• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * File:	msi.c
3  * Purpose:	PCI Message Signaled Interrupt (MSI)
4  *
5  * Copyright (C) 2003-2004 Intel
6  * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com)
7  * Copyright (C) 2016 Christoph Hellwig.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/mm.h>
12 #include <linux/irq.h>
13 #include <linux/interrupt.h>
14 #include <linux/export.h>
15 #include <linux/ioport.h>
16 #include <linux/pci.h>
17 #include <linux/proc_fs.h>
18 #include <linux/msi.h>
19 #include <linux/smp.h>
20 #include <linux/errno.h>
21 #include <linux/io.h>
22 #include <linux/acpi_iort.h>
23 #include <linux/slab.h>
24 #include <linux/irqdomain.h>
25 #include <linux/of_irq.h>
26 
27 #include "pci.h"
28 
29 static int pci_msi_enable = 1;
30 int pci_msi_ignore_mask;
31 
32 #define msix_table_size(flags)	((flags & PCI_MSIX_FLAGS_QSIZE) + 1)
33 
34 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
35 static struct irq_domain *pci_msi_default_domain;
36 static DEFINE_MUTEX(pci_msi_domain_lock);
37 
arch_get_pci_msi_domain(struct pci_dev * dev)38 struct irq_domain * __weak arch_get_pci_msi_domain(struct pci_dev *dev)
39 {
40 	return pci_msi_default_domain;
41 }
42 
pci_msi_get_domain(struct pci_dev * dev)43 static struct irq_domain *pci_msi_get_domain(struct pci_dev *dev)
44 {
45 	struct irq_domain *domain;
46 
47 	domain = dev_get_msi_domain(&dev->dev);
48 	if (domain)
49 		return domain;
50 
51 	return arch_get_pci_msi_domain(dev);
52 }
53 
pci_msi_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)54 static int pci_msi_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
55 {
56 	struct irq_domain *domain;
57 
58 	domain = pci_msi_get_domain(dev);
59 	if (domain && irq_domain_is_hierarchy(domain))
60 		return pci_msi_domain_alloc_irqs(domain, dev, nvec, type);
61 
62 	return arch_setup_msi_irqs(dev, nvec, type);
63 }
64 
pci_msi_teardown_msi_irqs(struct pci_dev * dev)65 static void pci_msi_teardown_msi_irqs(struct pci_dev *dev)
66 {
67 	struct irq_domain *domain;
68 
69 	domain = pci_msi_get_domain(dev);
70 	if (domain && irq_domain_is_hierarchy(domain))
71 		pci_msi_domain_free_irqs(domain, dev);
72 	else
73 		arch_teardown_msi_irqs(dev);
74 }
75 #else
76 #define pci_msi_setup_msi_irqs		arch_setup_msi_irqs
77 #define pci_msi_teardown_msi_irqs	arch_teardown_msi_irqs
78 #endif
79 
80 /* Arch hooks */
81 
arch_setup_msi_irq(struct pci_dev * dev,struct msi_desc * desc)82 int __weak arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc)
83 {
84 	struct msi_controller *chip = dev->bus->msi;
85 	int err;
86 
87 	if (!chip || !chip->setup_irq)
88 		return -EINVAL;
89 
90 	err = chip->setup_irq(chip, dev, desc);
91 	if (err < 0)
92 		return err;
93 
94 	irq_set_chip_data(desc->irq, chip);
95 
96 	return 0;
97 }
98 
arch_teardown_msi_irq(unsigned int irq)99 void __weak arch_teardown_msi_irq(unsigned int irq)
100 {
101 	struct msi_controller *chip = irq_get_chip_data(irq);
102 
103 	if (!chip || !chip->teardown_irq)
104 		return;
105 
106 	chip->teardown_irq(chip, irq);
107 }
108 
arch_setup_msi_irqs(struct pci_dev * dev,int nvec,int type)109 int __weak arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
110 {
111 	struct msi_controller *chip = dev->bus->msi;
112 	struct msi_desc *entry;
113 	int ret;
114 
115 	if (chip && chip->setup_irqs)
116 		return chip->setup_irqs(chip, dev, nvec, type);
117 	/*
118 	 * If an architecture wants to support multiple MSI, it needs to
119 	 * override arch_setup_msi_irqs()
120 	 */
121 	if (type == PCI_CAP_ID_MSI && nvec > 1)
122 		return 1;
123 
124 	for_each_pci_msi_entry(entry, dev) {
125 		ret = arch_setup_msi_irq(dev, entry);
126 		if (ret < 0)
127 			return ret;
128 		if (ret > 0)
129 			return -ENOSPC;
130 	}
131 
132 	return 0;
133 }
134 
135 /*
136  * We have a default implementation available as a separate non-weak
137  * function, as it is used by the Xen x86 PCI code
138  */
default_teardown_msi_irqs(struct pci_dev * dev)139 void default_teardown_msi_irqs(struct pci_dev *dev)
140 {
141 	int i;
142 	struct msi_desc *entry;
143 
144 	for_each_pci_msi_entry(entry, dev)
145 		if (entry->irq)
146 			for (i = 0; i < entry->nvec_used; i++)
147 				arch_teardown_msi_irq(entry->irq + i);
148 }
149 
arch_teardown_msi_irqs(struct pci_dev * dev)150 void __weak arch_teardown_msi_irqs(struct pci_dev *dev)
151 {
152 	return default_teardown_msi_irqs(dev);
153 }
154 
default_restore_msi_irq(struct pci_dev * dev,int irq)155 static void default_restore_msi_irq(struct pci_dev *dev, int irq)
156 {
157 	struct msi_desc *entry;
158 
159 	entry = NULL;
160 	if (dev->msix_enabled) {
161 		for_each_pci_msi_entry(entry, dev) {
162 			if (irq == entry->irq)
163 				break;
164 		}
165 	} else if (dev->msi_enabled)  {
166 		entry = irq_get_msi_desc(irq);
167 	}
168 
169 	if (entry)
170 		__pci_write_msi_msg(entry, &entry->msg);
171 }
172 
arch_restore_msi_irqs(struct pci_dev * dev)173 void __weak arch_restore_msi_irqs(struct pci_dev *dev)
174 {
175 	return default_restore_msi_irqs(dev);
176 }
177 
msi_mask(unsigned x)178 static inline __attribute_const__ u32 msi_mask(unsigned x)
179 {
180 	/* Don't shift by >= width of type */
181 	if (x >= 5)
182 		return 0xffffffff;
183 	return (1 << (1 << x)) - 1;
184 }
185 
186 /*
187  * PCI 2.3 does not specify mask bits for each MSI interrupt.  Attempting to
188  * mask all MSI interrupts by clearing the MSI enable bit does not work
189  * reliably as devices without an INTx disable bit will then generate a
190  * level IRQ which will never be cleared.
191  */
__pci_msi_desc_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)192 u32 __pci_msi_desc_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
193 {
194 	u32 mask_bits = desc->masked;
195 
196 	if (pci_msi_ignore_mask || !desc->msi_attrib.maskbit)
197 		return 0;
198 
199 	mask_bits &= ~mask;
200 	mask_bits |= flag;
201 	pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->mask_pos,
202 			       mask_bits);
203 
204 	return mask_bits;
205 }
206 
msi_mask_irq(struct msi_desc * desc,u32 mask,u32 flag)207 static void msi_mask_irq(struct msi_desc *desc, u32 mask, u32 flag)
208 {
209 	desc->masked = __pci_msi_desc_mask_irq(desc, mask, flag);
210 }
211 
pci_msix_desc_addr(struct msi_desc * desc)212 static void __iomem *pci_msix_desc_addr(struct msi_desc *desc)
213 {
214 	return desc->mask_base +
215 		desc->msi_attrib.entry_nr * PCI_MSIX_ENTRY_SIZE;
216 }
217 
218 /*
219  * This internal function does not flush PCI writes to the device.
