1 /*
2 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3 *
4 * Parts came from builtin-{top,stat,record}.c, see those files for further
5 * copyright notes.
6 *
7 * Released under the GPL v2. (and only v2, not any later version)
8 */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31
32 static struct {
33 bool sample_id_all;
34 bool exclude_guest;
35 bool mmap2;
36 bool cloexec;
37 bool clockid;
38 bool clockid_wrong;
39 bool lbr_flags;
40 bool write_backward;
41 } perf_missing_features;
42
43 static clockid_t clockid;
44
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
46 {
47 return 0;
48 }
49
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
51 {
52 }
53
54 static struct {
55 size_t size;
56 int (*init)(struct perf_evsel *evsel);
57 void (*fini)(struct perf_evsel *evsel);
58 } perf_evsel__object = {
59 .size = sizeof(struct perf_evsel),
60 .init = perf_evsel__no_extra_init,
61 .fini = perf_evsel__no_extra_fini,
62 };
63
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))64 int perf_evsel__object_config(size_t object_size,
65 int (*init)(struct perf_evsel *evsel),
66 void (*fini)(struct perf_evsel *evsel))
67 {
68
69 if (object_size == 0)
70 goto set_methods;
71
72 if (perf_evsel__object.size > object_size)
73 return -EINVAL;
74
75 perf_evsel__object.size = object_size;
76
77 set_methods:
78 if (init != NULL)
79 perf_evsel__object.init = init;
80
81 if (fini != NULL)
82 perf_evsel__object.fini = fini;
83
84 return 0;
85 }
86
87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
88
__perf_evsel__sample_size(u64 sample_type)89 int __perf_evsel__sample_size(u64 sample_type)
90 {
91 u64 mask = sample_type & PERF_SAMPLE_MASK;
92 int size = 0;
93 int i;
94
95 for (i = 0; i < 64; i++) {
96 if (mask & (1ULL << i))
97 size++;
98 }
99
100 size *= sizeof(u64);
101
102 return size;
103 }
104
105 /**
106 * __perf_evsel__calc_id_pos - calculate id_pos.
107 * @sample_type: sample type
108 *
109 * This function returns the position of the event id (PERF_SAMPLE_ID or
110 * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
111 * sample_event.
112 */
__perf_evsel__calc_id_pos(u64 sample_type)113 static int __perf_evsel__calc_id_pos(u64 sample_type)
114 {
115 int idx = 0;
116
117 if (sample_type & PERF_SAMPLE_IDENTIFIER)
118 return 0;
119
120 if (!(sample_type & PERF_SAMPLE_ID))
121 return -1;
122
123 if (sample_type & PERF_SAMPLE_IP)
124 idx += 1;
125
126 if (sample_type & PERF_SAMPLE_TID)
127 idx += 1;
128
129 if (sample_type & PERF_SAMPLE_TIME)
130 idx += 1;
131
132 if (sample_type & PERF_SAMPLE_ADDR)
133 idx += 1;
134
135 return idx;
136 }
137
138 /**
139 * __perf_evsel__calc_is_pos - calculate is_pos.
140 * @sample_type: sample type
141 *
142 * This function returns the position (counting backwards) of the event id
143 * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
144 * sample_id_all is used there is an id sample appended to non-sample events.
145 */
__perf_evsel__calc_is_pos(u64 sample_type)146 static int __perf_evsel__calc_is_pos(u64 sample_type)
147 {
148 int idx = 1;
149
150 if (sample_type & PERF_SAMPLE_IDENTIFIER)
151 return 1;
152
153 if (!(sample_type & PERF_SAMPLE_ID))
154 return -1;
155
156 if (sample_type & PERF_SAMPLE_CPU)
157 idx += 1;
158
159 if (sample_type & PERF_SAMPLE_STREAM_ID)
160 idx += 1;
161
162 return idx;
163 }
164
perf_evsel__calc_id_pos(struct perf_evsel * evsel)165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
166 {
167 evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
168 evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
169 }
170
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
172 enum perf_event_sample_format bit)
173 {
174 if (!(evsel->attr.sample_type & bit)) {
175 evsel->attr.sample_type |= bit;
176 evsel->sample_size += sizeof(u64);
177 perf_evsel__calc_id_pos(evsel);
178 }
179 }
180
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
182 enum perf_event_sample_format bit)
183 {
184 if (evsel->attr.sample_type & bit) {
185 evsel->attr.sample_type &= ~bit;
186 evsel->sample_size -= sizeof(u64);
187 perf_evsel__calc_id_pos(evsel);
188 }
189 }
190
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)191 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
192 bool can_sample_identifier)
193 {
194 if (can_sample_identifier) {
195 perf_evsel__reset_sample_bit(evsel, ID);
196 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
197 } else {
198 perf_evsel__set_sample_bit(evsel, ID);
199 }
200 evsel->attr.read_format |= PERF_FORMAT_ID;
201 }
202
203 /**
204 * perf_evsel__is_function_event - Return whether given evsel is a function
205 * trace event
206 *
207 * @evsel - evsel selector to be tested
208 *
209 * Return %true if event is function trace event
210 */
perf_evsel__is_function_event(struct perf_evsel * evsel)211 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
212 {
213 #define FUNCTION_EVENT "ftrace:function"
214
215 return evsel->name &&
216 !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
217
218 #undef FUNCTION_EVENT
219 }
220
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)221 void perf_evsel__init(struct perf_evsel *evsel,
222 struct perf_event_attr *attr, int idx)
223 {
224 evsel->idx = idx;
225 evsel->tracking = !idx;
226 evsel->attr = *attr;
227 evsel->leader = evsel;
228 evsel->unit = "";
229 evsel->scale = 1.0;
230 evsel->evlist = NULL;
231 evsel->bpf_fd = -1;
232 INIT_LIST_HEAD(&evsel->node);
233 INIT_LIST_HEAD(&evsel->config_terms);
234 perf_evsel__object.init(evsel);
235 evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
236 perf_evsel__calc_id_pos(evsel);
237 evsel->cmdline_group_boundary = false;
238 }
239
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)240 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
241 {
242 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
243
244 if (evsel != NULL)
245 perf_evsel__init(evsel, attr, idx);
246
247 if (perf_evsel__is_bpf_output(evsel)) {
248 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
249 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
250 evsel->attr.sample_period = 1;
251 }
252
253 return evsel;
254 }
255
perf_evsel__new_cycles(void)256 struct perf_evsel *perf_evsel__new_cycles(void)
257 {
258 struct perf_event_attr attr = {
259 .type = PERF_TYPE_HARDWARE,
260 .config = PERF_COUNT_HW_CPU_CYCLES,
261 };
262 struct perf_evsel *evsel;
263
264 event_attr_init(&attr);
265
266 perf_event_attr__set_max_precise_ip(&attr);
267
268 evsel = perf_evsel__new(&attr);
269 if (evsel == NULL)
270 goto out;
271
272 /* use asprintf() because free(evsel) assumes name is allocated */
273 if (asprintf(&evsel->name, "cycles%.*s",
274 attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
275 goto error_free;
276 out:
277 return evsel;
278 error_free:
279 perf_evsel__delete(evsel);
280 evsel = NULL;
281 goto out;
282 }
283
284 /*
285 * Returns pointer with encoded error via <linux/err.h> interface.
