• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9 
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 
32 static struct {
33 	bool sample_id_all;
34 	bool exclude_guest;
35 	bool mmap2;
36 	bool cloexec;
37 	bool clockid;
38 	bool clockid_wrong;
39 	bool lbr_flags;
40 	bool write_backward;
41 } perf_missing_features;
42 
43 static clockid_t clockid;
44 
perf_evsel__no_extra_init(struct perf_evsel * evsel __maybe_unused)45 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
46 {
47 	return 0;
48 }
49 
perf_evsel__no_extra_fini(struct perf_evsel * evsel __maybe_unused)50 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
51 {
52 }
53 
54 static struct {
55 	size_t	size;
56 	int	(*init)(struct perf_evsel *evsel);
57 	void	(*fini)(struct perf_evsel *evsel);
58 } perf_evsel__object = {
59 	.size = sizeof(struct perf_evsel),
60 	.init = perf_evsel__no_extra_init,
61 	.fini = perf_evsel__no_extra_fini,
62 };
63 
perf_evsel__object_config(size_t object_size,int (* init)(struct perf_evsel * evsel),void (* fini)(struct perf_evsel * evsel))64 int perf_evsel__object_config(size_t object_size,
65 			      int (*init)(struct perf_evsel *evsel),
66 			      void (*fini)(struct perf_evsel *evsel))
67 {
68 
69 	if (object_size == 0)
70 		goto set_methods;
71 
72 	if (perf_evsel__object.size > object_size)
73 		return -EINVAL;
74 
75 	perf_evsel__object.size = object_size;
76 
77 set_methods:
78 	if (init != NULL)
79 		perf_evsel__object.init = init;
80 
81 	if (fini != NULL)
82 		perf_evsel__object.fini = fini;
83 
84 	return 0;
85 }
86 
87 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
88 
__perf_evsel__sample_size(u64 sample_type)89 int __perf_evsel__sample_size(u64 sample_type)
90 {
91 	u64 mask = sample_type & PERF_SAMPLE_MASK;
92 	int size = 0;
93 	int i;
94 
95 	for (i = 0; i < 64; i++) {
96 		if (mask & (1ULL << i))
97 			size++;
98 	}
99 
100 	size *= sizeof(u64);
101 
102 	return size;
103 }
104 
105 /**
106  * __perf_evsel__calc_id_pos - calculate id_pos.
107  * @sample_type: sample type
108  *
109  * This function returns the position of the event id (PERF_SAMPLE_ID or
110  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
111  * sample_event.
112  */
__perf_evsel__calc_id_pos(u64 sample_type)113 static int __perf_evsel__calc_id_pos(u64 sample_type)
114 {
115 	int idx = 0;
116 
117 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
118 		return 0;
119 
120 	if (!(sample_type & PERF_SAMPLE_ID))
121 		return -1;
122 
123 	if (sample_type & PERF_SAMPLE_IP)
124 		idx += 1;
125 
126 	if (sample_type & PERF_SAMPLE_TID)
127 		idx += 1;
128 
129 	if (sample_type & PERF_SAMPLE_TIME)
130 		idx += 1;
131 
132 	if (sample_type & PERF_SAMPLE_ADDR)
133 		idx += 1;
134 
135 	return idx;
136 }
137 
138 /**
139  * __perf_evsel__calc_is_pos - calculate is_pos.
140  * @sample_type: sample type
141  *
142  * This function returns the position (counting backwards) of the event id
143  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
144  * sample_id_all is used there is an id sample appended to non-sample events.
145  */
__perf_evsel__calc_is_pos(u64 sample_type)146 static int __perf_evsel__calc_is_pos(u64 sample_type)
147 {
148 	int idx = 1;
149 
150 	if (sample_type & PERF_SAMPLE_IDENTIFIER)
151 		return 1;
152 
153 	if (!(sample_type & PERF_SAMPLE_ID))
154 		return -1;
155 
156 	if (sample_type & PERF_SAMPLE_CPU)
157 		idx += 1;
158 
159 	if (sample_type & PERF_SAMPLE_STREAM_ID)
160 		idx += 1;
161 
162 	return idx;
163 }
164 
perf_evsel__calc_id_pos(struct perf_evsel * evsel)165 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
166 {
167 	evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
168 	evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
169 }
170 
__perf_evsel__set_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)171 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
172 				  enum perf_event_sample_format bit)
173 {
174 	if (!(evsel->attr.sample_type & bit)) {
175 		evsel->attr.sample_type |= bit;
176 		evsel->sample_size += sizeof(u64);
177 		perf_evsel__calc_id_pos(evsel);
178 	}
179 }
180 
__perf_evsel__reset_sample_bit(struct perf_evsel * evsel,enum perf_event_sample_format bit)181 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
182 				    enum perf_event_sample_format bit)
183 {
184 	if (evsel->attr.sample_type & bit) {
185 		evsel->attr.sample_type &= ~bit;
186 		evsel->sample_size -= sizeof(u64);
187 		perf_evsel__calc_id_pos(evsel);
188 	}
189 }
190 
perf_evsel__set_sample_id(struct perf_evsel * evsel,bool can_sample_identifier)191 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
192 			       bool can_sample_identifier)
193 {
194 	if (can_sample_identifier) {
195 		perf_evsel__reset_sample_bit(evsel, ID);
196 		perf_evsel__set_sample_bit(evsel, IDENTIFIER);
197 	} else {
198 		perf_evsel__set_sample_bit(evsel, ID);
199 	}
200 	evsel->attr.read_format |= PERF_FORMAT_ID;
201 }
202 
203 /**
204  * perf_evsel__is_function_event - Return whether given evsel is a function
205  * trace event
206  *
207  * @evsel - evsel selector to be tested
208  *
209  * Return %true if event is function trace event
210  */
perf_evsel__is_function_event(struct perf_evsel * evsel)211 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
212 {
213 #define FUNCTION_EVENT "ftrace:function"
214 
215 	return evsel->name &&
216 	       !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
217 
218 #undef FUNCTION_EVENT
219 }
220 
perf_evsel__init(struct perf_evsel * evsel,struct perf_event_attr * attr,int idx)221 void perf_evsel__init(struct perf_evsel *evsel,
222 		      struct perf_event_attr *attr, int idx)
223 {
224 	evsel->idx	   = idx;
225 	evsel->tracking	   = !idx;
226 	evsel->attr	   = *attr;
227 	evsel->leader	   = evsel;
228 	evsel->unit	   = "";
229 	evsel->scale	   = 1.0;
230 	evsel->evlist	   = NULL;
231 	evsel->bpf_fd	   = -1;
232 	INIT_LIST_HEAD(&evsel->node);
233 	INIT_LIST_HEAD(&evsel->config_terms);
234 	perf_evsel__object.init(evsel);
235 	evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
236 	perf_evsel__calc_id_pos(evsel);
237 	evsel->cmdline_group_boundary = false;
238 }
239 
perf_evsel__new_idx(struct perf_event_attr * attr,int idx)240 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
241 {
242 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
243 
244 	if (evsel != NULL)
245 		perf_evsel__init(evsel, attr, idx);
246 
247 	if (perf_evsel__is_bpf_output(evsel)) {
248 		evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
249 					    PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
250 		evsel->attr.sample_period = 1;
251 	}
252 
253 	return evsel;
254 }
255 
perf_evsel__new_cycles(void)256 struct perf_evsel *perf_evsel__new_cycles(void)
257 {
258 	struct perf_event_attr attr = {
259 		.type	= PERF_TYPE_HARDWARE,
260 		.config	= PERF_COUNT_HW_CPU_CYCLES,
261 	};
262 	struct perf_evsel *evsel;
263 
264 	event_attr_init(&attr);
265 
266 	perf_event_attr__set_max_precise_ip(&attr);
267 
268 	evsel = perf_evsel__new(&attr);
269 	if (evsel == NULL)
270 		goto out;
271 
272 	/* use asprintf() because free(evsel) assumes name is allocated */
273 	if (asprintf(&evsel->name, "cycles%.*s",
274 		     attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
275 		goto error_free;
276 out:
277 	return evsel;
278 error_free:
279 	perf_evsel__delete(evsel);
280 	evsel = NULL;
281 	goto out;
282 }
283 
284 /*
285  * Returns pointer with encoded error via <linux/err.h> interface.
