1439  *  Beware, this function can fail.
1440  *
1441  *  Note we don't actually enable the device many times if we call
1442  *  this function repeatedly (we just increment the count).
1443  */
pci_enable_device(struct pci_dev * dev)1444 int pci_enable_device(struct pci_dev *dev)
1445 {
1446 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1447 }
1448 EXPORT_SYMBOL(pci_enable_device);
1449 
1450 /*
1451  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1452  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1453  * there's no need to track it separately.  pci_devres is initialized
1454  * when a device is enabled using managed PCI device enable interface.
1455  */
1456 struct pci_devres {
1457 	unsigned int enabled:1;
1458 	unsigned int pinned:1;
1459 	unsigned int orig_intx:1;
1460 	unsigned int restore_intx:1;
1461 	u32 region_mask;
1462 };
1463 
pcim_release(struct device * gendev,void * res)1464 static void pcim_release(struct device *gendev, void *res)
1465 {
1466 	struct pci_dev *dev = to_pci_dev(gendev);
1467 	struct pci_devres *this = res;
1468 	int i;
1469 
1470 	if (dev->msi_enabled)
1471 		pci_disable_msi(dev);
1472 	if (dev->msix_enabled)
1473 		pci_disable_msix(dev);
1474 
1475 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1476 		if (this->region_mask & (1 << i))
1477 			pci_release_region(dev, i);
1478 
1479 	if (this->restore_intx)
1480 		pci_intx(dev, this->orig_intx);
1481 
1482 	if (this->enabled && !this->pinned)
1483 		pci_disable_device(dev);
1484 }
1485 
get_pci_dr(struct pci_dev * pdev)1486 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1487 {
1488 	struct pci_devres *dr, *new_dr;
1489 
1490 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1491 	if (dr)
1492 		return dr;
1493 
1494 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1495 	if (!new_dr)
1496 		return NULL;
1497 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1498 }
1499 
find_pci_dr(struct pci_dev * pdev)1500 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1501 {
1502 	if (pci_is_managed(pdev))
1503 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1504 	return NULL;
1505 }
1506 
1507 /**
1508  * pcim_enable_device - Managed pci_enable_device()
1509  * @pdev: PCI device to be initialized
1510  *
1511  * Managed pci_enable_device().
1512  */
pcim_enable_device(struct pci_dev * pdev)1513 int pcim_enable_device(struct pci_dev *pdev)
1514 {
1515 	struct pci_devres *dr;
1516 	int rc;
1517 
1518 	dr = get_pci_dr(pdev);
1519 	if (unlikely(!dr))
1520 		return -ENOMEM;
1521 	if (dr->enabled)
1522 		return 0;
1523 
1524 	rc = pci_enable_device(pdev);
1525 	if (!rc) {
1526 		pdev->is_managed = 1;
1527 		dr->enabled = 1;
1528 	}
1529 	return rc;
1530 }
1531 EXPORT_SYMBOL(pcim_enable_device);
1532 
1533 /**
1534  * pcim_pin_device - Pin managed PCI device
1535  * @pdev: PCI device to pin
1536  *
1537  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1538  * driver detach.  @pdev must have been enabled with
1539  * pcim_enable_device().
1540  */
pcim_pin_device(struct pci_dev * pdev)1541 void pcim_pin_device(struct pci_dev *pdev)
1542 {
1543 	struct pci_devres *dr;
1544 
1545 	dr = find_pci_dr(pdev);
1546 	WARN_ON(!dr || !dr->enabled);
1547 	if (dr)
1548 		dr->pinned = 1;
1549 }
1550 EXPORT_SYMBOL(pcim_pin_device);
1551 
1552 /*
1553  * pcibios_add_device - provide arch specific hooks when adding device dev
1554  * @dev: the PCI device being added
1555  *
1556  * Permits the platform to provide architecture specific functionality when
1557  * devices are added. This is the default implementation. Architecture
1558  * implementations can override this.
1559  */
pcibios_add_device(struct pci_dev * dev)1560 int __weak pcibios_add_device(struct pci_dev *dev)
1561 {
1562 	return 0;
1563 }
1564 
1565 /**
1566  * pcibios_release_device - provide arch specific hooks when releasing device dev
1567  * @dev: the PCI device being released
1568  *
1569  * Permits the platform to provide architecture specific functionality when
1570  * devices are released. This is the default implementation. Architecture
1571  * implementations can override this.
1572  */
pcibios_release_device(struct pci_dev * dev)1573 void __weak pcibios_release_device(struct pci_dev *dev) {}
1574 
1575 /**
1576  * pcibios_disable_device - disable arch specific PCI resources for device dev
1577  * @dev: the PCI device to disable
1578  *
1579  * Disables architecture specific PCI resources for the device. This
1580  * is the default implementation. Architecture implementations can
1581  * override this.
1582  */
pcibios_disable_device(struct pci_dev * dev)1583 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1584 
1585 /**
1586  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587  * @irq: ISA IRQ to penalize
1588  * @active: IRQ active or not
1589  *
1590  * Permits the platform to provide architecture-specific functionality when
1591  * penalizing ISA IRQs. This is the default implementation. Architecture
1592  * implementations can override this.
1593  */
pcibios_penalize_isa_irq(int irq,int active)1594 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1595 
do_pci_disable_device(struct pci_dev * dev)1596 static void do_pci_disable_device(struct pci_dev *dev)
1597 {
1598 	u16 pci_command;
1599 
1600 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1601 	if (pci_command & PCI_COMMAND_MASTER) {
1602 		pci_command &= ~PCI_COMMAND_MASTER;
1603 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1604 	}
1605 
1606 	pcibios_disable_device(dev);
1607 }
1608 
1609 /**
1610  * pci_disable_enabled_device - Disable device without updating enable_cnt
1611  * @dev: PCI device to disable
1612  *
1613  * NOTE: This function is a backend of PCI power management routines and is
1614  * not supposed to be called drivers.
1615  */
pci_disable_enabled_device(struct pci_dev * dev)1616 void pci_disable_enabled_device(struct pci_dev *dev)
1617 {
1618 	if (pci_is_enabled(dev))
1619 		do_pci_disable_device(dev);
1620 }
1621 
1622 /**
1623  * pci_disable_device - Disable PCI device after use
1624  * @dev: PCI device to be disabled
1625  *
1626  * Signal to the system that the PCI device is not in use by the system
1627  * anymore.  This only involves disabling PCI bus-mastering, if active.
1628  *
1629  * Note we don't actually disable the device until all callers of
1630  * pci_enable_device() have called pci_disable_device().
1631  */
pci_disable_device(struct pci_dev * dev)1632 void pci_disable_device(struct pci_dev *dev)
1633 {
1634 	struct pci_devres *dr;
1635 
1636 	dr = find_pci_dr(dev);
1637 	if (dr)
1638 		dr->enabled = 0;
1639 
1640 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1641 		      "disabling already-disabled device");
1642 
1643 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1644 		return;
1645 
1646 	do_pci_disable_device(dev);
1647 
1648 	dev->is_busmaster = 0;
1649 }
1650 EXPORT_SYMBOL(pci_disable_device);
1651 
1652 /**
1653  * pcibios_set_pcie_reset_state - set reset state for device dev
1654  * @dev: the PCIe device reset
1655  * @state: Reset state to enter into
1656  *
1657  *
1658  * Sets the PCIe reset state for the device. This is the default
1659  * implementation. Architecture implementations can override this.
1660  */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1661 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1662 					enum pcie_reset_state state)
1663 {
1664 	return -EINVAL;
1665 }
1666 
1667 /**
1668  * pci_set_pcie_reset_state - set reset state for device dev
1669  * @dev: the PCIe device reset
1670  * @state: Reset state to enter into
1671  *
1672  *
1673  * Sets the PCI reset state for the device.
1674  */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1675 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1676 {
1677 	return pcibios_set_pcie_reset_state(dev, state);
1678 }
1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1680 
1681 /**
1682  * pci_check_pme_status - Check if given device has generated PME.
1683  * @dev: Device to check.
1684  *
1685  * Check the PME status of the device and if set, clear it and clear PME enable
1686  * (if set).  Return 'true' if PME status and PME enable were both set or
1687  * 'false' otherwise.
1688  */
pci_check_pme_status(struct pci_dev * dev)1689 bool pci_check_pme_status(struct pci_dev *dev)
1690 {
1691 	int pmcsr_pos;
1692 	u16 pmcsr;
1693 	bool ret = false;
1694 
1695 	if (!dev->pm_cap)
1696 		return false;
1697 
1698 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1699 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1700 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1701 		return false;
1702 
1703 	/* Clear PME status. */
1704 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1705 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1706 		/* Disable PME to avoid interrupt flood. */
1707 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1708 		ret = true;
1709 	}
1710 
1711 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1712 
1713 	return ret;
1714 }
1715 
1716 /**
1717  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718  * @dev: Device to handle.
1719  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1720  *
1721  * Check if @dev has generated PME and queue a resume request for it in that
1722  * case.
1723  */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)1724 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1725 {
1726 	if (pme_poll_reset && dev->pme_poll)
1727 		dev->pme_poll = false;
1728 
1729 	if (pci_check_pme_status(dev)) {
1730 		pci_wakeup_event(dev);
1731 		pm_request_resume(&dev->dev);
1732 	}
1733 	return 0;
1734 }
1735 
1736 /**
1737  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738  * @bus: Top bus of the subtree to walk.
1739  */
pci_pme_wakeup_bus(struct pci_bus * bus)1740 void pci_pme_wakeup_bus(struct pci_bus *bus)
1741 {
1742 	if (bus)
1743 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1744 }
1745 
1746 
1747 /**
1748  * pci_pme_capable - check the capability of PCI device to generate PME#
1749  * @dev: PCI device to handle.
1750  * @state: PCI state from which device will issue PME#.
1751  */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1752 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1753 {
1754 	if (!dev->pm_cap)
1755 		return false;
1756 
1757 	return !!(dev->pme_support & (1 << state));
1758 }
1759 EXPORT_SYMBOL(pci_pme_capable);
1760 
pci_pme_list_scan(struct work_struct * work)1761 static void pci_pme_list_scan(struct work_struct *work)
1762 {
1763 	struct pci_pme_device *pme_dev, *n;
1764 
1765 	mutex_lock(&pci_pme_list_mutex);
1766 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1767 		if (pme_dev->dev->pme_poll) {
1768 			struct pci_dev *bridge;
1769 
1770 			bridge = pme_dev->dev->bus->self;
1771 			/*
1772 			 * If bridge is in low power state, the
1773 			 * configuration space of subordinate devices
1774 			 * may be not accessible
1775 			 */
1776 			if (bridge && bridge->current_state != PCI_D0)
1777 				continue;
1778 			pci_pme_wakeup(pme_dev->dev, NULL);
1779 		} else {
1780 			list_del(&pme_dev->list);
1781 			kfree(pme_dev);
1782 		}
1783 	}
1784 	if (!list_empty(&pci_pme_list))
1785 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
1786 				   msecs_to_jiffies(PME_TIMEOUT));
1787 	mutex_unlock(&pci_pme_list_mutex);
1788 }
1789 
__pci_pme_active(struct pci_dev * dev,bool enable)1790 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1791 {
1792 	u16 pmcsr;
1793 
1794 	if (!dev->pme_support)
1795 		return;
1796 
1797 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1798 	/* Clear PME_Status by writing 1 to it and enable PME# */
1799 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1800 	if (!enable)
1801 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1802 
1803 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1804 }
1805 
1806 /**
1807  * pci_pme_active - enable or disable PCI device's PME# function
1808  * @dev: PCI device to handle.
1809  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1810  *
1811  * The caller must verify that the device is capable of generating PME# before
1812  * calling this function with @enable equal to 'true'.
1813  */
pci_pme_active(struct pci_dev * dev,bool enable)1814 void pci_pme_active(struct pci_dev *dev, bool enable)
1815 {
1816 	__pci_pme_active(dev, enable);
1817 
1818 	/*
1819 	 * PCI (as opposed to PCIe) PME requires that the device have
1820 	 * its PME# line hooked up correctly. Not all hardware vendors
1821 	 * do this, so the PME never gets delivered and the device
1822 	 * remains asleep. The easiest way around this is to
1823 	 * periodically walk the list of suspended devices and check
1824 	 * whether any have their PME flag set. The assumption is that
1825 	 * we'll wake up often enough anyway that this won't be a huge
1826 	 * hit, and the power savings from the devices will still be a
1827 	 * win.
1828 	 *
1829 	 * Although PCIe uses in-band PME message instead of PME# line
1830 	 * to report PME, PME does not work for some PCIe devices in
1831 	 * reality.  For example, there are devices that set their PME
1832 	 * status bits, but don't really bother to send a PME message;
1833 	 * there are PCI Express Root Ports that don't bother to
1834 	 * trigger interrupts when they receive PME messages from the
1835 	 * devices below.  So PME poll is used for PCIe devices too.
1836 	 */
1837 
1838 	if (dev->pme_poll) {
1839 		struct pci_pme_device *pme_dev;
1840 		if (enable) {
1841 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1842 					  GFP_KERNEL);
1843 			if (!pme_dev) {
1844 				dev_warn(&dev->dev, "can't enable PME#\n");
1845 				return;
1846 			}
1847 			pme_dev->dev = dev;
1848 			mutex_lock(&pci_pme_list_mutex);
1849 			list_add(&pme_dev->list, &pci_pme_list);
1850 			if (list_is_singular(&pci_pme_list))
1851 				queue_delayed_work(system_freezable_wq,
1852 						   &pci_pme_work,
1853 						   msecs_to_jiffies(PME_TIMEOUT));
1854 			mutex_unlock(&pci_pme_list_mutex);
1855 		} else {
1856 			mutex_lock(&pci_pme_list_mutex);
1857 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1858 				if (pme_dev->dev == dev) {
1859 					list_del(&pme_dev->list);
1860 					kfree(pme_dev);
1861 					break;
1862 				}
1863 			}
1864 			mutex_unlock(&pci_pme_list_mutex);
1865 		}
1866 	}
1867 
1868 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1869 }
1870 EXPORT_SYMBOL(pci_pme_active);
1871 
1872 /**
1873  * __pci_enable_wake - enable PCI device as wakeup event source
1874  * @dev: PCI device affected
1875  * @state: PCI state from which device will issue wakeup events
1876  * @runtime: True if the events are to be generated at run time
1877  * @enable: True to enable event generation; false to disable
1878  *
1879  * This enables the device as a wakeup event source, or disables it.
1880  * When such events involves platform-specific hooks, those hooks are
1881  * called automatically by this routine.
1882  *
1883  * Devices with legacy power management (no standard PCI PM capabilities)
1884  * always require such platform hooks.