286 */
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)287 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
288 {
289 struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
290 int err = -ENOMEM;
291
292 if (evsel == NULL) {
293 goto out_err;
294 } else {
295 struct perf_event_attr attr = {
296 .type = PERF_TYPE_TRACEPOINT,
297 .sample_type = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
298 PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
299 };
300
301 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
302 goto out_free;
303
304 evsel->tp_format = trace_event__tp_format(sys, name);
305 if (IS_ERR(evsel->tp_format)) {
306 err = PTR_ERR(evsel->tp_format);
307 goto out_free;
308 }
309
310 event_attr_init(&attr);
311 attr.config = evsel->tp_format->id;
312 attr.sample_period = 1;
313 perf_evsel__init(evsel, &attr, idx);
314 }
315
316 return evsel;
317
318 out_free:
319 zfree(&evsel->name);
320 free(evsel);
321 out_err:
322 return ERR_PTR(err);
323 }
324
325 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
326 "cycles",
327 "instructions",
328 "cache-references",
329 "cache-misses",
330 "branches",
331 "branch-misses",
332 "bus-cycles",
333 "stalled-cycles-frontend",
334 "stalled-cycles-backend",
335 "ref-cycles",
336 };
337
__perf_evsel__hw_name(u64 config)338 static const char *__perf_evsel__hw_name(u64 config)
339 {
340 if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
341 return perf_evsel__hw_names[config];
342
343 return "unknown-hardware";
344 }
345
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)346 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
347 {
348 int colon = 0, r = 0;
349 struct perf_event_attr *attr = &evsel->attr;
350 bool exclude_guest_default = false;
351
352 #define MOD_PRINT(context, mod) do { \
353 if (!attr->exclude_##context) { \
354 if (!colon) colon = ++r; \
355 r += scnprintf(bf + r, size - r, "%c", mod); \
356 } } while(0)
357
358 if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
359 MOD_PRINT(kernel, 'k');
360 MOD_PRINT(user, 'u');
361 MOD_PRINT(hv, 'h');
362 exclude_guest_default = true;
363 }
364
365 if (attr->precise_ip) {
366 if (!colon)
367 colon = ++r;
368 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
369 exclude_guest_default = true;
370 }
371
372 if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
373 MOD_PRINT(host, 'H');
374 MOD_PRINT(guest, 'G');
375 }
376 #undef MOD_PRINT
377 if (colon)
378 bf[colon - 1] = ':';
379 return r;
380 }
381
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)382 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
383 {
384 int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
385 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
386 }
387
388 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
389 "cpu-clock",
390 "task-clock",
391 "page-faults",
392 "context-switches",
393 "cpu-migrations",
394 "minor-faults",
395 "major-faults",
396 "alignment-faults",
397 "emulation-faults",
398 "dummy",
399 };
400
__perf_evsel__sw_name(u64 config)401 static const char *__perf_evsel__sw_name(u64 config)
402 {
403 if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
404 return perf_evsel__sw_names[config];
405 return "unknown-software";
406 }
407
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)408 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
409 {
410 int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
411 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
412 }
413
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)414 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
415 {
416 int r;
417
418 r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
419
420 if (type & HW_BREAKPOINT_R)
421 r += scnprintf(bf + r, size - r, "r");
422
423 if (type & HW_BREAKPOINT_W)
424 r += scnprintf(bf + r, size - r, "w");
425
426 if (type & HW_BREAKPOINT_X)
427 r += scnprintf(bf + r, size - r, "x");
428
429 return r;
430 }
431
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)432 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
433 {
434 struct perf_event_attr *attr = &evsel->attr;
435 int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
436 return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
437 }
438
439 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
440 [PERF_EVSEL__MAX_ALIASES] = {
441 { "L1-dcache", "l1-d", "l1d", "L1-data", },
442 { "L1-icache", "l1-i", "l1i", "L1-instruction", },
443 { "LLC", "L2", },
444 { "dTLB", "d-tlb", "Data-TLB", },
445 { "iTLB", "i-tlb", "Instruction-TLB", },
446 { "branch", "branches", "bpu", "btb", "bpc", },
447 { "node", },
448 };
449
450 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
451 [PERF_EVSEL__MAX_ALIASES] = {
452 { "load", "loads", "read", },
453 { "store", "stores", "write", },
454 { "prefetch", "prefetches", "speculative-read", "speculative-load", },
455 };
456
457 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
458 [PERF_EVSEL__MAX_ALIASES] = {
459 { "refs", "Reference", "ops", "access", },
460 { "misses", "miss", },
461 };
462
463 #define C(x) PERF_COUNT_HW_CACHE_##x
464 #define CACHE_READ (1 << C(OP_READ))
465 #define CACHE_WRITE (1 << C(OP_WRITE))
466 #define CACHE_PREFETCH (1 << C(OP_PREFETCH))
467 #define COP(x) (1 << x)
468
469 /*
470 * cache operartion stat
471 * L1I : Read and prefetch only
472 * ITLB and BPU : Read-only
473 */
474 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
475 [C(L1D)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
476 [C(L1I)] = (CACHE_READ | CACHE_PREFETCH),
477 [C(LL)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
478 [C(DTLB)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
479 [C(ITLB)] = (CACHE_READ),
480 [C(BPU)] = (CACHE_READ),
481 [C(NODE)] = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
482 };
483
perf_evsel__is_cache_op_valid(u8 type,u8 op)484 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
485 {
486 if (perf_evsel__hw_cache_stat[type] & COP(op))
487 return true; /* valid */
488 else
489 return false; /* invalid */
490 }
491
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)492 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
493 char *bf, size_t size)
494 {
495 if (result) {
496 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
497 perf_evsel__hw_cache_op[op][0],
498 perf_evsel__hw_cache_result[result][0]);
499 }
500
501 return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
502 perf_evsel__hw_cache_op[op][1]);
503 }
504
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)505 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
506 {
507 u8 op, result, type = (config >> 0) & 0xff;
508 const char *err = "unknown-ext-hardware-cache-type";
509
510 if (type >= PERF_COUNT_HW_CACHE_MAX)
511 goto out_err;
512
513 op = (config >> 8) & 0xff;
514 err = "unknown-ext-hardware-cache-op";
515 if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
516 goto out_err;
517
518 result = (config >> 16) & 0xff;
519 err = "unknown-ext-hardware-cache-result";
520 if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
521 goto out_err;
522
523 err = "invalid-cache";
524 if (!perf_evsel__is_cache_op_valid(type, op))
525 goto out_err;
526
527 return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
528 out_err:
529 return scnprintf(bf, size, "%s", err);
530 }
531
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)532 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
533 {
534 int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
535 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
536 }
537
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)538 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
539 {
540 int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
541 return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
542 }
543
perf_evsel__name(struct perf_evsel * evsel)544 const char *perf_evsel__name(struct perf_evsel *evsel)
545 {
546 char bf[128];
547
548 if (evsel->name)
549 return evsel->name;
550
551 switch (evsel->attr.type) {
552 case PERF_TYPE_RAW:
553 perf_evsel__raw_name(evsel, bf, sizeof(bf));
554 break;
555
556 case PERF_TYPE_HARDWARE:
557 perf_evsel__hw_name(evsel, bf, sizeof(bf));
558 break;
559
560 case PERF_TYPE_HW_CACHE:
561 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
562 break;
563
564 case PERF_TYPE_SOFTWARE:
565 perf_evsel__sw_name(evsel, bf, sizeof(bf));
566 break;
567
568 case PERF_TYPE_TRACEPOINT:
569 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
570 break;
571
572 case PERF_TYPE_BREAKPOINT:
573 perf_evsel__bp_name(evsel, bf, sizeof(bf));
574 break;
575
576 default:
577 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
578 evsel->attr.type);
579 break;
580 }
581
582 evsel->name = strdup(bf);
583
584 return evsel->name ?: "unknown";
585 }
586
perf_evsel__group_name(struct perf_evsel * evsel)587 const char *perf_evsel__group_name(struct perf_evsel *evsel)
588 {
589 return evsel->group_name ?: "anon group";
590 }
591
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)592 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
593 {
594 int ret;
595 struct perf_evsel *pos;
596 const char *group_name = perf_evsel__group_name(evsel);
597
598 ret = scnprintf(buf, size, "%s", group_name);
599
600 ret += scnprintf(buf + ret, size - ret, " { %s",
601 perf_evsel__name(evsel));
602
603 for_each_group_member(pos, evsel)
604 ret += scnprintf(buf + ret, size - ret, ", %s",
605 perf_evsel__name(pos));
606
607 ret += scnprintf(buf + ret, size - ret, " }");
608
609 return ret;
610 }
611
perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)612 void perf_evsel__config_callchain(struct perf_evsel *evsel,
613 struct record_opts *opts,
614 struct callchain_param *param)
615 {
616 bool function = perf_evsel__is_function_event(evsel);
617 struct perf_event_attr *attr = &evsel->attr;
618
619 perf_evsel__set_sample_bit(evsel, CALLCHAIN);
620
621 attr->sample_max_stack = param->max_stack;
622
623 if (param->record_mode == CALLCHAIN_LBR) {
624 if (!opts->branch_stack) {
625 if (attr->exclude_user) {
626 pr_warning("LBR callstack option is only available "
627 "to get user callchain information. "
628 "Falling back to framepointers.\n");
629 } else {
630 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
631 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
632 PERF_SAMPLE_BRANCH_CALL_STACK |
633 PERF_SAMPLE_BRANCH_NO_CYCLES |
634 PERF_SAMPLE_BRANCH_NO_FLAGS;
635 }
636 } else
637 pr_warning("Cannot use LBR callstack with branch stack. "
638 "Falling back to framepointers.\n");
639 }
640
641 if (param->record_mode == CALLCHAIN_DWARF) {
642 if (!function) {
643 perf_evsel__set_sample_bit(evsel, REGS_USER);
644 perf_evsel__set_sample_bit(evsel, STACK_USER);
645 attr->sample_regs_user = PERF_REGS_MASK;
646 attr->sample_stack_user = param->dump_size;
647 attr->exclude_callchain_user = 1;
648 } else {
649 pr_info("Cannot use DWARF unwind for function trace event,"
650 " falling back to framepointers.\n");
651 }
652 }
653
654 if (function) {
655 pr_info("Disabling user space callchains for function trace event.\n");
656 attr->exclude_callchain_user = 1;
657 }
658 }
659
660 static void
perf_evsel__reset_callgraph(struct perf_evsel * evsel,struct callchain_param * param)661 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
662 struct callchain_param *param)
663 {
664 struct perf_event_attr *attr = &evsel->attr;
665
666 perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
667 if (param->record_mode == CALLCHAIN_LBR) {
668 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
669 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
670 PERF_SAMPLE_BRANCH_CALL_STACK);
671 }
672 if (param->record_mode == CALLCHAIN_DWARF) {
673 perf_evsel__reset_sample_bit(evsel, REGS_USER);
674 perf_evsel__reset_sample_bit(evsel, STACK_USER);
675 }
676 }
677
apply_config_terms(struct perf_evsel * evsel,struct record_opts * opts)678 static void apply_config_terms(struct perf_evsel *evsel,
679 struct record_opts *opts)
680 {
681 struct perf_evsel_config_term *term;
682 struct list_head *config_terms = &evsel->config_terms;
683 struct perf_event_attr *attr = &evsel->attr;
684 struct callchain_param param;
685 u32 dump_size = 0;
686 int max_stack = 0;
687 const char *callgraph_buf = NULL;
688
689 /* callgraph default */
690 param.record_mode = callchain_param.record_mode;
691
692 list_for_each_entry(term, config_terms, list) {
693 switch (term->type) {
694 case PERF_EVSEL__CONFIG_TERM_PERIOD:
695 attr->sample_period = term->val.period;
696 attr->freq = 0;
697 break;
698 case PERF_EVSEL__CONFIG_TERM_FREQ:
699 attr->sample_freq = term->val.freq;
700 attr->freq = 1;
701 break;
702 case PERF_EVSEL__CONFIG_TERM_TIME:
703 if (term->val.time)
704 perf_evsel__set_sample_bit(evsel, TIME);
705 else
706 perf_evsel__reset_sample_bit(evsel, TIME);
707 break;
708 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
709 callgraph_buf = term->val.callgraph;
710 break;
711 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
712 dump_size = term->val.stack_user;
713 break;
714 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
715 max_stack = term->val.max_stack;
716 break;
717 case PERF_EVSEL__CONFIG_TERM_INHERIT:
718 /*
719 * attr->inherit should has already been set by
720 * perf_evsel__config. If user explicitly set
721 * inherit using config terms, override global
722 * opt->no_inherit setting.
