1 /*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24
25 struct pci_dynid {
26 struct list_head node;
27 struct pci_device_id id;
28 };
29
30 /**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again. @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
pci_add_dynid(struct pci_driver * drv,unsigned int vendor,unsigned int device,unsigned int subvendor,unsigned int subdevice,unsigned int class,unsigned int class_mask,unsigned long driver_data)51 int pci_add_dynid(struct pci_driver *drv,
52 unsigned int vendor, unsigned int device,
53 unsigned int subvendor, unsigned int subdevice,
54 unsigned int class, unsigned int class_mask,
55 unsigned long driver_data)
56 {
57 struct pci_dynid *dynid;
58
59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 if (!dynid)
61 return -ENOMEM;
62
63 dynid->id.vendor = vendor;
64 dynid->id.device = device;
65 dynid->id.subvendor = subvendor;
66 dynid->id.subdevice = subdevice;
67 dynid->id.class = class;
68 dynid->id.class_mask = class_mask;
69 dynid->id.driver_data = driver_data;
70
71 spin_lock(&drv->dynids.lock);
72 list_add_tail(&dynid->node, &drv->dynids.list);
73 spin_unlock(&drv->dynids.lock);
74
75 return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78
pci_free_dynids(struct pci_driver * drv)79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 struct pci_dynid *dynid, *n;
82
83 spin_lock(&drv->dynids.lock);
84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 list_del(&dynid->node);
86 kfree(dynid);
87 }
88 spin_unlock(&drv->dynids.lock);
89 }
90
91 /**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
store_new_id(struct device_driver * driver,const char * buf,size_t count)99 static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100 size_t count)
101 {
102 struct pci_driver *pdrv = to_pci_driver(driver);
103 const struct pci_device_id *ids = pdrv->id_table;
104 __u32 vendor, device, subvendor = PCI_ANY_ID,
105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 unsigned long driver_data = 0;
107 int fields = 0;
108 int retval = 0;
109
110 fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 &vendor, &device, &subvendor, &subdevice,
112 &class, &class_mask, &driver_data);
113 if (fields < 2)
114 return -EINVAL;
115
116 if (fields != 7) {
117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 if (!pdev)
119 return -ENOMEM;
120
121 pdev->vendor = vendor;
122 pdev->device = device;
123 pdev->subsystem_vendor = subvendor;
124 pdev->subsystem_device = subdevice;
125 pdev->class = class;
126
127 if (pci_match_id(pdrv->id_table, pdev))
128 retval = -EEXIST;
129
130 kfree(pdev);
131
132 if (retval)
133 return retval;
134 }
135
136 /* Only accept driver_data values that match an existing id_table
137 entry */
138 if (ids) {
139 retval = -EINVAL;
140 while (ids->vendor || ids->subvendor || ids->class_mask) {
141 if (driver_data == ids->driver_data) {
142 retval = 0;
143 break;
144 }
145 ids++;
146 }
147 if (retval) /* No match */
148 return retval;
149 }
150
151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 class, class_mask, driver_data);
153 if (retval)
154 return retval;
155 return count;
156 }
157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159 /**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
store_remove_id(struct device_driver * driver,const char * buf,size_t count)167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168 size_t count)
169 {
170 struct pci_dynid *dynid, *n;
171 struct pci_driver *pdrv = to_pci_driver(driver);
172 __u32 vendor, device, subvendor = PCI_ANY_ID,
173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 int fields = 0;
175 size_t retval = -ENODEV;
176
177 fields = sscanf(buf, "%x %x %x %x %x %x",
178 &vendor, &device, &subvendor, &subdevice,
179 &class, &class_mask);
180 if (fields < 2)
181 return -EINVAL;
182
183 spin_lock(&pdrv->dynids.lock);
184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 struct pci_device_id *id = &dynid->id;
186 if ((id->vendor == vendor) &&
187 (id->device == device) &&
188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 !((id->class ^ class) & class_mask)) {
191 list_del(&dynid->node);
192 kfree(dynid);
193 retval = count;
194 break;
195 }
196 }
197 spin_unlock(&pdrv->dynids.lock);
198
199 return retval;
200 }
201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
202
203 static struct attribute *pci_drv_attrs[] = {
204 &driver_attr_new_id.attr,
205 &driver_attr_remove_id.attr,
206 NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209
210 /**
211 * pci_match_id - See if a pci device matches a given pci_id table
212 * @ids: array of PCI device id structures to search in
213 * @dev: the PCI device structure to match against.
214 *
215 * Used by a driver to check whether a PCI device present in the
216 * system is in its list of supported devices. Returns the matching
217 * pci_device_id structure or %NULL if there is no match.
218 *
219 * Deprecated, don't use this as it will not catch any dynamic ids
220 * that a driver might want to check for.
221 */
pci_match_id(const struct pci_device_id * ids,struct pci_dev * dev)222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 struct pci_dev *dev)
224 {
225 if (ids) {
226 while (ids->vendor || ids->subvendor || ids->class_mask) {
227 if (pci_match_one_device(ids, dev))
228 return ids;
229 ids++;
230 }
231 }
232 return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235
236 static const struct pci_device_id pci_device_id_any = {
237 .vendor = PCI_ANY_ID,
238 .device = PCI_ANY_ID,
239 .subvendor = PCI_ANY_ID,
240 .subdevice = PCI_ANY_ID,
241 };
242
243 /**
244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245 * @drv: the PCI driver to match against
246 * @dev: the PCI device structure to match against
247 *
248 * Used by a driver to check whether a PCI device present in the
249 * system is in its list of supported devices. Returns the matching
250 * pci_device_id structure or %NULL if there is no match.
