• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 
50 #include "internal.h"
51 
52 #include <asm/irq_regs.h>
53 
54 typedef int (*remote_function_f)(void *);
55 
56 struct remote_function_call {
57 	struct task_struct	*p;
58 	remote_function_f	func;
59 	void			*info;
60 	int			ret;
61 };
62 
remote_function(void * data)63 static void remote_function(void *data)
64 {
65 	struct remote_function_call *tfc = data;
66 	struct task_struct *p = tfc->p;
67 
68 	if (p) {
69 		/* -EAGAIN */
70 		if (task_cpu(p) != smp_processor_id())
71 			return;
72 
73 		/*
74 		 * Now that we're on right CPU with IRQs disabled, we can test
75 		 * if we hit the right task without races.
76 		 */
77 
78 		tfc->ret = -ESRCH; /* No such (running) process */
79 		if (p != current)
80 			return;
81 	}
82 
83 	tfc->ret = tfc->func(tfc->info);
84 }
85 
86 /**
87  * task_function_call - call a function on the cpu on which a task runs
88  * @p:		the task to evaluate
89  * @func:	the function to be called
90  * @info:	the function call argument
91  *
92  * Calls the function @func when the task is currently running. This might
93  * be on the current CPU, which just calls the function directly
94  *
95  * returns: @func return value, or
96  *	    -ESRCH  - when the process isn't running
97  *	    -EAGAIN - when the process moved away
98  */
99 static int
task_function_call(struct task_struct * p,remote_function_f func,void * info)100 task_function_call(struct task_struct *p, remote_function_f func, void *info)
101 {
102 	struct remote_function_call data = {
103 		.p	= p,
104 		.func	= func,
105 		.info	= info,
106 		.ret	= -EAGAIN,
107 	};
108 	int ret;
109 
110 	do {
111 		ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 		if (!ret)
113 			ret = data.ret;
114 	} while (ret == -EAGAIN);
115 
116 	return ret;
117 }
118 
119 /**
120  * cpu_function_call - call a function on the cpu
121  * @func:	the function to be called
122  * @info:	the function call argument
123  *
124  * Calls the function @func on the remote cpu.
125  *
126  * returns: @func return value or -ENXIO when the cpu is offline
127  */
cpu_function_call(int cpu,remote_function_f func,void * info)128 static int cpu_function_call(int cpu, remote_function_f func, void *info)
129 {
130 	struct remote_function_call data = {
131 		.p	= NULL,
132 		.func	= func,
133 		.info	= info,
134 		.ret	= -ENXIO, /* No such CPU */
135 	};
136 
137 	smp_call_function_single(cpu, remote_function, &data, 1);
138 
139 	return data.ret;
140 }
141 
142 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)143 __get_cpu_context(struct perf_event_context *ctx)
144 {
145 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146 }
147 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)148 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 			  struct perf_event_context *ctx)
150 {
151 	raw_spin_lock(&cpuctx->ctx.lock);
152 	if (ctx)
153 		raw_spin_lock(&ctx->lock);
154 }
155 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)156 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 			    struct perf_event_context *ctx)
158 {
159 	if (ctx)
160 		raw_spin_unlock(&ctx->lock);
161 	raw_spin_unlock(&cpuctx->ctx.lock);
162 }
163 
164 #define TASK_TOMBSTONE ((void *)-1L)
165 
is_kernel_event(struct perf_event * event)166 static bool is_kernel_event(struct perf_event *event)
167 {
168 	return READ_ONCE(event->owner) == TASK_TOMBSTONE;
169 }
170 
171 /*
172  * On task ctx scheduling...
173  *
174  * When !ctx->nr_events a task context will not be scheduled. This means
175  * we can disable the scheduler hooks (for performance) without leaving
176  * pending task ctx state.
177  *
178  * This however results in two special cases:
179  *
180  *  - removing the last event from a task ctx; this is relatively straight
181  *    forward and is done in __perf_remove_from_context.
182  *
183  *  - adding the first event to a task ctx; this is tricky because we cannot
184  *    rely on ctx->is_active and therefore cannot use event_function_call().
185  *    See perf_install_in_context().
186  *
187  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188  */
189 
190 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 			struct perf_event_context *, void *);
192 
193 struct event_function_struct {
194 	struct perf_event *event;
195 	event_f func;
196 	void *data;
197 };
198 
event_function(void * info)199 static int event_function(void *info)
200 {
201 	struct event_function_struct *efs = info;
202 	struct perf_event *event = efs->event;
203 	struct perf_event_context *ctx = event->ctx;
204 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
206 	int ret = 0;
207 
208 	WARN_ON_ONCE(!irqs_disabled());
209 
210 	perf_ctx_lock(cpuctx, task_ctx);
211 	/*
212 	 * Since we do the IPI call without holding ctx->lock things can have
213 	 * changed, double check we hit the task we set out to hit.
214 	 */
215 	if (ctx->task) {
216 		if (ctx->task != current) {
217 			ret = -ESRCH;
218 			goto unlock;
219 		}
220 
221 		/*
222 		 * We only use event_function_call() on established contexts,
223 		 * and event_function() is only ever called when active (or
224 		 * rather, we'll have bailed in task_function_call() or the
225 		 * above ctx->task != current test), therefore we must have
226 		 * ctx->is_active here.
227 		 */
228 		WARN_ON_ONCE(!ctx->is_active);
229 		/*
230 		 * And since we have ctx->is_active, cpuctx->task_ctx must
231 		 * match.
232 		 */
233 		WARN_ON_ONCE(task_ctx != ctx);
234 	} else {
235 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
236 	}
237 
238 	efs->func(event, cpuctx, ctx, efs->data);
239 unlock:
240 	perf_ctx_unlock(cpuctx, task_ctx);
241 
242 	return ret;
243 }
244 
event_function_call(struct perf_event * event,event_f func,void * data)245 static void event_function_call(struct perf_event *event, event_f func, void *data)
246 {
247 	struct perf_event_context *ctx = event->ctx;
248 	struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
249 	struct event_function_struct efs = {
250 		.event = event,
251 		.func = func,
252 		.data = data,
253 	};
254 
255 	if (!event->parent) {
256 		/*
257 		 * If this is a !child event, we must hold ctx::mutex to
258 		 * stabilize the the event->ctx relation. See
259 		 * perf_event_ctx_lock().
260 		 */
261 		lockdep_assert_held(&ctx->mutex);
262 	}
263 
264 	if (!task) {
265 		cpu_function_call(event->cpu, event_function, &efs);
266 		return;
267 	}
268 
269 	if (task == TASK_TOMBSTONE)
270 		return;
271 
272 again:
273 	if (!task_function_call(task, event_function, &efs))
274 		return;
275 
276 	raw_spin_lock_irq(&ctx->lock);
277 	/*
278 	 * Reload the task pointer, it might have been changed by
279 	 * a concurrent perf_event_context_sched_out().
280 	 */
281 	task = ctx->task;
282 	if (task == TASK_TOMBSTONE) {
283 		raw_spin_unlock_irq(&ctx->lock);
284 		return;
285 	}
286 	if (ctx->is_active) {
287 		raw_spin_unlock_irq(&ctx->lock);
288 		goto again;
289 	}
290 	func(event, NULL, ctx, data);
291 	raw_spin_unlock_irq(&ctx->lock);
292 }
293 
294 /*
295  * Similar to event_function_call() + event_function(), but hard assumes IRQs
296  * are already disabled and we're on the right CPU.
297  */
event_function_local(struct perf_event * event,event_f func,void * data)298 static void event_function_local(struct perf_event *event, event_f func, void *data)
299 {
300 	struct perf_event_context *ctx = event->ctx;
301 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 	struct task_struct *task = READ_ONCE(ctx->task);
303 	struct perf_event_context *task_ctx = NULL;
304 
305 	WARN_ON_ONCE(!irqs_disabled());
306 
307 	if (task) {
308 		if (task == TASK_TOMBSTONE)
309 			return;
310 
311 		task_ctx = ctx;
312 	}
313 
314 	perf_ctx_lock(cpuctx, task_ctx);
315 
316 	task = ctx->task;
317 	if (task == TASK_TOMBSTONE)
318 		goto unlock;
319 
320 	if (task) {
321 		/*
322 		 * We must be either inactive or active and the right task,
323 		 * otherwise we're screwed, since we cannot IPI to somewhere
324 		 * else.
325 		 */
326 		if (ctx->is_active) {
327 			if (WARN_ON_ONCE(task != current))
328 				goto unlock;
329 
330 			if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 				goto unlock;
332 		}
333 	} else {
334 		WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 	}
336 
337 	func(event, cpuctx, ctx, data);
338 unlock:
339 	perf_ctx_unlock(cpuctx, task_ctx);
340 }
341 
342 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 		       PERF_FLAG_FD_OUTPUT  |\
344 		       PERF_FLAG_PID_CGROUP |\
345 		       PERF_FLAG_FD_CLOEXEC)
346 
347 /*
348  * branch priv levels that need permission checks
349  */
350 #define PERF_SAMPLE_BRANCH_PERM_PLM \
351 	(PERF_SAMPLE_BRANCH_KERNEL |\
352 	 PERF_SAMPLE_BRANCH_HV)
353 
354 enum event_type_t {
355 	EVENT_FLEXIBLE = 0x1,
356 	EVENT_PINNED = 0x2,
357 	EVENT_TIME = 0x4,
358 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359 };
360 
361 /*
362  * perf_sched_events : >0 events exist
363  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364  */
365 
366 static void perf_sched_delayed(struct work_struct *work);
367 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369 static DEFINE_MUTEX(perf_sched_mutex);
370 static atomic_t perf_sched_count;
371 
372 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
373 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
374 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
375 
376 static atomic_t nr_mmap_events __read_mostly;
377 static atomic_t nr_comm_events __read_mostly;
378 static atomic_t nr_task_events __read_mostly;
379 static atomic_t nr_freq_events __read_mostly;
380 static atomic_t nr_switch_events __read_mostly;
381 
382 static LIST_HEAD(pmus);
383 static DEFINE_MUTEX(pmus_lock);
384 static struct srcu_struct pmus_srcu;
385 
386 /*
387  * perf event paranoia level:
388  *  -1 - not paranoid at all
389  *   0 - disallow raw tracepoint access for unpriv
390  *   1 - disallow cpu events for unpriv
391  *   2 - disallow kernel profiling for unpriv
392  *   3 - disallow all unpriv perf event use
393  */
394 #ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
395 int sysctl_perf_event_paranoid __read_mostly = 3;
396 #else
397 int sysctl_perf_event_paranoid __read_mostly = 2;
398 #endif
399 
400 /* Minimum for 512 kiB + 1 user control page */
401 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
402 
403 /*
404  * max perf event sample rate
405  */
406 #define DEFAULT_MAX_SAMPLE_RATE		100000
407 #define DEFAULT_SAMPLE_PERIOD_NS	(NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
408 #define DEFAULT_CPU_TIME_MAX_PERCENT	25
409 
410 int sysctl_perf_event_sample_rate __read_mostly	= DEFAULT_MAX_SAMPLE_RATE;
411 
412 static int max_samples_per_tick __read_mostly	= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
413 static int perf_sample_period_ns __read_mostly	= DEFAULT_SAMPLE_PERIOD_NS;
414 
415 static int perf_sample_allowed_ns __read_mostly =
416 	DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
417 
update_perf_cpu_limits(void)418 static void update_perf_cpu_limits(void)
419 {
420 	u64 tmp = perf_sample_period_ns;
421 
422 	tmp *= sysctl_perf_cpu_time_max_percent;
423 	tmp = div_u64(tmp, 100);
424 	if (!tmp)
425 		tmp = 1;
426 
427 	WRITE_ONCE(perf_sample_allowed_ns, tmp);
428 }
429 
430 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
431 
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)432 int perf_proc_update_handler(struct ctl_table *table, int write,
433 		void __user *buffer, size_t *lenp,
434 		loff_t *ppos)
435 {
436 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
437 
438 	if (ret || !write)
439 		return ret;
440 
441 	/*
442 	 * If throttling is disabled don't allow the write:
443 	 */
444 	if (sysctl_perf_cpu_time_max_percent == 100 ||
445 	    sysctl_perf_cpu_time_max_percent == 0)
446 		return -EINVAL;
447 
448 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
449 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
450 	update_perf_cpu_limits();
451 
452 	return 0;
453 }
454 
455 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
456 
perf_cpu_time_max_percent_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)457 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
458 				void __user *buffer, size_t *lenp,
459 				loff_t *ppos)
460 {
461 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
462 
463 	if (ret || !write)
464 		return ret;
465 
466 	if (sysctl_perf_cpu_time_max_percent == 100 ||
467 	    sysctl_perf_cpu_time_max_percent == 0) {
468 		printk(KERN_WARNING
469 		       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
470 		WRITE_ONCE(perf_sample_allowed_ns, 0);
471 	} else {
472 		update_perf_cpu_limits();
473 	}
474 
475 	return 0;
476 }
477 
478 /*
479  * perf samples are done in some very critical code paths (NMIs).
480  * If they take too much CPU time, the system can lock up and not
481  * get any real work done.  This will drop the sample rate when
482  * we detect that events are taking too long.
483  */
484 #define NR_ACCUMULATED_SAMPLES 128
485 static DEFINE_PER_CPU(u64, running_sample_length);
486 
487 static u64 __report_avg;
488 static u64 __report_allowed;
489 
perf_duration_warn(struct irq_work * w)490 static void perf_duration_warn(struct irq_work *w)
491 {
492 	printk_ratelimited(KERN_INFO
493 		"perf: interrupt took too long (%lld > %lld), lowering "
494 		"kernel.perf_event_max_sample_rate to %d\n",
495 		__report_avg, __report_allowed,
496 		sysctl_perf_event_sample_rate);
497 }
498 
499 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
500 
perf_sample_event_took(u64 sample_len_ns)501 void perf_sample_event_took(u64 sample_len_ns)
502 {
503 	u64 max_len = READ_ONCE(perf_sample_allowed_ns);
504 	u64 running_len;
505 	u64 avg_len;
506 	u32 max;
507 
508 	if (max_len == 0)
509 		return;
510 
511 	/* Decay the counter by 1 average sample. */
512 	running_len = __this_cpu_read(running_sample_length);
513 	running_len -= running_len/NR_ACCUMULATED_SAMPLES;
514 	running_len += sample_len_ns;
515 	__this_cpu_write(running_sample_length, running_len);
516 
517 	/*
518 	 * Note: this will be biased artifically low until we have
519 	 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
520 	 * from having to maintain a count.
521 	 */
522 	avg_len = running_len/NR_ACCUMULATED_SAMPLES;
523 	if (avg_len <= max_len)
524 		return;
525 
526 	__report_avg = avg_len;
527 	__report_allowed = max_len;
528 
529 	/*
530 	 * Compute a throttle threshold 25% below the current duration.
531 	 */
532 	avg_len += avg_len / 4;
533 	max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
534 	if (avg_len < max)
535 		max /= (u32)avg_len;
536 	else
537 		max = 1;
538 
539 	WRITE_ONCE(perf_sample_allowed_ns, avg_len);
540 	WRITE_ONCE(max_samples_per_tick, max);
541 
542 	sysctl_perf_event_sample_rate = max * HZ;
543 	perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
544 
545 	if (!irq_work_queue(&perf_duration_work)) {
546 		early_printk("perf: interrupt took too long (%lld > %lld), lowering "
547 			     "kernel.perf_event_max_sample_rate to %d\n",
548 			     __report_avg, __report_allowed,
549 			     sysctl_perf_event_sample_rate);
550 	}
551 }
552 
553 static atomic64_t perf_event_id;
554 
555 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
556 			      enum event_type_t event_type);
557 
558 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
559 			     enum event_type_t event_type,
560 			     struct task_struct *task);
561 
562 static void update_context_time(struct perf_event_context *ctx);
563 static u64 perf_event_time(struct perf_event *event);
564 
perf_event_print_debug(void)565 void __weak perf_event_print_debug(void)	{ }
566 
perf_pmu_name(void)567 extern __weak const char *perf_pmu_name(void)
568 {
569 	return "pmu";
570 }
571 
perf_clock(void)572 static inline u64 perf_clock(void)
573 {
574 	return local_clock();
575 }
576 
perf_event_clock(struct perf_event * event)577 static inline u64 perf_event_clock(struct perf_event *event)
578 {
579 	return event->clock();
580 }
581 
582 #ifdef CONFIG_CGROUP_PERF
583 
584 static inline bool
perf_cgroup_match(struct perf_event * event)585 perf_cgroup_match(struct perf_event *event)
586 {
587 	struct perf_event_context *ctx = event->ctx;
588 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
589 
590 	/* @event doesn't care about cgroup */
591 	if (!event->cgrp)
592 		return true;
593 
594 	/* wants specific cgroup scope but @cpuctx isn't associated with any */
595 	if (!cpuctx->cgrp)
596 		return false;
597 
598 	/*
599 	 * Cgroup scoping is recursive.  An event enabled for a cgroup is
600 	 * also enabled for all its descendant cgroups.  If @cpuctx's
601 	 * cgroup is a descendant of @event's (the test covers identity
602 	 * case), it's a match.
603 	 */
604 	return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
605 				    event->cgrp->css.cgroup);
606 }
607 
perf_detach_cgroup(struct perf_event * event)608 static inline void perf_detach_cgroup(struct perf_event *event)
609 {
610 	css_put(&event->cgrp->css);
611 	event->cgrp = NULL;
612 }
613 
is_cgroup_event(struct perf_event * event)614 static inline int is_cgroup_event(struct perf_event *event)
615 {
616 	return event->cgrp != NULL;
617 }
618 
perf_cgroup_event_time(struct perf_event * event)619 static inline u64 perf_cgroup_event_time(struct perf_event *event)
620 {
621 	struct perf_cgroup_info *t;
622 
623 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
624 	return t->time;
625 }
626 
__update_cgrp_time(struct perf_cgroup * cgrp)627 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
628 {
629 	struct perf_cgroup_info *info;
630 	u64 now;
631 
632 	now = perf_clock();
633 
634 	info = this_cpu_ptr(cgrp->info);
635 
636 	info->time += now - info->timestamp;
637 	info->timestamp = now;
638 }
639 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)640 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
641 {
642 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
643 	if (cgrp_out)
644 		__update_cgrp_time(cgrp_out);
645 }
646 
update_cgrp_time_from_event(struct perf_event * event)647 static inline void update_cgrp_time_from_event(struct perf_event *event)
648 {
649 	struct perf_cgroup *cgrp;
650 
651 	/*
652 	 * ensure we access cgroup data only when needed and
653 	 * when we know the cgroup is pinned (css_get)
654 	 */
655 	if (!is_cgroup_event(event))
656 		return;
657 
658 	cgrp = perf_cgroup_from_task(current, event->ctx);
659 	/*
660 	 * Do not update time when cgroup is not active
661 	 */
662 	if (cgrp == event->cgrp)
663 		__update_cgrp_time(event->cgrp);
664 }
665 
666 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)667 perf_cgroup_set_timestamp(struct task_struct *task,
668 			  struct perf_event_context *ctx)
669 {
670 	struct perf_cgroup *cgrp;
671 	struct perf_cgroup_info *info;
672 
673 	/*
674 	 * ctx->lock held by caller
675 	 * ensure we do not access cgroup data
676 	 * unless we have the cgroup pinned (css_get)
677 	 */
678 	if (!task || !ctx->nr_cgroups)
679 		return;
680 
681 	cgrp = perf_cgroup_from_task(task, ctx);
682 	info = this_cpu_ptr(cgrp->info);
683 	info->timestamp = ctx->timestamp;
684 }
685 
686 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
687 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
688 
689 /*
690  * reschedule events based on the cgroup constraint of task.
691  *
692  * mode SWOUT : schedule out everything
693  * mode SWIN : schedule in based on cgroup for next
694  */
perf_cgroup_switch(struct task_struct * task,int mode)695 static void perf_cgroup_switch(struct task_struct *task, int mode)
696 {
697 	struct perf_cpu_context *cpuctx;
698 	struct pmu *pmu;
699 	unsigned long flags;
700 
701 	/*
702 	 * disable interrupts to avoid geting nr_cgroup
703 	 * changes via __perf_event_disable(). Also
704 	 * avoids preemption.
705 	 */
706 	local_irq_save(flags);
707 
708 	/*
709 	 * we reschedule only in the presence of cgroup
710 	 * constrained events.
711 	 */
712 
713 	list_for_each_entry_rcu(pmu, &pmus, entry) {
714 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
715 		if (cpuctx->unique_pmu != pmu)
716 			continue; /* ensure we process each cpuctx once */
717 
718 		/*
719 		 * perf_cgroup_events says at least one
720 		 * context on this CPU has cgroup events.
721 		 *
722 		 * ctx->nr_cgroups reports the number of cgroup
723 		 * events for a context.
724 		 */
725 		if (cpuctx->ctx.nr_cgroups > 0) {
726 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
727 			perf_pmu_disable(cpuctx->ctx.pmu);
728 
729 			if (mode & PERF_CGROUP_SWOUT) {
730 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
731 				/*
732 				 * must not be done before ctxswout due
733 				 * to event_filter_match() in event_sched_out()
734 				 */
735 				cpuctx->cgrp = NULL;
736 			}
737 
738 			if (mode & PERF_CGROUP_SWIN) {
739 				WARN_ON_ONCE(cpuctx->cgrp);
740 				/*
741 				 * set cgrp before ctxsw in to allow
742 				 * event_filter_match() to not have to pass
743 				 * task around
744 				 * we pass the cpuctx->ctx to perf_cgroup_from_task()
745 				 * because cgorup events are only per-cpu
746 				 */
747 				cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
748 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
749 			}
750 			perf_pmu_enable(cpuctx->ctx.pmu);
751 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
752 		}
753 	}
754 
755 	local_irq_restore(flags);
756 }
757 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)758 static inline void perf_cgroup_sched_out(struct task_struct *task,
759 					 struct task_struct *next)
760 {
761 	struct perf_cgroup *cgrp1;
762 	struct perf_cgroup *cgrp2 = NULL;
763 
764 	rcu_read_lock();
765 	/*
766 	 * we come here when we know perf_cgroup_events > 0
767 	 * we do not need to pass the ctx here because we know
768 	 * we are holding the rcu lock
769 	 */
770 	cgrp1 = perf_cgroup_from_task(task, NULL);
771 	cgrp2 = perf_cgroup_from_task(next, NULL);
772 
773 	/*
774 	 * only schedule out current cgroup events if we know
775 	 * that we are switching to a different cgroup. Otherwise,
776 	 * do no touch the cgroup events.
777 	 */
778 	if (cgrp1 != cgrp2)
779 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
780 
781 	rcu_read_unlock();
782 }
783 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)784 static inline void perf_cgroup_sched_in(struct task_struct *prev,
785 					struct task_struct *task)
786 {
787 	struct perf_cgroup *cgrp1;
788 	struct perf_cgroup *cgrp2 = NULL;
789 
790 	rcu_read_lock();
791 	/*
792 	 * we come here when we know perf_cgroup_events > 0
793 	 * we do not need to pass the ctx here because we know
794 	 * we are holding the rcu lock
795 	 */
796 	cgrp1 = perf_cgroup_from_task(task, NULL);
797 	cgrp2 = perf_cgroup_from_task(prev, NULL);
798 
799 	/*
800 	 * only need to schedule in cgroup events if we are changing
801 	 * cgroup during ctxsw. Cgroup events were not scheduled
802 	 * out of ctxsw out if that was not the case.
803 	 */
804 	if (cgrp1 != cgrp2)
805 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
806 
807 	rcu_read_unlock();
808 }
809 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)810 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
811 				      struct perf_event_attr *attr,
812 				      struct perf_event *group_leader)
813 {
814 	struct perf_cgroup *cgrp;
815 	struct cgroup_subsys_state *css;
816 	struct fd f = fdget(fd);
817 	int ret = 0;
818 
819 	if (!f.file)
820 		return -EBADF;
821 
822 	css = css_tryget_online_from_dir(f.file->f_path.dentry,
823 					 &perf_event_cgrp_subsys);
824 	if (IS_ERR(css)) {
825 		ret = PTR_ERR(css);
826 		goto out;
827 	}
828 
829 	cgrp = container_of(css, struct perf_cgroup, css);
830 	event->cgrp = cgrp;
831 
832 	/*
833 	 * all events in a group must monitor
834 	 * the same cgroup because a task belongs
835 	 * to only one perf cgroup at a time
836 	 */
837 	if (group_leader && group_leader->cgrp != cgrp) {
838 		perf_detach_cgroup(event);
839 		ret = -EINVAL;
840 	}
841 out:
842 	fdput(f);
843 	return ret;
844 }
845 
846 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)847 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
848 {
849 	struct perf_cgroup_info *t;
850 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
851 	event->shadow_ctx_time = now - t->timestamp;
852 }
853 
854 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)855 perf_cgroup_defer_enabled(struct perf_event *event)
856 {
857 	/*
858 	 * when the current task's perf cgroup does not match
859 	 * the event's, we need to remember to call the
860 	 * perf_mark_enable() function the first time a task with
861 	 * a matching perf cgroup is scheduled in.
862 	 */
863 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
864 		event->cgrp_defer_enabled = 1;
865 }
866 
867 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)868 perf_cgroup_mark_enabled(struct perf_event *event,
869 			 struct perf_event_context *ctx)
870 {
871 	struct perf_event *sub;
872 	u64 tstamp = perf_event_time(event);
873 
874 	if (!event->cgrp_defer_enabled)
875 		return;
876 
877 	event->cgrp_defer_enabled = 0;
878 
879 	event->tstamp_enabled = tstamp - event->total_time_enabled;
880 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
881 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
882 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
883 			sub->cgrp_defer_enabled = 0;
884 		}
885 	}
886 }
887 
888 /*
889  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
890  * cleared when last cgroup event is removed.
891  */
892 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)893 list_update_cgroup_event(struct perf_event *event,
894 			 struct perf_event_context *ctx, bool add)
895 {
896 	struct perf_cpu_context *cpuctx;
897 
898 	if (!is_cgroup_event(event))
899 		return;
900 
901 	if (add && ctx->nr_cgroups++)
902 		return;
903 	else if (!add && --ctx->nr_cgroups)
904 		return;
905 	/*
906 	 * Because cgroup events are always per-cpu events,
907 	 * this will always be called from the right CPU.
908 	 */
909 	cpuctx = __get_cpu_context(ctx);
910 
911 	/*
912 	 * cpuctx->cgrp is NULL until a cgroup event is sched in or
913 	 * ctx->nr_cgroup == 0 .
914 	 */
915 	if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
916 		cpuctx->cgrp = event->cgrp;
917 	else if (!add)
918 		cpuctx->cgrp = NULL;
919 }
920 
921 #else /* !CONFIG_CGROUP_PERF */
922 
923 static inline bool
perf_cgroup_match(struct perf_event * event)924 perf_cgroup_match(struct perf_event *event)
925 {
926 	return true;
927 }
928 
perf_detach_cgroup(struct perf_event * event)929 static inline void perf_detach_cgroup(struct perf_event *event)
930 {}
931 
is_cgroup_event(struct perf_event * event)932 static inline int is_cgroup_event(struct perf_event *event)
933 {
934 	return 0;
935 }
936 
perf_cgroup_event_cgrp_time(struct perf_event * event)937 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
938 {
939 	return 0;
940 }
941 
update_cgrp_time_from_event(struct perf_event * event)942 static inline void update_cgrp_time_from_event(struct perf_event *event)
943 {
944 }
945 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)946 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
947 {
948 }
949 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)950 static inline void perf_cgroup_sched_out(struct task_struct *task,
951 					 struct task_struct *next)
952 {
953 }
954 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)955 static inline void perf_cgroup_sched_in(struct task_struct *prev,
956 					struct task_struct *task)
957 {
958 }
959 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)960 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
961 				      struct perf_event_attr *attr,
962 				      struct perf_event *group_leader)
963 {
964 	return -EINVAL;
965 }
966 
967 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)968 perf_cgroup_set_timestamp(struct task_struct *task,
969 			  struct perf_event_context *ctx)
970 {
971 }
972 
973 void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)974 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
975 {
976 }
977 
978 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)979 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
980 {
981 }
982 
perf_cgroup_event_time(struct perf_event * event)983 static inline u64 perf_cgroup_event_time(struct perf_event *event)
984 {
985 	return 0;
986 }
987 
988 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)989 perf_cgroup_defer_enabled(struct perf_event *event)
990 {
991 }
992 
993 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)994 perf_cgroup_mark_enabled(struct perf_event *event,
995 			 struct perf_event_context *ctx)
996 {
997 }
998 
999 static inline void
list_update_cgroup_event(struct perf_event * event,struct perf_event_context * ctx,bool add)1000 list_update_cgroup_event(struct perf_event *event,
1001 			 struct perf_event_context *ctx, bool add)
1002 {
1003 }
1004 
1005 #endif
1006 
1007 /*
1008  * set default to be dependent on timer tick just
1009  * like original code
1010  */
1011 #define PERF_CPU_HRTIMER (1000 / HZ)
1012 /*
1013  * function must be called with interrupts disbled
1014  */
perf_mux_hrtimer_handler(struct hrtimer * hr)1015 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1016 {
1017 	struct perf_cpu_context *cpuctx;
1018 	int rotations = 0;
1019 
1020 	WARN_ON(!irqs_disabled());
1021 
1022 	cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1023 	rotations = perf_rotate_context(cpuctx);
1024 
1025 	raw_spin_lock(&cpuctx->hrtimer_lock);
1026 	if (rotations)
1027 		hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1028 	else
1029 		cpuctx->hrtimer_active = 0;
1030 	raw_spin_unlock(&cpuctx->hrtimer_lock);
1031 
1032 	return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1033 }
1034 
__perf_mux_hrtimer_init(struct perf_cpu_context * cpuctx,int cpu)1035 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1036 {
1037 	struct hrtimer *timer = &cpuctx->hrtimer;
1038 	struct pmu *pmu = cpuctx->ctx.pmu;
1039 	u64 interval;
1040 
1041 	/* no multiplexing needed for SW PMU */
1042 	if (pmu->task_ctx_nr == perf_sw_context)
1043 		return;
1044 
1045 	/*
1046 	 * check default is sane, if not set then force to
1047 	 * default interval (1/tick)
1048 	 */
1049 	interval = pmu->hrtimer_interval_ms;
1050 	if (interval < 1)
1051 		interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1052 
1053 	cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1054 
1055 	raw_spin_lock_init(&cpuctx->hrtimer_lock);
1056 	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1057 	timer->function = perf_mux_hrtimer_handler;
1058 }
1059 
perf_mux_hrtimer_restart(struct perf_cpu_context * cpuctx)1060 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1061 {
1062 	struct hrtimer *timer = &cpuctx->hrtimer;
1063 	struct pmu *pmu = cpuctx->ctx.pmu;
1064 	unsigned long flags;
1065 
1066 	/* not for SW PMU */
1067 	if (pmu->task_ctx_nr == perf_sw_context)
1068 		return 0;
1069 
1070 	raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1071 	if (!cpuctx->hrtimer_active) {
1072 		cpuctx->hrtimer_active = 1;
1073 		hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1074 		hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1075 	}
1076 	raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1077 
1078 	return 0;
1079 }
1080 
perf_pmu_disable(struct pmu * pmu)1081 void perf_pmu_disable(struct pmu *pmu)
1082 {
1083 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1084 	if (!(*count)++)
1085 		pmu->pmu_disable(pmu);
1086 }
1087 
perf_pmu_enable(struct pmu * pmu)1088 void perf_pmu_enable(struct pmu *pmu)
1089 {
1090 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
1091 	if (!--(*count))
1092 		pmu->pmu_enable(pmu);
1093 }
1094 
1095 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1096 
1097 /*
1098  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1099  * perf_event_task_tick() are fully serialized because they're strictly cpu
1100  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1101  * disabled, while perf_event_task_tick is called from IRQ context.
1102  */
perf_event_ctx_activate(struct perf_event_context * ctx)1103 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1104 {
1105 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
1106 
1107 	WARN_ON(!irqs_disabled());
1108 
1109 	WARN_ON(!list_empty(&ctx->active_ctx_list));
1110 
1111 	list_add(&ctx->active_ctx_list, head);
1112 }
1113 
perf_event_ctx_deactivate(struct perf_event_context * ctx)1114 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1115 {
1116 	WARN_ON(!irqs_disabled());
1117 
1118 	WARN_ON(list_empty(&ctx->active_ctx_list));
1119 
1120 	list_del_init(&ctx->active_ctx_list);
1121 }
1122 
get_ctx(struct perf_event_context * ctx)1123 static void get_ctx(struct perf_event_context *ctx)
1124 {
1125 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1126 }
1127 
free_ctx(struct rcu_head * head)1128 static void free_ctx(struct rcu_head *head)
1129 {
1130 	struct perf_event_context *ctx;
1131 
1132 	ctx = container_of(head, struct perf_event_context, rcu_head);
1133 	kfree(ctx->task_ctx_data);
1134 	kfree(ctx);
1135 }
1136 
put_ctx(struct perf_event_context * ctx)1137 static void put_ctx(struct perf_event_context *ctx)
1138 {
1139 	if (atomic_dec_and_test(&ctx->refcount)) {
1140 		if (ctx->parent_ctx)
1141 			put_ctx(ctx->parent_ctx);
1142 		if (ctx->task && ctx->task != TASK_TOMBSTONE)
1143 			put_task_struct(ctx->task);
1144 		call_rcu(&ctx->rcu_head, free_ctx);
1145 	}
1146 }
1147 
1148 /*
1149  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1150  * perf_pmu_migrate_context() we need some magic.
1151  *
1152  * Those places that change perf_event::ctx will hold both
1153  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1154  *
1155  * Lock ordering is by mutex address. There are two other sites where
1156  * perf_event_context::mutex nests and those are:
1157  *
1158  *  - perf_event_exit_task_context()	[ child , 0 ]
1159  *      perf_event_exit_event()
1160  *        put_event()			[ parent, 1 ]
1161  *
1162  *  - perf_event_init_context()		[ parent, 0 ]
1163  *      inherit_task_group()
1164  *        inherit_group()
1165  *          inherit_event()
1166  *            perf_event_alloc()
1167  *              perf_init_event()
1168  *                perf_try_init_event()	[ child , 1 ]
1169  *
1170  * While it appears there is an obvious deadlock here -- the parent and child
1171  * nesting levels are inverted between the two. This is in fact safe because
1172  * life-time rules separate them. That is an exiting task cannot fork, and a
1173  * spawning task cannot (yet) exit.
1174  *
1175  * But remember that that these are parent<->child context relations, and
1176  * migration does not affect children, therefore these two orderings should not
1177  * interact.
1178  *
1179  * The change in perf_event::ctx does not affect children (as claimed above)
1180  * because the sys_perf_event_open() case will install a new event and break
1181  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1182  * concerned with cpuctx and that doesn't have children.
1183  *
1184  * The places that change perf_event::ctx will issue:
1185  *
1186  *   perf_remove_from_context();
1187  *   synchronize_rcu();
1188  *   perf_install_in_context();
1189  *
1190  * to affect the change. The remove_from_context() + synchronize_rcu() should
1191  * quiesce the event, after which we can install it in the new location. This
1192  * means that only external vectors (perf_fops, prctl) can perturb the event
1193  * while in transit. Therefore all such accessors should also acquire
1194  * perf_event_context::mutex to serialize against this.
1195  *
1196  * However; because event->ctx can change while we're waiting to acquire
1197  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1198  * function.
1199  *
1200  * Lock order:
1201  *    cred_guard_mutex
1202  *	task_struct::perf_event_mutex
1203  *	  perf_event_context::mutex
1204  *	    perf_event::child_mutex;
1205  *	      perf_event_context::lock
1206  *	    perf_event::mmap_mutex
1207  *	    mmap_sem
1208  */
1209 static struct perf_event_context *
perf_event_ctx_lock_nested(struct perf_event * event,int nesting)1210 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1211 {
1212 	struct perf_event_context *ctx;
1213 
1214 again:
1215 	rcu_read_lock();
1216 	ctx = ACCESS_ONCE(event->ctx);
1217 	if (!atomic_inc_not_zero(&ctx->refcount)) {
1218 		rcu_read_unlock();
1219 		goto again;
1220 	}
1221 	rcu_read_unlock();
1222 
1223 	mutex_lock_nested(&ctx->mutex, nesting);
1224 	if (event->ctx != ctx) {
1225 		mutex_unlock(&ctx->mutex);
1226 		put_ctx(ctx);
1227 		goto again;
1228 	}
1229 
1230 	return ctx;
1231 }
1232 
1233 static inline struct perf_event_context *
perf_event_ctx_lock(struct perf_event * event)1234 perf_event_ctx_lock(struct perf_event *event)
1235 {
1236 	return perf_event_ctx_lock_nested(event, 0);
1237 }
1238 
perf_event_ctx_unlock(struct perf_event * event,struct perf_event_context * ctx)1239 static void perf_event_ctx_unlock(struct perf_event *event,
1240 				  struct perf_event_context *ctx)
1241 {
1242 	mutex_unlock(&ctx->mutex);
1243 	put_ctx(ctx);
1244 }
1245 
1246 /*
1247  * This must be done under the ctx->lock, such as to serialize against
1248  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1249  * calling scheduler related locks and ctx->lock nests inside those.
1250  */
1251 static __must_check struct perf_event_context *
unclone_ctx(struct perf_event_context * ctx)1252 unclone_ctx(struct perf_event_context *ctx)
1253 {
1254 	struct perf_event_context *parent_ctx = ctx->parent_ctx;
1255 
1256 	lockdep_assert_held(&ctx->lock);
1257 
1258 	if (parent_ctx)
1259 		ctx->parent_ctx = NULL;
1260 	ctx->generation++;
1261 
1262 	return parent_ctx;
1263 }
1264 
perf_event_pid(struct perf_event * event,struct task_struct * p)1265 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1266 {
1267 	/*
1268 	 * only top level events have the pid namespace they were created in
1269 	 */
1270 	if (event->parent)
1271 		event = event->parent;
1272 
1273 	return task_tgid_nr_ns(p, event->ns);
1274 }
1275 
perf_event_tid(struct perf_event * event,struct task_struct * p)1276 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1277 {
1278 	/*
1279 	 * only top level events have the pid namespace they were created in
1280 	 */
1281 	if (event->parent)
1282 		event = event->parent;
1283 
1284 	return task_pid_nr_ns(p, event->ns);
1285 }
1286 
1287 /*
1288  * If we inherit events we want to return the parent event id
1289  * to userspace.
1290  */
primary_event_id(struct perf_event * event)1291 static u64 primary_event_id(struct perf_event *event)
1292 {
1293 	u64 id = event->id;
1294 
1295 	if (event->parent)
1296 		id = event->parent->id;
1297 
1298 	return id;
1299 }
1300 
1301 /*
1302  * Get the perf_event_context for a task and lock it.
1303  *
1304  * This has to cope with with the fact that until it is locked,
1305  * the context could get moved to another task.
1306  */
1307 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)1308 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1309 {
1310 	struct perf_event_context *ctx;
1311 
1312 retry:
1313 	/*
1314 	 * One of the few rules of preemptible RCU is that one cannot do
1315 	 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1316 	 * part of the read side critical section was irqs-enabled -- see
1317 	 * rcu_read_unlock_special().
1318 	 *
1319 	 * Since ctx->lock nests under rq->lock we must ensure the entire read
1320 	 * side critical section has interrupts disabled.
1321 	 */
1322 	local_irq_save(*flags);
1323 	rcu_read_lock();
1324 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1325 	if (ctx) {
1326 		/*
1327 		 * If this context is a clone of another, it might
1328 		 * get swapped for another underneath us by
1329 		 * perf_event_task_sched_out, though the
1330 		 * rcu_read_lock() protects us from any context
1331 		 * getting freed.  Lock the context and check if it
1332 		 * got swapped before we could get the lock, and retry
1333 		 * if so.  If we locked the right context, then it
1334 		 * can't get swapped on us any more.
1335 		 */
1336 		raw_spin_lock(&ctx->lock);
1337 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1338 			raw_spin_unlock(&ctx->lock);
1339 			rcu_read_unlock();
1340 			local_irq_restore(*flags);
1341 			goto retry;
1342 		}
1343 
1344 		if (ctx->task == TASK_TOMBSTONE ||
1345 		    !atomic_inc_not_zero(&ctx->refcount)) {
1346 			raw_spin_unlock(&ctx->lock);
1347 			ctx = NULL;
1348 		} else {
1349 			WARN_ON_ONCE(ctx->task != task);
1350 		}
1351 	}
1352 	rcu_read_unlock();
1353 	if (!ctx)
1354 		local_irq_restore(*flags);
1355 	return ctx;
1356 }
1357 
1358 /*
1359  * Get the context for a task and increment its pin_count so it
1360  * can't get swapped to another task.  This also increments its
1361  * reference count so that the context can't get freed.
1362  */
1363 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)1364 perf_pin_task_context(struct task_struct *task, int ctxn)
1365 {
1366 	struct perf_event_context *ctx;
1367 	unsigned long flags;
1368 
1369 	ctx = perf_lock_task_context(task, ctxn, &flags);
1370 	if (ctx) {
1371 		++ctx->pin_count;
1372 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
1373 	}
1374 	return ctx;
1375 }
1376 
perf_unpin_context(struct perf_event_context * ctx)1377 static void perf_unpin_context(struct perf_event_context *ctx)
1378 {
1379 	unsigned long flags;
1380 
1381 	raw_spin_lock_irqsave(&ctx->lock, flags);
1382 	--ctx->pin_count;
1383 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
1384 }
1385 
1386 /*
1387  * Update the record of the current time in a context.
1388  */
update_context_time(struct perf_event_context * ctx)1389 static void update_context_time(struct perf_event_context *ctx)
1390 {
1391 	u64 now = perf_clock();
1392 
1393 	ctx->time += now - ctx->timestamp;
1394 	ctx->timestamp = now;
1395 }
1396 
perf_event_time(struct perf_event * event)1397 static u64 perf_event_time(struct perf_event *event)
1398 {
1399 	struct perf_event_context *ctx = event->ctx;
1400 
1401 	if (is_cgroup_event(event))
1402 		return perf_cgroup_event_time(event);
1403 
1404 	return ctx ? ctx->time : 0;
1405 }
1406 
1407 /*
1408  * Update the total_time_enabled and total_time_running fields for a event.
1409  */
update_event_times(struct perf_event * event)1410 static void update_event_times(struct perf_event *event)
1411 {
1412 	struct perf_event_context *ctx = event->ctx;
1413 	u64 run_end;
1414 
1415 	lockdep_assert_held(&ctx->lock);
1416 
1417 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
1418 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1419 		return;
1420 
1421 	/*
1422 	 * in cgroup mode, time_enabled represents
1423 	 * the time the event was enabled AND active
1424 	 * tasks were in the monitored cgroup. This is
1425 	 * independent of the activity of the context as
1426 	 * there may be a mix of cgroup and non-cgroup events.
1427 	 *
1428 	 * That is why we treat cgroup events differently
1429 	 * here.
1430 	 */
1431 	if (is_cgroup_event(event))
1432 		run_end = perf_cgroup_event_time(event);
1433 	else if (ctx->is_active)
1434 		run_end = ctx->time;
1435 	else
1436 		run_end = event->tstamp_stopped;
1437 
1438 	event->total_time_enabled = run_end - event->tstamp_enabled;
1439 
1440 	if (event->state == PERF_EVENT_STATE_INACTIVE)
1441 		run_end = event->tstamp_stopped;
1442 	else
1443 		run_end = perf_event_time(event);
1444 
1445 	event->total_time_running = run_end - event->tstamp_running;
1446 
1447 }
1448 
1449 /*
1450  * Update total_time_enabled and total_time_running for all events in a group.
1451  */
update_group_times(struct perf_event * leader)1452 static void update_group_times(struct perf_event *leader)
1453 {
1454 	struct perf_event *event;
1455 
1456 	update_event_times(leader);
1457 	list_for_each_entry(event, &leader->sibling_list, group_entry)
1458 		update_event_times(event);
1459 }
1460 
1461 static struct list_head *
ctx_group_list(struct perf_event * event,struct perf_event_context * ctx)1462 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1463 {
1464 	if (event->attr.pinned)
1465 		return &ctx->pinned_groups;
1466 	else
1467 		return &ctx->flexible_groups;
1468 }
1469 
1470 /*
1471  * Add a event from the lists for its context.