723 */
724 attr->inherit = term->val.inherit ? 1 : 0;
725 break;
726 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
727 attr->write_backward = term->val.overwrite ? 1 : 0;
728 break;
729 default:
730 break;
731 }
732 }
733
734 /* User explicitly set per-event callgraph, clear the old setting and reset. */
735 if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
736 if (max_stack) {
737 param.max_stack = max_stack;
738 if (callgraph_buf == NULL)
739 callgraph_buf = "fp";
740 }
741
742 /* parse callgraph parameters */
743 if (callgraph_buf != NULL) {
744 if (!strcmp(callgraph_buf, "no")) {
745 param.enabled = false;
746 param.record_mode = CALLCHAIN_NONE;
747 } else {
748 param.enabled = true;
749 if (parse_callchain_record(callgraph_buf, ¶m)) {
750 pr_err("per-event callgraph setting for %s failed. "
751 "Apply callgraph global setting for it\n",
752 evsel->name);
753 return;
754 }
755 }
756 }
757 if (dump_size > 0) {
758 dump_size = round_up(dump_size, sizeof(u64));
759 param.dump_size = dump_size;
760 }
761
762 /* If global callgraph set, clear it */
763 if (callchain_param.enabled)
764 perf_evsel__reset_callgraph(evsel, &callchain_param);
765
766 /* set perf-event callgraph */
767 if (param.enabled)
768 perf_evsel__config_callchain(evsel, opts, ¶m);
769 }
770 }
771
772 /*
773 * The enable_on_exec/disabled value strategy:
774 *
775 * 1) For any type of traced program:
776 * - all independent events and group leaders are disabled
777 * - all group members are enabled
778 *
779 * Group members are ruled by group leaders. They need to
780 * be enabled, because the group scheduling relies on that.
781 *
782 * 2) For traced programs executed by perf:
783 * - all independent events and group leaders have
784 * enable_on_exec set
785 * - we don't specifically enable or disable any event during
786 * the record command
787 *
788 * Independent events and group leaders are initially disabled
789 * and get enabled by exec. Group members are ruled by group
790 * leaders as stated in 1).
791 *
792 * 3) For traced programs attached by perf (pid/tid):
793 * - we specifically enable or disable all events during
794 * the record command
795 *
796 * When attaching events to already running traced we
797 * enable/disable events specifically, as there's no
798 * initial traced exec call.
799 */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * callchain)800 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
801 struct callchain_param *callchain)
802 {
803 struct perf_evsel *leader = evsel->leader;
804 struct perf_event_attr *attr = &evsel->attr;
805 int track = evsel->tracking;
806 bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
807
808 attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
809 attr->inherit = !opts->no_inherit;
810 attr->write_backward = opts->overwrite ? 1 : 0;
811
812 perf_evsel__set_sample_bit(evsel, IP);
813 perf_evsel__set_sample_bit(evsel, TID);
814
815 if (evsel->sample_read) {
816 perf_evsel__set_sample_bit(evsel, READ);
817
818 /*
819 * We need ID even in case of single event, because
820 * PERF_SAMPLE_READ process ID specific data.
821 */
822 perf_evsel__set_sample_id(evsel, false);
823
824 /*
825 * Apply group format only if we belong to group
826 * with more than one members.
827 */
828 if (leader->nr_members > 1) {
829 attr->read_format |= PERF_FORMAT_GROUP;
830 attr->inherit = 0;
831 }
832 }
833
834 /*
835 * We default some events to have a default interval. But keep
836 * it a weak assumption overridable by the user.
837 */
838 if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
839 opts->user_interval != ULLONG_MAX)) {
840 if (opts->freq) {
841 perf_evsel__set_sample_bit(evsel, PERIOD);
842 attr->freq = 1;
843 attr->sample_freq = opts->freq;
844 } else {
845 attr->sample_period = opts->default_interval;
846 }
847 }
848
849 /*
850 * Disable sampling for all group members other
851 * than leader in case leader 'leads' the sampling.
852 */
853 if ((leader != evsel) && leader->sample_read) {
854 attr->sample_freq = 0;
855 attr->sample_period = 0;
856 }
857
858 if (opts->no_samples)
859 attr->sample_freq = 0;
860
861 if (opts->inherit_stat)
862 attr->inherit_stat = 1;
863
864 if (opts->sample_address) {
865 perf_evsel__set_sample_bit(evsel, ADDR);
866 attr->mmap_data = track;
867 }
868
869 /*
870 * We don't allow user space callchains for function trace
871 * event, due to issues with page faults while tracing page
872 * fault handler and its overall trickiness nature.
873 */
874 if (perf_evsel__is_function_event(evsel))
875 evsel->attr.exclude_callchain_user = 1;
876
877 if (callchain && callchain->enabled && !evsel->no_aux_samples)
878 perf_evsel__config_callchain(evsel, opts, callchain);
879
880 if (opts->sample_intr_regs) {
881 attr->sample_regs_intr = opts->sample_intr_regs;
882 perf_evsel__set_sample_bit(evsel, REGS_INTR);
883 }
884
885 if (target__has_cpu(&opts->target) || opts->sample_cpu)
886 perf_evsel__set_sample_bit(evsel, CPU);
887
888 if (opts->period)
889 perf_evsel__set_sample_bit(evsel, PERIOD);
890
891 /*
892 * When the user explicitly disabled time don't force it here.
893 */
894 if (opts->sample_time &&
895 (!perf_missing_features.sample_id_all &&
896 (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
897 opts->sample_time_set)))
898 perf_evsel__set_sample_bit(evsel, TIME);
899
900 if (opts->raw_samples && !evsel->no_aux_samples) {
901 perf_evsel__set_sample_bit(evsel, TIME);
902 perf_evsel__set_sample_bit(evsel, RAW);
903 perf_evsel__set_sample_bit(evsel, CPU);
904 }
905
906 if (opts->sample_address)
907 perf_evsel__set_sample_bit(evsel, DATA_SRC);
908
909 if (opts->no_buffering) {
910 attr->watermark = 0;
911 attr->wakeup_events = 1;
912 }
913 if (opts->branch_stack && !evsel->no_aux_samples) {
914 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
915 attr->branch_sample_type = opts->branch_stack;
916 }
917
918 if (opts->sample_weight)
919 perf_evsel__set_sample_bit(evsel, WEIGHT);
920
921 attr->task = track;
922 attr->mmap = track;
923 attr->mmap2 = track && !perf_missing_features.mmap2;
924 attr->comm = track;
925
926 if (opts->record_switch_events)
927 attr->context_switch = track;
928
929 if (opts->sample_transaction)
930 perf_evsel__set_sample_bit(evsel, TRANSACTION);
931
932 if (opts->running_time) {
933 evsel->attr.read_format |=
934 PERF_FORMAT_TOTAL_TIME_ENABLED |
935 PERF_FORMAT_TOTAL_TIME_RUNNING;
936 }
937
938 /*
939 * XXX see the function comment above
940 *
941 * Disabling only independent events or group leaders,
942 * keeping group members enabled.
943 */
944 if (perf_evsel__is_group_leader(evsel))
945 attr->disabled = 1;
946
947 /*
948 * Setting enable_on_exec for independent events and
949 * group leaders for traced executed by perf.
950 */
951 if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
952 !opts->initial_delay)
953 attr->enable_on_exec = 1;
954
955 if (evsel->immediate) {
956 attr->disabled = 0;
957 attr->enable_on_exec = 0;
958 }
959
960 clockid = opts->clockid;
961 if (opts->use_clockid) {
962 attr->use_clockid = 1;
963 attr->clockid = opts->clockid;
964 }
965
966 if (evsel->precise_max)
967 perf_event_attr__set_max_precise_ip(attr);
968
969 if (opts->all_user) {
970 attr->exclude_kernel = 1;
971 attr->exclude_user = 0;
972 }
973
974 if (opts->all_kernel) {
975 attr->exclude_kernel = 0;
976 attr->exclude_user = 1;
977 }
978
979 /*
980 * Apply event specific term settings,
981 * it overloads any global configuration.