286  */
perf_evsel__newtp_idx(const char * sys,const char * name,int idx)287 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
288 {
289 	struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
290 	int err = -ENOMEM;
291 
292 	if (evsel == NULL) {
293 		goto out_err;
294 	} else {
295 		struct perf_event_attr attr = {
296 			.type	       = PERF_TYPE_TRACEPOINT,
297 			.sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
298 					  PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
299 		};
300 
301 		if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
302 			goto out_free;
303 
304 		evsel->tp_format = trace_event__tp_format(sys, name);
305 		if (IS_ERR(evsel->tp_format)) {
306 			err = PTR_ERR(evsel->tp_format);
307 			goto out_free;
308 		}
309 
310 		event_attr_init(&attr);
311 		attr.config = evsel->tp_format->id;
312 		attr.sample_period = 1;
313 		perf_evsel__init(evsel, &attr, idx);
314 	}
315 
316 	return evsel;
317 
318 out_free:
319 	zfree(&evsel->name);
320 	free(evsel);
321 out_err:
322 	return ERR_PTR(err);
323 }
324 
325 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
326 	"cycles",
327 	"instructions",
328 	"cache-references",
329 	"cache-misses",
330 	"branches",
331 	"branch-misses",
332 	"bus-cycles",
333 	"stalled-cycles-frontend",
334 	"stalled-cycles-backend",
335 	"ref-cycles",
336 };
337 
__perf_evsel__hw_name(u64 config)338 static const char *__perf_evsel__hw_name(u64 config)
339 {
340 	if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
341 		return perf_evsel__hw_names[config];
342 
343 	return "unknown-hardware";
344 }
345 
perf_evsel__add_modifiers(struct perf_evsel * evsel,char * bf,size_t size)346 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
347 {
348 	int colon = 0, r = 0;
349 	struct perf_event_attr *attr = &evsel->attr;
350 	bool exclude_guest_default = false;
351 
352 #define MOD_PRINT(context, mod)	do {					\
353 		if (!attr->exclude_##context) {				\
354 			if (!colon) colon = ++r;			\
355 			r += scnprintf(bf + r, size - r, "%c", mod);	\
356 		} } while(0)
357 
358 	if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
359 		MOD_PRINT(kernel, 'k');
360 		MOD_PRINT(user, 'u');
361 		MOD_PRINT(hv, 'h');
362 		exclude_guest_default = true;
363 	}
364 
365 	if (attr->precise_ip) {
366 		if (!colon)
367 			colon = ++r;
368 		r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
369 		exclude_guest_default = true;
370 	}
371 
372 	if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
373 		MOD_PRINT(host, 'H');
374 		MOD_PRINT(guest, 'G');
375 	}
376 #undef MOD_PRINT
377 	if (colon)
378 		bf[colon - 1] = ':';
379 	return r;
380 }
381 
perf_evsel__hw_name(struct perf_evsel * evsel,char * bf,size_t size)382 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
383 {
384 	int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
385 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
386 }
387 
388 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
389 	"cpu-clock",
390 	"task-clock",
391 	"page-faults",
392 	"context-switches",
393 	"cpu-migrations",
394 	"minor-faults",
395 	"major-faults",
396 	"alignment-faults",
397 	"emulation-faults",
398 	"dummy",
399 };
400 
__perf_evsel__sw_name(u64 config)401 static const char *__perf_evsel__sw_name(u64 config)
402 {
403 	if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
404 		return perf_evsel__sw_names[config];
405 	return "unknown-software";
406 }
407 
perf_evsel__sw_name(struct perf_evsel * evsel,char * bf,size_t size)408 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
409 {
410 	int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
411 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
412 }
413 
__perf_evsel__bp_name(char * bf,size_t size,u64 addr,u64 type)414 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
415 {
416 	int r;
417 
418 	r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
419 
420 	if (type & HW_BREAKPOINT_R)
421 		r += scnprintf(bf + r, size - r, "r");
422 
423 	if (type & HW_BREAKPOINT_W)
424 		r += scnprintf(bf + r, size - r, "w");
425 
426 	if (type & HW_BREAKPOINT_X)
427 		r += scnprintf(bf + r, size - r, "x");
428 
429 	return r;
430 }
431 
perf_evsel__bp_name(struct perf_evsel * evsel,char * bf,size_t size)432 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
433 {
434 	struct perf_event_attr *attr = &evsel->attr;
435 	int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
436 	return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
437 }
438 
439 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
440 				[PERF_EVSEL__MAX_ALIASES] = {
441  { "L1-dcache",	"l1-d",		"l1d",		"L1-data",		},
442  { "L1-icache",	"l1-i",		"l1i",		"L1-instruction",	},
443  { "LLC",	"L2",							},
444  { "dTLB",	"d-tlb",	"Data-TLB",				},
445  { "iTLB",	"i-tlb",	"Instruction-TLB",			},
446  { "branch",	"branches",	"bpu",		"btb",		"bpc",	},
447  { "node",								},
448 };
449 
450 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
451 				   [PERF_EVSEL__MAX_ALIASES] = {
452  { "load",	"loads",	"read",					},
453  { "store",	"stores",	"write",				},
454  { "prefetch",	"prefetches",	"speculative-read", "speculative-load",	},
455 };
456 
457 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
458 				       [PERF_EVSEL__MAX_ALIASES] = {
459  { "refs",	"Reference",	"ops",		"access",		},
460  { "misses",	"miss",							},
461 };
462 
463 #define C(x)		PERF_COUNT_HW_CACHE_##x
464 #define CACHE_READ	(1 << C(OP_READ))
465 #define CACHE_WRITE	(1 << C(OP_WRITE))
466 #define CACHE_PREFETCH	(1 << C(OP_PREFETCH))
467 #define COP(x)		(1 << x)
468 
469 /*
470  * cache operartion stat
471  * L1I : Read and prefetch only
472  * ITLB and BPU : Read-only
473  */
474 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
475  [C(L1D)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
476  [C(L1I)]	= (CACHE_READ | CACHE_PREFETCH),
477  [C(LL)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
478  [C(DTLB)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
479  [C(ITLB)]	= (CACHE_READ),
480  [C(BPU)]	= (CACHE_READ),
481  [C(NODE)]	= (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
482 };
483 
perf_evsel__is_cache_op_valid(u8 type,u8 op)484 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
485 {
486 	if (perf_evsel__hw_cache_stat[type] & COP(op))
487 		return true;	/* valid */
488 	else
489 		return false;	/* invalid */
490 }
491 
__perf_evsel__hw_cache_type_op_res_name(u8 type,u8 op,u8 result,char * bf,size_t size)492 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
493 					    char *bf, size_t size)
494 {
495 	if (result) {
496 		return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
497 				 perf_evsel__hw_cache_op[op][0],
498 				 perf_evsel__hw_cache_result[result][0]);
499 	}
500 
501 	return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
502 			 perf_evsel__hw_cache_op[op][1]);
503 }
504 
__perf_evsel__hw_cache_name(u64 config,char * bf,size_t size)505 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
506 {
507 	u8 op, result, type = (config >>  0) & 0xff;
508 	const char *err = "unknown-ext-hardware-cache-type";
509 
510 	if (type >= PERF_COUNT_HW_CACHE_MAX)
511 		goto out_err;
512 
513 	op = (config >>  8) & 0xff;
514 	err = "unknown-ext-hardware-cache-op";
515 	if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
516 		goto out_err;
517 
518 	result = (config >> 16) & 0xff;
519 	err = "unknown-ext-hardware-cache-result";
520 	if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
521 		goto out_err;
522 
523 	err = "invalid-cache";
524 	if (!perf_evsel__is_cache_op_valid(type, op))
525 		goto out_err;
526 
527 	return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
528 out_err:
529 	return scnprintf(bf, size, "%s", err);
530 }
531 
perf_evsel__hw_cache_name(struct perf_evsel * evsel,char * bf,size_t size)532 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
533 {
534 	int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
535 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
536 }
537 