1885  *
1886  * RETURN VALUE:
1887  * 0 is returned on success
1888  * -EINVAL is returned if device is not supposed to wake up the system
1889  * Error code depending on the platform is returned if both the platform and
1890  * the native mechanism fail to enable the generation of wake-up events
1891  */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool runtime,bool enable)1892 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1893 		      bool runtime, bool enable)
1894 {
1895 	int ret = 0;
1896 
1897 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1898 		return -EINVAL;
1899 
1900 	/* Don't do the same thing twice in a row for one device. */
1901 	if (!!enable == !!dev->wakeup_prepared)
1902 		return 0;
1903 
1904 	/*
1905 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1906 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1907 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1908 	 */
1909 
1910 	if (enable) {
1911 		int error;
1912 
1913 		if (pci_pme_capable(dev, state))
1914 			pci_pme_active(dev, true);
1915 		else
1916 			ret = 1;
1917 		error = runtime ? platform_pci_run_wake(dev, true) :
1918 					platform_pci_sleep_wake(dev, true);
1919 		if (ret)
1920 			ret = error;
1921 		if (!ret)
1922 			dev->wakeup_prepared = true;
1923 	} else {
1924 		if (runtime)
1925 			platform_pci_run_wake(dev, false);
1926 		else
1927 			platform_pci_sleep_wake(dev, false);
1928 		pci_pme_active(dev, false);
1929 		dev->wakeup_prepared = false;
1930 	}
1931 
1932 	return ret;
1933 }
1934 EXPORT_SYMBOL(__pci_enable_wake);
1935 
1936 /**
1937  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1938  * @dev: PCI device to prepare
1939  * @enable: True to enable wake-up event generation; false to disable
1940  *
1941  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1942  * and this function allows them to set that up cleanly - pci_enable_wake()
1943  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1944  * ordering constraints.
1945  *
1946  * This function only returns error code if the device is not capable of
1947  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1948  * enable wake-up power for it.
1949  */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1950 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1951 {
1952 	return pci_pme_capable(dev, PCI_D3cold) ?
1953 			pci_enable_wake(dev, PCI_D3cold, enable) :
1954 			pci_enable_wake(dev, PCI_D3hot, enable);
1955 }
1956 EXPORT_SYMBOL(pci_wake_from_d3);
1957 
1958 /**
1959  * pci_target_state - find an appropriate low power state for a given PCI dev
1960  * @dev: PCI device
1961  *
1962  * Use underlying platform code to find a supported low power state for @dev.
1963  * If the platform can't manage @dev, return the deepest state from which it
1964  * can generate wake events, based on any available PME info.
1965  */
pci_target_state(struct pci_dev * dev)1966 static pci_power_t pci_target_state(struct pci_dev *dev)
1967 {
1968 	pci_power_t target_state = PCI_D3hot;
1969 
1970 	if (platform_pci_power_manageable(dev)) {
1971 		/*
1972 		 * Call the platform to choose the target state of the device
1973 		 * and enable wake-up from this state if supported.
1974 		 */
1975 		pci_power_t state = platform_pci_choose_state(dev);
1976 
1977 		switch (state) {
1978 		case PCI_POWER_ERROR:
1979 		case PCI_UNKNOWN:
1980 			break;
1981 		case PCI_D1:
1982 		case PCI_D2:
1983 			if (pci_no_d1d2(dev))
1984 				break;
1985 		default:
1986 			target_state = state;
1987 		}
1988 
1989 		return target_state;
1990 	}
1991 
1992 	if (!dev->pm_cap)
1993 		target_state = PCI_D0;
1994 
1995 	/*
1996 	 * If the device is in D3cold even though it's not power-manageable by
1997 	 * the platform, it may have been powered down by non-standard means.
1998 	 * Best to let it slumber.
1999 	 */
2000 	if (dev->current_state == PCI_D3cold)
2001 		target_state = PCI_D3cold;
2002 
2003 	if (device_may_wakeup(&dev->dev)) {
2004 		/*
2005 		 * Find the deepest state from which the device can generate
2006 		 * wake-up events, make it the target state and enable device
2007 		 * to generate PME#.
2008 		 */
2009 		if (dev->pme_support) {
2010 			while (target_state
2011 			      && !(dev->pme_support & (1 << target_state)))
2012 				target_state--;
2013 		}
2014 	}
2015 
2016 	return target_state;
2017 }
2018 
2019 /**
2020  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2021  * @dev: Device to handle.
2022  *
2023  * Choose the power state appropriate for the device depending on whether
2024  * it can wake up the system and/or is power manageable by the platform
2025  * (PCI_D3hot is the default) and put the device into that state.
2026  */
pci_prepare_to_sleep(struct pci_dev * dev)2027 int pci_prepare_to_sleep(struct pci_dev *dev)
2028 {
2029 	pci_power_t target_state = pci_target_state(dev);
2030 	int error;
2031 
2032 	if (target_state == PCI_POWER_ERROR)
2033 		return -EIO;
2034 
2035 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
2036 
2037 	error = pci_set_power_state(dev, target_state);
2038 
2039 	if (error)
2040 		pci_enable_wake(dev, target_state, false);
2041 
2042 	return error;
2043 }
2044 EXPORT_SYMBOL(pci_prepare_to_sleep);
2045 
2046 /**
2047  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2048  * @dev: Device to handle.
2049  *
2050  * Disable device's system wake-up capability and put it into D0.
2051  */
pci_back_from_sleep(struct pci_dev * dev)2052 int pci_back_from_sleep(struct pci_dev *dev)
2053 {
2054 	pci_enable_wake(dev, PCI_D0, false);
2055 	return pci_set_power_state(dev, PCI_D0);
2056 }
2057 EXPORT_SYMBOL(pci_back_from_sleep);
2058 
2059 /**
2060  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2061  * @dev: PCI device being suspended.
2062  *
2063  * Prepare @dev to generate wake-up events at run time and put it into a low
2064  * power state.
2065  */
pci_finish_runtime_suspend(struct pci_dev * dev)2066 int pci_finish_runtime_suspend(struct pci_dev *dev)
2067 {
2068 	pci_power_t target_state = pci_target_state(dev);
2069 	int error;
2070 
2071 	if (target_state == PCI_POWER_ERROR)
2072 		return -EIO;
2073 
2074 	dev->runtime_d3cold = target_state == PCI_D3cold;
2075 
2076 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2077 
2078 	error = pci_set_power_state(dev, target_state);
2079 
2080 	if (error) {
2081 		__pci_enable_wake(dev, target_state, true, false);
2082 		dev->runtime_d3cold = false;
2083 	}
2084 
2085 	return error;
2086 }
2087 
2088 /**
2089  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2090  * @dev: Device to check.
2091  *
2092  * Return true if the device itself is capable of generating wake-up events
2093  * (through the platform or using the native PCIe PME) or if the device supports
2094  * PME and one of its upstream bridges can generate wake-up events.
2095  */
pci_dev_run_wake(struct pci_dev * dev)2096 bool pci_dev_run_wake(struct pci_dev *dev)
2097 {
2098 	struct pci_bus *bus = dev->bus;
2099 
2100 	if (device_run_wake(&dev->dev))
2101 		return true;
2102 
2103 	if (!dev->pme_support)
2104 		return false;
2105 
2106 	/* PME-capable in principle, but not from the intended sleep state */
2107 	if (!pci_pme_capable(dev, pci_target_state(dev)))
2108 		return false;
2109 
2110 	while (bus->parent) {
2111 		struct pci_dev *bridge = bus->self;
2112 
2113 		if (device_run_wake(&bridge->dev))
2114 			return true;
2115 
2116 		bus = bus->parent;
2117 	}
2118 
2119 	/* We have reached the root bus. */
2120 	if (bus->bridge)
2121 		return device_run_wake(bus->bridge);
2122 
2123 	return false;
2124 }
2125 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2126 
2127 /**
2128  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2129  * @pci_dev: Device to check.
2130  *
2131  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2132  * reconfigured due to wakeup settings difference between system and runtime
2133  * suspend and the current power state of it is suitable for the upcoming
2134  * (system) transition.
2135  *
2136  * If the device is not configured for system wakeup, disable PME for it before
2137  * returning 'true' to prevent it from waking up the system unnecessarily.
2138  */
pci_dev_keep_suspended(struct pci_dev * pci_dev)2139 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2140 {
2141 	struct device *dev = &pci_dev->dev;
2142 
2143 	if (!pm_runtime_suspended(dev)
2144 	    || pci_target_state(pci_dev) != pci_dev->current_state
2145 	    || platform_pci_need_resume(pci_dev)
2146 	    || (pci_dev->dev_flags & PCI_DEV_FLAGS_NEEDS_RESUME))
2147 		return false;
2148 
2149 	/*
2150 	 * At this point the device is good to go unless it's been configured
2151 	 * to generate PME at the runtime suspend time, but it is not supposed
2152 	 * to wake up the system.  In that case, simply disable PME for it
2153 	 * (it will have to be re-enabled on exit from system resume).
2154 	 *
2155 	 * If the device's power state is D3cold and the platform check above
2156 	 * hasn't triggered, the device's configuration is suitable and we don't
2157 	 * need to manipulate it at all.
2158 	 */
2159 	spin_lock_irq(&dev->power.lock);
2160 
2161 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2162 	    !device_may_wakeup(dev))
2163 		__pci_pme_active(pci_dev, false);
2164 
2165 	spin_unlock_irq(&dev->power.lock);
2166 	return true;
2167 }
2168 
2169 /**
2170  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2171  * @pci_dev: Device to handle.
2172  *
2173  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2174  * it might have been disabled during the prepare phase of system suspend if
2175  * the device was not configured for system wakeup.
2176  */
pci_dev_complete_resume(struct pci_dev * pci_dev)2177 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2178 {
2179 	struct device *dev = &pci_dev->dev;
2180 
2181 	if (!pci_dev_run_wake(pci_dev))
2182 		return;
2183 
2184 	spin_lock_irq(&dev->power.lock);
2185 
2186 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2187 		__pci_pme_active(pci_dev, true);
2188 
2189 	spin_unlock_irq(&dev->power.lock);
2190 }
2191 
pci_config_pm_runtime_get(struct pci_dev * pdev)2192 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2193 {
2194 	struct device *dev = &pdev->dev;
2195 	struct device *parent = dev->parent;
2196 
2197 	if (parent)
2198 		pm_runtime_get_sync(parent);
2199 	pm_runtime_get_noresume(dev);
2200 	/*
2201 	 * pdev->current_state is set to PCI_D3cold during suspending,
2202 	 * so wait until suspending completes
2203 	 */
2204 	pm_runtime_barrier(dev);
2205 	/*
2206 	 * Only need to resume devices in D3cold, because config
2207 	 * registers are still accessible for devices suspended but
2208 	 * not in D3cold.
2209 	 */
2210 	if (pdev->current_state == PCI_D3cold)
2211 		pm_runtime_resume(dev);
2212 }
2213 
pci_config_pm_runtime_put(struct pci_dev * pdev)2214 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2215 {
2216 	struct device *dev = &pdev->dev;
2217 	struct device *parent = dev->parent;
2218 
2219 	pm_runtime_put(dev);
2220 	if (parent)
2221 		pm_runtime_put_sync(parent);
2222 }
2223 
2224 /**
2225  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2226  * @bridge: Bridge to check
2227  *
2228  * This function checks if it is possible to move the bridge to D3.
2229  * Currently we only allow D3 for recent enough PCIe ports.
2230  */
pci_bridge_d3_possible(struct pci_dev * bridge)2231 static bool pci_bridge_d3_possible(struct pci_dev *bridge)
2232 {
2233 	unsigned int year;
2234 
2235 	if (!pci_is_pcie(bridge))
2236 		return false;
2237 
2238 	switch (pci_pcie_type(bridge)) {
2239 	case PCI_EXP_TYPE_ROOT_PORT:
2240 	case PCI_EXP_TYPE_UPSTREAM:
2241 	case PCI_EXP_TYPE_DOWNSTREAM:
2242 		if (pci_bridge_d3_disable)
2243 			return false;
2244 		if (pci_bridge_d3_force)
2245 			return true;
2246 
2247 		/*
2248 		 * It should be safe to put PCIe ports from 2015 or newer
2249 		 * to D3.
2250 		 */
2251 		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2252 		    year >= 2015) {
2253 			return true;
2254 		}
2255 		break;
2256 	}
2257 
2258 	return false;
2259 }
2260 
pci_dev_check_d3cold(struct pci_dev * dev,void * data)2261 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2262 {
2263 	bool *d3cold_ok = data;
2264 	bool no_d3cold;
2265 
2266 	/*
2267 	 * The device needs to be allowed to go D3cold and if it is wake
2268 	 * capable to do so from D3cold.
2269 	 */
2270 	no_d3cold = dev->no_d3cold || !dev->d3cold_allowed ||
2271 		(device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) ||
2272 		!pci_power_manageable(dev);
2273 
2274 	*d3cold_ok = !no_d3cold;
2275 
2276 	return no_d3cold;
2277 }
2278 
2279 /*
2280  * pci_bridge_d3_update - Update bridge D3 capabilities
2281  * @dev: PCI device which is changed
2282  * @remove: Is the device being removed
2283  *
2284  * Update upstream bridge PM capabilities accordingly depending on if the
2285  * device PM configuration was changed or the device is being removed.  The
2286  * change is also propagated upstream.
2287  */
pci_bridge_d3_update(struct pci_dev * dev,bool remove)2288 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove)
2289 {
2290 	struct pci_dev *bridge;
2291 	bool d3cold_ok = true;
2292 
2293 	bridge = pci_upstream_bridge(dev);
2294 	if (!bridge || !pci_bridge_d3_possible(bridge))
2295 		return;
2296 
2297 	pci_dev_get(bridge);
2298 	/*
2299 	 * If the device is removed we do not care about its D3cold
2300 	 * capabilities.
2301 	 */
2302 	if (!remove)
2303 		pci_dev_check_d3cold(dev, &d3cold_ok);
2304 
2305 	if (d3cold_ok) {
2306 		/*
2307 		 * We need to go through all children to find out if all of
2308 		 * them can still go to D3cold.
2309 		 */
2310 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2311 			     &d3cold_ok);
2312 	}
2313 
2314 	if (bridge->bridge_d3 != d3cold_ok) {
2315 		bridge->bridge_d3 = d3cold_ok;
2316 		/* Propagate change to upstream bridges */
2317 		pci_bridge_d3_update(bridge, false);
2318 	}
2319 
2320 	pci_dev_put(bridge);
2321 }
2322 
2323 /**
2324  * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2325  * @dev: PCI device that was changed
2326  *
2327  * If a device is added or its PM configuration, such as is it allowed to
2328  * enter D3cold, is changed this function updates upstream bridge PM
2329  * capabilities accordingly.
2330  */
pci_bridge_d3_device_changed(struct pci_dev * dev)2331 void pci_bridge_d3_device_changed(struct pci_dev *dev)
2332 {
2333 	pci_bridge_d3_update(dev, false);
2334 }
2335 
2336 /**
2337  * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2338  * @dev: PCI device being removed
2339  *
2340  * Function updates upstream bridge PM capabilities based on other devices
2341  * still left on the bus.
2342  */
pci_bridge_d3_device_removed(struct pci_dev * dev)2343 void pci_bridge_d3_device_removed(struct pci_dev *dev)
2344 {
2345 	pci_bridge_d3_update(dev, true);
2346 }
2347 
2348 /**
2349  * pci_d3cold_enable - Enable D3cold for device
2350  * @dev: PCI device to handle
2351  *
2352  * This function can be used in drivers to enable D3cold from the device
2353  * they handle.  It also updates upstream PCI bridge PM capabilities
2354  * accordingly.
2355  */
pci_d3cold_enable(struct pci_dev * dev)2356 void pci_d3cold_enable(struct pci_dev *dev)
2357 {
2358 	if (dev->no_d3cold) {
2359 		dev->no_d3cold = false;
2360 		pci_bridge_d3_device_changed(dev);
2361 	}
2362 }
2363 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2364 
2365 /**
2366  * pci_d3cold_disable - Disable D3cold for device
2367  * @dev: PCI device to handle
2368  *
2369  * This function can be used in drivers to disable D3cold from the device
2370  * they handle.  It also updates upstream PCI bridge PM capabilities
2371  * accordingly.