1472  * Must be called with ctx->mutex and ctx->lock held.
1473  */
1474 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)1475 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1476 {
1477 	lockdep_assert_held(&ctx->lock);
1478 
1479 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1480 	event->attach_state |= PERF_ATTACH_CONTEXT;
1481 
1482 	/*
1483 	 * If we're a stand alone event or group leader, we go to the context
1484 	 * list, group events are kept attached to the group so that
1485 	 * perf_group_detach can, at all times, locate all siblings.
1486 	 */
1487 	if (event->group_leader == event) {
1488 		struct list_head *list;
1489 
1490 		event->group_caps = event->event_caps;
1491 
1492 		list = ctx_group_list(event, ctx);
1493 		list_add_tail(&event->group_entry, list);
1494 	}
1495 
1496 	list_update_cgroup_event(event, ctx, true);
1497 
1498 	list_add_rcu(&event->event_entry, &ctx->event_list);
1499 	ctx->nr_events++;
1500 	if (event->attr.inherit_stat)
1501 		ctx->nr_stat++;
1502 
1503 	ctx->generation++;
1504 }
1505 
1506 /*
1507  * Initialize event state based on the perf_event_attr::disabled.
1508  */
perf_event__state_init(struct perf_event * event)1509 static inline void perf_event__state_init(struct perf_event *event)
1510 {
1511 	event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1512 					      PERF_EVENT_STATE_INACTIVE;
1513 }
1514 
__perf_event_read_size(struct perf_event * event,int nr_siblings)1515 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1516 {
1517 	int entry = sizeof(u64); /* value */
1518 	int size = 0;
1519 	int nr = 1;
1520 
1521 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1522 		size += sizeof(u64);
1523 
1524 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1525 		size += sizeof(u64);
1526 
1527 	if (event->attr.read_format & PERF_FORMAT_ID)
1528 		entry += sizeof(u64);
1529 
1530 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
1531 		nr += nr_siblings;
1532 		size += sizeof(u64);
1533 	}
1534 
1535 	size += entry * nr;
1536 	event->read_size = size;
1537 }
1538 
__perf_event_header_size(struct perf_event * event,u64 sample_type)1539 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1540 {
1541 	struct perf_sample_data *data;
1542 	u16 size = 0;
1543 
1544 	if (sample_type & PERF_SAMPLE_IP)
1545 		size += sizeof(data->ip);
1546 
1547 	if (sample_type & PERF_SAMPLE_ADDR)
1548 		size += sizeof(data->addr);
1549 
1550 	if (sample_type & PERF_SAMPLE_PERIOD)
1551 		size += sizeof(data->period);
1552 
1553 	if (sample_type & PERF_SAMPLE_WEIGHT)
1554 		size += sizeof(data->weight);
1555 
1556 	if (sample_type & PERF_SAMPLE_READ)
1557 		size += event->read_size;
1558 
1559 	if (sample_type & PERF_SAMPLE_DATA_SRC)
1560 		size += sizeof(data->data_src.val);
1561 
1562 	if (sample_type & PERF_SAMPLE_TRANSACTION)
1563 		size += sizeof(data->txn);
1564 
1565 	event->header_size = size;
1566 }
1567 
1568 /*
1569  * Called at perf_event creation and when events are attached/detached from a
1570  * group.
1571  */
perf_event__header_size(struct perf_event * event)1572 static void perf_event__header_size(struct perf_event *event)
1573 {
1574 	__perf_event_read_size(event,
1575 			       event->group_leader->nr_siblings);
1576 	__perf_event_header_size(event, event->attr.sample_type);
1577 }
1578 
perf_event__id_header_size(struct perf_event * event)1579 static void perf_event__id_header_size(struct perf_event *event)
1580 {
1581 	struct perf_sample_data *data;
1582 	u64 sample_type = event->attr.sample_type;
1583 	u16 size = 0;
1584 
1585 	if (sample_type & PERF_SAMPLE_TID)
1586 		size += sizeof(data->tid_entry);
1587 
1588 	if (sample_type & PERF_SAMPLE_TIME)
1589 		size += sizeof(data->time);
1590 
1591 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
1592 		size += sizeof(data->id);
1593 
1594 	if (sample_type & PERF_SAMPLE_ID)
1595 		size += sizeof(data->id);
1596 
1597 	if (sample_type & PERF_SAMPLE_STREAM_ID)
1598 		size += sizeof(data->stream_id);
1599 
1600 	if (sample_type & PERF_SAMPLE_CPU)
1601 		size += sizeof(data->cpu_entry);
1602 
1603 	event->id_header_size = size;
1604 }
1605 
perf_event_validate_size(struct perf_event * event)1606 static bool perf_event_validate_size(struct perf_event *event)
1607 {
1608 	/*
1609 	 * The values computed here will be over-written when we actually
1610 	 * attach the event.
1611 	 */
1612 	__perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1613 	__perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1614 	perf_event__id_header_size(event);
1615 
1616 	/*
1617 	 * Sum the lot; should not exceed the 64k limit we have on records.
1618 	 * Conservative limit to allow for callchains and other variable fields.
1619 	 */
1620 	if (event->read_size + event->header_size +
1621 	    event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1622 		return false;
1623 
1624 	return true;
1625 }
1626 
perf_group_attach(struct perf_event * event)1627 static void perf_group_attach(struct perf_event *event)
1628 {
1629 	struct perf_event *group_leader = event->group_leader, *pos;
1630 
1631 	lockdep_assert_held(&event->ctx->lock);
1632 
1633 	/*
1634 	 * We can have double attach due to group movement in perf_event_open.
1635 	 */
1636 	if (event->attach_state & PERF_ATTACH_GROUP)
1637 		return;
1638 
1639 	event->attach_state |= PERF_ATTACH_GROUP;
1640 
1641 	if (group_leader == event)
1642 		return;
1643 
1644 	WARN_ON_ONCE(group_leader->ctx != event->ctx);
1645 
1646 	group_leader->group_caps &= event->event_caps;
1647 
1648 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
1649 	group_leader->nr_siblings++;
1650 
1651 	perf_event__header_size(group_leader);
1652 
1653 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1654 		perf_event__header_size(pos);
1655 }
1656 
1657 /*
1658  * Remove a event from the lists for its context.
1659  * Must be called with ctx->mutex and ctx->lock held.
1660  */
1661 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1662 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1663 {
1664 	WARN_ON_ONCE(event->ctx != ctx);
1665 	lockdep_assert_held(&ctx->lock);
1666 
1667 	/*
1668 	 * We can have double detach due to exit/hot-unplug + close.
1669 	 */
1670 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1671 		return;
1672 
1673 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1674 
1675 	list_update_cgroup_event(event, ctx, false);
1676 
1677 	ctx->nr_events--;
1678 	if (event->attr.inherit_stat)
1679 		ctx->nr_stat--;
1680 
1681 	list_del_rcu(&event->event_entry);
1682 
1683 	if (event->group_leader == event)
1684 		list_del_init(&event->group_entry);
1685 
1686 	update_group_times(event);
1687 
1688 	/*
1689 	 * If event was in error state, then keep it
1690 	 * that way, otherwise bogus counts will be
1691 	 * returned on read(). The only way to get out
1692 	 * of error state is by explicit re-enabling
1693 	 * of the event
1694 	 */
1695 	if (event->state > PERF_EVENT_STATE_OFF)
1696 		event->state = PERF_EVENT_STATE_OFF;
1697 
1698 	ctx->generation++;
1699 }
1700 
perf_group_detach(struct perf_event * event)1701 static void perf_group_detach(struct perf_event *event)
1702 {
1703 	struct perf_event *sibling, *tmp;
1704 	struct list_head *list = NULL;
1705 
1706 	lockdep_assert_held(&event->ctx->lock);
1707 
1708 	/*
1709 	 * We can have double detach due to exit/hot-unplug + close.
1710 	 */
1711 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1712 		return;
1713 
1714 	event->attach_state &= ~PERF_ATTACH_GROUP;
1715 
1716 	/*
1717 	 * If this is a sibling, remove it from its group.
1718 	 */
1719 	if (event->group_leader != event) {
1720 		list_del_init(&event->group_entry);
1721 		event->group_leader->nr_siblings--;
1722 		goto out;
1723 	}
1724 
1725 	if (!list_empty(&event->group_entry))
1726 		list = &event->group_entry;
1727 
1728 	/*
1729 	 * If this was a group event with sibling events then
1730 	 * upgrade the siblings to singleton events by adding them
1731 	 * to whatever list we are on.
1732 	 */
1733 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1734 		if (list)
1735 			list_move_tail(&sibling->group_entry, list);
1736 		sibling->group_leader = sibling;
1737 
1738 		/* Inherit group flags from the previous leader */
1739 		sibling->group_caps = event->group_caps;
1740 
1741 		WARN_ON_ONCE(sibling->ctx != event->ctx);
1742 	}
1743 
1744 out:
1745 	perf_event__header_size(event->group_leader);
1746 
1747 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1748 		perf_event__header_size(tmp);
1749 }
1750 
is_orphaned_event(struct perf_event * event)1751 static bool is_orphaned_event(struct perf_event *event)
1752 {
1753 	return event->state == PERF_EVENT_STATE_DEAD;
1754 }
1755 
__pmu_filter_match(struct perf_event * event)1756 static inline int __pmu_filter_match(struct perf_event *event)
1757 {
1758 	struct pmu *pmu = event->pmu;
1759 	return pmu->filter_match ? pmu->filter_match(event) : 1;
1760 }
1761 
1762 /*
1763  * Check whether we should attempt to schedule an event group based on
1764  * PMU-specific filtering. An event group can consist of HW and SW events,
1765  * potentially with a SW leader, so we must check all the filters, to
1766  * determine whether a group is schedulable:
1767  */
pmu_filter_match(struct perf_event * event)1768 static inline int pmu_filter_match(struct perf_event *event)
1769 {
1770 	struct perf_event *child;
1771 
1772 	if (!__pmu_filter_match(event))
1773 		return 0;
1774 
1775 	list_for_each_entry(child, &event->sibling_list, group_entry) {
1776 		if (!__pmu_filter_match(child))
1777 			return 0;
1778 	}
1779 
1780 	return 1;
1781 }
1782 
1783 static inline int
event_filter_match(struct perf_event * event)1784 event_filter_match(struct perf_event *event)
1785 {
1786 	return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1787 	       perf_cgroup_match(event) && pmu_filter_match(event);
1788 }
1789 
1790 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1791 event_sched_out(struct perf_event *event,
1792 		  struct perf_cpu_context *cpuctx,
1793 		  struct perf_event_context *ctx)
1794 {
1795 	u64 tstamp = perf_event_time(event);
1796 	u64 delta;
1797 
1798 	WARN_ON_ONCE(event->ctx != ctx);
1799 	lockdep_assert_held(&ctx->lock);
1800 
1801 	/*
1802 	 * An event which could not be activated because of
1803 	 * filter mismatch still needs to have its timings
1804 	 * maintained, otherwise bogus information is return
1805 	 * via read() for time_enabled, time_running:
1806 	 */
1807 	if (event->state == PERF_EVENT_STATE_INACTIVE &&
1808 	    !event_filter_match(event)) {
1809 		delta = tstamp - event->tstamp_stopped;
1810 		event->tstamp_running += delta;
1811 		event->tstamp_stopped = tstamp;
1812 	}
1813 
1814 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1815 		return;
1816 
1817 	perf_pmu_disable(event->pmu);
1818 
1819 	event->tstamp_stopped = tstamp;
1820 	event->pmu->del(event, 0);
1821 	event->oncpu = -1;
1822 	event->state = PERF_EVENT_STATE_INACTIVE;
1823 	if (event->pending_disable) {
1824 		event->pending_disable = 0;
1825 		event->state = PERF_EVENT_STATE_OFF;
1826 	}
1827 
1828 	if (!is_software_event(event))
1829 		cpuctx->active_oncpu--;
1830 	if (!--ctx->nr_active)
1831 		perf_event_ctx_deactivate(ctx);
1832 	if (event->attr.freq && event->attr.sample_freq)
1833 		ctx->nr_freq--;
1834 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1835 		cpuctx->exclusive = 0;
1836 
1837 	perf_pmu_enable(event->pmu);
1838 }
1839 
1840 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1841 group_sched_out(struct perf_event *group_event,
1842 		struct perf_cpu_context *cpuctx,
1843 		struct perf_event_context *ctx)
1844 {
1845 	struct perf_event *event;
1846 	int state = group_event->state;
1847 
1848 	perf_pmu_disable(ctx->pmu);
1849 
1850 	event_sched_out(group_event, cpuctx, ctx);
1851 
1852 	/*
1853 	 * Schedule out siblings (if any):
1854 	 */
1855 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1856 		event_sched_out(event, cpuctx, ctx);
1857 
1858 	perf_pmu_enable(ctx->pmu);
1859 
1860 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1861 		cpuctx->exclusive = 0;
1862 }
1863 
1864 #define DETACH_GROUP	0x01UL
1865 
1866 /*
1867  * Cross CPU call to remove a performance event
1868  *
1869  * We disable the event on the hardware level first. After that we
1870  * remove it from the context list.
1871  */
1872 static void
__perf_remove_from_context(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)1873 __perf_remove_from_context(struct perf_event *event,
1874 			   struct perf_cpu_context *cpuctx,
1875 			   struct perf_event_context *ctx,
1876 			   void *info)
1877 {
1878 	unsigned long flags = (unsigned long)info;
1879 
1880 	event_sched_out(event, cpuctx, ctx);
1881 	if (flags & DETACH_GROUP)
1882 		perf_group_detach(event);
1883 	list_del_event(event, ctx);
1884 
1885 	if (!ctx->nr_events && ctx->is_active) {
1886 		ctx->is_active = 0;
1887 		if (ctx->task) {
1888 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1889 			cpuctx->task_ctx = NULL;
1890 		}
1891 	}
1892 }
1893 
1894 /*
1895  * Remove the event from a task's (or a CPU's) list of events.
1896  *
1897  * If event->ctx is a cloned context, callers must make sure that
1898  * every task struct that event->ctx->task could possibly point to
1899  * remains valid.  This is OK when called from perf_release since
1900  * that only calls us on the top-level context, which can't be a clone.
1901  * When called from perf_event_exit_task, it's OK because the
1902  * context has been detached from its task.
1903  */
perf_remove_from_context(struct perf_event * event,unsigned long flags)1904 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1905 {
1906 	struct perf_event_context *ctx = event->ctx;
1907 
1908 	lockdep_assert_held(&ctx->mutex);
1909 
1910 	event_function_call(event, __perf_remove_from_context, (void *)flags);
1911 
1912 	/*
1913 	 * The above event_function_call() can NO-OP when it hits
1914 	 * TASK_TOMBSTONE. In that case we must already have been detached
1915 	 * from the context (by perf_event_exit_event()) but the grouping
1916 	 * might still be in-tact.
1917 	 */
1918 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1919 	if ((flags & DETACH_GROUP) &&
1920 	    (event->attach_state & PERF_ATTACH_GROUP)) {
1921 		/*
1922 		 * Since in that case we cannot possibly be scheduled, simply
1923 		 * detach now.
1924 		 */
1925 		raw_spin_lock_irq(&ctx->lock);
1926 		perf_group_detach(event);
1927 		raw_spin_unlock_irq(&ctx->lock);
1928 	}
1929 }
1930 
1931 /*
1932  * Cross CPU call to disable a performance event
1933  */
__perf_event_disable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)1934 static void __perf_event_disable(struct perf_event *event,
1935 				 struct perf_cpu_context *cpuctx,
1936 				 struct perf_event_context *ctx,
1937 				 void *info)
1938 {
1939 	if (event->state < PERF_EVENT_STATE_INACTIVE)
1940 		return;
1941 
1942 	update_context_time(ctx);
1943 	update_cgrp_time_from_event(event);
1944 	update_group_times(event);
1945 	if (event == event->group_leader)
1946 		group_sched_out(event, cpuctx, ctx);
1947 	else
1948 		event_sched_out(event, cpuctx, ctx);
1949 	event->state = PERF_EVENT_STATE_OFF;
1950 }
1951 
1952 /*
1953  * Disable a event.
1954  *
1955  * If event->ctx is a cloned context, callers must make sure that
1956  * every task struct that event->ctx->task could possibly point to
1957  * remains valid.  This condition is satisifed when called through
1958  * perf_event_for_each_child or perf_event_for_each because they
1959  * hold the top-level event's child_mutex, so any descendant that
1960  * goes to exit will block in perf_event_exit_event().
1961  *
1962  * When called from perf_pending_event it's OK because event->ctx
1963  * is the current context on this CPU and preemption is disabled,
1964  * hence we can't get into perf_event_task_sched_out for this context.
1965  */
_perf_event_disable(struct perf_event * event)1966 static void _perf_event_disable(struct perf_event *event)
1967 {
1968 	struct perf_event_context *ctx = event->ctx;
1969 
1970 	raw_spin_lock_irq(&ctx->lock);
1971 	if (event->state <= PERF_EVENT_STATE_OFF) {
1972 		raw_spin_unlock_irq(&ctx->lock);
1973 		return;
1974 	}
1975 	raw_spin_unlock_irq(&ctx->lock);
1976 
1977 	event_function_call(event, __perf_event_disable, NULL);
1978 }
1979 
perf_event_disable_local(struct perf_event * event)1980 void perf_event_disable_local(struct perf_event *event)
1981 {
1982 	event_function_local(event, __perf_event_disable, NULL);
1983 }
1984 
1985 /*
1986  * Strictly speaking kernel users cannot create groups and therefore this
1987  * interface does not need the perf_event_ctx_lock() magic.
1988  */
perf_event_disable(struct perf_event * event)1989 void perf_event_disable(struct perf_event *event)
1990 {
1991 	struct perf_event_context *ctx;
1992 
1993 	ctx = perf_event_ctx_lock(event);
1994 	_perf_event_disable(event);
1995 	perf_event_ctx_unlock(event, ctx);
1996 }
1997 EXPORT_SYMBOL_GPL(perf_event_disable);
1998 
perf_event_disable_inatomic(struct perf_event * event)1999 void perf_event_disable_inatomic(struct perf_event *event)
2000 {
2001 	event->pending_disable = 1;
2002 	irq_work_queue(&event->pending);
2003 }
2004 
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx,u64 tstamp)2005 static void perf_set_shadow_time(struct perf_event *event,
2006 				 struct perf_event_context *ctx,
2007 				 u64 tstamp)
2008 {
2009 	/*
2010 	 * use the correct time source for the time snapshot
2011 	 *
2012 	 * We could get by without this by leveraging the
2013 	 * fact that to get to this function, the caller
2014 	 * has most likely already called update_context_time()
2015 	 * and update_cgrp_time_xx() and thus both timestamp
2016 	 * are identical (or very close). Given that tstamp is,
2017 	 * already adjusted for cgroup, we could say that:
2018 	 *    tstamp - ctx->timestamp
2019 	 * is equivalent to
2020 	 *    tstamp - cgrp->timestamp.
2021 	 *
2022 	 * Then, in perf_output_read(), the calculation would
2023 	 * work with no changes because:
2024 	 * - event is guaranteed scheduled in
2025 	 * - no scheduled out in between
2026 	 * - thus the timestamp would be the same
2027 	 *
2028 	 * But this is a bit hairy.
2029 	 *
2030 	 * So instead, we have an explicit cgroup call to remain
2031 	 * within the time time source all along. We believe it
2032 	 * is cleaner and simpler to understand.
2033 	 */
2034 	if (is_cgroup_event(event))
2035 		perf_cgroup_set_shadow_time(event, tstamp);
2036 	else
2037 		event->shadow_ctx_time = tstamp - ctx->timestamp;
2038 }
2039 
2040 #define MAX_INTERRUPTS (~0ULL)
2041 
2042 static void perf_log_throttle(struct perf_event *event, int enable);
2043 static void perf_log_itrace_start(struct perf_event *event);
2044 
2045 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2046 event_sched_in(struct perf_event *event,
2047 		 struct perf_cpu_context *cpuctx,
2048 		 struct perf_event_context *ctx)
2049 {
2050 	u64 tstamp = perf_event_time(event);
2051 	int ret = 0;
2052 
2053 	lockdep_assert_held(&ctx->lock);
2054 
2055 	if (event->state <= PERF_EVENT_STATE_OFF)
2056 		return 0;
2057 
2058 	WRITE_ONCE(event->oncpu, smp_processor_id());
2059 	/*
2060 	 * Order event::oncpu write to happen before the ACTIVE state
2061 	 * is visible.
2062 	 */
2063 	smp_wmb();
2064 	WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2065 
2066 	/*
2067 	 * Unthrottle events, since we scheduled we might have missed several
2068 	 * ticks already, also for a heavily scheduling task there is little
2069 	 * guarantee it'll get a tick in a timely manner.
2070 	 */
2071 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2072 		perf_log_throttle(event, 1);
2073 		event->hw.interrupts = 0;
2074 	}
2075 
2076 	/*
2077 	 * The new state must be visible before we turn it on in the hardware:
2078 	 */
2079 	smp_wmb();
2080 
2081 	perf_pmu_disable(event->pmu);
2082 
2083 	perf_set_shadow_time(event, ctx, tstamp);
2084 
2085 	perf_log_itrace_start(event);
2086 
2087 	if (event->pmu->add(event, PERF_EF_START)) {
2088 		event->state = PERF_EVENT_STATE_INACTIVE;
2089 		event->oncpu = -1;
2090 		ret = -EAGAIN;
2091 		goto out;
2092 	}
2093 
2094 	event->tstamp_running += tstamp - event->tstamp_stopped;
2095 
2096 	if (!is_software_event(event))
2097 		cpuctx->active_oncpu++;
2098 	if (!ctx->nr_active++)
2099 		perf_event_ctx_activate(ctx);
2100 	if (event->attr.freq && event->attr.sample_freq)
2101 		ctx->nr_freq++;
2102 
2103 	if (event->attr.exclusive)
2104 		cpuctx->exclusive = 1;
2105 
2106 out:
2107 	perf_pmu_enable(event->pmu);
2108 
2109 	return ret;
2110 }
2111 
2112 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2113 group_sched_in(struct perf_event *group_event,
2114 	       struct perf_cpu_context *cpuctx,
2115 	       struct perf_event_context *ctx)
2116 {
2117 	struct perf_event *event, *partial_group = NULL;
2118 	struct pmu *pmu = ctx->pmu;
2119 	u64 now = ctx->time;
2120 	bool simulate = false;
2121 
2122 	if (group_event->state == PERF_EVENT_STATE_OFF)
2123 		return 0;
2124 
2125 	pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2126 
2127 	if (event_sched_in(group_event, cpuctx, ctx)) {
2128 		pmu->cancel_txn(pmu);
2129 		perf_mux_hrtimer_restart(cpuctx);
2130 		return -EAGAIN;
2131 	}
2132 
2133 	/*
2134 	 * Schedule in siblings as one group (if any):
2135 	 */
2136 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2137 		if (event_sched_in(event, cpuctx, ctx)) {
2138 			partial_group = event;
2139 			goto group_error;
2140 		}
2141 	}
2142 
2143 	if (!pmu->commit_txn(pmu))
2144 		return 0;
2145 
2146 group_error:
2147 	/*
2148 	 * Groups can be scheduled in as one unit only, so undo any
2149 	 * partial group before returning:
2150 	 * The events up to the failed event are scheduled out normally,
2151 	 * tstamp_stopped will be updated.
2152 	 *
2153 	 * The failed events and the remaining siblings need to have
2154 	 * their timings updated as if they had gone thru event_sched_in()
2155 	 * and event_sched_out(). This is required to get consistent timings
2156 	 * across the group. This also takes care of the case where the group
2157 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
2158 	 * the time the event was actually stopped, such that time delta
2159 	 * calculation in update_event_times() is correct.
2160 	 */
2161 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2162 		if (event == partial_group)
2163 			simulate = true;
2164 
2165 		if (simulate) {
2166 			event->tstamp_running += now - event->tstamp_stopped;
2167 			event->tstamp_stopped = now;
2168 		} else {
2169 			event_sched_out(event, cpuctx, ctx);
2170 		}
2171 	}
2172 	event_sched_out(group_event, cpuctx, ctx);
2173 
2174 	pmu->cancel_txn(pmu);
2175 
2176 	perf_mux_hrtimer_restart(cpuctx);
2177 
2178 	return -EAGAIN;
2179 }
2180 
2181 /*
2182  * Work out whether we can put this event group on the CPU now.
2183  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)2184 static int group_can_go_on(struct perf_event *event,
2185 			   struct perf_cpu_context *cpuctx,
2186 			   int can_add_hw)
2187 {
2188 	/*
2189 	 * Groups consisting entirely of software events can always go on.
2190 	 */
2191 	if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2192 		return 1;
2193 	/*
2194 	 * If an exclusive group is already on, no other hardware
2195 	 * events can go on.
2196 	 */
2197 	if (cpuctx->exclusive)
2198 		return 0;
2199 	/*
2200 	 * If this group is exclusive and there are already
2201 	 * events on the CPU, it can't go on.
2202 	 */
2203 	if (event->attr.exclusive && cpuctx->active_oncpu)
2204 		return 0;
2205 	/*
2206 	 * Otherwise, try to add it if all previous groups were able
2207 	 * to go on.
2208 	 */
2209 	return can_add_hw;
2210 }
2211 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)2212 static void add_event_to_ctx(struct perf_event *event,
2213 			       struct perf_event_context *ctx)
2214 {
2215 	u64 tstamp = perf_event_time(event);
2216 
2217 	list_add_event(event, ctx);
2218 	perf_group_attach(event);
2219 	event->tstamp_enabled = tstamp;
2220 	event->tstamp_running = tstamp;
2221 	event->tstamp_stopped = tstamp;
2222 }
2223 
2224 static void ctx_sched_out(struct perf_event_context *ctx,
2225 			  struct perf_cpu_context *cpuctx,
2226 			  enum event_type_t event_type);
2227 static void
2228 ctx_sched_in(struct perf_event_context *ctx,
2229 	     struct perf_cpu_context *cpuctx,
2230 	     enum event_type_t event_type,
2231 	     struct task_struct *task);
2232 
task_ctx_sched_out(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)2233 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2234 			       struct perf_event_context *ctx)
2235 {
2236 	if (!cpuctx->task_ctx)
2237 		return;
2238 
2239 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2240 		return;
2241 
2242 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2243 }
2244 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)2245 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2246 				struct perf_event_context *ctx,
2247 				struct task_struct *task)
2248 {
2249 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2250 	if (ctx)
2251 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2252 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2253 	if (ctx)
2254 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2255 }
2256 
ctx_resched(struct perf_cpu_context * cpuctx,struct perf_event_context * task_ctx)2257 static void ctx_resched(struct perf_cpu_context *cpuctx,
2258 			struct perf_event_context *task_ctx)
2259 {
2260 	perf_pmu_disable(cpuctx->ctx.pmu);
2261 	if (task_ctx)
2262 		task_ctx_sched_out(cpuctx, task_ctx);
2263 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2264 	perf_event_sched_in(cpuctx, task_ctx, current);
2265 	perf_pmu_enable(cpuctx->ctx.pmu);
2266 }
2267 
2268 /*
2269  * Cross CPU call to install and enable a performance event
2270  *
2271  * Very similar to remote_function() + event_function() but cannot assume that
2272  * things like ctx->is_active and cpuctx->task_ctx are set.
2273  */
__perf_install_in_context(void * info)2274 static int  __perf_install_in_context(void *info)
2275 {
2276 	struct perf_event *event = info;
2277 	struct perf_event_context *ctx = event->ctx;
2278 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2279 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
2280 	bool reprogram = true;
2281 	int ret = 0;
2282 
2283 	raw_spin_lock(&cpuctx->ctx.lock);
2284 	if (ctx->task) {
2285 		raw_spin_lock(&ctx->lock);
2286 		task_ctx = ctx;
2287 
2288 		reprogram = (ctx->task == current);
2289 
2290 		/*
2291 		 * If the task is running, it must be running on this CPU,
2292 		 * otherwise we cannot reprogram things.
2293 		 *
2294 		 * If its not running, we don't care, ctx->lock will
2295 		 * serialize against it becoming runnable.
2296 		 */
2297 		if (task_curr(ctx->task) && !reprogram) {
2298 			ret = -ESRCH;
2299 			goto unlock;
2300 		}
2301 
2302 		WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2303 	} else if (task_ctx) {
2304 		raw_spin_lock(&task_ctx->lock);
2305 	}
2306 
2307 	if (reprogram) {
2308 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2309 		add_event_to_ctx(event, ctx);
2310 		ctx_resched(cpuctx, task_ctx);
2311 	} else {
2312 		add_event_to_ctx(event, ctx);
2313 	}
2314 
2315 unlock:
2316 	perf_ctx_unlock(cpuctx, task_ctx);
2317 
2318 	return ret;
2319 }
2320 
2321 /*
2322  * Attach a performance event to a context.
2323  *
2324  * Very similar to event_function_call, see comment there.
2325  */
2326 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)2327 perf_install_in_context(struct perf_event_context *ctx,
2328 			struct perf_event *event,
2329 			int cpu)
2330 {
2331 	struct task_struct *task = READ_ONCE(ctx->task);
2332 
2333 	lockdep_assert_held(&ctx->mutex);
2334 
2335 	if (event->cpu != -1)
2336 		event->cpu = cpu;
2337 
2338 	/*
2339 	 * Ensures that if we can observe event->ctx, both the event and ctx
2340 	 * will be 'complete'. See perf_iterate_sb_cpu().
2341 	 */
2342 	smp_store_release(&event->ctx, ctx);
2343 
2344 	if (!task) {
2345 		cpu_function_call(cpu, __perf_install_in_context, event);
2346 		return;
2347 	}
2348 
2349 	/*
2350 	 * Should not happen, we validate the ctx is still alive before calling.
2351 	 */
2352 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2353 		return;
2354 
2355 	/*
2356 	 * Installing events is tricky because we cannot rely on ctx->is_active
2357 	 * to be set in case this is the nr_events 0 -> 1 transition.
2358 	 *
2359 	 * Instead we use task_curr(), which tells us if the task is running.
2360 	 * However, since we use task_curr() outside of rq::lock, we can race
2361 	 * against the actual state. This means the result can be wrong.
2362 	 *
2363 	 * If we get a false positive, we retry, this is harmless.
2364 	 *
2365 	 * If we get a false negative, things are complicated. If we are after
2366 	 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2367 	 * value must be correct. If we're before, it doesn't matter since
2368 	 * perf_event_context_sched_in() will program the counter.
2369 	 *
2370 	 * However, this hinges on the remote context switch having observed
2371 	 * our task->perf_event_ctxp[] store, such that it will in fact take
2372 	 * ctx::lock in perf_event_context_sched_in().
2373 	 *
2374 	 * We do this by task_function_call(), if the IPI fails to hit the task
2375 	 * we know any future context switch of task must see the
2376 	 * perf_event_ctpx[] store.
2377 	 */
2378 
2379 	/*
2380 	 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2381 	 * task_cpu() load, such that if the IPI then does not find the task
2382 	 * running, a future context switch of that task must observe the
2383 	 * store.
2384 	 */
2385 	smp_mb();
2386 again:
2387 	if (!task_function_call(task, __perf_install_in_context, event))
2388 		return;
2389 
2390 	raw_spin_lock_irq(&ctx->lock);
2391 	task = ctx->task;
2392 	if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2393 		/*
2394 		 * Cannot happen because we already checked above (which also
2395 		 * cannot happen), and we hold ctx->mutex, which serializes us
2396 		 * against perf_event_exit_task_context().
2397 		 */
2398 		raw_spin_unlock_irq(&ctx->lock);
2399 		return;
2400 	}
2401 	/*
2402 	 * If the task is not running, ctx->lock will avoid it becoming so,
2403 	 * thus we can safely install the event.
2404 	 */
2405 	if (task_curr(task)) {
2406 		raw_spin_unlock_irq(&ctx->lock);
2407 		goto again;
2408 	}
2409 	add_event_to_ctx(event, ctx);
2410 	raw_spin_unlock_irq(&ctx->lock);
2411 }
2412 
2413 /*
2414  * Put a event into inactive state and update time fields.
2415  * Enabling the leader of a group effectively enables all
2416  * the group members that aren't explicitly disabled, so we
2417  * have to update their ->tstamp_enabled also.
2418  * Note: this works for group members as well as group leaders
2419  * since the non-leader members' sibling_lists will be empty.
2420  */
__perf_event_mark_enabled(struct perf_event * event)2421 static void __perf_event_mark_enabled(struct perf_event *event)
2422 {
2423 	struct perf_event *sub;
2424 	u64 tstamp = perf_event_time(event);
2425 
2426 	event->state = PERF_EVENT_STATE_INACTIVE;
2427 	event->tstamp_enabled = tstamp - event->total_time_enabled;
2428 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
2429 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2430 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2431 	}
2432 }
2433 
2434 /*
2435  * Cross CPU call to enable a performance event
2436  */
__perf_event_enable(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)2437 static void __perf_event_enable(struct perf_event *event,
2438 				struct perf_cpu_context *cpuctx,
2439 				struct perf_event_context *ctx,
2440 				void *info)
2441 {
2442 	struct perf_event *leader = event->group_leader;
2443 	struct perf_event_context *task_ctx;
2444 
2445 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2446 	    event->state <= PERF_EVENT_STATE_ERROR)
2447 		return;
2448 
2449 	if (ctx->is_active)
2450 		ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2451 
2452 	__perf_event_mark_enabled(event);
2453 
2454 	if (!ctx->is_active)
2455 		return;
2456 
2457 	if (!event_filter_match(event)) {
2458 		if (is_cgroup_event(event))
2459 			perf_cgroup_defer_enabled(event);
2460 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2461 		return;
2462 	}
2463 
2464 	/*
2465 	 * If the event is in a group and isn't the group leader,
2466 	 * then don't put it on unless the group is on.
2467 	 */
2468 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2469 		ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2470 		return;
2471 	}
2472 
2473 	task_ctx = cpuctx->task_ctx;
2474 	if (ctx->task)
2475 		WARN_ON_ONCE(task_ctx != ctx);
2476 
2477 	ctx_resched(cpuctx, task_ctx);
2478 }
2479 
2480 /*
2481  * Enable a event.
2482  *
2483  * If event->ctx is a cloned context, callers must make sure that
2484  * every task struct that event->ctx->task could possibly point to
2485  * remains valid.  This condition is satisfied when called through
2486  * perf_event_for_each_child or perf_event_for_each as described
2487  * for perf_event_disable.
2488  */
_perf_event_enable(struct perf_event * event)2489 static void _perf_event_enable(struct perf_event *event)
2490 {
2491 	struct perf_event_context *ctx = event->ctx;
2492 
2493 	raw_spin_lock_irq(&ctx->lock);
2494 	if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2495 	    event->state <  PERF_EVENT_STATE_ERROR) {
2496 		raw_spin_unlock_irq(&ctx->lock);
2497 		return;
2498 	}
2499 
2500 	/*
2501 	 * If the event is in error state, clear that first.
2502 	 *
2503 	 * That way, if we see the event in error state below, we know that it
2504 	 * has gone back into error state, as distinct from the task having
2505 	 * been scheduled away before the cross-call arrived.
2506 	 */
2507 	if (event->state == PERF_EVENT_STATE_ERROR)
2508 		event->state = PERF_EVENT_STATE_OFF;
2509 	raw_spin_unlock_irq(&ctx->lock);
2510 
2511 	event_function_call(event, __perf_event_enable, NULL);
2512 }
2513 
2514 /*
2515  * See perf_event_disable();
2516  */
perf_event_enable(struct perf_event * event)2517 void perf_event_enable(struct perf_event *event)
2518 {
2519 	struct perf_event_context *ctx;
2520 
2521 	ctx = perf_event_ctx_lock(event);
2522 	_perf_event_enable(event);
2523 	perf_event_ctx_unlock(event, ctx);
2524 }
2525 EXPORT_SYMBOL_GPL(perf_event_enable);
2526 
2527 struct stop_event_data {
2528 	struct perf_event	*event;
2529 	unsigned int		restart;
2530 };
2531 
__perf_event_stop(void * info)2532 static int __perf_event_stop(void *info)
2533 {
2534 	struct stop_event_data *sd = info;
2535 	struct perf_event *event = sd->event;
2536 
2537 	/* if it's already INACTIVE, do nothing */
2538 	if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2539 		return 0;
2540 
2541 	/* matches smp_wmb() in event_sched_in() */
2542 	smp_rmb();
2543 
2544 	/*
2545 	 * There is a window with interrupts enabled before we get here,
2546 	 * so we need to check again lest we try to stop another CPU's event.
2547 	 */
2548 	if (READ_ONCE(event->oncpu) != smp_processor_id())
2549 		return -EAGAIN;
2550 
2551 	event->pmu->stop(event, PERF_EF_UPDATE);
2552 
2553 	/*
2554 	 * May race with the actual stop (through perf_pmu_output_stop()),
2555 	 * but it is only used for events with AUX ring buffer, and such
2556 	 * events will refuse to restart because of rb::aux_mmap_count==0,
2557 	 * see comments in perf_aux_output_begin().
2558 	 *
2559 	 * Since this is happening on a event-local CPU, no trace is lost
2560 	 * while restarting.
2561 	 */
2562 	if (sd->restart)
2563 		event->pmu->start(event, 0);
2564 
2565 	return 0;
2566 }
2567 
perf_event_stop(struct perf_event * event,int restart)2568 static int perf_event_stop(struct perf_event *event, int restart)
2569 {
2570 	struct stop_event_data sd = {
2571 		.event		= event,
2572 		.restart	= restart,
2573 	};
2574 	int ret = 0;
2575 
2576 	do {
2577 		if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2578 			return 0;
2579 
2580 		/* matches smp_wmb() in event_sched_in() */
2581 		smp_rmb();
2582 
2583 		/*
2584 		 * We only want to restart ACTIVE events, so if the event goes
2585 		 * inactive here (event->oncpu==-1), there's nothing more to do;
2586 		 * fall through with ret==-ENXIO.
2587 		 */
2588 		ret = cpu_function_call(READ_ONCE(event->oncpu),
2589 					__perf_event_stop, &sd);
2590 	} while (ret == -EAGAIN);
2591 
2592 	return ret;
2593 }
2594 
2595 /*
2596  * In order to contain the amount of racy and tricky in the address filter
2597  * configuration management, it is a two part process:
2598  *
2599  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2600  *      we update the addresses of corresponding vmas in
2601  *	event::addr_filters_offs array and bump the event::addr_filters_gen;
2602  * (p2) when an event is scheduled in (pmu::add), it calls
2603  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2604  *      if the generation has changed since the previous call.
2605  *
2606  * If (p1) happens while the event is active, we restart it to force (p2).
2607  *
2608  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2609  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2610  *     ioctl;
2611  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2612  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2613  *     for reading;
2614  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2615  *     of exec.
2616  */
perf_event_addr_filters_sync(struct perf_event * event)2617 void perf_event_addr_filters_sync(struct perf_event *event)
2618 {
2619 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2620 
2621 	if (!has_addr_filter(event))
2622 		return;
2623 
2624 	raw_spin_lock(&ifh->lock);
2625 	if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2626 		event->pmu->addr_filters_sync(event);
2627 		event->hw.addr_filters_gen = event->addr_filters_gen;
2628 	}
2629 	raw_spin_unlock(&ifh->lock);
2630 }
2631 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2632 
_perf_event_refresh(struct perf_event * event,int refresh)2633 static int _perf_event_refresh(struct perf_event *event, int refresh)
2634 {
2635 	/*
2636 	 * not supported on inherited events
2637 	 */
2638 	if (event->attr.inherit || !is_sampling_event(event))
2639 		return -EINVAL;
2640 
2641 	atomic_add(refresh, &event->event_limit);
2642 	_perf_event_enable(event);
2643 
2644 	return 0;
2645 }
2646 
2647 /*
2648  * See perf_event_disable()
2649  */
perf_event_refresh(struct perf_event * event,int refresh)2650 int perf_event_refresh(struct perf_event *event, int refresh)
2651 {
2652 	struct perf_event_context *ctx;
2653 	int ret;
2654 
2655 	ctx = perf_event_ctx_lock(event);
2656 	ret = _perf_event_refresh(event, refresh);
2657 	perf_event_ctx_unlock(event, ctx);
2658 
2659 	return ret;
2660 }
2661 EXPORT_SYMBOL_GPL(perf_event_refresh);
2662 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)2663 static void ctx_sched_out(struct perf_event_context *ctx,
2664 			  struct perf_cpu_context *cpuctx,
2665 			  enum event_type_t event_type)
2666 {
2667 	int is_active = ctx->is_active;
2668 	struct perf_event *event;
2669 
2670 	lockdep_assert_held(&ctx->lock);
2671 
2672 	if (likely(!ctx->nr_events)) {
2673 		/*
2674 		 * See __perf_remove_from_context().
2675 		 */
2676 		WARN_ON_ONCE(ctx->is_active);
2677 		if (ctx->task)
2678 			WARN_ON_ONCE(cpuctx->task_ctx);
2679 		return;
2680 	}
2681 
2682 	ctx->is_active &= ~event_type;
2683 	if (!(ctx->is_active & EVENT_ALL))
2684 		ctx->is_active = 0;
2685 
2686 	if (ctx->task) {
2687 		WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2688 		if (!ctx->is_active)
2689 			cpuctx->task_ctx = NULL;
2690 	}
2691 
2692 	/*
2693 	 * Always update time if it was set; not only when it changes.
2694 	 * Otherwise we can 'forget' to update time for any but the last
2695 	 * context we sched out. For example:
2696 	 *
2697 	 *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2698 	 *   ctx_sched_out(.event_type = EVENT_PINNED)
2699 	 *
2700 	 * would only update time for the pinned events.
2701 	 */
2702 	if (is_active & EVENT_TIME) {
2703 		/* update (and stop) ctx time */
2704 		update_context_time(ctx);
2705 		update_cgrp_time_from_cpuctx(cpuctx);
2706 	}
2707 
2708 	is_active ^= ctx->is_active; /* changed bits */
2709 
2710 	if (!ctx->nr_active || !(is_active & EVENT_ALL))
2711 		return;
2712 
2713 	perf_pmu_disable(ctx->pmu);
2714 	if (is_active & EVENT_PINNED) {
2715 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2716 			group_sched_out(event, cpuctx, ctx);
2717 	}
2718 
2719 	if (is_active & EVENT_FLEXIBLE) {
2720 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2721 			group_sched_out(event, cpuctx, ctx);
2722 	}
2723 	perf_pmu_enable(ctx->pmu);
2724 }
2725 
2726 /*
2727  * Test whether two contexts are equivalent, i.e. whether they have both been
2728  * cloned from the same version of the same context.
2729  *
2730  * Equivalence is measured using a generation number in the context that is
2731  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2732  * and list_del_event().
2733  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)2734 static int context_equiv(struct perf_event_context *ctx1,
2735 			 struct perf_event_context *ctx2)
2736 {
2737 	lockdep_assert_held(&ctx1->lock);
2738 	lockdep_assert_held(&ctx2->lock);
2739 
2740 	/* Pinning disables the swap optimization */
2741 	if (ctx1->pin_count || ctx2->pin_count)
2742 		return 0;
2743 
2744 	/* If ctx1 is the parent of ctx2 */
2745 	if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2746 		return 1;
2747 
2748 	/* If ctx2 is the parent of ctx1 */
2749 	if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2750 		return 1;
2751 
2752 	/*
2753 	 * If ctx1 and ctx2 have the same parent; we flatten the parent
2754 	 * hierarchy, see perf_event_init_context().
2755 	 */
2756 	if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2757 			ctx1->parent_gen == ctx2->parent_gen)
2758 		return 1;
2759 
2760 	/* Unmatched */
2761 	return 0;
2762 }
2763 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)2764 static void __perf_event_sync_stat(struct perf_event *event,
2765 				     struct perf_event *next_event)
2766 {
2767 	u64 value;
2768 
2769 	if (!event->attr.inherit_stat)
2770 		return;
2771 
2772 	/*
2773 	 * Update the event value, we cannot use perf_event_read()
2774 	 * because we're in the middle of a context switch and have IRQs
2775 	 * disabled, which upsets smp_call_function_single(), however
2776 	 * we know the event must be on the current CPU, therefore we
2777 	 * don't need to use it.