251 */
pci_match_device(struct pci_driver * drv,struct pci_dev * dev)252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 struct pci_dev *dev)
254 {
255 struct pci_dynid *dynid;
256 const struct pci_device_id *found_id = NULL;
257
258 /* When driver_override is set, only bind to the matching driver */
259 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 return NULL;
261
262 /* Look at the dynamic ids first, before the static ones */
263 spin_lock(&drv->dynids.lock);
264 list_for_each_entry(dynid, &drv->dynids.list, node) {
265 if (pci_match_one_device(&dynid->id, dev)) {
266 found_id = &dynid->id;
267 break;
268 }
269 }
270 spin_unlock(&drv->dynids.lock);
271
272 if (!found_id)
273 found_id = pci_match_id(drv->id_table, dev);
274
275 /* driver_override will always match, send a dummy id */
276 if (!found_id && dev->driver_override)
277 found_id = &pci_device_id_any;
278
279 return found_id;
280 }
281
282 struct drv_dev_and_id {
283 struct pci_driver *drv;
284 struct pci_dev *dev;
285 const struct pci_device_id *id;
286 };
287
local_pci_probe(void * _ddi)288 static long local_pci_probe(void *_ddi)
289 {
290 struct drv_dev_and_id *ddi = _ddi;
291 struct pci_dev *pci_dev = ddi->dev;
292 struct pci_driver *pci_drv = ddi->drv;
293 struct device *dev = &pci_dev->dev;
294 int rc;
295
296 /*
297 * Unbound PCI devices are always put in D0, regardless of
298 * runtime PM status. During probe, the device is set to
299 * active and the usage count is incremented. If the driver
300 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 * or any other runtime PM helper function decrementing the usage
302 * count, in its probe routine and pm_runtime_get_noresume() in
303 * its remove routine.
304 */
305 pm_runtime_get_sync(dev);
306 pci_dev->driver = pci_drv;
307 rc = pci_drv->probe(pci_dev, ddi->id);
308 if (!rc)
309 return rc;
310 if (rc < 0) {
311 pci_dev->driver = NULL;
312 pm_runtime_put_sync(dev);
313 return rc;
314 }
315 /*
316 * Probe function should return < 0 for failure, 0 for success
317 * Treat values > 0 as success, but warn.
318 */
319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 return 0;
321 }
322
pci_call_probe(struct pci_driver * drv,struct pci_dev * dev,const struct pci_device_id * id)323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
324 const struct pci_device_id *id)
325 {
326 int error, node;
327 struct drv_dev_and_id ddi = { drv, dev, id };
328
329 /*
330 * Execute driver initialization on node where the device is
331 * attached. This way the driver likely allocates its local memory
332 * on the right node.
333 */
334 node = dev_to_node(&dev->dev);
335
336 /*
337 * On NUMA systems, we are likely to call a PF probe function using
338 * work_on_cpu(). If that probe calls pci_enable_sriov() (which
339 * adds the VF devices via pci_bus_add_device()), we may re-enter
340 * this function to call the VF probe function. Calling
341 * work_on_cpu() again will cause a lockdep warning. Since VFs are
342 * always on the same node as the PF, we can work around this by
343 * avoiding work_on_cpu() when we're already on the correct node.
344 *
345 * Preemption is enabled, so it's theoretically unsafe to use
346 * numa_node_id(), but even if we run the probe function on the
347 * wrong node, it should be functionally correct.
348 */
349 if (node >= 0 && node != numa_node_id()) {
350 int cpu;
351
352 get_online_cpus();
353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
354 if (cpu < nr_cpu_ids)
355 error = work_on_cpu(cpu, local_pci_probe, &ddi);
356 else
357 error = local_pci_probe(&ddi);
358 put_online_cpus();
359 } else
360 error = local_pci_probe(&ddi);
361
362 return error;
363 }
364
365 /**
366 * __pci_device_probe - check if a driver wants to claim a specific PCI device
367 * @drv: driver to call to check if it wants the PCI device
368 * @pci_dev: PCI device being probed
369 *
370 * returns 0 on success, else error.
371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
372 */
__pci_device_probe(struct pci_driver * drv,struct pci_dev * pci_dev)373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
374 {
375 const struct pci_device_id *id;
376 int error = 0;
377
378 if (!pci_dev->driver && drv->probe) {
379 error = -ENODEV;
380
381 id = pci_match_device(drv, pci_dev);
382 if (id)
383 error = pci_call_probe(drv, pci_dev, id);
384 if (error >= 0)
385 error = 0;
386 }
387 return error;
388 }
389
pcibios_alloc_irq(struct pci_dev * dev)390 int __weak pcibios_alloc_irq(struct pci_dev *dev)
391 {
392 return 0;
393 }
394
pcibios_free_irq(struct pci_dev * dev)395 void __weak pcibios_free_irq(struct pci_dev *dev)
396 {
397 }
398
pci_device_probe(struct device * dev)399 static int pci_device_probe(struct device *dev)
400 {
401 int error;
402 struct pci_dev *pci_dev = to_pci_dev(dev);
403 struct pci_driver *drv = to_pci_driver(dev->driver);
404
405 error = pcibios_alloc_irq(pci_dev);
406 if (error < 0)
407 return error;
408
409 pci_dev_get(pci_dev);
410 error = __pci_device_probe(drv, pci_dev);
411 if (error) {
412 pcibios_free_irq(pci_dev);
413 pci_dev_put(pci_dev);
414 }
415
416 return error;
417 }
418
pci_device_remove(struct device * dev)419 static int pci_device_remove(struct device *dev)
420 {
421 struct pci_dev *pci_dev = to_pci_dev(dev);
422 struct pci_driver *drv = pci_dev->driver;
423
424 if (drv) {
425 if (drv->remove) {
426 pm_runtime_get_sync(dev);
427 drv->remove(pci_dev);
428 pm_runtime_put_noidle(dev);
429 }
430 pcibios_free_irq(pci_dev);
431 pci_dev->driver = NULL;
432 }
433
434 /* Undo the runtime PM settings in local_pci_probe() */
435 pm_runtime_put_sync(dev);
436
437 /*
438 * If the device is still on, set the power state as "unknown",
439 * since it might change by the next time we load the driver.