2372  */
pci_d3cold_disable(struct pci_dev * dev)2373 void pci_d3cold_disable(struct pci_dev *dev)
2374 {
2375 	if (!dev->no_d3cold) {
2376 		dev->no_d3cold = true;
2377 		pci_bridge_d3_device_changed(dev);
2378 	}
2379 }
2380 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2381 
2382 /**
2383  * pci_pm_init - Initialize PM functions of given PCI device
2384  * @dev: PCI device to handle.
2385  */
pci_pm_init(struct pci_dev * dev)2386 void pci_pm_init(struct pci_dev *dev)
2387 {
2388 	int pm;
2389 	u16 pmc;
2390 
2391 	pm_runtime_forbid(&dev->dev);
2392 	pm_runtime_set_active(&dev->dev);
2393 	pm_runtime_enable(&dev->dev);
2394 	device_enable_async_suspend(&dev->dev);
2395 	dev->wakeup_prepared = false;
2396 
2397 	dev->pm_cap = 0;
2398 	dev->pme_support = 0;
2399 
2400 	/* find PCI PM capability in list */
2401 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2402 	if (!pm)
2403 		return;
2404 	/* Check device's ability to generate PME# */
2405 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2406 
2407 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2408 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2409 			pmc & PCI_PM_CAP_VER_MASK);
2410 		return;
2411 	}
2412 
2413 	dev->pm_cap = pm;
2414 	dev->d3_delay = PCI_PM_D3_WAIT;
2415 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2416 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2417 	dev->d3cold_allowed = true;
2418 
2419 	dev->d1_support = false;
2420 	dev->d2_support = false;
2421 	if (!pci_no_d1d2(dev)) {
2422 		if (pmc & PCI_PM_CAP_D1)
2423 			dev->d1_support = true;
2424 		if (pmc & PCI_PM_CAP_D2)
2425 			dev->d2_support = true;
2426 
2427 		if (dev->d1_support || dev->d2_support)
2428 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2429 				   dev->d1_support ? " D1" : "",
2430 				   dev->d2_support ? " D2" : "");
2431 	}
2432 
2433 	pmc &= PCI_PM_CAP_PME_MASK;
2434 	if (pmc) {
2435 		dev_printk(KERN_DEBUG, &dev->dev,
2436 			 "PME# supported from%s%s%s%s%s\n",
2437 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2438 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2439 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2440 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2441 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2442 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2443 		dev->pme_poll = true;
2444 		/*
2445 		 * Make device's PM flags reflect the wake-up capability, but
2446 		 * let the user space enable it to wake up the system as needed.
2447 		 */
2448 		device_set_wakeup_capable(&dev->dev, true);
2449 		/* Disable the PME# generation functionality */
2450 		pci_pme_active(dev, false);
2451 	}
2452 }
2453 
pci_ea_flags(struct pci_dev * dev,u8 prop)2454 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2455 {
2456 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2457 
2458 	switch (prop) {
2459 	case PCI_EA_P_MEM:
2460 	case PCI_EA_P_VF_MEM:
2461 		flags |= IORESOURCE_MEM;
2462 		break;
2463 	case PCI_EA_P_MEM_PREFETCH:
2464 	case PCI_EA_P_VF_MEM_PREFETCH:
2465 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2466 		break;
2467 	case PCI_EA_P_IO:
2468 		flags |= IORESOURCE_IO;
2469 		break;
2470 	default:
2471 		return 0;
2472 	}
2473 
2474 	return flags;
2475 }
2476 
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)2477 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2478 					    u8 prop)
2479 {
2480 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2481 		return &dev->resource[bei];
2482 #ifdef CONFIG_PCI_IOV
2483 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2484 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2485 		return &dev->resource[PCI_IOV_RESOURCES +
2486 				      bei - PCI_EA_BEI_VF_BAR0];
2487 #endif
2488 	else if (bei == PCI_EA_BEI_ROM)
2489 		return &dev->resource[PCI_ROM_RESOURCE];
2490 	else
2491 		return NULL;
2492 }
2493 
2494 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)2495 static int pci_ea_read(struct pci_dev *dev, int offset)
2496 {
2497 	struct resource *res;
2498 	int ent_size, ent_offset = offset;
2499 	resource_size_t start, end;
2500 	unsigned long flags;
2501 	u32 dw0, bei, base, max_offset;
2502 	u8 prop;
2503 	bool support_64 = (sizeof(resource_size_t) >= 8);
2504 
2505 	pci_read_config_dword(dev, ent_offset, &dw0);
2506 	ent_offset += 4;
2507 
2508 	/* Entry size field indicates DWORDs after 1st */
2509 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2510 
2511 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2512 		goto out;
2513 
2514 	bei = (dw0 & PCI_EA_BEI) >> 4;
2515 	prop = (dw0 & PCI_EA_PP) >> 8;
2516 
2517 	/*
2518 	 * If the Property is in the reserved range, try the Secondary
2519 	 * Property instead.
2520 	 */
2521 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2522 		prop = (dw0 & PCI_EA_SP) >> 16;
2523 	if (prop > PCI_EA_P_BRIDGE_IO)
2524 		goto out;
2525 
2526 	res = pci_ea_get_resource(dev, bei, prop);
2527 	if (!res) {
2528 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2529 		goto out;
2530 	}
2531 
2532 	flags = pci_ea_flags(dev, prop);
2533 	if (!flags) {
2534 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2535 		goto out;
2536 	}
2537 
2538 	/* Read Base */
2539 	pci_read_config_dword(dev, ent_offset, &base);
2540 	start = (base & PCI_EA_FIELD_MASK);
2541 	ent_offset += 4;
2542 
2543 	/* Read MaxOffset */
2544 	pci_read_config_dword(dev, ent_offset, &max_offset);
2545 	ent_offset += 4;
2546 
2547 	/* Read Base MSBs (if 64-bit entry) */
2548 	if (base & PCI_EA_IS_64) {
2549 		u32 base_upper;
2550 
2551 		pci_read_config_dword(dev, ent_offset, &base_upper);
2552 		ent_offset += 4;
2553 
2554 		flags |= IORESOURCE_MEM_64;
2555 
2556 		/* entry starts above 32-bit boundary, can't use */
2557 		if (!support_64 && base_upper)
2558 			goto out;
2559 
2560 		if (support_64)
2561 			start |= ((u64)base_upper << 32);
2562 	}
2563 
2564 	end = start + (max_offset | 0x03);
2565 
2566 	/* Read MaxOffset MSBs (if 64-bit entry) */
2567 	if (max_offset & PCI_EA_IS_64) {
2568 		u32 max_offset_upper;
2569 
2570 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2571 		ent_offset += 4;
2572 
2573 		flags |= IORESOURCE_MEM_64;
2574 
2575 		/* entry too big, can't use */
2576 		if (!support_64 && max_offset_upper)
2577 			goto out;
2578 
2579 		if (support_64)
2580 			end += ((u64)max_offset_upper << 32);
2581 	}
2582 
2583 	if (end < start) {
2584 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2585 		goto out;
2586 	}
2587 
2588 	if (ent_size != ent_offset - offset) {
2589 		dev_err(&dev->dev,
2590 			"EA Entry Size (%d) does not match length read (%d)\n",
2591 			ent_size, ent_offset - offset);
2592 		goto out;
2593 	}
2594 
2595 	res->name = pci_name(dev);
2596 	res->start = start;
2597 	res->end = end;
2598 	res->flags = flags;
2599 
2600 	if (bei <= PCI_EA_BEI_BAR5)
2601 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2602 			   bei, res, prop);
2603 	else if (bei == PCI_EA_BEI_ROM)
2604 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2605 			   res, prop);
2606 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2607 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2608 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2609 	else
2610 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2611 			   bei, res, prop);
2612 
2613 out:
2614 	return offset + ent_size;
2615 }
2616 
2617 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)2618 void pci_ea_init(struct pci_dev *dev)
2619 {
2620 	int ea;
2621 	u8 num_ent;
2622 	int offset;
2623 	int i;
2624 
2625 	/* find PCI EA capability in list */
2626 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2627 	if (!ea)
2628 		return;
2629 
2630 	/* determine the number of entries */
2631 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2632 					&num_ent);
2633 	num_ent &= PCI_EA_NUM_ENT_MASK;
2634 
2635 	offset = ea + PCI_EA_FIRST_ENT;
2636 
2637 	/* Skip DWORD 2 for type 1 functions */
2638 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2639 		offset += 4;
2640 
2641 	/* parse each EA entry */
2642 	for (i = 0; i < num_ent; ++i)
2643 		offset = pci_ea_read(dev, offset);
2644 }
2645 
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)2646 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2647 	struct pci_cap_saved_state *new_cap)
2648 {
2649 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2650 }
2651 
2652 /**
2653  * _pci_add_cap_save_buffer - allocate buffer for saving given
2654  *                            capability registers
2655  * @dev: the PCI device
2656  * @cap: the capability to allocate the buffer for
2657  * @extended: Standard or Extended capability ID
2658  * @size: requested size of the buffer
2659  */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)2660 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2661 				    bool extended, unsigned int size)
2662 {
2663 	int pos;
2664 	struct pci_cap_saved_state *save_state;
2665 
2666 	if (extended)
2667 		pos = pci_find_ext_capability(dev, cap);
2668 	else
2669 		pos = pci_find_capability(dev, cap);
2670 
2671 	if (!pos)
2672 		return 0;
2673 
2674 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2675 	if (!save_state)
2676 		return -ENOMEM;
2677 
2678 	save_state->cap.cap_nr = cap;
2679 	save_state->cap.cap_extended = extended;
2680 	save_state->cap.size = size;
2681 	pci_add_saved_cap(dev, save_state);
2682 
2683 	return 0;
2684 }
2685 
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)2686 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2687 {
2688 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2689 }
2690 
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)2691 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2692 {
2693 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2694 }
2695 
2696 /**
2697  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2698  * @dev: the PCI device
2699  */
pci_allocate_cap_save_buffers(struct pci_dev * dev)2700 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2701 {
2702 	int error;
2703 
2704 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2705 					PCI_EXP_SAVE_REGS * sizeof(u16));
2706 	if (error)
2707 		dev_err(&dev->dev,
2708 			"unable to preallocate PCI Express save buffer\n");
2709 
2710 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2711 	if (error)
2712 		dev_err(&dev->dev,
2713 			"unable to preallocate PCI-X save buffer\n");
2714 
2715 	pci_allocate_vc_save_buffers(dev);
2716 }
2717 
pci_free_cap_save_buffers(struct pci_dev * dev)2718 void pci_free_cap_save_buffers(struct pci_dev *dev)
2719 {
2720 	struct pci_cap_saved_state *tmp;
2721 	struct hlist_node *n;
2722 
2723 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2724 		kfree(tmp);
2725 }
2726 
2727 /**
2728  * pci_configure_ari - enable or disable ARI forwarding
2729  * @dev: the PCI device
2730  *
2731  * If @dev and its upstream bridge both support ARI, enable ARI in the
2732  * bridge.  Otherwise, disable ARI in the bridge.
2733  */
pci_configure_ari(struct pci_dev * dev)2734 void pci_configure_ari(struct pci_dev *dev)
2735 {
2736 	u32 cap;
2737 	struct pci_dev *bridge;
2738 
2739 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2740 		return;
2741 
2742 	bridge = dev->bus->self;
2743 	if (!bridge)
2744 		return;
2745 
2746 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2747 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2748 		return;
2749 
2750 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2751 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2752 					 PCI_EXP_DEVCTL2_ARI);
2753 		bridge->ari_enabled = 1;
2754 	} else {
2755 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2756 					   PCI_EXP_DEVCTL2_ARI);
2757 		bridge->ari_enabled = 0;
2758 	}
2759 }
2760 
2761 static int pci_acs_enable;
2762 
2763 /**
2764  * pci_request_acs - ask for ACS to be enabled if supported
2765  */
pci_request_acs(void)2766 void pci_request_acs(void)
2767 {
2768 	pci_acs_enable = 1;
2769 }
2770 
2771 /**
2772  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2773  * @dev: the PCI device
2774  */
pci_std_enable_acs(struct pci_dev * dev)2775 static void pci_std_enable_acs(struct pci_dev *dev)
2776 {
2777 	int pos;
2778 	u16 cap;
2779 	u16 ctrl;
2780 
2781 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2782 	if (!pos)
2783 		return;
2784 
2785 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2786 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2787 
2788 	/* Source Validation */
2789 	ctrl |= (cap & PCI_ACS_SV);
2790 
2791 	/* P2P Request Redirect */
2792 	ctrl |= (cap & PCI_ACS_RR);
2793 
2794 	/* P2P Completion Redirect */
2795 	ctrl |= (cap & PCI_ACS_CR);
2796 
2797 	/* Upstream Forwarding */
2798 	ctrl |= (cap & PCI_ACS_UF);
2799 
2800 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2801 }
2802 
2803 /**
2804  * pci_enable_acs - enable ACS if hardware support it
2805  * @dev: the PCI device
2806  */
pci_enable_acs(struct pci_dev * dev)2807 void pci_enable_acs(struct pci_dev *dev)
2808 {
2809 	if (!pci_acs_enable)
2810 		return;
2811 
2812 	if (!pci_dev_specific_enable_acs(dev))
2813 		return;
2814 
2815 	pci_std_enable_acs(dev);
2816 }
2817 
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)2818 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2819 {
2820 	int pos;
2821 	u16 cap, ctrl;
2822 
2823 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2824 	if (!pos)
2825 		return false;
2826 
2827 	/*
2828 	 * Except for egress control, capabilities are either required
2829 	 * or only required if controllable.  Features missing from the
2830 	 * capability field can therefore be assumed as hard-wired enabled.
2831 	 */
2832 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2833 	acs_flags &= (cap | PCI_ACS_EC);
2834 
2835 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2836 	return (ctrl & acs_flags) == acs_flags;
2837 }
2838 
2839 /**
2840  * pci_acs_enabled - test ACS against required flags for a given device
2841  * @pdev: device to test
2842  * @acs_flags: required PCI ACS flags
2843  *
2844  * Return true if the device supports the provided flags.  Automatically
2845  * filters out flags that are not implemented on multifunction devices.
2846  *
2847  * Note that this interface checks the effective ACS capabilities of the
2848  * device rather than the actual capabilities.  For instance, most single
2849  * function endpoints are not required to support ACS because they have no
2850  * opportunity for peer-to-peer access.  We therefore return 'true'
2851  * regardless of whether the device exposes an ACS capability.  This makes
2852  * it much easier for callers of this function to ignore the actual type
2853  * or topology of the device when testing ACS support.
2854  */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)2855 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2856 {
2857 	int ret;
2858 
2859 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2860 	if (ret >= 0)
2861 		return ret > 0;
2862 
2863 	/*
2864 	 * Conventional PCI and PCI-X devices never support ACS, either
2865 	 * effectively or actually.  The shared bus topology implies that
2866 	 * any device on the bus can receive or snoop DMA.
2867 	 */
2868 	if (!pci_is_pcie(pdev))
2869 		return false;
2870 
2871 	switch (pci_pcie_type(pdev)) {
2872 	/*
2873 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2874 	 * but since their primary interface is PCI/X, we conservatively
2875 	 * handle them as we would a non-PCIe device.