2778 	 */
2779 	switch (event->state) {
2780 	case PERF_EVENT_STATE_ACTIVE:
2781 		event->pmu->read(event);
2782 		/* fall-through */
2783 
2784 	case PERF_EVENT_STATE_INACTIVE:
2785 		update_event_times(event);
2786 		break;
2787 
2788 	default:
2789 		break;
2790 	}
2791 
2792 	/*
2793 	 * In order to keep per-task stats reliable we need to flip the event
2794 	 * values when we flip the contexts.
2795 	 */
2796 	value = local64_read(&next_event->count);
2797 	value = local64_xchg(&event->count, value);
2798 	local64_set(&next_event->count, value);
2799 
2800 	swap(event->total_time_enabled, next_event->total_time_enabled);
2801 	swap(event->total_time_running, next_event->total_time_running);
2802 
2803 	/*
2804 	 * Since we swizzled the values, update the user visible data too.
2805 	 */
2806 	perf_event_update_userpage(event);
2807 	perf_event_update_userpage(next_event);
2808 }
2809 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)2810 static void perf_event_sync_stat(struct perf_event_context *ctx,
2811 				   struct perf_event_context *next_ctx)
2812 {
2813 	struct perf_event *event, *next_event;
2814 
2815 	if (!ctx->nr_stat)
2816 		return;
2817 
2818 	update_context_time(ctx);
2819 
2820 	event = list_first_entry(&ctx->event_list,
2821 				   struct perf_event, event_entry);
2822 
2823 	next_event = list_first_entry(&next_ctx->event_list,
2824 					struct perf_event, event_entry);
2825 
2826 	while (&event->event_entry != &ctx->event_list &&
2827 	       &next_event->event_entry != &next_ctx->event_list) {
2828 
2829 		__perf_event_sync_stat(event, next_event);
2830 
2831 		event = list_next_entry(event, event_entry);
2832 		next_event = list_next_entry(next_event, event_entry);
2833 	}
2834 }
2835 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)2836 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2837 					 struct task_struct *next)
2838 {
2839 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2840 	struct perf_event_context *next_ctx;
2841 	struct perf_event_context *parent, *next_parent;
2842 	struct perf_cpu_context *cpuctx;
2843 	int do_switch = 1;
2844 
2845 	if (likely(!ctx))
2846 		return;
2847 
2848 	cpuctx = __get_cpu_context(ctx);
2849 	if (!cpuctx->task_ctx)
2850 		return;
2851 
2852 	rcu_read_lock();
2853 	next_ctx = next->perf_event_ctxp[ctxn];
2854 	if (!next_ctx)
2855 		goto unlock;
2856 
2857 	parent = rcu_dereference(ctx->parent_ctx);
2858 	next_parent = rcu_dereference(next_ctx->parent_ctx);
2859 
2860 	/* If neither context have a parent context; they cannot be clones. */
2861 	if (!parent && !next_parent)
2862 		goto unlock;
2863 
2864 	if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2865 		/*
2866 		 * Looks like the two contexts are clones, so we might be
2867 		 * able to optimize the context switch.  We lock both
2868 		 * contexts and check that they are clones under the
2869 		 * lock (including re-checking that neither has been
2870 		 * uncloned in the meantime).  It doesn't matter which
2871 		 * order we take the locks because no other cpu could
2872 		 * be trying to lock both of these tasks.
2873 		 */
2874 		raw_spin_lock(&ctx->lock);
2875 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2876 		if (context_equiv(ctx, next_ctx)) {
2877 			WRITE_ONCE(ctx->task, next);
2878 			WRITE_ONCE(next_ctx->task, task);
2879 
2880 			swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2881 
2882 			/*
2883 			 * RCU_INIT_POINTER here is safe because we've not
2884 			 * modified the ctx and the above modification of
2885 			 * ctx->task and ctx->task_ctx_data are immaterial
2886 			 * since those values are always verified under
2887 			 * ctx->lock which we're now holding.
2888 			 */
2889 			RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2890 			RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2891 
2892 			do_switch = 0;
2893 
2894 			perf_event_sync_stat(ctx, next_ctx);
2895 		}
2896 		raw_spin_unlock(&next_ctx->lock);
2897 		raw_spin_unlock(&ctx->lock);
2898 	}
2899 unlock:
2900 	rcu_read_unlock();
2901 
2902 	if (do_switch) {
2903 		raw_spin_lock(&ctx->lock);
2904 		task_ctx_sched_out(cpuctx, ctx);
2905 		raw_spin_unlock(&ctx->lock);
2906 	}
2907 }
2908 
2909 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2910 
perf_sched_cb_dec(struct pmu * pmu)2911 void perf_sched_cb_dec(struct pmu *pmu)
2912 {
2913 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2914 
2915 	this_cpu_dec(perf_sched_cb_usages);
2916 
2917 	if (!--cpuctx->sched_cb_usage)
2918 		list_del(&cpuctx->sched_cb_entry);
2919 }
2920 
2921 
perf_sched_cb_inc(struct pmu * pmu)2922 void perf_sched_cb_inc(struct pmu *pmu)
2923 {
2924 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2925 
2926 	if (!cpuctx->sched_cb_usage++)
2927 		list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2928 
2929 	this_cpu_inc(perf_sched_cb_usages);
2930 }
2931 
2932 /*
2933  * This function provides the context switch callback to the lower code
2934  * layer. It is invoked ONLY when the context switch callback is enabled.
2935  *
2936  * This callback is relevant even to per-cpu events; for example multi event
2937  * PEBS requires this to provide PID/TID information. This requires we flush
2938  * all queued PEBS records before we context switch to a new task.
2939  */
perf_pmu_sched_task(struct task_struct * prev,struct task_struct * next,bool sched_in)2940 static void perf_pmu_sched_task(struct task_struct *prev,
2941 				struct task_struct *next,
2942 				bool sched_in)
2943 {
2944 	struct perf_cpu_context *cpuctx;
2945 	struct pmu *pmu;
2946 
2947 	if (prev == next)
2948 		return;
2949 
2950 	list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2951 		pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
2952 
2953 		if (WARN_ON_ONCE(!pmu->sched_task))
2954 			continue;
2955 
2956 		perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2957 		perf_pmu_disable(pmu);
2958 
2959 		pmu->sched_task(cpuctx->task_ctx, sched_in);
2960 
2961 		perf_pmu_enable(pmu);
2962 		perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2963 	}
2964 }
2965 
2966 static void perf_event_switch(struct task_struct *task,
2967 			      struct task_struct *next_prev, bool sched_in);
2968 
2969 #define for_each_task_context_nr(ctxn)					\
2970 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2971 
2972 /*
2973  * Called from scheduler to remove the events of the current task,
2974  * with interrupts disabled.
2975  *
2976  * We stop each event and update the event value in event->count.
2977  *
2978  * This does not protect us against NMI, but disable()
2979  * sets the disabled bit in the control field of event _before_
2980  * accessing the event control register. If a NMI hits, then it will
2981  * not restart the event.
2982  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)2983 void __perf_event_task_sched_out(struct task_struct *task,
2984 				 struct task_struct *next)
2985 {
2986 	int ctxn;
2987 
2988 	if (__this_cpu_read(perf_sched_cb_usages))
2989 		perf_pmu_sched_task(task, next, false);
2990 
2991 	if (atomic_read(&nr_switch_events))
2992 		perf_event_switch(task, next, false);
2993 
2994 	for_each_task_context_nr(ctxn)
2995 		perf_event_context_sched_out(task, ctxn, next);
2996 
2997 	/*
2998 	 * if cgroup events exist on this CPU, then we need
2999 	 * to check if we have to switch out PMU state.
3000 	 * cgroup event are system-wide mode only
3001 	 */
3002 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3003 		perf_cgroup_sched_out(task, next);
3004 }
3005 
3006 /*
3007  * Called with IRQs disabled
3008  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)3009 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3010 			      enum event_type_t event_type)
3011 {
3012 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3013 }
3014 
3015 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3016 ctx_pinned_sched_in(struct perf_event_context *ctx,
3017 		    struct perf_cpu_context *cpuctx)
3018 {
3019 	struct perf_event *event;
3020 
3021 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3022 		if (event->state <= PERF_EVENT_STATE_OFF)
3023 			continue;
3024 		if (!event_filter_match(event))
3025 			continue;
3026 
3027 		/* may need to reset tstamp_enabled */
3028 		if (is_cgroup_event(event))
3029 			perf_cgroup_mark_enabled(event, ctx);
3030 
3031 		if (group_can_go_on(event, cpuctx, 1))
3032 			group_sched_in(event, cpuctx, ctx);
3033 
3034 		/*
3035 		 * If this pinned group hasn't been scheduled,
3036 		 * put it in error state.
3037 		 */
3038 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
3039 			update_group_times(event);
3040 			event->state = PERF_EVENT_STATE_ERROR;
3041 		}
3042 	}
3043 }
3044 
3045 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)3046 ctx_flexible_sched_in(struct perf_event_context *ctx,
3047 		      struct perf_cpu_context *cpuctx)
3048 {
3049 	struct perf_event *event;
3050 	int can_add_hw = 1;
3051 
3052 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3053 		/* Ignore events in OFF or ERROR state */
3054 		if (event->state <= PERF_EVENT_STATE_OFF)
3055 			continue;
3056 		/*
3057 		 * Listen to the 'cpu' scheduling filter constraint
3058 		 * of events:
3059 		 */
3060 		if (!event_filter_match(event))
3061 			continue;
3062 
3063 		/* may need to reset tstamp_enabled */
3064 		if (is_cgroup_event(event))
3065 			perf_cgroup_mark_enabled(event, ctx);
3066 
3067 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
3068 			if (group_sched_in(event, cpuctx, ctx))
3069 				can_add_hw = 0;
3070 		}
3071 	}
3072 }
3073 
3074 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3075 ctx_sched_in(struct perf_event_context *ctx,
3076 	     struct perf_cpu_context *cpuctx,
3077 	     enum event_type_t event_type,
3078 	     struct task_struct *task)
3079 {
3080 	int is_active = ctx->is_active;
3081 	u64 now;
3082 
3083 	lockdep_assert_held(&ctx->lock);
3084 
3085 	if (likely(!ctx->nr_events))
3086 		return;
3087 
3088 	ctx->is_active |= (event_type | EVENT_TIME);
3089 	if (ctx->task) {
3090 		if (!is_active)
3091 			cpuctx->task_ctx = ctx;
3092 		else
3093 			WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3094 	}
3095 
3096 	is_active ^= ctx->is_active; /* changed bits */
3097 
3098 	if (is_active & EVENT_TIME) {
3099 		/* start ctx time */
3100 		now = perf_clock();
3101 		ctx->timestamp = now;
3102 		perf_cgroup_set_timestamp(task, ctx);
3103 	}
3104 
3105 	/*
3106 	 * First go through the list and put on any pinned groups
3107 	 * in order to give them the best chance of going on.
3108 	 */
3109 	if (is_active & EVENT_PINNED)
3110 		ctx_pinned_sched_in(ctx, cpuctx);
3111 
3112 	/* Then walk through the lower prio flexible groups */
3113 	if (is_active & EVENT_FLEXIBLE)
3114 		ctx_flexible_sched_in(ctx, cpuctx);
3115 }
3116 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)3117 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3118 			     enum event_type_t event_type,
3119 			     struct task_struct *task)
3120 {
3121 	struct perf_event_context *ctx = &cpuctx->ctx;
3122 
3123 	ctx_sched_in(ctx, cpuctx, event_type, task);
3124 }
3125 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)3126 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3127 					struct task_struct *task)
3128 {
3129 	struct perf_cpu_context *cpuctx;
3130 
3131 	cpuctx = __get_cpu_context(ctx);
3132 	if (cpuctx->task_ctx == ctx)
3133 		return;
3134 
3135 	perf_ctx_lock(cpuctx, ctx);
3136 	perf_pmu_disable(ctx->pmu);
3137 	/*
3138 	 * We want to keep the following priority order:
3139 	 * cpu pinned (that don't need to move), task pinned,
3140 	 * cpu flexible, task flexible.
3141 	 */
3142 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3143 	perf_event_sched_in(cpuctx, ctx, task);
3144 	perf_pmu_enable(ctx->pmu);
3145 	perf_ctx_unlock(cpuctx, ctx);
3146 }
3147 
3148 /*
3149  * Called from scheduler to add the events of the current task
3150  * with interrupts disabled.
3151  *
3152  * We restore the event value and then enable it.
3153  *
3154  * This does not protect us against NMI, but enable()
3155  * sets the enabled bit in the control field of event _before_
3156  * accessing the event control register. If a NMI hits, then it will
3157  * keep the event running.
3158  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)3159 void __perf_event_task_sched_in(struct task_struct *prev,
3160 				struct task_struct *task)
3161 {
3162 	struct perf_event_context *ctx;
3163 	int ctxn;
3164 
3165 	/*
3166 	 * If cgroup events exist on this CPU, then we need to check if we have
3167 	 * to switch in PMU state; cgroup event are system-wide mode only.
3168 	 *
3169 	 * Since cgroup events are CPU events, we must schedule these in before
3170 	 * we schedule in the task events.
3171 	 */
3172 	if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3173 		perf_cgroup_sched_in(prev, task);
3174 
3175 	for_each_task_context_nr(ctxn) {
3176 		ctx = task->perf_event_ctxp[ctxn];
3177 		if (likely(!ctx))
3178 			continue;
3179 
3180 		perf_event_context_sched_in(ctx, task);
3181 	}
3182 
3183 	if (atomic_read(&nr_switch_events))
3184 		perf_event_switch(task, prev, true);
3185 
3186 	if (__this_cpu_read(perf_sched_cb_usages))
3187 		perf_pmu_sched_task(prev, task, true);
3188 }
3189 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)3190 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3191 {
3192 	u64 frequency = event->attr.sample_freq;
3193 	u64 sec = NSEC_PER_SEC;
3194 	u64 divisor, dividend;
3195 
3196 	int count_fls, nsec_fls, frequency_fls, sec_fls;
3197 
3198 	count_fls = fls64(count);
3199 	nsec_fls = fls64(nsec);
3200 	frequency_fls = fls64(frequency);
3201 	sec_fls = 30;
3202 
3203 	/*
3204 	 * We got @count in @nsec, with a target of sample_freq HZ
3205 	 * the target period becomes:
3206 	 *
3207 	 *             @count * 10^9
3208 	 * period = -------------------
3209 	 *          @nsec * sample_freq
3210 	 *
3211 	 */
3212 
3213 	/*
3214 	 * Reduce accuracy by one bit such that @a and @b converge
3215 	 * to a similar magnitude.
3216 	 */
3217 #define REDUCE_FLS(a, b)		\
3218 do {					\
3219 	if (a##_fls > b##_fls) {	\
3220 		a >>= 1;		\
3221 		a##_fls--;		\
3222 	} else {			\
3223 		b >>= 1;		\
3224 		b##_fls--;		\
3225 	}				\
3226 } while (0)
3227 
3228 	/*
3229 	 * Reduce accuracy until either term fits in a u64, then proceed with
3230 	 * the other, so that finally we can do a u64/u64 division.
3231 	 */
3232 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3233 		REDUCE_FLS(nsec, frequency);
3234 		REDUCE_FLS(sec, count);
3235 	}
3236 
3237 	if (count_fls + sec_fls > 64) {
3238 		divisor = nsec * frequency;
3239 
3240 		while (count_fls + sec_fls > 64) {
3241 			REDUCE_FLS(count, sec);
3242 			divisor >>= 1;
3243 		}
3244 
3245 		dividend = count * sec;
3246 	} else {
3247 		dividend = count * sec;
3248 
3249 		while (nsec_fls + frequency_fls > 64) {
3250 			REDUCE_FLS(nsec, frequency);
3251 			dividend >>= 1;
3252 		}
3253 
3254 		divisor = nsec * frequency;
3255 	}
3256 
3257 	if (!divisor)
3258 		return dividend;
3259 
3260 	return div64_u64(dividend, divisor);
3261 }
3262 
3263 static DEFINE_PER_CPU(int, perf_throttled_count);
3264 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3265 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)3266 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3267 {
3268 	struct hw_perf_event *hwc = &event->hw;
3269 	s64 period, sample_period;
3270 	s64 delta;
3271 
3272 	period = perf_calculate_period(event, nsec, count);
3273 
3274 	delta = (s64)(period - hwc->sample_period);
3275 	delta = (delta + 7) / 8; /* low pass filter */
3276 
3277 	sample_period = hwc->sample_period + delta;
3278 
3279 	if (!sample_period)
3280 		sample_period = 1;
3281 
3282 	hwc->sample_period = sample_period;
3283 
3284 	if (local64_read(&hwc->period_left) > 8*sample_period) {
3285 		if (disable)
3286 			event->pmu->stop(event, PERF_EF_UPDATE);
3287 
3288 		local64_set(&hwc->period_left, 0);
3289 
3290 		if (disable)
3291 			event->pmu->start(event, PERF_EF_RELOAD);
3292 	}
3293 }
3294 
3295 /*
3296  * combine freq adjustment with unthrottling to avoid two passes over the
3297  * events. At the same time, make sure, having freq events does not change
3298  * the rate of unthrottling as that would introduce bias.
3299  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)3300 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3301 					   int needs_unthr)
3302 {
3303 	struct perf_event *event;
3304 	struct hw_perf_event *hwc;
3305 	u64 now, period = TICK_NSEC;
3306 	s64 delta;
3307 
3308 	/*
3309 	 * only need to iterate over all events iff:
3310 	 * - context have events in frequency mode (needs freq adjust)
3311 	 * - there are events to unthrottle on this cpu
3312 	 */
3313 	if (!(ctx->nr_freq || needs_unthr))
3314 		return;
3315 
3316 	raw_spin_lock(&ctx->lock);
3317 	perf_pmu_disable(ctx->pmu);
3318 
3319 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3320 		if (event->state != PERF_EVENT_STATE_ACTIVE)
3321 			continue;
3322 
3323 		if (!event_filter_match(event))
3324 			continue;
3325 
3326 		perf_pmu_disable(event->pmu);
3327 
3328 		hwc = &event->hw;
3329 
3330 		if (hwc->interrupts == MAX_INTERRUPTS) {
3331 			hwc->interrupts = 0;
3332 			perf_log_throttle(event, 1);
3333 			event->pmu->start(event, 0);
3334 		}
3335 
3336 		if (!event->attr.freq || !event->attr.sample_freq)
3337 			goto next;
3338 
3339 		/*
3340 		 * stop the event and update event->count
3341 		 */
3342 		event->pmu->stop(event, PERF_EF_UPDATE);
3343 
3344 		now = local64_read(&event->count);
3345 		delta = now - hwc->freq_count_stamp;
3346 		hwc->freq_count_stamp = now;
3347 
3348 		/*
3349 		 * restart the event
3350 		 * reload only if value has changed
3351 		 * we have stopped the event so tell that
3352 		 * to perf_adjust_period() to avoid stopping it
3353 		 * twice.
3354 		 */
3355 		if (delta > 0)
3356 			perf_adjust_period(event, period, delta, false);
3357 
3358 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3359 	next:
3360 		perf_pmu_enable(event->pmu);
3361 	}
3362 
3363 	perf_pmu_enable(ctx->pmu);
3364 	raw_spin_unlock(&ctx->lock);
3365 }
3366 
3367 /*
3368  * Round-robin a context's events:
3369  */
rotate_ctx(struct perf_event_context * ctx)3370 static void rotate_ctx(struct perf_event_context *ctx)
3371 {
3372 	/*
3373 	 * Rotate the first entry last of non-pinned groups. Rotation might be
3374 	 * disabled by the inheritance code.
3375 	 */
3376 	if (!ctx->rotate_disable)
3377 		list_rotate_left(&ctx->flexible_groups);
3378 }
3379 
perf_rotate_context(struct perf_cpu_context * cpuctx)3380 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3381 {
3382 	struct perf_event_context *ctx = NULL;
3383 	int rotate = 0;
3384 
3385 	if (cpuctx->ctx.nr_events) {
3386 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3387 			rotate = 1;
3388 	}
3389 
3390 	ctx = cpuctx->task_ctx;
3391 	if (ctx && ctx->nr_events) {
3392 		if (ctx->nr_events != ctx->nr_active)
3393 			rotate = 1;
3394 	}
3395 
3396 	if (!rotate)
3397 		goto done;
3398 
3399 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3400 	perf_pmu_disable(cpuctx->ctx.pmu);
3401 
3402 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3403 	if (ctx)
3404 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3405 
3406 	rotate_ctx(&cpuctx->ctx);
3407 	if (ctx)
3408 		rotate_ctx(ctx);
3409 
3410 	perf_event_sched_in(cpuctx, ctx, current);
3411 
3412 	perf_pmu_enable(cpuctx->ctx.pmu);
3413 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3414 done:
3415 
3416 	return rotate;
3417 }
3418 
perf_event_task_tick(void)3419 void perf_event_task_tick(void)
3420 {
3421 	struct list_head *head = this_cpu_ptr(&active_ctx_list);
3422 	struct perf_event_context *ctx, *tmp;
3423 	int throttled;
3424 
3425 	WARN_ON(!irqs_disabled());
3426 
3427 	__this_cpu_inc(perf_throttled_seq);
3428 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
3429 	tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3430 
3431 	list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3432 		perf_adjust_freq_unthr_context(ctx, throttled);
3433 }
3434 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)3435 static int event_enable_on_exec(struct perf_event *event,
3436 				struct perf_event_context *ctx)
3437 {
3438 	if (!event->attr.enable_on_exec)
3439 		return 0;
3440 
3441 	event->attr.enable_on_exec = 0;
3442 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
3443 		return 0;
3444 
3445 	__perf_event_mark_enabled(event);
3446 
3447 	return 1;
3448 }
3449 
3450 /*
3451  * Enable all of a task's events that have been marked enable-on-exec.
3452  * This expects task == current.
3453  */
perf_event_enable_on_exec(int ctxn)3454 static void perf_event_enable_on_exec(int ctxn)
3455 {
3456 	struct perf_event_context *ctx, *clone_ctx = NULL;
3457 	struct perf_cpu_context *cpuctx;
3458 	struct perf_event *event;
3459 	unsigned long flags;
3460 	int enabled = 0;
3461 
3462 	local_irq_save(flags);
3463 	ctx = current->perf_event_ctxp[ctxn];
3464 	if (!ctx || !ctx->nr_events)
3465 		goto out;
3466 
3467 	cpuctx = __get_cpu_context(ctx);
3468 	perf_ctx_lock(cpuctx, ctx);
3469 	ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3470 	list_for_each_entry(event, &ctx->event_list, event_entry)
3471 		enabled |= event_enable_on_exec(event, ctx);
3472 
3473 	/*
3474 	 * Unclone and reschedule this context if we enabled any event.
3475 	 */
3476 	if (enabled) {
3477 		clone_ctx = unclone_ctx(ctx);
3478 		ctx_resched(cpuctx, ctx);
3479 	}
3480 	perf_ctx_unlock(cpuctx, ctx);
3481 
3482 out:
3483 	local_irq_restore(flags);
3484 
3485 	if (clone_ctx)
3486 		put_ctx(clone_ctx);
3487 }
3488 
3489 struct perf_read_data {
3490 	struct perf_event *event;
3491 	bool group;
3492 	int ret;
3493 };
3494 
__perf_event_read_cpu(struct perf_event * event,int event_cpu)3495 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3496 {
3497 	u16 local_pkg, event_pkg;
3498 
3499 	if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3500 		int local_cpu = smp_processor_id();
3501 
3502 		event_pkg = topology_physical_package_id(event_cpu);
3503 		local_pkg = topology_physical_package_id(local_cpu);
3504 
3505 		if (event_pkg == local_pkg)
3506 			return local_cpu;
3507 	}
3508 
3509 	return event_cpu;
3510 }
3511 
3512 /*
3513  * Cross CPU call to read the hardware event
3514  */
__perf_event_read(void * info)3515 static void __perf_event_read(void *info)
3516 {
3517 	struct perf_read_data *data = info;
3518 	struct perf_event *sub, *event = data->event;
3519 	struct perf_event_context *ctx = event->ctx;
3520 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3521 	struct pmu *pmu = event->pmu;
3522 
3523 	/*
3524 	 * If this is a task context, we need to check whether it is
3525 	 * the current task context of this cpu.  If not it has been
3526 	 * scheduled out before the smp call arrived.  In that case
3527 	 * event->count would have been updated to a recent sample
3528 	 * when the event was scheduled out.
3529 	 */
3530 	if (ctx->task && cpuctx->task_ctx != ctx)
3531 		return;
3532 
3533 	raw_spin_lock(&ctx->lock);
3534 	if (ctx->is_active) {
3535 		update_context_time(ctx);
3536 		update_cgrp_time_from_event(event);
3537 	}
3538 
3539 	update_event_times(event);
3540 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3541 		goto unlock;
3542 
3543 	if (!data->group) {
3544 		pmu->read(event);
3545 		data->ret = 0;
3546 		goto unlock;
3547 	}
3548 
3549 	pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3550 
3551 	pmu->read(event);
3552 
3553 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
3554 		update_event_times(sub);
3555 		if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3556 			/*
3557 			 * Use sibling's PMU rather than @event's since
3558 			 * sibling could be on different (eg: software) PMU.
3559 			 */
3560 			sub->pmu->read(sub);
3561 		}
3562 	}
3563 
3564 	data->ret = pmu->commit_txn(pmu);
3565 
3566 unlock:
3567 	raw_spin_unlock(&ctx->lock);
3568 }
3569 
perf_event_count(struct perf_event * event)3570 static inline u64 perf_event_count(struct perf_event *event)
3571 {
3572 	if (event->pmu->count)
3573 		return event->pmu->count(event);
3574 
3575 	return __perf_event_count(event);
3576 }
3577 
3578 /*
3579  * NMI-safe method to read a local event, that is an event that
3580  * is:
3581  *   - either for the current task, or for this CPU
3582  *   - does not have inherit set, for inherited task events
3583  *     will not be local and we cannot read them atomically
3584  *   - must not have a pmu::count method
3585  */
perf_event_read_local(struct perf_event * event)3586 u64 perf_event_read_local(struct perf_event *event)
3587 {
3588 	unsigned long flags;
3589 	u64 val;
3590 
3591 	/*
3592 	 * Disabling interrupts avoids all counter scheduling (context
3593 	 * switches, timer based rotation and IPIs).
3594 	 */
3595 	local_irq_save(flags);
3596 
3597 	/* If this is a per-task event, it must be for current */
3598 	WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3599 		     event->hw.target != current);
3600 
3601 	/* If this is a per-CPU event, it must be for this CPU */
3602 	WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3603 		     event->cpu != smp_processor_id());
3604 
3605 	/*
3606 	 * It must not be an event with inherit set, we cannot read
3607 	 * all child counters from atomic context.
3608 	 */
3609 	WARN_ON_ONCE(event->attr.inherit);
3610 
3611 	/*
3612 	 * It must not have a pmu::count method, those are not
3613 	 * NMI safe.
3614 	 */
3615 	WARN_ON_ONCE(event->pmu->count);
3616 
3617 	/*
3618 	 * If the event is currently on this CPU, its either a per-task event,
3619 	 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3620 	 * oncpu == -1).
3621 	 */
3622 	if (event->oncpu == smp_processor_id())
3623 		event->pmu->read(event);
3624 
3625 	val = local64_read(&event->count);
3626 	local_irq_restore(flags);
3627 
3628 	return val;
3629 }
3630 
perf_event_read(struct perf_event * event,bool group)3631 static int perf_event_read(struct perf_event *event, bool group)
3632 {
3633 	int event_cpu, ret = 0;
3634 
3635 	/*
3636 	 * If event is enabled and currently active on a CPU, update the
3637 	 * value in the event structure:
3638 	 */
3639 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
3640 		struct perf_read_data data = {
3641 			.event = event,
3642 			.group = group,
3643 			.ret = 0,
3644 		};
3645 
3646 		event_cpu = READ_ONCE(event->oncpu);
3647 		if ((unsigned)event_cpu >= nr_cpu_ids)
3648 			return 0;
3649 
3650 		preempt_disable();
3651 		event_cpu = __perf_event_read_cpu(event, event_cpu);
3652 
3653 		/*
3654 		 * Purposely ignore the smp_call_function_single() return
3655 		 * value.
3656 		 *
3657 		 * If event_cpu isn't a valid CPU it means the event got
3658 		 * scheduled out and that will have updated the event count.
3659 		 *
3660 		 * Therefore, either way, we'll have an up-to-date event count
3661 		 * after this.
3662 		 */
3663 		(void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3664 		preempt_enable();
3665 		ret = data.ret;
3666 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3667 		struct perf_event_context *ctx = event->ctx;
3668 		unsigned long flags;
3669 
3670 		raw_spin_lock_irqsave(&ctx->lock, flags);
3671 		/*
3672 		 * may read while context is not active
3673 		 * (e.g., thread is blocked), in that case
3674 		 * we cannot update context time
3675 		 */
3676 		if (ctx->is_active) {
3677 			update_context_time(ctx);
3678 			update_cgrp_time_from_event(event);
3679 		}
3680 		if (group)
3681 			update_group_times(event);
3682 		else
3683 			update_event_times(event);
3684 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3685 	}
3686 
3687 	return ret;
3688 }
3689 
3690 /*
3691  * Initialize the perf_event context in a task_struct:
3692  */
__perf_event_init_context(struct perf_event_context * ctx)3693 static void __perf_event_init_context(struct perf_event_context *ctx)
3694 {
3695 	raw_spin_lock_init(&ctx->lock);
3696 	mutex_init(&ctx->mutex);
3697 	INIT_LIST_HEAD(&ctx->active_ctx_list);
3698 	INIT_LIST_HEAD(&ctx->pinned_groups);
3699 	INIT_LIST_HEAD(&ctx->flexible_groups);
3700 	INIT_LIST_HEAD(&ctx->event_list);
3701 	atomic_set(&ctx->refcount, 1);
3702 }
3703 
3704 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)3705 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3706 {
3707 	struct perf_event_context *ctx;
3708 
3709 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3710 	if (!ctx)
3711 		return NULL;
3712 
3713 	__perf_event_init_context(ctx);
3714 	if (task) {
3715 		ctx->task = task;
3716 		get_task_struct(task);
3717 	}
3718 	ctx->pmu = pmu;
3719 
3720 	return ctx;
3721 }
3722 
3723 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)3724 find_lively_task_by_vpid(pid_t vpid)
3725 {
3726 	struct task_struct *task;
3727 
3728 	rcu_read_lock();
3729 	if (!vpid)
3730 		task = current;
3731 	else
3732 		task = find_task_by_vpid(vpid);
3733 	if (task)
3734 		get_task_struct(task);
3735 	rcu_read_unlock();
3736 
3737 	if (!task)
3738 		return ERR_PTR(-ESRCH);
3739 
3740 	return task;
3741 }
3742 
3743 /*
3744  * Returns a matching context with refcount and pincount.
3745  */
3746 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,struct perf_event * event)3747 find_get_context(struct pmu *pmu, struct task_struct *task,
3748 		struct perf_event *event)
3749 {
3750 	struct perf_event_context *ctx, *clone_ctx = NULL;
3751 	struct perf_cpu_context *cpuctx;
3752 	void *task_ctx_data = NULL;
3753 	unsigned long flags;
3754 	int ctxn, err;
3755 	int cpu = event->cpu;
3756 
3757 	if (!task) {
3758 		/* Must be root to operate on a CPU event: */
3759 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3760 			return ERR_PTR(-EACCES);
3761 
3762 		/*
3763 		 * We could be clever and allow to attach a event to an
3764 		 * offline CPU and activate it when the CPU comes up, but
3765 		 * that's for later.
3766 		 */
3767 		if (!cpu_online(cpu))
3768 			return ERR_PTR(-ENODEV);
3769 
3770 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3771 		ctx = &cpuctx->ctx;
3772 		get_ctx(ctx);
3773 		++ctx->pin_count;
3774 
3775 		return ctx;
3776 	}
3777 
3778 	err = -EINVAL;
3779 	ctxn = pmu->task_ctx_nr;
3780 	if (ctxn < 0)
3781 		goto errout;
3782 
3783 	if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3784 		task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3785 		if (!task_ctx_data) {
3786 			err = -ENOMEM;
3787 			goto errout;
3788 		}
3789 	}
3790 
3791 retry:
3792 	ctx = perf_lock_task_context(task, ctxn, &flags);
3793 	if (ctx) {
3794 		clone_ctx = unclone_ctx(ctx);
3795 		++ctx->pin_count;
3796 
3797 		if (task_ctx_data && !ctx->task_ctx_data) {
3798 			ctx->task_ctx_data = task_ctx_data;
3799 			task_ctx_data = NULL;
3800 		}
3801 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
3802 
3803 		if (clone_ctx)
3804 			put_ctx(clone_ctx);
3805 	} else {
3806 		ctx = alloc_perf_context(pmu, task);
3807 		err = -ENOMEM;
3808 		if (!ctx)
3809 			goto errout;
3810 
3811 		if (task_ctx_data) {
3812 			ctx->task_ctx_data = task_ctx_data;
3813 			task_ctx_data = NULL;
3814 		}
3815 
3816 		err = 0;
3817 		mutex_lock(&task->perf_event_mutex);
3818 		/*
3819 		 * If it has already passed perf_event_exit_task().
3820 		 * we must see PF_EXITING, it takes this mutex too.
3821 		 */
3822 		if (task->flags & PF_EXITING)
3823 			err = -ESRCH;
3824 		else if (task->perf_event_ctxp[ctxn])
3825 			err = -EAGAIN;
3826 		else {
3827 			get_ctx(ctx);
3828 			++ctx->pin_count;
3829 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3830 		}
3831 		mutex_unlock(&task->perf_event_mutex);
3832 
3833 		if (unlikely(err)) {
3834 			put_ctx(ctx);
3835 
3836 			if (err == -EAGAIN)
3837 				goto retry;
3838 			goto errout;
3839 		}
3840 	}
3841 
3842 	kfree(task_ctx_data);
3843 	return ctx;
3844 
3845 errout:
3846 	kfree(task_ctx_data);
3847 	return ERR_PTR(err);
3848 }
3849 
3850 static void perf_event_free_filter(struct perf_event *event);
3851 static void perf_event_free_bpf_prog(struct perf_event *event);
3852 
free_event_rcu(struct rcu_head * head)3853 static void free_event_rcu(struct rcu_head *head)
3854 {
3855 	struct perf_event *event;
3856 
3857 	event = container_of(head, struct perf_event, rcu_head);
3858 	if (event->ns)
3859 		put_pid_ns(event->ns);
3860 	perf_event_free_filter(event);
3861 	kfree(event);
3862 }
3863 
3864 static void ring_buffer_attach(struct perf_event *event,
3865 			       struct ring_buffer *rb);
3866 
detach_sb_event(struct perf_event * event)3867 static void detach_sb_event(struct perf_event *event)
3868 {
3869 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3870 
3871 	raw_spin_lock(&pel->lock);
3872 	list_del_rcu(&event->sb_list);
3873 	raw_spin_unlock(&pel->lock);
3874 }
3875 
is_sb_event(struct perf_event * event)3876 static bool is_sb_event(struct perf_event *event)
3877 {
3878 	struct perf_event_attr *attr = &event->attr;
3879 
3880 	if (event->parent)
3881 		return false;
3882 
3883 	if (event->attach_state & PERF_ATTACH_TASK)
3884 		return false;
3885 
3886 	if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3887 	    attr->comm || attr->comm_exec ||
3888 	    attr->task ||
3889 	    attr->context_switch)
3890 		return true;
3891 	return false;
3892 }
3893 
unaccount_pmu_sb_event(struct perf_event * event)3894 static void unaccount_pmu_sb_event(struct perf_event *event)
3895 {
3896 	if (is_sb_event(event))
3897 		detach_sb_event(event);
3898 }
3899 
unaccount_event_cpu(struct perf_event * event,int cpu)3900 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3901 {
3902 	if (event->parent)
3903 		return;
3904 
3905 	if (is_cgroup_event(event))
3906 		atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3907 }
3908 
3909 #ifdef CONFIG_NO_HZ_FULL
3910 static DEFINE_SPINLOCK(nr_freq_lock);
3911 #endif
3912 
unaccount_freq_event_nohz(void)3913 static void unaccount_freq_event_nohz(void)
3914 {
3915 #ifdef CONFIG_NO_HZ_FULL
3916 	spin_lock(&nr_freq_lock);
3917 	if (atomic_dec_and_test(&nr_freq_events))
3918 		tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3919 	spin_unlock(&nr_freq_lock);
3920 #endif
3921 }
3922 
unaccount_freq_event(void)3923 static void unaccount_freq_event(void)
3924 {
3925 	if (tick_nohz_full_enabled())
3926 		unaccount_freq_event_nohz();
3927 	else
3928 		atomic_dec(&nr_freq_events);
3929 }
3930 
unaccount_event(struct perf_event * event)3931 static void unaccount_event(struct perf_event *event)
3932 {
3933 	bool dec = false;
3934 
3935 	if (event->parent)
3936 		return;
3937 
3938 	if (event->attach_state & PERF_ATTACH_TASK)
3939 		dec = true;
3940 	if (event->attr.mmap || event->attr.mmap_data)
3941 		atomic_dec(&nr_mmap_events);
3942 	if (event->attr.comm)
3943 		atomic_dec(&nr_comm_events);
3944 	if (event->attr.task)
3945 		atomic_dec(&nr_task_events);
3946 	if (event->attr.freq)
3947 		unaccount_freq_event();
3948 	if (event->attr.context_switch) {
3949 		dec = true;
3950 		atomic_dec(&nr_switch_events);
3951 	}
3952 	if (is_cgroup_event(event))
3953 		dec = true;
3954 	if (has_branch_stack(event))
3955 		dec = true;
3956 
3957 	if (dec) {
3958 		if (!atomic_add_unless(&perf_sched_count, -1, 1))
3959 			schedule_delayed_work(&perf_sched_work, HZ);
3960 	}
3961 
3962 	unaccount_event_cpu(event, event->cpu);
3963 
3964 	unaccount_pmu_sb_event(event);
3965 }
3966 
perf_sched_delayed(struct work_struct * work)3967 static void perf_sched_delayed(struct work_struct *work)
3968 {
3969 	mutex_lock(&perf_sched_mutex);
3970 	if (atomic_dec_and_test(&perf_sched_count))
3971 		static_branch_disable(&perf_sched_events);
3972 	mutex_unlock(&perf_sched_mutex);
3973 }
3974 
3975 /*
3976  * The following implement mutual exclusion of events on "exclusive" pmus
3977  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3978  * at a time, so we disallow creating events that might conflict, namely:
3979  *
3980  *  1) cpu-wide events in the presence of per-task events,
3981  *  2) per-task events in the presence of cpu-wide events,
3982  *  3) two matching events on the same context.
3983  *
3984  * The former two cases are handled in the allocation path (perf_event_alloc(),
3985  * _free_event()), the latter -- before the first perf_install_in_context().
3986  */
exclusive_event_init(struct perf_event * event)3987 static int exclusive_event_init(struct perf_event *event)
3988 {
3989 	struct pmu *pmu = event->pmu;
3990 
3991 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3992 		return 0;
3993 
3994 	/*
3995 	 * Prevent co-existence of per-task and cpu-wide events on the
3996 	 * same exclusive pmu.
3997 	 *
3998 	 * Negative pmu::exclusive_cnt means there are cpu-wide
3999 	 * events on this "exclusive" pmu, positive means there are
4000 	 * per-task events.
4001 	 *
4002 	 * Since this is called in perf_event_alloc() path, event::ctx
4003 	 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4004 	 * to mean "per-task event", because unlike other attach states it
4005 	 * never gets cleared.
4006 	 */
4007 	if (event->attach_state & PERF_ATTACH_TASK) {
4008 		if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4009 			return -EBUSY;
4010 	} else {
4011 		if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4012 			return -EBUSY;
4013 	}
4014 
4015 	return 0;
4016 }
4017 
exclusive_event_destroy(struct perf_event * event)4018 static void exclusive_event_destroy(struct perf_event *event)
4019 {
4020 	struct pmu *pmu = event->pmu;
4021 
4022 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4023 		return;
4024 
4025 	/* see comment in exclusive_event_init() */
4026 	if (event->attach_state & PERF_ATTACH_TASK)
4027 		atomic_dec(&pmu->exclusive_cnt);
4028 	else
4029 		atomic_inc(&pmu->exclusive_cnt);
4030 }
4031 
exclusive_event_match(struct perf_event * e1,struct perf_event * e2)4032 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4033 {
4034 	if ((e1->pmu == e2->pmu) &&
4035 	    (e1->cpu == e2->cpu ||
4036 	     e1->cpu == -1 ||
4037 	     e2->cpu == -1))
4038 		return true;
4039 	return false;
4040 }
4041 
4042 /* Called under the same ctx::mutex as perf_install_in_context() */
exclusive_event_installable(struct perf_event * event,struct perf_event_context * ctx)4043 static bool exclusive_event_installable(struct perf_event *event,
4044 					struct perf_event_context *ctx)
4045 {
4046 	struct perf_event *iter_event;
4047 	struct pmu *pmu = event->pmu;
4048 
4049 	if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4050 		return true;
4051 
4052 	list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4053 		if (exclusive_event_match(iter_event, event))
4054 			return false;
4055 	}
4056 
4057 	return true;
4058 }
4059 
4060 static void perf_addr_filters_splice(struct perf_event *event,
4061 				       struct list_head *head);
4062 
_free_event(struct perf_event * event)4063 static void _free_event(struct perf_event *event)
4064 {
4065 	irq_work_sync(&event->pending);
4066 
4067 	unaccount_event(event);
4068 
4069 	if (event->rb) {
4070 		/*
4071 		 * Can happen when we close an event with re-directed output.
4072 		 *
4073 		 * Since we have a 0 refcount, perf_mmap_close() will skip
4074 		 * over us; possibly making our ring_buffer_put() the last.
4075 		 */
4076 		mutex_lock(&event->mmap_mutex);
4077 		ring_buffer_attach(event, NULL);
4078 		mutex_unlock(&event->mmap_mutex);
4079 	}
4080 
4081 	if (is_cgroup_event(event))
4082 		perf_detach_cgroup(event);
4083 
4084 	if (!event->parent) {
4085 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4086 			put_callchain_buffers();
4087 	}
4088 
4089 	perf_event_free_bpf_prog(event);
4090 	perf_addr_filters_splice(event, NULL);
4091 	kfree(event->addr_filters_offs);
4092 
4093 	if (event->destroy)
4094 		event->destroy(event);
4095 
4096 	if (event->ctx)
4097 		put_ctx(event->ctx);
4098 
4099 	if (event->hw.target)
4100 		put_task_struct(event->hw.target);
4101 
4102 	exclusive_event_destroy(event);
4103 	module_put(event->pmu->module);
4104 
4105 	call_rcu(&event->rcu_head, free_event_rcu);
4106 }
4107 
4108 /*
4109  * Used to free events which have a known refcount of 1, such as in error paths
4110  * where the event isn't exposed yet and inherited events.
4111  */
free_event(struct perf_event * event)4112 static void free_event(struct perf_event *event)
4113 {
4114 	if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4115 				"unexpected event refcount: %ld; ptr=%p\n",
4116 				atomic_long_read(&event->refcount), event)) {
4117 		/* leak to avoid use-after-free */
4118 		return;
4119 	}
4120 
4121 	_free_event(event);
4122 }
4123 
4124 /*
4125  * Remove user event from the owner task.
4126  */
perf_remove_from_owner(struct perf_event * event)4127 static void perf_remove_from_owner(struct perf_event *event)
4128 {
4129 	struct task_struct *owner;
4130 
4131 	rcu_read_lock();
4132 	/*
4133 	 * Matches the smp_store_release() in perf_event_exit_task(). If we
4134 	 * observe !owner it means the list deletion is complete and we can
4135 	 * indeed free this event, otherwise we need to serialize on
4136 	 * owner->perf_event_mutex.
4137 	 */
4138 	owner = lockless_dereference(event->owner);
4139 	if (owner) {
4140 		/*
4141 		 * Since delayed_put_task_struct() also drops the last
4142 		 * task reference we can safely take a new reference
4143 		 * while holding the rcu_read_lock().