220  * All users must ensure that they read from the device before either
221  * assuming that the device state is up to date, or returning out of this
222  * file.  This saves a few milliseconds when initialising devices with lots
223  * of MSI-X interrupts.
224  */
__pci_msix_desc_mask_irq(struct msi_desc * desc,u32 flag)225 u32 __pci_msix_desc_mask_irq(struct msi_desc *desc, u32 flag)
226 {
227 	u32 mask_bits = desc->masked;
228 
229 	if (pci_msi_ignore_mask)
230 		return 0;
231 
232 	mask_bits &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
233 	if (flag)
234 		mask_bits |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
235 	writel(mask_bits, pci_msix_desc_addr(desc) + PCI_MSIX_ENTRY_VECTOR_CTRL);
236 
237 	return mask_bits;
238 }
239 
msix_mask_irq(struct msi_desc * desc,u32 flag)240 static void msix_mask_irq(struct msi_desc *desc, u32 flag)
241 {
242 	desc->masked = __pci_msix_desc_mask_irq(desc, flag);
243 }
244 
msi_set_mask_bit(struct irq_data * data,u32 flag)245 static void msi_set_mask_bit(struct irq_data *data, u32 flag)
246 {
247 	struct msi_desc *desc = irq_data_get_msi_desc(data);
248 
249 	if (desc->msi_attrib.is_msix) {
250 		msix_mask_irq(desc, flag);
251 		readl(desc->mask_base);		/* Flush write to device */
252 	} else {
253 		unsigned offset = data->irq - desc->irq;
254 		msi_mask_irq(desc, 1 << offset, flag << offset);
255 	}
256 }
257 
258 /**
259  * pci_msi_mask_irq - Generic irq chip callback to mask PCI/MSI interrupts
260  * @data:	pointer to irqdata associated to that interrupt
261  */
pci_msi_mask_irq(struct irq_data * data)262 void pci_msi_mask_irq(struct irq_data *data)
263 {
264 	msi_set_mask_bit(data, 1);
265 }
266 EXPORT_SYMBOL_GPL(pci_msi_mask_irq);
267 
268 /**
269  * pci_msi_unmask_irq - Generic irq chip callback to unmask PCI/MSI interrupts
270  * @data:	pointer to irqdata associated to that interrupt
271  */
pci_msi_unmask_irq(struct irq_data * data)272 void pci_msi_unmask_irq(struct irq_data *data)
273 {
274 	msi_set_mask_bit(data, 0);
275 }
276 EXPORT_SYMBOL_GPL(pci_msi_unmask_irq);
277 
default_restore_msi_irqs(struct pci_dev * dev)278 void default_restore_msi_irqs(struct pci_dev *dev)
279 {
280 	struct msi_desc *entry;
281 
282 	for_each_pci_msi_entry(entry, dev)
283 		default_restore_msi_irq(dev, entry->irq);
284 }
285 
__pci_read_msi_msg(struct msi_desc * entry,struct msi_msg * msg)286 void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
287 {
288 	struct pci_dev *dev = msi_desc_to_pci_dev(entry);
289 
290 	BUG_ON(dev->current_state != PCI_D0);
291 
292 	if (entry->msi_attrib.is_msix) {
293 		void __iomem *base = pci_msix_desc_addr(entry);
294 
295 		msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR);
296 		msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR);
297 		msg->data = readl(base + PCI_MSIX_ENTRY_DATA);
298 	} else {
299 		int pos = dev->msi_cap;
300 		u16 data;
301 
302 		pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
303 				      &msg->address_lo);
304 		if (entry->msi_attrib.is_64) {
305 			pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
306 					      &msg->address_hi);
307 			pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data);
308 		} else {
309 			msg->address_hi = 0;
310 			pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data);
311 		}
312 		msg->data = data;
313 	}
314 }
315 
__pci_write_msi_msg(struct msi_desc * entry,struct msi_msg * msg)316 void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg)
317 {
318 	struct pci_dev *dev = msi_desc_to_pci_dev(entry);
319 
320 	if (dev->current_state != PCI_D0) {
321 		/* Don't touch the hardware now */
322 	} else if (entry->msi_attrib.is_msix) {
323 		void __iomem *base = pci_msix_desc_addr(entry);
324 
325 		writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR);
326 		writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR);
327 		writel(msg->data, base + PCI_MSIX_ENTRY_DATA);
328 	} else {
329 		int pos = dev->msi_cap;
330 		u16 msgctl;
331 
332 		pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl);
333 		msgctl &= ~PCI_MSI_FLAGS_QSIZE;
334 		msgctl |= entry->msi_attrib.multiple << 4;
335 		pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl);
336 
337 		pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO,
338 				       msg->address_lo);
339 		if (entry->msi_attrib.is_64) {
340 			pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI,
341 					       msg->address_hi);
342 			pci_write_config_word(dev, pos + PCI_MSI_DATA_64,
343 					      msg->data);
344 		} else {
345 			pci_write_config_word(dev, pos + PCI_MSI_DATA_32,
346 					      msg->data);
347 		}
348 	}
349 	entry->msg = *msg;
350 }
351 
pci_write_msi_msg(unsigned int irq,struct msi_msg * msg)352 void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg)
353 {
354 	struct msi_desc *entry = irq_get_msi_desc(irq);
355 
356 	__pci_write_msi_msg(entry, msg);
357 }
358 EXPORT_SYMBOL_GPL(pci_write_msi_msg);
359 
free_msi_irqs(struct pci_dev * dev)360 static void free_msi_irqs(struct pci_dev *dev)
361 {
362 	struct list_head *msi_list = dev_to_msi_list(&dev->dev);
363 	struct msi_desc *entry, *tmp;
364 	struct attribute **msi_attrs;
365 	struct device_attribute *dev_attr;
366 	int i, count = 0;
367 
368 	for_each_pci_msi_entry(entry, dev)
369 		if (entry->irq)
370 			for (i = 0; i < entry->nvec_used; i++)
371 				BUG_ON(irq_has_action(entry->irq + i));
372 
373 	pci_msi_teardown_msi_irqs(dev);
374 
375 	list_for_each_entry_safe(entry, tmp, msi_list, list) {
376 		if (entry->msi_attrib.is_msix) {
377 			if (list_is_last(&entry->list, msi_list))
378 				iounmap(entry->mask_base);
379 		}
380 
381 		list_del(&entry->list);
382 		kfree(entry);
383 	}
384 
385 	if (dev->msi_irq_groups) {
386 		sysfs_remove_groups(&dev->dev.kobj, dev->msi_irq_groups);
387 		msi_attrs = dev->msi_irq_groups[0]->attrs;
388 		while (msi_attrs[count]) {
389 			dev_attr = container_of(msi_attrs[count],
390 						struct device_attribute, attr);
391 			kfree(dev_attr->attr.name);
392 			kfree(dev_attr);
393 			++count;
394 		}
395 		kfree(msi_attrs);
396 		kfree(dev->msi_irq_groups[0]);
397 		kfree(dev->msi_irq_groups);
398 		dev->msi_irq_groups = NULL;
399 	}
400 }
401 
pci_intx_for_msi(struct pci_dev * dev,int enable)402 static void pci_intx_for_msi(struct pci_dev *dev, int enable)
403 {
404 	if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG))
405 		pci_intx(dev, enable);
406 }
407 
__pci_restore_msi_state(struct pci_dev * dev)408 static void __pci_restore_msi_state(struct pci_dev *dev)
409 {
410 	u16 control;
411 	struct msi_desc *entry;
412 
413 	if (!dev->msi_enabled)
414 		return;
415 
416 	entry = irq_get_msi_desc(dev->irq);