2876 	 */
2877 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2878 	/*
2879 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2880 	 * applicable... must never implement an ACS Extended Capability...".
2881 	 * This seems arbitrary, but we take a conservative interpretation
2882 	 * of this statement.
2883 	 */
2884 	case PCI_EXP_TYPE_PCI_BRIDGE:
2885 	case PCI_EXP_TYPE_RC_EC:
2886 		return false;
2887 	/*
2888 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2889 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2890 	 * regardless of whether they are single- or multi-function devices.
2891 	 */
2892 	case PCI_EXP_TYPE_DOWNSTREAM:
2893 	case PCI_EXP_TYPE_ROOT_PORT:
2894 		return pci_acs_flags_enabled(pdev, acs_flags);
2895 	/*
2896 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2897 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2898 	 * capabilities, but only when they are part of a multifunction
2899 	 * device.  The footnote for section 6.12 indicates the specific
2900 	 * PCIe types included here.
2901 	 */
2902 	case PCI_EXP_TYPE_ENDPOINT:
2903 	case PCI_EXP_TYPE_UPSTREAM:
2904 	case PCI_EXP_TYPE_LEG_END:
2905 	case PCI_EXP_TYPE_RC_END:
2906 		if (!pdev->multifunction)
2907 			break;
2908 
2909 		return pci_acs_flags_enabled(pdev, acs_flags);
2910 	}
2911 
2912 	/*
2913 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2914 	 * to single function devices with the exception of downstream ports.
2915 	 */
2916 	return true;
2917 }
2918 
2919 /**
2920  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2921  * @start: starting downstream device
2922  * @end: ending upstream device or NULL to search to the root bus
2923  * @acs_flags: required flags
2924  *
2925  * Walk up a device tree from start to end testing PCI ACS support.  If
2926  * any step along the way does not support the required flags, return false.
2927  */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)2928 bool pci_acs_path_enabled(struct pci_dev *start,
2929 			  struct pci_dev *end, u16 acs_flags)
2930 {
2931 	struct pci_dev *pdev, *parent = start;
2932 
2933 	do {
2934 		pdev = parent;
2935 
2936 		if (!pci_acs_enabled(pdev, acs_flags))
2937 			return false;
2938 
2939 		if (pci_is_root_bus(pdev->bus))
2940 			return (end == NULL);
2941 
2942 		parent = pdev->bus->self;
2943 	} while (pdev != end);
2944 
2945 	return true;
2946 }
2947 
2948 /**
2949  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2950  * @dev: the PCI device
2951  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2952  *
2953  * Perform INTx swizzling for a device behind one level of bridge.  This is
2954  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2955  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2956  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2957  * the PCI Express Base Specification, Revision 2.1)
2958  */
pci_swizzle_interrupt_pin(const struct pci_dev * dev,u8 pin)2959 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2960 {
2961 	int slot;
2962 
2963 	if (pci_ari_enabled(dev->bus))
2964 		slot = 0;
2965 	else
2966 		slot = PCI_SLOT(dev->devfn);
2967 
2968 	return (((pin - 1) + slot) % 4) + 1;
2969 }
2970 
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)2971 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2972 {
2973 	u8 pin;
2974 
2975 	pin = dev->pin;
2976 	if (!pin)
2977 		return -1;
2978 
2979 	while (!pci_is_root_bus(dev->bus)) {
2980 		pin = pci_swizzle_interrupt_pin(dev, pin);
2981 		dev = dev->bus->self;
2982 	}
2983 	*bridge = dev;
2984 	return pin;
2985 }
2986 
2987 /**
2988  * pci_common_swizzle - swizzle INTx all the way to root bridge
2989  * @dev: the PCI device
2990  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2991  *
2992  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2993  * bridges all the way up to a PCI root bus.
2994  */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)2995 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2996 {
2997 	u8 pin = *pinp;
2998 
2999 	while (!pci_is_root_bus(dev->bus)) {
3000 		pin = pci_swizzle_interrupt_pin(dev, pin);
3001 		dev = dev->bus->self;
3002 	}
3003 	*pinp = pin;
3004 	return PCI_SLOT(dev->devfn);
3005 }
3006 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3007 
3008 /**
3009  *	pci_release_region - Release a PCI bar
3010  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
3011  *	@bar: BAR to release
3012  *
3013  *	Releases the PCI I/O and memory resources previously reserved by a
3014  *	successful call to pci_request_region.  Call this function only
3015  *	after all use of the PCI regions has ceased.
3016  */
pci_release_region(struct pci_dev * pdev,int bar)3017 void pci_release_region(struct pci_dev *pdev, int bar)
3018 {
3019 	struct pci_devres *dr;
3020 
3021 	if (pci_resource_len(pdev, bar) == 0)
3022 		return;
3023 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3024 		release_region(pci_resource_start(pdev, bar),
3025 				pci_resource_len(pdev, bar));
3026 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3027 		release_mem_region(pci_resource_start(pdev, bar),
3028 				pci_resource_len(pdev, bar));
3029 
3030 	dr = find_pci_dr(pdev);
3031 	if (dr)
3032 		dr->region_mask &= ~(1 << bar);
3033 }
3034 EXPORT_SYMBOL(pci_release_region);
3035 
3036 /**
3037  *	__pci_request_region - Reserved PCI I/O and memory resource
3038  *	@pdev: PCI device whose resources are to be reserved
3039  *	@bar: BAR to be reserved
3040  *	@res_name: Name to be associated with resource.
3041  *	@exclusive: whether the region access is exclusive or not
3042  *
3043  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3044  *	being reserved by owner @res_name.  Do not access any
3045  *	address inside the PCI regions unless this call returns
3046  *	successfully.
3047  *
3048  *	If @exclusive is set, then the region is marked so that userspace
3049  *	is explicitly not allowed to map the resource via /dev/mem or
3050  *	sysfs MMIO access.
3051  *
3052  *	Returns 0 on success, or %EBUSY on error.  A warning
3053  *	message is also printed on failure.
3054  */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)3055 static int __pci_request_region(struct pci_dev *pdev, int bar,
3056 				const char *res_name, int exclusive)
3057 {
3058 	struct pci_devres *dr;
3059 
3060 	if (pci_resource_len(pdev, bar) == 0)
3061 		return 0;
3062 
3063 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3064 		if (!request_region(pci_resource_start(pdev, bar),
3065 			    pci_resource_len(pdev, bar), res_name))
3066 			goto err_out;
3067 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3068 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3069 					pci_resource_len(pdev, bar), res_name,
3070 					exclusive))
3071 			goto err_out;
3072 	}
3073 
3074 	dr = find_pci_dr(pdev);
3075 	if (dr)
3076 		dr->region_mask |= 1 << bar;
3077 
3078 	return 0;
3079 
3080 err_out:
3081 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3082 		 &pdev->resource[bar]);
3083 	return -EBUSY;
3084 }
3085 
3086 /**
3087  *	pci_request_region - Reserve PCI I/O and memory resource
3088  *	@pdev: PCI device whose resources are to be reserved
3089  *	@bar: BAR to be reserved
3090  *	@res_name: Name to be associated with resource
3091  *
3092  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3093  *	being reserved by owner @res_name.  Do not access any
3094  *	address inside the PCI regions unless this call returns
3095  *	successfully.
3096  *
3097  *	Returns 0 on success, or %EBUSY on error.  A warning
3098  *	message is also printed on failure.
3099  */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)3100 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3101 {
3102 	return __pci_request_region(pdev, bar, res_name, 0);
3103 }
3104 EXPORT_SYMBOL(pci_request_region);
3105 
3106 /**
3107  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3108  *	@pdev: PCI device whose resources are to be reserved
3109  *	@bar: BAR to be reserved
3110  *	@res_name: Name to be associated with resource.
3111  *
3112  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3113  *	being reserved by owner @res_name.  Do not access any
3114  *	address inside the PCI regions unless this call returns
3115  *	successfully.
3116  *
3117  *	Returns 0 on success, or %EBUSY on error.  A warning
3118  *	message is also printed on failure.
3119  *
3120  *	The key difference that _exclusive makes it that userspace is
3121  *	explicitly not allowed to map the resource via /dev/mem or
3122  *	sysfs.
3123  */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)3124 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3125 				 const char *res_name)
3126 {
3127 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3128 }
3129 EXPORT_SYMBOL(pci_request_region_exclusive);
3130 
3131 /**
3132  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3133  * @pdev: PCI device whose resources were previously reserved
3134  * @bars: Bitmask of BARs to be released
3135  *
3136  * Release selected PCI I/O and memory resources previously reserved.
3137  * Call this function only after all use of the PCI regions has ceased.
3138  */
pci_release_selected_regions(struct pci_dev * pdev,int bars)3139 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3140 {
3141 	int i;
3142 
3143 	for (i = 0; i < 6; i++)
3144 		if (bars & (1 << i))
3145 			pci_release_region(pdev, i);
3146 }
3147 EXPORT_SYMBOL(pci_release_selected_regions);
3148 
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)3149 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3150 					  const char *res_name, int excl)
3151 {
3152 	int i;
3153 
3154 	for (i = 0; i < 6; i++)
3155 		if (bars & (1 << i))
3156 			if (__pci_request_region(pdev, i, res_name, excl))
3157 				goto err_out;
3158 	return 0;
3159 
3160 err_out:
3161 	while (--i >= 0)
3162 		if (bars & (1 << i))
3163 			pci_release_region(pdev, i);
3164 
3165 	return -EBUSY;
3166 }
3167 
3168 
3169 /**
3170  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3171  * @pdev: PCI device whose resources are to be reserved
3172  * @bars: Bitmask of BARs to be requested
3173  * @res_name: Name to be associated with resource
3174  */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)3175 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3176 				 const char *res_name)
3177 {
3178 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3179 }
3180 EXPORT_SYMBOL(pci_request_selected_regions);
3181 
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)3182 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3183 					   const char *res_name)
3184 {
3185 	return __pci_request_selected_regions(pdev, bars, res_name,
3186 			IORESOURCE_EXCLUSIVE);
3187 }
3188 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3189 
3190 /**
3191  *	pci_release_regions - Release reserved PCI I/O and memory resources
3192  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3193  *
3194  *	Releases all PCI I/O and memory resources previously reserved by a
3195  *	successful call to pci_request_regions.  Call this function only
3196  *	after all use of the PCI regions has ceased.
3197  */
3198 
pci_release_regions(struct pci_dev * pdev)3199 void pci_release_regions(struct pci_dev *pdev)
3200 {
3201 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3202 }
3203 EXPORT_SYMBOL(pci_release_regions);
3204 
3205 /**
3206  *	pci_request_regions - Reserved PCI I/O and memory resources
3207  *	@pdev: PCI device whose resources are to be reserved
3208  *	@res_name: Name to be associated with resource.
3209  *
3210  *	Mark all PCI regions associated with PCI device @pdev as
3211  *	being reserved by owner @res_name.  Do not access any
3212  *	address inside the PCI regions unless this call returns
3213  *	successfully.
3214  *
3215  *	Returns 0 on success, or %EBUSY on error.  A warning
3216  *	message is also printed on failure.
3217  */
pci_request_regions(struct pci_dev * pdev,const char * res_name)3218 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3219 {
3220 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3221 }
3222 EXPORT_SYMBOL(pci_request_regions);
3223 
3224 /**
3225  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3226  *	@pdev: PCI device whose resources are to be reserved
3227  *	@res_name: Name to be associated with resource.
3228  *
3229  *	Mark all PCI regions associated with PCI device @pdev as
3230  *	being reserved by owner @res_name.  Do not access any
3231  *	address inside the PCI regions unless this call returns
3232  *	successfully.
3233  *
3234  *	pci_request_regions_exclusive() will mark the region so that
3235  *	/dev/mem and the sysfs MMIO access will not be allowed.
3236  *
3237  *	Returns 0 on success, or %EBUSY on error.  A warning
3238  *	message is also printed on failure.
3239  */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)3240 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3241 {
3242 	return pci_request_selected_regions_exclusive(pdev,
3243 					((1 << 6) - 1), res_name);
3244 }
3245 EXPORT_SYMBOL(pci_request_regions_exclusive);
3246 
3247 #ifdef PCI_IOBASE
3248 struct io_range {
3249 	struct list_head list;
3250 	phys_addr_t start;
3251 	resource_size_t size;
3252 };
3253 
3254 static LIST_HEAD(io_range_list);
3255 static DEFINE_SPINLOCK(io_range_lock);
3256 #endif
3257 
3258 /*
3259  * Record the PCI IO range (expressed as CPU physical address + size).
3260  * Return a negative value if an error has occured, zero otherwise
3261  */
pci_register_io_range(phys_addr_t addr,resource_size_t size)3262 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3263 {
3264 	int err = 0;
3265 
3266 #ifdef PCI_IOBASE
3267 	struct io_range *range;
3268 	resource_size_t allocated_size = 0;
3269 
3270 	/* check if the range hasn't been previously recorded */
3271 	spin_lock(&io_range_lock);
3272 	list_for_each_entry(range, &io_range_list, list) {
3273 		if (addr >= range->start && addr + size <= range->start + size) {
3274 			/* range already registered, bail out */
3275 			goto end_register;
3276 		}
3277 		allocated_size += range->size;
3278 	}
3279 
3280 	/* range not registed yet, check for available space */
3281 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3282 		/* if it's too big check if 64K space can be reserved */
3283 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3284 			err = -E2BIG;
3285 			goto end_register;
3286 		}
3287 
3288 		size = SZ_64K;
3289 		pr_warn("Requested IO range too big, new size set to 64K\n");
3290 	}
3291 
3292 	/* add the range to the list */
3293 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3294 	if (!range) {
3295 		err = -ENOMEM;
3296 		goto end_register;
3297 	}
3298 
3299 	range->start = addr;
3300 	range->size = size;
3301 
3302 	list_add_tail(&range->list, &io_range_list);
3303 
3304 end_register:
3305 	spin_unlock(&io_range_lock);
3306 #endif
3307 
3308 	return err;
3309 }
3310 
pci_pio_to_address(unsigned long pio)3311 phys_addr_t pci_pio_to_address(unsigned long pio)
3312 {
3313 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3314 
3315 #ifdef PCI_IOBASE
3316 	struct io_range *range;
3317 	resource_size_t allocated_size = 0;
3318 
3319 	if (pio > IO_SPACE_LIMIT)
3320 		return address;
3321 
3322 	spin_lock(&io_range_lock);
3323 	list_for_each_entry(range, &io_range_list, list) {
3324 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3325 			address = range->start + pio - allocated_size;
3326 			break;
3327 		}
3328 		allocated_size += range->size;
3329 	}
3330 	spin_unlock(&io_range_lock);
3331 #endif
3332 
3333 	return address;
3334 }
3335 
pci_address_to_pio(phys_addr_t address)3336 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3337 {
3338 #ifdef PCI_IOBASE
3339 	struct io_range *res;
3340 	resource_size_t offset = 0;
3341 	unsigned long addr = -1;
3342 
3343 	spin_lock(&io_range_lock);
3344 	list_for_each_entry(res, &io_range_list, list) {
3345 		if (address >= res->start && address < res->start + res->size) {
3346 			addr = address - res->start + offset;
3347 			break;
3348 		}
3349 		offset += res->size;
3350 	}
3351 	spin_unlock(&io_range_lock);
3352 
3353 	return addr;
3354 #else
3355 	if (address > IO_SPACE_LIMIT)
3356 		return (unsigned long)-1;
3357 
3358 	return (unsigned long) address;
3359 #endif
3360 }
3361 
3362 /**
3363  *	pci_remap_iospace - Remap the memory mapped I/O space
3364  *	@res: Resource describing the I/O space
3365  *	@phys_addr: physical address of range to be mapped
3366  *
3367  *	Remap the memory mapped I/O space described by the @res
3368  *	and the CPU physical address @phys_addr into virtual address space.