perf_evsel__raw_name(struct perf_evsel * evsel,char * bf,size_t size)538 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
539 {
540 	int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
541 	return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
542 }
543 
perf_evsel__name(struct perf_evsel * evsel)544 const char *perf_evsel__name(struct perf_evsel *evsel)
545 {
546 	char bf[128];
547 
548 	if (evsel->name)
549 		return evsel->name;
550 
551 	switch (evsel->attr.type) {
552 	case PERF_TYPE_RAW:
553 		perf_evsel__raw_name(evsel, bf, sizeof(bf));
554 		break;
555 
556 	case PERF_TYPE_HARDWARE:
557 		perf_evsel__hw_name(evsel, bf, sizeof(bf));
558 		break;
559 
560 	case PERF_TYPE_HW_CACHE:
561 		perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
562 		break;
563 
564 	case PERF_TYPE_SOFTWARE:
565 		perf_evsel__sw_name(evsel, bf, sizeof(bf));
566 		break;
567 
568 	case PERF_TYPE_TRACEPOINT:
569 		scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
570 		break;
571 
572 	case PERF_TYPE_BREAKPOINT:
573 		perf_evsel__bp_name(evsel, bf, sizeof(bf));
574 		break;
575 
576 	default:
577 		scnprintf(bf, sizeof(bf), "unknown attr type: %d",
578 			  evsel->attr.type);
579 		break;
580 	}
581 
582 	evsel->name = strdup(bf);
583 
584 	return evsel->name ?: "unknown";
585 }
586 
perf_evsel__group_name(struct perf_evsel * evsel)587 const char *perf_evsel__group_name(struct perf_evsel *evsel)
588 {
589 	return evsel->group_name ?: "anon group";
590 }
591 
perf_evsel__group_desc(struct perf_evsel * evsel,char * buf,size_t size)592 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
593 {
594 	int ret;
595 	struct perf_evsel *pos;
596 	const char *group_name = perf_evsel__group_name(evsel);
597 
598 	ret = scnprintf(buf, size, "%s", group_name);
599 
600 	ret += scnprintf(buf + ret, size - ret, " { %s",
601 			 perf_evsel__name(evsel));
602 
603 	for_each_group_member(pos, evsel)
604 		ret += scnprintf(buf + ret, size - ret, ", %s",
605 				 perf_evsel__name(pos));
606 
607 	ret += scnprintf(buf + ret, size - ret, " }");
608 
609 	return ret;
610 }
611 
perf_evsel__config_callchain(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * param)612 void perf_evsel__config_callchain(struct perf_evsel *evsel,
613 				  struct record_opts *opts,
614 				  struct callchain_param *param)
615 {
616 	bool function = perf_evsel__is_function_event(evsel);
617 	struct perf_event_attr *attr = &evsel->attr;
618 
619 	perf_evsel__set_sample_bit(evsel, CALLCHAIN);
620 
621 	attr->sample_max_stack = param->max_stack;
622 
623 	if (param->record_mode == CALLCHAIN_LBR) {
624 		if (!opts->branch_stack) {
625 			if (attr->exclude_user) {
626 				pr_warning("LBR callstack option is only available "
627 					   "to get user callchain information. "
628 					   "Falling back to framepointers.\n");
629 			} else {
630 				perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
631 				attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
632 							PERF_SAMPLE_BRANCH_CALL_STACK |
633 							PERF_SAMPLE_BRANCH_NO_CYCLES |
634 							PERF_SAMPLE_BRANCH_NO_FLAGS;
635 			}
636 		} else
637 			 pr_warning("Cannot use LBR callstack with branch stack. "
638 				    "Falling back to framepointers.\n");
639 	}
640 
641 	if (param->record_mode == CALLCHAIN_DWARF) {
642 		if (!function) {
643 			perf_evsel__set_sample_bit(evsel, REGS_USER);
644 			perf_evsel__set_sample_bit(evsel, STACK_USER);
645 			attr->sample_regs_user = PERF_REGS_MASK;
646 			attr->sample_stack_user = param->dump_size;
647 			attr->exclude_callchain_user = 1;
648 		} else {
649 			pr_info("Cannot use DWARF unwind for function trace event,"
650 				" falling back to framepointers.\n");
651 		}
652 	}
653 
654 	if (function) {
655 		pr_info("Disabling user space callchains for function trace event.\n");
656 		attr->exclude_callchain_user = 1;
657 	}
658 }
659 
660 static void
perf_evsel__reset_callgraph(struct perf_evsel * evsel,struct callchain_param * param)661 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
662 			    struct callchain_param *param)
663 {
664 	struct perf_event_attr *attr = &evsel->attr;
665 
666 	perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
667 	if (param->record_mode == CALLCHAIN_LBR) {
668 		perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
669 		attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
670 					      PERF_SAMPLE_BRANCH_CALL_STACK);
671 	}
672 	if (param->record_mode == CALLCHAIN_DWARF) {
673 		perf_evsel__reset_sample_bit(evsel, REGS_USER);
674 		perf_evsel__reset_sample_bit(evsel, STACK_USER);
675 	}
676 }
677 
apply_config_terms(struct perf_evsel * evsel,struct record_opts * opts)678 static void apply_config_terms(struct perf_evsel *evsel,
679 			       struct record_opts *opts)
680 {
681 	struct perf_evsel_config_term *term;
682 	struct list_head *config_terms = &evsel->config_terms;
683 	struct perf_event_attr *attr = &evsel->attr;
684 	struct callchain_param param;
685 	u32 dump_size = 0;
686 	int max_stack = 0;
687 	const char *callgraph_buf = NULL;
688 
689 	/* callgraph default */
690 	param.record_mode = callchain_param.record_mode;
691 
692 	list_for_each_entry(term, config_terms, list) {
693 		switch (term->type) {
694 		case PERF_EVSEL__CONFIG_TERM_PERIOD:
695 			attr->sample_period = term->val.period;
696 			attr->freq = 0;
697 			break;
698 		case PERF_EVSEL__CONFIG_TERM_FREQ:
699 			attr->sample_freq = term->val.freq;
700 			attr->freq = 1;
701 			break;
702 		case PERF_EVSEL__CONFIG_TERM_TIME:
703 			if (term->val.time)
704 				perf_evsel__set_sample_bit(evsel, TIME);
705 			else
706 				perf_evsel__reset_sample_bit(evsel, TIME);
707 			break;
708 		case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
709 			callgraph_buf = term->val.callgraph;
710 			break;
711 		case PERF_EVSEL__CONFIG_TERM_STACK_USER:
712 			dump_size = term->val.stack_user;
713 			break;
714 		case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
715 			max_stack = term->val.max_stack;
716 			break;
717 		case PERF_EVSEL__CONFIG_TERM_INHERIT:
718 			/*
719 			 * attr->inherit should has already been set by
720 			 * perf_evsel__config. If user explicitly set
721 			 * inherit using config terms, override global
722 			 * opt->no_inherit setting.
723 			 */
724 			attr->inherit = term->val.inherit ? 1 : 0;
725 			break;
726 		case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
727 			attr->write_backward = term->val.overwrite ? 1 : 0;
728 			break;
729 		default:
730 			break;
731 		}
732 	}
733 
734 	/* User explicitly set per-event callgraph, clear the old setting and reset. */
735 	if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
736 		if (max_stack) {
737 			param.max_stack = max_stack;
738 			if (callgraph_buf == NULL)
739 				callgraph_buf = "fp";
740 		}
741 
742 		/* parse callgraph parameters */
743 		if (callgraph_buf != NULL) {
744 			if (!strcmp(callgraph_buf, "no")) {
745 				param.enabled = false;
746 				param.record_mode = CALLCHAIN_NONE;
747 			} else {
748 				param.enabled = true;
749 				if (parse_callchain_record(callgraph_buf, &param)) {
750 					pr_err("per-event callgraph setting for %s failed. "
751 					       "Apply callgraph global setting for it\n",
752 					       evsel->name);
753 					return;
754 				}
755 			}
756 		}
757 		if (dump_size > 0) {
758 			dump_size = round_up(dump_size, sizeof(u64));
759 			param.dump_size = dump_size;
760 		}
761 
762 		/* If global callgraph set, clear it */
763 		if (callchain_param.enabled)
764 			perf_evsel__reset_callgraph(evsel, &callchain_param);
765 
766 		/* set perf-event callgraph */
767 		if (param.enabled)
768 			perf_evsel__config_callchain(evsel, opts, &param);
769 	}
770 }
771 
772 /*
773  * The enable_on_exec/disabled value strategy:
774  *
775  *  1) For any type of traced program:
776  *    - all independent events and group leaders are disabled
777  *    - all group members are enabled
778  *
779  *     Group members are ruled by group leaders. They need to
780  *     be enabled, because the group scheduling relies on that.