417 
418 	pci_intx_for_msi(dev, 0);
419 	pci_msi_set_enable(dev, 0);
420 	arch_restore_msi_irqs(dev);
421 
422 	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
423 	msi_mask_irq(entry, msi_mask(entry->msi_attrib.multi_cap),
424 		     entry->masked);
425 	control &= ~PCI_MSI_FLAGS_QSIZE;
426 	control |= (entry->msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE;
427 	pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control);
428 }
429 
__pci_restore_msix_state(struct pci_dev * dev)430 static void __pci_restore_msix_state(struct pci_dev *dev)
431 {
432 	struct msi_desc *entry;
433 
434 	if (!dev->msix_enabled)
435 		return;
436 	BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
437 
438 	/* route the table */
439 	pci_intx_for_msi(dev, 0);
440 	pci_msix_clear_and_set_ctrl(dev, 0,
441 				PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL);
442 
443 	arch_restore_msi_irqs(dev);
444 	for_each_pci_msi_entry(entry, dev)
445 		msix_mask_irq(entry, entry->masked);
446 
447 	pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
448 }
449 
pci_restore_msi_state(struct pci_dev * dev)450 void pci_restore_msi_state(struct pci_dev *dev)
451 {
452 	__pci_restore_msi_state(dev);
453 	__pci_restore_msix_state(dev);
454 }
455 EXPORT_SYMBOL_GPL(pci_restore_msi_state);
456 
msi_mode_show(struct device * dev,struct device_attribute * attr,char * buf)457 static ssize_t msi_mode_show(struct device *dev, struct device_attribute *attr,
458 			     char *buf)
459 {
460 	struct msi_desc *entry;
461 	unsigned long irq;
462 	int retval;
463 
464 	retval = kstrtoul(attr->attr.name, 10, &irq);
465 	if (retval)
466 		return retval;
467 
468 	entry = irq_get_msi_desc(irq);
469 	if (entry)
470 		return sprintf(buf, "%s\n",
471 				entry->msi_attrib.is_msix ? "msix" : "msi");
472 
473 	return -ENODEV;
474 }
475 
populate_msi_sysfs(struct pci_dev * pdev)476 static int populate_msi_sysfs(struct pci_dev *pdev)
477 {
478 	struct attribute **msi_attrs;
479 	struct attribute *msi_attr;
480 	struct device_attribute *msi_dev_attr;
481 	struct attribute_group *msi_irq_group;
482 	const struct attribute_group **msi_irq_groups;
483 	struct msi_desc *entry;
484 	int ret = -ENOMEM;
485 	int num_msi = 0;
486 	int count = 0;
487 	int i;
488 
489 	/* Determine how many msi entries we have */
490 	for_each_pci_msi_entry(entry, pdev)
491 		num_msi += entry->nvec_used;
492 	if (!num_msi)
493 		return 0;
494 
495 	/* Dynamically create the MSI attributes for the PCI device */
496 	msi_attrs = kzalloc(sizeof(void *) * (num_msi + 1), GFP_KERNEL);
497 	if (!msi_attrs)
498 		return -ENOMEM;
499 	for_each_pci_msi_entry(entry, pdev) {
500 		for (i = 0; i < entry->nvec_used; i++) {
501 			msi_dev_attr = kzalloc(sizeof(*msi_dev_attr), GFP_KERNEL);
502 			if (!msi_dev_attr)
503 				goto error_attrs;
504 			msi_attrs[count] = &msi_dev_attr->attr;
505 
506 			sysfs_attr_init(&msi_dev_attr->attr);
507 			msi_dev_attr->attr.name = kasprintf(GFP_KERNEL, "%d",
508 							    entry->irq + i);
509 			if (!msi_dev_attr->attr.name)
510 				goto error_attrs;
511 			msi_dev_attr->attr.mode = S_IRUGO;
512 			msi_dev_attr->show = msi_mode_show;
513 			++count;
514 		}
515 	}
516 
517 	msi_irq_group = kzalloc(sizeof(*msi_irq_group), GFP_KERNEL);
518 	if (!msi_irq_group)
519 		goto error_attrs;
520 	msi_irq_group->name = "msi_irqs";
521 	msi_irq_group->attrs = msi_attrs;
522 
523 	msi_irq_groups = kzalloc(sizeof(void *) * 2, GFP_KERNEL);
524 	if (!msi_irq_groups)
525 		goto error_irq_group;
526 	msi_irq_groups[0] = msi_irq_group;
527 
528 	ret = sysfs_create_groups(&pdev->dev.kobj, msi_irq_groups);
529 	if (ret)
530 		goto error_irq_groups;
531 	pdev->msi_irq_groups = msi_irq_groups;
532 
533 	return 0;
534 
535 error_irq_groups:
536 	kfree(msi_irq_groups);
537 error_irq_group:
538 	kfree(msi_irq_group);
539 error_attrs:
540 	count = 0;
541 	msi_attr = msi_attrs[count];
542 	while (msi_attr) {
543 		msi_dev_attr = container_of(msi_attr, struct device_attribute, attr);
544 		kfree(msi_attr->name);
545 		kfree(msi_dev_attr);
546 		++count;
547 		msi_attr = msi_attrs[count];
548 	}
549 	kfree(msi_attrs);
550 	return ret;
551 }
552 
553 static struct msi_desc *
msi_setup_entry(struct pci_dev * dev,int nvec,bool affinity)554 msi_setup_entry(struct pci_dev *dev, int nvec, bool affinity)
555 {
556 	struct cpumask *masks = NULL;
557 	struct msi_desc *entry;
558 	u16 control;
559 
560 	if (affinity) {
561 		masks = irq_create_affinity_masks(dev->irq_affinity, nvec);
562 		if (!masks)
563 			pr_err("Unable to allocate affinity masks, ignoring\n");
564 	}
565 
566 	/* MSI Entry Initialization */
567 	entry = alloc_msi_entry(&dev->dev, nvec, masks);
568 	if (!entry)
569 		goto out;
570 
571 	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control);
572 
573 	entry->msi_attrib.is_msix	= 0;
574 	entry->msi_attrib.is_64		= !!(control & PCI_MSI_FLAGS_64BIT);
575 	entry->msi_attrib.entry_nr	= 0;
576 	entry->msi_attrib.maskbit	= !!(control & PCI_MSI_FLAGS_MASKBIT);
577 	entry->msi_attrib.default_irq	= dev->irq;	/* Save IOAPIC IRQ */
578 	entry->msi_attrib.multi_cap	= (control & PCI_MSI_FLAGS_QMASK) >> 1;
579 	entry->msi_attrib.multiple	= ilog2(__roundup_pow_of_two(nvec));
580 
581 	if (control & PCI_MSI_FLAGS_64BIT)
582 		entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_64;
583 	else
584 		entry->mask_pos = dev->msi_cap + PCI_MSI_MASK_32;
585 
586 	/* Save the initial mask status */
587 	if (entry->msi_attrib.maskbit)
588 		pci_read_config_dword(dev, entry->mask_pos, &entry->masked);
589 
590 out:
591 	kfree(masks);
592 	return entry;
593 }
594 
msi_verify_entries(struct pci_dev * dev)595 static int msi_verify_entries(struct pci_dev *dev)
596 {
597 	struct msi_desc *entry;
598 
599 	for_each_pci_msi_entry(entry, dev) {
600 		if (!dev->no_64bit_msi || !entry->msg.address_hi)
601 			continue;
602 		dev_err(&dev->dev, "Device has broken 64-bit MSI but arch"
603 			" tried to assign one above 4G\n");
604 		return -EIO;
605 	}
606 	return 0;
607 }
608 
609 /**
610  * msi_capability_init - configure device's MSI capability structure
611  * @dev: pointer to the pci_dev data structure of MSI device function
612  * @nvec: number of interrupts to allocate
613  * @affinity: flag to indicate cpu irq affinity mask should be set
614  *
615  * Setup the MSI capability structure of the device with the requested
616  * number of interrupts.  A return value of zero indicates the successful
617  * setup of an entry with the new MSI irq.  A negative return value indicates
618  * an error, and a positive return value indicates the number of interrupts
619  * which could have been allocated.