3369  *	Only architectures that have memory mapped IO functions defined
3370  *	(and the PCI_IOBASE value defined) should call this function.
3371  */
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)3372 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3373 {
3374 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3375 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3376 
3377 	if (!(res->flags & IORESOURCE_IO))
3378 		return -EINVAL;
3379 
3380 	if (res->end > IO_SPACE_LIMIT)
3381 		return -EINVAL;
3382 
3383 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3384 				  pgprot_device(PAGE_KERNEL));
3385 #else
3386 	/* this architecture does not have memory mapped I/O space,
3387 	   so this function should never be called */
3388 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3389 	return -ENODEV;
3390 #endif
3391 }
3392 
3393 /**
3394  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3395  *	@res: resource to be unmapped
3396  *
3397  *	Unmap the CPU virtual address @res from virtual address space.
3398  *	Only architectures that have memory mapped IO functions defined
3399  *	(and the PCI_IOBASE value defined) should call this function.
3400  */
pci_unmap_iospace(struct resource * res)3401 void pci_unmap_iospace(struct resource *res)
3402 {
3403 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3404 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3405 
3406 	unmap_kernel_range(vaddr, resource_size(res));
3407 #endif
3408 }
3409 
__pci_set_master(struct pci_dev * dev,bool enable)3410 static void __pci_set_master(struct pci_dev *dev, bool enable)
3411 {
3412 	u16 old_cmd, cmd;
3413 
3414 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3415 	if (enable)
3416 		cmd = old_cmd | PCI_COMMAND_MASTER;
3417 	else
3418 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3419 	if (cmd != old_cmd) {
3420 		dev_dbg(&dev->dev, "%s bus mastering\n",
3421 			enable ? "enabling" : "disabling");
3422 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3423 	}
3424 	dev->is_busmaster = enable;
3425 }
3426 
3427 /**
3428  * pcibios_setup - process "pci=" kernel boot arguments
3429  * @str: string used to pass in "pci=" kernel boot arguments
3430  *
3431  * Process kernel boot arguments.  This is the default implementation.
3432  * Architecture specific implementations can override this as necessary.
3433  */
pcibios_setup(char * str)3434 char * __weak __init pcibios_setup(char *str)
3435 {
3436 	return str;
3437 }
3438 
3439 /**
3440  * pcibios_set_master - enable PCI bus-mastering for device dev
3441  * @dev: the PCI device to enable
3442  *
3443  * Enables PCI bus-mastering for the device.  This is the default
3444  * implementation.  Architecture specific implementations can override
3445  * this if necessary.
3446  */
pcibios_set_master(struct pci_dev * dev)3447 void __weak pcibios_set_master(struct pci_dev *dev)
3448 {
3449 	u8 lat;
3450 
3451 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3452 	if (pci_is_pcie(dev))
3453 		return;
3454 
3455 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3456 	if (lat < 16)
3457 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3458 	else if (lat > pcibios_max_latency)
3459 		lat = pcibios_max_latency;
3460 	else
3461 		return;
3462 
3463 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3464 }
3465 
3466 /**
3467  * pci_set_master - enables bus-mastering for device dev
3468  * @dev: the PCI device to enable
3469  *
3470  * Enables bus-mastering on the device and calls pcibios_set_master()
3471  * to do the needed arch specific settings.
3472  */
pci_set_master(struct pci_dev * dev)3473 void pci_set_master(struct pci_dev *dev)
3474 {
3475 	__pci_set_master(dev, true);
3476 	pcibios_set_master(dev);
3477 }
3478 EXPORT_SYMBOL(pci_set_master);
3479 
3480 /**
3481  * pci_clear_master - disables bus-mastering for device dev
3482  * @dev: the PCI device to disable
3483  */
pci_clear_master(struct pci_dev * dev)3484 void pci_clear_master(struct pci_dev *dev)
3485 {
3486 	__pci_set_master(dev, false);
3487 }
3488 EXPORT_SYMBOL(pci_clear_master);
3489 
3490 /**
3491  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3492  * @dev: the PCI device for which MWI is to be enabled
3493  *
3494  * Helper function for pci_set_mwi.
3495  * Originally copied from drivers/net/acenic.c.
3496  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3497  *
3498  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3499  */
pci_set_cacheline_size(struct pci_dev * dev)3500 int pci_set_cacheline_size(struct pci_dev *dev)
3501 {
3502 	u8 cacheline_size;
3503 
3504 	if (!pci_cache_line_size)
3505 		return -EINVAL;
3506 
3507 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3508 	   equal to or multiple of the right value. */
3509 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3510 	if (cacheline_size >= pci_cache_line_size &&
3511 	    (cacheline_size % pci_cache_line_size) == 0)
3512 		return 0;
3513 
3514 	/* Write the correct value. */
3515 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3516 	/* Read it back. */
3517 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3518 	if (cacheline_size == pci_cache_line_size)
3519 		return 0;
3520 
3521 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3522 		   pci_cache_line_size << 2);
3523 
3524 	return -EINVAL;
3525 }
3526 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3527 
3528 /**
3529  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3530  * @dev: the PCI device for which MWI is enabled
3531  *
3532  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3533  *
3534  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3535  */
pci_set_mwi(struct pci_dev * dev)3536 int pci_set_mwi(struct pci_dev *dev)
3537 {
3538 #ifdef PCI_DISABLE_MWI
3539 	return 0;
3540 #else
3541 	int rc;
3542 	u16 cmd;
3543 
3544 	rc = pci_set_cacheline_size(dev);
3545 	if (rc)
3546 		return rc;
3547 
3548 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3549 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3550 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3551 		cmd |= PCI_COMMAND_INVALIDATE;
3552 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3553 	}
3554 	return 0;
3555 #endif
3556 }
3557 EXPORT_SYMBOL(pci_set_mwi);
3558 
3559 /**
3560  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3561  * @dev: the PCI device for which MWI is enabled
3562  *
3563  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3564  * Callers are not required to check the return value.
3565  *
3566  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3567  */
pci_try_set_mwi(struct pci_dev * dev)3568 int pci_try_set_mwi(struct pci_dev *dev)
3569 {
3570 #ifdef PCI_DISABLE_MWI
3571 	return 0;
3572 #else
3573 	return pci_set_mwi(dev);
3574 #endif
3575 }
3576 EXPORT_SYMBOL(pci_try_set_mwi);
3577 
3578 /**
3579  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3580  * @dev: the PCI device to disable
3581  *
3582  * Disables PCI Memory-Write-Invalidate transaction on the device
3583  */
pci_clear_mwi(struct pci_dev * dev)3584 void pci_clear_mwi(struct pci_dev *dev)
3585 {
3586 #ifndef PCI_DISABLE_MWI
3587 	u16 cmd;
3588 
3589 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3590 	if (cmd & PCI_COMMAND_INVALIDATE) {
3591 		cmd &= ~PCI_COMMAND_INVALIDATE;
3592 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3593 	}
3594 #endif
3595 }
3596 EXPORT_SYMBOL(pci_clear_mwi);
3597 
3598 /**
3599  * pci_intx - enables/disables PCI INTx for device dev
3600  * @pdev: the PCI device to operate on
3601  * @enable: boolean: whether to enable or disable PCI INTx
3602  *
3603  * Enables/disables PCI INTx for device dev
3604  */
pci_intx(struct pci_dev * pdev,int enable)3605 void pci_intx(struct pci_dev *pdev, int enable)
3606 {
3607 	u16 pci_command, new;
3608 
3609 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3610 
3611 	if (enable)
3612 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3613 	else
3614 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3615 
3616 	if (new != pci_command) {
3617 		struct pci_devres *dr;
3618 
3619 		pci_write_config_word(pdev, PCI_COMMAND, new);
3620 
3621 		dr = find_pci_dr(pdev);
3622 		if (dr && !dr->restore_intx) {
3623 			dr->restore_intx = 1;
3624 			dr->orig_intx = !enable;
3625 		}
3626 	}
3627 }
3628 EXPORT_SYMBOL_GPL(pci_intx);
3629 
3630 /**
3631  * pci_intx_mask_supported - probe for INTx masking support
3632  * @dev: the PCI device to operate on
3633  *
3634  * Check if the device dev support INTx masking via the config space
3635  * command word.
3636  */
pci_intx_mask_supported(struct pci_dev * dev)3637 bool pci_intx_mask_supported(struct pci_dev *dev)
3638 {
3639 	bool mask_supported = false;
3640 	u16 orig, new;
3641 
3642 	if (dev->broken_intx_masking)
3643 		return false;
3644 
3645 	pci_cfg_access_lock(dev);
3646 
3647 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3648 	pci_write_config_word(dev, PCI_COMMAND,
3649 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3650 	pci_read_config_word(dev, PCI_COMMAND, &new);
3651 
3652 	/*
3653 	 * There's no way to protect against hardware bugs or detect them
3654 	 * reliably, but as long as we know what the value should be, let's
3655 	 * go ahead and check it.
3656 	 */
3657 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3658 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3659 			orig, new);
3660 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3661 		mask_supported = true;
3662 		pci_write_config_word(dev, PCI_COMMAND, orig);
3663 	}
3664 
3665 	pci_cfg_access_unlock(dev);
3666 	return mask_supported;
3667 }
3668 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3669 
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)3670 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3671 {
3672 	struct pci_bus *bus = dev->bus;
3673 	bool mask_updated = true;
3674 	u32 cmd_status_dword;
3675 	u16 origcmd, newcmd;
3676 	unsigned long flags;
3677 	bool irq_pending;
3678 
3679 	/*
3680 	 * We do a single dword read to retrieve both command and status.
3681 	 * Document assumptions that make this possible.
3682 	 */
3683 	BUILD_BUG_ON(PCI_COMMAND % 4);
3684 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3685 
3686 	raw_spin_lock_irqsave(&pci_lock, flags);
3687 
3688 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3689 
3690 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3691 
3692 	/*
3693 	 * Check interrupt status register to see whether our device
3694 	 * triggered the interrupt (when masking) or the next IRQ is
3695 	 * already pending (when unmasking).
3696 	 */
3697 	if (mask != irq_pending) {
3698 		mask_updated = false;
3699 		goto done;
3700 	}
3701 
3702 	origcmd = cmd_status_dword;
3703 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3704 	if (mask)
3705 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3706 	if (newcmd != origcmd)
3707 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3708 
3709 done:
3710 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3711 
3712 	return mask_updated;
3713 }
3714 
3715 /**
3716  * pci_check_and_mask_intx - mask INTx on pending interrupt
3717  * @dev: the PCI device to operate on
3718  *
3719  * Check if the device dev has its INTx line asserted, mask it and
3720  * return true in that case. False is returned if not interrupt was
3721  * pending.
3722  */
pci_check_and_mask_intx(struct pci_dev * dev)3723 bool pci_check_and_mask_intx(struct pci_dev *dev)
3724 {
3725 	return pci_check_and_set_intx_mask(dev, true);
3726 }
3727 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3728 
3729 /**
3730  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3731  * @dev: the PCI device to operate on
3732  *
3733  * Check if the device dev has its INTx line asserted, unmask it if not
3734  * and return true. False is returned and the mask remains active if
3735  * there was still an interrupt pending.
3736  */
pci_check_and_unmask_intx(struct pci_dev * dev)3737 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3738 {
3739 	return pci_check_and_set_intx_mask(dev, false);
3740 }
3741 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3742 
3743 /**
3744  * pci_wait_for_pending_transaction - waits for pending transaction
3745  * @dev: the PCI device to operate on
3746  *
3747  * Return 0 if transaction is pending 1 otherwise.
3748  */
pci_wait_for_pending_transaction(struct pci_dev * dev)3749 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3750 {
3751 	if (!pci_is_pcie(dev))
3752 		return 1;
3753 
3754 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3755 				    PCI_EXP_DEVSTA_TRPND);
3756 }
3757 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3758 
pci_flr_wait(struct pci_dev * dev)3759 static void pci_flr_wait(struct pci_dev *dev)
3760 {
3761 	int delay = 1, timeout = 60000;
3762 	u32 id;
3763 
3764 	/*
3765 	 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3766 	 * 100ms, but may silently discard requests while the FLR is in
3767 	 * progress.  Wait 100ms before trying to access the device.
3768 	 */
3769 	msleep(100);
3770 
3771 	/*
3772 	 * After 100ms, the device should not silently discard config
3773 	 * requests, but it may still indicate that it needs more time by
3774 	 * responding to them with CRS completions.  The Root Port will
3775 	 * generally synthesize ~0 data to complete the read (except when
3776 	 * CRS SV is enabled and the read was for the Vendor ID; in that
3777 	 * case it synthesizes 0x0001 data).
3778 	 *
3779 	 * Wait for the device to return a non-CRS completion.  Read the
3780 	 * Command register instead of Vendor ID so we don't have to
3781 	 * contend with the CRS SV value.
3782 	 */
3783 	pci_read_config_dword(dev, PCI_COMMAND, &id);
3784 	while (id == ~0) {
3785 		if (delay > timeout) {
3786 			dev_warn(&dev->dev, "not ready %dms after FLR; giving up\n",
3787 				 100 + delay - 1);
3788 			return;
3789 		}
3790 
3791 		if (delay > 1000)
3792 			dev_info(&dev->dev, "not ready %dms after FLR; waiting\n",
3793 				 100 + delay - 1);
3794 
3795 		msleep(delay);
3796 		delay *= 2;
3797 		pci_read_config_dword(dev, PCI_COMMAND, &id);
3798 	}
3799 
3800 	if (delay > 1000)
3801 		dev_info(&dev->dev, "ready %dms after FLR\n", 100 + delay - 1);
3802 }
3803 
pcie_flr(struct pci_dev * dev,int probe)3804 static int pcie_flr(struct pci_dev *dev, int probe)
3805 {
3806 	u32 cap;
3807 
3808 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3809 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3810 		return -ENOTTY;
3811 
3812 	if (probe)
3813 		return 0;
3814 
3815 	if (!pci_wait_for_pending_transaction(dev))
3816 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3817 
3818 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3819 	pci_flr_wait(dev);
3820 	return 0;
3821 }
3822 
pci_af_flr(struct pci_dev * dev,int probe)3823 static int pci_af_flr(struct pci_dev *dev, int probe)
3824 {
3825 	int pos;
3826 	u8 cap;
3827 
3828 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3829 	if (!pos)
3830 		return -ENOTTY;
3831 
3832 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3833 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3834 		return -ENOTTY;
3835 
3836 	if (probe)
3837 		return 0;
3838 
3839 	/*
3840 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3841 	 * is used, so we use the conrol offset rather than status and shift
3842 	 * the test bit to match.
3843 	 */
3844 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3845 				 PCI_AF_STATUS_TP << 8))
3846 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3847 
3848 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3849 	pci_flr_wait(dev);
3850 	return 0;
3851 }
3852 
3853 /**
3854  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3855  * @dev: Device to reset.
3856  * @probe: If set, only check if the device can be reset this way.