440 */
441 if (pci_dev->current_state == PCI_D0)
442 pci_dev->current_state = PCI_UNKNOWN;
443
444 /*
445 * We would love to complain here if pci_dev->is_enabled is set, that
446 * the driver should have called pci_disable_device(), but the
447 * unfortunate fact is there are too many odd BIOS and bridge setups
448 * that don't like drivers doing that all of the time.
449 * Oh well, we can dream of sane hardware when we sleep, no matter how
450 * horrible the crap we have to deal with is when we are awake...
451 */
452
453 pci_dev_put(pci_dev);
454 return 0;
455 }
456
pci_device_shutdown(struct device * dev)457 static void pci_device_shutdown(struct device *dev)
458 {
459 struct pci_dev *pci_dev = to_pci_dev(dev);
460 struct pci_driver *drv = pci_dev->driver;
461
462 pm_runtime_resume(dev);
463
464 if (drv && drv->shutdown)
465 drv->shutdown(pci_dev);
466
467 /*
468 * If this is a kexec reboot, turn off Bus Master bit on the
469 * device to tell it to not continue to do DMA. Don't touch
470 * devices in D3cold or unknown states.
471 * If it is not a kexec reboot, firmware will hit the PCI
472 * devices with big hammer and stop their DMA any way.
473 */
474 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
475 pci_clear_master(pci_dev);
476 }
477
478 #ifdef CONFIG_PM
479
480 /* Auxiliary functions used for system resume and run-time resume. */
481
482 /**
483 * pci_restore_standard_config - restore standard config registers of PCI device
484 * @pci_dev: PCI device to handle
485 */
pci_restore_standard_config(struct pci_dev * pci_dev)486 static int pci_restore_standard_config(struct pci_dev *pci_dev)
487 {
488 pci_update_current_state(pci_dev, PCI_UNKNOWN);
489
490 if (pci_dev->current_state != PCI_D0) {
491 int error = pci_set_power_state(pci_dev, PCI_D0);
492 if (error)
493 return error;
494 }
495
496 pci_restore_state(pci_dev);
497 return 0;
498 }
499
500 #endif
501
502 #ifdef CONFIG_PM_SLEEP
503
pci_pm_default_resume_early(struct pci_dev * pci_dev)504 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
505 {
506 pci_power_up(pci_dev);
507 pci_restore_state(pci_dev);
508 pci_fixup_device(pci_fixup_resume_early, pci_dev);
509 }
510
511 /*
512 * Default "suspend" method for devices that have no driver provided suspend,
513 * or not even a driver at all (second part).
514 */
pci_pm_set_unknown_state(struct pci_dev * pci_dev)515 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
516 {
517 /*
518 * mark its power state as "unknown", since we don't know if
519 * e.g. the BIOS will change its device state when we suspend.
520 */
521 if (pci_dev->current_state == PCI_D0)
522 pci_dev->current_state = PCI_UNKNOWN;
523 }
524
525 /*
526 * Default "resume" method for devices that have no driver provided resume,
527 * or not even a driver at all (second part).
528 */
pci_pm_reenable_device(struct pci_dev * pci_dev)529 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
530 {
531 int retval;
532
533 /* if the device was enabled before suspend, reenable */
534 retval = pci_reenable_device(pci_dev);
535 /*
536 * if the device was busmaster before the suspend, make it busmaster
537 * again
538 */
539 if (pci_dev->is_busmaster)
540 pci_set_master(pci_dev);
541
542 return retval;
543 }
544
pci_legacy_suspend(struct device * dev,pm_message_t state)545 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
546 {
547 struct pci_dev *pci_dev = to_pci_dev(dev);
548 struct pci_driver *drv = pci_dev->driver;
549
550 if (drv && drv->suspend) {
551 pci_power_t prev = pci_dev->current_state;
552 int error;
553
554 error = drv->suspend(pci_dev, state);
555 suspend_report_result(drv->suspend, error);
556 if (error)
557 return error;
558
559 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
560 && pci_dev->current_state != PCI_UNKNOWN) {
561 WARN_ONCE(pci_dev->current_state != prev,
562 "PCI PM: Device state not saved by %pF\n",
563 drv->suspend);
564 }
565 }
566
567 pci_fixup_device(pci_fixup_suspend, pci_dev);
568
569 return 0;
570 }
571
pci_legacy_suspend_late(struct device * dev,pm_message_t state)572 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
573 {
574 struct pci_dev *pci_dev = to_pci_dev(dev);
575 struct pci_driver *drv = pci_dev->driver;
576
577 if (drv && drv->suspend_late) {
578 pci_power_t prev = pci_dev->current_state;
579 int error;
580
581 error = drv->suspend_late(pci_dev, state);
582 suspend_report_result(drv->suspend_late, error);
583 if (error)
584 return error;
585
586 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
587 && pci_dev->current_state != PCI_UNKNOWN) {
588 WARN_ONCE(pci_dev->current_state != prev,
589 "PCI PM: Device state not saved by %pF\n",
590 drv->suspend_late);
591 goto Fixup;
592 }
593 }
594
595 if (!pci_dev->state_saved)
596 pci_save_state(pci_dev);
597
598 pci_pm_set_unknown_state(pci_dev);
599
600 Fixup:
601 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
602
603 return 0;
604 }
605
pci_legacy_resume_early(struct device * dev)606 static int pci_legacy_resume_early(struct device *dev)
607 {
608 struct pci_dev *pci_dev = to_pci_dev(dev);
609 struct pci_driver *drv = pci_dev->driver;
610
611 return drv && drv->resume_early ?