620  */
msi_capability_init(struct pci_dev * dev,int nvec,bool affinity)621 static int msi_capability_init(struct pci_dev *dev, int nvec, bool affinity)
622 {
623 	struct msi_desc *entry;
624 	int ret;
625 	unsigned mask;
626 
627 	pci_msi_set_enable(dev, 0);	/* Disable MSI during set up */
628 
629 	entry = msi_setup_entry(dev, nvec, affinity);
630 	if (!entry)
631 		return -ENOMEM;
632 
633 	/* All MSIs are unmasked by default, Mask them all */
634 	mask = msi_mask(entry->msi_attrib.multi_cap);
635 	msi_mask_irq(entry, mask, mask);
636 
637 	list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
638 
639 	/* Configure MSI capability structure */
640 	ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI);
641 	if (ret) {
642 		msi_mask_irq(entry, mask, ~mask);
643 		free_msi_irqs(dev);
644 		return ret;
645 	}
646 
647 	ret = msi_verify_entries(dev);
648 	if (ret) {
649 		msi_mask_irq(entry, mask, ~mask);
650 		free_msi_irqs(dev);
651 		return ret;
652 	}
653 
654 	ret = populate_msi_sysfs(dev);
655 	if (ret) {
656 		msi_mask_irq(entry, mask, ~mask);
657 		free_msi_irqs(dev);
658 		return ret;
659 	}
660 
661 	/* Set MSI enabled bits	 */
662 	pci_intx_for_msi(dev, 0);
663 	pci_msi_set_enable(dev, 1);
664 	dev->msi_enabled = 1;
665 
666 	pcibios_free_irq(dev);
667 	dev->irq = entry->irq;
668 	return 0;
669 }
670 
msix_map_region(struct pci_dev * dev,unsigned nr_entries)671 static void __iomem *msix_map_region(struct pci_dev *dev, unsigned nr_entries)
672 {
673 	resource_size_t phys_addr;
674 	u32 table_offset;
675 	unsigned long flags;
676 	u8 bir;
677 
678 	pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE,
679 			      &table_offset);
680 	bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR);
681 	flags = pci_resource_flags(dev, bir);
682 	if (!flags || (flags & IORESOURCE_UNSET))
683 		return NULL;
684 
685 	table_offset &= PCI_MSIX_TABLE_OFFSET;
686 	phys_addr = pci_resource_start(dev, bir) + table_offset;
687 
688 	return ioremap_nocache(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE);
689 }
690 
msix_setup_entries(struct pci_dev * dev,void __iomem * base,struct msix_entry * entries,int nvec,bool affinity)691 static int msix_setup_entries(struct pci_dev *dev, void __iomem *base,
692 			      struct msix_entry *entries, int nvec,
693 			      bool affinity)
694 {
695 	struct cpumask *curmsk, *masks = NULL;
696 	struct msi_desc *entry;
697 	int ret, i;
698 
699 	if (affinity) {
700 		masks = irq_create_affinity_masks(dev->irq_affinity, nvec);
701 		if (!masks)
702 			pr_err("Unable to allocate affinity masks, ignoring\n");
703 	}
704 
705 	for (i = 0, curmsk = masks; i < nvec; i++) {
706 		entry = alloc_msi_entry(&dev->dev, 1, curmsk);
707 		if (!entry) {
708 			if (!i)
709 				iounmap(base);
710 			else
711 				free_msi_irqs(dev);
712 			/* No enough memory. Don't try again */
713 			ret = -ENOMEM;
714 			goto out;
715 		}
716 
717 		entry->msi_attrib.is_msix	= 1;
718 		entry->msi_attrib.is_64		= 1;
719 		if (entries)
720 			entry->msi_attrib.entry_nr = entries[i].entry;
721 		else
722 			entry->msi_attrib.entry_nr = i;
723 		entry->msi_attrib.default_irq	= dev->irq;
724 		entry->mask_base		= base;
725 
726 		list_add_tail(&entry->list, dev_to_msi_list(&dev->dev));
727 		if (masks)
728 			curmsk++;
729 	}
730 	ret = 0;
731 out:
732 	kfree(masks);
733 	return ret;
734 }
735 
msix_program_entries(struct pci_dev * dev,struct msix_entry * entries)736 static void msix_program_entries(struct pci_dev *dev,
737 				 struct msix_entry *entries)
738 {
739 	struct msi_desc *entry;
740 	int i = 0;
741 
742 	for_each_pci_msi_entry(entry, dev) {
743 		if (entries)
744 			entries[i++].vector = entry->irq;
745 		entry->masked = readl(pci_msix_desc_addr(entry) +
746 				PCI_MSIX_ENTRY_VECTOR_CTRL);
747 		msix_mask_irq(entry, 1);
748 	}
749 }
750 
751 /**
752  * msix_capability_init - configure device's MSI-X capability
753  * @dev: pointer to the pci_dev data structure of MSI-X device function
754  * @entries: pointer to an array of struct msix_entry entries
755  * @nvec: number of @entries
756  * @affinity: flag to indicate cpu irq affinity mask should be set
757  *
758  * Setup the MSI-X capability structure of device function with a
759  * single MSI-X irq. A return of zero indicates the successful setup of
760  * requested MSI-X entries with allocated irqs or non-zero for otherwise.
761  **/
msix_capability_init(struct pci_dev * dev,struct msix_entry * entries,int nvec,bool affinity)762 static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries,
763 				int nvec, bool affinity)
764 {
765 	int ret;
766 	u16 control;
767 	void __iomem *base;
768 
769 	/* Ensure MSI-X is disabled while it is set up */
770 	pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
771 
772 	pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
773 	/* Request & Map MSI-X table region */
774 	base = msix_map_region(dev, msix_table_size(control));
775 	if (!base)
776 		return -ENOMEM;
777 
778 	ret = msix_setup_entries(dev, base, entries, nvec, affinity);
779 	if (ret)
780 		return ret;
781 
782 	ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX);
783 	if (ret)
784 		goto out_avail;
785 
786 	/* Check if all MSI entries honor device restrictions */
787 	ret = msi_verify_entries(dev);
788 	if (ret)
789 		goto out_free;
790 
791 	/*
792 	 * Some devices require MSI-X to be enabled before we can touch the
793 	 * MSI-X registers.  We need to mask all the vectors to prevent
794 	 * interrupts coming in before they're fully set up.
795 	 */
796 	pci_msix_clear_and_set_ctrl(dev, 0,
797 				PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE);
798 
799 	msix_program_entries(dev, entries);
800 
801 	ret = populate_msi_sysfs(dev);
802 	if (ret)
803 		goto out_free;
804 
805 	/* Set MSI-X enabled bits and unmask the function */
806 	pci_intx_for_msi(dev, 0);
807 	dev->msix_enabled = 1;
808 	pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0);
809 
810 	pcibios_free_irq(dev);
811 	return 0;
812 
813 out_avail:
814 	if (ret < 0) {
815 		/*
816 		 * If we had some success, report the number of irqs
817 		 * we succeeded in setting up.
818 		 */
819 		struct msi_desc *entry;
820 		int avail = 0;
821 
822 		for_each_pci_msi_entry(entry, dev) {
823 			if (entry->irq != 0)
824 				avail++;
825 		}
826 		if (avail != 0)
827 			ret = avail;
828 	}
829 
830 out_free:
831 	free_msi_irqs(dev);
832 
833 	return ret;
834 }
835 
836 /**
837  * pci_msi_supported - check whether MSI may be enabled on a device
838  * @dev: pointer to the pci_dev data structure of MSI device function
839  * @nvec: how many MSIs have been requested ?
840  *
841  * Look at global flags, the device itself, and its parent buses
842  * to determine if MSI/-X are supported for the device. If MSI/-X is
843  * supported return 1, else return 0.