982 */
983 apply_config_terms(evsel, opts);
984 }
985
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)986 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
987 {
988 if (evsel->system_wide)
989 nthreads = 1;
990
991 evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
992
993 if (evsel->fd) {
994 int cpu, thread;
995 for (cpu = 0; cpu < ncpus; cpu++) {
996 for (thread = 0; thread < nthreads; thread++) {
997 FD(evsel, cpu, thread) = -1;
998 }
999 }
1000 }
1001
1002 return evsel->fd != NULL ? 0 : -ENOMEM;
1003 }
1004
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ncpus,int nthreads,int ioc,void * arg)1005 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1006 int ioc, void *arg)
1007 {
1008 int cpu, thread;
1009
1010 if (evsel->system_wide)
1011 nthreads = 1;
1012
1013 for (cpu = 0; cpu < ncpus; cpu++) {
1014 for (thread = 0; thread < nthreads; thread++) {
1015 int fd = FD(evsel, cpu, thread),
1016 err = ioctl(fd, ioc, arg);
1017
1018 if (err)
1019 return err;
1020 }
1021 }
1022
1023 return 0;
1024 }
1025
perf_evsel__apply_filter(struct perf_evsel * evsel,int ncpus,int nthreads,const char * filter)1026 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1027 const char *filter)
1028 {
1029 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1030 PERF_EVENT_IOC_SET_FILTER,
1031 (void *)filter);
1032 }
1033
perf_evsel__set_filter(struct perf_evsel * evsel,const char * filter)1034 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1035 {
1036 char *new_filter = strdup(filter);
1037
1038 if (new_filter != NULL) {
1039 free(evsel->filter);
1040 evsel->filter = new_filter;
1041 return 0;
1042 }
1043
1044 return -1;
1045 }
1046
perf_evsel__append_filter(struct perf_evsel * evsel,const char * fmt,const char * filter)1047 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1048 const char *fmt, const char *filter)
1049 {
1050 char *new_filter;
1051
1052 if (evsel->filter == NULL)
1053 return perf_evsel__set_filter(evsel, filter);
1054
1055 if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1056 free(evsel->filter);
1057 evsel->filter = new_filter;
1058 return 0;
1059 }
1060
1061 return -1;
1062 }
1063
perf_evsel__append_tp_filter(struct perf_evsel * evsel,const char * filter)1064 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1065 {
1066 return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1067 }
1068
perf_evsel__append_addr_filter(struct perf_evsel * evsel,const char * filter)1069 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1070 {
1071 return perf_evsel__append_filter(evsel, "%s,%s", filter);
1072 }
1073
perf_evsel__enable(struct perf_evsel * evsel)1074 int perf_evsel__enable(struct perf_evsel *evsel)
1075 {
1076 int nthreads = thread_map__nr(evsel->threads);
1077 int ncpus = cpu_map__nr(evsel->cpus);
1078
1079 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1080 PERF_EVENT_IOC_ENABLE,
1081 0);
1082 }
1083
perf_evsel__disable(struct perf_evsel * evsel)1084 int perf_evsel__disable(struct perf_evsel *evsel)
1085 {
1086 int nthreads = thread_map__nr(evsel->threads);
1087 int ncpus = cpu_map__nr(evsel->cpus);
1088
1089 return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1090 PERF_EVENT_IOC_DISABLE,
1091 0);
1092 }
1093
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)1094 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1095 {
1096 if (ncpus == 0 || nthreads == 0)
1097 return 0;
1098
1099 if (evsel->system_wide)
1100 nthreads = 1;
1101
1102 evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1103 if (evsel->sample_id == NULL)
1104 return -ENOMEM;
1105
1106 evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1107 if (evsel->id == NULL) {
1108 xyarray__delete(evsel->sample_id);
1109 evsel->sample_id = NULL;
1110 return -ENOMEM;
1111 }
1112
1113 return 0;
1114 }
1115
perf_evsel__free_fd(struct perf_evsel * evsel)1116 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1117 {
1118 xyarray__delete(evsel->fd);
1119 evsel->fd = NULL;
1120 }
1121
perf_evsel__free_id(struct perf_evsel * evsel)1122 static void perf_evsel__free_id(struct perf_evsel *evsel)
1123 {
1124 xyarray__delete(evsel->sample_id);
1125 evsel->sample_id = NULL;
1126 zfree(&evsel->id);
1127 }
1128
perf_evsel__free_config_terms(struct perf_evsel * evsel)1129 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1130 {
1131 struct perf_evsel_config_term *term, *h;
1132
1133 list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1134 list_del(&term->list);
1135 free(term);
1136 }
1137 }
1138
perf_evsel__close_fd(struct perf_evsel * evsel,int ncpus,int nthreads)1139 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1140 {
1141 int cpu, thread;
1142
1143 if (evsel->system_wide)
1144 nthreads = 1;
1145
1146 for (cpu = 0; cpu < ncpus; cpu++)
1147 for (thread = 0; thread < nthreads; ++thread) {
1148 close(FD(evsel, cpu, thread));
1149 FD(evsel, cpu, thread) = -1;
1150 }
1151 }
1152
perf_evsel__exit(struct perf_evsel * evsel)1153 void perf_evsel__exit(struct perf_evsel *evsel)
1154 {
1155 assert(list_empty(&evsel->node));
1156 assert(evsel->evlist == NULL);
1157 perf_evsel__free_fd(evsel);
1158 perf_evsel__free_id(evsel);
1159 perf_evsel__free_config_terms(evsel);
1160 close_cgroup(evsel->cgrp);
1161 cpu_map__put(evsel->cpus);
1162 cpu_map__put(evsel->own_cpus);
1163 thread_map__put(evsel->threads);
1164 zfree(&evsel->group_name);
1165 zfree(&evsel->name);
1166 perf_evsel__object.fini(evsel);
1167 }
1168
perf_evsel__delete(struct perf_evsel * evsel)1169 void perf_evsel__delete(struct perf_evsel *evsel)
1170 {
1171 perf_evsel__exit(evsel);
1172 free(evsel);
1173 }
1174
perf_evsel__compute_deltas(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1175 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1176 struct perf_counts_values *count)
1177 {
1178 struct perf_counts_values tmp;
1179
1180 if (!evsel->prev_raw_counts)
1181 return;
1182
1183 if (cpu == -1) {
1184 tmp = evsel->prev_raw_counts->aggr;
1185 evsel->prev_raw_counts->aggr = *count;
1186 } else {
1187 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1188 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1189 }
1190
1191 count->val = count->val - tmp.val;
1192 count->ena = count->ena - tmp.ena;
1193 count->run = count->run - tmp.run;
1194 }
1195
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1196 void perf_counts_values__scale(struct perf_counts_values *count,
1197 bool scale, s8 *pscaled)
1198 {
1199 s8 scaled = 0;
1200
1201 if (scale) {
1202 if (count->run == 0) {
1203 scaled = -1;
1204 count->val = 0;
1205 } else if (count->run < count->ena) {
1206 scaled = 1;
1207 count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1208 }
1209 } else
1210 count->ena = count->run = 0;
1211
1212 if (pscaled)
1213 *pscaled = scaled;
1214 }
1215
perf_evsel__read(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1216 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1217 struct perf_counts_values *count)
1218 {
1219 memset(count, 0, sizeof(*count));
1220
1221 if (FD(evsel, cpu, thread) < 0)
1222 return -EINVAL;
1223
1224 if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1225 return -errno;
1226
1227 return 0;
1228 }
1229
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)1230 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1231 int cpu, int thread, bool scale)
1232 {
1233 struct perf_counts_values count;
1234 size_t nv = scale ? 3 : 1;
1235
1236 if (FD(evsel, cpu, thread) < 0)
1237 return -EINVAL;
1238
1239 if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1240 return -ENOMEM;
1241
1242 if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1243 return -errno;
1244
1245 perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1246 perf_counts_values__scale(&count, scale, NULL);
1247 *perf_counts(evsel->counts, cpu, thread) = count;
1248 return 0;
1249 }
1250
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)1251 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1252 {
1253 struct perf_evsel *leader = evsel->leader;
1254 int fd;
1255
1256 if (perf_evsel__is_group_leader(evsel))
1257 return -1;
1258
1259 /*
1260 * Leader must be already processed/open,
1261 * if not it's a bug.