781  *
782  *  2) For traced programs executed by perf:
783  *     - all independent events and group leaders have
784  *       enable_on_exec set
785  *     - we don't specifically enable or disable any event during
786  *       the record command
787  *
788  *     Independent events and group leaders are initially disabled
789  *     and get enabled by exec. Group members are ruled by group
790  *     leaders as stated in 1).
791  *
792  *  3) For traced programs attached by perf (pid/tid):
793  *     - we specifically enable or disable all events during
794  *       the record command
795  *
796  *     When attaching events to already running traced we
797  *     enable/disable events specifically, as there's no
798  *     initial traced exec call.
799  */
perf_evsel__config(struct perf_evsel * evsel,struct record_opts * opts,struct callchain_param * callchain)800 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
801 			struct callchain_param *callchain)
802 {
803 	struct perf_evsel *leader = evsel->leader;
804 	struct perf_event_attr *attr = &evsel->attr;
805 	int track = evsel->tracking;
806 	bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
807 
808 	attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
809 	attr->inherit	    = !opts->no_inherit;
810 	attr->write_backward = opts->overwrite ? 1 : 0;
811 
812 	perf_evsel__set_sample_bit(evsel, IP);
813 	perf_evsel__set_sample_bit(evsel, TID);
814 
815 	if (evsel->sample_read) {
816 		perf_evsel__set_sample_bit(evsel, READ);
817 
818 		/*
819 		 * We need ID even in case of single event, because
820 		 * PERF_SAMPLE_READ process ID specific data.
821 		 */
822 		perf_evsel__set_sample_id(evsel, false);
823 
824 		/*
825 		 * Apply group format only if we belong to group
826 		 * with more than one members.
827 		 */
828 		if (leader->nr_members > 1) {
829 			attr->read_format |= PERF_FORMAT_GROUP;
830 			attr->inherit = 0;
831 		}
832 	}
833 
834 	/*
835 	 * We default some events to have a default interval. But keep
836 	 * it a weak assumption overridable by the user.
837 	 */
838 	if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
839 				     opts->user_interval != ULLONG_MAX)) {
840 		if (opts->freq) {
841 			perf_evsel__set_sample_bit(evsel, PERIOD);
842 			attr->freq		= 1;
843 			attr->sample_freq	= opts->freq;
844 		} else {
845 			attr->sample_period = opts->default_interval;
846 		}
847 	}
848 
849 	/*
850 	 * Disable sampling for all group members other
851 	 * than leader in case leader 'leads' the sampling.
852 	 */
853 	if ((leader != evsel) && leader->sample_read) {
854 		attr->sample_freq   = 0;
855 		attr->sample_period = 0;
856 	}
857 
858 	if (opts->no_samples)
859 		attr->sample_freq = 0;
860 
861 	if (opts->inherit_stat)
862 		attr->inherit_stat = 1;
863 
864 	if (opts->sample_address) {
865 		perf_evsel__set_sample_bit(evsel, ADDR);
866 		attr->mmap_data = track;
867 	}
868 
869 	/*
870 	 * We don't allow user space callchains for  function trace
871 	 * event, due to issues with page faults while tracing page
872 	 * fault handler and its overall trickiness nature.
873 	 */
874 	if (perf_evsel__is_function_event(evsel))
875 		evsel->attr.exclude_callchain_user = 1;
876 
877 	if (callchain && callchain->enabled && !evsel->no_aux_samples)
878 		perf_evsel__config_callchain(evsel, opts, callchain);
879 
880 	if (opts->sample_intr_regs) {
881 		attr->sample_regs_intr = opts->sample_intr_regs;
882 		perf_evsel__set_sample_bit(evsel, REGS_INTR);
883 	}
884 
885 	if (target__has_cpu(&opts->target) || opts->sample_cpu)
886 		perf_evsel__set_sample_bit(evsel, CPU);
887 
888 	if (opts->period)
889 		perf_evsel__set_sample_bit(evsel, PERIOD);
890 
891 	/*
892 	 * When the user explicitly disabled time don't force it here.
893 	 */
894 	if (opts->sample_time &&
895 	    (!perf_missing_features.sample_id_all &&
896 	    (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
897 	     opts->sample_time_set)))
898 		perf_evsel__set_sample_bit(evsel, TIME);
899 
900 	if (opts->raw_samples && !evsel->no_aux_samples) {
901 		perf_evsel__set_sample_bit(evsel, TIME);
902 		perf_evsel__set_sample_bit(evsel, RAW);
903 		perf_evsel__set_sample_bit(evsel, CPU);
904 	}
905 
906 	if (opts->sample_address)
907 		perf_evsel__set_sample_bit(evsel, DATA_SRC);
908 
909 	if (opts->no_buffering) {
910 		attr->watermark = 0;
911 		attr->wakeup_events = 1;
912 	}
913 	if (opts->branch_stack && !evsel->no_aux_samples) {
914 		perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
915 		attr->branch_sample_type = opts->branch_stack;
916 	}
917 
918 	if (opts->sample_weight)
919 		perf_evsel__set_sample_bit(evsel, WEIGHT);
920 
921 	attr->task  = track;
922 	attr->mmap  = track;
923 	attr->mmap2 = track && !perf_missing_features.mmap2;
924 	attr->comm  = track;
925 
926 	if (opts->record_switch_events)
927 		attr->context_switch = track;
928 
929 	if (opts->sample_transaction)
930 		perf_evsel__set_sample_bit(evsel, TRANSACTION);
931 
932 	if (opts->running_time) {
933 		evsel->attr.read_format |=
934 			PERF_FORMAT_TOTAL_TIME_ENABLED |
935 			PERF_FORMAT_TOTAL_TIME_RUNNING;
936 	}
937 
938 	/*
939 	 * XXX see the function comment above
940 	 *
941 	 * Disabling only independent events or group leaders,
942 	 * keeping group members enabled.
943 	 */
944 	if (perf_evsel__is_group_leader(evsel))
945 		attr->disabled = 1;
946 
947 	/*
948 	 * Setting enable_on_exec for independent events and
949 	 * group leaders for traced executed by perf.
950 	 */
951 	if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
952 		!opts->initial_delay)
953 		attr->enable_on_exec = 1;
954 
955 	if (evsel->immediate) {
956 		attr->disabled = 0;
957 		attr->enable_on_exec = 0;
958 	}
959 
960 	clockid = opts->clockid;
961 	if (opts->use_clockid) {
962 		attr->use_clockid = 1;
963 		attr->clockid = opts->clockid;
964 	}
965 
966 	if (evsel->precise_max)
967 		perf_event_attr__set_max_precise_ip(attr);
968 
969 	if (opts->all_user) {
970 		attr->exclude_kernel = 1;
971 		attr->exclude_user   = 0;
972 	}
973 
974 	if (opts->all_kernel) {
975 		attr->exclude_kernel = 0;
976 		attr->exclude_user   = 1;
977 	}
978 
979 	/*
980 	 * Apply event specific term settings,
981 	 * it overloads any global configuration.