4144 		 */
4145 		get_task_struct(owner);
4146 	}
4147 	rcu_read_unlock();
4148 
4149 	if (owner) {
4150 		/*
4151 		 * If we're here through perf_event_exit_task() we're already
4152 		 * holding ctx->mutex which would be an inversion wrt. the
4153 		 * normal lock order.
4154 		 *
4155 		 * However we can safely take this lock because its the child
4156 		 * ctx->mutex.
4157 		 */
4158 		mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4159 
4160 		/*
4161 		 * We have to re-check the event->owner field, if it is cleared
4162 		 * we raced with perf_event_exit_task(), acquiring the mutex
4163 		 * ensured they're done, and we can proceed with freeing the
4164 		 * event.
4165 		 */
4166 		if (event->owner) {
4167 			list_del_init(&event->owner_entry);
4168 			smp_store_release(&event->owner, NULL);
4169 		}
4170 		mutex_unlock(&owner->perf_event_mutex);
4171 		put_task_struct(owner);
4172 	}
4173 }
4174 
put_event(struct perf_event * event)4175 static void put_event(struct perf_event *event)
4176 {
4177 	if (!atomic_long_dec_and_test(&event->refcount))
4178 		return;
4179 
4180 	_free_event(event);
4181 }
4182 
4183 /*
4184  * Kill an event dead; while event:refcount will preserve the event
4185  * object, it will not preserve its functionality. Once the last 'user'
4186  * gives up the object, we'll destroy the thing.
4187  */
perf_event_release_kernel(struct perf_event * event)4188 int perf_event_release_kernel(struct perf_event *event)
4189 {
4190 	struct perf_event_context *ctx = event->ctx;
4191 	struct perf_event *child, *tmp;
4192 
4193 	/*
4194 	 * If we got here through err_file: fput(event_file); we will not have
4195 	 * attached to a context yet.
4196 	 */
4197 	if (!ctx) {
4198 		WARN_ON_ONCE(event->attach_state &
4199 				(PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4200 		goto no_ctx;
4201 	}
4202 
4203 	if (!is_kernel_event(event))
4204 		perf_remove_from_owner(event);
4205 
4206 	ctx = perf_event_ctx_lock(event);
4207 	WARN_ON_ONCE(ctx->parent_ctx);
4208 	perf_remove_from_context(event, DETACH_GROUP);
4209 
4210 	raw_spin_lock_irq(&ctx->lock);
4211 	/*
4212 	 * Mark this even as STATE_DEAD, there is no external reference to it
4213 	 * anymore.
4214 	 *
4215 	 * Anybody acquiring event->child_mutex after the below loop _must_
4216 	 * also see this, most importantly inherit_event() which will avoid
4217 	 * placing more children on the list.
4218 	 *
4219 	 * Thus this guarantees that we will in fact observe and kill _ALL_
4220 	 * child events.
4221 	 */
4222 	event->state = PERF_EVENT_STATE_DEAD;
4223 	raw_spin_unlock_irq(&ctx->lock);
4224 
4225 	perf_event_ctx_unlock(event, ctx);
4226 
4227 again:
4228 	mutex_lock(&event->child_mutex);
4229 	list_for_each_entry(child, &event->child_list, child_list) {
4230 
4231 		/*
4232 		 * Cannot change, child events are not migrated, see the
4233 		 * comment with perf_event_ctx_lock_nested().
4234 		 */
4235 		ctx = lockless_dereference(child->ctx);
4236 		/*
4237 		 * Since child_mutex nests inside ctx::mutex, we must jump
4238 		 * through hoops. We start by grabbing a reference on the ctx.
4239 		 *
4240 		 * Since the event cannot get freed while we hold the
4241 		 * child_mutex, the context must also exist and have a !0
4242 		 * reference count.
4243 		 */
4244 		get_ctx(ctx);
4245 
4246 		/*
4247 		 * Now that we have a ctx ref, we can drop child_mutex, and
4248 		 * acquire ctx::mutex without fear of it going away. Then we
4249 		 * can re-acquire child_mutex.
4250 		 */
4251 		mutex_unlock(&event->child_mutex);
4252 		mutex_lock(&ctx->mutex);
4253 		mutex_lock(&event->child_mutex);
4254 
4255 		/*
4256 		 * Now that we hold ctx::mutex and child_mutex, revalidate our
4257 		 * state, if child is still the first entry, it didn't get freed
4258 		 * and we can continue doing so.
4259 		 */
4260 		tmp = list_first_entry_or_null(&event->child_list,
4261 					       struct perf_event, child_list);
4262 		if (tmp == child) {
4263 			perf_remove_from_context(child, DETACH_GROUP);
4264 			list_del(&child->child_list);
4265 			free_event(child);
4266 			/*
4267 			 * This matches the refcount bump in inherit_event();
4268 			 * this can't be the last reference.
4269 			 */
4270 			put_event(event);
4271 		}
4272 
4273 		mutex_unlock(&event->child_mutex);
4274 		mutex_unlock(&ctx->mutex);
4275 		put_ctx(ctx);
4276 		goto again;
4277 	}
4278 	mutex_unlock(&event->child_mutex);
4279 
4280 no_ctx:
4281 	put_event(event); /* Must be the 'last' reference */
4282 	return 0;
4283 }
4284 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4285 
4286 /*
4287  * Called when the last reference to the file is gone.
4288  */
perf_release(struct inode * inode,struct file * file)4289 static int perf_release(struct inode *inode, struct file *file)
4290 {
4291 	perf_event_release_kernel(file->private_data);
4292 	return 0;
4293 }
4294 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)4295 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4296 {
4297 	struct perf_event *child;
4298 	u64 total = 0;
4299 
4300 	*enabled = 0;
4301 	*running = 0;
4302 
4303 	mutex_lock(&event->child_mutex);
4304 
4305 	(void)perf_event_read(event, false);
4306 	total += perf_event_count(event);
4307 
4308 	*enabled += event->total_time_enabled +
4309 			atomic64_read(&event->child_total_time_enabled);
4310 	*running += event->total_time_running +
4311 			atomic64_read(&event->child_total_time_running);
4312 
4313 	list_for_each_entry(child, &event->child_list, child_list) {
4314 		(void)perf_event_read(child, false);
4315 		total += perf_event_count(child);
4316 		*enabled += child->total_time_enabled;
4317 		*running += child->total_time_running;
4318 	}
4319 	mutex_unlock(&event->child_mutex);
4320 
4321 	return total;
4322 }
4323 EXPORT_SYMBOL_GPL(perf_event_read_value);
4324 
__perf_read_group_add(struct perf_event * leader,u64 read_format,u64 * values)4325 static int __perf_read_group_add(struct perf_event *leader,
4326 					u64 read_format, u64 *values)
4327 {
4328 	struct perf_event *sub;
4329 	int n = 1; /* skip @nr */
4330 	int ret;
4331 
4332 	ret = perf_event_read(leader, true);
4333 	if (ret)
4334 		return ret;
4335 
4336 	/*
4337 	 * Since we co-schedule groups, {enabled,running} times of siblings
4338 	 * will be identical to those of the leader, so we only publish one
4339 	 * set.
4340 	 */
4341 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4342 		values[n++] += leader->total_time_enabled +
4343 			atomic64_read(&leader->child_total_time_enabled);
4344 	}
4345 
4346 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4347 		values[n++] += leader->total_time_running +
4348 			atomic64_read(&leader->child_total_time_running);
4349 	}
4350 
4351 	/*
4352 	 * Write {count,id} tuples for every sibling.
4353 	 */
4354 	values[n++] += perf_event_count(leader);
4355 	if (read_format & PERF_FORMAT_ID)
4356 		values[n++] = primary_event_id(leader);
4357 
4358 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4359 		values[n++] += perf_event_count(sub);
4360 		if (read_format & PERF_FORMAT_ID)
4361 			values[n++] = primary_event_id(sub);
4362 	}
4363 
4364 	return 0;
4365 }
4366 
perf_read_group(struct perf_event * event,u64 read_format,char __user * buf)4367 static int perf_read_group(struct perf_event *event,
4368 				   u64 read_format, char __user *buf)
4369 {
4370 	struct perf_event *leader = event->group_leader, *child;
4371 	struct perf_event_context *ctx = leader->ctx;
4372 	int ret;
4373 	u64 *values;
4374 
4375 	lockdep_assert_held(&ctx->mutex);
4376 
4377 	values = kzalloc(event->read_size, GFP_KERNEL);
4378 	if (!values)
4379 		return -ENOMEM;
4380 
4381 	values[0] = 1 + leader->nr_siblings;
4382 
4383 	/*
4384 	 * By locking the child_mutex of the leader we effectively
4385 	 * lock the child list of all siblings.. XXX explain how.
4386 	 */
4387 	mutex_lock(&leader->child_mutex);
4388 
4389 	ret = __perf_read_group_add(leader, read_format, values);
4390 	if (ret)
4391 		goto unlock;
4392 
4393 	list_for_each_entry(child, &leader->child_list, child_list) {
4394 		ret = __perf_read_group_add(child, read_format, values);
4395 		if (ret)
4396 			goto unlock;
4397 	}
4398 
4399 	mutex_unlock(&leader->child_mutex);
4400 
4401 	ret = event->read_size;
4402 	if (copy_to_user(buf, values, event->read_size))
4403 		ret = -EFAULT;
4404 	goto out;
4405 
4406 unlock:
4407 	mutex_unlock(&leader->child_mutex);
4408 out:
4409 	kfree(values);
4410 	return ret;
4411 }
4412 
perf_read_one(struct perf_event * event,u64 read_format,char __user * buf)4413 static int perf_read_one(struct perf_event *event,
4414 				 u64 read_format, char __user *buf)
4415 {
4416 	u64 enabled, running;
4417 	u64 values[4];
4418 	int n = 0;
4419 
4420 	values[n++] = perf_event_read_value(event, &enabled, &running);
4421 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4422 		values[n++] = enabled;
4423 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4424 		values[n++] = running;
4425 	if (read_format & PERF_FORMAT_ID)
4426 		values[n++] = primary_event_id(event);
4427 
4428 	if (copy_to_user(buf, values, n * sizeof(u64)))
4429 		return -EFAULT;
4430 
4431 	return n * sizeof(u64);
4432 }
4433 
is_event_hup(struct perf_event * event)4434 static bool is_event_hup(struct perf_event *event)
4435 {
4436 	bool no_children;
4437 
4438 	if (event->state > PERF_EVENT_STATE_EXIT)
4439 		return false;
4440 
4441 	mutex_lock(&event->child_mutex);
4442 	no_children = list_empty(&event->child_list);
4443 	mutex_unlock(&event->child_mutex);
4444 	return no_children;
4445 }
4446 
4447 /*
4448  * Read the performance event - simple non blocking version for now
4449  */
4450 static ssize_t
__perf_read(struct perf_event * event,char __user * buf,size_t count)4451 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4452 {
4453 	u64 read_format = event->attr.read_format;
4454 	int ret;
4455 
4456 	/*
4457 	 * Return end-of-file for a read on a event that is in
4458 	 * error state (i.e. because it was pinned but it couldn't be
4459 	 * scheduled on to the CPU at some point).
4460 	 */
4461 	if (event->state == PERF_EVENT_STATE_ERROR)
4462 		return 0;
4463 
4464 	if (count < event->read_size)
4465 		return -ENOSPC;
4466 
4467 	WARN_ON_ONCE(event->ctx->parent_ctx);
4468 	if (read_format & PERF_FORMAT_GROUP)
4469 		ret = perf_read_group(event, read_format, buf);
4470 	else
4471 		ret = perf_read_one(event, read_format, buf);
4472 
4473 	return ret;
4474 }
4475 
4476 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)4477 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4478 {
4479 	struct perf_event *event = file->private_data;
4480 	struct perf_event_context *ctx;
4481 	int ret;
4482 
4483 	ctx = perf_event_ctx_lock(event);
4484 	ret = __perf_read(event, buf, count);
4485 	perf_event_ctx_unlock(event, ctx);
4486 
4487 	return ret;
4488 }
4489 
perf_poll(struct file * file,poll_table * wait)4490 static unsigned int perf_poll(struct file *file, poll_table *wait)
4491 {
4492 	struct perf_event *event = file->private_data;
4493 	struct ring_buffer *rb;
4494 	unsigned int events = POLLHUP;
4495 
4496 	poll_wait(file, &event->waitq, wait);
4497 
4498 	if (is_event_hup(event))
4499 		return events;
4500 
4501 	/*
4502 	 * Pin the event->rb by taking event->mmap_mutex; otherwise
4503 	 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4504 	 */
4505 	mutex_lock(&event->mmap_mutex);
4506 	rb = event->rb;
4507 	if (rb)
4508 		events = atomic_xchg(&rb->poll, 0);
4509 	mutex_unlock(&event->mmap_mutex);
4510 	return events;
4511 }
4512 
_perf_event_reset(struct perf_event * event)4513 static void _perf_event_reset(struct perf_event *event)
4514 {
4515 	(void)perf_event_read(event, false);
4516 	local64_set(&event->count, 0);
4517 	perf_event_update_userpage(event);
4518 }
4519 
4520 /*
4521  * Holding the top-level event's child_mutex means that any
4522  * descendant process that has inherited this event will block
4523  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4524  * task existence requirements of perf_event_enable/disable.
4525  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))4526 static void perf_event_for_each_child(struct perf_event *event,
4527 					void (*func)(struct perf_event *))
4528 {
4529 	struct perf_event *child;
4530 
4531 	WARN_ON_ONCE(event->ctx->parent_ctx);
4532 
4533 	mutex_lock(&event->child_mutex);
4534 	func(event);
4535 	list_for_each_entry(child, &event->child_list, child_list)
4536 		func(child);
4537 	mutex_unlock(&event->child_mutex);
4538 }
4539 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))4540 static void perf_event_for_each(struct perf_event *event,
4541 				  void (*func)(struct perf_event *))
4542 {
4543 	struct perf_event_context *ctx = event->ctx;
4544 	struct perf_event *sibling;
4545 
4546 	lockdep_assert_held(&ctx->mutex);
4547 
4548 	event = event->group_leader;
4549 
4550 	perf_event_for_each_child(event, func);
4551 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
4552 		perf_event_for_each_child(sibling, func);
4553 }
4554 
__perf_event_period(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,void * info)4555 static void __perf_event_period(struct perf_event *event,
4556 				struct perf_cpu_context *cpuctx,
4557 				struct perf_event_context *ctx,
4558 				void *info)
4559 {
4560 	u64 value = *((u64 *)info);
4561 	bool active;
4562 
4563 	if (event->attr.freq) {
4564 		event->attr.sample_freq = value;
4565 	} else {
4566 		event->attr.sample_period = value;
4567 		event->hw.sample_period = value;
4568 	}
4569 
4570 	active = (event->state == PERF_EVENT_STATE_ACTIVE);
4571 	if (active) {
4572 		perf_pmu_disable(ctx->pmu);
4573 		/*
4574 		 * We could be throttled; unthrottle now to avoid the tick
4575 		 * trying to unthrottle while we already re-started the event.
4576 		 */
4577 		if (event->hw.interrupts == MAX_INTERRUPTS) {
4578 			event->hw.interrupts = 0;
4579 			perf_log_throttle(event, 1);
4580 		}
4581 		event->pmu->stop(event, PERF_EF_UPDATE);
4582 	}
4583 
4584 	local64_set(&event->hw.period_left, 0);
4585 
4586 	if (active) {
4587 		event->pmu->start(event, PERF_EF_RELOAD);
4588 		perf_pmu_enable(ctx->pmu);
4589 	}
4590 }
4591 
perf_event_period(struct perf_event * event,u64 __user * arg)4592 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4593 {
4594 	u64 value;
4595 
4596 	if (!is_sampling_event(event))
4597 		return -EINVAL;
4598 
4599 	if (copy_from_user(&value, arg, sizeof(value)))
4600 		return -EFAULT;
4601 
4602 	if (!value)
4603 		return -EINVAL;
4604 
4605 	if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4606 		return -EINVAL;
4607 
4608 	event_function_call(event, __perf_event_period, &value);
4609 
4610 	return 0;
4611 }
4612 
4613 static const struct file_operations perf_fops;
4614 
perf_fget_light(int fd,struct fd * p)4615 static inline int perf_fget_light(int fd, struct fd *p)
4616 {
4617 	struct fd f = fdget(fd);
4618 	if (!f.file)
4619 		return -EBADF;
4620 
4621 	if (f.file->f_op != &perf_fops) {
4622 		fdput(f);
4623 		return -EBADF;
4624 	}
4625 	*p = f;
4626 	return 0;
4627 }
4628 
4629 static int perf_event_set_output(struct perf_event *event,
4630 				 struct perf_event *output_event);
4631 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4632 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4633 
_perf_ioctl(struct perf_event * event,unsigned int cmd,unsigned long arg)4634 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4635 {
4636 	void (*func)(struct perf_event *);
4637 	u32 flags = arg;
4638 
4639 	switch (cmd) {
4640 	case PERF_EVENT_IOC_ENABLE:
4641 		func = _perf_event_enable;
4642 		break;
4643 	case PERF_EVENT_IOC_DISABLE:
4644 		func = _perf_event_disable;
4645 		break;
4646 	case PERF_EVENT_IOC_RESET:
4647 		func = _perf_event_reset;
4648 		break;
4649 
4650 	case PERF_EVENT_IOC_REFRESH:
4651 		return _perf_event_refresh(event, arg);
4652 
4653 	case PERF_EVENT_IOC_PERIOD:
4654 		return perf_event_period(event, (u64 __user *)arg);
4655 
4656 	case PERF_EVENT_IOC_ID:
4657 	{
4658 		u64 id = primary_event_id(event);
4659 
4660 		if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4661 			return -EFAULT;
4662 		return 0;
4663 	}
4664 
4665 	case PERF_EVENT_IOC_SET_OUTPUT:
4666 	{
4667 		int ret;
4668 		if (arg != -1) {
4669 			struct perf_event *output_event;
4670 			struct fd output;
4671 			ret = perf_fget_light(arg, &output);
4672 			if (ret)
4673 				return ret;
4674 			output_event = output.file->private_data;
4675 			ret = perf_event_set_output(event, output_event);
4676 			fdput(output);
4677 		} else {
4678 			ret = perf_event_set_output(event, NULL);
4679 		}
4680 		return ret;
4681 	}
4682 
4683 	case PERF_EVENT_IOC_SET_FILTER:
4684 		return perf_event_set_filter(event, (void __user *)arg);
4685 
4686 	case PERF_EVENT_IOC_SET_BPF:
4687 		return perf_event_set_bpf_prog(event, arg);
4688 
4689 	case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4690 		struct ring_buffer *rb;
4691 
4692 		rcu_read_lock();
4693 		rb = rcu_dereference(event->rb);
4694 		if (!rb || !rb->nr_pages) {
4695 			rcu_read_unlock();
4696 			return -EINVAL;
4697 		}
4698 		rb_toggle_paused(rb, !!arg);
4699 		rcu_read_unlock();
4700 		return 0;
4701 	}
4702 	default:
4703 		return -ENOTTY;
4704 	}
4705 
4706 	if (flags & PERF_IOC_FLAG_GROUP)
4707 		perf_event_for_each(event, func);
4708 	else
4709 		perf_event_for_each_child(event, func);
4710 
4711 	return 0;
4712 }
4713 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4714 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4715 {
4716 	struct perf_event *event = file->private_data;
4717 	struct perf_event_context *ctx;
4718 	long ret;
4719 
4720 	ctx = perf_event_ctx_lock(event);
4721 	ret = _perf_ioctl(event, cmd, arg);
4722 	perf_event_ctx_unlock(event, ctx);
4723 
4724 	return ret;
4725 }
4726 
4727 #ifdef CONFIG_COMPAT
perf_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4728 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4729 				unsigned long arg)
4730 {
4731 	switch (_IOC_NR(cmd)) {
4732 	case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4733 	case _IOC_NR(PERF_EVENT_IOC_ID):
4734 		/* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4735 		if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4736 			cmd &= ~IOCSIZE_MASK;
4737 			cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4738 		}
4739 		break;
4740 	}
4741 	return perf_ioctl(file, cmd, arg);
4742 }
4743 #else
4744 # define perf_compat_ioctl NULL
4745 #endif
4746 
perf_event_task_enable(void)4747 int perf_event_task_enable(void)
4748 {
4749 	struct perf_event_context *ctx;
4750 	struct perf_event *event;
4751 
4752 	mutex_lock(&current->perf_event_mutex);
4753 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4754 		ctx = perf_event_ctx_lock(event);
4755 		perf_event_for_each_child(event, _perf_event_enable);
4756 		perf_event_ctx_unlock(event, ctx);
4757 	}
4758 	mutex_unlock(&current->perf_event_mutex);
4759 
4760 	return 0;
4761 }
4762 
perf_event_task_disable(void)4763 int perf_event_task_disable(void)
4764 {
4765 	struct perf_event_context *ctx;
4766 	struct perf_event *event;
4767 
4768 	mutex_lock(&current->perf_event_mutex);
4769 	list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4770 		ctx = perf_event_ctx_lock(event);
4771 		perf_event_for_each_child(event, _perf_event_disable);
4772 		perf_event_ctx_unlock(event, ctx);
4773 	}
4774 	mutex_unlock(&current->perf_event_mutex);
4775 
4776 	return 0;
4777 }
4778 
perf_event_index(struct perf_event * event)4779 static int perf_event_index(struct perf_event *event)
4780 {
4781 	if (event->hw.state & PERF_HES_STOPPED)
4782 		return 0;
4783 
4784 	if (event->state != PERF_EVENT_STATE_ACTIVE)
4785 		return 0;
4786 
4787 	return event->pmu->event_idx(event);
4788 }
4789 
calc_timer_values(struct perf_event * event,u64 * now,u64 * enabled,u64 * running)4790 static void calc_timer_values(struct perf_event *event,
4791 				u64 *now,
4792 				u64 *enabled,
4793 				u64 *running)
4794 {
4795 	u64 ctx_time;
4796 
4797 	*now = perf_clock();
4798 	ctx_time = event->shadow_ctx_time + *now;
4799 	*enabled = ctx_time - event->tstamp_enabled;
4800 	*running = ctx_time - event->tstamp_running;
4801 }
4802 
perf_event_init_userpage(struct perf_event * event)4803 static void perf_event_init_userpage(struct perf_event *event)
4804 {
4805 	struct perf_event_mmap_page *userpg;
4806 	struct ring_buffer *rb;
4807 
4808 	rcu_read_lock();
4809 	rb = rcu_dereference(event->rb);
4810 	if (!rb)
4811 		goto unlock;
4812 
4813 	userpg = rb->user_page;
4814 
4815 	/* Allow new userspace to detect that bit 0 is deprecated */
4816 	userpg->cap_bit0_is_deprecated = 1;
4817 	userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4818 	userpg->data_offset = PAGE_SIZE;
4819 	userpg->data_size = perf_data_size(rb);
4820 
4821 unlock:
4822 	rcu_read_unlock();
4823 }
4824 
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)4825 void __weak arch_perf_update_userpage(
4826 	struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4827 {
4828 }
4829 
4830 /*
4831  * Callers need to ensure there can be no nesting of this function, otherwise
4832  * the seqlock logic goes bad. We can not serialize this because the arch
4833  * code calls this from NMI context.
4834  */
perf_event_update_userpage(struct perf_event * event)4835 void perf_event_update_userpage(struct perf_event *event)
4836 {
4837 	struct perf_event_mmap_page *userpg;
4838 	struct ring_buffer *rb;
4839 	u64 enabled, running, now;
4840 
4841 	rcu_read_lock();
4842 	rb = rcu_dereference(event->rb);
4843 	if (!rb)
4844 		goto unlock;
4845 
4846 	/*
4847 	 * compute total_time_enabled, total_time_running
4848 	 * based on snapshot values taken when the event
4849 	 * was last scheduled in.
4850 	 *
4851 	 * we cannot simply called update_context_time()
4852 	 * because of locking issue as we can be called in
4853 	 * NMI context
4854 	 */
4855 	calc_timer_values(event, &now, &enabled, &running);
4856 
4857 	userpg = rb->user_page;
4858 	/*
4859 	 * Disable preemption so as to not let the corresponding user-space
4860 	 * spin too long if we get preempted.
4861 	 */
4862 	preempt_disable();
4863 	++userpg->lock;
4864 	barrier();
4865 	userpg->index = perf_event_index(event);
4866 	userpg->offset = perf_event_count(event);
4867 	if (userpg->index)
4868 		userpg->offset -= local64_read(&event->hw.prev_count);
4869 
4870 	userpg->time_enabled = enabled +
4871 			atomic64_read(&event->child_total_time_enabled);
4872 
4873 	userpg->time_running = running +
4874 			atomic64_read(&event->child_total_time_running);
4875 
4876 	arch_perf_update_userpage(event, userpg, now);
4877 
4878 	barrier();
4879 	++userpg->lock;
4880 	preempt_enable();
4881 unlock:
4882 	rcu_read_unlock();
4883 }
4884 
perf_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)4885 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4886 {
4887 	struct perf_event *event = vma->vm_file->private_data;
4888 	struct ring_buffer *rb;
4889 	int ret = VM_FAULT_SIGBUS;
4890 
4891 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
4892 		if (vmf->pgoff == 0)
4893 			ret = 0;
4894 		return ret;
4895 	}
4896 
4897 	rcu_read_lock();
4898 	rb = rcu_dereference(event->rb);
4899 	if (!rb)
4900 		goto unlock;
4901 
4902 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4903 		goto unlock;
4904 
4905 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4906 	if (!vmf->page)
4907 		goto unlock;
4908 
4909 	get_page(vmf->page);
4910 	vmf->page->mapping = vma->vm_file->f_mapping;
4911 	vmf->page->index   = vmf->pgoff;
4912 
4913 	ret = 0;
4914 unlock:
4915 	rcu_read_unlock();
4916 
4917 	return ret;
4918 }
4919 
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)4920 static void ring_buffer_attach(struct perf_event *event,
4921 			       struct ring_buffer *rb)
4922 {
4923 	struct ring_buffer *old_rb = NULL;
4924 	unsigned long flags;
4925 
4926 	if (event->rb) {
4927 		/*
4928 		 * Should be impossible, we set this when removing
4929 		 * event->rb_entry and wait/clear when adding event->rb_entry.
4930 		 */
4931 		WARN_ON_ONCE(event->rcu_pending);
4932 
4933 		old_rb = event->rb;
4934 		spin_lock_irqsave(&old_rb->event_lock, flags);
4935 		list_del_rcu(&event->rb_entry);
4936 		spin_unlock_irqrestore(&old_rb->event_lock, flags);
4937 
4938 		event->rcu_batches = get_state_synchronize_rcu();
4939 		event->rcu_pending = 1;
4940 	}
4941 
4942 	if (rb) {
4943 		if (event->rcu_pending) {
4944 			cond_synchronize_rcu(event->rcu_batches);
4945 			event->rcu_pending = 0;
4946 		}
4947 
4948 		spin_lock_irqsave(&rb->event_lock, flags);
4949 		list_add_rcu(&event->rb_entry, &rb->event_list);
4950 		spin_unlock_irqrestore(&rb->event_lock, flags);
4951 	}
4952 
4953 	/*
4954 	 * Avoid racing with perf_mmap_close(AUX): stop the event
4955 	 * before swizzling the event::rb pointer; if it's getting
4956 	 * unmapped, its aux_mmap_count will be 0 and it won't
4957 	 * restart. See the comment in __perf_pmu_output_stop().
4958 	 *
4959 	 * Data will inevitably be lost when set_output is done in
4960 	 * mid-air, but then again, whoever does it like this is
4961 	 * not in for the data anyway.
4962 	 */
4963 	if (has_aux(event))
4964 		perf_event_stop(event, 0);
4965 
4966 	rcu_assign_pointer(event->rb, rb);
4967 
4968 	if (old_rb) {
4969 		ring_buffer_put(old_rb);
4970 		/*
4971 		 * Since we detached before setting the new rb, so that we
4972 		 * could attach the new rb, we could have missed a wakeup.
4973 		 * Provide it now.
4974 		 */
4975 		wake_up_all(&event->waitq);
4976 	}
4977 }
4978 
ring_buffer_wakeup(struct perf_event * event)4979 static void ring_buffer_wakeup(struct perf_event *event)
4980 {
4981 	struct ring_buffer *rb;
4982 
4983 	rcu_read_lock();
4984 	rb = rcu_dereference(event->rb);
4985 	if (rb) {
4986 		list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4987 			wake_up_all(&event->waitq);
4988 	}
4989 	rcu_read_unlock();
4990 }
4991 
ring_buffer_get(struct perf_event * event)4992 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4993 {
4994 	struct ring_buffer *rb;
4995 
4996 	rcu_read_lock();
4997 	rb = rcu_dereference(event->rb);
4998 	if (rb) {
4999 		if (!atomic_inc_not_zero(&rb->refcount))
5000 			rb = NULL;
5001 	}
5002 	rcu_read_unlock();
5003 
5004 	return rb;
5005 }
5006 
ring_buffer_put(struct ring_buffer * rb)5007 void ring_buffer_put(struct ring_buffer *rb)
5008 {
5009 	if (!atomic_dec_and_test(&rb->refcount))
5010 		return;
5011 
5012 	WARN_ON_ONCE(!list_empty(&rb->event_list));
5013 
5014 	call_rcu(&rb->rcu_head, rb_free_rcu);
5015 }
5016 
perf_mmap_open(struct vm_area_struct * vma)5017 static void perf_mmap_open(struct vm_area_struct *vma)
5018 {
5019 	struct perf_event *event = vma->vm_file->private_data;
5020 
5021 	atomic_inc(&event->mmap_count);
5022 	atomic_inc(&event->rb->mmap_count);
5023 
5024 	if (vma->vm_pgoff)
5025 		atomic_inc(&event->rb->aux_mmap_count);
5026 
5027 	if (event->pmu->event_mapped)
5028 		event->pmu->event_mapped(event);
5029 }
5030 
5031 static void perf_pmu_output_stop(struct perf_event *event);
5032 
5033 /*
5034  * A buffer can be mmap()ed multiple times; either directly through the same
5035  * event, or through other events by use of perf_event_set_output().
5036  *
5037  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5038  * the buffer here, where we still have a VM context. This means we need
5039  * to detach all events redirecting to us.
5040  */
perf_mmap_close(struct vm_area_struct * vma)5041 static void perf_mmap_close(struct vm_area_struct *vma)
5042 {
5043 	struct perf_event *event = vma->vm_file->private_data;
5044 
5045 	struct ring_buffer *rb = ring_buffer_get(event);
5046 	struct user_struct *mmap_user = rb->mmap_user;
5047 	int mmap_locked = rb->mmap_locked;
5048 	unsigned long size = perf_data_size(rb);
5049 
5050 	if (event->pmu->event_unmapped)
5051 		event->pmu->event_unmapped(event);
5052 
5053 	/*
5054 	 * rb->aux_mmap_count will always drop before rb->mmap_count and
5055 	 * event->mmap_count, so it is ok to use event->mmap_mutex to
5056 	 * serialize with perf_mmap here.
5057 	 */
5058 	if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5059 	    atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5060 		/*
5061 		 * Stop all AUX events that are writing to this buffer,
5062 		 * so that we can free its AUX pages and corresponding PMU
5063 		 * data. Note that after rb::aux_mmap_count dropped to zero,
5064 		 * they won't start any more (see perf_aux_output_begin()).
5065 		 */
5066 		perf_pmu_output_stop(event);
5067 
5068 		/* now it's safe to free the pages */
5069 		atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5070 		vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5071 
5072 		/* this has to be the last one */
5073 		rb_free_aux(rb);
5074 		WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5075 
5076 		mutex_unlock(&event->mmap_mutex);
5077 	}
5078 
5079 	atomic_dec(&rb->mmap_count);
5080 
5081 	if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5082 		goto out_put;
5083 
5084 	ring_buffer_attach(event, NULL);
5085 	mutex_unlock(&event->mmap_mutex);
5086 
5087 	/* If there's still other mmap()s of this buffer, we're done. */
5088 	if (atomic_read(&rb->mmap_count))
5089 		goto out_put;
5090 
5091 	/*
5092 	 * No other mmap()s, detach from all other events that might redirect
5093 	 * into the now unreachable buffer. Somewhat complicated by the
5094 	 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5095 	 */
5096 again:
5097 	rcu_read_lock();
5098 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5099 		if (!atomic_long_inc_not_zero(&event->refcount)) {
5100 			/*
5101 			 * This event is en-route to free_event() which will
5102 			 * detach it and remove it from the list.
5103 			 */
5104 			continue;
5105 		}
5106 		rcu_read_unlock();
5107 
5108 		mutex_lock(&event->mmap_mutex);
5109 		/*
5110 		 * Check we didn't race with perf_event_set_output() which can
5111 		 * swizzle the rb from under us while we were waiting to
5112 		 * acquire mmap_mutex.
5113 		 *
5114 		 * If we find a different rb; ignore this event, a next
5115 		 * iteration will no longer find it on the list. We have to
5116 		 * still restart the iteration to make sure we're not now
5117 		 * iterating the wrong list.
5118 		 */
5119 		if (event->rb == rb)
5120 			ring_buffer_attach(event, NULL);
5121 
5122 		mutex_unlock(&event->mmap_mutex);
5123 		put_event(event);
5124 
5125 		/*
5126 		 * Restart the iteration; either we're on the wrong list or
5127 		 * destroyed its integrity by doing a deletion.
5128 		 */
5129 		goto again;
5130 	}
5131 	rcu_read_unlock();
5132 
5133 	/*
5134 	 * It could be there's still a few 0-ref events on the list; they'll
5135 	 * get cleaned up by free_event() -- they'll also still have their
5136 	 * ref on the rb and will free it whenever they are done with it.
5137 	 *
5138 	 * Aside from that, this buffer is 'fully' detached and unmapped,
5139 	 * undo the VM accounting.
5140 	 */
5141 
5142 	atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5143 	vma->vm_mm->pinned_vm -= mmap_locked;
5144 	free_uid(mmap_user);
5145 
5146 out_put:
5147 	ring_buffer_put(rb); /* could be last */
5148 }
5149 
5150 static const struct vm_operations_struct perf_mmap_vmops = {
5151 	.open		= perf_mmap_open,
5152 	.close		= perf_mmap_close, /* non mergable */
5153 	.fault		= perf_mmap_fault,
5154 	.page_mkwrite	= perf_mmap_fault,
5155 };
5156 
perf_mmap(struct file * file,struct vm_area_struct * vma)5157 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5158 {
5159 	struct perf_event *event = file->private_data;
5160 	unsigned long user_locked, user_lock_limit;
5161 	struct user_struct *user = current_user();
5162 	unsigned long locked, lock_limit;
5163 	struct ring_buffer *rb = NULL;
5164 	unsigned long vma_size;
5165 	unsigned long nr_pages;
5166 	long user_extra = 0, extra = 0;
5167 	int ret = 0, flags = 0;
5168 
5169 	/*
5170 	 * Don't allow mmap() of inherited per-task counters. This would
5171 	 * create a performance issue due to all children writing to the
5172 	 * same rb.
5173 	 */
5174 	if (event->cpu == -1 && event->attr.inherit)
5175 		return -EINVAL;
5176 
5177 	if (!(vma->vm_flags & VM_SHARED))
5178 		return -EINVAL;
5179 
5180 	vma_size = vma->vm_end - vma->vm_start;
5181 
5182 	if (vma->vm_pgoff == 0) {
5183 		nr_pages = (vma_size / PAGE_SIZE) - 1;
5184 	} else {
5185 		/*
5186 		 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5187 		 * mapped, all subsequent mappings should have the same size
5188 		 * and offset. Must be above the normal perf buffer.
5189 		 */
5190 		u64 aux_offset, aux_size;
5191 
5192 		if (!event->rb)
5193 			return -EINVAL;
5194 
5195 		nr_pages = vma_size / PAGE_SIZE;
5196 
5197 		mutex_lock(&event->mmap_mutex);
5198 		ret = -EINVAL;
5199 
5200 		rb = event->rb;
5201 		if (!rb)
5202 			goto aux_unlock;
5203 
5204 		aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5205 		aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5206 
5207 		if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5208 			goto aux_unlock;
5209 
5210 		if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5211 			goto aux_unlock;
5212 
5213 		/* already mapped with a different offset */
5214 		if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5215 			goto aux_unlock;
5216 
5217 		if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5218 			goto aux_unlock;
5219 
5220 		/* already mapped with a different size */
5221 		if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5222 			goto aux_unlock;
5223 
5224 		if (!is_power_of_2(nr_pages))
5225 			goto aux_unlock;
5226 
5227 		if (!atomic_inc_not_zero(&rb->mmap_count))
5228 			goto aux_unlock;
5229 
5230 		if (rb_has_aux(rb)) {
5231 			atomic_inc(&rb->aux_mmap_count);
5232 			ret = 0;
5233 			goto unlock;
5234 		}
5235 
5236 		atomic_set(&rb->aux_mmap_count, 1);
5237 		user_extra = nr_pages;
5238 
5239 		goto accounting;
5240 	}
5241 
5242 	/*
5243 	 * If we have rb pages ensure they're a power-of-two number, so we
5244 	 * can do bitmasks instead of modulo.
5245 	 */
5246 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
5247 		return -EINVAL;
5248 
5249 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
5250 		return -EINVAL;
5251 
5252 	WARN_ON_ONCE(event->ctx->parent_ctx);
5253 again:
5254 	mutex_lock(&event->mmap_mutex);
5255 	if (event->rb) {
5256 		if (event->rb->nr_pages != nr_pages) {
5257 			ret = -EINVAL;
5258 			goto unlock;
5259 		}
5260 
5261 		if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5262 			/*
5263 			 * Raced against perf_mmap_close() through
5264 			 * perf_event_set_output(). Try again, hope for better
5265 			 * luck.
5266 			 */
5267 			mutex_unlock(&event->mmap_mutex);
5268 			goto again;
5269 		}
5270 
5271 		goto unlock;
5272 	}
5273 
5274 	user_extra = nr_pages + 1;
5275 
5276 accounting:
5277 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5278 
5279 	/*
5280 	 * Increase the limit linearly with more CPUs:
5281 	 */
5282 	user_lock_limit *= num_online_cpus();
5283 
5284 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5285 
5286 	if (user_locked > user_lock_limit)
5287 		extra = user_locked - user_lock_limit;
5288 
5289 	lock_limit = rlimit(RLIMIT_MEMLOCK);
5290 	lock_limit >>= PAGE_SHIFT;
5291 	locked = vma->vm_mm->pinned_vm + extra;
5292 
5293 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5294 		!capable(CAP_IPC_LOCK)) {
5295 		ret = -EPERM;
5296 		goto unlock;
5297 	}
5298 
5299 	WARN_ON(!rb && event->rb);
5300 
5301 	if (vma->vm_flags & VM_WRITE)
5302 		flags |= RING_BUFFER_WRITABLE;
5303 
5304 	if (!rb) {
5305 		rb = rb_alloc(nr_pages,
5306 			      event->attr.watermark ? event->attr.wakeup_watermark : 0,
5307 			      event->cpu, flags);
5308 
5309 		if (!rb) {
5310 			ret = -ENOMEM;
5311 			goto unlock;
5312 		}
5313 
5314 		atomic_set(&rb->mmap_count, 1);
5315 		rb->mmap_user = get_current_user();
5316 		rb->mmap_locked = extra;
5317 
5318 		ring_buffer_attach(event, rb);
5319 
5320 		perf_event_init_userpage(event);
5321 		perf_event_update_userpage(event);
5322 	} else {
5323 		ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5324 				   event->attr.aux_watermark, flags);
5325 		if (!ret)
5326 			rb->aux_mmap_locked = extra;
5327 	}
5328 
5329 unlock:
5330 	if (!ret) {
5331 		atomic_long_add(user_extra, &user->locked_vm);
5332 		vma->vm_mm->pinned_vm += extra;
5333 
5334 		atomic_inc(&event->mmap_count);
5335 	} else if (rb) {
5336 		atomic_dec(&rb->mmap_count);
5337 	}
5338 aux_unlock:
5339 	mutex_unlock(&event->mmap_mutex);
5340 
5341 	/*
5342 	 * Since pinned accounting is per vm we cannot allow fork() to copy our
5343 	 * vma.
5344 	 */
5345 	vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5346 	vma->vm_ops = &perf_mmap_vmops;
5347 
5348 	if (event->pmu->event_mapped)
5349 		event->pmu->event_mapped(event);
5350 
5351 	return ret;
5352 }
5353 
perf_fasync(int fd,struct file * filp,int on)5354 static int perf_fasync(int fd, struct file *filp, int on)
5355 {
5356 	struct inode *inode = file_inode(filp);
5357 	struct perf_event *event = filp->private_data;
5358 	int retval;
5359 
5360 	inode_lock(inode);
5361 	retval = fasync_helper(fd, filp, on, &event->fasync);
5362 	inode_unlock(inode);
5363 
5364 	if (retval < 0)
5365 		return retval;
5366 
5367 	return 0;
5368 }
5369 
5370 static const struct file_operations perf_fops = {
5371 	.llseek			= no_llseek,
5372 	.release		= perf_release,
5373 	.read			= perf_read,
5374 	.poll			= perf_poll,
5375 	.unlocked_ioctl		= perf_ioctl,
5376 	.compat_ioctl		= perf_compat_ioctl,
5377 	.mmap			= perf_mmap,
5378 	.fasync			= perf_fasync,
5379 };
5380 
5381 /*
5382  * Perf event wakeup
5383  *
5384  * If there's data, ensure we set the poll() state and publish everything
5385  * to user-space before waking everybody up.
5386  */
5387 
perf_event_fasync(struct perf_event * event)5388 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5389 {
5390 	/* only the parent has fasync state */
5391 	if (event->parent)
5392 		event = event->parent;
5393 	return &event->fasync;
5394 }
5395 
perf_event_wakeup(struct perf_event * event)5396 void perf_event_wakeup(struct perf_event *event)
5397 {
5398 	ring_buffer_wakeup(event);
5399 
5400 	if (event->pending_kill) {
5401 		kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5402 		event->pending_kill = 0;
5403 	}
5404 }
5405 
perf_pending_event(struct irq_work * entry)5406 static void perf_pending_event(struct irq_work *entry)
5407 {
5408 	struct perf_event *event = container_of(entry,
5409 			struct perf_event, pending);
5410 	int rctx;
5411 
5412 	rctx = perf_swevent_get_recursion_context();
5413 	/*
5414 	 * If we 'fail' here, that's OK, it means recursion is already disabled
5415 	 * and we won't recurse 'further'.
5416 	 */
5417 
5418 	if (event->pending_disable) {
5419 		event->pending_disable = 0;
5420 		perf_event_disable_local(event);
5421 	}
5422 
5423 	if (event->pending_wakeup) {
5424 		event->pending_wakeup = 0;
5425 		perf_event_wakeup(event);
5426 	}
5427 
5428 	if (rctx >= 0)
5429 		perf_swevent_put_recursion_context(rctx);
5430 }
5431 
5432 /*
5433  * We assume there is only KVM supporting the callbacks.
5434  * Later on, we might change it to a list if there is
5435  * another virtualization implementation supporting the callbacks.
5436  */
5437 struct perf_guest_info_callbacks *perf_guest_cbs;
5438 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)5439 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5440 {
5441 	perf_guest_cbs = cbs;
5442 	return 0;
5443 }
5444 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5445 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)5446 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5447 {
5448 	perf_guest_cbs = NULL;
5449 	return 0;
5450 }
5451 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5452 
5453 static void
perf_output_sample_regs(struct perf_output_handle * handle,struct pt_regs * regs,u64 mask)5454 perf_output_sample_regs(struct perf_output_handle *handle,
5455 			struct pt_regs *regs, u64 mask)
5456 {
5457 	int bit;
5458 	DECLARE_BITMAP(_mask, 64);
5459 
5460 	bitmap_from_u64(_mask, mask);
5461 	for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5462 		u64 val;
5463 
5464 		val = perf_reg_value(regs, bit);
5465 		perf_output_put(handle, val);
5466 	}
5467 }
5468 
perf_sample_regs_user(struct perf_regs * regs_user,struct pt_regs * regs,struct pt_regs * regs_user_copy)5469 static void perf_sample_regs_user(struct perf_regs *regs_user,
5470 				  struct pt_regs *regs,
5471 				  struct pt_regs *regs_user_copy)
5472 {
5473 	if (user_mode(regs)) {
5474 		regs_user->abi = perf_reg_abi(current);
5475 		regs_user->regs = regs;
5476 	} else if (current->mm) {
5477 		perf_get_regs_user(regs_user, regs, regs_user_copy);
5478 	} else {
5479 		regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5480 		regs_user->regs = NULL;
5481 	}
5482 }
5483 
perf_sample_regs_intr(struct perf_regs * regs_intr,struct pt_regs * regs)5484 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5485 				  struct pt_regs *regs)
5486 {
5487 	regs_intr->regs = regs;
5488 	regs_intr->abi  = perf_reg_abi(current);
5489 }
5490 
5491 
5492 /*
5493  * Get remaining task size from user stack pointer.