1262 */
1263 BUG_ON(!leader->fd);
1264
1265 fd = FD(leader, cpu, thread);
1266 BUG_ON(fd == -1);
1267
1268 return fd;
1269 }
1270
1271 struct bit_names {
1272 int bit;
1273 const char *name;
1274 };
1275
__p_bits(char * buf,size_t size,u64 value,struct bit_names * bits)1276 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1277 {
1278 bool first_bit = true;
1279 int i = 0;
1280
1281 do {
1282 if (value & bits[i].bit) {
1283 buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1284 first_bit = false;
1285 }
1286 } while (bits[++i].name != NULL);
1287 }
1288
__p_sample_type(char * buf,size_t size,u64 value)1289 static void __p_sample_type(char *buf, size_t size, u64 value)
1290 {
1291 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1292 struct bit_names bits[] = {
1293 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1294 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1295 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1296 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1297 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1298 bit_name(WEIGHT),
1299 { .name = NULL, }
1300 };
1301 #undef bit_name
1302 __p_bits(buf, size, value, bits);
1303 }
1304
__p_branch_sample_type(char * buf,size_t size,u64 value)1305 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1306 {
1307 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1308 struct bit_names bits[] = {
1309 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1310 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1311 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1312 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1313 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1314 { .name = NULL, }
1315 };
1316 #undef bit_name
1317 __p_bits(buf, size, value, bits);
1318 }
1319
__p_read_format(char * buf,size_t size,u64 value)1320 static void __p_read_format(char *buf, size_t size, u64 value)
1321 {
1322 #define bit_name(n) { PERF_FORMAT_##n, #n }
1323 struct bit_names bits[] = {
1324 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1325 bit_name(ID), bit_name(GROUP),
1326 { .name = NULL, }
1327 };
1328 #undef bit_name
1329 __p_bits(buf, size, value, bits);
1330 }
1331
1332 #define BUF_SIZE 1024
1333
1334 #define p_hex(val) snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1335 #define p_unsigned(val) snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1336 #define p_signed(val) snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1337 #define p_sample_type(val) __p_sample_type(buf, BUF_SIZE, val)
1338 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1339 #define p_read_format(val) __p_read_format(buf, BUF_SIZE, val)
1340
1341 #define PRINT_ATTRn(_n, _f, _p) \
1342 do { \
1343 if (attr->_f) { \
1344 _p(attr->_f); \
1345 ret += attr__fprintf(fp, _n, buf, priv);\
1346 } \
1347 } while (0)
1348
1349 #define PRINT_ATTRf(_f, _p) PRINT_ATTRn(#_f, _f, _p)
1350
perf_event_attr__fprintf(FILE * fp,struct perf_event_attr * attr,attr__fprintf_f attr__fprintf,void * priv)1351 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1352 attr__fprintf_f attr__fprintf, void *priv)
1353 {
1354 char buf[BUF_SIZE];
1355 int ret = 0;
1356
1357 PRINT_ATTRf(type, p_unsigned);
1358 PRINT_ATTRf(size, p_unsigned);
1359 PRINT_ATTRf(config, p_hex);
1360 PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1361 PRINT_ATTRf(sample_type, p_sample_type);
1362 PRINT_ATTRf(read_format, p_read_format);
1363
1364 PRINT_ATTRf(disabled, p_unsigned);
1365 PRINT_ATTRf(inherit, p_unsigned);
1366 PRINT_ATTRf(pinned, p_unsigned);
1367 PRINT_ATTRf(exclusive, p_unsigned);
1368 PRINT_ATTRf(exclude_user, p_unsigned);
1369 PRINT_ATTRf(exclude_kernel, p_unsigned);
1370 PRINT_ATTRf(exclude_hv, p_unsigned);
1371 PRINT_ATTRf(exclude_idle, p_unsigned);
1372 PRINT_ATTRf(mmap, p_unsigned);
1373 PRINT_ATTRf(comm, p_unsigned);
1374 PRINT_ATTRf(freq, p_unsigned);
1375 PRINT_ATTRf(inherit_stat, p_unsigned);
1376 PRINT_ATTRf(enable_on_exec, p_unsigned);
1377 PRINT_ATTRf(task, p_unsigned);
1378 PRINT_ATTRf(watermark, p_unsigned);
1379 PRINT_ATTRf(precise_ip, p_unsigned);
1380 PRINT_ATTRf(mmap_data, p_unsigned);
1381 PRINT_ATTRf(sample_id_all, p_unsigned);
1382 PRINT_ATTRf(exclude_host, p_unsigned);
1383 PRINT_ATTRf(exclude_guest, p_unsigned);
1384 PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1385 PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1386 PRINT_ATTRf(mmap2, p_unsigned);
1387 PRINT_ATTRf(comm_exec, p_unsigned);
1388 PRINT_ATTRf(use_clockid, p_unsigned);
1389 PRINT_ATTRf(context_switch, p_unsigned);
1390 PRINT_ATTRf(write_backward, p_unsigned);
1391
1392 PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1393 PRINT_ATTRf(bp_type, p_unsigned);
1394 PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1395 PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1396 PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1397 PRINT_ATTRf(sample_regs_user, p_hex);
1398 PRINT_ATTRf(sample_stack_user, p_unsigned);
1399 PRINT_ATTRf(clockid, p_signed);
1400 PRINT_ATTRf(sample_regs_intr, p_hex);
1401 PRINT_ATTRf(aux_watermark, p_unsigned);
1402 PRINT_ATTRf(sample_max_stack, p_unsigned);
1403
1404 return ret;
1405 }
1406
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv)1407 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1408 void *priv __attribute__((unused)))
1409 {
1410 return fprintf(fp, " %-32s %s\n", name, val);
1411 }
1412
__perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1413 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1414 struct thread_map *threads)
1415 {
1416 int cpu, thread, nthreads;
1417 unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1418 int pid = -1, err;
1419 enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1420
1421 if (perf_missing_features.write_backward && evsel->attr.write_backward)
1422 return -EINVAL;
1423
1424 if (evsel->system_wide)
1425 nthreads = 1;
1426 else
1427 nthreads = threads->nr;
1428
1429 if (evsel->fd == NULL &&
1430 perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1431 return -ENOMEM;
1432
1433 if (evsel->cgrp) {
1434 flags |= PERF_FLAG_PID_CGROUP;
1435 pid = evsel->cgrp->fd;
1436 }
1437
1438 fallback_missing_features:
1439 if (perf_missing_features.clockid_wrong)
1440 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1441 if (perf_missing_features.clockid) {
1442 evsel->attr.use_clockid = 0;
1443 evsel->attr.clockid = 0;
1444 }
1445 if (perf_missing_features.cloexec)
1446 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1447 if (perf_missing_features.mmap2)
1448 evsel->attr.mmap2 = 0;
1449 if (perf_missing_features.exclude_guest)
1450 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1451 if (perf_missing_features.lbr_flags)
1452 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1453 PERF_SAMPLE_BRANCH_NO_CYCLES);
1454 retry_sample_id:
1455 if (perf_missing_features.sample_id_all)
1456 evsel->attr.sample_id_all = 0;
1457
1458 if (verbose >= 2) {
1459 fprintf(stderr, "%.60s\n", graph_dotted_line);
1460 fprintf(stderr, "perf_event_attr:\n");
1461 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1462 fprintf(stderr, "%.60s\n", graph_dotted_line);
1463 }
1464
1465 for (cpu = 0; cpu < cpus->nr; cpu++) {
1466
1467 for (thread = 0; thread < nthreads; thread++) {
1468 int group_fd;
1469
1470 if (!evsel->cgrp && !evsel->system_wide)
1471 pid = thread_map__pid(threads, thread);
1472
1473 group_fd = get_group_fd(evsel, cpu, thread);
1474 retry_open:
1475 pr_debug2("sys_perf_event_open: pid %d cpu %d group_fd %d flags %#lx\n",
1476 pid, cpus->map[cpu], group_fd, flags);
1477
1478 FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1479 pid,
1480 cpus->map[cpu],
1481 group_fd, flags);
1482 if (FD(evsel, cpu, thread) < 0) {
1483 err = -errno;
1484 pr_debug2("sys_perf_event_open failed, error %d\n",
1485 err);
1486 goto try_fallback;
1487 }
1488
1489 if (evsel->bpf_fd >= 0) {
1490 int evt_fd = FD(evsel, cpu, thread);
1491 int bpf_fd = evsel->bpf_fd;
1492
1493 err = ioctl(evt_fd,
1494 PERF_EVENT_IOC_SET_BPF,
1495 bpf_fd);
1496 if (err && errno != EEXIST) {
1497 pr_err("failed to attach bpf fd %d: %s\n",
1498 bpf_fd, strerror(errno));
1499 err = -EINVAL;
1500 goto out_close;
1501 }
1502 }
1503
1504 set_rlimit = NO_CHANGE;
1505
1506 /*
1507 * If we succeeded but had to kill clockid, fail and
1508 * have perf_evsel__open_strerror() print us a nice
1509 * error.
1510 */
1511 if (perf_missing_features.clockid ||
1512 perf_missing_features.clockid_wrong) {
1513 err = -EINVAL;
1514 goto out_close;
1515 }
1516 }
1517 }
1518
1519 return 0;
1520
1521 try_fallback:
1522 /*
1523 * perf stat needs between 5 and 22 fds per CPU. When we run out
1524 * of them try to increase the limits.
1525 */
1526 if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1527 struct rlimit l;
1528 int old_errno = errno;
1529
1530 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1531 if (set_rlimit == NO_CHANGE)
1532 l.rlim_cur = l.rlim_max;
1533 else {
1534 l.rlim_cur = l.rlim_max + 1000;
1535 l.rlim_max = l.rlim_cur;
1536 }
1537 if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1538 set_rlimit++;
1539 errno = old_errno;
1540 goto retry_open;
1541 }
1542 }
1543 errno = old_errno;
1544 }
1545
1546 if (err != -EINVAL || cpu > 0 || thread > 0)
1547 goto out_close;
1548
1549 /*
1550 * Must probe features in the order they were added to the
1551 * perf_event_attr interface.