3857  *
3858  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3859  * unset, it will be reinitialized internally when going from PCI_D3hot to
3860  * PCI_D0.  If that's the case and the device is not in a low-power state
3861  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3862  *
3863  * NOTE: This causes the caller to sleep for twice the device power transition
3864  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3865  * by default (i.e. unless the @dev's d3_delay field has a different value).
3866  * Moreover, only devices in D0 can be reset by this function.
3867  */
pci_pm_reset(struct pci_dev * dev,int probe)3868 static int pci_pm_reset(struct pci_dev *dev, int probe)
3869 {
3870 	u16 csr;
3871 
3872 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3873 		return -ENOTTY;
3874 
3875 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3876 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3877 		return -ENOTTY;
3878 
3879 	if (probe)
3880 		return 0;
3881 
3882 	if (dev->current_state != PCI_D0)
3883 		return -EINVAL;
3884 
3885 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3886 	csr |= PCI_D3hot;
3887 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3888 	pci_dev_d3_sleep(dev);
3889 
3890 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3891 	csr |= PCI_D0;
3892 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3893 	pci_dev_d3_sleep(dev);
3894 
3895 	return 0;
3896 }
3897 
pci_reset_secondary_bus(struct pci_dev * dev)3898 void pci_reset_secondary_bus(struct pci_dev *dev)
3899 {
3900 	u16 ctrl;
3901 
3902 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3903 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3904 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3905 	/*
3906 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3907 	 * this to 2ms to ensure that we meet the minimum requirement.
3908 	 */
3909 	msleep(2);
3910 
3911 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3912 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3913 
3914 	/*
3915 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3916 	 * Assuming a minimum 33MHz clock this results in a 1s
3917 	 * delay before we can consider subordinate devices to
3918 	 * be re-initialized.  PCIe has some ways to shorten this,
3919 	 * but we don't make use of them yet.
3920 	 */
3921 	ssleep(1);
3922 }
3923 
pcibios_reset_secondary_bus(struct pci_dev * dev)3924 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3925 {
3926 	pci_reset_secondary_bus(dev);
3927 }
3928 
3929 /**
3930  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3931  * @dev: Bridge device
3932  *
3933  * Use the bridge control register to assert reset on the secondary bus.
3934  * Devices on the secondary bus are left in power-on state.
3935  */
pci_reset_bridge_secondary_bus(struct pci_dev * dev)3936 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3937 {
3938 	pcibios_reset_secondary_bus(dev);
3939 }
3940 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3941 
pci_parent_bus_reset(struct pci_dev * dev,int probe)3942 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3943 {
3944 	struct pci_dev *pdev;
3945 
3946 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3947 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3948 		return -ENOTTY;
3949 
3950 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3951 		if (pdev != dev)
3952 			return -ENOTTY;
3953 
3954 	if (probe)
3955 		return 0;
3956 
3957 	pci_reset_bridge_secondary_bus(dev->bus->self);
3958 
3959 	return 0;
3960 }
3961 
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,int probe)3962 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3963 {
3964 	int rc = -ENOTTY;
3965 
3966 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3967 		return rc;
3968 
3969 	if (hotplug->ops->reset_slot)
3970 		rc = hotplug->ops->reset_slot(hotplug, probe);
3971 
3972 	module_put(hotplug->ops->owner);
3973 
3974 	return rc;
3975 }
3976 
pci_dev_reset_slot_function(struct pci_dev * dev,int probe)3977 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3978 {
3979 	struct pci_dev *pdev;
3980 
3981 	if (dev->subordinate || !dev->slot ||
3982 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3983 		return -ENOTTY;
3984 
3985 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3986 		if (pdev != dev && pdev->slot == dev->slot)
3987 			return -ENOTTY;
3988 
3989 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3990 }
3991 
__pci_dev_reset(struct pci_dev * dev,int probe)3992 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3993 {
3994 	int rc;
3995 
3996 	might_sleep();
3997 
3998 	rc = pci_dev_specific_reset(dev, probe);
3999 	if (rc != -ENOTTY)
4000 		goto done;
4001 
4002 	rc = pcie_flr(dev, probe);
4003 	if (rc != -ENOTTY)
4004 		goto done;
4005 
4006 	rc = pci_af_flr(dev, probe);
4007 	if (rc != -ENOTTY)
4008 		goto done;
4009 
4010 	rc = pci_pm_reset(dev, probe);
4011 	if (rc != -ENOTTY)
4012 		goto done;
4013 
4014 	rc = pci_dev_reset_slot_function(dev, probe);
4015 	if (rc != -ENOTTY)
4016 		goto done;
4017 
4018 	rc = pci_parent_bus_reset(dev, probe);
4019 done:
4020 	return rc;
4021 }
4022 
pci_dev_lock(struct pci_dev * dev)4023 static void pci_dev_lock(struct pci_dev *dev)
4024 {
4025 	pci_cfg_access_lock(dev);
4026 	/* block PM suspend, driver probe, etc. */
4027 	device_lock(&dev->dev);
4028 }
4029 
4030 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)4031 static int pci_dev_trylock(struct pci_dev *dev)
4032 {
4033 	if (pci_cfg_access_trylock(dev)) {
4034 		if (device_trylock(&dev->dev))
4035 			return 1;
4036 		pci_cfg_access_unlock(dev);
4037 	}
4038 
4039 	return 0;
4040 }
4041 
pci_dev_unlock(struct pci_dev * dev)4042 static void pci_dev_unlock(struct pci_dev *dev)
4043 {
4044 	device_unlock(&dev->dev);
4045 	pci_cfg_access_unlock(dev);
4046 }
4047 
4048 /**
4049  * pci_reset_notify - notify device driver of reset
4050  * @dev: device to be notified of reset
4051  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
4052  *           completed
4053  *
4054  * Must be called prior to device access being disabled and after device
4055  * access is restored.
4056  */
pci_reset_notify(struct pci_dev * dev,bool prepare)4057 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
4058 {
4059 	const struct pci_error_handlers *err_handler =
4060 			dev->driver ? dev->driver->err_handler : NULL;
4061 	if (err_handler && err_handler->reset_notify)
4062 		err_handler->reset_notify(dev, prepare);
4063 }
4064 
pci_dev_save_and_disable(struct pci_dev * dev)4065 static void pci_dev_save_and_disable(struct pci_dev *dev)
4066 {
4067 	pci_reset_notify(dev, true);
4068 
4069 	/*
4070 	 * Wake-up device prior to save.  PM registers default to D0 after
4071 	 * reset and a simple register restore doesn't reliably return
4072 	 * to a non-D0 state anyway.
4073 	 */
4074 	pci_set_power_state(dev, PCI_D0);
4075 
4076 	pci_save_state(dev);
4077 	/*
4078 	 * Disable the device by clearing the Command register, except for
4079 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4080 	 * BARs, but also prevents the device from being Bus Master, preventing
4081 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4082 	 * compliant devices, INTx-disable prevents legacy interrupts.
4083 	 */
4084 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4085 }
4086 
pci_dev_restore(struct pci_dev * dev)4087 static void pci_dev_restore(struct pci_dev *dev)
4088 {
4089 	pci_restore_state(dev);
4090 	pci_reset_notify(dev, false);
4091 }
4092 
pci_dev_reset(struct pci_dev * dev,int probe)4093 static int pci_dev_reset(struct pci_dev *dev, int probe)
4094 {
4095 	int rc;
4096 
4097 	if (!probe)
4098 		pci_dev_lock(dev);
4099 
4100 	rc = __pci_dev_reset(dev, probe);
4101 
4102 	if (!probe)
4103 		pci_dev_unlock(dev);
4104 
4105 	return rc;
4106 }
4107 
4108 /**
4109  * __pci_reset_function - reset a PCI device function
4110  * @dev: PCI device to reset
4111  *
4112  * Some devices allow an individual function to be reset without affecting
4113  * other functions in the same device.  The PCI device must be responsive
4114  * to PCI config space in order to use this function.
4115  *
4116  * The device function is presumed to be unused when this function is called.
4117  * Resetting the device will make the contents of PCI configuration space
4118  * random, so any caller of this must be prepared to reinitialise the
4119  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4120  * etc.
4121  *
4122  * Returns 0 if the device function was successfully reset or negative if the
4123  * device doesn't support resetting a single function.
4124  */
__pci_reset_function(struct pci_dev * dev)4125 int __pci_reset_function(struct pci_dev *dev)
4126 {
4127 	return pci_dev_reset(dev, 0);
4128 }
4129 EXPORT_SYMBOL_GPL(__pci_reset_function);
4130 
4131 /**
4132  * __pci_reset_function_locked - reset a PCI device function while holding
4133  * the @dev mutex lock.
4134  * @dev: PCI device to reset
4135  *
4136  * Some devices allow an individual function to be reset without affecting
4137  * other functions in the same device.  The PCI device must be responsive
4138  * to PCI config space in order to use this function.
4139  *
4140  * The device function is presumed to be unused and the caller is holding
4141  * the device mutex lock when this function is called.
4142  * Resetting the device will make the contents of PCI configuration space
4143  * random, so any caller of this must be prepared to reinitialise the
4144  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4145  * etc.
4146  *
4147  * Returns 0 if the device function was successfully reset or negative if the
4148  * device doesn't support resetting a single function.
4149  */
__pci_reset_function_locked(struct pci_dev * dev)4150 int __pci_reset_function_locked(struct pci_dev *dev)
4151 {
4152 	return __pci_dev_reset(dev, 0);
4153 }
4154 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4155 
4156 /**
4157  * pci_probe_reset_function - check whether the device can be safely reset
4158  * @dev: PCI device to reset
4159  *
4160  * Some devices allow an individual function to be reset without affecting
4161  * other functions in the same device.  The PCI device must be responsive
4162  * to PCI config space in order to use this function.
4163  *
4164  * Returns 0 if the device function can be reset or negative if the
4165  * device doesn't support resetting a single function.
4166  */
pci_probe_reset_function(struct pci_dev * dev)4167 int pci_probe_reset_function(struct pci_dev *dev)
4168 {
4169 	return pci_dev_reset(dev, 1);
4170 }
4171 
4172 /**
4173  * pci_reset_function - quiesce and reset a PCI device function
4174  * @dev: PCI device to reset
4175  *
4176  * Some devices allow an individual function to be reset without affecting
4177  * other functions in the same device.  The PCI device must be responsive
4178  * to PCI config space in order to use this function.
4179  *
4180  * This function does not just reset the PCI portion of a device, but
4181  * clears all the state associated with the device.  This function differs
4182  * from __pci_reset_function in that it saves and restores device state
4183  * over the reset.
4184  *
4185  * Returns 0 if the device function was successfully reset or negative if the
4186  * device doesn't support resetting a single function.
4187  */
pci_reset_function(struct pci_dev * dev)4188 int pci_reset_function(struct pci_dev *dev)
4189 {
4190 	int rc;
4191 
4192 	rc = pci_dev_reset(dev, 1);
4193 	if (rc)
4194 		return rc;
4195 
4196 	pci_dev_save_and_disable(dev);
4197 
4198 	rc = pci_dev_reset(dev, 0);
4199 
4200 	pci_dev_restore(dev);
4201 
4202 	return rc;
4203 }
4204 EXPORT_SYMBOL_GPL(pci_reset_function);
4205 
4206 /**
4207  * pci_try_reset_function - quiesce and reset a PCI device function
4208  * @dev: PCI device to reset
4209  *
4210  * Same as above, except return -EAGAIN if unable to lock device.
4211  */
pci_try_reset_function(struct pci_dev * dev)4212 int pci_try_reset_function(struct pci_dev *dev)
4213 {
4214 	int rc;
4215 
4216 	rc = pci_dev_reset(dev, 1);
4217 	if (rc)
4218 		return rc;
4219 
4220 	pci_dev_save_and_disable(dev);
4221 
4222 	if (pci_dev_trylock(dev)) {
4223 		rc = __pci_dev_reset(dev, 0);
4224 		pci_dev_unlock(dev);
4225 	} else
4226 		rc = -EAGAIN;
4227 
4228 	pci_dev_restore(dev);
4229 
4230 	return rc;
4231 }
4232 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4233 
4234 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resetable(struct pci_bus * bus)4235 static bool pci_bus_resetable(struct pci_bus *bus)
4236 {
4237 	struct pci_dev *dev;
4238 
4239 
4240 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
4241 		return false;
4242 
4243 	list_for_each_entry(dev, &bus->devices, bus_list) {
4244 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4245 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4246 			return false;
4247 	}
4248 
4249 	return true;
4250 }
4251 
4252 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)4253 static void pci_bus_lock(struct pci_bus *bus)
4254 {
4255 	struct pci_dev *dev;
4256 
4257 	list_for_each_entry(dev, &bus->devices, bus_list) {
4258 		pci_dev_lock(dev);
4259 		if (dev->subordinate)
4260 			pci_bus_lock(dev->subordinate);
4261 	}
4262 }
4263 
4264 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)4265 static void pci_bus_unlock(struct pci_bus *bus)
4266 {
4267 	struct pci_dev *dev;
4268 
4269 	list_for_each_entry(dev, &bus->devices, bus_list) {
4270 		if (dev->subordinate)
4271 			pci_bus_unlock(dev->subordinate);
4272 		pci_dev_unlock(dev);
4273 	}
4274 }
4275 
4276 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)4277 static int pci_bus_trylock(struct pci_bus *bus)
4278 {
4279 	struct pci_dev *dev;
4280 
4281 	list_for_each_entry(dev, &bus->devices, bus_list) {
4282 		if (!pci_dev_trylock(dev))
4283 			goto unlock;
4284 		if (dev->subordinate) {
4285 			if (!pci_bus_trylock(dev->subordinate)) {
4286 				pci_dev_unlock(dev);
4287 				goto unlock;
4288 			}
4289 		}
4290 	}
4291 	return 1;
4292 
4293 unlock:
4294 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4295 		if (dev->subordinate)
4296 			pci_bus_unlock(dev->subordinate);
4297 		pci_dev_unlock(dev);
4298 	}
4299 	return 0;
4300 }
4301 
4302 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resetable(struct pci_slot * slot)4303 static bool pci_slot_resetable(struct pci_slot *slot)
4304 {
4305 	struct pci_dev *dev;
4306 
4307 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4308 		if (!dev->slot || dev->slot != slot)
4309 			continue;
4310 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4311 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4312 			return false;
4313 	}
4314 
4315 	return true;
4316 }
4317 
4318 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)4319 static void pci_slot_lock(struct pci_slot *slot)
4320 {
4321 	struct pci_dev *dev;
4322 
4323 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4324 		if (!dev->slot || dev->slot != slot)
4325 			continue;
4326 		pci_dev_lock(dev);
4327 		if (dev->subordinate)
4328 			pci_bus_lock(dev->subordinate);
4329 	}
4330 }
4331 
4332 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)4333 static void pci_slot_unlock(struct pci_slot *slot)
4334 {
4335 	struct pci_dev *dev;
4336 
4337 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4338 		if (!dev->slot || dev->slot != slot)
4339 			continue;
4340 		if (dev->subordinate)
4341 			pci_bus_unlock(dev->subordinate);
4342 		pci_dev_unlock(dev);
4343 	}
4344 }
4345 
4346 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)4347 static int pci_slot_trylock(struct pci_slot *slot)
4348 {
4349 	struct pci_dev *dev;
4350 
4351 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4352 		if (!dev->slot || dev->slot != slot)
4353 			continue;
4354 		if (!pci_dev_trylock(dev))
4355 			goto unlock;
4356 		if (dev->subordinate) {
4357 			if (!pci_bus_trylock(dev->subordinate)) {
4358 				pci_dev_unlock(dev);
4359 				goto unlock;
4360 			}
4361 		}
4362 	}
4363 	return 1;
4364 
4365 unlock:
4366 	list_for_each_entry_continue_reverse(dev,
4367 					     &slot->bus->devices, bus_list) {
4368 		if (!dev->slot || dev->slot != slot)
4369 			continue;
4370 		if (dev->subordinate)
4371 			pci_bus_unlock(dev->subordinate);
4372 		pci_dev_unlock(dev);
4373 	}
4374 	return 0;
4375 }
4376 
4377 /* Save and disable devices from the top of the tree down */
pci_bus_save_and_disable(struct pci_bus * bus)4378 static void pci_bus_save_and_disable(struct pci_bus *bus)
4379 {
4380 	struct pci_dev *dev;
4381 
4382 	list_for_each_entry(dev, &bus->devices, bus_list) {
4383 		pci_dev_save_and_disable(dev);
4384 		if (dev->subordinate)
4385 			pci_bus_save_and_disable(dev->subordinate);
4386 	}
4387 }
4388 
4389 /*
4390  * Restore devices from top of the tree down - parent bridges need to be
4391  * restored before we can get to subordinate devices.