844  **/
pci_msi_supported(struct pci_dev * dev,int nvec)845 static int pci_msi_supported(struct pci_dev *dev, int nvec)
846 {
847 	struct pci_bus *bus;
848 
849 	/* MSI must be globally enabled and supported by the device */
850 	if (!pci_msi_enable)
851 		return 0;
852 
853 	if (!dev || dev->no_msi || dev->current_state != PCI_D0)
854 		return 0;
855 
856 	/*
857 	 * You can't ask to have 0 or less MSIs configured.
858 	 *  a) it's stupid ..
859 	 *  b) the list manipulation code assumes nvec >= 1.
860 	 */
861 	if (nvec < 1)
862 		return 0;
863 
864 	/*
865 	 * Any bridge which does NOT route MSI transactions from its
866 	 * secondary bus to its primary bus must set NO_MSI flag on
867 	 * the secondary pci_bus.
868 	 * We expect only arch-specific PCI host bus controller driver
869 	 * or quirks for specific PCI bridges to be setting NO_MSI.
870 	 */
871 	for (bus = dev->bus; bus; bus = bus->parent)
872 		if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI)
873 			return 0;
874 
875 	return 1;
876 }
877 
878 /**
879  * pci_msi_vec_count - Return the number of MSI vectors a device can send
880  * @dev: device to report about
881  *
882  * This function returns the number of MSI vectors a device requested via
883  * Multiple Message Capable register. It returns a negative errno if the
884  * device is not capable sending MSI interrupts. Otherwise, the call succeeds
885  * and returns a power of two, up to a maximum of 2^5 (32), according to the
886  * MSI specification.
887  **/
pci_msi_vec_count(struct pci_dev * dev)888 int pci_msi_vec_count(struct pci_dev *dev)
889 {
890 	int ret;
891 	u16 msgctl;
892 
893 	if (!dev->msi_cap)
894 		return -EINVAL;
895 
896 	pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl);
897 	ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1);
898 
899 	return ret;
900 }
901 EXPORT_SYMBOL(pci_msi_vec_count);
902 
pci_msi_shutdown(struct pci_dev * dev)903 void pci_msi_shutdown(struct pci_dev *dev)
904 {
905 	struct msi_desc *desc;
906 	u32 mask;
907 
908 	if (!pci_msi_enable || !dev || !dev->msi_enabled)
909 		return;
910 
911 	BUG_ON(list_empty(dev_to_msi_list(&dev->dev)));
912 	desc = first_pci_msi_entry(dev);
913 
914 	pci_msi_set_enable(dev, 0);
915 	pci_intx_for_msi(dev, 1);
916 	dev->msi_enabled = 0;
917 
918 	/* Return the device with MSI unmasked as initial states */
919 	mask = msi_mask(desc->msi_attrib.multi_cap);
920 	/* Keep cached state to be restored */
921 	__pci_msi_desc_mask_irq(desc, mask, ~mask);
922 
923 	/* Restore dev->irq to its default pin-assertion irq */
924 	dev->irq = desc->msi_attrib.default_irq;
925 	pcibios_alloc_irq(dev);
926 }
927 
pci_disable_msi(struct pci_dev * dev)928 void pci_disable_msi(struct pci_dev *dev)
929 {
930 	if (!pci_msi_enable || !dev || !dev->msi_enabled)
931 		return;
932 
933 	pci_msi_shutdown(dev);
934 	free_msi_irqs(dev);
935 }
936 EXPORT_SYMBOL(pci_disable_msi);
937 
938 /**
939  * pci_msix_vec_count - return the number of device's MSI-X table entries
940  * @dev: pointer to the pci_dev data structure of MSI-X device function
941  * This function returns the number of device's MSI-X table entries and
942  * therefore the number of MSI-X vectors device is capable of sending.
943  * It returns a negative errno if the device is not capable of sending MSI-X
944  * interrupts.
945  **/
pci_msix_vec_count(struct pci_dev * dev)946 int pci_msix_vec_count(struct pci_dev *dev)
947 {
948 	u16 control;
949 
950 	if (!dev->msix_cap)
951 		return -EINVAL;
952 
953 	pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control);
954 	return msix_table_size(control);
955 }
956 EXPORT_SYMBOL(pci_msix_vec_count);
957 
__pci_enable_msix(struct pci_dev * dev,struct msix_entry * entries,int nvec,bool affinity)958 static int __pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
959 			     int nvec, bool affinity)
960 {
961 	int nr_entries;
962 	int i, j;
963 
964 	if (!pci_msi_supported(dev, nvec))
965 		return -EINVAL;
966 
967 	nr_entries = pci_msix_vec_count(dev);
968 	if (nr_entries < 0)
969 		return nr_entries;
970 	if (nvec > nr_entries)
971 		return nr_entries;
972 
973 	if (entries) {
974 		/* Check for any invalid entries */
975 		for (i = 0; i < nvec; i++) {
976 			if (entries[i].entry >= nr_entries)
977 				return -EINVAL;		/* invalid entry */
978 			for (j = i + 1; j < nvec; j++) {
979 				if (entries[i].entry == entries[j].entry)
980 					return -EINVAL;	/* duplicate entry */
981 			}
982 		}
983 	}
984 	WARN_ON(!!dev->msix_enabled);
985 
986 	/* Check whether driver already requested for MSI irq */
987 	if (dev->msi_enabled) {
988 		dev_info(&dev->dev, "can't enable MSI-X (MSI IRQ already assigned)\n");
989 		return -EINVAL;
990 	}
991 	return msix_capability_init(dev, entries, nvec, affinity);
992 }
993 
994 /**
995  * pci_enable_msix - configure device's MSI-X capability structure
996  * @dev: pointer to the pci_dev data structure of MSI-X device function
997  * @entries: pointer to an array of MSI-X entries (optional)
998  * @nvec: number of MSI-X irqs requested for allocation by device driver
999  *
1000  * Setup the MSI-X capability structure of device function with the number
1001  * of requested irqs upon its software driver call to request for
1002  * MSI-X mode enabled on its hardware device function. A return of zero
1003  * indicates the successful configuration of MSI-X capability structure
1004  * with new allocated MSI-X irqs. A return of < 0 indicates a failure.
1005  * Or a return of > 0 indicates that driver request is exceeding the number
1006  * of irqs or MSI-X vectors available. Driver should use the returned value to
1007  * re-send its request.
1008  **/
pci_enable_msix(struct pci_dev * dev,struct msix_entry * entries,int nvec)1009 int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec)
1010 {
1011 	return __pci_enable_msix(dev, entries, nvec, false);
1012 }
1013 EXPORT_SYMBOL(pci_enable_msix);
1014 
pci_msix_shutdown(struct pci_dev * dev)1015 void pci_msix_shutdown(struct pci_dev *dev)
1016 {
1017 	struct msi_desc *entry;
1018 
1019 	if (!pci_msi_enable || !dev || !dev->msix_enabled)
1020 		return;
1021 
1022 	/* Return the device with MSI-X masked as initial states */
1023 	for_each_pci_msi_entry(entry, dev) {
1024 		/* Keep cached states to be restored */
1025 		__pci_msix_desc_mask_irq(entry, 1);
1026 	}
1027 
1028 	pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0);
1029 	pci_intx_for_msi(dev, 1);
1030 	dev->msix_enabled = 0;
1031 	pcibios_alloc_irq(dev);
1032 }
1033 
pci_disable_msix(struct pci_dev * dev)1034 void pci_disable_msix(struct pci_dev *dev)
1035 {
1036 	if (!pci_msi_enable || !dev || !dev->msix_enabled)
1037 		return;
1038 
1039 	pci_msix_shutdown(dev);
1040 	free_msi_irqs(dev);
1041 }
1042 EXPORT_SYMBOL(pci_disable_msix);
1043 
pci_no_msi(void)1044 void pci_no_msi(void)
1045 {
1046 	pci_msi_enable = 0;
1047 }
1048 
1049 /**
1050  * pci_msi_enabled - is MSI enabled?