612 drv->resume_early(pci_dev) : 0;
613 }
614
pci_legacy_resume(struct device * dev)615 static int pci_legacy_resume(struct device *dev)
616 {
617 struct pci_dev *pci_dev = to_pci_dev(dev);
618 struct pci_driver *drv = pci_dev->driver;
619
620 pci_fixup_device(pci_fixup_resume, pci_dev);
621
622 return drv && drv->resume ?
623 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
624 }
625
626 /* Auxiliary functions used by the new power management framework */
627
pci_pm_default_resume(struct pci_dev * pci_dev)628 static void pci_pm_default_resume(struct pci_dev *pci_dev)
629 {
630 pci_fixup_device(pci_fixup_resume, pci_dev);
631
632 if (!pci_has_subordinate(pci_dev))
633 pci_enable_wake(pci_dev, PCI_D0, false);
634 }
635
pci_pm_default_suspend(struct pci_dev * pci_dev)636 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
637 {
638 /* Disable non-bridge devices without PM support */
639 if (!pci_has_subordinate(pci_dev))
640 pci_disable_enabled_device(pci_dev);
641 }
642
pci_has_legacy_pm_support(struct pci_dev * pci_dev)643 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
644 {
645 struct pci_driver *drv = pci_dev->driver;
646 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
647 || drv->resume_early);
648
649 /*
650 * Legacy PM support is used by default, so warn if the new framework is
651 * supported as well. Drivers are supposed to support either the
652 * former, or the latter, but not both at the same time.
653 */
654 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
655 drv->name, pci_dev->vendor, pci_dev->device);
656
657 return ret;
658 }
659
660 /* New power management framework */
661
pci_pm_prepare(struct device * dev)662 static int pci_pm_prepare(struct device *dev)
663 {
664 struct device_driver *drv = dev->driver;
665
666 /*
667 * Devices having power.ignore_children set may still be necessary for
668 * suspending their children in the next phase of device suspend.
669 */
670 if (dev->power.ignore_children)
671 pm_runtime_resume(dev);
672
673 if (drv && drv->pm && drv->pm->prepare) {
674 int error = drv->pm->prepare(dev);
675 if (error)
676 return error;
677 }
678 return pci_dev_keep_suspended(to_pci_dev(dev));
679 }
680
pci_pm_complete(struct device * dev)681 static void pci_pm_complete(struct device *dev)
682 {
683 struct pci_dev *pci_dev = to_pci_dev(dev);
684
685 pci_dev_complete_resume(pci_dev);
686 pm_generic_complete(dev);
687
688 /* Resume device if platform firmware has put it in reset-power-on */
689 if (dev->power.direct_complete && pm_resume_via_firmware()) {
690 pci_power_t pre_sleep_state = pci_dev->current_state;
691
692 pci_update_current_state(pci_dev, pci_dev->current_state);
693 if (pci_dev->current_state < pre_sleep_state)
694 pm_request_resume(dev);
695 }
696 }
697
698 #else /* !CONFIG_PM_SLEEP */
699
700 #define pci_pm_prepare NULL
701 #define pci_pm_complete NULL
702
703 #endif /* !CONFIG_PM_SLEEP */
704
705 #ifdef CONFIG_SUSPEND
706
pci_pm_suspend(struct device * dev)707 static int pci_pm_suspend(struct device *dev)
708 {
709 struct pci_dev *pci_dev = to_pci_dev(dev);
710 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
711
712 if (pci_has_legacy_pm_support(pci_dev))
713 return pci_legacy_suspend(dev, PMSG_SUSPEND);
714
715 if (!pm) {
716 pci_pm_default_suspend(pci_dev);
717 goto Fixup;
718 }
719
720 /*
721 * PCI devices suspended at run time need to be resumed at this point,
722 * because in general it is necessary to reconfigure them for system
723 * suspend. Namely, if the device is supposed to wake up the system
724 * from the sleep state, we may need to reconfigure it for this purpose.
725 * In turn, if the device is not supposed to wake up the system from the
726 * sleep state, we'll have to prevent it from signaling wake-up.