5494  *
5495  * It'd be better to take stack vma map and limit this more
5496  * precisly, but there's no way to get it safely under interrupt,
5497  * so using TASK_SIZE as limit.
5498  */
perf_ustack_task_size(struct pt_regs * regs)5499 static u64 perf_ustack_task_size(struct pt_regs *regs)
5500 {
5501 	unsigned long addr = perf_user_stack_pointer(regs);
5502 
5503 	if (!addr || addr >= TASK_SIZE)
5504 		return 0;
5505 
5506 	return TASK_SIZE - addr;
5507 }
5508 
5509 static u16
perf_sample_ustack_size(u16 stack_size,u16 header_size,struct pt_regs * regs)5510 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5511 			struct pt_regs *regs)
5512 {
5513 	u64 task_size;
5514 
5515 	/* No regs, no stack pointer, no dump. */
5516 	if (!regs)
5517 		return 0;
5518 
5519 	/*
5520 	 * Check if we fit in with the requested stack size into the:
5521 	 * - TASK_SIZE
5522 	 *   If we don't, we limit the size to the TASK_SIZE.
5523 	 *
5524 	 * - remaining sample size
5525 	 *   If we don't, we customize the stack size to
5526 	 *   fit in to the remaining sample size.
5527 	 */
5528 
5529 	task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5530 	stack_size = min(stack_size, (u16) task_size);
5531 
5532 	/* Current header size plus static size and dynamic size. */
5533 	header_size += 2 * sizeof(u64);
5534 
5535 	/* Do we fit in with the current stack dump size? */
5536 	if ((u16) (header_size + stack_size) < header_size) {
5537 		/*
5538 		 * If we overflow the maximum size for the sample,
5539 		 * we customize the stack dump size to fit in.
5540 		 */
5541 		stack_size = USHRT_MAX - header_size - sizeof(u64);
5542 		stack_size = round_up(stack_size, sizeof(u64));
5543 	}
5544 
5545 	return stack_size;
5546 }
5547 
5548 static void
perf_output_sample_ustack(struct perf_output_handle * handle,u64 dump_size,struct pt_regs * regs)5549 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5550 			  struct pt_regs *regs)
5551 {
5552 	/* Case of a kernel thread, nothing to dump */
5553 	if (!regs) {
5554 		u64 size = 0;
5555 		perf_output_put(handle, size);
5556 	} else {
5557 		unsigned long sp;
5558 		unsigned int rem;
5559 		u64 dyn_size;
5560 
5561 		/*
5562 		 * We dump:
5563 		 * static size
5564 		 *   - the size requested by user or the best one we can fit
5565 		 *     in to the sample max size
5566 		 * data
5567 		 *   - user stack dump data
5568 		 * dynamic size
5569 		 *   - the actual dumped size
5570 		 */
5571 
5572 		/* Static size. */
5573 		perf_output_put(handle, dump_size);
5574 
5575 		/* Data. */
5576 		sp = perf_user_stack_pointer(regs);
5577 		rem = __output_copy_user(handle, (void *) sp, dump_size);
5578 		dyn_size = dump_size - rem;
5579 
5580 		perf_output_skip(handle, rem);
5581 
5582 		/* Dynamic size. */
5583 		perf_output_put(handle, dyn_size);
5584 	}
5585 }
5586 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5587 static void __perf_event_header__init_id(struct perf_event_header *header,
5588 					 struct perf_sample_data *data,
5589 					 struct perf_event *event)
5590 {
5591 	u64 sample_type = event->attr.sample_type;
5592 
5593 	data->type = sample_type;
5594 	header->size += event->id_header_size;
5595 
5596 	if (sample_type & PERF_SAMPLE_TID) {
5597 		/* namespace issues */
5598 		data->tid_entry.pid = perf_event_pid(event, current);
5599 		data->tid_entry.tid = perf_event_tid(event, current);
5600 	}
5601 
5602 	if (sample_type & PERF_SAMPLE_TIME)
5603 		data->time = perf_event_clock(event);
5604 
5605 	if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5606 		data->id = primary_event_id(event);
5607 
5608 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5609 		data->stream_id = event->id;
5610 
5611 	if (sample_type & PERF_SAMPLE_CPU) {
5612 		data->cpu_entry.cpu	 = raw_smp_processor_id();
5613 		data->cpu_entry.reserved = 0;
5614 	}
5615 }
5616 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5617 void perf_event_header__init_id(struct perf_event_header *header,
5618 				struct perf_sample_data *data,
5619 				struct perf_event *event)
5620 {
5621 	if (event->attr.sample_id_all)
5622 		__perf_event_header__init_id(header, data, event);
5623 }
5624 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)5625 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5626 					   struct perf_sample_data *data)
5627 {
5628 	u64 sample_type = data->type;
5629 
5630 	if (sample_type & PERF_SAMPLE_TID)
5631 		perf_output_put(handle, data->tid_entry);
5632 
5633 	if (sample_type & PERF_SAMPLE_TIME)
5634 		perf_output_put(handle, data->time);
5635 
5636 	if (sample_type & PERF_SAMPLE_ID)
5637 		perf_output_put(handle, data->id);
5638 
5639 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5640 		perf_output_put(handle, data->stream_id);
5641 
5642 	if (sample_type & PERF_SAMPLE_CPU)
5643 		perf_output_put(handle, data->cpu_entry);
5644 
5645 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5646 		perf_output_put(handle, data->id);
5647 }
5648 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)5649 void perf_event__output_id_sample(struct perf_event *event,
5650 				  struct perf_output_handle *handle,
5651 				  struct perf_sample_data *sample)
5652 {
5653 	if (event->attr.sample_id_all)
5654 		__perf_event__output_id_sample(handle, sample);
5655 }
5656 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)5657 static void perf_output_read_one(struct perf_output_handle *handle,
5658 				 struct perf_event *event,
5659 				 u64 enabled, u64 running)
5660 {
5661 	u64 read_format = event->attr.read_format;
5662 	u64 values[4];
5663 	int n = 0;
5664 
5665 	values[n++] = perf_event_count(event);
5666 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5667 		values[n++] = enabled +
5668 			atomic64_read(&event->child_total_time_enabled);
5669 	}
5670 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5671 		values[n++] = running +
5672 			atomic64_read(&event->child_total_time_running);
5673 	}
5674 	if (read_format & PERF_FORMAT_ID)
5675 		values[n++] = primary_event_id(event);
5676 
5677 	__output_copy(handle, values, n * sizeof(u64));
5678 }
5679 
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)5680 static void perf_output_read_group(struct perf_output_handle *handle,
5681 			    struct perf_event *event,
5682 			    u64 enabled, u64 running)
5683 {
5684 	struct perf_event *leader = event->group_leader, *sub;
5685 	u64 read_format = event->attr.read_format;
5686 	u64 values[5];
5687 	int n = 0;
5688 
5689 	values[n++] = 1 + leader->nr_siblings;
5690 
5691 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5692 		values[n++] = enabled;
5693 
5694 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5695 		values[n++] = running;
5696 
5697 	if (leader != event)
5698 		leader->pmu->read(leader);
5699 
5700 	values[n++] = perf_event_count(leader);
5701 	if (read_format & PERF_FORMAT_ID)
5702 		values[n++] = primary_event_id(leader);
5703 
5704 	__output_copy(handle, values, n * sizeof(u64));
5705 
5706 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5707 		n = 0;
5708 
5709 		if ((sub != event) &&
5710 		    (sub->state == PERF_EVENT_STATE_ACTIVE))
5711 			sub->pmu->read(sub);
5712 
5713 		values[n++] = perf_event_count(sub);
5714 		if (read_format & PERF_FORMAT_ID)
5715 			values[n++] = primary_event_id(sub);
5716 
5717 		__output_copy(handle, values, n * sizeof(u64));
5718 	}
5719 }
5720 
5721 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5722 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
5723 
5724 /*
5725  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5726  *
5727  * The problem is that its both hard and excessively expensive to iterate the
5728  * child list, not to mention that its impossible to IPI the children running
5729  * on another CPU, from interrupt/NMI context.
5730  */
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)5731 static void perf_output_read(struct perf_output_handle *handle,
5732 			     struct perf_event *event)
5733 {
5734 	u64 enabled = 0, running = 0, now;
5735 	u64 read_format = event->attr.read_format;
5736 
5737 	/*
5738 	 * compute total_time_enabled, total_time_running
5739 	 * based on snapshot values taken when the event
5740 	 * was last scheduled in.
5741 	 *
5742 	 * we cannot simply called update_context_time()
5743 	 * because of locking issue as we are called in
5744 	 * NMI context
5745 	 */
5746 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
5747 		calc_timer_values(event, &now, &enabled, &running);
5748 
5749 	if (event->attr.read_format & PERF_FORMAT_GROUP)
5750 		perf_output_read_group(handle, event, enabled, running);
5751 	else
5752 		perf_output_read_one(handle, event, enabled, running);
5753 }
5754 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)5755 void perf_output_sample(struct perf_output_handle *handle,
5756 			struct perf_event_header *header,
5757 			struct perf_sample_data *data,
5758 			struct perf_event *event)
5759 {
5760 	u64 sample_type = data->type;
5761 
5762 	perf_output_put(handle, *header);
5763 
5764 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
5765 		perf_output_put(handle, data->id);
5766 
5767 	if (sample_type & PERF_SAMPLE_IP)
5768 		perf_output_put(handle, data->ip);
5769 
5770 	if (sample_type & PERF_SAMPLE_TID)
5771 		perf_output_put(handle, data->tid_entry);
5772 
5773 	if (sample_type & PERF_SAMPLE_TIME)
5774 		perf_output_put(handle, data->time);
5775 
5776 	if (sample_type & PERF_SAMPLE_ADDR)
5777 		perf_output_put(handle, data->addr);
5778 
5779 	if (sample_type & PERF_SAMPLE_ID)
5780 		perf_output_put(handle, data->id);
5781 
5782 	if (sample_type & PERF_SAMPLE_STREAM_ID)
5783 		perf_output_put(handle, data->stream_id);
5784 
5785 	if (sample_type & PERF_SAMPLE_CPU)
5786 		perf_output_put(handle, data->cpu_entry);
5787 
5788 	if (sample_type & PERF_SAMPLE_PERIOD)
5789 		perf_output_put(handle, data->period);
5790 
5791 	if (sample_type & PERF_SAMPLE_READ)
5792 		perf_output_read(handle, event);
5793 
5794 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5795 		if (data->callchain) {
5796 			int size = 1;
5797 
5798 			if (data->callchain)
5799 				size += data->callchain->nr;
5800 
5801 			size *= sizeof(u64);
5802 
5803 			__output_copy(handle, data->callchain, size);
5804 		} else {
5805 			u64 nr = 0;
5806 			perf_output_put(handle, nr);
5807 		}
5808 	}
5809 
5810 	if (sample_type & PERF_SAMPLE_RAW) {
5811 		struct perf_raw_record *raw = data->raw;
5812 
5813 		if (raw) {
5814 			struct perf_raw_frag *frag = &raw->frag;
5815 
5816 			perf_output_put(handle, raw->size);
5817 			do {
5818 				if (frag->copy) {
5819 					__output_custom(handle, frag->copy,
5820 							frag->data, frag->size);
5821 				} else {
5822 					__output_copy(handle, frag->data,
5823 						      frag->size);
5824 				}
5825 				if (perf_raw_frag_last(frag))
5826 					break;
5827 				frag = frag->next;
5828 			} while (1);
5829 			if (frag->pad)
5830 				__output_skip(handle, NULL, frag->pad);
5831 		} else {
5832 			struct {
5833 				u32	size;
5834 				u32	data;
5835 			} raw = {
5836 				.size = sizeof(u32),
5837 				.data = 0,
5838 			};
5839 			perf_output_put(handle, raw);
5840 		}
5841 	}
5842 
5843 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5844 		if (data->br_stack) {
5845 			size_t size;
5846 
5847 			size = data->br_stack->nr
5848 			     * sizeof(struct perf_branch_entry);
5849 
5850 			perf_output_put(handle, data->br_stack->nr);
5851 			perf_output_copy(handle, data->br_stack->entries, size);
5852 		} else {
5853 			/*
5854 			 * we always store at least the value of nr
5855 			 */
5856 			u64 nr = 0;
5857 			perf_output_put(handle, nr);
5858 		}
5859 	}
5860 
5861 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5862 		u64 abi = data->regs_user.abi;
5863 
5864 		/*
5865 		 * If there are no regs to dump, notice it through
5866 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5867 		 */
5868 		perf_output_put(handle, abi);
5869 
5870 		if (abi) {
5871 			u64 mask = event->attr.sample_regs_user;
5872 			perf_output_sample_regs(handle,
5873 						data->regs_user.regs,
5874 						mask);
5875 		}
5876 	}
5877 
5878 	if (sample_type & PERF_SAMPLE_STACK_USER) {
5879 		perf_output_sample_ustack(handle,
5880 					  data->stack_user_size,
5881 					  data->regs_user.regs);
5882 	}
5883 
5884 	if (sample_type & PERF_SAMPLE_WEIGHT)
5885 		perf_output_put(handle, data->weight);
5886 
5887 	if (sample_type & PERF_SAMPLE_DATA_SRC)
5888 		perf_output_put(handle, data->data_src.val);
5889 
5890 	if (sample_type & PERF_SAMPLE_TRANSACTION)
5891 		perf_output_put(handle, data->txn);
5892 
5893 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
5894 		u64 abi = data->regs_intr.abi;
5895 		/*
5896 		 * If there are no regs to dump, notice it through
5897 		 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5898 		 */
5899 		perf_output_put(handle, abi);
5900 
5901 		if (abi) {
5902 			u64 mask = event->attr.sample_regs_intr;
5903 
5904 			perf_output_sample_regs(handle,
5905 						data->regs_intr.regs,
5906 						mask);
5907 		}
5908 	}
5909 
5910 	if (!event->attr.watermark) {
5911 		int wakeup_events = event->attr.wakeup_events;
5912 
5913 		if (wakeup_events) {
5914 			struct ring_buffer *rb = handle->rb;
5915 			int events = local_inc_return(&rb->events);
5916 
5917 			if (events >= wakeup_events) {
5918 				local_sub(wakeup_events, &rb->events);
5919 				local_inc(&rb->wakeup);
5920 			}
5921 		}
5922 	}
5923 }
5924 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)5925 void perf_prepare_sample(struct perf_event_header *header,
5926 			 struct perf_sample_data *data,
5927 			 struct perf_event *event,
5928 			 struct pt_regs *regs)
5929 {
5930 	u64 sample_type = event->attr.sample_type;
5931 
5932 	header->type = PERF_RECORD_SAMPLE;
5933 	header->size = sizeof(*header) + event->header_size;
5934 
5935 	header->misc = 0;
5936 	header->misc |= perf_misc_flags(regs);
5937 
5938 	__perf_event_header__init_id(header, data, event);
5939 
5940 	if (sample_type & PERF_SAMPLE_IP)
5941 		data->ip = perf_instruction_pointer(regs);
5942 
5943 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5944 		int size = 1;
5945 
5946 		data->callchain = perf_callchain(event, regs);
5947 
5948 		if (data->callchain)
5949 			size += data->callchain->nr;
5950 
5951 		header->size += size * sizeof(u64);
5952 	}
5953 
5954 	if (sample_type & PERF_SAMPLE_RAW) {
5955 		struct perf_raw_record *raw = data->raw;
5956 		int size;
5957 
5958 		if (raw) {
5959 			struct perf_raw_frag *frag = &raw->frag;
5960 			u32 sum = 0;
5961 
5962 			do {
5963 				sum += frag->size;
5964 				if (perf_raw_frag_last(frag))
5965 					break;
5966 				frag = frag->next;
5967 			} while (1);
5968 
5969 			size = round_up(sum + sizeof(u32), sizeof(u64));
5970 			raw->size = size - sizeof(u32);
5971 			frag->pad = raw->size - sum;
5972 		} else {
5973 			size = sizeof(u64);
5974 		}
5975 
5976 		header->size += size;
5977 	}
5978 
5979 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5980 		int size = sizeof(u64); /* nr */
5981 		if (data->br_stack) {
5982 			size += data->br_stack->nr
5983 			      * sizeof(struct perf_branch_entry);
5984 		}
5985 		header->size += size;
5986 	}
5987 
5988 	if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5989 		perf_sample_regs_user(&data->regs_user, regs,
5990 				      &data->regs_user_copy);
5991 
5992 	if (sample_type & PERF_SAMPLE_REGS_USER) {
5993 		/* regs dump ABI info */
5994 		int size = sizeof(u64);
5995 
5996 		if (data->regs_user.regs) {
5997 			u64 mask = event->attr.sample_regs_user;
5998 			size += hweight64(mask) * sizeof(u64);
5999 		}
6000 
6001 		header->size += size;
6002 	}
6003 
6004 	if (sample_type & PERF_SAMPLE_STACK_USER) {
6005 		/*
6006 		 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6007 		 * processed as the last one or have additional check added
6008 		 * in case new sample type is added, because we could eat
6009 		 * up the rest of the sample size.
6010 		 */
6011 		u16 stack_size = event->attr.sample_stack_user;
6012 		u16 size = sizeof(u64);
6013 
6014 		stack_size = perf_sample_ustack_size(stack_size, header->size,
6015 						     data->regs_user.regs);
6016 
6017 		/*
6018 		 * If there is something to dump, add space for the dump
6019 		 * itself and for the field that tells the dynamic size,
6020 		 * which is how many have been actually dumped.
6021 		 */
6022 		if (stack_size)
6023 			size += sizeof(u64) + stack_size;
6024 
6025 		data->stack_user_size = stack_size;
6026 		header->size += size;
6027 	}
6028 
6029 	if (sample_type & PERF_SAMPLE_REGS_INTR) {
6030 		/* regs dump ABI info */
6031 		int size = sizeof(u64);
6032 
6033 		perf_sample_regs_intr(&data->regs_intr, regs);
6034 
6035 		if (data->regs_intr.regs) {
6036 			u64 mask = event->attr.sample_regs_intr;
6037 
6038 			size += hweight64(mask) * sizeof(u64);
6039 		}
6040 
6041 		header->size += size;
6042 	}
6043 }
6044 
6045 static void __always_inline
__perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs,int (* output_begin)(struct perf_output_handle *,struct perf_event *,unsigned int))6046 __perf_event_output(struct perf_event *event,
6047 		    struct perf_sample_data *data,
6048 		    struct pt_regs *regs,
6049 		    int (*output_begin)(struct perf_output_handle *,
6050 					struct perf_event *,
6051 					unsigned int))
6052 {
6053 	struct perf_output_handle handle;
6054 	struct perf_event_header header;
6055 
6056 	/* protect the callchain buffers */
6057 	rcu_read_lock();
6058 
6059 	perf_prepare_sample(&header, data, event, regs);
6060 
6061 	if (output_begin(&handle, event, header.size))
6062 		goto exit;
6063 
6064 	perf_output_sample(&handle, &header, data, event);
6065 
6066 	perf_output_end(&handle);
6067 
6068 exit:
6069 	rcu_read_unlock();
6070 }
6071 
6072 void
perf_event_output_forward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6073 perf_event_output_forward(struct perf_event *event,
6074 			 struct perf_sample_data *data,
6075 			 struct pt_regs *regs)
6076 {
6077 	__perf_event_output(event, data, regs, perf_output_begin_forward);
6078 }
6079 
6080 void
perf_event_output_backward(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6081 perf_event_output_backward(struct perf_event *event,
6082 			   struct perf_sample_data *data,
6083 			   struct pt_regs *regs)
6084 {
6085 	__perf_event_output(event, data, regs, perf_output_begin_backward);
6086 }
6087 
6088 void
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)6089 perf_event_output(struct perf_event *event,
6090 		  struct perf_sample_data *data,
6091 		  struct pt_regs *regs)
6092 {
6093 	__perf_event_output(event, data, regs, perf_output_begin);
6094 }
6095 
6096 /*
6097  * read event_id
6098  */
6099 
6100 struct perf_read_event {
6101 	struct perf_event_header	header;
6102 
6103 	u32				pid;
6104 	u32				tid;
6105 };
6106 
6107 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)6108 perf_event_read_event(struct perf_event *event,
6109 			struct task_struct *task)
6110 {
6111 	struct perf_output_handle handle;
6112 	struct perf_sample_data sample;
6113 	struct perf_read_event read_event = {
6114 		.header = {
6115 			.type = PERF_RECORD_READ,
6116 			.misc = 0,
6117 			.size = sizeof(read_event) + event->read_size,
6118 		},
6119 		.pid = perf_event_pid(event, task),
6120 		.tid = perf_event_tid(event, task),
6121 	};
6122 	int ret;
6123 
6124 	perf_event_header__init_id(&read_event.header, &sample, event);
6125 	ret = perf_output_begin(&handle, event, read_event.header.size);
6126 	if (ret)
6127 		return;
6128 
6129 	perf_output_put(&handle, read_event);
6130 	perf_output_read(&handle, event);
6131 	perf_event__output_id_sample(event, &handle, &sample);
6132 
6133 	perf_output_end(&handle);
6134 }
6135 
6136 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6137 
6138 static void
perf_iterate_ctx(struct perf_event_context * ctx,perf_iterate_f output,void * data,bool all)6139 perf_iterate_ctx(struct perf_event_context *ctx,
6140 		   perf_iterate_f output,
6141 		   void *data, bool all)
6142 {
6143 	struct perf_event *event;
6144 
6145 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6146 		if (!all) {
6147 			if (event->state < PERF_EVENT_STATE_INACTIVE)
6148 				continue;
6149 			if (!event_filter_match(event))
6150 				continue;
6151 		}
6152 
6153 		output(event, data);
6154 	}
6155 }
6156 
perf_iterate_sb_cpu(perf_iterate_f output,void * data)6157 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6158 {
6159 	struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6160 	struct perf_event *event;
6161 
6162 	list_for_each_entry_rcu(event, &pel->list, sb_list) {
6163 		/*
6164 		 * Skip events that are not fully formed yet; ensure that
6165 		 * if we observe event->ctx, both event and ctx will be
6166 		 * complete enough. See perf_install_in_context().
6167 		 */
6168 		if (!smp_load_acquire(&event->ctx))
6169 			continue;
6170 
6171 		if (event->state < PERF_EVENT_STATE_INACTIVE)
6172 			continue;
6173 		if (!event_filter_match(event))
6174 			continue;
6175 		output(event, data);
6176 	}
6177 }
6178 
6179 /*
6180  * Iterate all events that need to receive side-band events.
6181  *
6182  * For new callers; ensure that account_pmu_sb_event() includes
6183  * your event, otherwise it might not get delivered.
6184  */
6185 static void
perf_iterate_sb(perf_iterate_f output,void * data,struct perf_event_context * task_ctx)6186 perf_iterate_sb(perf_iterate_f output, void *data,
6187 	       struct perf_event_context *task_ctx)
6188 {
6189 	struct perf_event_context *ctx;
6190 	int ctxn;
6191 
6192 	rcu_read_lock();
6193 	preempt_disable();
6194 
6195 	/*
6196 	 * If we have task_ctx != NULL we only notify the task context itself.
6197 	 * The task_ctx is set only for EXIT events before releasing task
6198 	 * context.
6199 	 */
6200 	if (task_ctx) {
6201 		perf_iterate_ctx(task_ctx, output, data, false);
6202 		goto done;
6203 	}
6204 
6205 	perf_iterate_sb_cpu(output, data);
6206 
6207 	for_each_task_context_nr(ctxn) {
6208 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6209 		if (ctx)
6210 			perf_iterate_ctx(ctx, output, data, false);
6211 	}
6212 done:
6213 	preempt_enable();
6214 	rcu_read_unlock();
6215 }
6216 
6217 /*
6218  * Clear all file-based filters at exec, they'll have to be
6219  * re-instated when/if these objects are mmapped again.
6220  */
perf_event_addr_filters_exec(struct perf_event * event,void * data)6221 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6222 {
6223 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6224 	struct perf_addr_filter *filter;
6225 	unsigned int restart = 0, count = 0;
6226 	unsigned long flags;
6227 
6228 	if (!has_addr_filter(event))
6229 		return;
6230 
6231 	raw_spin_lock_irqsave(&ifh->lock, flags);
6232 	list_for_each_entry(filter, &ifh->list, entry) {
6233 		if (filter->inode) {
6234 			event->addr_filters_offs[count] = 0;
6235 			restart++;
6236 		}
6237 
6238 		count++;
6239 	}
6240 
6241 	if (restart)
6242 		event->addr_filters_gen++;
6243 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6244 
6245 	if (restart)
6246 		perf_event_stop(event, 1);
6247 }
6248 
perf_event_exec(void)6249 void perf_event_exec(void)
6250 {
6251 	struct perf_event_context *ctx;
6252 	int ctxn;
6253 
6254 	rcu_read_lock();
6255 	for_each_task_context_nr(ctxn) {
6256 		ctx = current->perf_event_ctxp[ctxn];
6257 		if (!ctx)
6258 			continue;
6259 
6260 		perf_event_enable_on_exec(ctxn);
6261 
6262 		perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6263 				   true);
6264 	}
6265 	rcu_read_unlock();
6266 }
6267 
6268 struct remote_output {
6269 	struct ring_buffer	*rb;
6270 	int			err;
6271 };
6272 
__perf_event_output_stop(struct perf_event * event,void * data)6273 static void __perf_event_output_stop(struct perf_event *event, void *data)
6274 {
6275 	struct perf_event *parent = event->parent;
6276 	struct remote_output *ro = data;
6277 	struct ring_buffer *rb = ro->rb;
6278 	struct stop_event_data sd = {
6279 		.event	= event,
6280 	};
6281 
6282 	if (!has_aux(event))
6283 		return;
6284 
6285 	if (!parent)
6286 		parent = event;
6287 
6288 	/*
6289 	 * In case of inheritance, it will be the parent that links to the
6290 	 * ring-buffer, but it will be the child that's actually using it.
6291 	 *
6292 	 * We are using event::rb to determine if the event should be stopped,
6293 	 * however this may race with ring_buffer_attach() (through set_output),
6294 	 * which will make us skip the event that actually needs to be stopped.
6295 	 * So ring_buffer_attach() has to stop an aux event before re-assigning
6296 	 * its rb pointer.
6297 	 */
6298 	if (rcu_dereference(parent->rb) == rb)
6299 		ro->err = __perf_event_stop(&sd);
6300 }
6301 
__perf_pmu_output_stop(void * info)6302 static int __perf_pmu_output_stop(void *info)
6303 {
6304 	struct perf_event *event = info;
6305 	struct pmu *pmu = event->pmu;
6306 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6307 	struct remote_output ro = {
6308 		.rb	= event->rb,
6309 	};
6310 
6311 	rcu_read_lock();
6312 	perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6313 	if (cpuctx->task_ctx)
6314 		perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6315 				   &ro, false);
6316 	rcu_read_unlock();
6317 
6318 	return ro.err;
6319 }
6320 
perf_pmu_output_stop(struct perf_event * event)6321 static void perf_pmu_output_stop(struct perf_event *event)
6322 {
6323 	struct perf_event *iter;
6324 	int err, cpu;
6325 
6326 restart:
6327 	rcu_read_lock();
6328 	list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6329 		/*
6330 		 * For per-CPU events, we need to make sure that neither they
6331 		 * nor their children are running; for cpu==-1 events it's
6332 		 * sufficient to stop the event itself if it's active, since
6333 		 * it can't have children.
6334 		 */
6335 		cpu = iter->cpu;
6336 		if (cpu == -1)
6337 			cpu = READ_ONCE(iter->oncpu);
6338 
6339 		if (cpu == -1)
6340 			continue;
6341 
6342 		err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6343 		if (err == -EAGAIN) {
6344 			rcu_read_unlock();
6345 			goto restart;
6346 		}
6347 	}
6348 	rcu_read_unlock();
6349 }
6350 
6351 /*
6352  * task tracking -- fork/exit
6353  *
6354  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6355  */
6356 
6357 struct perf_task_event {
6358 	struct task_struct		*task;
6359 	struct perf_event_context	*task_ctx;
6360 
6361 	struct {
6362 		struct perf_event_header	header;
6363 
6364 		u32				pid;
6365 		u32				ppid;
6366 		u32				tid;
6367 		u32				ptid;
6368 		u64				time;
6369 	} event_id;
6370 };
6371 
perf_event_task_match(struct perf_event * event)6372 static int perf_event_task_match(struct perf_event *event)
6373 {
6374 	return event->attr.comm  || event->attr.mmap ||
6375 	       event->attr.mmap2 || event->attr.mmap_data ||
6376 	       event->attr.task;
6377 }
6378 
perf_event_task_output(struct perf_event * event,void * data)6379 static void perf_event_task_output(struct perf_event *event,
6380 				   void *data)
6381 {
6382 	struct perf_task_event *task_event = data;
6383 	struct perf_output_handle handle;
6384 	struct perf_sample_data	sample;
6385 	struct task_struct *task = task_event->task;
6386 	int ret, size = task_event->event_id.header.size;
6387 
6388 	if (!perf_event_task_match(event))
6389 		return;
6390 
6391 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6392 
6393 	ret = perf_output_begin(&handle, event,
6394 				task_event->event_id.header.size);
6395 	if (ret)
6396 		goto out;
6397 
6398 	task_event->event_id.pid = perf_event_pid(event, task);
6399 	task_event->event_id.ppid = perf_event_pid(event, current);
6400 
6401 	task_event->event_id.tid = perf_event_tid(event, task);
6402 	task_event->event_id.ptid = perf_event_tid(event, current);
6403 
6404 	task_event->event_id.time = perf_event_clock(event);
6405 
6406 	perf_output_put(&handle, task_event->event_id);
6407 
6408 	perf_event__output_id_sample(event, &handle, &sample);
6409 
6410 	perf_output_end(&handle);
6411 out:
6412 	task_event->event_id.header.size = size;
6413 }
6414 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)6415 static void perf_event_task(struct task_struct *task,
6416 			      struct perf_event_context *task_ctx,
6417 			      int new)
6418 {
6419 	struct perf_task_event task_event;
6420 
6421 	if (!atomic_read(&nr_comm_events) &&
6422 	    !atomic_read(&nr_mmap_events) &&
6423 	    !atomic_read(&nr_task_events))
6424 		return;
6425 
6426 	task_event = (struct perf_task_event){
6427 		.task	  = task,
6428 		.task_ctx = task_ctx,
6429 		.event_id    = {
6430 			.header = {
6431 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6432 				.misc = 0,
6433 				.size = sizeof(task_event.event_id),
6434 			},
6435 			/* .pid  */
6436 			/* .ppid */
6437 			/* .tid  */
6438 			/* .ptid */
6439 			/* .time */
6440 		},
6441 	};
6442 
6443 	perf_iterate_sb(perf_event_task_output,
6444 		       &task_event,
6445 		       task_ctx);
6446 }
6447 
perf_event_fork(struct task_struct * task)6448 void perf_event_fork(struct task_struct *task)
6449 {
6450 	perf_event_task(task, NULL, 1);
6451 }
6452 
6453 /*
6454  * comm tracking
6455  */
6456 
6457 struct perf_comm_event {
6458 	struct task_struct	*task;
6459 	char			*comm;
6460 	int			comm_size;
6461 
6462 	struct {
6463 		struct perf_event_header	header;
6464 
6465 		u32				pid;
6466 		u32				tid;
6467 	} event_id;
6468 };
6469 
perf_event_comm_match(struct perf_event * event)6470 static int perf_event_comm_match(struct perf_event *event)
6471 {
6472 	return event->attr.comm;
6473 }
6474 
perf_event_comm_output(struct perf_event * event,void * data)6475 static void perf_event_comm_output(struct perf_event *event,
6476 				   void *data)
6477 {
6478 	struct perf_comm_event *comm_event = data;
6479 	struct perf_output_handle handle;
6480 	struct perf_sample_data sample;
6481 	int size = comm_event->event_id.header.size;
6482 	int ret;
6483 
6484 	if (!perf_event_comm_match(event))
6485 		return;
6486 
6487 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6488 	ret = perf_output_begin(&handle, event,
6489 				comm_event->event_id.header.size);
6490 
6491 	if (ret)
6492 		goto out;
6493 
6494 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6495 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6496 
6497 	perf_output_put(&handle, comm_event->event_id);
6498 	__output_copy(&handle, comm_event->comm,
6499 				   comm_event->comm_size);
6500 
6501 	perf_event__output_id_sample(event, &handle, &sample);
6502 
6503 	perf_output_end(&handle);
6504 out:
6505 	comm_event->event_id.header.size = size;
6506 }
6507 
perf_event_comm_event(struct perf_comm_event * comm_event)6508 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6509 {
6510 	char comm[TASK_COMM_LEN];
6511 	unsigned int size;
6512 
6513 	memset(comm, 0, sizeof(comm));
6514 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
6515 	size = ALIGN(strlen(comm)+1, sizeof(u64));
6516 
6517 	comm_event->comm = comm;
6518 	comm_event->comm_size = size;
6519 
6520 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6521 
6522 	perf_iterate_sb(perf_event_comm_output,
6523 		       comm_event,
6524 		       NULL);
6525 }
6526 
perf_event_comm(struct task_struct * task,bool exec)6527 void perf_event_comm(struct task_struct *task, bool exec)
6528 {
6529 	struct perf_comm_event comm_event;
6530 
6531 	if (!atomic_read(&nr_comm_events))
6532 		return;
6533 
6534 	comm_event = (struct perf_comm_event){
6535 		.task	= task,
6536 		/* .comm      */
6537 		/* .comm_size */
6538 		.event_id  = {
6539 			.header = {
6540 				.type = PERF_RECORD_COMM,
6541 				.misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6542 				/* .size */
6543 			},
6544 			/* .pid */
6545 			/* .tid */
6546 		},
6547 	};
6548 
6549 	perf_event_comm_event(&comm_event);
6550 }
6551 
6552 /*
6553  * mmap tracking
6554  */
6555 
6556 struct perf_mmap_event {
6557 	struct vm_area_struct	*vma;
6558 
6559 	const char		*file_name;
6560 	int			file_size;
6561 	int			maj, min;
6562 	u64			ino;
6563 	u64			ino_generation;
6564 	u32			prot, flags;
6565 
6566 	struct {
6567 		struct perf_event_header	header;
6568 
6569 		u32				pid;
6570 		u32				tid;
6571 		u64				start;
6572 		u64				len;
6573 		u64				pgoff;
6574 	} event_id;
6575 };
6576 
perf_event_mmap_match(struct perf_event * event,void * data)6577 static int perf_event_mmap_match(struct perf_event *event,
6578 				 void *data)
6579 {
6580 	struct perf_mmap_event *mmap_event = data;
6581 	struct vm_area_struct *vma = mmap_event->vma;
6582 	int executable = vma->vm_flags & VM_EXEC;
6583 
6584 	return (!executable && event->attr.mmap_data) ||
6585 	       (executable && (event->attr.mmap || event->attr.mmap2));
6586 }
6587 
perf_event_mmap_output(struct perf_event * event,void * data)6588 static void perf_event_mmap_output(struct perf_event *event,
6589 				   void *data)
6590 {
6591 	struct perf_mmap_event *mmap_event = data;
6592 	struct perf_output_handle handle;
6593 	struct perf_sample_data sample;
6594 	int size = mmap_event->event_id.header.size;
6595 	int ret;
6596 
6597 	if (!perf_event_mmap_match(event, data))
6598 		return;
6599 
6600 	if (event->attr.mmap2) {
6601 		mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6602 		mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6603 		mmap_event->event_id.header.size += sizeof(mmap_event->min);
6604 		mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6605 		mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6606 		mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6607 		mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6608 	}
6609 
6610 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6611 	ret = perf_output_begin(&handle, event,
6612 				mmap_event->event_id.header.size);
6613 	if (ret)
6614 		goto out;
6615 
6616 	mmap_event->event_id.pid = perf_event_pid(event, current);
6617 	mmap_event->event_id.tid = perf_event_tid(event, current);
6618 
6619 	perf_output_put(&handle, mmap_event->event_id);
6620 
6621 	if (event->attr.mmap2) {
6622 		perf_output_put(&handle, mmap_event->maj);
6623 		perf_output_put(&handle, mmap_event->min);
6624 		perf_output_put(&handle, mmap_event->ino);
6625 		perf_output_put(&handle, mmap_event->ino_generation);
6626 		perf_output_put(&handle, mmap_event->prot);
6627 		perf_output_put(&handle, mmap_event->flags);
6628 	}
6629 
6630 	__output_copy(&handle, mmap_event->file_name,
6631 				   mmap_event->file_size);
6632 
6633 	perf_event__output_id_sample(event, &handle, &sample);
6634 
6635 	perf_output_end(&handle);
6636 out:
6637 	mmap_event->event_id.header.size = size;
6638 }
6639 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)6640 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6641 {
6642 	struct vm_area_struct *vma = mmap_event->vma;
6643 	struct file *file = vma->vm_file;
6644 	int maj = 0, min = 0;
6645 	u64 ino = 0, gen = 0;
6646 	u32 prot = 0, flags = 0;
6647 	unsigned int size;
6648 	char tmp[16];
6649 	char *buf = NULL;
6650 	char *name;
6651 
6652 	if (vma->vm_flags & VM_READ)
6653 		prot |= PROT_READ;
6654 	if (vma->vm_flags & VM_WRITE)
6655 		prot |= PROT_WRITE;
6656 	if (vma->vm_flags & VM_EXEC)
6657 		prot |= PROT_EXEC;
6658 
6659 	if (vma->vm_flags & VM_MAYSHARE)
6660 		flags = MAP_SHARED;
6661 	else
6662 		flags = MAP_PRIVATE;
6663 
6664 	if (vma->vm_flags & VM_DENYWRITE)
6665 		flags |= MAP_DENYWRITE;
6666 	if (vma->vm_flags & VM_MAYEXEC)
6667 		flags |= MAP_EXECUTABLE;
6668 	if (vma->vm_flags & VM_LOCKED)
6669 		flags |= MAP_LOCKED;
6670 	if (vma->vm_flags & VM_HUGETLB)
6671 		flags |= MAP_HUGETLB;
6672 
6673 	if (file) {
6674 		struct inode *inode;
6675 		dev_t dev;
6676 
6677 		buf = kmalloc(PATH_MAX, GFP_KERNEL);
6678 		if (!buf) {
6679 			name = "//enomem";
6680 			goto cpy_name;
6681 		}
6682 		/*
6683 		 * d_path() works from the end of the rb backwards, so we
6684 		 * need to add enough zero bytes after the string to handle
6685 		 * the 64bit alignment we do later.
6686 		 */
6687 		name = file_path(file, buf, PATH_MAX - sizeof(u64));
6688 		if (IS_ERR(name)) {
6689 			name = "//toolong";
6690 			goto cpy_name;
6691 		}
6692 		inode = file_inode(vma->vm_file);
6693 		dev = inode->i_sb->s_dev;
6694 		ino = inode->i_ino;
6695 		gen = inode->i_generation;
6696 		maj = MAJOR(dev);
6697 		min = MINOR(dev);
6698 
6699 		goto got_name;
6700 	} else {
6701 		if (vma->vm_ops && vma->vm_ops->name) {
6702 			name = (char *) vma->vm_ops->name(vma);
6703 			if (name)
6704 				goto cpy_name;
6705 		}
6706 
6707 		name = (char *)arch_vma_name(vma);
6708 		if (name)
6709 			goto cpy_name;
6710 
6711 		if (vma->vm_start <= vma->vm_mm->start_brk &&
6712 				vma->vm_end >= vma->vm_mm->brk) {
6713 			name = "[heap]";
6714 			goto cpy_name;
6715 		}
6716 		if (vma->vm_start <= vma->vm_mm->start_stack &&
6717 				vma->vm_end >= vma->vm_mm->start_stack) {
6718 			name = "[stack]";
6719 			goto cpy_name;
6720 		}
6721 
6722 		name = "//anon";
6723 		goto cpy_name;
6724 	}
6725 
6726 cpy_name:
6727 	strlcpy(tmp, name, sizeof(tmp));
6728 	name = tmp;
6729 got_name:
6730 	/*
6731 	 * Since our buffer works in 8 byte units we need to align our string
6732 	 * size to a multiple of 8. However, we must guarantee the tail end is
6733 	 * zero'd out to avoid leaking random bits to userspace.
6734 	 */
6735 	size = strlen(name)+1;
6736 	while (!IS_ALIGNED(size, sizeof(u64)))
6737 		name[size++] = '\0';
6738 
6739 	mmap_event->file_name = name;
6740 	mmap_event->file_size = size;
6741 	mmap_event->maj = maj;
6742 	mmap_event->min = min;
6743 	mmap_event->ino = ino;
6744 	mmap_event->ino_generation = gen;
6745 	mmap_event->prot = prot;
6746 	mmap_event->flags = flags;
6747 
6748 	if (!(vma->vm_flags & VM_EXEC))
6749 		mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6750 
6751 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6752 
6753 	perf_iterate_sb(perf_event_mmap_output,
6754 		       mmap_event,
6755 		       NULL);
6756 
6757 	kfree(buf);
6758 }
6759 
6760 /*
6761  * Check whether inode and address range match filter criteria.