982 	 */
983 	apply_config_terms(evsel, opts);
984 }
985 
perf_evsel__alloc_fd(struct perf_evsel * evsel,int ncpus,int nthreads)986 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
987 {
988 	if (evsel->system_wide)
989 		nthreads = 1;
990 
991 	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
992 
993 	if (evsel->fd) {
994 		int cpu, thread;
995 		for (cpu = 0; cpu < ncpus; cpu++) {
996 			for (thread = 0; thread < nthreads; thread++) {
997 				FD(evsel, cpu, thread) = -1;
998 			}
999 		}
1000 	}
1001 
1002 	return evsel->fd != NULL ? 0 : -ENOMEM;
1003 }
1004 
perf_evsel__run_ioctl(struct perf_evsel * evsel,int ncpus,int nthreads,int ioc,void * arg)1005 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1006 			  int ioc,  void *arg)
1007 {
1008 	int cpu, thread;
1009 
1010 	if (evsel->system_wide)
1011 		nthreads = 1;
1012 
1013 	for (cpu = 0; cpu < ncpus; cpu++) {
1014 		for (thread = 0; thread < nthreads; thread++) {
1015 			int fd = FD(evsel, cpu, thread),
1016 			    err = ioctl(fd, ioc, arg);
1017 
1018 			if (err)
1019 				return err;
1020 		}
1021 	}
1022 
1023 	return 0;
1024 }
1025 
perf_evsel__apply_filter(struct perf_evsel * evsel,int ncpus,int nthreads,const char * filter)1026 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1027 			     const char *filter)
1028 {
1029 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1030 				     PERF_EVENT_IOC_SET_FILTER,
1031 				     (void *)filter);
1032 }
1033 
perf_evsel__set_filter(struct perf_evsel * evsel,const char * filter)1034 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1035 {
1036 	char *new_filter = strdup(filter);
1037 
1038 	if (new_filter != NULL) {
1039 		free(evsel->filter);
1040 		evsel->filter = new_filter;
1041 		return 0;
1042 	}
1043 
1044 	return -1;
1045 }
1046 
perf_evsel__append_filter(struct perf_evsel * evsel,const char * fmt,const char * filter)1047 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1048 				     const char *fmt, const char *filter)
1049 {
1050 	char *new_filter;
1051 
1052 	if (evsel->filter == NULL)
1053 		return perf_evsel__set_filter(evsel, filter);
1054 
1055 	if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1056 		free(evsel->filter);
1057 		evsel->filter = new_filter;
1058 		return 0;
1059 	}
1060 
1061 	return -1;
1062 }
1063 
perf_evsel__append_tp_filter(struct perf_evsel * evsel,const char * filter)1064 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1065 {
1066 	return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1067 }
1068 
perf_evsel__append_addr_filter(struct perf_evsel * evsel,const char * filter)1069 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1070 {
1071 	return perf_evsel__append_filter(evsel, "%s,%s", filter);
1072 }
1073 
perf_evsel__enable(struct perf_evsel * evsel)1074 int perf_evsel__enable(struct perf_evsel *evsel)
1075 {
1076 	int nthreads = thread_map__nr(evsel->threads);
1077 	int ncpus = cpu_map__nr(evsel->cpus);
1078 
1079 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1080 				     PERF_EVENT_IOC_ENABLE,
1081 				     0);
1082 }
1083 
perf_evsel__disable(struct perf_evsel * evsel)1084 int perf_evsel__disable(struct perf_evsel *evsel)
1085 {
1086 	int nthreads = thread_map__nr(evsel->threads);
1087 	int ncpus = cpu_map__nr(evsel->cpus);
1088 
1089 	return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1090 				     PERF_EVENT_IOC_DISABLE,
1091 				     0);
1092 }
1093 
perf_evsel__alloc_id(struct perf_evsel * evsel,int ncpus,int nthreads)1094 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1095 {
1096 	if (ncpus == 0 || nthreads == 0)
1097 		return 0;
1098 
1099 	if (evsel->system_wide)
1100 		nthreads = 1;
1101 
1102 	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1103 	if (evsel->sample_id == NULL)
1104 		return -ENOMEM;
1105 
1106 	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1107 	if (evsel->id == NULL) {
1108 		xyarray__delete(evsel->sample_id);
1109 		evsel->sample_id = NULL;
1110 		return -ENOMEM;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
perf_evsel__free_fd(struct perf_evsel * evsel)1116 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1117 {
1118 	xyarray__delete(evsel->fd);
1119 	evsel->fd = NULL;
1120 }
1121 
perf_evsel__free_id(struct perf_evsel * evsel)1122 static void perf_evsel__free_id(struct perf_evsel *evsel)
1123 {
1124 	xyarray__delete(evsel->sample_id);
1125 	evsel->sample_id = NULL;
1126 	zfree(&evsel->id);
1127 }
1128 
perf_evsel__free_config_terms(struct perf_evsel * evsel)1129 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1130 {
1131 	struct perf_evsel_config_term *term, *h;
1132 
1133 	list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1134 		list_del(&term->list);
1135 		free(term);
1136 	}
1137 }
1138 
perf_evsel__close_fd(struct perf_evsel * evsel,int ncpus,int nthreads)1139 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1140 {
1141 	int cpu, thread;
1142 
1143 	if (evsel->system_wide)
1144 		nthreads = 1;
1145 
1146 	for (cpu = 0; cpu < ncpus; cpu++)
1147 		for (thread = 0; thread < nthreads; ++thread) {
1148 			close(FD(evsel, cpu, thread));
1149 			FD(evsel, cpu, thread) = -1;
1150 		}
1151 }
1152 
perf_evsel__exit(struct perf_evsel * evsel)1153 void perf_evsel__exit(struct perf_evsel *evsel)
1154 {
1155 	assert(list_empty(&evsel->node));
1156 	assert(evsel->evlist == NULL);
1157 	perf_evsel__free_fd(evsel);
1158 	perf_evsel__free_id(evsel);
1159 	perf_evsel__free_config_terms(evsel);
1160 	close_cgroup(evsel->cgrp);
1161 	cpu_map__put(evsel->cpus);
1162 	cpu_map__put(evsel->own_cpus);
1163 	thread_map__put(evsel->threads);
1164 	zfree(&evsel->group_name);
1165 	zfree(&evsel->name);
1166 	perf_evsel__object.fini(evsel);
1167 }
1168 
perf_evsel__delete(struct perf_evsel * evsel)1169 void perf_evsel__delete(struct perf_evsel *evsel)
1170 {
1171 	perf_evsel__exit(evsel);
1172 	free(evsel);
1173 }
1174 
perf_evsel__compute_deltas(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1175 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1176 				struct perf_counts_values *count)
1177 {
1178 	struct perf_counts_values tmp;
1179 
1180 	if (!evsel->prev_raw_counts)
1181 		return;
1182 
1183 	if (cpu == -1) {
1184 		tmp = evsel->prev_raw_counts->aggr;
1185 		evsel->prev_raw_counts->aggr = *count;
1186 	} else {
1187 		tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1188 		*perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1189 	}
1190 
1191 	count->val = count->val - tmp.val;
1192 	count->ena = count->ena - tmp.ena;
1193 	count->run = count->run - tmp.run;
1194 }
1195 
perf_counts_values__scale(struct perf_counts_values * count,bool scale,s8 * pscaled)1196 void perf_counts_values__scale(struct perf_counts_values *count,
1197 			       bool scale, s8 *pscaled)
1198 {
1199 	s8 scaled = 0;
1200 
1201 	if (scale) {
1202 		if (count->run == 0) {
1203 			scaled = -1;
1204 			count->val = 0;
1205 		} else if (count->run < count->ena) {
1206 			scaled = 1;
1207 			count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1208 		}
1209 	} else
1210 		count->ena = count->run = 0;
1211 
1212 	if (pscaled)
1213 		*pscaled = scaled;
1214 }
1215 
perf_evsel__read(struct perf_evsel * evsel,int cpu,int thread,struct perf_counts_values * count)1216 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1217 		     struct perf_counts_values *count)
1218 {
1219 	memset(count, 0, sizeof(*count));
1220 
1221 	if (FD(evsel, cpu, thread) < 0)
1222 		return -EINVAL;
1223 
1224 	if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) <= 0)
1225 		return -errno;
1226 
1227 	return 0;
1228 }
1229 
__perf_evsel__read_on_cpu(struct perf_evsel * evsel,int cpu,int thread,bool scale)1230 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1231 			      int cpu, int thread, bool scale)
1232 {
1233 	struct perf_counts_values count;
1234 	size_t nv = scale ? 3 : 1;
1235 
1236 	if (FD(evsel, cpu, thread) < 0)
1237 		return -EINVAL;
1238 
1239 	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1240 		return -ENOMEM;
1241 
1242 	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) <= 0)
1243 		return -errno;
1244 
1245 	perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1246 	perf_counts_values__scale(&count, scale, NULL);
1247 	*perf_counts(evsel->counts, cpu, thread) = count;
1248 	return 0;
1249 }
1250 
get_group_fd(struct perf_evsel * evsel,int cpu,int thread)1251 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1252 {
1253 	struct perf_evsel *leader = evsel->leader;
1254 	int fd;
1255 
1256 	if (perf_evsel__is_group_leader(evsel))
1257 		return -1;
1258 
1259 	/*
1260 	 * Leader must be already processed/open,
1261 	 * if not it's a bug.