1051  *
1052  * Returns true if MSI has not been disabled by the command-line option
1053  * pci=nomsi.
1054  **/
pci_msi_enabled(void)1055 int pci_msi_enabled(void)
1056 {
1057 	return pci_msi_enable;
1058 }
1059 EXPORT_SYMBOL(pci_msi_enabled);
1060 
__pci_enable_msi_range(struct pci_dev * dev,int minvec,int maxvec,unsigned int flags)1061 static int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec,
1062 		unsigned int flags)
1063 {
1064 	bool affinity = flags & PCI_IRQ_AFFINITY;
1065 	int nvec;
1066 	int rc;
1067 
1068 	if (!pci_msi_supported(dev, minvec))
1069 		return -EINVAL;
1070 
1071 	WARN_ON(!!dev->msi_enabled);
1072 
1073 	/* Check whether driver already requested MSI-X irqs */
1074 	if (dev->msix_enabled) {
1075 		dev_info(&dev->dev,
1076 			 "can't enable MSI (MSI-X already enabled)\n");
1077 		return -EINVAL;
1078 	}
1079 
1080 	if (maxvec < minvec)
1081 		return -ERANGE;
1082 
1083 	nvec = pci_msi_vec_count(dev);
1084 	if (nvec < 0)
1085 		return nvec;
1086 	if (nvec < minvec)
1087 		return -EINVAL;
1088 
1089 	if (nvec > maxvec)
1090 		nvec = maxvec;
1091 
1092 	for (;;) {
1093 		if (affinity) {
1094 			nvec = irq_calc_affinity_vectors(dev->irq_affinity,
1095 					nvec);
1096 			if (nvec < minvec)
1097 				return -ENOSPC;
1098 		}
1099 
1100 		rc = msi_capability_init(dev, nvec, affinity);
1101 		if (rc == 0)
1102 			return nvec;
1103 
1104 		if (rc < 0)
1105 			return rc;
1106 		if (rc < minvec)
1107 			return -ENOSPC;
1108 
1109 		nvec = rc;
1110 	}
1111 }
1112 
1113 /**
1114  * pci_enable_msi_range - configure device's MSI capability structure
1115  * @dev: device to configure
1116  * @minvec: minimal number of interrupts to configure
1117  * @maxvec: maximum number of interrupts to configure
1118  *
1119  * This function tries to allocate a maximum possible number of interrupts in a
1120  * range between @minvec and @maxvec. It returns a negative errno if an error
1121  * occurs. If it succeeds, it returns the actual number of interrupts allocated
1122  * and updates the @dev's irq member to the lowest new interrupt number;
1123  * the other interrupt numbers allocated to this device are consecutive.
1124  **/
pci_enable_msi_range(struct pci_dev * dev,int minvec,int maxvec)1125 int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec)
1126 {
1127 	return __pci_enable_msi_range(dev, minvec, maxvec, 0);
1128 }
1129 EXPORT_SYMBOL(pci_enable_msi_range);
1130 
__pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec,unsigned int flags)1131 static int __pci_enable_msix_range(struct pci_dev *dev,
1132 		struct msix_entry *entries, int minvec, int maxvec,
1133 		unsigned int flags)
1134 {
1135 	bool affinity = flags & PCI_IRQ_AFFINITY;
1136 	int rc, nvec = maxvec;
1137 
1138 	if (maxvec < minvec)
1139 		return -ERANGE;
1140 
1141 	for (;;) {
1142 		if (affinity) {
1143 			nvec = irq_calc_affinity_vectors(dev->irq_affinity,
1144 					nvec);
1145 			if (nvec < minvec)
1146 				return -ENOSPC;
1147 		}
1148 
1149 		rc = __pci_enable_msix(dev, entries, nvec, affinity);
1150 		if (rc == 0)
1151 			return nvec;
1152 
1153 		if (rc < 0)
1154 			return rc;
1155 		if (rc < minvec)
1156 			return -ENOSPC;
1157 
1158 		nvec = rc;
1159 	}
1160 }
1161 
1162 /**
1163  * pci_enable_msix_range - configure device's MSI-X capability structure
1164  * @dev: pointer to the pci_dev data structure of MSI-X device function
1165  * @entries: pointer to an array of MSI-X entries
1166  * @minvec: minimum number of MSI-X irqs requested
1167  * @maxvec: maximum number of MSI-X irqs requested
1168  *
1169  * Setup the MSI-X capability structure of device function with a maximum
1170  * possible number of interrupts in the range between @minvec and @maxvec
1171  * upon its software driver call to request for MSI-X mode enabled on its
1172  * hardware device function. It returns a negative errno if an error occurs.
1173  * If it succeeds, it returns the actual number of interrupts allocated and
1174  * indicates the successful configuration of MSI-X capability structure
1175  * with new allocated MSI-X interrupts.
1176  **/
pci_enable_msix_range(struct pci_dev * dev,struct msix_entry * entries,int minvec,int maxvec)1177 int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries,
1178 		int minvec, int maxvec)
1179 {
1180 	return __pci_enable_msix_range(dev, entries, minvec, maxvec, 0);
1181 }
1182 EXPORT_SYMBOL(pci_enable_msix_range);
1183 
1184 /**
1185  * pci_alloc_irq_vectors - allocate multiple IRQs for a device
1186  * @dev:		PCI device to operate on
1187  * @min_vecs:		minimum number of vectors required (must be >= 1)
1188  * @max_vecs:		maximum (desired) number of vectors
1189  * @flags:		flags or quirks for the allocation
1190  *
1191  * Allocate up to @max_vecs interrupt vectors for @dev, using MSI-X or MSI
1192  * vectors if available, and fall back to a single legacy vector
1193  * if neither is available.  Return the number of vectors allocated,
1194  * (which might be smaller than @max_vecs) if successful, or a negative
1195  * error code on error. If less than @min_vecs interrupt vectors are
1196  * available for @dev the function will fail with -ENOSPC.
1197  *
1198  * To get the Linux IRQ number used for a vector that can be passed to
1199  * request_irq() use the pci_irq_vector() helper.
1200  */
pci_alloc_irq_vectors(struct pci_dev * dev,unsigned int min_vecs,unsigned int max_vecs,unsigned int flags)1201 int pci_alloc_irq_vectors(struct pci_dev *dev, unsigned int min_vecs,
1202 		unsigned int max_vecs, unsigned int flags)
1203 {
1204 	int vecs = -ENOSPC;
1205 
1206 	if (flags & PCI_IRQ_MSIX) {
1207 		vecs = __pci_enable_msix_range(dev, NULL, min_vecs, max_vecs,
1208 				flags);
1209 		if (vecs > 0)
1210 			return vecs;
1211 	}
1212 
1213 	if (flags & PCI_IRQ_MSI) {
1214 		vecs = __pci_enable_msi_range(dev, min_vecs, max_vecs, flags);
1215 		if (vecs > 0)
1216 			return vecs;
1217 	}
1218 
1219 	/* use legacy irq if allowed */
1220 	if ((flags & PCI_IRQ_LEGACY) && min_vecs == 1) {
1221 		pci_intx(dev, 1);
1222 		return 1;
1223 	}
1224 
1225 	return vecs;
1226 }
1227 EXPORT_SYMBOL(pci_alloc_irq_vectors);
1228 
1229 /**
1230  * pci_free_irq_vectors - free previously allocated IRQs for a device
1231  * @dev:		PCI device to operate on
1232  *
1233  * Undoes the allocations and enabling in pci_alloc_irq_vectors().