1552 */
1553 if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1554 perf_missing_features.write_backward = true;
1555 goto out_close;
1556 } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1557 perf_missing_features.clockid_wrong = true;
1558 goto fallback_missing_features;
1559 } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1560 perf_missing_features.clockid = true;
1561 goto fallback_missing_features;
1562 } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1563 perf_missing_features.cloexec = true;
1564 goto fallback_missing_features;
1565 } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1566 perf_missing_features.mmap2 = true;
1567 goto fallback_missing_features;
1568 } else if (!perf_missing_features.exclude_guest &&
1569 (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1570 perf_missing_features.exclude_guest = true;
1571 goto fallback_missing_features;
1572 } else if (!perf_missing_features.sample_id_all) {
1573 perf_missing_features.sample_id_all = true;
1574 goto retry_sample_id;
1575 } else if (!perf_missing_features.lbr_flags &&
1576 (evsel->attr.branch_sample_type &
1577 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1578 PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1579 perf_missing_features.lbr_flags = true;
1580 goto fallback_missing_features;
1581 }
1582 out_close:
1583 do {
1584 while (--thread >= 0) {
1585 close(FD(evsel, cpu, thread));
1586 FD(evsel, cpu, thread) = -1;
1587 }
1588 thread = nthreads;
1589 } while (--cpu >= 0);
1590 return err;
1591 }
1592
perf_evsel__close(struct perf_evsel * evsel,int ncpus,int nthreads)1593 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1594 {
1595 if (evsel->fd == NULL)
1596 return;
1597
1598 perf_evsel__close_fd(evsel, ncpus, nthreads);
1599 perf_evsel__free_fd(evsel);
1600 }
1601
1602 static struct {
1603 struct cpu_map map;
1604 int cpus[1];
1605 } empty_cpu_map = {
1606 .map.nr = 1,
1607 .cpus = { -1, },
1608 };
1609
1610 static struct {
1611 struct thread_map map;
1612 int threads[1];
1613 } empty_thread_map = {
1614 .map.nr = 1,
1615 .threads = { -1, },
1616 };
1617
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1618 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1619 struct thread_map *threads)
1620 {
1621 if (cpus == NULL) {
1622 /* Work around old compiler warnings about strict aliasing */
1623 cpus = &empty_cpu_map.map;
1624 }
1625
1626 if (threads == NULL)
1627 threads = &empty_thread_map.map;
1628
1629 return __perf_evsel__open(evsel, cpus, threads);
1630 }
1631
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1632 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1633 struct cpu_map *cpus)
1634 {
1635 return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1636 }
1637
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)1638 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1639 struct thread_map *threads)
1640 {
1641 return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1642 }
1643
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)1644 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1645 const union perf_event *event,
1646 struct perf_sample *sample)
1647 {
1648 u64 type = evsel->attr.sample_type;
1649 const u64 *array = event->sample.array;
1650 bool swapped = evsel->needs_swap;
1651 union u64_swap u;
1652
1653 array += ((event->header.size -
1654 sizeof(event->header)) / sizeof(u64)) - 1;
1655
1656 if (type & PERF_SAMPLE_IDENTIFIER) {
1657 sample->id = *array;
1658 array--;
1659 }
1660
1661 if (type & PERF_SAMPLE_CPU) {
1662 u.val64 = *array;
1663 if (swapped) {
1664 /* undo swap of u64, then swap on individual u32s */
1665 u.val64 = bswap_64(u.val64);
1666 u.val32[0] = bswap_32(u.val32[0]);
1667 }
1668
1669 sample->cpu = u.val32[0];
1670 array--;
1671 }
1672
1673 if (type & PERF_SAMPLE_STREAM_ID) {
1674 sample->stream_id = *array;
1675 array--;
1676 }
1677
1678 if (type & PERF_SAMPLE_ID) {
1679 sample->id = *array;
1680 array--;
1681 }
1682
1683 if (type & PERF_SAMPLE_TIME) {
1684 sample->time = *array;
1685 array--;
1686 }
1687
1688 if (type & PERF_SAMPLE_TID) {
1689 u.val64 = *array;
1690 if (swapped) {
1691 /* undo swap of u64, then swap on individual u32s */
1692 u.val64 = bswap_64(u.val64);
1693 u.val32[0] = bswap_32(u.val32[0]);
1694 u.val32[1] = bswap_32(u.val32[1]);
1695 }
1696
1697 sample->pid = u.val32[0];
1698 sample->tid = u.val32[1];
1699 array--;
1700 }
1701
1702 return 0;
1703 }
1704
overflow(const void * endp,u16 max_size,const void * offset,u64 size)1705 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1706 u64 size)
1707 {
1708 return size > max_size || offset + size > endp;
1709 }
1710
1711 #define OVERFLOW_CHECK(offset, size, max_size) \
1712 do { \
1713 if (overflow(endp, (max_size), (offset), (size))) \
1714 return -EFAULT; \
1715 } while (0)
1716
1717 #define OVERFLOW_CHECK_u64(offset) \
1718 OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1719
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)1720 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1721 struct perf_sample *data)
1722 {
1723 u64 type = evsel->attr.sample_type;
1724 bool swapped = evsel->needs_swap;
1725 const u64 *array;
1726 u16 max_size = event->header.size;
1727 const void *endp = (void *)event + max_size;
1728 u64 sz;
1729
1730 /*
1731 * used for cross-endian analysis. See git commit 65014ab3
1732 * for why this goofiness is needed.
1733 */
1734 union u64_swap u;
1735
1736 memset(data, 0, sizeof(*data));
1737 data->cpu = data->pid = data->tid = -1;
1738 data->stream_id = data->id = data->time = -1ULL;
1739 data->period = evsel->attr.sample_period;
1740 data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1741
1742 if (event->header.type != PERF_RECORD_SAMPLE) {
1743 if (!evsel->attr.sample_id_all)
1744 return 0;
1745 return perf_evsel__parse_id_sample(evsel, event, data);
1746 }
1747
1748 array = event->sample.array;
1749
1750 /*
1751 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1752 * up to PERF_SAMPLE_PERIOD. After that overflow() must be used to
1753 * check the format does not go past the end of the event.
1754 */
1755 if (evsel->sample_size + sizeof(event->header) > event->header.size)
1756 return -EFAULT;
1757
1758 data->id = -1ULL;
1759 if (type & PERF_SAMPLE_IDENTIFIER) {
1760 data->id = *array;
1761 array++;
1762 }
1763
1764 if (type & PERF_SAMPLE_IP) {
1765 data->ip = *array;
1766 array++;
1767 }
1768
1769 if (type & PERF_SAMPLE_TID) {
1770 u.val64 = *array;
1771 if (swapped) {
1772 /* undo swap of u64, then swap on individual u32s */
1773 u.val64 = bswap_64(u.val64);
1774 u.val32[0] = bswap_32(u.val32[0]);
1775 u.val32[1] = bswap_32(u.val32[1]);
1776 }
1777
1778 data->pid = u.val32[0];
1779 data->tid = u.val32[1];
1780 array++;
1781 }
1782
1783 if (type & PERF_SAMPLE_TIME) {
1784 data->time = *array;
1785 array++;
1786 }
1787
1788 data->addr = 0;
1789 if (type & PERF_SAMPLE_ADDR) {
1790 data->addr = *array;
1791 array++;
1792 }
1793
1794 if (type & PERF_SAMPLE_ID) {
1795 data->id = *array;
1796 array++;
1797 }
1798
1799 if (type & PERF_SAMPLE_STREAM_ID) {
1800 data->stream_id = *array;
1801 array++;
1802 }
1803
1804 if (type & PERF_SAMPLE_CPU) {
1805
1806 u.val64 = *array;
1807 if (swapped) {
1808 /* undo swap of u64, then swap on individual u32s */
1809 u.val64 = bswap_64(u.val64);
1810 u.val32[0] = bswap_32(u.val32[0]);
1811 }
1812
1813 data->cpu = u.val32[0];
1814 array++;
1815 }
1816
1817 if (type & PERF_SAMPLE_PERIOD) {
1818 data->period = *array;
1819 array++;
1820 }
1821