727 */
728 pm_runtime_resume(dev);
729
730 pci_dev->state_saved = false;
731 if (pm->suspend) {
732 pci_power_t prev = pci_dev->current_state;
733 int error;
734
735 error = pm->suspend(dev);
736 suspend_report_result(pm->suspend, error);
737 if (error)
738 return error;
739
740 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
741 && pci_dev->current_state != PCI_UNKNOWN) {
742 WARN_ONCE(pci_dev->current_state != prev,
743 "PCI PM: State of device not saved by %pF\n",
744 pm->suspend);
745 }
746 }
747
748 Fixup:
749 pci_fixup_device(pci_fixup_suspend, pci_dev);
750
751 return 0;
752 }
753
pci_pm_suspend_noirq(struct device * dev)754 static int pci_pm_suspend_noirq(struct device *dev)
755 {
756 struct pci_dev *pci_dev = to_pci_dev(dev);
757 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
758
759 if (pci_has_legacy_pm_support(pci_dev))
760 return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
761
762 if (!pm) {
763 pci_save_state(pci_dev);
764 goto Fixup;
765 }
766
767 if (pm->suspend_noirq) {
768 pci_power_t prev = pci_dev->current_state;
769 int error;
770
771 error = pm->suspend_noirq(dev);
772 suspend_report_result(pm->suspend_noirq, error);
773 if (error)
774 return error;
775
776 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
777 && pci_dev->current_state != PCI_UNKNOWN) {
778 WARN_ONCE(pci_dev->current_state != prev,
779 "PCI PM: State of device not saved by %pF\n",
780 pm->suspend_noirq);
781 goto Fixup;
782 }
783 }
784
785 if (!pci_dev->state_saved) {
786 pci_save_state(pci_dev);
787 if (pci_power_manageable(pci_dev))
788 pci_prepare_to_sleep(pci_dev);
789 }
790
791 pci_pm_set_unknown_state(pci_dev);
792
793 /*
794 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
795 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
796 * hasn't been quiesced and tries to turn it off. If the controller
797 * is already in D3, this can hang or cause memory corruption.
798 *
799 * Since the value of the COMMAND register doesn't matter once the
800 * device has been suspended, we can safely set it to 0 here.
801 */
802 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
803 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
804
805 Fixup:
806 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
807
808 return 0;
809 }
810
pci_pm_resume_noirq(struct device * dev)811 static int pci_pm_resume_noirq(struct device *dev)
812 {
813 struct pci_dev *pci_dev = to_pci_dev(dev);
814 struct device_driver *drv = dev->driver;
815 int error = 0;
816
817 pci_pm_default_resume_early(pci_dev);
818
819 if (pci_has_legacy_pm_support(pci_dev))
820 return pci_legacy_resume_early(dev);
821
822 if (drv && drv->pm && drv->pm->resume_noirq)
823 error = drv->pm->resume_noirq(dev);
824
825 return error;
826 }
827
pci_pm_resume(struct device * dev)828 static int pci_pm_resume(struct device *dev)
829 {
830 struct pci_dev *pci_dev = to_pci_dev(dev);
831 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
832 int error = 0;
833
834 /*
835 * This is necessary for the suspend error path in which resume is
836 * called without restoring the standard config registers of the device.
837 */
838 if (pci_dev->state_saved)
839 pci_restore_standard_config(pci_dev);
840
841 if (pci_has_legacy_pm_support(pci_dev))
842 return pci_legacy_resume(dev);
843
844 pci_pm_default_resume(pci_dev);
845
846 if (pm) {
847 if (pm->resume)
848 error = pm->resume(dev);
849 } else {
850 pci_pm_reenable_device(pci_dev);
851 }
852
853 return error;
854 }
855
856 #else /* !CONFIG_SUSPEND */
857
858 #define pci_pm_suspend NULL
859 #define pci_pm_suspend_noirq NULL
860 #define pci_pm_resume NULL
861 #define pci_pm_resume_noirq NULL
862
863 #endif /* !CONFIG_SUSPEND */
864
865 #ifdef CONFIG_HIBERNATE_CALLBACKS
866
867
868 /*
869 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
870 * a hibernate transition
871 */
872 struct dev_pm_ops __weak pcibios_pm_ops;
873
pci_pm_freeze(struct device * dev)874 static int pci_pm_freeze(struct device *dev)
875 {
876 struct pci_dev *pci_dev = to_pci_dev(dev);
877 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
878
879 if (pci_has_legacy_pm_support(pci_dev))
880 return pci_legacy_suspend(dev, PMSG_FREEZE);
881
882 if (!pm) {
883 pci_pm_default_suspend(pci_dev);
884 return 0;
885 }
886
887 /*
888 * This used to be done in pci_pm_prepare() for all devices and some
889 * drivers may depend on it, so do it here. Ideally, runtime-suspended
890 * devices should not be touched during freeze/thaw transitions,
891 * however.
892 */
893 pm_runtime_resume(dev);
894
895 pci_dev->state_saved = false;
896 if (pm->freeze) {
897 int error;
898
899 error = pm->freeze(dev);
900 suspend_report_result(pm->freeze, error);
901 if (error)
902 return error;
903 }
904
905 if (pcibios_pm_ops.freeze)
906 return pcibios_pm_ops.freeze(dev);
907
908 return 0;
909 }
910
pci_pm_freeze_noirq(struct device * dev)911 static int pci_pm_freeze_noirq(struct device *dev)
912 {
913 struct pci_dev *pci_dev = to_pci_dev(dev);
914 struct device_driver *drv = dev->driver;
915
916 if (pci_has_legacy_pm_support(pci_dev))
917 return pci_legacy_suspend_late(dev, PMSG_FREEZE);
918
919 if (drv && drv->pm && drv->pm->freeze_noirq) {
920 int error;
921
922 error = drv->pm->freeze_noirq(dev);
923 suspend_report_result(drv->pm->freeze_noirq, error);
924 if (error)
925 return error;
926 }
927
928 if (!pci_dev->state_saved)
929 pci_save_state(pci_dev);
930
931 pci_pm_set_unknown_state(pci_dev);
932
933 if (pcibios_pm_ops.freeze_noirq)
934 return pcibios_pm_ops.freeze_noirq(dev);
935
936 return 0;
937 }
938
pci_pm_thaw_noirq(struct device * dev)939 static int pci_pm_thaw_noirq(struct device *dev)
940 {
941 struct pci_dev *pci_dev = to_pci_dev(dev);
942 struct device_driver *drv = dev->driver;
943 int error = 0;
944
945 if (pcibios_pm_ops.thaw_noirq) {
946 error = pcibios_pm_ops.thaw_noirq(dev);
947 if (error)
948 return error;
949 }
950
951 if (pci_has_legacy_pm_support(pci_dev))
952 return pci_legacy_resume_early(dev);
953
954 /*
955 * pci_restore_state() requires the device to be in D0 (because of MSI
956 * restoration among other things), so force it into D0 in case the
957 * driver's "freeze" callbacks put it into a low-power state directly.