1234  */
pci_free_irq_vectors(struct pci_dev * dev)1235 void pci_free_irq_vectors(struct pci_dev *dev)
1236 {
1237 	pci_disable_msix(dev);
1238 	pci_disable_msi(dev);
1239 }
1240 EXPORT_SYMBOL(pci_free_irq_vectors);
1241 
1242 /**
1243  * pci_irq_vector - return Linux IRQ number of a device vector
1244  * @dev: PCI device to operate on
1245  * @nr: device-relative interrupt vector index (0-based).
1246  */
pci_irq_vector(struct pci_dev * dev,unsigned int nr)1247 int pci_irq_vector(struct pci_dev *dev, unsigned int nr)
1248 {
1249 	if (dev->msix_enabled) {
1250 		struct msi_desc *entry;
1251 		int i = 0;
1252 
1253 		for_each_pci_msi_entry(entry, dev) {
1254 			if (i == nr)
1255 				return entry->irq;
1256 			i++;
1257 		}
1258 		WARN_ON_ONCE(1);
1259 		return -EINVAL;
1260 	}
1261 
1262 	if (dev->msi_enabled) {
1263 		struct msi_desc *entry = first_pci_msi_entry(dev);
1264 
1265 		if (WARN_ON_ONCE(nr >= entry->nvec_used))
1266 			return -EINVAL;
1267 	} else {
1268 		if (WARN_ON_ONCE(nr > 0))
1269 			return -EINVAL;
1270 	}
1271 
1272 	return dev->irq + nr;
1273 }
1274 EXPORT_SYMBOL(pci_irq_vector);
1275 
1276 /**
1277  * pci_irq_get_affinity - return the affinity of a particular msi vector
1278  * @dev:	PCI device to operate on
1279  * @nr:		device-relative interrupt vector index (0-based).
1280  */
pci_irq_get_affinity(struct pci_dev * dev,int nr)1281 const struct cpumask *pci_irq_get_affinity(struct pci_dev *dev, int nr)
1282 {
1283 	if (dev->msix_enabled) {
1284 		struct msi_desc *entry;
1285 		int i = 0;
1286 
1287 		for_each_pci_msi_entry(entry, dev) {
1288 			if (i == nr)
1289 				return entry->affinity;
1290 			i++;
1291 		}
1292 		WARN_ON_ONCE(1);
1293 		return NULL;
1294 	} else if (dev->msi_enabled) {
1295 		struct msi_desc *entry = first_pci_msi_entry(dev);
1296 
1297 		if (WARN_ON_ONCE(!entry || !entry->affinity ||
1298 				 nr >= entry->nvec_used))
1299 			return NULL;
1300 
1301 		return &entry->affinity[nr];
1302 	} else {
1303 		return cpu_possible_mask;
1304 	}
1305 }
1306 EXPORT_SYMBOL(pci_irq_get_affinity);
1307 
msi_desc_to_pci_dev(struct msi_desc * desc)1308 struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc)
1309 {
1310 	return to_pci_dev(desc->dev);
1311 }
1312 EXPORT_SYMBOL(msi_desc_to_pci_dev);
1313 
msi_desc_to_pci_sysdata(struct msi_desc * desc)1314 void *msi_desc_to_pci_sysdata(struct msi_desc *desc)
1315 {
1316 	struct pci_dev *dev = msi_desc_to_pci_dev(desc);
1317 
1318 	return dev->bus->sysdata;
1319 }
1320 EXPORT_SYMBOL_GPL(msi_desc_to_pci_sysdata);
1321 
1322 #ifdef CONFIG_PCI_MSI_IRQ_DOMAIN
1323 /**
1324  * pci_msi_domain_write_msg - Helper to write MSI message to PCI config space
1325  * @irq_data:	Pointer to interrupt data of the MSI interrupt
1326  * @msg:	Pointer to the message
1327  */
pci_msi_domain_write_msg(struct irq_data * irq_data,struct msi_msg * msg)1328 void pci_msi_domain_write_msg(struct irq_data *irq_data, struct msi_msg *msg)
1329 {
1330 	struct msi_desc *desc = irq_data_get_msi_desc(irq_data);
1331 
1332 	/*
1333 	 * For MSI-X desc->irq is always equal to irq_data->irq. For
1334 	 * MSI only the first interrupt of MULTI MSI passes the test.
1335 	 */
1336 	if (desc->irq == irq_data->irq)
1337 		__pci_write_msi_msg(desc, msg);
1338 }
1339 
1340 /**
1341  * pci_msi_domain_calc_hwirq - Generate a unique ID for an MSI source
1342  * @dev:	Pointer to the PCI device
1343  * @desc:	Pointer to the msi descriptor
1344  *
1345  * The ID number is only used within the irqdomain.
1346  */
pci_msi_domain_calc_hwirq(struct pci_dev * dev,struct msi_desc * desc)1347 irq_hw_number_t pci_msi_domain_calc_hwirq(struct pci_dev *dev,
1348 					  struct msi_desc *desc)
1349 {
1350 	return (irq_hw_number_t)desc->msi_attrib.entry_nr |
1351 		PCI_DEVID(dev->bus->number, dev->devfn) << 11 |
1352 		(pci_domain_nr(dev->bus) & 0xFFFFFFFF) << 27;
1353 }
1354 
pci_msi_desc_is_multi_msi(struct msi_desc * desc)1355 static inline bool pci_msi_desc_is_multi_msi(struct msi_desc *desc)
1356 {
1357 	return !desc->msi_attrib.is_msix && desc->nvec_used > 1;
1358 }
1359 
1360 /**
1361  * pci_msi_domain_check_cap - Verify that @domain supports the capabilities for @dev
1362  * @domain:	The interrupt domain to check
1363  * @info:	The domain info for verification
1364  * @dev:	The device to check
1365  *
1366  * Returns:
1367  *  0 if the functionality is supported
1368  *  1 if Multi MSI is requested, but the domain does not support it
1369  *  -ENOTSUPP otherwise
1370  */
pci_msi_domain_check_cap(struct irq_domain * domain,struct msi_domain_info * info,struct device * dev)1371 int pci_msi_domain_check_cap(struct irq_domain *domain,
1372 			     struct msi_domain_info *info, struct device *dev)
1373 {
1374 	struct msi_desc *desc = first_pci_msi_entry(to_pci_dev(dev));
1375 
1376 	/* Special handling to support pci_enable_msi_range() */
1377 	if (pci_msi_desc_is_multi_msi(desc) &&
1378 	    !(info->flags & MSI_FLAG_MULTI_PCI_MSI))
1379 		return 1;
1380 	else if (desc->msi_attrib.is_msix && !(info->flags & MSI_FLAG_PCI_MSIX))
1381 		return -ENOTSUPP;
1382 
1383 	return 0;
1384 }
1385 
pci_msi_domain_handle_error(struct irq_domain * domain,struct msi_desc * desc,int error)1386 static int pci_msi_domain_handle_error(struct irq_domain *domain,
1387 				       struct msi_desc *desc, int error)
1388 {
1389 	/* Special handling to support pci_enable_msi_range() */
1390 	if (pci_msi_desc_is_multi_msi(desc) && error == -ENOSPC)
1391 		return 1;
1392 
1393 	return error;
1394 }
1395 
1396 #ifdef GENERIC_MSI_DOMAIN_OPS
pci_msi_domain_set_desc(msi_alloc_info_t * arg,struct msi_desc * desc)1397 static void pci_msi_domain_set_desc(msi_alloc_info_t *arg,
1398 				    struct msi_desc *desc)
1399 {
1400 	arg->desc = desc;
1401 	arg->hwirq = pci_msi_domain_calc_hwirq(msi_desc_to_pci_dev(desc),
1402 					       desc);
1403 }
1404 #else
1405 #define pci_msi_domain_set_desc		NULL
1406 #endif
1407 
1408 static struct msi_domain_ops pci_msi_domain_ops_default = {
1409 	.set_desc	= pci_msi_domain_set_desc,
1410 	.msi_check	= pci_msi_domain_check_cap,
1411 	.handle_error	= pci_msi_domain_handle_error,
1412 };
1413 
pci_msi_domain_update_dom_ops(struct msi_domain_info * info)1414 static void pci_msi_domain_update_dom_ops(struct msi_domain_info *info)
1415 {
1416 	struct msi_domain_ops *ops = info->ops;
1417 
1418 	if (ops == NULL) {
1419 		info->ops = &pci_msi_domain_ops_default;
1420 	} else {
1421 		if (ops->set_desc == NULL)
1422 			ops->set_desc = pci_msi_domain_set_desc;
1423 		if (ops->msi_check == NULL)
1424 			ops->msi_check = pci_msi_domain_check_cap;
1425 		if (ops->handle_error == NULL)
1426 			ops->handle_error = pci_msi_domain_handle_error;
1427 	}
1428 }
1429 
pci_msi_domain_update_chip_ops(struct msi_domain_info * info)1430 static void pci_msi_domain_update_chip_ops(struct msi_domain_info *info)
1431 {
1432 	struct irq_chip *chip = info->chip;
1433 
1434 	BUG_ON(!chip);
1435 	if (!chip->irq_write_msi_msg)
1436 		chip->irq_write_msi_msg = pci_msi_domain_write_msg;
1437 	if (!chip->irq_mask)
1438 		chip->irq_mask = pci_msi_mask_irq;
1439 	if (!chip->irq_unmask)
1440 		chip->irq_unmask = pci_msi_unmask_irq;
1441 }
1442 
1443 /**
1444  * pci_msi_create_irq_domain - Create a MSI interrupt domain
1445  * @fwnode:	Optional fwnode of the interrupt controller
1446  * @info:	MSI domain info
1447  * @parent:	Parent irq domain
1448  *
1449  * Updates the domain and chip ops and creates a MSI interrupt domain.