4392  */
pci_bus_restore(struct pci_bus * bus)4393 static void pci_bus_restore(struct pci_bus *bus)
4394 {
4395 	struct pci_dev *dev;
4396 
4397 	list_for_each_entry(dev, &bus->devices, bus_list) {
4398 		pci_dev_restore(dev);
4399 		if (dev->subordinate)
4400 			pci_bus_restore(dev->subordinate);
4401 	}
4402 }
4403 
4404 /* Save and disable devices from the top of the tree down */
pci_slot_save_and_disable(struct pci_slot * slot)4405 static void pci_slot_save_and_disable(struct pci_slot *slot)
4406 {
4407 	struct pci_dev *dev;
4408 
4409 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4410 		if (!dev->slot || dev->slot != slot)
4411 			continue;
4412 		pci_dev_save_and_disable(dev);
4413 		if (dev->subordinate)
4414 			pci_bus_save_and_disable(dev->subordinate);
4415 	}
4416 }
4417 
4418 /*
4419  * Restore devices from top of the tree down - parent bridges need to be
4420  * restored before we can get to subordinate devices.
4421  */
pci_slot_restore(struct pci_slot * slot)4422 static void pci_slot_restore(struct pci_slot *slot)
4423 {
4424 	struct pci_dev *dev;
4425 
4426 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4427 		if (!dev->slot || dev->slot != slot)
4428 			continue;
4429 		pci_dev_restore(dev);
4430 		if (dev->subordinate)
4431 			pci_bus_restore(dev->subordinate);
4432 	}
4433 }
4434 
pci_slot_reset(struct pci_slot * slot,int probe)4435 static int pci_slot_reset(struct pci_slot *slot, int probe)
4436 {
4437 	int rc;
4438 
4439 	if (!slot || !pci_slot_resetable(slot))
4440 		return -ENOTTY;
4441 
4442 	if (!probe)
4443 		pci_slot_lock(slot);
4444 
4445 	might_sleep();
4446 
4447 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4448 
4449 	if (!probe)
4450 		pci_slot_unlock(slot);
4451 
4452 	return rc;
4453 }
4454 
4455 /**
4456  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4457  * @slot: PCI slot to probe
4458  *
4459  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4460  */
pci_probe_reset_slot(struct pci_slot * slot)4461 int pci_probe_reset_slot(struct pci_slot *slot)
4462 {
4463 	return pci_slot_reset(slot, 1);
4464 }
4465 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4466 
4467 /**
4468  * pci_reset_slot - reset a PCI slot
4469  * @slot: PCI slot to reset
4470  *
4471  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4472  * independent of other slots.  For instance, some slots may support slot power
4473  * control.  In the case of a 1:1 bus to slot architecture, this function may
4474  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4475  * Generally a slot reset should be attempted before a bus reset.  All of the
4476  * function of the slot and any subordinate buses behind the slot are reset
4477  * through this function.  PCI config space of all devices in the slot and
4478  * behind the slot is saved before and restored after reset.
4479  *
4480  * Return 0 on success, non-zero on error.
4481  */
pci_reset_slot(struct pci_slot * slot)4482 int pci_reset_slot(struct pci_slot *slot)
4483 {
4484 	int rc;
4485 
4486 	rc = pci_slot_reset(slot, 1);
4487 	if (rc)
4488 		return rc;
4489 
4490 	pci_slot_save_and_disable(slot);
4491 
4492 	rc = pci_slot_reset(slot, 0);
4493 
4494 	pci_slot_restore(slot);
4495 
4496 	return rc;
4497 }
4498 EXPORT_SYMBOL_GPL(pci_reset_slot);
4499 
4500 /**
4501  * pci_try_reset_slot - Try to reset a PCI slot
4502  * @slot: PCI slot to reset
4503  *
4504  * Same as above except return -EAGAIN if the slot cannot be locked
4505  */
pci_try_reset_slot(struct pci_slot * slot)4506 int pci_try_reset_slot(struct pci_slot *slot)
4507 {
4508 	int rc;
4509 
4510 	rc = pci_slot_reset(slot, 1);
4511 	if (rc)
4512 		return rc;
4513 
4514 	pci_slot_save_and_disable(slot);
4515 
4516 	if (pci_slot_trylock(slot)) {
4517 		might_sleep();
4518 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4519 		pci_slot_unlock(slot);
4520 	} else
4521 		rc = -EAGAIN;
4522 
4523 	pci_slot_restore(slot);
4524 
4525 	return rc;
4526 }
4527 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4528 
pci_bus_reset(struct pci_bus * bus,int probe)4529 static int pci_bus_reset(struct pci_bus *bus, int probe)
4530 {
4531 	if (!bus->self || !pci_bus_resetable(bus))
4532 		return -ENOTTY;
4533 
4534 	if (probe)
4535 		return 0;
4536 
4537 	pci_bus_lock(bus);
4538 
4539 	might_sleep();
4540 
4541 	pci_reset_bridge_secondary_bus(bus->self);
4542 
4543 	pci_bus_unlock(bus);
4544 
4545 	return 0;
4546 }
4547 
4548 /**
4549  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4550  * @bus: PCI bus to probe
4551  *
4552  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4553  */
pci_probe_reset_bus(struct pci_bus * bus)4554 int pci_probe_reset_bus(struct pci_bus *bus)
4555 {
4556 	return pci_bus_reset(bus, 1);
4557 }
4558 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4559 
4560 /**
4561  * pci_reset_bus - reset a PCI bus
4562  * @bus: top level PCI bus to reset
4563  *
4564  * Do a bus reset on the given bus and any subordinate buses, saving
4565  * and restoring state of all devices.
4566  *
4567  * Return 0 on success, non-zero on error.
4568  */
pci_reset_bus(struct pci_bus * bus)4569 int pci_reset_bus(struct pci_bus *bus)
4570 {
4571 	int rc;
4572 
4573 	rc = pci_bus_reset(bus, 1);
4574 	if (rc)
4575 		return rc;
4576 
4577 	pci_bus_save_and_disable(bus);
4578 
4579 	rc = pci_bus_reset(bus, 0);
4580 
4581 	pci_bus_restore(bus);
4582 
4583 	return rc;
4584 }
4585 EXPORT_SYMBOL_GPL(pci_reset_bus);
4586 
4587 /**
4588  * pci_try_reset_bus - Try to reset a PCI bus
4589  * @bus: top level PCI bus to reset
4590  *
4591  * Same as above except return -EAGAIN if the bus cannot be locked
4592  */
pci_try_reset_bus(struct pci_bus * bus)4593 int pci_try_reset_bus(struct pci_bus *bus)
4594 {
4595 	int rc;
4596 
4597 	rc = pci_bus_reset(bus, 1);
4598 	if (rc)
4599 		return rc;
4600 
4601 	pci_bus_save_and_disable(bus);
4602 
4603 	if (pci_bus_trylock(bus)) {
4604 		might_sleep();
4605 		pci_reset_bridge_secondary_bus(bus->self);
4606 		pci_bus_unlock(bus);
4607 	} else
4608 		rc = -EAGAIN;
4609 
4610 	pci_bus_restore(bus);
4611 
4612 	return rc;
4613 }
4614 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4615 
4616 /**
4617  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4618  * @dev: PCI device to query
4619  *
4620  * Returns mmrbc: maximum designed memory read count in bytes
4621  *    or appropriate error value.
4622  */
pcix_get_max_mmrbc(struct pci_dev * dev)4623 int pcix_get_max_mmrbc(struct pci_dev *dev)
4624 {
4625 	int cap;
4626 	u32 stat;
4627 
4628 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4629 	if (!cap)
4630 		return -EINVAL;
4631 
4632 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4633 		return -EINVAL;
4634 
4635 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4636 }
4637 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4638 
4639 /**
4640  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4641  * @dev: PCI device to query
4642  *
4643  * Returns mmrbc: maximum memory read count in bytes
4644  *    or appropriate error value.
4645  */
pcix_get_mmrbc(struct pci_dev * dev)4646 int pcix_get_mmrbc(struct pci_dev *dev)
4647 {
4648 	int cap;
4649 	u16 cmd;
4650 
4651 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4652 	if (!cap)
4653 		return -EINVAL;
4654 
4655 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4656 		return -EINVAL;
4657 
4658 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4659 }
4660 EXPORT_SYMBOL(pcix_get_mmrbc);
4661 
4662 /**
4663  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4664  * @dev: PCI device to query
4665  * @mmrbc: maximum memory read count in bytes
4666  *    valid values are 512, 1024, 2048, 4096
4667  *
4668  * If possible sets maximum memory read byte count, some bridges have erratas
4669  * that prevent this.
4670  */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)4671 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4672 {
4673 	int cap;
4674 	u32 stat, v, o;
4675 	u16 cmd;
4676 
4677 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4678 		return -EINVAL;
4679 
4680 	v = ffs(mmrbc) - 10;
4681 
4682 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4683 	if (!cap)
4684 		return -EINVAL;
4685 
4686 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4687 		return -EINVAL;
4688 
4689 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4690 		return -E2BIG;
4691 
4692 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4693 		return -EINVAL;
4694 
4695 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4696 	if (o != v) {
4697 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4698 			return -EIO;
4699 
4700 		cmd &= ~PCI_X_CMD_MAX_READ;
4701 		cmd |= v << 2;
4702 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4703 			return -EIO;
4704 	}
4705 	return 0;
4706 }
4707 EXPORT_SYMBOL(pcix_set_mmrbc);
4708 
4709 /**
4710  * pcie_get_readrq - get PCI Express read request size
4711  * @dev: PCI device to query
4712  *
4713  * Returns maximum memory read request in bytes
4714  *    or appropriate error value.
4715  */
pcie_get_readrq(struct pci_dev * dev)4716 int pcie_get_readrq(struct pci_dev *dev)
4717 {
4718 	u16 ctl;
4719 
4720 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4721 
4722 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4723 }
4724 EXPORT_SYMBOL(pcie_get_readrq);
4725 
4726 /**
4727  * pcie_set_readrq - set PCI Express maximum memory read request
4728  * @dev: PCI device to query
4729  * @rq: maximum memory read count in bytes
4730  *    valid values are 128, 256, 512, 1024, 2048, 4096
4731  *
4732  * If possible sets maximum memory read request in bytes
4733  */
pcie_set_readrq(struct pci_dev * dev,int rq)4734 int pcie_set_readrq(struct pci_dev *dev, int rq)
4735 {
4736 	u16 v;
4737 
4738 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4739 		return -EINVAL;
4740 
4741 	/*
4742 	 * If using the "performance" PCIe config, we clamp the
4743 	 * read rq size to the max packet size to prevent the
4744 	 * host bridge generating requests larger than we can
4745 	 * cope with
4746 	 */
4747 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4748 		int mps = pcie_get_mps(dev);
4749 
4750 		if (mps < rq)
4751 			rq = mps;
4752 	}
4753 
4754 	v = (ffs(rq) - 8) << 12;
4755 
4756 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4757 						  PCI_EXP_DEVCTL_READRQ, v);
4758 }
4759 EXPORT_SYMBOL(pcie_set_readrq);
4760 
4761 /**
4762  * pcie_get_mps - get PCI Express maximum payload size
4763  * @dev: PCI device to query
4764  *
4765  * Returns maximum payload size in bytes
4766  */
pcie_get_mps(struct pci_dev * dev)4767 int pcie_get_mps(struct pci_dev *dev)
4768 {
4769 	u16 ctl;
4770 
4771 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4772 
4773 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4774 }
4775 EXPORT_SYMBOL(pcie_get_mps);
4776 
4777 /**
4778  * pcie_set_mps - set PCI Express maximum payload size
4779  * @dev: PCI device to query
4780  * @mps: maximum payload size in bytes
4781  *    valid values are 128, 256, 512, 1024, 2048, 4096
4782  *
4783  * If possible sets maximum payload size
4784  */
pcie_set_mps(struct pci_dev * dev,int mps)4785 int pcie_set_mps(struct pci_dev *dev, int mps)
4786 {
4787 	u16 v;
4788 
4789 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4790 		return -EINVAL;
4791 
4792 	v = ffs(mps) - 8;
4793 	if (v > dev->pcie_mpss)
4794 		return -EINVAL;
4795 	v <<= 5;
4796 
4797 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4798 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4799 }
4800 EXPORT_SYMBOL(pcie_set_mps);
4801 
4802 /**
4803  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4804  * @dev: PCI device to query
4805  * @speed: storage for minimum speed
4806  * @width: storage for minimum width
4807  *
4808  * This function will walk up the PCI device chain and determine the minimum
4809  * link width and speed of the device.
4810  */
pcie_get_minimum_link(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)4811 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4812 			  enum pcie_link_width *width)
4813 {
4814 	int ret;
4815 
4816 	*speed = PCI_SPEED_UNKNOWN;
4817 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4818 
4819 	while (dev) {
4820 		u16 lnksta;
4821 		enum pci_bus_speed next_speed;
4822 		enum pcie_link_width next_width;
4823 
4824 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4825 		if (ret)
4826 			return ret;
4827 
4828 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4829 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4830 			PCI_EXP_LNKSTA_NLW_SHIFT;
4831 
4832 		if (next_speed < *speed)
4833 			*speed = next_speed;
4834 
4835 		if (next_width < *width)
4836 			*width = next_width;
4837 
4838 		dev = dev->bus->self;
4839 	}
4840 
4841 	return 0;
4842 }
4843 EXPORT_SYMBOL(pcie_get_minimum_link);
4844 
4845 /**
4846  * pci_select_bars - Make BAR mask from the type of resource
4847  * @dev: the PCI device for which BAR mask is made
4848  * @flags: resource type mask to be selected
4849  *
4850  * This helper routine makes bar mask from the type of resource.