958 */
959 pci_set_power_state(pci_dev, PCI_D0);
960 pci_restore_state(pci_dev);
961
962 if (drv && drv->pm && drv->pm->thaw_noirq)
963 error = drv->pm->thaw_noirq(dev);
964
965 return error;
966 }
967
pci_pm_thaw(struct device * dev)968 static int pci_pm_thaw(struct device *dev)
969 {
970 struct pci_dev *pci_dev = to_pci_dev(dev);
971 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
972 int error = 0;
973
974 if (pcibios_pm_ops.thaw) {
975 error = pcibios_pm_ops.thaw(dev);
976 if (error)
977 return error;
978 }
979
980 if (pci_has_legacy_pm_support(pci_dev))
981 return pci_legacy_resume(dev);
982
983 if (pm) {
984 if (pm->thaw)
985 error = pm->thaw(dev);
986 } else {
987 pci_pm_reenable_device(pci_dev);
988 }
989
990 pci_dev->state_saved = false;
991
992 return error;
993 }
994
pci_pm_poweroff(struct device * dev)995 static int pci_pm_poweroff(struct device *dev)
996 {
997 struct pci_dev *pci_dev = to_pci_dev(dev);
998 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
999
1000 if (pci_has_legacy_pm_support(pci_dev))
1001 return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1002
1003 if (!pm) {
1004 pci_pm_default_suspend(pci_dev);
1005 goto Fixup;
1006 }
1007
1008 /* The reason to do that is the same as in pci_pm_suspend(). */
1009 pm_runtime_resume(dev);
1010
1011 pci_dev->state_saved = false;
1012 if (pm->poweroff) {
1013 int error;
1014
1015 error = pm->poweroff(dev);
1016 suspend_report_result(pm->poweroff, error);
1017 if (error)
1018 return error;
1019 }
1020
1021 Fixup:
1022 pci_fixup_device(pci_fixup_suspend, pci_dev);
1023
1024 if (pcibios_pm_ops.poweroff)
1025 return pcibios_pm_ops.poweroff(dev);
1026
1027 return 0;
1028 }
1029
pci_pm_poweroff_noirq(struct device * dev)1030 static int pci_pm_poweroff_noirq(struct device *dev)
1031 {
1032 struct pci_dev *pci_dev = to_pci_dev(dev);
1033 struct device_driver *drv = dev->driver;
1034
1035 if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1036 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1037
1038 if (!drv || !drv->pm) {
1039 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1040 return 0;
1041 }
1042
1043 if (drv->pm->poweroff_noirq) {
1044 int error;
1045
1046 error = drv->pm->poweroff_noirq(dev);
1047 suspend_report_result(drv->pm->poweroff_noirq, error);
1048 if (error)
1049 return error;
1050 }
1051
1052 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1053 pci_prepare_to_sleep(pci_dev);
1054
1055 /*
1056 * The reason for doing this here is the same as for the analogous code
1057 * in pci_pm_suspend_noirq().
1058 */
1059 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1060 pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1061
1062 pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1063
1064 if (pcibios_pm_ops.poweroff_noirq)
1065 return pcibios_pm_ops.poweroff_noirq(dev);
1066
1067 return 0;
1068 }
1069
pci_pm_restore_noirq(struct device * dev)1070 static int pci_pm_restore_noirq(struct device *dev)
1071 {
1072 struct pci_dev *pci_dev = to_pci_dev(dev);
1073 struct device_driver *drv = dev->driver;
1074 int error = 0;
1075
1076 if (pcibios_pm_ops.restore_noirq) {
1077 error = pcibios_pm_ops.restore_noirq(dev);
1078 if (error)
1079 return error;
1080 }
1081
1082 pci_pm_default_resume_early(pci_dev);
1083
1084 if (pci_has_legacy_pm_support(pci_dev))
1085 return pci_legacy_resume_early(dev);
1086
1087 if (drv && drv->pm && drv->pm->restore_noirq)
1088 error = drv->pm->restore_noirq(dev);
1089
1090 return error;
1091 }
1092
pci_pm_restore(struct device * dev)1093 static int pci_pm_restore(struct device *dev)
1094 {
1095 struct pci_dev *pci_dev = to_pci_dev(dev);
1096 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1097 int error = 0;
1098
1099 if (pcibios_pm_ops.restore) {
1100 error = pcibios_pm_ops.restore(dev);
1101 if (error)
1102 return error;
1103 }
1104
1105 /*
1106 * This is necessary for the hibernation error path in which restore is
1107 * called without restoring the standard config registers of the device.