6762  */
perf_addr_filter_match(struct perf_addr_filter * filter,struct file * file,unsigned long offset,unsigned long size)6763 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6764 				     struct file *file, unsigned long offset,
6765 				     unsigned long size)
6766 {
6767 	if (filter->inode != file->f_inode)
6768 		return false;
6769 
6770 	if (filter->offset > offset + size)
6771 		return false;
6772 
6773 	if (filter->offset + filter->size < offset)
6774 		return false;
6775 
6776 	return true;
6777 }
6778 
__perf_addr_filters_adjust(struct perf_event * event,void * data)6779 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6780 {
6781 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6782 	struct vm_area_struct *vma = data;
6783 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6784 	struct file *file = vma->vm_file;
6785 	struct perf_addr_filter *filter;
6786 	unsigned int restart = 0, count = 0;
6787 
6788 	if (!has_addr_filter(event))
6789 		return;
6790 
6791 	if (!file)
6792 		return;
6793 
6794 	raw_spin_lock_irqsave(&ifh->lock, flags);
6795 	list_for_each_entry(filter, &ifh->list, entry) {
6796 		if (perf_addr_filter_match(filter, file, off,
6797 					     vma->vm_end - vma->vm_start)) {
6798 			event->addr_filters_offs[count] = vma->vm_start;
6799 			restart++;
6800 		}
6801 
6802 		count++;
6803 	}
6804 
6805 	if (restart)
6806 		event->addr_filters_gen++;
6807 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
6808 
6809 	if (restart)
6810 		perf_event_stop(event, 1);
6811 }
6812 
6813 /*
6814  * Adjust all task's events' filters to the new vma
6815  */
perf_addr_filters_adjust(struct vm_area_struct * vma)6816 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6817 {
6818 	struct perf_event_context *ctx;
6819 	int ctxn;
6820 
6821 	/*
6822 	 * Data tracing isn't supported yet and as such there is no need
6823 	 * to keep track of anything that isn't related to executable code:
6824 	 */
6825 	if (!(vma->vm_flags & VM_EXEC))
6826 		return;
6827 
6828 	rcu_read_lock();
6829 	for_each_task_context_nr(ctxn) {
6830 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6831 		if (!ctx)
6832 			continue;
6833 
6834 		perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
6835 	}
6836 	rcu_read_unlock();
6837 }
6838 
perf_event_mmap(struct vm_area_struct * vma)6839 void perf_event_mmap(struct vm_area_struct *vma)
6840 {
6841 	struct perf_mmap_event mmap_event;
6842 
6843 	if (!atomic_read(&nr_mmap_events))
6844 		return;
6845 
6846 	mmap_event = (struct perf_mmap_event){
6847 		.vma	= vma,
6848 		/* .file_name */
6849 		/* .file_size */
6850 		.event_id  = {
6851 			.header = {
6852 				.type = PERF_RECORD_MMAP,
6853 				.misc = PERF_RECORD_MISC_USER,
6854 				/* .size */
6855 			},
6856 			/* .pid */
6857 			/* .tid */
6858 			.start  = vma->vm_start,
6859 			.len    = vma->vm_end - vma->vm_start,
6860 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
6861 		},
6862 		/* .maj (attr_mmap2 only) */
6863 		/* .min (attr_mmap2 only) */
6864 		/* .ino (attr_mmap2 only) */
6865 		/* .ino_generation (attr_mmap2 only) */
6866 		/* .prot (attr_mmap2 only) */
6867 		/* .flags (attr_mmap2 only) */
6868 	};
6869 
6870 	perf_addr_filters_adjust(vma);
6871 	perf_event_mmap_event(&mmap_event);
6872 }
6873 
perf_event_aux_event(struct perf_event * event,unsigned long head,unsigned long size,u64 flags)6874 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6875 			  unsigned long size, u64 flags)
6876 {
6877 	struct perf_output_handle handle;
6878 	struct perf_sample_data sample;
6879 	struct perf_aux_event {
6880 		struct perf_event_header	header;
6881 		u64				offset;
6882 		u64				size;
6883 		u64				flags;
6884 	} rec = {
6885 		.header = {
6886 			.type = PERF_RECORD_AUX,
6887 			.misc = 0,
6888 			.size = sizeof(rec),
6889 		},
6890 		.offset		= head,
6891 		.size		= size,
6892 		.flags		= flags,
6893 	};
6894 	int ret;
6895 
6896 	perf_event_header__init_id(&rec.header, &sample, event);
6897 	ret = perf_output_begin(&handle, event, rec.header.size);
6898 
6899 	if (ret)
6900 		return;
6901 
6902 	perf_output_put(&handle, rec);
6903 	perf_event__output_id_sample(event, &handle, &sample);
6904 
6905 	perf_output_end(&handle);
6906 }
6907 
6908 /*
6909  * Lost/dropped samples logging
6910  */
perf_log_lost_samples(struct perf_event * event,u64 lost)6911 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6912 {
6913 	struct perf_output_handle handle;
6914 	struct perf_sample_data sample;
6915 	int ret;
6916 
6917 	struct {
6918 		struct perf_event_header	header;
6919 		u64				lost;
6920 	} lost_samples_event = {
6921 		.header = {
6922 			.type = PERF_RECORD_LOST_SAMPLES,
6923 			.misc = 0,
6924 			.size = sizeof(lost_samples_event),
6925 		},
6926 		.lost		= lost,
6927 	};
6928 
6929 	perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6930 
6931 	ret = perf_output_begin(&handle, event,
6932 				lost_samples_event.header.size);
6933 	if (ret)
6934 		return;
6935 
6936 	perf_output_put(&handle, lost_samples_event);
6937 	perf_event__output_id_sample(event, &handle, &sample);
6938 	perf_output_end(&handle);
6939 }
6940 
6941 /*
6942  * context_switch tracking
6943  */
6944 
6945 struct perf_switch_event {
6946 	struct task_struct	*task;
6947 	struct task_struct	*next_prev;
6948 
6949 	struct {
6950 		struct perf_event_header	header;
6951 		u32				next_prev_pid;
6952 		u32				next_prev_tid;
6953 	} event_id;
6954 };
6955 
perf_event_switch_match(struct perf_event * event)6956 static int perf_event_switch_match(struct perf_event *event)
6957 {
6958 	return event->attr.context_switch;
6959 }
6960 
perf_event_switch_output(struct perf_event * event,void * data)6961 static void perf_event_switch_output(struct perf_event *event, void *data)
6962 {
6963 	struct perf_switch_event *se = data;
6964 	struct perf_output_handle handle;
6965 	struct perf_sample_data sample;
6966 	int ret;
6967 
6968 	if (!perf_event_switch_match(event))
6969 		return;
6970 
6971 	/* Only CPU-wide events are allowed to see next/prev pid/tid */
6972 	if (event->ctx->task) {
6973 		se->event_id.header.type = PERF_RECORD_SWITCH;
6974 		se->event_id.header.size = sizeof(se->event_id.header);
6975 	} else {
6976 		se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6977 		se->event_id.header.size = sizeof(se->event_id);
6978 		se->event_id.next_prev_pid =
6979 					perf_event_pid(event, se->next_prev);
6980 		se->event_id.next_prev_tid =
6981 					perf_event_tid(event, se->next_prev);
6982 	}
6983 
6984 	perf_event_header__init_id(&se->event_id.header, &sample, event);
6985 
6986 	ret = perf_output_begin(&handle, event, se->event_id.header.size);
6987 	if (ret)
6988 		return;
6989 
6990 	if (event->ctx->task)
6991 		perf_output_put(&handle, se->event_id.header);
6992 	else
6993 		perf_output_put(&handle, se->event_id);
6994 
6995 	perf_event__output_id_sample(event, &handle, &sample);
6996 
6997 	perf_output_end(&handle);
6998 }
6999 
perf_event_switch(struct task_struct * task,struct task_struct * next_prev,bool sched_in)7000 static void perf_event_switch(struct task_struct *task,
7001 			      struct task_struct *next_prev, bool sched_in)
7002 {
7003 	struct perf_switch_event switch_event;
7004 
7005 	/* N.B. caller checks nr_switch_events != 0 */
7006 
7007 	switch_event = (struct perf_switch_event){
7008 		.task		= task,
7009 		.next_prev	= next_prev,
7010 		.event_id	= {
7011 			.header = {
7012 				/* .type */
7013 				.misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7014 				/* .size */
7015 			},
7016 			/* .next_prev_pid */
7017 			/* .next_prev_tid */
7018 		},
7019 	};
7020 
7021 	perf_iterate_sb(perf_event_switch_output,
7022 		       &switch_event,
7023 		       NULL);
7024 }
7025 
7026 /*
7027  * IRQ throttle logging
7028  */
7029 
perf_log_throttle(struct perf_event * event,int enable)7030 static void perf_log_throttle(struct perf_event *event, int enable)
7031 {
7032 	struct perf_output_handle handle;
7033 	struct perf_sample_data sample;
7034 	int ret;
7035 
7036 	struct {
7037 		struct perf_event_header	header;
7038 		u64				time;
7039 		u64				id;
7040 		u64				stream_id;
7041 	} throttle_event = {
7042 		.header = {
7043 			.type = PERF_RECORD_THROTTLE,
7044 			.misc = 0,
7045 			.size = sizeof(throttle_event),
7046 		},
7047 		.time		= perf_event_clock(event),
7048 		.id		= primary_event_id(event),
7049 		.stream_id	= event->id,
7050 	};
7051 
7052 	if (enable)
7053 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7054 
7055 	perf_event_header__init_id(&throttle_event.header, &sample, event);
7056 
7057 	ret = perf_output_begin(&handle, event,
7058 				throttle_event.header.size);
7059 	if (ret)
7060 		return;
7061 
7062 	perf_output_put(&handle, throttle_event);
7063 	perf_event__output_id_sample(event, &handle, &sample);
7064 	perf_output_end(&handle);
7065 }
7066 
perf_log_itrace_start(struct perf_event * event)7067 static void perf_log_itrace_start(struct perf_event *event)
7068 {
7069 	struct perf_output_handle handle;
7070 	struct perf_sample_data sample;
7071 	struct perf_aux_event {
7072 		struct perf_event_header        header;
7073 		u32				pid;
7074 		u32				tid;
7075 	} rec;
7076 	int ret;
7077 
7078 	if (event->parent)
7079 		event = event->parent;
7080 
7081 	if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7082 	    event->hw.itrace_started)
7083 		return;
7084 
7085 	rec.header.type	= PERF_RECORD_ITRACE_START;
7086 	rec.header.misc	= 0;
7087 	rec.header.size	= sizeof(rec);
7088 	rec.pid	= perf_event_pid(event, current);
7089 	rec.tid	= perf_event_tid(event, current);
7090 
7091 	perf_event_header__init_id(&rec.header, &sample, event);
7092 	ret = perf_output_begin(&handle, event, rec.header.size);
7093 
7094 	if (ret)
7095 		return;
7096 
7097 	perf_output_put(&handle, rec);
7098 	perf_event__output_id_sample(event, &handle, &sample);
7099 
7100 	perf_output_end(&handle);
7101 }
7102 
7103 static int
__perf_event_account_interrupt(struct perf_event * event,int throttle)7104 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7105 {
7106 	struct hw_perf_event *hwc = &event->hw;
7107 	int ret = 0;
7108 	u64 seq;
7109 
7110 	seq = __this_cpu_read(perf_throttled_seq);
7111 	if (seq != hwc->interrupts_seq) {
7112 		hwc->interrupts_seq = seq;
7113 		hwc->interrupts = 1;
7114 	} else {
7115 		hwc->interrupts++;
7116 		if (unlikely(throttle
7117 			     && hwc->interrupts >= max_samples_per_tick)) {
7118 			__this_cpu_inc(perf_throttled_count);
7119 			tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7120 			hwc->interrupts = MAX_INTERRUPTS;
7121 			perf_log_throttle(event, 0);
7122 			ret = 1;
7123 		}
7124 	}
7125 
7126 	if (event->attr.freq) {
7127 		u64 now = perf_clock();
7128 		s64 delta = now - hwc->freq_time_stamp;
7129 
7130 		hwc->freq_time_stamp = now;
7131 
7132 		if (delta > 0 && delta < 2*TICK_NSEC)
7133 			perf_adjust_period(event, delta, hwc->last_period, true);
7134 	}
7135 
7136 	return ret;
7137 }
7138 
perf_event_account_interrupt(struct perf_event * event)7139 int perf_event_account_interrupt(struct perf_event *event)
7140 {
7141 	return __perf_event_account_interrupt(event, 1);
7142 }
7143 
7144 /*
7145  * Generic event overflow handling, sampling.
7146  */
7147 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)7148 static int __perf_event_overflow(struct perf_event *event,
7149 				   int throttle, struct perf_sample_data *data,
7150 				   struct pt_regs *regs)
7151 {
7152 	int events = atomic_read(&event->event_limit);
7153 	int ret = 0;
7154 
7155 	/*
7156 	 * Non-sampling counters might still use the PMI to fold short
7157 	 * hardware counters, ignore those.
7158 	 */
7159 	if (unlikely(!is_sampling_event(event)))
7160 		return 0;
7161 
7162 	ret = __perf_event_account_interrupt(event, throttle);
7163 
7164 	/*
7165 	 * XXX event_limit might not quite work as expected on inherited
7166 	 * events
7167 	 */
7168 
7169 	event->pending_kill = POLL_IN;
7170 	if (events && atomic_dec_and_test(&event->event_limit)) {
7171 		ret = 1;
7172 		event->pending_kill = POLL_HUP;
7173 
7174 		perf_event_disable_inatomic(event);
7175 	}
7176 
7177 	READ_ONCE(event->overflow_handler)(event, data, regs);
7178 
7179 	if (*perf_event_fasync(event) && event->pending_kill) {
7180 		event->pending_wakeup = 1;
7181 		irq_work_queue(&event->pending);
7182 	}
7183 
7184 	return ret;
7185 }
7186 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7187 int perf_event_overflow(struct perf_event *event,
7188 			  struct perf_sample_data *data,
7189 			  struct pt_regs *regs)
7190 {
7191 	return __perf_event_overflow(event, 1, data, regs);
7192 }
7193 
7194 /*
7195  * Generic software event infrastructure
7196  */
7197 
7198 struct swevent_htable {
7199 	struct swevent_hlist		*swevent_hlist;
7200 	struct mutex			hlist_mutex;
7201 	int				hlist_refcount;
7202 
7203 	/* Recursion avoidance in each contexts */
7204 	int				recursion[PERF_NR_CONTEXTS];
7205 };
7206 
7207 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7208 
7209 /*
7210  * We directly increment event->count and keep a second value in
7211  * event->hw.period_left to count intervals. This period event
7212  * is kept in the range [-sample_period, 0] so that we can use the
7213  * sign as trigger.
7214  */
7215 
perf_swevent_set_period(struct perf_event * event)7216 u64 perf_swevent_set_period(struct perf_event *event)
7217 {
7218 	struct hw_perf_event *hwc = &event->hw;
7219 	u64 period = hwc->last_period;
7220 	u64 nr, offset;
7221 	s64 old, val;
7222 
7223 	hwc->last_period = hwc->sample_period;
7224 
7225 again:
7226 	old = val = local64_read(&hwc->period_left);
7227 	if (val < 0)
7228 		return 0;
7229 
7230 	nr = div64_u64(period + val, period);
7231 	offset = nr * period;
7232 	val -= offset;
7233 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7234 		goto again;
7235 
7236 	return nr;
7237 }
7238 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)7239 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7240 				    struct perf_sample_data *data,
7241 				    struct pt_regs *regs)
7242 {
7243 	struct hw_perf_event *hwc = &event->hw;
7244 	int throttle = 0;
7245 
7246 	if (!overflow)
7247 		overflow = perf_swevent_set_period(event);
7248 
7249 	if (hwc->interrupts == MAX_INTERRUPTS)
7250 		return;
7251 
7252 	for (; overflow; overflow--) {
7253 		if (__perf_event_overflow(event, throttle,
7254 					    data, regs)) {
7255 			/*
7256 			 * We inhibit the overflow from happening when
7257 			 * hwc->interrupts == MAX_INTERRUPTS.
7258 			 */
7259 			break;
7260 		}
7261 		throttle = 1;
7262 	}
7263 }
7264 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)7265 static void perf_swevent_event(struct perf_event *event, u64 nr,
7266 			       struct perf_sample_data *data,
7267 			       struct pt_regs *regs)
7268 {
7269 	struct hw_perf_event *hwc = &event->hw;
7270 
7271 	local64_add(nr, &event->count);
7272 
7273 	if (!regs)
7274 		return;
7275 
7276 	if (!is_sampling_event(event))
7277 		return;
7278 
7279 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7280 		data->period = nr;
7281 		return perf_swevent_overflow(event, 1, data, regs);
7282 	} else
7283 		data->period = event->hw.last_period;
7284 
7285 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7286 		return perf_swevent_overflow(event, 1, data, regs);
7287 
7288 	if (local64_add_negative(nr, &hwc->period_left))
7289 		return;
7290 
7291 	perf_swevent_overflow(event, 0, data, regs);
7292 }
7293 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)7294 static int perf_exclude_event(struct perf_event *event,
7295 			      struct pt_regs *regs)
7296 {
7297 	if (event->hw.state & PERF_HES_STOPPED)
7298 		return 1;
7299 
7300 	if (regs) {
7301 		if (event->attr.exclude_user && user_mode(regs))
7302 			return 1;
7303 
7304 		if (event->attr.exclude_kernel && !user_mode(regs))
7305 			return 1;
7306 	}
7307 
7308 	return 0;
7309 }
7310 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)7311 static int perf_swevent_match(struct perf_event *event,
7312 				enum perf_type_id type,
7313 				u32 event_id,
7314 				struct perf_sample_data *data,
7315 				struct pt_regs *regs)
7316 {
7317 	if (event->attr.type != type)
7318 		return 0;
7319 
7320 	if (event->attr.config != event_id)
7321 		return 0;
7322 
7323 	if (perf_exclude_event(event, regs))
7324 		return 0;
7325 
7326 	return 1;
7327 }
7328 
swevent_hash(u64 type,u32 event_id)7329 static inline u64 swevent_hash(u64 type, u32 event_id)
7330 {
7331 	u64 val = event_id | (type << 32);
7332 
7333 	return hash_64(val, SWEVENT_HLIST_BITS);
7334 }
7335 
7336 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)7337 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7338 {
7339 	u64 hash = swevent_hash(type, event_id);
7340 
7341 	return &hlist->heads[hash];
7342 }
7343 
7344 /* For the read side: events when they trigger */
7345 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)7346 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7347 {
7348 	struct swevent_hlist *hlist;
7349 
7350 	hlist = rcu_dereference(swhash->swevent_hlist);
7351 	if (!hlist)
7352 		return NULL;
7353 
7354 	return __find_swevent_head(hlist, type, event_id);
7355 }
7356 
7357 /* For the event head insertion and removal in the hlist */
7358 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)7359 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7360 {
7361 	struct swevent_hlist *hlist;
7362 	u32 event_id = event->attr.config;
7363 	u64 type = event->attr.type;
7364 
7365 	/*
7366 	 * Event scheduling is always serialized against hlist allocation
7367 	 * and release. Which makes the protected version suitable here.
7368 	 * The context lock guarantees that.
7369 	 */
7370 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
7371 					  lockdep_is_held(&event->ctx->lock));
7372 	if (!hlist)
7373 		return NULL;
7374 
7375 	return __find_swevent_head(hlist, type, event_id);
7376 }
7377 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)7378 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7379 				    u64 nr,
7380 				    struct perf_sample_data *data,
7381 				    struct pt_regs *regs)
7382 {
7383 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7384 	struct perf_event *event;
7385 	struct hlist_head *head;
7386 
7387 	rcu_read_lock();
7388 	head = find_swevent_head_rcu(swhash, type, event_id);
7389 	if (!head)
7390 		goto end;
7391 
7392 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7393 		if (perf_swevent_match(event, type, event_id, data, regs))
7394 			perf_swevent_event(event, nr, data, regs);
7395 	}
7396 end:
7397 	rcu_read_unlock();
7398 }
7399 
7400 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7401 
perf_swevent_get_recursion_context(void)7402 int perf_swevent_get_recursion_context(void)
7403 {
7404 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7405 
7406 	return get_recursion_context(swhash->recursion);
7407 }
7408 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7409 
perf_swevent_put_recursion_context(int rctx)7410 void perf_swevent_put_recursion_context(int rctx)
7411 {
7412 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7413 
7414 	put_recursion_context(swhash->recursion, rctx);
7415 }
7416 
___perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)7417 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7418 {
7419 	struct perf_sample_data data;
7420 
7421 	if (WARN_ON_ONCE(!regs))
7422 		return;
7423 
7424 	perf_sample_data_init(&data, addr, 0);
7425 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7426 }
7427 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)7428 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7429 {
7430 	int rctx;
7431 
7432 	preempt_disable_notrace();
7433 	rctx = perf_swevent_get_recursion_context();
7434 	if (unlikely(rctx < 0))
7435 		goto fail;
7436 
7437 	___perf_sw_event(event_id, nr, regs, addr);
7438 
7439 	perf_swevent_put_recursion_context(rctx);
7440 fail:
7441 	preempt_enable_notrace();
7442 }
7443 
perf_swevent_read(struct perf_event * event)7444 static void perf_swevent_read(struct perf_event *event)
7445 {
7446 }
7447 
perf_swevent_add(struct perf_event * event,int flags)7448 static int perf_swevent_add(struct perf_event *event, int flags)
7449 {
7450 	struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7451 	struct hw_perf_event *hwc = &event->hw;
7452 	struct hlist_head *head;
7453 
7454 	if (is_sampling_event(event)) {
7455 		hwc->last_period = hwc->sample_period;
7456 		perf_swevent_set_period(event);
7457 	}
7458 
7459 	hwc->state = !(flags & PERF_EF_START);
7460 
7461 	head = find_swevent_head(swhash, event);
7462 	if (WARN_ON_ONCE(!head))
7463 		return -EINVAL;
7464 
7465 	hlist_add_head_rcu(&event->hlist_entry, head);
7466 	perf_event_update_userpage(event);
7467 
7468 	return 0;
7469 }
7470 
perf_swevent_del(struct perf_event * event,int flags)7471 static void perf_swevent_del(struct perf_event *event, int flags)
7472 {
7473 	hlist_del_rcu(&event->hlist_entry);
7474 }
7475 
perf_swevent_start(struct perf_event * event,int flags)7476 static void perf_swevent_start(struct perf_event *event, int flags)
7477 {
7478 	event->hw.state = 0;
7479 }
7480 
perf_swevent_stop(struct perf_event * event,int flags)7481 static void perf_swevent_stop(struct perf_event *event, int flags)
7482 {
7483 	event->hw.state = PERF_HES_STOPPED;
7484 }
7485 
7486 /* Deref the hlist from the update side */
7487 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)7488 swevent_hlist_deref(struct swevent_htable *swhash)
7489 {
7490 	return rcu_dereference_protected(swhash->swevent_hlist,
7491 					 lockdep_is_held(&swhash->hlist_mutex));
7492 }
7493 
swevent_hlist_release(struct swevent_htable * swhash)7494 static void swevent_hlist_release(struct swevent_htable *swhash)
7495 {
7496 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7497 
7498 	if (!hlist)
7499 		return;
7500 
7501 	RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7502 	kfree_rcu(hlist, rcu_head);
7503 }
7504 
swevent_hlist_put_cpu(int cpu)7505 static void swevent_hlist_put_cpu(int cpu)
7506 {
7507 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7508 
7509 	mutex_lock(&swhash->hlist_mutex);
7510 
7511 	if (!--swhash->hlist_refcount)
7512 		swevent_hlist_release(swhash);
7513 
7514 	mutex_unlock(&swhash->hlist_mutex);
7515 }
7516 
swevent_hlist_put(void)7517 static void swevent_hlist_put(void)
7518 {
7519 	int cpu;
7520 
7521 	for_each_possible_cpu(cpu)
7522 		swevent_hlist_put_cpu(cpu);
7523 }
7524 
swevent_hlist_get_cpu(int cpu)7525 static int swevent_hlist_get_cpu(int cpu)
7526 {
7527 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7528 	int err = 0;
7529 
7530 	mutex_lock(&swhash->hlist_mutex);
7531 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
7532 		struct swevent_hlist *hlist;
7533 
7534 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7535 		if (!hlist) {
7536 			err = -ENOMEM;
7537 			goto exit;
7538 		}
7539 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
7540 	}
7541 	swhash->hlist_refcount++;
7542 exit:
7543 	mutex_unlock(&swhash->hlist_mutex);
7544 
7545 	return err;
7546 }
7547 
swevent_hlist_get(void)7548 static int swevent_hlist_get(void)
7549 {
7550 	int err, cpu, failed_cpu;
7551 
7552 	get_online_cpus();
7553 	for_each_possible_cpu(cpu) {
7554 		err = swevent_hlist_get_cpu(cpu);
7555 		if (err) {
7556 			failed_cpu = cpu;
7557 			goto fail;
7558 		}
7559 	}
7560 	put_online_cpus();
7561 
7562 	return 0;
7563 fail:
7564 	for_each_possible_cpu(cpu) {
7565 		if (cpu == failed_cpu)
7566 			break;
7567 		swevent_hlist_put_cpu(cpu);
7568 	}
7569 
7570 	put_online_cpus();
7571 	return err;
7572 }
7573 
7574 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7575 
sw_perf_event_destroy(struct perf_event * event)7576 static void sw_perf_event_destroy(struct perf_event *event)
7577 {
7578 	u64 event_id = event->attr.config;
7579 
7580 	WARN_ON(event->parent);
7581 
7582 	static_key_slow_dec(&perf_swevent_enabled[event_id]);
7583 	swevent_hlist_put();
7584 }
7585 
perf_swevent_init(struct perf_event * event)7586 static int perf_swevent_init(struct perf_event *event)
7587 {
7588 	u64 event_id = event->attr.config;
7589 
7590 	if (event->attr.type != PERF_TYPE_SOFTWARE)
7591 		return -ENOENT;
7592 
7593 	/*
7594 	 * no branch sampling for software events
7595 	 */
7596 	if (has_branch_stack(event))
7597 		return -EOPNOTSUPP;
7598 
7599 	switch (event_id) {
7600 	case PERF_COUNT_SW_CPU_CLOCK:
7601 	case PERF_COUNT_SW_TASK_CLOCK:
7602 		return -ENOENT;
7603 
7604 	default:
7605 		break;
7606 	}
7607 
7608 	if (event_id >= PERF_COUNT_SW_MAX)
7609 		return -ENOENT;
7610 
7611 	if (!event->parent) {
7612 		int err;
7613 
7614 		err = swevent_hlist_get();
7615 		if (err)
7616 			return err;
7617 
7618 		static_key_slow_inc(&perf_swevent_enabled[event_id]);
7619 		event->destroy = sw_perf_event_destroy;
7620 	}
7621 
7622 	return 0;
7623 }
7624 
7625 static struct pmu perf_swevent = {
7626 	.task_ctx_nr	= perf_sw_context,
7627 
7628 	.capabilities	= PERF_PMU_CAP_NO_NMI,
7629 
7630 	.event_init	= perf_swevent_init,
7631 	.add		= perf_swevent_add,
7632 	.del		= perf_swevent_del,
7633 	.start		= perf_swevent_start,
7634 	.stop		= perf_swevent_stop,
7635 	.read		= perf_swevent_read,
7636 };
7637 
7638 #ifdef CONFIG_EVENT_TRACING
7639 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)7640 static int perf_tp_filter_match(struct perf_event *event,
7641 				struct perf_sample_data *data)
7642 {
7643 	void *record = data->raw->frag.data;
7644 
7645 	/* only top level events have filters set */
7646 	if (event->parent)
7647 		event = event->parent;
7648 
7649 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
7650 		return 1;
7651 	return 0;
7652 }
7653 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7654 static int perf_tp_event_match(struct perf_event *event,
7655 				struct perf_sample_data *data,
7656 				struct pt_regs *regs)
7657 {
7658 	if (event->hw.state & PERF_HES_STOPPED)
7659 		return 0;
7660 	/*
7661 	 * All tracepoints are from kernel-space.
7662 	 */
7663 	if (event->attr.exclude_kernel)
7664 		return 0;
7665 
7666 	if (!perf_tp_filter_match(event, data))
7667 		return 0;
7668 
7669 	return 1;
7670 }
7671 
perf_trace_run_bpf_submit(void * raw_data,int size,int rctx,struct trace_event_call * call,u64 count,struct pt_regs * regs,struct hlist_head * head,struct task_struct * task)7672 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7673 			       struct trace_event_call *call, u64 count,
7674 			       struct pt_regs *regs, struct hlist_head *head,
7675 			       struct task_struct *task)
7676 {
7677 	struct bpf_prog *prog = call->prog;
7678 
7679 	if (prog) {
7680 		*(struct pt_regs **)raw_data = regs;
7681 		if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7682 			perf_swevent_put_recursion_context(rctx);
7683 			return;
7684 		}
7685 	}
7686 	perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7687 		      rctx, task);
7688 }
7689 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7690 
perf_tp_event(u16 event_type,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx,struct task_struct * task)7691 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
7692 		   struct pt_regs *regs, struct hlist_head *head, int rctx,
7693 		   struct task_struct *task)
7694 {
7695 	struct perf_sample_data data;
7696 	struct perf_event *event;
7697 
7698 	struct perf_raw_record raw = {
7699 		.frag = {
7700 			.size = entry_size,
7701 			.data = record,
7702 		},
7703 	};
7704 
7705 	perf_sample_data_init(&data, 0, 0);
7706 	data.raw = &raw;
7707 
7708 	perf_trace_buf_update(record, event_type);
7709 
7710 	hlist_for_each_entry_rcu(event, head, hlist_entry) {
7711 		if (perf_tp_event_match(event, &data, regs))
7712 			perf_swevent_event(event, count, &data, regs);
7713 	}
7714 
7715 	/*
7716 	 * If we got specified a target task, also iterate its context and
7717 	 * deliver this event there too.
7718 	 */
7719 	if (task && task != current) {
7720 		struct perf_event_context *ctx;
7721 		struct trace_entry *entry = record;
7722 
7723 		rcu_read_lock();
7724 		ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7725 		if (!ctx)
7726 			goto unlock;
7727 
7728 		list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7729 			if (event->attr.type != PERF_TYPE_TRACEPOINT)
7730 				continue;
7731 			if (event->attr.config != entry->type)
7732 				continue;
7733 			if (perf_tp_event_match(event, &data, regs))
7734 				perf_swevent_event(event, count, &data, regs);
7735 		}
7736 unlock:
7737 		rcu_read_unlock();
7738 	}
7739 
7740 	perf_swevent_put_recursion_context(rctx);
7741 }
7742 EXPORT_SYMBOL_GPL(perf_tp_event);
7743 
tp_perf_event_destroy(struct perf_event * event)7744 static void tp_perf_event_destroy(struct perf_event *event)
7745 {
7746 	perf_trace_destroy(event);
7747 }
7748 
perf_tp_event_init(struct perf_event * event)7749 static int perf_tp_event_init(struct perf_event *event)
7750 {
7751 	int err;
7752 
7753 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7754 		return -ENOENT;
7755 
7756 	/*
7757 	 * no branch sampling for tracepoint events
7758 	 */
7759 	if (has_branch_stack(event))
7760 		return -EOPNOTSUPP;
7761 
7762 	err = perf_trace_init(event);
7763 	if (err)
7764 		return err;
7765 
7766 	event->destroy = tp_perf_event_destroy;
7767 
7768 	return 0;
7769 }
7770 
7771 static struct pmu perf_tracepoint = {
7772 	.task_ctx_nr	= perf_sw_context,
7773 
7774 	.event_init	= perf_tp_event_init,
7775 	.add		= perf_trace_add,
7776 	.del		= perf_trace_del,
7777 	.start		= perf_swevent_start,
7778 	.stop		= perf_swevent_stop,
7779 	.read		= perf_swevent_read,
7780 };
7781 
perf_tp_register(void)7782 static inline void perf_tp_register(void)
7783 {
7784 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7785 }
7786 
perf_event_free_filter(struct perf_event * event)7787 static void perf_event_free_filter(struct perf_event *event)
7788 {
7789 	ftrace_profile_free_filter(event);
7790 }
7791 
7792 #ifdef CONFIG_BPF_SYSCALL
bpf_overflow_handler(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)7793 static void bpf_overflow_handler(struct perf_event *event,
7794 				 struct perf_sample_data *data,
7795 				 struct pt_regs *regs)
7796 {
7797 	struct bpf_perf_event_data_kern ctx = {
7798 		.data = data,
7799 		.regs = regs,
7800 	};
7801 	int ret = 0;
7802 
7803 	preempt_disable();
7804 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7805 		goto out;
7806 	rcu_read_lock();
7807 	ret = BPF_PROG_RUN(event->prog, (void *)&ctx);
7808 	rcu_read_unlock();
7809 out:
7810 	__this_cpu_dec(bpf_prog_active);
7811 	preempt_enable();
7812 	if (!ret)
7813 		return;
7814 
7815 	event->orig_overflow_handler(event, data, regs);
7816 }
7817 
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)7818 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7819 {
7820 	struct bpf_prog *prog;
7821 
7822 	if (event->overflow_handler_context)
7823 		/* hw breakpoint or kernel counter */
7824 		return -EINVAL;
7825 
7826 	if (event->prog)
7827 		return -EEXIST;
7828 
7829 	prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7830 	if (IS_ERR(prog))
7831 		return PTR_ERR(prog);
7832 
7833 	event->prog = prog;
7834 	event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7835 	WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7836 	return 0;
7837 }
7838 
perf_event_free_bpf_handler(struct perf_event * event)7839 static void perf_event_free_bpf_handler(struct perf_event *event)
7840 {
7841 	struct bpf_prog *prog = event->prog;
7842 
7843 	if (!prog)
7844 		return;
7845 
7846 	WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7847 	event->prog = NULL;
7848 	bpf_prog_put(prog);
7849 }
7850 #else
perf_event_set_bpf_handler(struct perf_event * event,u32 prog_fd)7851 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7852 {
7853 	return -EOPNOTSUPP;
7854 }
perf_event_free_bpf_handler(struct perf_event * event)7855 static void perf_event_free_bpf_handler(struct perf_event *event)
7856 {
7857 }
7858 #endif
7859 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)7860 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7861 {
7862 	bool is_kprobe, is_tracepoint;
7863 	struct bpf_prog *prog;
7864 
7865 	if (event->attr.type == PERF_TYPE_HARDWARE ||
7866 	    event->attr.type == PERF_TYPE_SOFTWARE)
7867 		return perf_event_set_bpf_handler(event, prog_fd);
7868 
7869 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
7870 		return -EINVAL;
7871 
7872 	if (event->tp_event->prog)
7873 		return -EEXIST;
7874 
7875 	is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7876 	is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7877 	if (!is_kprobe && !is_tracepoint)
7878 		/* bpf programs can only be attached to u/kprobe or tracepoint */
7879 		return -EINVAL;
7880 
7881 	prog = bpf_prog_get(prog_fd);
7882 	if (IS_ERR(prog))
7883 		return PTR_ERR(prog);
7884 
7885 	if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7886 	    (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
7887 		/* valid fd, but invalid bpf program type */
7888 		bpf_prog_put(prog);
7889 		return -EINVAL;
7890 	}
7891 
7892 	if (is_tracepoint) {
7893 		int off = trace_event_get_offsets(event->tp_event);
7894 
7895 		if (prog->aux->max_ctx_offset > off) {
7896 			bpf_prog_put(prog);
7897 			return -EACCES;
7898 		}
7899 	}
7900 	event->tp_event->prog = prog;
7901 	event->tp_event->bpf_prog_owner = event;
7902 
7903 	return 0;
7904 }
7905 
perf_event_free_bpf_prog(struct perf_event * event)7906 static void perf_event_free_bpf_prog(struct perf_event *event)
7907 {
7908 	struct bpf_prog *prog;
7909 
7910 	perf_event_free_bpf_handler(event);
7911 
7912 	if (!event->tp_event)
7913 		return;
7914 
7915 	prog = event->tp_event->prog;
7916 	if (prog && event->tp_event->bpf_prog_owner == event) {
7917 		event->tp_event->prog = NULL;
7918 		bpf_prog_put(prog);
7919 	}
7920 }
7921 
7922 #else
7923 
perf_tp_register(void)7924 static inline void perf_tp_register(void)
7925 {
7926 }
7927 
perf_event_free_filter(struct perf_event * event)7928 static void perf_event_free_filter(struct perf_event *event)
7929 {
7930 }
7931 
perf_event_set_bpf_prog(struct perf_event * event,u32 prog_fd)7932 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7933 {
7934 	return -ENOENT;
7935 }
7936 
perf_event_free_bpf_prog(struct perf_event * event)7937 static void perf_event_free_bpf_prog(struct perf_event *event)
7938 {
7939 }
7940 #endif /* CONFIG_EVENT_TRACING */
7941 
7942 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)7943 void perf_bp_event(struct perf_event *bp, void *data)
7944 {
7945 	struct perf_sample_data sample;
7946 	struct pt_regs *regs = data;
7947 
7948 	perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7949 
7950 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
7951 		perf_swevent_event(bp, 1, &sample, regs);
7952 }
7953 #endif
7954 
7955 /*
7956  * Allocate a new address filter
7957  */
7958 static struct perf_addr_filter *
perf_addr_filter_new(struct perf_event * event,struct list_head * filters)7959 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7960 {
7961 	int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7962 	struct perf_addr_filter *filter;
7963 
7964 	filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7965 	if (!filter)
7966 		return NULL;
7967 
7968 	INIT_LIST_HEAD(&filter->entry);
7969 	list_add_tail(&filter->entry, filters);
7970 
7971 	return filter;
7972 }
7973 
free_filters_list(struct list_head * filters)7974 static void free_filters_list(struct list_head *filters)
7975 {
7976 	struct perf_addr_filter *filter, *iter;
7977 
7978 	list_for_each_entry_safe(filter, iter, filters, entry) {
7979 		if (filter->inode)
7980 			iput(filter->inode);
7981 		list_del(&filter->entry);
7982 		kfree(filter);
7983 	}
7984 }
7985 
7986 /*
7987  * Free existing address filters and optionally install new ones
7988  */
perf_addr_filters_splice(struct perf_event * event,struct list_head * head)7989 static void perf_addr_filters_splice(struct perf_event *event,
7990 				     struct list_head *head)
7991 {
7992 	unsigned long flags;
7993 	LIST_HEAD(list);
7994 
7995 	if (!has_addr_filter(event))
7996 		return;
7997 
7998 	/* don't bother with children, they don't have their own filters */
7999 	if (event->parent)
8000 		return;
8001 
8002 	raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8003 
8004 	list_splice_init(&event->addr_filters.list, &list);
8005 	if (head)
8006 		list_splice(head, &event->addr_filters.list);
8007 
8008 	raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8009 
8010 	free_filters_list(&list);
8011 }
8012 
8013 /*
8014  * Scan through mm's vmas and see if one of them matches the
8015  * @filter; if so, adjust filter's address range.
8016  * Called with mm::mmap_sem down for reading.
8017  */
perf_addr_filter_apply(struct perf_addr_filter * filter,struct mm_struct * mm)8018 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8019 					    struct mm_struct *mm)
8020 {
8021 	struct vm_area_struct *vma;
8022 
8023 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
8024 		struct file *file = vma->vm_file;
8025 		unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8026 		unsigned long vma_size = vma->vm_end - vma->vm_start;
8027 
8028 		if (!file)
8029 			continue;
8030 
8031 		if (!perf_addr_filter_match(filter, file, off, vma_size))
8032 			continue;
8033 
8034 		return vma->vm_start;
8035 	}
8036 
8037 	return 0;
8038 }
8039 
8040 /*
8041  * Update event's address range filters based on the
8042  * task's existing mappings, if any.
8043  */
perf_event_addr_filters_apply(struct perf_event * event)8044 static void perf_event_addr_filters_apply(struct perf_event *event)
8045 {
8046 	struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8047 	struct task_struct *task = READ_ONCE(event->ctx->task);
8048 	struct perf_addr_filter *filter;
8049 	struct mm_struct *mm = NULL;
8050 	unsigned int count = 0;
8051 	unsigned long flags;
8052 
8053 	/*
8054 	 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8055 	 * will stop on the parent's child_mutex that our caller is also holding
8056 	 */
8057 	if (task == TASK_TOMBSTONE)
8058 		return;
8059 
8060 	mm = get_task_mm(event->ctx->task);
8061 	if (!mm)
8062 		goto restart;
8063 
8064 	down_read(&mm->mmap_sem);
8065 
8066 	raw_spin_lock_irqsave(&ifh->lock, flags);
8067 	list_for_each_entry(filter, &ifh->list, entry) {
8068 		event->addr_filters_offs[count] = 0;
8069 
8070 		/*
8071 		 * Adjust base offset if the filter is associated to a binary
8072 		 * that needs to be mapped:
8073 		 */
8074 		if (filter->inode)
8075 			event->addr_filters_offs[count] =
8076 				perf_addr_filter_apply(filter, mm);
8077 
8078 		count++;
8079 	}
8080 
8081 	event->addr_filters_gen++;
8082 	raw_spin_unlock_irqrestore(&ifh->lock, flags);
8083 
8084 	up_read(&mm->mmap_sem);
8085 
8086 	mmput(mm);
8087 
8088 restart:
8089 	perf_event_stop(event, 1);
8090 }
8091 
8092 /*
8093  * Address range filtering: limiting the data to certain
8094  * instruction address ranges. Filters are ioctl()ed to us from
8095  * userspace as ascii strings.
8096  *
8097  * Filter string format:
8098  *
8099  * ACTION RANGE_SPEC
8100  * where ACTION is one of the
8101  *  * "filter": limit the trace to this region
8102  *  * "start": start tracing from this address
8103  *  * "stop": stop tracing at this address/region;
8104  * RANGE_SPEC is
8105  *  * for kernel addresses: <start address>[/<size>]
8106  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8107  *
8108  * if <size> is not specified, the range is treated as a single address.
8109  */
8110 enum {
8111 	IF_ACT_NONE = -1,
8112 	IF_ACT_FILTER,
8113 	IF_ACT_START,
8114 	IF_ACT_STOP,
8115 	IF_SRC_FILE,
8116 	IF_SRC_KERNEL,
8117 	IF_SRC_FILEADDR,
8118 	IF_SRC_KERNELADDR,
8119 };
8120 
8121 enum {
8122 	IF_STATE_ACTION = 0,
8123 	IF_STATE_SOURCE,
8124 	IF_STATE_END,
8125 };
8126 
8127 static const match_table_t if_tokens = {
8128 	{ IF_ACT_FILTER,	"filter" },
8129 	{ IF_ACT_START,		"start" },
8130 	{ IF_ACT_STOP,		"stop" },
8131 	{ IF_SRC_FILE,		"%u/%u@%s" },
8132 	{ IF_SRC_KERNEL,	"%u/%u" },
8133 	{ IF_SRC_FILEADDR,	"%u@%s" },
8134 	{ IF_SRC_KERNELADDR,	"%u" },
8135 	{ IF_ACT_NONE,		NULL },
8136 };
8137 
8138 /*
8139  * Address filter string parser
8140  */
8141 static int
perf_event_parse_addr_filter(struct perf_event * event,char * fstr,struct list_head * filters)8142 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8143 			     struct list_head *filters)
8144 {
8145 	struct perf_addr_filter *filter = NULL;
8146 	char *start, *orig, *filename = NULL;
8147 	struct path path;
8148 	substring_t args[MAX_OPT_ARGS];
8149 	int state = IF_STATE_ACTION, token;
8150 	unsigned int kernel = 0;
8151 	int ret = -EINVAL;
8152 
8153 	orig = fstr = kstrdup(fstr, GFP_KERNEL);
8154 	if (!fstr)
8155 		return -ENOMEM;
8156 
8157 	while ((start = strsep(&fstr, " ,\n")) != NULL) {
8158 		ret = -EINVAL;
8159 
8160 		if (!*start)
8161 			continue;
8162 
8163 		/* filter definition begins */
8164 		if (state == IF_STATE_ACTION) {
8165 			filter = perf_addr_filter_new(event, filters);
8166 			if (!filter)
8167 				goto fail;
8168 		}
8169 
8170 		token = match_token(start, if_tokens, args);
8171 		switch (token) {
8172 		case IF_ACT_FILTER:
8173 		case IF_ACT_START:
8174 			filter->filter = 1;
8175 
8176 		case IF_ACT_STOP:
8177 			if (state != IF_STATE_ACTION)
8178 				goto fail;
8179 
8180 			state = IF_STATE_SOURCE;
8181 			break;
8182 
8183 		case IF_SRC_KERNELADDR:
8184 		case IF_SRC_KERNEL:
8185 			kernel = 1;
8186 
8187 		case IF_SRC_FILEADDR:
8188 		case IF_SRC_FILE:
8189 			if (state != IF_STATE_SOURCE)
8190 				goto fail;
8191 
8192 			if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8193 				filter->range = 1;
8194 
8195 			*args[0].to = 0;
8196 			ret = kstrtoul(args[0].from, 0, &filter->offset);
8197 			if (ret)
8198 				goto fail;
8199 
8200 			if (filter->range) {
8201 				*args[1].to = 0;
8202 				ret = kstrtoul(args[1].from, 0, &filter->size);
8203 				if (ret)
8204 					goto fail;
8205 			}
8206 
8207 			if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8208 				int fpos = filter->range ? 2 : 1;
8209 
8210 				filename = match_strdup(&args[fpos]);
8211 				if (!filename) {
8212 					ret = -ENOMEM;
8213 					goto fail;
8214 				}
8215 			}
8216 
8217 			state = IF_STATE_END;
8218 			break;
8219 
8220 		default:
8221 			goto fail;
8222 		}
8223 
8224 		/*
8225 		 * Filter definition is fully parsed, validate and install it.
8226 		 * Make sure that it doesn't contradict itself or the event's
8227 		 * attribute.