1450  *
1451  * Returns:
1452  * A domain pointer or NULL in case of failure.
1453  */
pci_msi_create_irq_domain(struct fwnode_handle * fwnode,struct msi_domain_info * info,struct irq_domain * parent)1454 struct irq_domain *pci_msi_create_irq_domain(struct fwnode_handle *fwnode,
1455 					     struct msi_domain_info *info,
1456 					     struct irq_domain *parent)
1457 {
1458 	struct irq_domain *domain;
1459 
1460 	if (info->flags & MSI_FLAG_USE_DEF_DOM_OPS)
1461 		pci_msi_domain_update_dom_ops(info);
1462 	if (info->flags & MSI_FLAG_USE_DEF_CHIP_OPS)
1463 		pci_msi_domain_update_chip_ops(info);
1464 
1465 	info->flags |= MSI_FLAG_ACTIVATE_EARLY;
1466 
1467 	domain = msi_create_irq_domain(fwnode, info, parent);
1468 	if (!domain)
1469 		return NULL;
1470 
1471 	domain->bus_token = DOMAIN_BUS_PCI_MSI;
1472 	return domain;
1473 }
1474 EXPORT_SYMBOL_GPL(pci_msi_create_irq_domain);
1475 
1476 /**
1477  * pci_msi_domain_alloc_irqs - Allocate interrupts for @dev in @domain
1478  * @domain:	The interrupt domain to allocate from
1479  * @dev:	The device for which to allocate
1480  * @nvec:	The number of interrupts to allocate
1481  * @type:	Unused to allow simpler migration from the arch_XXX interfaces
1482  *
1483  * Returns:
1484  * A virtual interrupt number or an error code in case of failure
1485  */
pci_msi_domain_alloc_irqs(struct irq_domain * domain,struct pci_dev * dev,int nvec,int type)1486 int pci_msi_domain_alloc_irqs(struct irq_domain *domain, struct pci_dev *dev,
1487 			      int nvec, int type)
1488 {
1489 	return msi_domain_alloc_irqs(domain, &dev->dev, nvec);
1490 }
1491 
1492 /**
1493  * pci_msi_domain_free_irqs - Free interrupts for @dev in @domain
1494  * @domain:	The interrupt domain
1495  * @dev:	The device for which to free interrupts
1496  */
pci_msi_domain_free_irqs(struct irq_domain * domain,struct pci_dev * dev)1497 void pci_msi_domain_free_irqs(struct irq_domain *domain, struct pci_dev *dev)
1498 {
1499 	msi_domain_free_irqs(domain, &dev->dev);
1500 }
1501 
1502 /**
1503  * pci_msi_create_default_irq_domain - Create a default MSI interrupt domain
1504  * @fwnode:	Optional fwnode of the interrupt controller
1505  * @info:	MSI domain info
1506  * @parent:	Parent irq domain
1507  *
1508  * Returns: A domain pointer or NULL in case of failure. If successful
1509  * the default PCI/MSI irqdomain pointer is updated.
1510  */
pci_msi_create_default_irq_domain(struct fwnode_handle * fwnode,struct msi_domain_info * info,struct irq_domain * parent)1511 struct irq_domain *pci_msi_create_default_irq_domain(struct fwnode_handle *fwnode,
1512 		struct msi_domain_info *info, struct irq_domain *parent)
1513 {
1514 	struct irq_domain *domain;
1515 
1516 	mutex_lock(&pci_msi_domain_lock);
1517 	if (pci_msi_default_domain) {
1518 		pr_err("PCI: default irq domain for PCI MSI has already been created.\n");
1519 		domain = NULL;
1520 	} else {
1521 		domain = pci_msi_create_irq_domain(fwnode, info, parent);
1522 		pci_msi_default_domain = domain;
1523 	}
1524 	mutex_unlock(&pci_msi_domain_lock);
1525 
1526 	return domain;
1527 }
1528 
get_msi_id_cb(struct pci_dev * pdev,u16 alias,void * data)1529 static int get_msi_id_cb(struct pci_dev *pdev, u16 alias, void *data)
1530 {
1531 	u32 *pa = data;
1532 
1533 	*pa = alias;
1534 	return 0;
1535 }
1536 /**
1537  * pci_msi_domain_get_msi_rid - Get the MSI requester id (RID)
1538  * @domain:	The interrupt domain
1539  * @pdev:	The PCI device.
1540  *
1541  * The RID for a device is formed from the alias, with a firmware
1542  * supplied mapping applied
1543  *
1544  * Returns: The RID.
1545  */
pci_msi_domain_get_msi_rid(struct irq_domain * domain,struct pci_dev * pdev)1546 u32 pci_msi_domain_get_msi_rid(struct irq_domain *domain, struct pci_dev *pdev)
1547 {
1548 	struct device_node *of_node;
1549 	u32 rid = 0;
1550 
1551 	pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1552 
1553 	of_node = irq_domain_get_of_node(domain);
1554 	rid = of_node ? of_msi_map_rid(&pdev->dev, of_node, rid) :
1555 			iort_msi_map_rid(&pdev->dev, rid);
1556 
1557 	return rid;
1558 }
1559 
1560 /**
1561  * pci_msi_get_device_domain - Get the MSI domain for a given PCI device
1562  * @pdev:	The PCI device
1563  *
1564  * Use the firmware data to find a device-specific MSI domain
1565  * (i.e. not one that is ste as a default).
1566  *
1567  * Returns: The coresponding MSI domain or NULL if none has been found.
1568  */
pci_msi_get_device_domain(struct pci_dev * pdev)1569 struct irq_domain *pci_msi_get_device_domain(struct pci_dev *pdev)
1570 {
1571 	struct irq_domain *dom;
1572 	u32 rid = 0;
1573 
1574 	pci_for_each_dma_alias(pdev, get_msi_id_cb, &rid);
1575 	dom = of_msi_map_get_device_domain(&pdev->dev, rid);
1576 	if (!dom)
1577 		dom = iort_get_device_domain(&pdev->dev, rid);
1578 	return dom;
1579 }
1580 #endif /* CONFIG_PCI_MSI_IRQ_DOMAIN */
1581