1822 if (type & PERF_SAMPLE_READ) {
1823 u64 read_format = evsel->attr.read_format;
1824
1825 OVERFLOW_CHECK_u64(array);
1826 if (read_format & PERF_FORMAT_GROUP)
1827 data->read.group.nr = *array;
1828 else
1829 data->read.one.value = *array;
1830
1831 array++;
1832
1833 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1834 OVERFLOW_CHECK_u64(array);
1835 data->read.time_enabled = *array;
1836 array++;
1837 }
1838
1839 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1840 OVERFLOW_CHECK_u64(array);
1841 data->read.time_running = *array;
1842 array++;
1843 }
1844
1845 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1846 if (read_format & PERF_FORMAT_GROUP) {
1847 const u64 max_group_nr = UINT64_MAX /
1848 sizeof(struct sample_read_value);
1849
1850 if (data->read.group.nr > max_group_nr)
1851 return -EFAULT;
1852 sz = data->read.group.nr *
1853 sizeof(struct sample_read_value);
1854 OVERFLOW_CHECK(array, sz, max_size);
1855 data->read.group.values =
1856 (struct sample_read_value *)array;
1857 array = (void *)array + sz;
1858 } else {
1859 OVERFLOW_CHECK_u64(array);
1860 data->read.one.id = *array;
1861 array++;
1862 }
1863 }
1864
1865 if (type & PERF_SAMPLE_CALLCHAIN) {
1866 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1867
1868 OVERFLOW_CHECK_u64(array);
1869 data->callchain = (struct ip_callchain *)array++;
1870 if (data->callchain->nr > max_callchain_nr)
1871 return -EFAULT;
1872 sz = data->callchain->nr * sizeof(u64);
1873 OVERFLOW_CHECK(array, sz, max_size);
1874 array = (void *)array + sz;
1875 }
1876
1877 if (type & PERF_SAMPLE_RAW) {
1878 OVERFLOW_CHECK_u64(array);
1879 u.val64 = *array;
1880 if (WARN_ONCE(swapped,
1881 "Endianness of raw data not corrected!\n")) {
1882 /* undo swap of u64, then swap on individual u32s */
1883 u.val64 = bswap_64(u.val64);
1884 u.val32[0] = bswap_32(u.val32[0]);
1885 u.val32[1] = bswap_32(u.val32[1]);
1886 }
1887 data->raw_size = u.val32[0];
1888 array = (void *)array + sizeof(u32);
1889
1890 OVERFLOW_CHECK(array, data->raw_size, max_size);
1891 data->raw_data = (void *)array;
1892 array = (void *)array + data->raw_size;
1893 }
1894
1895 if (type & PERF_SAMPLE_BRANCH_STACK) {
1896 const u64 max_branch_nr = UINT64_MAX /
1897 sizeof(struct branch_entry);
1898
1899 OVERFLOW_CHECK_u64(array);
1900 data->branch_stack = (struct branch_stack *)array++;
1901
1902 if (data->branch_stack->nr > max_branch_nr)
1903 return -EFAULT;
1904 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1905 OVERFLOW_CHECK(array, sz, max_size);
1906 array = (void *)array + sz;
1907 }
1908
1909 if (type & PERF_SAMPLE_REGS_USER) {
1910 OVERFLOW_CHECK_u64(array);
1911 data->user_regs.abi = *array;
1912 array++;
1913
1914 if (data->user_regs.abi) {
1915 u64 mask = evsel->attr.sample_regs_user;
1916
1917 sz = hweight_long(mask) * sizeof(u64);
1918 OVERFLOW_CHECK(array, sz, max_size);
1919 data->user_regs.mask = mask;
1920 data->user_regs.regs = (u64 *)array;
1921 array = (void *)array + sz;
1922 }
1923 }
1924
1925 if (type & PERF_SAMPLE_STACK_USER) {
1926 OVERFLOW_CHECK_u64(array);
1927 sz = *array++;
1928
1929 data->user_stack.offset = ((char *)(array - 1)
1930 - (char *) event);
1931
1932 if (!sz) {
1933 data->user_stack.size = 0;
1934 } else {
1935 OVERFLOW_CHECK(array, sz, max_size);
1936 data->user_stack.data = (char *)array;
1937 array = (void *)array + sz;
1938 OVERFLOW_CHECK_u64(array);
1939 data->user_stack.size = *array++;
1940 if (WARN_ONCE(data->user_stack.size > sz,
1941 "user stack dump failure\n"))
1942 return -EFAULT;
1943 }
1944 }
1945
1946 if (type & PERF_SAMPLE_WEIGHT) {
1947 OVERFLOW_CHECK_u64(array);
1948 data->weight = *array;
1949 array++;
1950 }
1951
1952 data->data_src = PERF_MEM_DATA_SRC_NONE;
1953 if (type & PERF_SAMPLE_DATA_SRC) {
1954 OVERFLOW_CHECK_u64(array);
1955 data->data_src = *array;
1956 array++;
1957 }
1958
1959 data->transaction = 0;
1960 if (type & PERF_SAMPLE_TRANSACTION) {
1961 OVERFLOW_CHECK_u64(array);
1962 data->transaction = *array;
1963 array++;
1964 }
1965
1966 data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1967 if (type & PERF_SAMPLE_REGS_INTR) {
1968 OVERFLOW_CHECK_u64(array);
1969 data->intr_regs.abi = *array;
1970 array++;
1971
1972 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1973 u64 mask = evsel->attr.sample_regs_intr;
1974
1975 sz = hweight_long(mask) * sizeof(u64);
1976 OVERFLOW_CHECK(array, sz, max_size);
1977 data->intr_regs.mask = mask;
1978 data->intr_regs.regs = (u64 *)array;
1979 array = (void *)array + sz;
1980 }
1981 }
1982
1983 return 0;
1984 }
1985
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)1986 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1987 u64 read_format)
1988 {
1989 size_t sz, result = sizeof(struct sample_event);
1990
1991 if (type & PERF_SAMPLE_IDENTIFIER)
1992 result += sizeof(u64);
1993
1994 if (type & PERF_SAMPLE_IP)
1995 result += sizeof(u64);
1996
1997 if (type & PERF_SAMPLE_TID)
1998 result += sizeof(u64);
1999
2000 if (type & PERF_SAMPLE_TIME)
2001 result += sizeof(u64);
2002
2003 if (type & PERF_SAMPLE_ADDR)
2004 result += sizeof(u64);
2005
2006 if (type & PERF_SAMPLE_ID)
2007 result += sizeof(u64);
2008
2009 if (type & PERF_SAMPLE_STREAM_ID)
2010 result += sizeof(u64);
2011
2012 if (type & PERF_SAMPLE_CPU)
2013 result += sizeof(u64);
2014
2015 if (type & PERF_SAMPLE_PERIOD)
2016 result += sizeof(u64);
2017
2018 if (type & PERF_SAMPLE_READ) {
2019 result += sizeof(u64);
2020 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2021 result += sizeof(u64);
2022 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2023 result += sizeof(u64);
2024 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2025 if (read_format & PERF_FORMAT_GROUP) {
2026 sz = sample->read.group.nr *
2027 sizeof(struct sample_read_value);
2028 result += sz;
2029 } else {
2030 result += sizeof(u64);
2031 }
2032 }
2033
2034 if (type & PERF_SAMPLE_CALLCHAIN) {
2035 sz = (sample->callchain->nr + 1) * sizeof(u64);
2036 result += sz;
2037 }
2038
2039 if (type & PERF_SAMPLE_RAW) {
2040 result += sizeof(u32);
2041 result += sample->raw_size;
2042 }
2043
2044 if (type & PERF_SAMPLE_BRANCH_STACK) {
2045 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2046 sz += sizeof(u64);
2047 result += sz;
2048 }
2049
2050 if (type & PERF_SAMPLE_REGS_USER) {
2051 if (sample->user_regs.abi) {
2052 result += sizeof(u64);
2053 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2054 result += sz;
2055 } else {
2056 result += sizeof(u64);
2057 }
2058 }
2059
2060 if (type & PERF_SAMPLE_STACK_USER) {
2061 sz = sample->user_stack.size;
2062 result += sizeof(u64);
2063 if (sz) {
2064 result += sz;
2065 result += sizeof(u64);
2066 }
2067 }
2068
2069 if (type & PERF_SAMPLE_WEIGHT)
2070 result += sizeof(u64);
2071
2072 if (type & PERF_SAMPLE_DATA_SRC)
2073 result += sizeof(u64);
2074
2075 if (type & PERF_SAMPLE_TRANSACTION)
2076 result += sizeof(u64);
2077
2078 if (type & PERF_SAMPLE_REGS_INTR) {
2079 if (sample->intr_regs.abi) {
2080 result += sizeof(u64);
2081 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2082 result += sz;
2083 } else {
2084 result += sizeof(u64);
2085 }
2086 }
2087
2088 return result;
2089 }
2090
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample,bool swapped)2091 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2092 u64 read_format,
2093 const struct perf_sample *sample,
2094 bool swapped)
2095 {
2096 u64 *array;
2097 size_t sz;
2098 /*
2099 * used for cross-endian analysis. See git commit 65014ab3
2100 * for why this goofiness is needed.