4851  */
pci_select_bars(struct pci_dev * dev,unsigned long flags)4852 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4853 {
4854 	int i, bars = 0;
4855 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4856 		if (pci_resource_flags(dev, i) & flags)
4857 			bars |= (1 << i);
4858 	return bars;
4859 }
4860 EXPORT_SYMBOL(pci_select_bars);
4861 
4862 /* Some architectures require additional programming to enable VGA */
4863 static arch_set_vga_state_t arch_set_vga_state;
4864 
pci_register_set_vga_state(arch_set_vga_state_t func)4865 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4866 {
4867 	arch_set_vga_state = func;	/* NULL disables */
4868 }
4869 
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4870 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4871 				  unsigned int command_bits, u32 flags)
4872 {
4873 	if (arch_set_vga_state)
4874 		return arch_set_vga_state(dev, decode, command_bits,
4875 						flags);
4876 	return 0;
4877 }
4878 
4879 /**
4880  * pci_set_vga_state - set VGA decode state on device and parents if requested
4881  * @dev: the PCI device
4882  * @decode: true = enable decoding, false = disable decoding
4883  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4884  * @flags: traverse ancestors and change bridges
4885  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4886  */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)4887 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4888 		      unsigned int command_bits, u32 flags)
4889 {
4890 	struct pci_bus *bus;
4891 	struct pci_dev *bridge;
4892 	u16 cmd;
4893 	int rc;
4894 
4895 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4896 
4897 	/* ARCH specific VGA enables */
4898 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4899 	if (rc)
4900 		return rc;
4901 
4902 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4903 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4904 		if (decode == true)
4905 			cmd |= command_bits;
4906 		else
4907 			cmd &= ~command_bits;
4908 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4909 	}
4910 
4911 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4912 		return 0;
4913 
4914 	bus = dev->bus;
4915 	while (bus) {
4916 		bridge = bus->self;
4917 		if (bridge) {
4918 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4919 					     &cmd);
4920 			if (decode == true)
4921 				cmd |= PCI_BRIDGE_CTL_VGA;
4922 			else
4923 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4924 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4925 					      cmd);
4926 		}
4927 		bus = bus->parent;
4928 	}
4929 	return 0;
4930 }
4931 
4932 /**
4933  * pci_add_dma_alias - Add a DMA devfn alias for a device
4934  * @dev: the PCI device for which alias is added
4935  * @devfn: alias slot and function
4936  *
4937  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4938  * It should be called early, preferably as PCI fixup header quirk.
4939  */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn)4940 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4941 {
4942 	if (!dev->dma_alias_mask)
4943 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4944 					      sizeof(long), GFP_KERNEL);
4945 	if (!dev->dma_alias_mask) {
4946 		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4947 		return;
4948 	}
4949 
4950 	set_bit(devfn, dev->dma_alias_mask);
4951 	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4952 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
4953 }
4954 
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)4955 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4956 {
4957 	return (dev1->dma_alias_mask &&
4958 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4959 	       (dev2->dma_alias_mask &&
4960 		test_bit(dev1->devfn, dev2->dma_alias_mask));
4961 }
4962 
pci_device_is_present(struct pci_dev * pdev)4963 bool pci_device_is_present(struct pci_dev *pdev)
4964 {
4965 	u32 v;
4966 
4967 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4968 }
4969 EXPORT_SYMBOL_GPL(pci_device_is_present);
4970 
pci_ignore_hotplug(struct pci_dev * dev)4971 void pci_ignore_hotplug(struct pci_dev *dev)
4972 {
4973 	struct pci_dev *bridge = dev->bus->self;
4974 
4975 	dev->ignore_hotplug = 1;
4976 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4977 	if (bridge)
4978 		bridge->ignore_hotplug = 1;
4979 }
4980 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4981 
4982 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4983 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4984 static DEFINE_SPINLOCK(resource_alignment_lock);
4985 
4986 /**
4987  * pci_specified_resource_alignment - get resource alignment specified by user.
4988  * @dev: the PCI device to get
4989  *
4990  * RETURNS: Resource alignment if it is specified.
4991  *          Zero if it is not specified.
4992  */
pci_specified_resource_alignment(struct pci_dev * dev)4993 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4994 {
4995 	int seg, bus, slot, func, align_order, count;
4996 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
4997 	resource_size_t align = 0;
4998 	char *p;
4999 
5000 	spin_lock(&resource_alignment_lock);
5001 	p = resource_alignment_param;
5002 	if (!*p)
5003 		goto out;
5004 	if (pci_has_flag(PCI_PROBE_ONLY)) {
5005 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5006 		goto out;
5007 	}
5008 
5009 	while (*p) {
5010 		count = 0;
5011 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
5012 							p[count] == '@') {
5013 			p += count + 1;
5014 		} else {
5015 			align_order = -1;
5016 		}
5017 		if (strncmp(p, "pci:", 4) == 0) {
5018 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
5019 			p += 4;
5020 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
5021 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
5022 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
5023 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
5024 						p);
5025 					break;
5026 				}
5027 				subsystem_vendor = subsystem_device = 0;
5028 			}
5029 			p += count;
5030 			if ((!vendor || (vendor == dev->vendor)) &&
5031 				(!device || (device == dev->device)) &&
5032 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
5033 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
5034 				if (align_order == -1)
5035 					align = PAGE_SIZE;
5036 				else
5037 					align = 1 << align_order;
5038 				/* Found */
5039 				break;
5040 			}
5041 		}
5042 		else {
5043 			if (sscanf(p, "%x:%x:%x.%x%n",
5044 				&seg, &bus, &slot, &func, &count) != 4) {
5045 				seg = 0;
5046 				if (sscanf(p, "%x:%x.%x%n",
5047 						&bus, &slot, &func, &count) != 3) {
5048 					/* Invalid format */
5049 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5050 						p);
5051 					break;
5052 				}
5053 			}
5054 			p += count;
5055 			if (seg == pci_domain_nr(dev->bus) &&
5056 				bus == dev->bus->number &&
5057 				slot == PCI_SLOT(dev->devfn) &&
5058 				func == PCI_FUNC(dev->devfn)) {
5059 				if (align_order == -1)
5060 					align = PAGE_SIZE;
5061 				else
5062 					align = 1 << align_order;
5063 				/* Found */
5064 				break;
5065 			}
5066 		}
5067 		if (*p != ';' && *p != ',') {
5068 			/* End of param or invalid format */
5069 			break;
5070 		}
5071 		p++;
5072 	}
5073 out:
5074 	spin_unlock(&resource_alignment_lock);
5075 	return align;
5076 }
5077 
5078 /*
5079  * This function disables memory decoding and releases memory resources
5080  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5081  * It also rounds up size to specified alignment.
5082  * Later on, the kernel will assign page-aligned memory resource back
5083  * to the device.
5084  */
pci_reassigndev_resource_alignment(struct pci_dev * dev)5085 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5086 {
5087 	int i;
5088 	struct resource *r;
5089 	resource_size_t align, size;
5090 	u16 command;
5091 
5092 	/*
5093 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5094 	 * 3.4.1.11.  Their resources are allocated from the space
5095 	 * described by the VF BARx register in the PF's SR-IOV capability.
5096 	 * We can't influence their alignment here.
5097 	 */
5098 	if (dev->is_virtfn)
5099 		return;
5100 
5101 	/* check if specified PCI is target device to reassign */
5102 	align = pci_specified_resource_alignment(dev);
5103 	if (!align)
5104 		return;
5105 
5106 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5107 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5108 		dev_warn(&dev->dev,
5109 			"Can't reassign resources to host bridge.\n");
5110 		return;
5111 	}
5112 
5113 	dev_info(&dev->dev,
5114 		"Disabling memory decoding and releasing memory resources.\n");
5115 	pci_read_config_word(dev, PCI_COMMAND, &command);
5116 	command &= ~PCI_COMMAND_MEMORY;
5117 	pci_write_config_word(dev, PCI_COMMAND, command);
5118 
5119 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5120 		r = &dev->resource[i];
5121 		if (!(r->flags & IORESOURCE_MEM))
5122 			continue;
5123 		if (r->flags & IORESOURCE_PCI_FIXED) {
5124 			dev_info(&dev->dev, "Ignoring requested alignment for BAR%d: %pR\n",
5125 				i, r);
5126 			continue;
5127 		}
5128 
5129 		size = resource_size(r);
5130 		if (size < align) {
5131 			size = align;
5132 			dev_info(&dev->dev,
5133 				"Rounding up size of resource #%d to %#llx.\n",
5134 				i, (unsigned long long)size);
5135 		}
5136 		r->flags |= IORESOURCE_UNSET;
5137 		r->end = size - 1;
5138 		r->start = 0;
5139 	}
5140 	/* Need to disable bridge's resource window,
5141 	 * to enable the kernel to reassign new resource
5142 	 * window later on.
5143 	 */
5144 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5145 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5146 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5147 			r = &dev->resource[i];
5148 			if (!(r->flags & IORESOURCE_MEM))
5149 				continue;
5150 			r->flags |= IORESOURCE_UNSET;
5151 			r->end = resource_size(r) - 1;
5152 			r->start = 0;
5153 		}
5154 		pci_disable_bridge_window(dev);
5155 	}
5156 }
5157 
pci_set_resource_alignment_param(const char * buf,size_t count)5158 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5159 {
5160 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5161 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5162 	spin_lock(&resource_alignment_lock);
5163 	strncpy(resource_alignment_param, buf, count);
5164 	resource_alignment_param[count] = '\0';
5165 	spin_unlock(&resource_alignment_lock);
5166 	return count;
5167 }
5168 
pci_get_resource_alignment_param(char * buf,size_t size)5169 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5170 {
5171 	size_t count;
5172 	spin_lock(&resource_alignment_lock);
5173 	count = snprintf(buf, size, "%s", resource_alignment_param);
5174 	spin_unlock(&resource_alignment_lock);
5175 	return count;
5176 }
5177 
pci_resource_alignment_show(struct bus_type * bus,char * buf)5178 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5179 {
5180 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5181 }
5182 
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)5183 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5184 					const char *buf, size_t count)
5185 {
5186 	return pci_set_resource_alignment_param(buf, count);
5187 }
5188 
5189 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5190 					pci_resource_alignment_store);
5191 
pci_resource_alignment_sysfs_init(void)5192 static int __init pci_resource_alignment_sysfs_init(void)
5193 {
5194 	return bus_create_file(&pci_bus_type,
5195 					&bus_attr_resource_alignment);
5196 }
5197 late_initcall(pci_resource_alignment_sysfs_init);
5198 
pci_no_domains(void)5199 static void pci_no_domains(void)
5200 {
5201 #ifdef CONFIG_PCI_DOMAINS
5202 	pci_domains_supported = 0;
5203 #endif
5204 }
5205 
5206 #ifdef CONFIG_PCI_DOMAINS
5207 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5208 
pci_get_new_domain_nr(void)5209 int pci_get_new_domain_nr(void)
5210 {
5211 	return atomic_inc_return(&__domain_nr);
5212 }
5213 
5214 #ifdef CONFIG_PCI_DOMAINS_GENERIC
of_pci_bus_find_domain_nr(struct device * parent)5215 static int of_pci_bus_find_domain_nr(struct device *parent)
5216 {
5217 	static int use_dt_domains = -1;
5218 	int domain = -1;
5219 
5220 	if (parent)
5221 		domain = of_get_pci_domain_nr(parent->of_node);
5222 	/*
5223 	 * Check DT domain and use_dt_domains values.
5224 	 *
5225 	 * If DT domain property is valid (domain >= 0) and
5226 	 * use_dt_domains != 0, the DT assignment is valid since this means
5227 	 * we have not previously allocated a domain number by using
5228 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5229 	 * 1, to indicate that we have just assigned a domain number from
5230 	 * DT.
5231 	 *
5232 	 * If DT domain property value is not valid (ie domain < 0), and we
5233 	 * have not previously assigned a domain number from DT
5234 	 * (use_dt_domains != 1) we should assign a domain number by
5235 	 * using the:
5236 	 *
5237 	 * pci_get_new_domain_nr()
5238 	 *
5239 	 * API and update the use_dt_domains value to keep track of method we
5240 	 * are using to assign domain numbers (use_dt_domains = 0).
5241 	 *
5242 	 * All other combinations imply we have a platform that is trying
5243 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5244 	 * which is a recipe for domain mishandling and it is prevented by
5245 	 * invalidating the domain value (domain = -1) and printing a
5246 	 * corresponding error.
5247 	 */
5248 	if (domain >= 0 && use_dt_domains) {
5249 		use_dt_domains = 1;
5250 	} else if (domain < 0 && use_dt_domains != 1) {
5251 		use_dt_domains = 0;
5252 		domain = pci_get_new_domain_nr();
5253 	} else {
5254 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5255 			parent->of_node->full_name);
5256 		domain = -1;
5257 	}
5258 
5259 	return domain;
5260 }
5261 
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)5262 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5263 {
5264 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5265 			       acpi_pci_bus_find_domain_nr(bus);
5266 }
5267 #endif
5268 #endif
5269 
5270 /**
5271  * pci_ext_cfg_avail - can we access extended PCI config space?
5272  *
5273  * Returns 1 if we can access PCI extended config space (offsets
5274  * greater than 0xff). This is the default implementation. Architecture
5275  * implementations can override this.
5276  */
pci_ext_cfg_avail(void)5277 int __weak pci_ext_cfg_avail(void)
5278 {
5279 	return 1;
5280 }
5281 
pci_fixup_cardbus(struct pci_bus * bus)5282 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5283 {
5284 }
5285 EXPORT_SYMBOL(pci_fixup_cardbus);
5286 
pci_setup(char * str)5287 static int __init pci_setup(char *str)
5288 {
5289 	while (str) {
5290 		char *k = strchr(str, ',');
5291 		if (k)
5292 			*k++ = 0;
5293 		if (*str && (str = pcibios_setup(str)) && *str) {
5294 			if (!strcmp(str, "nomsi")) {
5295 				pci_no_msi();
5296 			} else if (!strcmp(str, "noaer")) {
5297 				pci_no_aer();
5298 			} else if (!strncmp(str, "realloc=", 8)) {
5299 				pci_realloc_get_opt(str + 8);
5300 			} else if (!strncmp(str, "realloc", 7)) {
5301 				pci_realloc_get_opt("on");
5302 			} else if (!strcmp(str, "nodomains")) {
5303 				pci_no_domains();
5304 			} else if (!strncmp(str, "noari", 5)) {
5305 				pcie_ari_disabled = true;
5306 			} else if (!strncmp(str, "cbiosize=", 9)) {
5307 				pci_cardbus_io_size = memparse(str + 9, &str);
5308 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5309 				pci_cardbus_mem_size = memparse(str + 10, &str);
5310 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5311 				pci_set_resource_alignment_param(str + 19,
5312 							strlen(str + 19));
5313 			} else if (!strncmp(str, "ecrc=", 5)) {
5314 				pcie_ecrc_get_policy(str + 5);
5315 			} else if (!strncmp(str, "hpiosize=", 9)) {
5316 				pci_hotplug_io_size = memparse(str + 9, &str);
5317 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5318 				pci_hotplug_mem_size = memparse(str + 10, &str);
5319 			} else if (!strncmp(str, "hpbussize=", 10)) {
5320 				pci_hotplug_bus_size =
5321 					simple_strtoul(str + 10, &str, 0);
5322 				if (pci_hotplug_bus_size > 0xff)
5323 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5324 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5325 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5326 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5327 				pcie_bus_config = PCIE_BUS_SAFE;
5328 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5329 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5330 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5331 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5332 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5333 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5334 			} else {
5335 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5336 						str);
5337 			}
5338 		}
5339 		str = k;
5340 	}
5341 	return 0;
5342 }
5343 early_param("pci", pci_setup);
5344