1108 */
1109 if (pci_dev->state_saved)
1110 pci_restore_standard_config(pci_dev);
1111
1112 if (pci_has_legacy_pm_support(pci_dev))
1113 return pci_legacy_resume(dev);
1114
1115 pci_pm_default_resume(pci_dev);
1116
1117 if (pm) {
1118 if (pm->restore)
1119 error = pm->restore(dev);
1120 } else {
1121 pci_pm_reenable_device(pci_dev);
1122 }
1123
1124 return error;
1125 }
1126
1127 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1128
1129 #define pci_pm_freeze NULL
1130 #define pci_pm_freeze_noirq NULL
1131 #define pci_pm_thaw NULL
1132 #define pci_pm_thaw_noirq NULL
1133 #define pci_pm_poweroff NULL
1134 #define pci_pm_poweroff_noirq NULL
1135 #define pci_pm_restore NULL
1136 #define pci_pm_restore_noirq NULL
1137
1138 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1139
1140 #ifdef CONFIG_PM
1141
pci_pm_runtime_suspend(struct device * dev)1142 static int pci_pm_runtime_suspend(struct device *dev)
1143 {
1144 struct pci_dev *pci_dev = to_pci_dev(dev);
1145 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1146 pci_power_t prev = pci_dev->current_state;
1147 int error;
1148
1149 /*
1150 * If pci_dev->driver is not set (unbound), the device should
1151 * always remain in D0 regardless of the runtime PM status
1152 */
1153 if (!pci_dev->driver)
1154 return 0;
1155
1156 if (!pm || !pm->runtime_suspend)
1157 return -ENOSYS;
1158
1159 pci_dev->state_saved = false;
1160 error = pm->runtime_suspend(dev);
1161 if (error) {
1162 /*
1163 * -EBUSY and -EAGAIN is used to request the runtime PM core
1164 * to schedule a new suspend, so log the event only with debug
1165 * log level.
1166 */
1167 if (error == -EBUSY || error == -EAGAIN)
1168 dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1169 pm->runtime_suspend, error);
1170 else
1171 dev_err(dev, "can't suspend (%pf returned %d)\n",
1172 pm->runtime_suspend, error);
1173
1174 return error;
1175 }
1176
1177 pci_fixup_device(pci_fixup_suspend, pci_dev);
1178
1179 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1180 && pci_dev->current_state != PCI_UNKNOWN) {
1181 WARN_ONCE(pci_dev->current_state != prev,
1182 "PCI PM: State of device not saved by %pF\n",
1183 pm->runtime_suspend);
1184 return 0;
1185 }
1186
1187 if (!pci_dev->state_saved) {
1188 pci_save_state(pci_dev);
1189 pci_finish_runtime_suspend(pci_dev);
1190 }
1191
1192 return 0;
1193 }
1194
pci_pm_runtime_resume(struct device * dev)1195 static int pci_pm_runtime_resume(struct device *dev)
1196 {
1197 int rc;
1198 struct pci_dev *pci_dev = to_pci_dev(dev);
1199 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1200
1201 /*
1202 * If pci_dev->driver is not set (unbound), the device should
1203 * always remain in D0 regardless of the runtime PM status
1204 */
1205 if (!pci_dev->driver)
1206 return 0;
1207
1208 if (!pm || !pm->runtime_resume)
1209 return -ENOSYS;
1210
1211 pci_restore_standard_config(pci_dev);
1212 pci_fixup_device(pci_fixup_resume_early, pci_dev);
1213 __pci_enable_wake(pci_dev, PCI_D0, true, false);
1214 pci_fixup_device(pci_fixup_resume, pci_dev);
1215
1216 rc = pm->runtime_resume(dev);
1217
1218 pci_dev->runtime_d3cold = false;
1219
1220 return rc;
1221 }
1222
pci_pm_runtime_idle(struct device * dev)1223 static int pci_pm_runtime_idle(struct device *dev)
1224 {
1225 struct pci_dev *pci_dev = to_pci_dev(dev);
1226 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1227 int ret = 0;
1228
1229 /*
1230 * If pci_dev->driver is not set (unbound), the device should
1231 * always remain in D0 regardless of the runtime PM status
1232 */
1233 if (!pci_dev->driver)
1234 return 0;
1235
1236 if (!pm)
1237 return -ENOSYS;
1238
1239 if (pm->runtime_idle)
1240 ret = pm->runtime_idle(dev);
1241
1242 return ret;
1243 }
1244
1245 static const struct dev_pm_ops pci_dev_pm_ops = {
1246 .prepare = pci_pm_prepare,
1247 .complete = pci_pm_complete,
1248 .suspend = pci_pm_suspend,
1249 .resume = pci_pm_resume,
1250 .freeze = pci_pm_freeze,
1251 .thaw = pci_pm_thaw,
1252 .poweroff = pci_pm_poweroff,
1253 .restore = pci_pm_restore,
1254 .suspend_noirq = pci_pm_suspend_noirq,
1255 .resume_noirq = pci_pm_resume_noirq,
1256 .freeze_noirq = pci_pm_freeze_noirq,
1257 .thaw_noirq = pci_pm_thaw_noirq,
1258 .poweroff_noirq = pci_pm_poweroff_noirq,
1259 .restore_noirq = pci_pm_restore_noirq,
1260 .runtime_suspend = pci_pm_runtime_suspend,
1261 .runtime_resume = pci_pm_runtime_resume,
1262 .runtime_idle = pci_pm_runtime_idle,
1263 };
1264
1265 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops)
1266
1267 #else /* !CONFIG_PM */
1268
1269 #define pci_pm_runtime_suspend NULL
1270 #define pci_pm_runtime_resume NULL
1271 #define pci_pm_runtime_idle NULL
1272
1273 #define PCI_PM_OPS_PTR NULL
1274
1275 #endif /* !CONFIG_PM */
1276
1277 /**
1278 * __pci_register_driver - register a new pci driver
1279 * @drv: the driver structure to register
1280 * @owner: owner module of drv
1281 * @mod_name: module name string
1282 *
1283 * Adds the driver structure to the list of registered drivers.
1284 * Returns a negative value on error, otherwise 0.
1285 * If no error occurred, the driver remains registered even if
1286 * no device was claimed during registration.