2101 */
2102 union u64_swap u;
2103
2104 array = event->sample.array;
2105
2106 if (type & PERF_SAMPLE_IDENTIFIER) {
2107 *array = sample->id;
2108 array++;
2109 }
2110
2111 if (type & PERF_SAMPLE_IP) {
2112 *array = sample->ip;
2113 array++;
2114 }
2115
2116 if (type & PERF_SAMPLE_TID) {
2117 u.val32[0] = sample->pid;
2118 u.val32[1] = sample->tid;
2119 if (swapped) {
2120 /*
2121 * Inverse of what is done in perf_evsel__parse_sample
2122 */
2123 u.val32[0] = bswap_32(u.val32[0]);
2124 u.val32[1] = bswap_32(u.val32[1]);
2125 u.val64 = bswap_64(u.val64);
2126 }
2127
2128 *array = u.val64;
2129 array++;
2130 }
2131
2132 if (type & PERF_SAMPLE_TIME) {
2133 *array = sample->time;
2134 array++;
2135 }
2136
2137 if (type & PERF_SAMPLE_ADDR) {
2138 *array = sample->addr;
2139 array++;
2140 }
2141
2142 if (type & PERF_SAMPLE_ID) {
2143 *array = sample->id;
2144 array++;
2145 }
2146
2147 if (type & PERF_SAMPLE_STREAM_ID) {
2148 *array = sample->stream_id;
2149 array++;
2150 }
2151
2152 if (type & PERF_SAMPLE_CPU) {
2153 u.val32[0] = sample->cpu;
2154 if (swapped) {
2155 /*
2156 * Inverse of what is done in perf_evsel__parse_sample
2157 */
2158 u.val32[0] = bswap_32(u.val32[0]);
2159 u.val64 = bswap_64(u.val64);
2160 }
2161 *array = u.val64;
2162 array++;
2163 }
2164
2165 if (type & PERF_SAMPLE_PERIOD) {
2166 *array = sample->period;
2167 array++;
2168 }
2169
2170 if (type & PERF_SAMPLE_READ) {
2171 if (read_format & PERF_FORMAT_GROUP)
2172 *array = sample->read.group.nr;
2173 else
2174 *array = sample->read.one.value;
2175 array++;
2176
2177 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2178 *array = sample->read.time_enabled;
2179 array++;
2180 }
2181
2182 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2183 *array = sample->read.time_running;
2184 array++;
2185 }
2186
2187 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2188 if (read_format & PERF_FORMAT_GROUP) {
2189 sz = sample->read.group.nr *
2190 sizeof(struct sample_read_value);
2191 memcpy(array, sample->read.group.values, sz);
2192 array = (void *)array + sz;
2193 } else {
2194 *array = sample->read.one.id;
2195 array++;
2196 }
2197 }
2198
2199 if (type & PERF_SAMPLE_CALLCHAIN) {
2200 sz = (sample->callchain->nr + 1) * sizeof(u64);
2201 memcpy(array, sample->callchain, sz);
2202 array = (void *)array + sz;
2203 }
2204
2205 if (type & PERF_SAMPLE_RAW) {
2206 u.val32[0] = sample->raw_size;
2207 if (WARN_ONCE(swapped,
2208 "Endianness of raw data not corrected!\n")) {
2209 /*
2210 * Inverse of what is done in perf_evsel__parse_sample
2211 */
2212 u.val32[0] = bswap_32(u.val32[0]);
2213 u.val32[1] = bswap_32(u.val32[1]);
2214 u.val64 = bswap_64(u.val64);
2215 }
2216 *array = u.val64;
2217 array = (void *)array + sizeof(u32);
2218
2219 memcpy(array, sample->raw_data, sample->raw_size);
2220 array = (void *)array + sample->raw_size;
2221 }
2222
2223 if (type & PERF_SAMPLE_BRANCH_STACK) {
2224 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2225 sz += sizeof(u64);
2226 memcpy(array, sample->branch_stack, sz);
2227 array = (void *)array + sz;
2228 }
2229
2230 if (type & PERF_SAMPLE_REGS_USER) {
2231 if (sample->user_regs.abi) {
2232 *array++ = sample->user_regs.abi;
2233 sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2234 memcpy(array, sample->user_regs.regs, sz);
2235 array = (void *)array + sz;
2236 } else {
2237 *array++ = 0;
2238 }
2239 }
2240
2241 if (type & PERF_SAMPLE_STACK_USER) {
2242 sz = sample->user_stack.size;
2243 *array++ = sz;
2244 if (sz) {
2245 memcpy(array, sample->user_stack.data, sz);
2246 array = (void *)array + sz;
2247 *array++ = sz;
2248 }
2249 }
2250
2251 if (type & PERF_SAMPLE_WEIGHT) {
2252 *array = sample->weight;
2253 array++;
2254 }
2255
2256 if (type & PERF_SAMPLE_DATA_SRC) {
2257 *array = sample->data_src;
2258 array++;
2259 }
2260
2261 if (type & PERF_SAMPLE_TRANSACTION) {
2262 *array = sample->transaction;
2263 array++;
2264 }
2265
2266 if (type & PERF_SAMPLE_REGS_INTR) {
2267 if (sample->intr_regs.abi) {
2268 *array++ = sample->intr_regs.abi;
2269 sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2270 memcpy(array, sample->intr_regs.regs, sz);
2271 array = (void *)array + sz;
2272 } else {
2273 *array++ = 0;
2274 }
2275 }
2276
2277 return 0;
2278 }
2279
perf_evsel__field(struct perf_evsel * evsel,const char * name)2280 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2281 {
2282 return pevent_find_field(evsel->tp_format, name);
2283 }
2284
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2285 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2286 const char *name)
2287 {
2288 struct format_field *field = perf_evsel__field(evsel, name);
2289 int offset;
2290
2291 if (!field)
2292 return NULL;
2293
2294 offset = field->offset;
2295
2296 if (field->flags & FIELD_IS_DYNAMIC) {
2297 offset = *(int *)(sample->raw_data + field->offset);
2298 offset &= 0xffff;
2299 }
2300
2301 return sample->raw_data + offset;
2302 }
2303
format_field__intval(struct format_field * field,struct perf_sample * sample,bool needs_swap)2304 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2305 bool needs_swap)
2306 {
2307 u64 value;
2308 void *ptr = sample->raw_data + field->offset;
2309
2310 switch (field->size) {
2311 case 1:
2312 return *(u8 *)ptr;
2313 case 2:
2314 value = *(u16 *)ptr;
2315 break;
2316 case 4:
2317 value = *(u32 *)ptr;
2318 break;
2319 case 8:
2320 memcpy(&value, ptr, sizeof(u64));
2321 break;
2322 default:
2323 return 0;
2324 }
2325
2326 if (!needs_swap)
2327 return value;
2328
2329 switch (field->size) {
2330 case 2:
2331 return bswap_16(value);
2332 case 4:
2333 return bswap_32(value);
2334 case 8:
2335 return bswap_64(value);
2336 default:
2337 return 0;
2338 }
2339
2340 return 0;
2341 }
2342
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2343 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2344 const char *name)
2345 {
2346 struct format_field *field = perf_evsel__field(evsel, name);
2347
2348 if (!field)
2349 return 0;
2350
2351 return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2352 }
2353
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2354 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2355 char *msg, size_t msgsize)
2356 {
2357 int paranoid;
2358
2359 if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2360 evsel->attr.type == PERF_TYPE_HARDWARE &&
2361 evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2362 /*
2363 * If it's cycles then fall back to hrtimer based
2364 * cpu-clock-tick sw counter, which is always available even if
2365 * no PMU support.
2366 *
2367 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2368 * b0a873e).
2369 */
2370 scnprintf(msg, msgsize, "%s",
2371 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2372
2373 evsel->attr.type = PERF_TYPE_SOFTWARE;
2374 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2375
2376 zfree(&evsel->name);
2377 return true;
2378 } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2379 (paranoid = perf_event_paranoid()) > 1) {
2380 const char *name = perf_evsel__name(evsel);
2381 char *new_name;
2382
2383 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2384 return false;
2385
2386 if (evsel->name)
2387 free(evsel->name);
2388 evsel->name = new_name;
2389 scnprintf(msg, msgsize,
2390 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2391 evsel->attr.exclude_kernel = 1;
2392
2393 return true;
2394 }
2395
2396 return false;
2397 }
2398
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2399 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2400 int err, char *msg, size_t size)
2401 {
2402 char sbuf[STRERR_BUFSIZE];
2403 int printed = 0;
2404
2405 switch (err) {
2406 case EPERM:
2407 case EACCES:
2408 if (err == EPERM)
2409 printed = scnprintf(msg, size,
2410 "No permission to enable %s event.\n\n",
2411 perf_evsel__name(evsel));
2412
2413 return scnprintf(msg + printed, size - printed,
2414 "You may not have permission to collect %sstats.\n\n"
2415 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2416 "which controls use of the performance events system by\n"
2417 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2418 "The current value is %d:\n\n"
2419 " -1: Allow use of (almost) all events by all users\n"
2420 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2421 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2422 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2423 target->system_wide ? "system-wide " : "",
2424 perf_event_paranoid());
2425 case ENOENT:
2426 return scnprintf(msg, size, "The %s event is not supported.",
2427 perf_evsel__name(evsel));
2428 case EMFILE:
2429 return scnprintf(msg, size, "%s",
2430 "Too many events are opened.\n"
2431 "Probably the maximum number of open file descriptors has been reached.\n"
2432 "Hint: Try again after reducing the number of events.\n"
2433 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2434 case ENOMEM:
2435 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2436 access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2437 return scnprintf(msg, size,
2438 "Not enough memory to setup event with callchain.\n"
2439 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2440 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2441 break;
2442 case ENODEV:
2443 if (target->cpu_list)
2444 return scnprintf(msg, size, "%s",
2445 "No such device - did you specify an out-of-range profile CPU?");
2446 break;
2447 case EOPNOTSUPP:
2448 if (evsel->attr.sample_period != 0)
2449 return scnprintf(msg, size, "%s",
2450 "PMU Hardware doesn't support sampling/overflow-interrupts.");
2451 if (evsel->attr.precise_ip)
2452 return scnprintf(msg, size, "%s",
2453 "\'precise\' request may not be supported. Try removing 'p' modifier.");
2454 #if defined(__i386__) || defined(__x86_64__)
2455 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2456 return scnprintf(msg, size, "%s",
2457 "No hardware sampling interrupt available.\n"
2458 "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2459 #endif
2460 break;
2461 case EBUSY:
2462 if (find_process("oprofiled"))
2463 return scnprintf(msg, size,
2464 "The PMU counters are busy/taken by another profiler.\n"
2465 "We found oprofile daemon running, please stop it and try again.");
2466 break;
2467 case EINVAL:
2468 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2469 return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2470 if (perf_missing_features.clockid)
2471 return scnprintf(msg, size, "clockid feature not supported.");
2472 if (perf_missing_features.clockid_wrong)
2473 return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2474 break;
2475 default:
2476 break;
2477 }
2478
2479 return scnprintf(msg, size,
2480 "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2481 "/bin/dmesg may provide additional information.\n"
2482 "No CONFIG_PERF_EVENTS=y kernel support configured?",
2483 err, str_error_r(err, sbuf, sizeof(sbuf)),
2484 perf_evsel__name(evsel));
2485 }
2486
perf_evsel__env_arch(struct perf_evsel * evsel)2487 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2488 {
2489 if (evsel && evsel->evlist && evsel->evlist->env)
2490 return evsel->evlist->env->arch;
2491 return NULL;
2492 }
2493