1262 	 */
1263 	BUG_ON(!leader->fd);
1264 
1265 	fd = FD(leader, cpu, thread);
1266 	BUG_ON(fd == -1);
1267 
1268 	return fd;
1269 }
1270 
1271 struct bit_names {
1272 	int bit;
1273 	const char *name;
1274 };
1275 
__p_bits(char * buf,size_t size,u64 value,struct bit_names * bits)1276 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1277 {
1278 	bool first_bit = true;
1279 	int i = 0;
1280 
1281 	do {
1282 		if (value & bits[i].bit) {
1283 			buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1284 			first_bit = false;
1285 		}
1286 	} while (bits[++i].name != NULL);
1287 }
1288 
__p_sample_type(char * buf,size_t size,u64 value)1289 static void __p_sample_type(char *buf, size_t size, u64 value)
1290 {
1291 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1292 	struct bit_names bits[] = {
1293 		bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1294 		bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1295 		bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1296 		bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1297 		bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1298 		bit_name(WEIGHT),
1299 		{ .name = NULL, }
1300 	};
1301 #undef bit_name
1302 	__p_bits(buf, size, value, bits);
1303 }
1304 
__p_branch_sample_type(char * buf,size_t size,u64 value)1305 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1306 {
1307 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1308 	struct bit_names bits[] = {
1309 		bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1310 		bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1311 		bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1312 		bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1313 		bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1314 		{ .name = NULL, }
1315 	};
1316 #undef bit_name
1317 	__p_bits(buf, size, value, bits);
1318 }
1319 
__p_read_format(char * buf,size_t size,u64 value)1320 static void __p_read_format(char *buf, size_t size, u64 value)
1321 {
1322 #define bit_name(n) { PERF_FORMAT_##n, #n }
1323 	struct bit_names bits[] = {
1324 		bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1325 		bit_name(ID), bit_name(GROUP),
1326 		{ .name = NULL, }
1327 	};
1328 #undef bit_name
1329 	__p_bits(buf, size, value, bits);
1330 }
1331 
1332 #define BUF_SIZE		1024
1333 
1334 #define p_hex(val)		snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1335 #define p_unsigned(val)		snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1336 #define p_signed(val)		snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1337 #define p_sample_type(val)	__p_sample_type(buf, BUF_SIZE, val)
1338 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1339 #define p_read_format(val)	__p_read_format(buf, BUF_SIZE, val)
1340 
1341 #define PRINT_ATTRn(_n, _f, _p)				\
1342 do {							\
1343 	if (attr->_f) {					\
1344 		_p(attr->_f);				\
1345 		ret += attr__fprintf(fp, _n, buf, priv);\
1346 	}						\
1347 } while (0)
1348 
1349 #define PRINT_ATTRf(_f, _p)	PRINT_ATTRn(#_f, _f, _p)
1350 
perf_event_attr__fprintf(FILE * fp,struct perf_event_attr * attr,attr__fprintf_f attr__fprintf,void * priv)1351 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1352 			     attr__fprintf_f attr__fprintf, void *priv)
1353 {
1354 	char buf[BUF_SIZE];
1355 	int ret = 0;
1356 
1357 	PRINT_ATTRf(type, p_unsigned);
1358 	PRINT_ATTRf(size, p_unsigned);
1359 	PRINT_ATTRf(config, p_hex);
1360 	PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1361 	PRINT_ATTRf(sample_type, p_sample_type);
1362 	PRINT_ATTRf(read_format, p_read_format);
1363 
1364 	PRINT_ATTRf(disabled, p_unsigned);
1365 	PRINT_ATTRf(inherit, p_unsigned);
1366 	PRINT_ATTRf(pinned, p_unsigned);
1367 	PRINT_ATTRf(exclusive, p_unsigned);
1368 	PRINT_ATTRf(exclude_user, p_unsigned);
1369 	PRINT_ATTRf(exclude_kernel, p_unsigned);
1370 	PRINT_ATTRf(exclude_hv, p_unsigned);
1371 	PRINT_ATTRf(exclude_idle, p_unsigned);
1372 	PRINT_ATTRf(mmap, p_unsigned);
1373 	PRINT_ATTRf(comm, p_unsigned);
1374 	PRINT_ATTRf(freq, p_unsigned);
1375 	PRINT_ATTRf(inherit_stat, p_unsigned);
1376 	PRINT_ATTRf(enable_on_exec, p_unsigned);
1377 	PRINT_ATTRf(task, p_unsigned);
1378 	PRINT_ATTRf(watermark, p_unsigned);
1379 	PRINT_ATTRf(precise_ip, p_unsigned);
1380 	PRINT_ATTRf(mmap_data, p_unsigned);
1381 	PRINT_ATTRf(sample_id_all, p_unsigned);
1382 	PRINT_ATTRf(exclude_host, p_unsigned);
1383 	PRINT_ATTRf(exclude_guest, p_unsigned);
1384 	PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1385 	PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1386 	PRINT_ATTRf(mmap2, p_unsigned);
1387 	PRINT_ATTRf(comm_exec, p_unsigned);
1388 	PRINT_ATTRf(use_clockid, p_unsigned);
1389 	PRINT_ATTRf(context_switch, p_unsigned);
1390 	PRINT_ATTRf(write_backward, p_unsigned);
1391 
1392 	PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1393 	PRINT_ATTRf(bp_type, p_unsigned);
1394 	PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1395 	PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1396 	PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1397 	PRINT_ATTRf(sample_regs_user, p_hex);
1398 	PRINT_ATTRf(sample_stack_user, p_unsigned);
1399 	PRINT_ATTRf(clockid, p_signed);
1400 	PRINT_ATTRf(sample_regs_intr, p_hex);
1401 	PRINT_ATTRf(aux_watermark, p_unsigned);
1402 	PRINT_ATTRf(sample_max_stack, p_unsigned);
1403 
1404 	return ret;
1405 }
1406 
__open_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv)1407 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1408 				void *priv __attribute__((unused)))
1409 {
1410 	return fprintf(fp, "  %-32s %s\n", name, val);
1411 }
1412 
__perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1413 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1414 			      struct thread_map *threads)
1415 {
1416 	int cpu, thread, nthreads;
1417 	unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1418 	int pid = -1, err;
1419 	enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1420 
1421 	if (perf_missing_features.write_backward && evsel->attr.write_backward)
1422 		return -EINVAL;
1423 
1424 	if (evsel->system_wide)
1425 		nthreads = 1;
1426 	else
1427 		nthreads = threads->nr;
1428 
1429 	if (evsel->fd == NULL &&
1430 	    perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1431 		return -ENOMEM;
1432 
1433 	if (evsel->cgrp) {
1434 		flags |= PERF_FLAG_PID_CGROUP;
1435 		pid = evsel->cgrp->fd;
1436 	}
1437 
1438 fallback_missing_features:
1439 	if (perf_missing_features.clockid_wrong)
1440 		evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1441 	if (perf_missing_features.clockid) {
1442 		evsel->attr.use_clockid = 0;
1443 		evsel->attr.clockid = 0;
1444 	}
1445 	if (perf_missing_features.cloexec)
1446 		flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1447 	if (perf_missing_features.mmap2)
1448 		evsel->attr.mmap2 = 0;
1449 	if (perf_missing_features.exclude_guest)
1450 		evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1451 	if (perf_missing_features.lbr_flags)
1452 		evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1453 				     PERF_SAMPLE_BRANCH_NO_CYCLES);
1454 retry_sample_id:
1455 	if (perf_missing_features.sample_id_all)
1456 		evsel->attr.sample_id_all = 0;
1457 
1458 	if (verbose >= 2) {
1459 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1460 		fprintf(stderr, "perf_event_attr:\n");
1461 		perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1462 		fprintf(stderr, "%.60s\n", graph_dotted_line);
1463 	}
1464 
1465 	for (cpu = 0; cpu < cpus->nr; cpu++) {
1466 
1467 		for (thread = 0; thread < nthreads; thread++) {
1468 			int group_fd;
1469 
1470 			if (!evsel->cgrp && !evsel->system_wide)
1471 				pid = thread_map__pid(threads, thread);
1472 
1473 			group_fd = get_group_fd(evsel, cpu, thread);
1474 retry_open:
1475 			pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1476 				  pid, cpus->map[cpu], group_fd, flags);
1477 
1478 			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1479 								     pid,
1480 								     cpus->map[cpu],
1481 								     group_fd, flags);
1482 			if (FD(evsel, cpu, thread) < 0) {
1483 				err = -errno;
1484 				pr_debug2("sys_perf_event_open failed, error %d\n",
1485 					  err);
1486 				goto try_fallback;
1487 			}
1488 
1489 			if (evsel->bpf_fd >= 0) {
1490 				int evt_fd = FD(evsel, cpu, thread);
1491 				int bpf_fd = evsel->bpf_fd;
1492 
1493 				err = ioctl(evt_fd,
1494 					    PERF_EVENT_IOC_SET_BPF,
1495 					    bpf_fd);
1496 				if (err && errno != EEXIST) {
1497 					pr_err("failed to attach bpf fd %d: %s\n",
1498 					       bpf_fd, strerror(errno));
1499 					err = -EINVAL;
1500 					goto out_close;
1501 				}
1502 			}
1503 
1504 			set_rlimit = NO_CHANGE;
1505 
1506 			/*
1507 			 * If we succeeded but had to kill clockid, fail and
1508 			 * have perf_evsel__open_strerror() print us a nice
1509 			 * error.