1287 */
__pci_register_driver(struct pci_driver * drv,struct module * owner,const char * mod_name)1288 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1289 const char *mod_name)
1290 {
1291 /* initialize common driver fields */
1292 drv->driver.name = drv->name;
1293 drv->driver.bus = &pci_bus_type;
1294 drv->driver.owner = owner;
1295 drv->driver.mod_name = mod_name;
1296
1297 spin_lock_init(&drv->dynids.lock);
1298 INIT_LIST_HEAD(&drv->dynids.list);
1299
1300 /* register with core */
1301 return driver_register(&drv->driver);
1302 }
1303 EXPORT_SYMBOL(__pci_register_driver);
1304
1305 /**
1306 * pci_unregister_driver - unregister a pci driver
1307 * @drv: the driver structure to unregister
1308 *
1309 * Deletes the driver structure from the list of registered PCI drivers,
1310 * gives it a chance to clean up by calling its remove() function for
1311 * each device it was responsible for, and marks those devices as
1312 * driverless.
1313 */
1314
pci_unregister_driver(struct pci_driver * drv)1315 void pci_unregister_driver(struct pci_driver *drv)
1316 {
1317 driver_unregister(&drv->driver);
1318 pci_free_dynids(drv);
1319 }
1320 EXPORT_SYMBOL(pci_unregister_driver);
1321
1322 static struct pci_driver pci_compat_driver = {
1323 .name = "compat"
1324 };
1325
1326 /**
1327 * pci_dev_driver - get the pci_driver of a device
1328 * @dev: the device to query
1329 *
1330 * Returns the appropriate pci_driver structure or %NULL if there is no
1331 * registered driver for the device.
1332 */
pci_dev_driver(const struct pci_dev * dev)1333 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1334 {
1335 if (dev->driver)
1336 return dev->driver;
1337 else {
1338 int i;
1339 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1340 if (dev->resource[i].flags & IORESOURCE_BUSY)
1341 return &pci_compat_driver;
1342 }
1343 return NULL;
1344 }
1345 EXPORT_SYMBOL(pci_dev_driver);
1346
1347 /**
1348 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1349 * @dev: the PCI device structure to match against
1350 * @drv: the device driver to search for matching PCI device id structures
1351 *
1352 * Used by a driver to check whether a PCI device present in the
1353 * system is in its list of supported devices. Returns the matching
1354 * pci_device_id structure or %NULL if there is no match.
1355 */
pci_bus_match(struct device * dev,struct device_driver * drv)1356 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1357 {
1358 struct pci_dev *pci_dev = to_pci_dev(dev);
1359 struct pci_driver *pci_drv;
1360 const struct pci_device_id *found_id;
1361
1362 if (!pci_dev->match_driver)
1363 return 0;
1364
1365 pci_drv = to_pci_driver(drv);
1366 found_id = pci_match_device(pci_drv, pci_dev);
1367 if (found_id)
1368 return 1;
1369
1370 return 0;
1371 }
1372
1373 /**
1374 * pci_dev_get - increments the reference count of the pci device structure
1375 * @dev: the device being referenced
1376 *
1377 * Each live reference to a device should be refcounted.
1378 *
1379 * Drivers for PCI devices should normally record such references in
1380 * their probe() methods, when they bind to a device, and release
1381 * them by calling pci_dev_put(), in their disconnect() methods.
1382 *
1383 * A pointer to the device with the incremented reference counter is returned.
1384 */
pci_dev_get(struct pci_dev * dev)1385 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1386 {
1387 if (dev)
1388 get_device(&dev->dev);
1389 return dev;
1390 }
1391 EXPORT_SYMBOL(pci_dev_get);
1392
1393 /**
1394 * pci_dev_put - release a use of the pci device structure
1395 * @dev: device that's been disconnected
1396 *
1397 * Must be called when a user of a device is finished with it. When the last
1398 * user of the device calls this function, the memory of the device is freed.
1399 */
pci_dev_put(struct pci_dev * dev)1400 void pci_dev_put(struct pci_dev *dev)
1401 {
1402 if (dev)
1403 put_device(&dev->dev);
1404 }
1405 EXPORT_SYMBOL(pci_dev_put);
1406
pci_uevent(struct device * dev,struct kobj_uevent_env * env)1407 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1408 {
1409 struct pci_dev *pdev;
1410
1411 if (!dev)
1412 return -ENODEV;
1413
1414 pdev = to_pci_dev(dev);
1415
1416 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1417 return -ENOMEM;
1418
1419 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1420 return -ENOMEM;
1421
1422 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1423 pdev->subsystem_device))
1424 return -ENOMEM;
1425
1426 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1427 return -ENOMEM;
1428
1429 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1430 pdev->vendor, pdev->device,
1431 pdev->subsystem_vendor, pdev->subsystem_device,
1432 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1433 (u8)(pdev->class)))
1434 return -ENOMEM;
1435
1436 return 0;
1437 }
1438
1439 struct bus_type pci_bus_type = {
1440 .name = "pci",
1441 .match = pci_bus_match,
1442 .uevent = pci_uevent,
1443 .probe = pci_device_probe,
1444 .remove = pci_device_remove,
1445 .shutdown = pci_device_shutdown,
1446 .dev_groups = pci_dev_groups,
1447 .bus_groups = pci_bus_groups,
1448 .drv_groups = pci_drv_groups,
1449 .pm = PCI_PM_OPS_PTR,
1450 };
1451 EXPORT_SYMBOL(pci_bus_type);
1452
pci_driver_init(void)1453 static int __init pci_driver_init(void)
1454 {
1455 return bus_register(&pci_bus_type);
1456 }
1457 postcore_initcall(pci_driver_init);
1458