8228 		 */
8229 		if (state == IF_STATE_END) {
8230 			if (kernel && event->attr.exclude_kernel)
8231 				goto fail;
8232 
8233 			if (!kernel) {
8234 				if (!filename)
8235 					goto fail;
8236 
8237 				/* look up the path and grab its inode */
8238 				ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8239 				if (ret)
8240 					goto fail_free_name;
8241 
8242 				filter->inode = igrab(d_inode(path.dentry));
8243 				path_put(&path);
8244 				kfree(filename);
8245 				filename = NULL;
8246 
8247 				ret = -EINVAL;
8248 				if (!filter->inode ||
8249 				    !S_ISREG(filter->inode->i_mode))
8250 					/* free_filters_list() will iput() */
8251 					goto fail;
8252 			}
8253 
8254 			/* ready to consume more filters */
8255 			state = IF_STATE_ACTION;
8256 			filter = NULL;
8257 		}
8258 	}
8259 
8260 	if (state != IF_STATE_ACTION)
8261 		goto fail;
8262 
8263 	kfree(orig);
8264 
8265 	return 0;
8266 
8267 fail_free_name:
8268 	kfree(filename);
8269 fail:
8270 	free_filters_list(filters);
8271 	kfree(orig);
8272 
8273 	return ret;
8274 }
8275 
8276 static int
perf_event_set_addr_filter(struct perf_event * event,char * filter_str)8277 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8278 {
8279 	LIST_HEAD(filters);
8280 	int ret;
8281 
8282 	/*
8283 	 * Since this is called in perf_ioctl() path, we're already holding
8284 	 * ctx::mutex.
8285 	 */
8286 	lockdep_assert_held(&event->ctx->mutex);
8287 
8288 	if (WARN_ON_ONCE(event->parent))
8289 		return -EINVAL;
8290 
8291 	/*
8292 	 * For now, we only support filtering in per-task events; doing so
8293 	 * for CPU-wide events requires additional context switching trickery,
8294 	 * since same object code will be mapped at different virtual
8295 	 * addresses in different processes.
8296 	 */
8297 	if (!event->ctx->task)
8298 		return -EOPNOTSUPP;
8299 
8300 	ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8301 	if (ret)
8302 		return ret;
8303 
8304 	ret = event->pmu->addr_filters_validate(&filters);
8305 	if (ret) {
8306 		free_filters_list(&filters);
8307 		return ret;
8308 	}
8309 
8310 	/* remove existing filters, if any */
8311 	perf_addr_filters_splice(event, &filters);
8312 
8313 	/* install new filters */
8314 	perf_event_for_each_child(event, perf_event_addr_filters_apply);
8315 
8316 	return ret;
8317 }
8318 
perf_event_set_filter(struct perf_event * event,void __user * arg)8319 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8320 {
8321 	char *filter_str;
8322 	int ret = -EINVAL;
8323 
8324 	if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8325 	    !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8326 	    !has_addr_filter(event))
8327 		return -EINVAL;
8328 
8329 	filter_str = strndup_user(arg, PAGE_SIZE);
8330 	if (IS_ERR(filter_str))
8331 		return PTR_ERR(filter_str);
8332 
8333 	if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8334 	    event->attr.type == PERF_TYPE_TRACEPOINT)
8335 		ret = ftrace_profile_set_filter(event, event->attr.config,
8336 						filter_str);
8337 	else if (has_addr_filter(event))
8338 		ret = perf_event_set_addr_filter(event, filter_str);
8339 
8340 	kfree(filter_str);
8341 	return ret;
8342 }
8343 
8344 /*
8345  * hrtimer based swevent callback
8346  */
8347 
perf_swevent_hrtimer(struct hrtimer * hrtimer)8348 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8349 {
8350 	enum hrtimer_restart ret = HRTIMER_RESTART;
8351 	struct perf_sample_data data;
8352 	struct pt_regs *regs;
8353 	struct perf_event *event;
8354 	u64 period;
8355 
8356 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8357 
8358 	if (event->state != PERF_EVENT_STATE_ACTIVE)
8359 		return HRTIMER_NORESTART;
8360 
8361 	event->pmu->read(event);
8362 
8363 	perf_sample_data_init(&data, 0, event->hw.last_period);
8364 	regs = get_irq_regs();
8365 
8366 	if (regs && !perf_exclude_event(event, regs)) {
8367 		if (!(event->attr.exclude_idle && is_idle_task(current)))
8368 			if (__perf_event_overflow(event, 1, &data, regs))
8369 				ret = HRTIMER_NORESTART;
8370 	}
8371 
8372 	period = max_t(u64, 10000, event->hw.sample_period);
8373 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8374 
8375 	return ret;
8376 }
8377 
perf_swevent_start_hrtimer(struct perf_event * event)8378 static void perf_swevent_start_hrtimer(struct perf_event *event)
8379 {
8380 	struct hw_perf_event *hwc = &event->hw;
8381 	s64 period;
8382 
8383 	if (!is_sampling_event(event))
8384 		return;
8385 
8386 	period = local64_read(&hwc->period_left);
8387 	if (period) {
8388 		if (period < 0)
8389 			period = 10000;
8390 
8391 		local64_set(&hwc->period_left, 0);
8392 	} else {
8393 		period = max_t(u64, 10000, hwc->sample_period);
8394 	}
8395 	hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8396 		      HRTIMER_MODE_REL_PINNED);
8397 }
8398 
perf_swevent_cancel_hrtimer(struct perf_event * event)8399 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8400 {
8401 	struct hw_perf_event *hwc = &event->hw;
8402 
8403 	if (is_sampling_event(event)) {
8404 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8405 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
8406 
8407 		hrtimer_cancel(&hwc->hrtimer);
8408 	}
8409 }
8410 
perf_swevent_init_hrtimer(struct perf_event * event)8411 static void perf_swevent_init_hrtimer(struct perf_event *event)
8412 {
8413 	struct hw_perf_event *hwc = &event->hw;
8414 
8415 	if (!is_sampling_event(event))
8416 		return;
8417 
8418 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8419 	hwc->hrtimer.function = perf_swevent_hrtimer;
8420 
8421 	/*
8422 	 * Since hrtimers have a fixed rate, we can do a static freq->period
8423 	 * mapping and avoid the whole period adjust feedback stuff.
8424 	 */
8425 	if (event->attr.freq) {
8426 		long freq = event->attr.sample_freq;
8427 
8428 		event->attr.sample_period = NSEC_PER_SEC / freq;
8429 		hwc->sample_period = event->attr.sample_period;
8430 		local64_set(&hwc->period_left, hwc->sample_period);
8431 		hwc->last_period = hwc->sample_period;
8432 		event->attr.freq = 0;
8433 	}
8434 }
8435 
8436 /*
8437  * Software event: cpu wall time clock
8438  */
8439 
cpu_clock_event_update(struct perf_event * event)8440 static void cpu_clock_event_update(struct perf_event *event)
8441 {
8442 	s64 prev;
8443 	u64 now;
8444 
8445 	now = local_clock();
8446 	prev = local64_xchg(&event->hw.prev_count, now);
8447 	local64_add(now - prev, &event->count);
8448 }
8449 
cpu_clock_event_start(struct perf_event * event,int flags)8450 static void cpu_clock_event_start(struct perf_event *event, int flags)
8451 {
8452 	local64_set(&event->hw.prev_count, local_clock());
8453 	perf_swevent_start_hrtimer(event);
8454 }
8455 
cpu_clock_event_stop(struct perf_event * event,int flags)8456 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8457 {
8458 	perf_swevent_cancel_hrtimer(event);
8459 	cpu_clock_event_update(event);
8460 }
8461 
cpu_clock_event_add(struct perf_event * event,int flags)8462 static int cpu_clock_event_add(struct perf_event *event, int flags)
8463 {
8464 	if (flags & PERF_EF_START)
8465 		cpu_clock_event_start(event, flags);
8466 	perf_event_update_userpage(event);
8467 
8468 	return 0;
8469 }
8470 
cpu_clock_event_del(struct perf_event * event,int flags)8471 static void cpu_clock_event_del(struct perf_event *event, int flags)
8472 {
8473 	cpu_clock_event_stop(event, flags);
8474 }
8475 
cpu_clock_event_read(struct perf_event * event)8476 static void cpu_clock_event_read(struct perf_event *event)
8477 {
8478 	cpu_clock_event_update(event);
8479 }
8480 
cpu_clock_event_init(struct perf_event * event)8481 static int cpu_clock_event_init(struct perf_event *event)
8482 {
8483 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8484 		return -ENOENT;
8485 
8486 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8487 		return -ENOENT;
8488 
8489 	/*
8490 	 * no branch sampling for software events
8491 	 */
8492 	if (has_branch_stack(event))
8493 		return -EOPNOTSUPP;
8494 
8495 	perf_swevent_init_hrtimer(event);
8496 
8497 	return 0;
8498 }
8499 
8500 static struct pmu perf_cpu_clock = {
8501 	.task_ctx_nr	= perf_sw_context,
8502 
8503 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8504 
8505 	.event_init	= cpu_clock_event_init,
8506 	.add		= cpu_clock_event_add,
8507 	.del		= cpu_clock_event_del,
8508 	.start		= cpu_clock_event_start,
8509 	.stop		= cpu_clock_event_stop,
8510 	.read		= cpu_clock_event_read,
8511 };
8512 
8513 /*
8514  * Software event: task time clock
8515  */
8516 
task_clock_event_update(struct perf_event * event,u64 now)8517 static void task_clock_event_update(struct perf_event *event, u64 now)
8518 {
8519 	u64 prev;
8520 	s64 delta;
8521 
8522 	prev = local64_xchg(&event->hw.prev_count, now);
8523 	delta = now - prev;
8524 	local64_add(delta, &event->count);
8525 }
8526 
task_clock_event_start(struct perf_event * event,int flags)8527 static void task_clock_event_start(struct perf_event *event, int flags)
8528 {
8529 	local64_set(&event->hw.prev_count, event->ctx->time);
8530 	perf_swevent_start_hrtimer(event);
8531 }
8532 
task_clock_event_stop(struct perf_event * event,int flags)8533 static void task_clock_event_stop(struct perf_event *event, int flags)
8534 {
8535 	perf_swevent_cancel_hrtimer(event);
8536 	task_clock_event_update(event, event->ctx->time);
8537 }
8538 
task_clock_event_add(struct perf_event * event,int flags)8539 static int task_clock_event_add(struct perf_event *event, int flags)
8540 {
8541 	if (flags & PERF_EF_START)
8542 		task_clock_event_start(event, flags);
8543 	perf_event_update_userpage(event);
8544 
8545 	return 0;
8546 }
8547 
task_clock_event_del(struct perf_event * event,int flags)8548 static void task_clock_event_del(struct perf_event *event, int flags)
8549 {
8550 	task_clock_event_stop(event, PERF_EF_UPDATE);
8551 }
8552 
task_clock_event_read(struct perf_event * event)8553 static void task_clock_event_read(struct perf_event *event)
8554 {
8555 	u64 now = perf_clock();
8556 	u64 delta = now - event->ctx->timestamp;
8557 	u64 time = event->ctx->time + delta;
8558 
8559 	task_clock_event_update(event, time);
8560 }
8561 
task_clock_event_init(struct perf_event * event)8562 static int task_clock_event_init(struct perf_event *event)
8563 {
8564 	if (event->attr.type != PERF_TYPE_SOFTWARE)
8565 		return -ENOENT;
8566 
8567 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8568 		return -ENOENT;
8569 
8570 	/*
8571 	 * no branch sampling for software events
8572 	 */
8573 	if (has_branch_stack(event))
8574 		return -EOPNOTSUPP;
8575 
8576 	perf_swevent_init_hrtimer(event);
8577 
8578 	return 0;
8579 }
8580 
8581 static struct pmu perf_task_clock = {
8582 	.task_ctx_nr	= perf_sw_context,
8583 
8584 	.capabilities	= PERF_PMU_CAP_NO_NMI,
8585 
8586 	.event_init	= task_clock_event_init,
8587 	.add		= task_clock_event_add,
8588 	.del		= task_clock_event_del,
8589 	.start		= task_clock_event_start,
8590 	.stop		= task_clock_event_stop,
8591 	.read		= task_clock_event_read,
8592 };
8593 
perf_pmu_nop_void(struct pmu * pmu)8594 static void perf_pmu_nop_void(struct pmu *pmu)
8595 {
8596 }
8597 
perf_pmu_nop_txn(struct pmu * pmu,unsigned int flags)8598 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8599 {
8600 }
8601 
perf_pmu_nop_int(struct pmu * pmu)8602 static int perf_pmu_nop_int(struct pmu *pmu)
8603 {
8604 	return 0;
8605 }
8606 
8607 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8608 
perf_pmu_start_txn(struct pmu * pmu,unsigned int flags)8609 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8610 {
8611 	__this_cpu_write(nop_txn_flags, flags);
8612 
8613 	if (flags & ~PERF_PMU_TXN_ADD)
8614 		return;
8615 
8616 	perf_pmu_disable(pmu);
8617 }
8618 
perf_pmu_commit_txn(struct pmu * pmu)8619 static int perf_pmu_commit_txn(struct pmu *pmu)
8620 {
8621 	unsigned int flags = __this_cpu_read(nop_txn_flags);
8622 
8623 	__this_cpu_write(nop_txn_flags, 0);
8624 
8625 	if (flags & ~PERF_PMU_TXN_ADD)
8626 		return 0;
8627 
8628 	perf_pmu_enable(pmu);
8629 	return 0;
8630 }
8631 
perf_pmu_cancel_txn(struct pmu * pmu)8632 static void perf_pmu_cancel_txn(struct pmu *pmu)
8633 {
8634 	unsigned int flags =  __this_cpu_read(nop_txn_flags);
8635 
8636 	__this_cpu_write(nop_txn_flags, 0);
8637 
8638 	if (flags & ~PERF_PMU_TXN_ADD)
8639 		return;
8640 
8641 	perf_pmu_enable(pmu);
8642 }
8643 
perf_event_idx_default(struct perf_event * event)8644 static int perf_event_idx_default(struct perf_event *event)
8645 {
8646 	return 0;
8647 }
8648 
8649 /*
8650  * Ensures all contexts with the same task_ctx_nr have the same
8651  * pmu_cpu_context too.
8652  */
find_pmu_context(int ctxn)8653 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8654 {
8655 	struct pmu *pmu;
8656 
8657 	if (ctxn < 0)
8658 		return NULL;
8659 
8660 	list_for_each_entry(pmu, &pmus, entry) {
8661 		if (pmu->task_ctx_nr == ctxn)
8662 			return pmu->pmu_cpu_context;
8663 	}
8664 
8665 	return NULL;
8666 }
8667 
update_pmu_context(struct pmu * pmu,struct pmu * old_pmu)8668 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
8669 {
8670 	int cpu;
8671 
8672 	for_each_possible_cpu(cpu) {
8673 		struct perf_cpu_context *cpuctx;
8674 
8675 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8676 
8677 		if (cpuctx->unique_pmu == old_pmu)
8678 			cpuctx->unique_pmu = pmu;
8679 	}
8680 }
8681 
free_pmu_context(struct pmu * pmu)8682 static void free_pmu_context(struct pmu *pmu)
8683 {
8684 	struct pmu *i;
8685 
8686 	mutex_lock(&pmus_lock);
8687 	/*
8688 	 * Like a real lame refcount.
8689 	 */
8690 	list_for_each_entry(i, &pmus, entry) {
8691 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8692 			update_pmu_context(i, pmu);
8693 			goto out;
8694 		}
8695 	}
8696 
8697 	free_percpu(pmu->pmu_cpu_context);
8698 out:
8699 	mutex_unlock(&pmus_lock);
8700 }
8701 
8702 /*
8703  * Let userspace know that this PMU supports address range filtering:
8704  */
nr_addr_filters_show(struct device * dev,struct device_attribute * attr,char * page)8705 static ssize_t nr_addr_filters_show(struct device *dev,
8706 				    struct device_attribute *attr,
8707 				    char *page)
8708 {
8709 	struct pmu *pmu = dev_get_drvdata(dev);
8710 
8711 	return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8712 }
8713 DEVICE_ATTR_RO(nr_addr_filters);
8714 
8715 static struct idr pmu_idr;
8716 
8717 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)8718 type_show(struct device *dev, struct device_attribute *attr, char *page)
8719 {
8720 	struct pmu *pmu = dev_get_drvdata(dev);
8721 
8722 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8723 }
8724 static DEVICE_ATTR_RO(type);
8725 
8726 static ssize_t
perf_event_mux_interval_ms_show(struct device * dev,struct device_attribute * attr,char * page)8727 perf_event_mux_interval_ms_show(struct device *dev,
8728 				struct device_attribute *attr,
8729 				char *page)
8730 {
8731 	struct pmu *pmu = dev_get_drvdata(dev);
8732 
8733 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8734 }
8735 
8736 static DEFINE_MUTEX(mux_interval_mutex);
8737 
8738 static ssize_t
perf_event_mux_interval_ms_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)8739 perf_event_mux_interval_ms_store(struct device *dev,
8740 				 struct device_attribute *attr,
8741 				 const char *buf, size_t count)
8742 {
8743 	struct pmu *pmu = dev_get_drvdata(dev);
8744 	int timer, cpu, ret;
8745 
8746 	ret = kstrtoint(buf, 0, &timer);
8747 	if (ret)
8748 		return ret;
8749 
8750 	if (timer < 1)
8751 		return -EINVAL;
8752 
8753 	/* same value, noting to do */
8754 	if (timer == pmu->hrtimer_interval_ms)
8755 		return count;
8756 
8757 	mutex_lock(&mux_interval_mutex);
8758 	pmu->hrtimer_interval_ms = timer;
8759 
8760 	/* update all cpuctx for this PMU */
8761 	get_online_cpus();
8762 	for_each_online_cpu(cpu) {
8763 		struct perf_cpu_context *cpuctx;
8764 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8765 		cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8766 
8767 		cpu_function_call(cpu,
8768 			(remote_function_f)perf_mux_hrtimer_restart, cpuctx);
8769 	}
8770 	put_online_cpus();
8771 	mutex_unlock(&mux_interval_mutex);
8772 
8773 	return count;
8774 }
8775 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
8776 
8777 static struct attribute *pmu_dev_attrs[] = {
8778 	&dev_attr_type.attr,
8779 	&dev_attr_perf_event_mux_interval_ms.attr,
8780 	NULL,
8781 };
8782 ATTRIBUTE_GROUPS(pmu_dev);
8783 
8784 static int pmu_bus_running;
8785 static struct bus_type pmu_bus = {
8786 	.name		= "event_source",
8787 	.dev_groups	= pmu_dev_groups,
8788 };
8789 
pmu_dev_release(struct device * dev)8790 static void pmu_dev_release(struct device *dev)
8791 {
8792 	kfree(dev);
8793 }
8794 
pmu_dev_alloc(struct pmu * pmu)8795 static int pmu_dev_alloc(struct pmu *pmu)
8796 {
8797 	int ret = -ENOMEM;
8798 
8799 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8800 	if (!pmu->dev)
8801 		goto out;
8802 
8803 	pmu->dev->groups = pmu->attr_groups;
8804 	device_initialize(pmu->dev);
8805 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
8806 	if (ret)
8807 		goto free_dev;
8808 
8809 	dev_set_drvdata(pmu->dev, pmu);
8810 	pmu->dev->bus = &pmu_bus;
8811 	pmu->dev->release = pmu_dev_release;
8812 	ret = device_add(pmu->dev);
8813 	if (ret)
8814 		goto free_dev;
8815 
8816 	/* For PMUs with address filters, throw in an extra attribute: */
8817 	if (pmu->nr_addr_filters)
8818 		ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8819 
8820 	if (ret)
8821 		goto del_dev;
8822 
8823 out:
8824 	return ret;
8825 
8826 del_dev:
8827 	device_del(pmu->dev);
8828 
8829 free_dev:
8830 	put_device(pmu->dev);
8831 	goto out;
8832 }
8833 
8834 static struct lock_class_key cpuctx_mutex;
8835 static struct lock_class_key cpuctx_lock;
8836 
perf_pmu_register(struct pmu * pmu,const char * name,int type)8837 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
8838 {
8839 	int cpu, ret;
8840 
8841 	mutex_lock(&pmus_lock);
8842 	ret = -ENOMEM;
8843 	pmu->pmu_disable_count = alloc_percpu(int);
8844 	if (!pmu->pmu_disable_count)
8845 		goto unlock;
8846 
8847 	pmu->type = -1;
8848 	if (!name)
8849 		goto skip_type;
8850 	pmu->name = name;
8851 
8852 	if (type < 0) {
8853 		type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8854 		if (type < 0) {
8855 			ret = type;
8856 			goto free_pdc;
8857 		}
8858 	}
8859 	pmu->type = type;
8860 
8861 	if (pmu_bus_running) {
8862 		ret = pmu_dev_alloc(pmu);
8863 		if (ret)
8864 			goto free_idr;
8865 	}
8866 
8867 skip_type:
8868 	if (pmu->task_ctx_nr == perf_hw_context) {
8869 		static int hw_context_taken = 0;
8870 
8871 		/*
8872 		 * Other than systems with heterogeneous CPUs, it never makes
8873 		 * sense for two PMUs to share perf_hw_context. PMUs which are
8874 		 * uncore must use perf_invalid_context.
8875 		 */
8876 		if (WARN_ON_ONCE(hw_context_taken &&
8877 		    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
8878 			pmu->task_ctx_nr = perf_invalid_context;
8879 
8880 		hw_context_taken = 1;
8881 	}
8882 
8883 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8884 	if (pmu->pmu_cpu_context)
8885 		goto got_cpu_context;
8886 
8887 	ret = -ENOMEM;
8888 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8889 	if (!pmu->pmu_cpu_context)
8890 		goto free_dev;
8891 
8892 	for_each_possible_cpu(cpu) {
8893 		struct perf_cpu_context *cpuctx;
8894 
8895 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8896 		__perf_event_init_context(&cpuctx->ctx);
8897 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
8898 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
8899 		cpuctx->ctx.pmu = pmu;
8900 
8901 		__perf_mux_hrtimer_init(cpuctx, cpu);
8902 
8903 		cpuctx->unique_pmu = pmu;
8904 	}
8905 
8906 got_cpu_context:
8907 	if (!pmu->start_txn) {
8908 		if (pmu->pmu_enable) {
8909 			/*
8910 			 * If we have pmu_enable/pmu_disable calls, install
8911 			 * transaction stubs that use that to try and batch
8912 			 * hardware accesses.
8913 			 */
8914 			pmu->start_txn  = perf_pmu_start_txn;
8915 			pmu->commit_txn = perf_pmu_commit_txn;
8916 			pmu->cancel_txn = perf_pmu_cancel_txn;
8917 		} else {
8918 			pmu->start_txn  = perf_pmu_nop_txn;
8919 			pmu->commit_txn = perf_pmu_nop_int;
8920 			pmu->cancel_txn = perf_pmu_nop_void;
8921 		}
8922 	}
8923 
8924 	if (!pmu->pmu_enable) {
8925 		pmu->pmu_enable  = perf_pmu_nop_void;
8926 		pmu->pmu_disable = perf_pmu_nop_void;
8927 	}
8928 
8929 	if (!pmu->event_idx)
8930 		pmu->event_idx = perf_event_idx_default;
8931 
8932 	list_add_rcu(&pmu->entry, &pmus);
8933 	atomic_set(&pmu->exclusive_cnt, 0);
8934 	ret = 0;
8935 unlock:
8936 	mutex_unlock(&pmus_lock);
8937 
8938 	return ret;
8939 
8940 free_dev:
8941 	device_del(pmu->dev);
8942 	put_device(pmu->dev);
8943 
8944 free_idr:
8945 	if (pmu->type >= PERF_TYPE_MAX)
8946 		idr_remove(&pmu_idr, pmu->type);
8947 
8948 free_pdc:
8949 	free_percpu(pmu->pmu_disable_count);
8950 	goto unlock;
8951 }
8952 EXPORT_SYMBOL_GPL(perf_pmu_register);
8953 
perf_pmu_unregister(struct pmu * pmu)8954 void perf_pmu_unregister(struct pmu *pmu)
8955 {
8956 	int remove_device;
8957 
8958 	mutex_lock(&pmus_lock);
8959 	remove_device = pmu_bus_running;
8960 	list_del_rcu(&pmu->entry);
8961 	mutex_unlock(&pmus_lock);
8962 
8963 	/*
8964 	 * We dereference the pmu list under both SRCU and regular RCU, so
8965 	 * synchronize against both of those.
8966 	 */
8967 	synchronize_srcu(&pmus_srcu);
8968 	synchronize_rcu();
8969 
8970 	free_percpu(pmu->pmu_disable_count);
8971 	if (pmu->type >= PERF_TYPE_MAX)
8972 		idr_remove(&pmu_idr, pmu->type);
8973 	if (remove_device) {
8974 		if (pmu->nr_addr_filters)
8975 			device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8976 		device_del(pmu->dev);
8977 		put_device(pmu->dev);
8978 	}
8979 	free_pmu_context(pmu);
8980 }
8981 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
8982 
perf_try_init_event(struct pmu * pmu,struct perf_event * event)8983 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8984 {
8985 	struct perf_event_context *ctx = NULL;
8986 	int ret;
8987 
8988 	if (!try_module_get(pmu->module))
8989 		return -ENODEV;
8990 
8991 	if (event->group_leader != event) {
8992 		/*
8993 		 * This ctx->mutex can nest when we're called through
8994 		 * inheritance. See the perf_event_ctx_lock_nested() comment.
8995 		 */
8996 		ctx = perf_event_ctx_lock_nested(event->group_leader,
8997 						 SINGLE_DEPTH_NESTING);
8998 		BUG_ON(!ctx);
8999 	}
9000 
9001 	event->pmu = pmu;
9002 	ret = pmu->event_init(event);
9003 
9004 	if (ctx)
9005 		perf_event_ctx_unlock(event->group_leader, ctx);
9006 
9007 	if (ret)
9008 		module_put(pmu->module);
9009 
9010 	return ret;
9011 }
9012 
perf_init_event(struct perf_event * event)9013 static struct pmu *perf_init_event(struct perf_event *event)
9014 {
9015 	struct pmu *pmu = NULL;
9016 	int idx;
9017 	int ret;
9018 
9019 	idx = srcu_read_lock(&pmus_srcu);
9020 
9021 	rcu_read_lock();
9022 	pmu = idr_find(&pmu_idr, event->attr.type);
9023 	rcu_read_unlock();
9024 	if (pmu) {
9025 		ret = perf_try_init_event(pmu, event);
9026 		if (ret)
9027 			pmu = ERR_PTR(ret);
9028 		goto unlock;
9029 	}
9030 
9031 	list_for_each_entry_rcu(pmu, &pmus, entry) {
9032 		ret = perf_try_init_event(pmu, event);
9033 		if (!ret)
9034 			goto unlock;
9035 
9036 		if (ret != -ENOENT) {
9037 			pmu = ERR_PTR(ret);
9038 			goto unlock;
9039 		}
9040 	}
9041 	pmu = ERR_PTR(-ENOENT);
9042 unlock:
9043 	srcu_read_unlock(&pmus_srcu, idx);
9044 
9045 	return pmu;
9046 }
9047 
attach_sb_event(struct perf_event * event)9048 static void attach_sb_event(struct perf_event *event)
9049 {
9050 	struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9051 
9052 	raw_spin_lock(&pel->lock);
9053 	list_add_rcu(&event->sb_list, &pel->list);
9054 	raw_spin_unlock(&pel->lock);
9055 }
9056 
9057 /*
9058  * We keep a list of all !task (and therefore per-cpu) events
9059  * that need to receive side-band records.
9060  *
9061  * This avoids having to scan all the various PMU per-cpu contexts
9062  * looking for them.
9063  */
account_pmu_sb_event(struct perf_event * event)9064 static void account_pmu_sb_event(struct perf_event *event)
9065 {
9066 	if (is_sb_event(event))
9067 		attach_sb_event(event);
9068 }
9069 
account_event_cpu(struct perf_event * event,int cpu)9070 static void account_event_cpu(struct perf_event *event, int cpu)
9071 {
9072 	if (event->parent)
9073 		return;
9074 
9075 	if (is_cgroup_event(event))
9076 		atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9077 }
9078 
9079 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
account_freq_event_nohz(void)9080 static void account_freq_event_nohz(void)
9081 {
9082 #ifdef CONFIG_NO_HZ_FULL
9083 	/* Lock so we don't race with concurrent unaccount */
9084 	spin_lock(&nr_freq_lock);
9085 	if (atomic_inc_return(&nr_freq_events) == 1)
9086 		tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9087 	spin_unlock(&nr_freq_lock);
9088 #endif
9089 }
9090 
account_freq_event(void)9091 static void account_freq_event(void)
9092 {
9093 	if (tick_nohz_full_enabled())
9094 		account_freq_event_nohz();
9095 	else
9096 		atomic_inc(&nr_freq_events);
9097 }
9098 
9099 
account_event(struct perf_event * event)9100 static void account_event(struct perf_event *event)
9101 {
9102 	bool inc = false;
9103 
9104 	if (event->parent)
9105 		return;
9106 
9107 	if (event->attach_state & PERF_ATTACH_TASK)
9108 		inc = true;
9109 	if (event->attr.mmap || event->attr.mmap_data)
9110 		atomic_inc(&nr_mmap_events);
9111 	if (event->attr.comm)
9112 		atomic_inc(&nr_comm_events);
9113 	if (event->attr.task)
9114 		atomic_inc(&nr_task_events);
9115 	if (event->attr.freq)
9116 		account_freq_event();
9117 	if (event->attr.context_switch) {
9118 		atomic_inc(&nr_switch_events);
9119 		inc = true;
9120 	}
9121 	if (has_branch_stack(event))
9122 		inc = true;
9123 	if (is_cgroup_event(event))
9124 		inc = true;
9125 
9126 	if (inc) {
9127 		if (atomic_inc_not_zero(&perf_sched_count))
9128 			goto enabled;
9129 
9130 		mutex_lock(&perf_sched_mutex);
9131 		if (!atomic_read(&perf_sched_count)) {
9132 			static_branch_enable(&perf_sched_events);
9133 			/*
9134 			 * Guarantee that all CPUs observe they key change and
9135 			 * call the perf scheduling hooks before proceeding to
9136 			 * install events that need them.
9137 			 */
9138 			synchronize_sched();
9139 		}
9140 		/*
9141 		 * Now that we have waited for the sync_sched(), allow further
9142 		 * increments to by-pass the mutex.
9143 		 */
9144 		atomic_inc(&perf_sched_count);
9145 		mutex_unlock(&perf_sched_mutex);
9146 	}
9147 enabled:
9148 
9149 	account_event_cpu(event, event->cpu);
9150 
9151 	account_pmu_sb_event(event);
9152 }
9153 
9154 /*
9155  * Allocate and initialize a event structure
9156  */
9157 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context,int cgroup_fd)9158 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9159 		 struct task_struct *task,
9160 		 struct perf_event *group_leader,
9161 		 struct perf_event *parent_event,
9162 		 perf_overflow_handler_t overflow_handler,
9163 		 void *context, int cgroup_fd)
9164 {
9165 	struct pmu *pmu;
9166 	struct perf_event *event;
9167 	struct hw_perf_event *hwc;
9168 	long err = -EINVAL;
9169 
9170 	if ((unsigned)cpu >= nr_cpu_ids) {
9171 		if (!task || cpu != -1)
9172 			return ERR_PTR(-EINVAL);
9173 	}
9174 
9175 	event = kzalloc(sizeof(*event), GFP_KERNEL);
9176 	if (!event)
9177 		return ERR_PTR(-ENOMEM);
9178 
9179 	/*
9180 	 * Single events are their own group leaders, with an
9181 	 * empty sibling list:
9182 	 */
9183 	if (!group_leader)
9184 		group_leader = event;
9185 
9186 	mutex_init(&event->child_mutex);
9187 	INIT_LIST_HEAD(&event->child_list);
9188 
9189 	INIT_LIST_HEAD(&event->group_entry);
9190 	INIT_LIST_HEAD(&event->event_entry);
9191 	INIT_LIST_HEAD(&event->sibling_list);
9192 	INIT_LIST_HEAD(&event->rb_entry);
9193 	INIT_LIST_HEAD(&event->active_entry);
9194 	INIT_LIST_HEAD(&event->addr_filters.list);
9195 	INIT_HLIST_NODE(&event->hlist_entry);
9196 
9197 
9198 	init_waitqueue_head(&event->waitq);
9199 	init_irq_work(&event->pending, perf_pending_event);
9200 
9201 	mutex_init(&event->mmap_mutex);
9202 	raw_spin_lock_init(&event->addr_filters.lock);
9203 
9204 	atomic_long_set(&event->refcount, 1);
9205 	event->cpu		= cpu;
9206 	event->attr		= *attr;
9207 	event->group_leader	= group_leader;
9208 	event->pmu		= NULL;
9209 	event->oncpu		= -1;
9210 
9211 	event->parent		= parent_event;
9212 
9213 	event->ns		= get_pid_ns(task_active_pid_ns(current));
9214 	event->id		= atomic64_inc_return(&perf_event_id);
9215 
9216 	event->state		= PERF_EVENT_STATE_INACTIVE;
9217 
9218 	if (task) {
9219 		event->attach_state = PERF_ATTACH_TASK;
9220 		/*
9221 		 * XXX pmu::event_init needs to know what task to account to
9222 		 * and we cannot use the ctx information because we need the
9223 		 * pmu before we get a ctx.
9224 		 */
9225 		get_task_struct(task);
9226 		event->hw.target = task;
9227 	}
9228 
9229 	event->clock = &local_clock;
9230 	if (parent_event)
9231 		event->clock = parent_event->clock;
9232 
9233 	if (!overflow_handler && parent_event) {
9234 		overflow_handler = parent_event->overflow_handler;
9235 		context = parent_event->overflow_handler_context;
9236 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9237 		if (overflow_handler == bpf_overflow_handler) {
9238 			struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9239 
9240 			if (IS_ERR(prog)) {
9241 				err = PTR_ERR(prog);
9242 				goto err_ns;
9243 			}
9244 			event->prog = prog;
9245 			event->orig_overflow_handler =
9246 				parent_event->orig_overflow_handler;
9247 		}
9248 #endif
9249 	}
9250 
9251 	if (overflow_handler) {
9252 		event->overflow_handler	= overflow_handler;
9253 		event->overflow_handler_context = context;
9254 	} else if (is_write_backward(event)){
9255 		event->overflow_handler = perf_event_output_backward;
9256 		event->overflow_handler_context = NULL;
9257 	} else {
9258 		event->overflow_handler = perf_event_output_forward;
9259 		event->overflow_handler_context = NULL;
9260 	}
9261 
9262 	perf_event__state_init(event);
9263 
9264 	pmu = NULL;
9265 
9266 	hwc = &event->hw;
9267 	hwc->sample_period = attr->sample_period;
9268 	if (attr->freq && attr->sample_freq)
9269 		hwc->sample_period = 1;
9270 	hwc->last_period = hwc->sample_period;
9271 
9272 	local64_set(&hwc->period_left, hwc->sample_period);
9273 
9274 	/*
9275 	 * We currently do not support PERF_SAMPLE_READ on inherited events.
9276 	 * See perf_output_read().
9277 	 */
9278 	if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9279 		goto err_ns;
9280 
9281 	if (!has_branch_stack(event))
9282 		event->attr.branch_sample_type = 0;
9283 
9284 	if (cgroup_fd != -1) {
9285 		err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9286 		if (err)
9287 			goto err_ns;
9288 	}
9289 
9290 	pmu = perf_init_event(event);
9291 	if (!pmu)
9292 		goto err_ns;
9293 	else if (IS_ERR(pmu)) {
9294 		err = PTR_ERR(pmu);
9295 		goto err_ns;
9296 	}
9297 
9298 	err = exclusive_event_init(event);
9299 	if (err)
9300 		goto err_pmu;
9301 
9302 	if (has_addr_filter(event)) {
9303 		event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9304 						   sizeof(unsigned long),
9305 						   GFP_KERNEL);
9306 		if (!event->addr_filters_offs) {
9307 			err = -ENOMEM;
9308 			goto err_per_task;
9309 		}
9310 
9311 		/* force hw sync on the address filters */
9312 		event->addr_filters_gen = 1;
9313 	}
9314 
9315 	if (!event->parent) {
9316 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9317 			err = get_callchain_buffers(attr->sample_max_stack);
9318 			if (err)
9319 				goto err_addr_filters;
9320 		}
9321 	}
9322 
9323 	/* symmetric to unaccount_event() in _free_event() */
9324 	account_event(event);
9325 
9326 	return event;
9327 
9328 err_addr_filters:
9329 	kfree(event->addr_filters_offs);
9330 
9331 err_per_task:
9332 	exclusive_event_destroy(event);
9333 
9334 err_pmu:
9335 	if (event->destroy)
9336 		event->destroy(event);
9337 	module_put(pmu->module);
9338 err_ns:
9339 	if (is_cgroup_event(event))
9340 		perf_detach_cgroup(event);
9341 	if (event->ns)
9342 		put_pid_ns(event->ns);
9343 	if (event->hw.target)
9344 		put_task_struct(event->hw.target);
9345 	kfree(event);
9346 
9347 	return ERR_PTR(err);
9348 }
9349 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)9350 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9351 			  struct perf_event_attr *attr)
9352 {
9353 	u32 size;
9354 	int ret;
9355 
9356 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9357 		return -EFAULT;
9358 
9359 	/*
9360 	 * zero the full structure, so that a short copy will be nice.
9361 	 */
9362 	memset(attr, 0, sizeof(*attr));
9363 
9364 	ret = get_user(size, &uattr->size);
9365 	if (ret)
9366 		return ret;
9367 
9368 	if (size > PAGE_SIZE)	/* silly large */
9369 		goto err_size;
9370 
9371 	if (!size)		/* abi compat */
9372 		size = PERF_ATTR_SIZE_VER0;
9373 
9374 	if (size < PERF_ATTR_SIZE_VER0)
9375 		goto err_size;
9376 
9377 	/*
9378 	 * If we're handed a bigger struct than we know of,
9379 	 * ensure all the unknown bits are 0 - i.e. new
9380 	 * user-space does not rely on any kernel feature
9381 	 * extensions we dont know about yet.
9382 	 */
9383 	if (size > sizeof(*attr)) {
9384 		unsigned char __user *addr;
9385 		unsigned char __user *end;
9386 		unsigned char val;
9387 
9388 		addr = (void __user *)uattr + sizeof(*attr);
9389 		end  = (void __user *)uattr + size;
9390 
9391 		for (; addr < end; addr++) {
9392 			ret = get_user(val, addr);
9393 			if (ret)
9394 				return ret;
9395 			if (val)
9396 				goto err_size;
9397 		}
9398 		size = sizeof(*attr);
9399 	}
9400 
9401 	ret = copy_from_user(attr, uattr, size);
9402 	if (ret)
9403 		return -EFAULT;
9404 
9405 	if (attr->__reserved_1)
9406 		return -EINVAL;
9407 
9408 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9409 		return -EINVAL;
9410 
9411 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9412 		return -EINVAL;
9413 
9414 	if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9415 		u64 mask = attr->branch_sample_type;
9416 
9417 		/* only using defined bits */
9418 		if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9419 			return -EINVAL;
9420 
9421 		/* at least one branch bit must be set */
9422 		if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9423 			return -EINVAL;
9424 
9425 		/* propagate priv level, when not set for branch */
9426 		if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9427 
9428 			/* exclude_kernel checked on syscall entry */
9429 			if (!attr->exclude_kernel)
9430 				mask |= PERF_SAMPLE_BRANCH_KERNEL;
9431 
9432 			if (!attr->exclude_user)
9433 				mask |= PERF_SAMPLE_BRANCH_USER;
9434 
9435 			if (!attr->exclude_hv)
9436 				mask |= PERF_SAMPLE_BRANCH_HV;
9437 			/*
9438 			 * adjust user setting (for HW filter setup)
9439 			 */
9440 			attr->branch_sample_type = mask;
9441 		}
9442 		/* privileged levels capture (kernel, hv): check permissions */
9443 		if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9444 		    && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9445 			return -EACCES;
9446 	}
9447 
9448 	if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9449 		ret = perf_reg_validate(attr->sample_regs_user);
9450 		if (ret)
9451 			return ret;
9452 	}
9453 
9454 	if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9455 		if (!arch_perf_have_user_stack_dump())
9456 			return -ENOSYS;
9457 
9458 		/*
9459 		 * We have __u32 type for the size, but so far
9460 		 * we can only use __u16 as maximum due to the
9461 		 * __u16 sample size limit.
9462 		 */
9463 		if (attr->sample_stack_user >= USHRT_MAX)
9464 			return -EINVAL;
9465 		else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9466 			return -EINVAL;
9467 	}
9468 
9469 	if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9470 		ret = perf_reg_validate(attr->sample_regs_intr);
9471 out:
9472 	return ret;
9473 
9474 err_size:
9475 	put_user(sizeof(*attr), &uattr->size);
9476 	ret = -E2BIG;
9477 	goto out;
9478 }
9479 
9480 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)9481 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9482 {
9483 	struct ring_buffer *rb = NULL;
9484 	int ret = -EINVAL;
9485 
9486 	if (!output_event)
9487 		goto set;
9488 
9489 	/* don't allow circular references */
9490 	if (event == output_event)
9491 		goto out;
9492 
9493 	/*
9494 	 * Don't allow cross-cpu buffers
9495 	 */
9496 	if (output_event->cpu != event->cpu)
9497 		goto out;
9498 
9499 	/*
9500 	 * If its not a per-cpu rb, it must be the same task.
9501 	 */
9502 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9503 		goto out;
9504 
9505 	/*
9506 	 * Mixing clocks in the same buffer is trouble you don't need.
9507 	 */
9508 	if (output_event->clock != event->clock)
9509 		goto out;
9510 
9511 	/*
9512 	 * Either writing ring buffer from beginning or from end.
9513 	 * Mixing is not allowed.
9514 	 */
9515 	if (is_write_backward(output_event) != is_write_backward(event))
9516 		goto out;
9517 
9518 	/*
9519 	 * If both events generate aux data, they must be on the same PMU
9520 	 */
9521 	if (has_aux(event) && has_aux(output_event) &&
9522 	    event->pmu != output_event->pmu)
9523 		goto out;
9524 
9525 set:
9526 	mutex_lock(&event->mmap_mutex);
9527 	/* Can't redirect output if we've got an active mmap() */
9528 	if (atomic_read(&event->mmap_count))
9529 		goto unlock;
9530 
9531 	if (output_event) {
9532 		/* get the rb we want to redirect to */
9533 		rb = ring_buffer_get(output_event);
9534 		if (!rb)
9535 			goto unlock;
9536 	}
9537 
9538 	ring_buffer_attach(event, rb);
9539 
9540 	ret = 0;
9541 unlock:
9542 	mutex_unlock(&event->mmap_mutex);
9543 
9544 out:
9545 	return ret;
9546 }
9547 
mutex_lock_double(struct mutex * a,struct mutex * b)9548 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9549 {
9550 	if (b < a)
9551 		swap(a, b);
9552 
9553 	mutex_lock(a);
9554 	mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9555 }
9556 
perf_event_set_clock(struct perf_event * event,clockid_t clk_id)9557 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9558 {
9559 	bool nmi_safe = false;
9560 
9561 	switch (clk_id) {
9562 	case CLOCK_MONOTONIC:
9563 		event->clock = &ktime_get_mono_fast_ns;
9564 		nmi_safe = true;
9565 		break;
9566 
9567 	case CLOCK_MONOTONIC_RAW:
9568 		event->clock = &ktime_get_raw_fast_ns;
9569 		nmi_safe = true;
9570 		break;
9571 
9572 	case CLOCK_REALTIME:
9573 		event->clock = &ktime_get_real_ns;
9574 		break;
9575 
9576 	case CLOCK_BOOTTIME:
9577 		event->clock = &ktime_get_boot_ns;
9578 		break;
9579 
9580 	case CLOCK_TAI:
9581 		event->clock = &ktime_get_tai_ns;
9582 		break;
9583 
9584 	default:
9585 		return -EINVAL;
9586 	}
9587 
9588 	if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9589 		return -EINVAL;
9590 
9591 	return 0;
9592 }
9593 
9594 /*
9595  * Variation on perf_event_ctx_lock_nested(), except we take two context
9596  * mutexes.