1510 			 */
1511 			if (perf_missing_features.clockid ||
1512 			    perf_missing_features.clockid_wrong) {
1513 				err = -EINVAL;
1514 				goto out_close;
1515 			}
1516 		}
1517 	}
1518 
1519 	return 0;
1520 
1521 try_fallback:
1522 	/*
1523 	 * perf stat needs between 5 and 22 fds per CPU. When we run out
1524 	 * of them try to increase the limits.
1525 	 */
1526 	if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1527 		struct rlimit l;
1528 		int old_errno = errno;
1529 
1530 		if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1531 			if (set_rlimit == NO_CHANGE)
1532 				l.rlim_cur = l.rlim_max;
1533 			else {
1534 				l.rlim_cur = l.rlim_max + 1000;
1535 				l.rlim_max = l.rlim_cur;
1536 			}
1537 			if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1538 				set_rlimit++;
1539 				errno = old_errno;
1540 				goto retry_open;
1541 			}
1542 		}
1543 		errno = old_errno;
1544 	}
1545 
1546 	if (err != -EINVAL || cpu > 0 || thread > 0)
1547 		goto out_close;
1548 
1549 	/*
1550 	 * Must probe features in the order they were added to the
1551 	 * perf_event_attr interface.
1552 	 */
1553 	if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1554 		perf_missing_features.write_backward = true;
1555 		goto out_close;
1556 	} else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1557 		perf_missing_features.clockid_wrong = true;
1558 		goto fallback_missing_features;
1559 	} else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1560 		perf_missing_features.clockid = true;
1561 		goto fallback_missing_features;
1562 	} else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1563 		perf_missing_features.cloexec = true;
1564 		goto fallback_missing_features;
1565 	} else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1566 		perf_missing_features.mmap2 = true;
1567 		goto fallback_missing_features;
1568 	} else if (!perf_missing_features.exclude_guest &&
1569 		   (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1570 		perf_missing_features.exclude_guest = true;
1571 		goto fallback_missing_features;
1572 	} else if (!perf_missing_features.sample_id_all) {
1573 		perf_missing_features.sample_id_all = true;
1574 		goto retry_sample_id;
1575 	} else if (!perf_missing_features.lbr_flags &&
1576 			(evsel->attr.branch_sample_type &
1577 			 (PERF_SAMPLE_BRANCH_NO_CYCLES |
1578 			  PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1579 		perf_missing_features.lbr_flags = true;
1580 		goto fallback_missing_features;
1581 	}
1582 out_close:
1583 	do {
1584 		while (--thread >= 0) {
1585 			close(FD(evsel, cpu, thread));
1586 			FD(evsel, cpu, thread) = -1;
1587 		}
1588 		thread = nthreads;
1589 	} while (--cpu >= 0);
1590 	return err;
1591 }
1592 
perf_evsel__close(struct perf_evsel * evsel,int ncpus,int nthreads)1593 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1594 {
1595 	if (evsel->fd == NULL)
1596 		return;
1597 
1598 	perf_evsel__close_fd(evsel, ncpus, nthreads);
1599 	perf_evsel__free_fd(evsel);
1600 }
1601 
1602 static struct {
1603 	struct cpu_map map;
1604 	int cpus[1];
1605 } empty_cpu_map = {
1606 	.map.nr	= 1,
1607 	.cpus	= { -1, },
1608 };
1609 
1610 static struct {
1611 	struct thread_map map;
1612 	int threads[1];
1613 } empty_thread_map = {
1614 	.map.nr	 = 1,
1615 	.threads = { -1, },
1616 };
1617 
perf_evsel__open(struct perf_evsel * evsel,struct cpu_map * cpus,struct thread_map * threads)1618 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1619 		     struct thread_map *threads)
1620 {
1621 	if (cpus == NULL) {
1622 		/* Work around old compiler warnings about strict aliasing */
1623 		cpus = &empty_cpu_map.map;
1624 	}
1625 
1626 	if (threads == NULL)
1627 		threads = &empty_thread_map.map;
1628 
1629 	return __perf_evsel__open(evsel, cpus, threads);
1630 }
1631 
perf_evsel__open_per_cpu(struct perf_evsel * evsel,struct cpu_map * cpus)1632 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1633 			     struct cpu_map *cpus)
1634 {
1635 	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1636 }
1637 
perf_evsel__open_per_thread(struct perf_evsel * evsel,struct thread_map * threads)1638 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1639 				struct thread_map *threads)
1640 {
1641 	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1642 }
1643 
perf_evsel__parse_id_sample(const struct perf_evsel * evsel,const union perf_event * event,struct perf_sample * sample)1644 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1645 				       const union perf_event *event,
1646 				       struct perf_sample *sample)
1647 {
1648 	u64 type = evsel->attr.sample_type;
1649 	const u64 *array = event->sample.array;
1650 	bool swapped = evsel->needs_swap;
1651 	union u64_swap u;
1652 
1653 	array += ((event->header.size -
1654 		   sizeof(event->header)) / sizeof(u64)) - 1;
1655 
1656 	if (type & PERF_SAMPLE_IDENTIFIER) {
1657 		sample->id = *array;
1658 		array--;
1659 	}
1660 
1661 	if (type & PERF_SAMPLE_CPU) {
1662 		u.val64 = *array;
1663 		if (swapped) {
1664 			/* undo swap of u64, then swap on individual u32s */
1665 			u.val64 = bswap_64(u.val64);
1666 			u.val32[0] = bswap_32(u.val32[0]);
1667 		}
1668 
1669 		sample->cpu = u.val32[0];
1670 		array--;
1671 	}
1672 
1673 	if (type & PERF_SAMPLE_STREAM_ID) {
1674 		sample->stream_id = *array;
1675 		array--;
1676 	}
1677 
1678 	if (type & PERF_SAMPLE_ID) {
1679 		sample->id = *array;
1680 		array--;
1681 	}
1682 
1683 	if (type & PERF_SAMPLE_TIME) {
1684 		sample->time = *array;
1685 		array--;
1686 	}
1687 
1688 	if (type & PERF_SAMPLE_TID) {
1689 		u.val64 = *array;
1690 		if (swapped) {
1691 			/* undo swap of u64, then swap on individual u32s */
1692 			u.val64 = bswap_64(u.val64);
1693 			u.val32[0] = bswap_32(u.val32[0]);
1694 			u.val32[1] = bswap_32(u.val32[1]);
1695 		}
1696 
1697 		sample->pid = u.val32[0];
1698 		sample->tid = u.val32[1];
1699 		array--;
1700 	}
1701 
1702 	return 0;
1703 }
1704 
overflow(const void * endp,u16 max_size,const void * offset,u64 size)1705 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1706 			    u64 size)
1707 {
1708 	return size > max_size || offset + size > endp;
1709 }
1710 
1711 #define OVERFLOW_CHECK(offset, size, max_size)				\
1712 	do {								\
1713 		if (overflow(endp, (max_size), (offset), (size)))	\
1714 			return -EFAULT;					\
1715 	} while (0)
1716 
1717 #define OVERFLOW_CHECK_u64(offset) \
1718 	OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1719 
perf_evsel__parse_sample(struct perf_evsel * evsel,union perf_event * event,struct perf_sample * data)1720 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1721 			     struct perf_sample *data)
1722 {
1723 	u64 type = evsel->attr.sample_type;
1724 	bool swapped = evsel->needs_swap;
1725 	const u64 *array;
1726 	u16 max_size = event->header.size;
1727 	const void *endp = (void *)event + max_size;
1728 	u64 sz;
1729 
1730 	/*
1731 	 * used for cross-endian analysis. See git commit 65014ab3
1732 	 * for why this goofiness is needed.