9597  */
9598 static struct perf_event_context *
__perf_event_ctx_lock_double(struct perf_event * group_leader,struct perf_event_context * ctx)9599 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9600 			     struct perf_event_context *ctx)
9601 {
9602 	struct perf_event_context *gctx;
9603 
9604 again:
9605 	rcu_read_lock();
9606 	gctx = READ_ONCE(group_leader->ctx);
9607 	if (!atomic_inc_not_zero(&gctx->refcount)) {
9608 		rcu_read_unlock();
9609 		goto again;
9610 	}
9611 	rcu_read_unlock();
9612 
9613 	mutex_lock_double(&gctx->mutex, &ctx->mutex);
9614 
9615 	if (group_leader->ctx != gctx) {
9616 		mutex_unlock(&ctx->mutex);
9617 		mutex_unlock(&gctx->mutex);
9618 		put_ctx(gctx);
9619 		goto again;
9620 	}
9621 
9622 	return gctx;
9623 }
9624 
9625 /**
9626  * sys_perf_event_open - open a performance event, associate it to a task/cpu
9627  *
9628  * @attr_uptr:	event_id type attributes for monitoring/sampling
9629  * @pid:		target pid
9630  * @cpu:		target cpu
9631  * @group_fd:		group leader event fd
9632  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)9633 SYSCALL_DEFINE5(perf_event_open,
9634 		struct perf_event_attr __user *, attr_uptr,
9635 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9636 {
9637 	struct perf_event *group_leader = NULL, *output_event = NULL;
9638 	struct perf_event *event, *sibling;
9639 	struct perf_event_attr attr;
9640 	struct perf_event_context *ctx, *uninitialized_var(gctx);
9641 	struct file *event_file = NULL;
9642 	struct fd group = {NULL, 0};
9643 	struct task_struct *task = NULL;
9644 	struct pmu *pmu;
9645 	int event_fd;
9646 	int move_group = 0;
9647 	int err;
9648 	int f_flags = O_RDWR;
9649 	int cgroup_fd = -1;
9650 
9651 	/* for future expandability... */
9652 	if (flags & ~PERF_FLAG_ALL)
9653 		return -EINVAL;
9654 
9655 	if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
9656 		return -EACCES;
9657 
9658 	err = perf_copy_attr(attr_uptr, &attr);
9659 	if (err)
9660 		return err;
9661 
9662 	if (!attr.exclude_kernel) {
9663 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9664 			return -EACCES;
9665 	}
9666 
9667 	if (attr.freq) {
9668 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
9669 			return -EINVAL;
9670 	} else {
9671 		if (attr.sample_period & (1ULL << 63))
9672 			return -EINVAL;
9673 	}
9674 
9675 	if (!attr.sample_max_stack)
9676 		attr.sample_max_stack = sysctl_perf_event_max_stack;
9677 
9678 	/*
9679 	 * In cgroup mode, the pid argument is used to pass the fd
9680 	 * opened to the cgroup directory in cgroupfs. The cpu argument
9681 	 * designates the cpu on which to monitor threads from that
9682 	 * cgroup.
9683 	 */
9684 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9685 		return -EINVAL;
9686 
9687 	if (flags & PERF_FLAG_FD_CLOEXEC)
9688 		f_flags |= O_CLOEXEC;
9689 
9690 	event_fd = get_unused_fd_flags(f_flags);
9691 	if (event_fd < 0)
9692 		return event_fd;
9693 
9694 	if (group_fd != -1) {
9695 		err = perf_fget_light(group_fd, &group);
9696 		if (err)
9697 			goto err_fd;
9698 		group_leader = group.file->private_data;
9699 		if (flags & PERF_FLAG_FD_OUTPUT)
9700 			output_event = group_leader;
9701 		if (flags & PERF_FLAG_FD_NO_GROUP)
9702 			group_leader = NULL;
9703 	}
9704 
9705 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
9706 		task = find_lively_task_by_vpid(pid);
9707 		if (IS_ERR(task)) {
9708 			err = PTR_ERR(task);
9709 			goto err_group_fd;
9710 		}
9711 	}
9712 
9713 	if (task && group_leader &&
9714 	    group_leader->attr.inherit != attr.inherit) {
9715 		err = -EINVAL;
9716 		goto err_task;
9717 	}
9718 
9719 	get_online_cpus();
9720 
9721 	if (task) {
9722 		err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9723 		if (err)
9724 			goto err_cpus;
9725 
9726 		/*
9727 		 * Reuse ptrace permission checks for now.
9728 		 *
9729 		 * We must hold cred_guard_mutex across this and any potential
9730 		 * perf_install_in_context() call for this new event to
9731 		 * serialize against exec() altering our credentials (and the
9732 		 * perf_event_exit_task() that could imply).
9733 		 */
9734 		err = -EACCES;
9735 		if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9736 			goto err_cred;
9737 	}
9738 
9739 	if (flags & PERF_FLAG_PID_CGROUP)
9740 		cgroup_fd = pid;
9741 
9742 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
9743 				 NULL, NULL, cgroup_fd);
9744 	if (IS_ERR(event)) {
9745 		err = PTR_ERR(event);
9746 		goto err_cred;
9747 	}
9748 
9749 	if (is_sampling_event(event)) {
9750 		if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9751 			err = -EOPNOTSUPP;
9752 			goto err_alloc;
9753 		}
9754 	}
9755 
9756 	/*
9757 	 * Special case software events and allow them to be part of
9758 	 * any hardware group.
9759 	 */
9760 	pmu = event->pmu;
9761 
9762 	if (attr.use_clockid) {
9763 		err = perf_event_set_clock(event, attr.clockid);
9764 		if (err)
9765 			goto err_alloc;
9766 	}
9767 
9768 	if (pmu->task_ctx_nr == perf_sw_context)
9769 		event->event_caps |= PERF_EV_CAP_SOFTWARE;
9770 
9771 	if (group_leader &&
9772 	    (is_software_event(event) != is_software_event(group_leader))) {
9773 		if (is_software_event(event)) {
9774 			/*
9775 			 * If event and group_leader are not both a software
9776 			 * event, and event is, then group leader is not.
9777 			 *
9778 			 * Allow the addition of software events to !software
9779 			 * groups, this is safe because software events never
9780 			 * fail to schedule.
9781 			 */
9782 			pmu = group_leader->pmu;
9783 		} else if (is_software_event(group_leader) &&
9784 			   (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9785 			/*
9786 			 * In case the group is a pure software group, and we
9787 			 * try to add a hardware event, move the whole group to
9788 			 * the hardware context.
9789 			 */
9790 			move_group = 1;
9791 		}
9792 	}
9793 
9794 	/*
9795 	 * Get the target context (task or percpu):
9796 	 */
9797 	ctx = find_get_context(pmu, task, event);
9798 	if (IS_ERR(ctx)) {
9799 		err = PTR_ERR(ctx);
9800 		goto err_alloc;
9801 	}
9802 
9803 	if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9804 		err = -EBUSY;
9805 		goto err_context;
9806 	}
9807 
9808 	/*
9809 	 * Look up the group leader (we will attach this event to it):
9810 	 */
9811 	if (group_leader) {
9812 		err = -EINVAL;
9813 
9814 		/*
9815 		 * Do not allow a recursive hierarchy (this new sibling
9816 		 * becoming part of another group-sibling):
9817 		 */
9818 		if (group_leader->group_leader != group_leader)
9819 			goto err_context;
9820 
9821 		/* All events in a group should have the same clock */
9822 		if (group_leader->clock != event->clock)
9823 			goto err_context;
9824 
9825 		/*
9826 		 * Make sure we're both events for the same CPU;
9827 		 * grouping events for different CPUs is broken; since
9828 		 * you can never concurrently schedule them anyhow.
9829 		 */
9830 		if (group_leader->cpu != event->cpu)
9831 			goto err_context;
9832 
9833 		/*
9834 		 * Make sure we're both on the same task, or both
9835 		 * per-CPU events.
9836 		 */
9837 		if (group_leader->ctx->task != ctx->task)
9838 			goto err_context;
9839 
9840 		/*
9841 		 * Do not allow to attach to a group in a different task
9842 		 * or CPU context. If we're moving SW events, we'll fix
9843 		 * this up later, so allow that.
9844 		 */
9845 		if (!move_group && group_leader->ctx != ctx)
9846 			goto err_context;
9847 
9848 		/*
9849 		 * Only a group leader can be exclusive or pinned
9850 		 */
9851 		if (attr.exclusive || attr.pinned)
9852 			goto err_context;
9853 	}
9854 
9855 	if (output_event) {
9856 		err = perf_event_set_output(event, output_event);
9857 		if (err)
9858 			goto err_context;
9859 	}
9860 
9861 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9862 					f_flags);
9863 	if (IS_ERR(event_file)) {
9864 		err = PTR_ERR(event_file);
9865 		event_file = NULL;
9866 		goto err_context;
9867 	}
9868 
9869 	if (move_group) {
9870 		gctx = __perf_event_ctx_lock_double(group_leader, ctx);
9871 
9872 		if (gctx->task == TASK_TOMBSTONE) {
9873 			err = -ESRCH;
9874 			goto err_locked;
9875 		}
9876 
9877 		/*
9878 		 * Check if we raced against another sys_perf_event_open() call
9879 		 * moving the software group underneath us.
9880 		 */
9881 		if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
9882 			/*
9883 			 * If someone moved the group out from under us, check
9884 			 * if this new event wound up on the same ctx, if so
9885 			 * its the regular !move_group case, otherwise fail.
9886 			 */
9887 			if (gctx != ctx) {
9888 				err = -EINVAL;
9889 				goto err_locked;
9890 			} else {
9891 				perf_event_ctx_unlock(group_leader, gctx);
9892 				move_group = 0;
9893 			}
9894 		}
9895 	} else {
9896 		mutex_lock(&ctx->mutex);
9897 	}
9898 
9899 	if (ctx->task == TASK_TOMBSTONE) {
9900 		err = -ESRCH;
9901 		goto err_locked;
9902 	}
9903 
9904 	if (!perf_event_validate_size(event)) {
9905 		err = -E2BIG;
9906 		goto err_locked;
9907 	}
9908 
9909 	/*
9910 	 * Must be under the same ctx::mutex as perf_install_in_context(),
9911 	 * because we need to serialize with concurrent event creation.
9912 	 */
9913 	if (!exclusive_event_installable(event, ctx)) {
9914 		/* exclusive and group stuff are assumed mutually exclusive */
9915 		WARN_ON_ONCE(move_group);
9916 
9917 		err = -EBUSY;
9918 		goto err_locked;
9919 	}
9920 
9921 	WARN_ON_ONCE(ctx->parent_ctx);
9922 
9923 	/*
9924 	 * This is the point on no return; we cannot fail hereafter. This is
9925 	 * where we start modifying current state.
9926 	 */
9927 
9928 	if (move_group) {
9929 		/*
9930 		 * See perf_event_ctx_lock() for comments on the details
9931 		 * of swizzling perf_event::ctx.
9932 		 */
9933 		perf_remove_from_context(group_leader, 0);
9934 
9935 		list_for_each_entry(sibling, &group_leader->sibling_list,
9936 				    group_entry) {
9937 			perf_remove_from_context(sibling, 0);
9938 			put_ctx(gctx);
9939 		}
9940 
9941 		/*
9942 		 * Wait for everybody to stop referencing the events through
9943 		 * the old lists, before installing it on new lists.
9944 		 */
9945 		synchronize_rcu();
9946 
9947 		/*
9948 		 * Install the group siblings before the group leader.
9949 		 *
9950 		 * Because a group leader will try and install the entire group
9951 		 * (through the sibling list, which is still in-tact), we can
9952 		 * end up with siblings installed in the wrong context.
9953 		 *
9954 		 * By installing siblings first we NO-OP because they're not
9955 		 * reachable through the group lists.
9956 		 */
9957 		list_for_each_entry(sibling, &group_leader->sibling_list,
9958 				    group_entry) {
9959 			perf_event__state_init(sibling);
9960 			perf_install_in_context(ctx, sibling, sibling->cpu);
9961 			get_ctx(ctx);
9962 		}
9963 
9964 		/*
9965 		 * Removing from the context ends up with disabled
9966 		 * event. What we want here is event in the initial
9967 		 * startup state, ready to be add into new context.
9968 		 */
9969 		perf_event__state_init(group_leader);
9970 		perf_install_in_context(ctx, group_leader, group_leader->cpu);
9971 		get_ctx(ctx);
9972 
9973 		/*
9974 		 * Now that all events are installed in @ctx, nothing
9975 		 * references @gctx anymore, so drop the last reference we have
9976 		 * on it.
9977 		 */
9978 		put_ctx(gctx);
9979 	}
9980 
9981 	/*
9982 	 * Precalculate sample_data sizes; do while holding ctx::mutex such
9983 	 * that we're serialized against further additions and before
9984 	 * perf_install_in_context() which is the point the event is active and
9985 	 * can use these values.
9986 	 */
9987 	perf_event__header_size(event);
9988 	perf_event__id_header_size(event);
9989 
9990 	event->owner = current;
9991 
9992 	perf_install_in_context(ctx, event, event->cpu);
9993 	perf_unpin_context(ctx);
9994 
9995 	if (move_group)
9996 		perf_event_ctx_unlock(group_leader, gctx);
9997 	mutex_unlock(&ctx->mutex);
9998 
9999 	if (task) {
10000 		mutex_unlock(&task->signal->cred_guard_mutex);
10001 		put_task_struct(task);
10002 	}
10003 
10004 	put_online_cpus();
10005 
10006 	mutex_lock(&current->perf_event_mutex);
10007 	list_add_tail(&event->owner_entry, &current->perf_event_list);
10008 	mutex_unlock(&current->perf_event_mutex);
10009 
10010 	/*
10011 	 * Drop the reference on the group_event after placing the
10012 	 * new event on the sibling_list. This ensures destruction
10013 	 * of the group leader will find the pointer to itself in
10014 	 * perf_group_detach().
10015 	 */
10016 	fdput(group);
10017 	fd_install(event_fd, event_file);
10018 	return event_fd;
10019 
10020 err_locked:
10021 	if (move_group)
10022 		perf_event_ctx_unlock(group_leader, gctx);
10023 	mutex_unlock(&ctx->mutex);
10024 /* err_file: */
10025 	fput(event_file);
10026 err_context:
10027 	perf_unpin_context(ctx);
10028 	put_ctx(ctx);
10029 err_alloc:
10030 	/*
10031 	 * If event_file is set, the fput() above will have called ->release()
10032 	 * and that will take care of freeing the event.
10033 	 */
10034 	if (!event_file)
10035 		free_event(event);
10036 err_cred:
10037 	if (task)
10038 		mutex_unlock(&task->signal->cred_guard_mutex);
10039 err_cpus:
10040 	put_online_cpus();
10041 err_task:
10042 	if (task)
10043 		put_task_struct(task);
10044 err_group_fd:
10045 	fdput(group);
10046 err_fd:
10047 	put_unused_fd(event_fd);
10048 	return err;
10049 }
10050 
10051 /**
10052  * perf_event_create_kernel_counter
10053  *
10054  * @attr: attributes of the counter to create
10055  * @cpu: cpu in which the counter is bound
10056  * @task: task to profile (NULL for percpu)
10057  */
10058 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)10059 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10060 				 struct task_struct *task,
10061 				 perf_overflow_handler_t overflow_handler,
10062 				 void *context)
10063 {
10064 	struct perf_event_context *ctx;
10065 	struct perf_event *event;
10066 	int err;
10067 
10068 	/*
10069 	 * Get the target context (task or percpu):
10070 	 */
10071 
10072 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10073 				 overflow_handler, context, -1);
10074 	if (IS_ERR(event)) {
10075 		err = PTR_ERR(event);
10076 		goto err;
10077 	}
10078 
10079 	/* Mark owner so we could distinguish it from user events. */
10080 	event->owner = TASK_TOMBSTONE;
10081 
10082 	ctx = find_get_context(event->pmu, task, event);
10083 	if (IS_ERR(ctx)) {
10084 		err = PTR_ERR(ctx);
10085 		goto err_free;
10086 	}
10087 
10088 	WARN_ON_ONCE(ctx->parent_ctx);
10089 	mutex_lock(&ctx->mutex);
10090 	if (ctx->task == TASK_TOMBSTONE) {
10091 		err = -ESRCH;
10092 		goto err_unlock;
10093 	}
10094 
10095 	if (!exclusive_event_installable(event, ctx)) {
10096 		err = -EBUSY;
10097 		goto err_unlock;
10098 	}
10099 
10100 	perf_install_in_context(ctx, event, cpu);
10101 	perf_unpin_context(ctx);
10102 	mutex_unlock(&ctx->mutex);
10103 
10104 	return event;
10105 
10106 err_unlock:
10107 	mutex_unlock(&ctx->mutex);
10108 	perf_unpin_context(ctx);
10109 	put_ctx(ctx);
10110 err_free:
10111 	free_event(event);
10112 err:
10113 	return ERR_PTR(err);
10114 }
10115 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10116 
perf_pmu_migrate_context(struct pmu * pmu,int src_cpu,int dst_cpu)10117 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10118 {
10119 	struct perf_event_context *src_ctx;
10120 	struct perf_event_context *dst_ctx;
10121 	struct perf_event *event, *tmp;
10122 	LIST_HEAD(events);
10123 
10124 	src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10125 	dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10126 
10127 	/*
10128 	 * See perf_event_ctx_lock() for comments on the details
10129 	 * of swizzling perf_event::ctx.
10130 	 */
10131 	mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10132 	list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10133 				 event_entry) {
10134 		perf_remove_from_context(event, 0);
10135 		unaccount_event_cpu(event, src_cpu);
10136 		put_ctx(src_ctx);
10137 		list_add(&event->migrate_entry, &events);
10138 	}
10139 
10140 	/*
10141 	 * Wait for the events to quiesce before re-instating them.
10142 	 */
10143 	synchronize_rcu();
10144 
10145 	/*
10146 	 * Re-instate events in 2 passes.
10147 	 *
10148 	 * Skip over group leaders and only install siblings on this first
10149 	 * pass, siblings will not get enabled without a leader, however a
10150 	 * leader will enable its siblings, even if those are still on the old
10151 	 * context.
10152 	 */
10153 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10154 		if (event->group_leader == event)
10155 			continue;
10156 
10157 		list_del(&event->migrate_entry);
10158 		if (event->state >= PERF_EVENT_STATE_OFF)
10159 			event->state = PERF_EVENT_STATE_INACTIVE;
10160 		account_event_cpu(event, dst_cpu);
10161 		perf_install_in_context(dst_ctx, event, dst_cpu);
10162 		get_ctx(dst_ctx);
10163 	}
10164 
10165 	/*
10166 	 * Once all the siblings are setup properly, install the group leaders
10167 	 * to make it go.
10168 	 */
10169 	list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10170 		list_del(&event->migrate_entry);
10171 		if (event->state >= PERF_EVENT_STATE_OFF)
10172 			event->state = PERF_EVENT_STATE_INACTIVE;
10173 		account_event_cpu(event, dst_cpu);
10174 		perf_install_in_context(dst_ctx, event, dst_cpu);
10175 		get_ctx(dst_ctx);
10176 	}
10177 	mutex_unlock(&dst_ctx->mutex);
10178 	mutex_unlock(&src_ctx->mutex);
10179 }
10180 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10181 
sync_child_event(struct perf_event * child_event,struct task_struct * child)10182 static void sync_child_event(struct perf_event *child_event,
10183 			       struct task_struct *child)
10184 {
10185 	struct perf_event *parent_event = child_event->parent;
10186 	u64 child_val;
10187 
10188 	if (child_event->attr.inherit_stat)
10189 		perf_event_read_event(child_event, child);
10190 
10191 	child_val = perf_event_count(child_event);
10192 
10193 	/*
10194 	 * Add back the child's count to the parent's count:
10195 	 */
10196 	atomic64_add(child_val, &parent_event->child_count);
10197 	atomic64_add(child_event->total_time_enabled,
10198 		     &parent_event->child_total_time_enabled);
10199 	atomic64_add(child_event->total_time_running,
10200 		     &parent_event->child_total_time_running);
10201 }
10202 
10203 static void
perf_event_exit_event(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)10204 perf_event_exit_event(struct perf_event *child_event,
10205 		      struct perf_event_context *child_ctx,
10206 		      struct task_struct *child)
10207 {
10208 	struct perf_event *parent_event = child_event->parent;
10209 
10210 	/*
10211 	 * Do not destroy the 'original' grouping; because of the context
10212 	 * switch optimization the original events could've ended up in a
10213 	 * random child task.
10214 	 *
10215 	 * If we were to destroy the original group, all group related
10216 	 * operations would cease to function properly after this random
10217 	 * child dies.
10218 	 *
10219 	 * Do destroy all inherited groups, we don't care about those
10220 	 * and being thorough is better.
10221 	 */
10222 	raw_spin_lock_irq(&child_ctx->lock);
10223 	WARN_ON_ONCE(child_ctx->is_active);
10224 
10225 	if (parent_event)
10226 		perf_group_detach(child_event);
10227 	list_del_event(child_event, child_ctx);
10228 	child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10229 	raw_spin_unlock_irq(&child_ctx->lock);
10230 
10231 	/*
10232 	 * Parent events are governed by their filedesc, retain them.
10233 	 */
10234 	if (!parent_event) {
10235 		perf_event_wakeup(child_event);
10236 		return;
10237 	}
10238 	/*
10239 	 * Child events can be cleaned up.
10240 	 */
10241 
10242 	sync_child_event(child_event, child);
10243 
10244 	/*
10245 	 * Remove this event from the parent's list
10246 	 */
10247 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10248 	mutex_lock(&parent_event->child_mutex);
10249 	list_del_init(&child_event->child_list);
10250 	mutex_unlock(&parent_event->child_mutex);
10251 
10252 	/*
10253 	 * Kick perf_poll() for is_event_hup().
10254 	 */
10255 	perf_event_wakeup(parent_event);
10256 	free_event(child_event);
10257 	put_event(parent_event);
10258 }
10259 
perf_event_exit_task_context(struct task_struct * child,int ctxn)10260 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10261 {
10262 	struct perf_event_context *child_ctx, *clone_ctx = NULL;
10263 	struct perf_event *child_event, *next;
10264 
10265 	WARN_ON_ONCE(child != current);
10266 
10267 	child_ctx = perf_pin_task_context(child, ctxn);
10268 	if (!child_ctx)
10269 		return;
10270 
10271 	/*
10272 	 * In order to reduce the amount of tricky in ctx tear-down, we hold
10273 	 * ctx::mutex over the entire thing. This serializes against almost
10274 	 * everything that wants to access the ctx.
10275 	 *
10276 	 * The exception is sys_perf_event_open() /
10277 	 * perf_event_create_kernel_count() which does find_get_context()
10278 	 * without ctx::mutex (it cannot because of the move_group double mutex
10279 	 * lock thing). See the comments in perf_install_in_context().
10280 	 */
10281 	mutex_lock(&child_ctx->mutex);
10282 
10283 	/*
10284 	 * In a single ctx::lock section, de-schedule the events and detach the
10285 	 * context from the task such that we cannot ever get it scheduled back
10286 	 * in.
10287 	 */
10288 	raw_spin_lock_irq(&child_ctx->lock);
10289 	task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
10290 
10291 	/*
10292 	 * Now that the context is inactive, destroy the task <-> ctx relation
10293 	 * and mark the context dead.
10294 	 */
10295 	RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10296 	put_ctx(child_ctx); /* cannot be last */
10297 	WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10298 	put_task_struct(current); /* cannot be last */
10299 
10300 	clone_ctx = unclone_ctx(child_ctx);
10301 	raw_spin_unlock_irq(&child_ctx->lock);
10302 
10303 	if (clone_ctx)
10304 		put_ctx(clone_ctx);
10305 
10306 	/*
10307 	 * Report the task dead after unscheduling the events so that we
10308 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
10309 	 * get a few PERF_RECORD_READ events.
10310 	 */
10311 	perf_event_task(child, child_ctx, 0);
10312 
10313 	list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10314 		perf_event_exit_event(child_event, child_ctx, child);
10315 
10316 	mutex_unlock(&child_ctx->mutex);
10317 
10318 	put_ctx(child_ctx);
10319 }
10320 
10321 /*
10322  * When a child task exits, feed back event values to parent events.
10323  *
10324  * Can be called with cred_guard_mutex held when called from
10325  * install_exec_creds().
10326  */
perf_event_exit_task(struct task_struct * child)10327 void perf_event_exit_task(struct task_struct *child)
10328 {
10329 	struct perf_event *event, *tmp;
10330 	int ctxn;
10331 
10332 	mutex_lock(&child->perf_event_mutex);
10333 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10334 				 owner_entry) {
10335 		list_del_init(&event->owner_entry);
10336 
10337 		/*
10338 		 * Ensure the list deletion is visible before we clear
10339 		 * the owner, closes a race against perf_release() where
10340 		 * we need to serialize on the owner->perf_event_mutex.
10341 		 */
10342 		smp_store_release(&event->owner, NULL);
10343 	}
10344 	mutex_unlock(&child->perf_event_mutex);
10345 
10346 	for_each_task_context_nr(ctxn)
10347 		perf_event_exit_task_context(child, ctxn);
10348 
10349 	/*
10350 	 * The perf_event_exit_task_context calls perf_event_task
10351 	 * with child's task_ctx, which generates EXIT events for
10352 	 * child contexts and sets child->perf_event_ctxp[] to NULL.
10353 	 * At this point we need to send EXIT events to cpu contexts.
10354 	 */
10355 	perf_event_task(child, NULL, 0);
10356 }
10357 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)10358 static void perf_free_event(struct perf_event *event,
10359 			    struct perf_event_context *ctx)
10360 {
10361 	struct perf_event *parent = event->parent;
10362 
10363 	if (WARN_ON_ONCE(!parent))
10364 		return;
10365 
10366 	mutex_lock(&parent->child_mutex);
10367 	list_del_init(&event->child_list);
10368 	mutex_unlock(&parent->child_mutex);
10369 
10370 	put_event(parent);
10371 
10372 	raw_spin_lock_irq(&ctx->lock);
10373 	perf_group_detach(event);
10374 	list_del_event(event, ctx);
10375 	raw_spin_unlock_irq(&ctx->lock);
10376 	free_event(event);
10377 }
10378 
10379 /*
10380  * Free an unexposed, unused context as created by inheritance by
10381  * perf_event_init_task below, used by fork() in case of fail.
10382  *
10383  * Not all locks are strictly required, but take them anyway to be nice and
10384  * help out with the lockdep assertions.
10385  */
perf_event_free_task(struct task_struct * task)10386 void perf_event_free_task(struct task_struct *task)
10387 {
10388 	struct perf_event_context *ctx;
10389 	struct perf_event *event, *tmp;
10390 	int ctxn;
10391 
10392 	for_each_task_context_nr(ctxn) {
10393 		ctx = task->perf_event_ctxp[ctxn];
10394 		if (!ctx)
10395 			continue;
10396 
10397 		mutex_lock(&ctx->mutex);
10398 		raw_spin_lock_irq(&ctx->lock);
10399 		/*
10400 		 * Destroy the task <-> ctx relation and mark the context dead.
10401 		 *
10402 		 * This is important because even though the task hasn't been
10403 		 * exposed yet the context has been (through child_list).
10404 		 */
10405 		RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10406 		WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10407 		put_task_struct(task); /* cannot be last */
10408 		raw_spin_unlock_irq(&ctx->lock);
10409 again:
10410 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10411 				group_entry)
10412 			perf_free_event(event, ctx);
10413 
10414 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10415 				group_entry)
10416 			perf_free_event(event, ctx);
10417 
10418 		if (!list_empty(&ctx->pinned_groups) ||
10419 				!list_empty(&ctx->flexible_groups))
10420 			goto again;
10421 
10422 		mutex_unlock(&ctx->mutex);
10423 
10424 		put_ctx(ctx);
10425 	}
10426 }
10427 
perf_event_delayed_put(struct task_struct * task)10428 void perf_event_delayed_put(struct task_struct *task)
10429 {
10430 	int ctxn;
10431 
10432 	for_each_task_context_nr(ctxn)
10433 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10434 }
10435 
perf_event_get(unsigned int fd)10436 struct file *perf_event_get(unsigned int fd)
10437 {
10438 	struct file *file;
10439 
10440 	file = fget_raw(fd);
10441 	if (!file)
10442 		return ERR_PTR(-EBADF);
10443 
10444 	if (file->f_op != &perf_fops) {
10445 		fput(file);
10446 		return ERR_PTR(-EBADF);
10447 	}
10448 
10449 	return file;
10450 }
10451 
perf_event_attrs(struct perf_event * event)10452 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10453 {
10454 	if (!event)
10455 		return ERR_PTR(-EINVAL);
10456 
10457 	return &event->attr;
10458 }
10459 
10460 /*
10461  * inherit a event from parent task to child task:
10462  */
10463 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)10464 inherit_event(struct perf_event *parent_event,
10465 	      struct task_struct *parent,
10466 	      struct perf_event_context *parent_ctx,
10467 	      struct task_struct *child,
10468 	      struct perf_event *group_leader,
10469 	      struct perf_event_context *child_ctx)
10470 {
10471 	enum perf_event_active_state parent_state = parent_event->state;
10472 	struct perf_event *child_event;
10473 	unsigned long flags;
10474 
10475 	/*
10476 	 * Instead of creating recursive hierarchies of events,
10477 	 * we link inherited events back to the original parent,
10478 	 * which has a filp for sure, which we use as the reference
10479 	 * count:
10480 	 */
10481 	if (parent_event->parent)
10482 		parent_event = parent_event->parent;
10483 
10484 	child_event = perf_event_alloc(&parent_event->attr,
10485 					   parent_event->cpu,
10486 					   child,
10487 					   group_leader, parent_event,
10488 					   NULL, NULL, -1);
10489 	if (IS_ERR(child_event))
10490 		return child_event;
10491 
10492 	/*
10493 	 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10494 	 * must be under the same lock in order to serialize against
10495 	 * perf_event_release_kernel(), such that either we must observe
10496 	 * is_orphaned_event() or they will observe us on the child_list.
10497 	 */
10498 	mutex_lock(&parent_event->child_mutex);
10499 	if (is_orphaned_event(parent_event) ||
10500 	    !atomic_long_inc_not_zero(&parent_event->refcount)) {
10501 		mutex_unlock(&parent_event->child_mutex);
10502 		free_event(child_event);
10503 		return NULL;
10504 	}
10505 
10506 	get_ctx(child_ctx);
10507 
10508 	/*
10509 	 * Make the child state follow the state of the parent event,
10510 	 * not its attr.disabled bit.  We hold the parent's mutex,
10511 	 * so we won't race with perf_event_{en, dis}able_family.
10512 	 */
10513 	if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10514 		child_event->state = PERF_EVENT_STATE_INACTIVE;
10515 	else
10516 		child_event->state = PERF_EVENT_STATE_OFF;
10517 
10518 	if (parent_event->attr.freq) {
10519 		u64 sample_period = parent_event->hw.sample_period;
10520 		struct hw_perf_event *hwc = &child_event->hw;
10521 
10522 		hwc->sample_period = sample_period;
10523 		hwc->last_period   = sample_period;
10524 
10525 		local64_set(&hwc->period_left, sample_period);
10526 	}
10527 
10528 	child_event->ctx = child_ctx;
10529 	child_event->overflow_handler = parent_event->overflow_handler;
10530 	child_event->overflow_handler_context
10531 		= parent_event->overflow_handler_context;
10532 
10533 	/*
10534 	 * Precalculate sample_data sizes
10535 	 */
10536 	perf_event__header_size(child_event);
10537 	perf_event__id_header_size(child_event);
10538 
10539 	/*
10540 	 * Link it up in the child's context:
10541 	 */
10542 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
10543 	add_event_to_ctx(child_event, child_ctx);
10544 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10545 
10546 	/*
10547 	 * Link this into the parent event's child list
10548 	 */
10549 	list_add_tail(&child_event->child_list, &parent_event->child_list);
10550 	mutex_unlock(&parent_event->child_mutex);
10551 
10552 	return child_event;
10553 }
10554 
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)10555 static int inherit_group(struct perf_event *parent_event,
10556 	      struct task_struct *parent,
10557 	      struct perf_event_context *parent_ctx,
10558 	      struct task_struct *child,
10559 	      struct perf_event_context *child_ctx)
10560 {
10561 	struct perf_event *leader;
10562 	struct perf_event *sub;
10563 	struct perf_event *child_ctr;
10564 
10565 	leader = inherit_event(parent_event, parent, parent_ctx,
10566 				 child, NULL, child_ctx);
10567 	if (IS_ERR(leader))
10568 		return PTR_ERR(leader);
10569 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10570 		child_ctr = inherit_event(sub, parent, parent_ctx,
10571 					    child, leader, child_ctx);
10572 		if (IS_ERR(child_ctr))
10573 			return PTR_ERR(child_ctr);
10574 	}
10575 	return 0;
10576 }
10577 
10578 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)10579 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10580 		   struct perf_event_context *parent_ctx,
10581 		   struct task_struct *child, int ctxn,
10582 		   int *inherited_all)
10583 {
10584 	int ret;
10585 	struct perf_event_context *child_ctx;
10586 
10587 	if (!event->attr.inherit) {
10588 		*inherited_all = 0;
10589 		return 0;
10590 	}
10591 
10592 	child_ctx = child->perf_event_ctxp[ctxn];
10593 	if (!child_ctx) {
10594 		/*
10595 		 * This is executed from the parent task context, so
10596 		 * inherit events that have been marked for cloning.
10597 		 * First allocate and initialize a context for the
10598 		 * child.
10599 		 */
10600 
10601 		child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10602 		if (!child_ctx)
10603 			return -ENOMEM;
10604 
10605 		child->perf_event_ctxp[ctxn] = child_ctx;
10606 	}
10607 
10608 	ret = inherit_group(event, parent, parent_ctx,
10609 			    child, child_ctx);
10610 
10611 	if (ret)
10612 		*inherited_all = 0;
10613 
10614 	return ret;
10615 }
10616 
10617 /*
10618  * Initialize the perf_event context in task_struct
10619  */
perf_event_init_context(struct task_struct * child,int ctxn)10620 static int perf_event_init_context(struct task_struct *child, int ctxn)
10621 {
10622 	struct perf_event_context *child_ctx, *parent_ctx;
10623 	struct perf_event_context *cloned_ctx;
10624 	struct perf_event *event;
10625 	struct task_struct *parent = current;
10626 	int inherited_all = 1;
10627 	unsigned long flags;
10628 	int ret = 0;
10629 
10630 	if (likely(!parent->perf_event_ctxp[ctxn]))
10631 		return 0;
10632 
10633 	/*
10634 	 * If the parent's context is a clone, pin it so it won't get
10635 	 * swapped under us.
10636 	 */
10637 	parent_ctx = perf_pin_task_context(parent, ctxn);
10638 	if (!parent_ctx)
10639 		return 0;
10640 
10641 	/*
10642 	 * No need to check if parent_ctx != NULL here; since we saw
10643 	 * it non-NULL earlier, the only reason for it to become NULL
10644 	 * is if we exit, and since we're currently in the middle of
10645 	 * a fork we can't be exiting at the same time.
10646 	 */
10647 
10648 	/*
10649 	 * Lock the parent list. No need to lock the child - not PID
10650 	 * hashed yet and not running, so nobody can access it.
10651 	 */
10652 	mutex_lock(&parent_ctx->mutex);
10653 
10654 	/*
10655 	 * We dont have to disable NMIs - we are only looking at
10656 	 * the list, not manipulating it:
10657 	 */
10658 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
10659 		ret = inherit_task_group(event, parent, parent_ctx,
10660 					 child, ctxn, &inherited_all);
10661 		if (ret)
10662 			goto out_unlock;
10663 	}
10664 
10665 	/*
10666 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
10667 	 * to allocations, but we need to prevent rotation because
10668 	 * rotate_ctx() will change the list from interrupt context.
10669 	 */
10670 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10671 	parent_ctx->rotate_disable = 1;
10672 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10673 
10674 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
10675 		ret = inherit_task_group(event, parent, parent_ctx,
10676 					 child, ctxn, &inherited_all);
10677 		if (ret)
10678 			goto out_unlock;
10679 	}
10680 
10681 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10682 	parent_ctx->rotate_disable = 0;
10683 
10684 	child_ctx = child->perf_event_ctxp[ctxn];
10685 
10686 	if (child_ctx && inherited_all) {
10687 		/*
10688 		 * Mark the child context as a clone of the parent
10689 		 * context, or of whatever the parent is a clone of.
10690 		 *
10691 		 * Note that if the parent is a clone, the holding of
10692 		 * parent_ctx->lock avoids it from being uncloned.
10693 		 */
10694 		cloned_ctx = parent_ctx->parent_ctx;
10695 		if (cloned_ctx) {
10696 			child_ctx->parent_ctx = cloned_ctx;
10697 			child_ctx->parent_gen = parent_ctx->parent_gen;
10698 		} else {
10699 			child_ctx->parent_ctx = parent_ctx;
10700 			child_ctx->parent_gen = parent_ctx->generation;
10701 		}
10702 		get_ctx(child_ctx->parent_ctx);
10703 	}
10704 
10705 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10706 out_unlock:
10707 	mutex_unlock(&parent_ctx->mutex);
10708 
10709 	perf_unpin_context(parent_ctx);
10710 	put_ctx(parent_ctx);
10711 
10712 	return ret;
10713 }
10714 
10715 /*
10716  * Initialize the perf_event context in task_struct
10717  */
perf_event_init_task(struct task_struct * child)10718 int perf_event_init_task(struct task_struct *child)
10719 {
10720 	int ctxn, ret;
10721 
10722 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10723 	mutex_init(&child->perf_event_mutex);
10724 	INIT_LIST_HEAD(&child->perf_event_list);
10725 
10726 	for_each_task_context_nr(ctxn) {
10727 		ret = perf_event_init_context(child, ctxn);
10728 		if (ret) {
10729 			perf_event_free_task(child);
10730 			return ret;
10731 		}
10732 	}
10733 
10734 	return 0;
10735 }
10736 
perf_event_init_all_cpus(void)10737 static void __init perf_event_init_all_cpus(void)
10738 {
10739 	struct swevent_htable *swhash;
10740 	int cpu;
10741 
10742 	for_each_possible_cpu(cpu) {
10743 		swhash = &per_cpu(swevent_htable, cpu);
10744 		mutex_init(&swhash->hlist_mutex);
10745 		INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
10746 
10747 		INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10748 		raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
10749 
10750 		INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
10751 	}
10752 }
10753 
perf_event_init_cpu(unsigned int cpu)10754 int perf_event_init_cpu(unsigned int cpu)
10755 {
10756 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10757 
10758 	mutex_lock(&swhash->hlist_mutex);
10759 	if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
10760 		struct swevent_hlist *hlist;
10761 
10762 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10763 		WARN_ON(!hlist);
10764 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
10765 	}
10766 	mutex_unlock(&swhash->hlist_mutex);
10767 	return 0;
10768 }
10769 
10770 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
__perf_event_exit_context(void * __info)10771 static void __perf_event_exit_context(void *__info)
10772 {
10773 	struct perf_event_context *ctx = __info;
10774 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10775 	struct perf_event *event;
10776 
10777 	raw_spin_lock(&ctx->lock);
10778 	list_for_each_entry(event, &ctx->event_list, event_entry)
10779 		__perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
10780 	raw_spin_unlock(&ctx->lock);
10781 }
10782 
perf_event_exit_cpu_context(int cpu)10783 static void perf_event_exit_cpu_context(int cpu)
10784 {
10785 	struct perf_event_context *ctx;
10786 	struct pmu *pmu;
10787 	int idx;
10788 
10789 	idx = srcu_read_lock(&pmus_srcu);
10790 	list_for_each_entry_rcu(pmu, &pmus, entry) {
10791 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
10792 
10793 		mutex_lock(&ctx->mutex);
10794 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10795 		mutex_unlock(&ctx->mutex);
10796 	}
10797 	srcu_read_unlock(&pmus_srcu, idx);
10798 }
10799 #else
10800 
perf_event_exit_cpu_context(int cpu)10801 static void perf_event_exit_cpu_context(int cpu) { }
10802 
10803 #endif
10804 
perf_event_exit_cpu(unsigned int cpu)10805 int perf_event_exit_cpu(unsigned int cpu)
10806 {
10807 	perf_event_exit_cpu_context(cpu);
10808 	return 0;
10809 }
10810 
10811 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)10812 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10813 {
10814 	int cpu;
10815 
10816 	for_each_online_cpu(cpu)
10817 		perf_event_exit_cpu(cpu);
10818 
10819 	return NOTIFY_OK;
10820 }
10821 
10822 /*
10823  * Run the perf reboot notifier at the very last possible moment so that
10824  * the generic watchdog code runs as long as possible.
10825  */
10826 static struct notifier_block perf_reboot_notifier = {
10827 	.notifier_call = perf_reboot,
10828 	.priority = INT_MIN,
10829 };
10830 
perf_event_init(void)10831 void __init perf_event_init(void)
10832 {
10833 	int ret;
10834 
10835 	idr_init(&pmu_idr);
10836 
10837 	perf_event_init_all_cpus();
10838 	init_srcu_struct(&pmus_srcu);
10839 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10840 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
10841 	perf_pmu_register(&perf_task_clock, NULL, -1);
10842 	perf_tp_register();
10843 	perf_event_init_cpu(smp_processor_id());
10844 	register_reboot_notifier(&perf_reboot_notifier);
10845 
10846 	ret = init_hw_breakpoint();
10847 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
10848 
10849 	/*
10850 	 * Build time assertion that we keep the data_head at the intended
10851 	 * location.  IOW, validation we got the __reserved[] size right.
10852 	 */
10853 	BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10854 		     != 1024);
10855 }
10856 
perf_event_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)10857 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10858 			      char *page)
10859 {
10860 	struct perf_pmu_events_attr *pmu_attr =
10861 		container_of(attr, struct perf_pmu_events_attr, attr);
10862 
10863 	if (pmu_attr->event_str)
10864 		return sprintf(page, "%s\n", pmu_attr->event_str);
10865 
10866 	return 0;
10867 }
10868 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
10869 
perf_event_sysfs_init(void)10870 static int __init perf_event_sysfs_init(void)
10871 {
10872 	struct pmu *pmu;
10873 	int ret;
10874 
10875 	mutex_lock(&pmus_lock);
10876 
10877 	ret = bus_register(&pmu_bus);
10878 	if (ret)
10879 		goto unlock;
10880 
10881 	list_for_each_entry(pmu, &pmus, entry) {
10882 		if (!pmu->name || pmu->type < 0)
10883 			continue;
10884 
10885 		ret = pmu_dev_alloc(pmu);
10886 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10887 	}
10888 	pmu_bus_running = 1;
10889 	ret = 0;
10890 
10891 unlock:
10892 	mutex_unlock(&pmus_lock);
10893 
10894 	return ret;
10895 }
10896 device_initcall(perf_event_sysfs_init);
10897 
10898 #ifdef CONFIG_CGROUP_PERF
10899 static struct cgroup_subsys_state *
perf_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10900 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10901 {
10902 	struct perf_cgroup *jc;
10903 
10904 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
10905 	if (!jc)
10906 		return ERR_PTR(-ENOMEM);
10907 
10908 	jc->info = alloc_percpu(struct perf_cgroup_info);
10909 	if (!jc->info) {
10910 		kfree(jc);
10911 		return ERR_PTR(-ENOMEM);
10912 	}
10913 
10914 	return &jc->css;
10915 }
10916 
perf_cgroup_css_free(struct cgroup_subsys_state * css)10917 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
10918 {
10919 	struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10920 
10921 	free_percpu(jc->info);
10922 	kfree(jc);
10923 }
10924 
__perf_cgroup_move(void * info)10925 static int __perf_cgroup_move(void *info)
10926 {
10927 	struct task_struct *task = info;
10928 	rcu_read_lock();
10929 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
10930 	rcu_read_unlock();
10931 	return 0;
10932 }
10933 
perf_cgroup_attach(struct cgroup_taskset * tset)10934 static void perf_cgroup_attach(struct cgroup_taskset *tset)
10935 {
10936 	struct task_struct *task;
10937 	struct cgroup_subsys_state *css;
10938 
10939 	cgroup_taskset_for_each(task, css, tset)
10940 		task_function_call(task, __perf_cgroup_move, task);
10941 }
10942 
10943 struct cgroup_subsys perf_event_cgrp_subsys = {
10944 	.css_alloc	= perf_cgroup_css_alloc,
10945 	.css_free	= perf_cgroup_css_free,
10946 	.attach		= perf_cgroup_attach,
10947 };
10948 #endif /* CONFIG_CGROUP_PERF */
10949