1733 	 */
1734 	union u64_swap u;
1735 
1736 	memset(data, 0, sizeof(*data));
1737 	data->cpu = data->pid = data->tid = -1;
1738 	data->stream_id = data->id = data->time = -1ULL;
1739 	data->period = evsel->attr.sample_period;
1740 	data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1741 
1742 	if (event->header.type != PERF_RECORD_SAMPLE) {
1743 		if (!evsel->attr.sample_id_all)
1744 			return 0;
1745 		return perf_evsel__parse_id_sample(evsel, event, data);
1746 	}
1747 
1748 	array = event->sample.array;
1749 
1750 	/*
1751 	 * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1752 	 * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1753 	 * check the format does not go past the end of the event.
1754 	 */
1755 	if (evsel->sample_size + sizeof(event->header) > event->header.size)
1756 		return -EFAULT;
1757 
1758 	data->id = -1ULL;
1759 	if (type & PERF_SAMPLE_IDENTIFIER) {
1760 		data->id = *array;
1761 		array++;
1762 	}
1763 
1764 	if (type & PERF_SAMPLE_IP) {
1765 		data->ip = *array;
1766 		array++;
1767 	}
1768 
1769 	if (type & PERF_SAMPLE_TID) {
1770 		u.val64 = *array;
1771 		if (swapped) {
1772 			/* undo swap of u64, then swap on individual u32s */
1773 			u.val64 = bswap_64(u.val64);
1774 			u.val32[0] = bswap_32(u.val32[0]);
1775 			u.val32[1] = bswap_32(u.val32[1]);
1776 		}
1777 
1778 		data->pid = u.val32[0];
1779 		data->tid = u.val32[1];
1780 		array++;
1781 	}
1782 
1783 	if (type & PERF_SAMPLE_TIME) {
1784 		data->time = *array;
1785 		array++;
1786 	}
1787 
1788 	data->addr = 0;
1789 	if (type & PERF_SAMPLE_ADDR) {
1790 		data->addr = *array;
1791 		array++;
1792 	}
1793 
1794 	if (type & PERF_SAMPLE_ID) {
1795 		data->id = *array;
1796 		array++;
1797 	}
1798 
1799 	if (type & PERF_SAMPLE_STREAM_ID) {
1800 		data->stream_id = *array;
1801 		array++;
1802 	}
1803 
1804 	if (type & PERF_SAMPLE_CPU) {
1805 
1806 		u.val64 = *array;
1807 		if (swapped) {
1808 			/* undo swap of u64, then swap on individual u32s */
1809 			u.val64 = bswap_64(u.val64);
1810 			u.val32[0] = bswap_32(u.val32[0]);
1811 		}
1812 
1813 		data->cpu = u.val32[0];
1814 		array++;
1815 	}
1816 
1817 	if (type & PERF_SAMPLE_PERIOD) {
1818 		data->period = *array;
1819 		array++;
1820 	}
1821 
1822 	if (type & PERF_SAMPLE_READ) {
1823 		u64 read_format = evsel->attr.read_format;
1824 
1825 		OVERFLOW_CHECK_u64(array);
1826 		if (read_format & PERF_FORMAT_GROUP)
1827 			data->read.group.nr = *array;
1828 		else
1829 			data->read.one.value = *array;
1830 
1831 		array++;
1832 
1833 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1834 			OVERFLOW_CHECK_u64(array);
1835 			data->read.time_enabled = *array;
1836 			array++;
1837 		}
1838 
1839 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1840 			OVERFLOW_CHECK_u64(array);
1841 			data->read.time_running = *array;
1842 			array++;
1843 		}
1844 
1845 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1846 		if (read_format & PERF_FORMAT_GROUP) {
1847 			const u64 max_group_nr = UINT64_MAX /
1848 					sizeof(struct sample_read_value);
1849 
1850 			if (data->read.group.nr > max_group_nr)
1851 				return -EFAULT;
1852 			sz = data->read.group.nr *
1853 			     sizeof(struct sample_read_value);
1854 			OVERFLOW_CHECK(array, sz, max_size);
1855 			data->read.group.values =
1856 					(struct sample_read_value *)array;
1857 			array = (void *)array + sz;
1858 		} else {
1859 			OVERFLOW_CHECK_u64(array);
1860 			data->read.one.id = *array;
1861 			array++;
1862 		}
1863 	}
1864 
1865 	if (type & PERF_SAMPLE_CALLCHAIN) {
1866 		const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1867 
1868 		OVERFLOW_CHECK_u64(array);
1869 		data->callchain = (struct ip_callchain *)array++;
1870 		if (data->callchain->nr > max_callchain_nr)
1871 			return -EFAULT;
1872 		sz = data->callchain->nr * sizeof(u64);
1873 		OVERFLOW_CHECK(array, sz, max_size);
1874 		array = (void *)array + sz;
1875 	}
1876 
1877 	if (type & PERF_SAMPLE_RAW) {
1878 		OVERFLOW_CHECK_u64(array);
1879 		u.val64 = *array;
1880 		if (WARN_ONCE(swapped,
1881 			      "Endianness of raw data not corrected!\n")) {
1882 			/* undo swap of u64, then swap on individual u32s */
1883 			u.val64 = bswap_64(u.val64);
1884 			u.val32[0] = bswap_32(u.val32[0]);
1885 			u.val32[1] = bswap_32(u.val32[1]);
1886 		}
1887 		data->raw_size = u.val32[0];
1888 		array = (void *)array + sizeof(u32);
1889 
1890 		OVERFLOW_CHECK(array, data->raw_size, max_size);
1891 		data->raw_data = (void *)array;
1892 		array = (void *)array + data->raw_size;
1893 	}
1894 
1895 	if (type & PERF_SAMPLE_BRANCH_STACK) {
1896 		const u64 max_branch_nr = UINT64_MAX /
1897 					  sizeof(struct branch_entry);
1898 
1899 		OVERFLOW_CHECK_u64(array);
1900 		data->branch_stack = (struct branch_stack *)array++;
1901 
1902 		if (data->branch_stack->nr > max_branch_nr)
1903 			return -EFAULT;
1904 		sz = data->branch_stack->nr * sizeof(struct branch_entry);
1905 		OVERFLOW_CHECK(array, sz, max_size);
1906 		array = (void *)array + sz;
1907 	}
1908 
1909 	if (type & PERF_SAMPLE_REGS_USER) {
1910 		OVERFLOW_CHECK_u64(array);
1911 		data->user_regs.abi = *array;
1912 		array++;
1913 
1914 		if (data->user_regs.abi) {
1915 			u64 mask = evsel->attr.sample_regs_user;
1916 
1917 			sz = hweight_long(mask) * sizeof(u64);
1918 			OVERFLOW_CHECK(array, sz, max_size);
1919 			data->user_regs.mask = mask;
1920 			data->user_regs.regs = (u64 *)array;
1921 			array = (void *)array + sz;
1922 		}
1923 	}
1924 
1925 	if (type & PERF_SAMPLE_STACK_USER) {
1926 		OVERFLOW_CHECK_u64(array);
1927 		sz = *array++;
1928 
1929 		data->user_stack.offset = ((char *)(array - 1)
1930 					  - (char *) event);
1931 
1932 		if (!sz) {
1933 			data->user_stack.size = 0;
1934 		} else {
1935 			OVERFLOW_CHECK(array, sz, max_size);
1936 			data->user_stack.data = (char *)array;
1937 			array = (void *)array + sz;
1938 			OVERFLOW_CHECK_u64(array);
1939 			data->user_stack.size = *array++;
1940 			if (WARN_ONCE(data->user_stack.size > sz,
1941 				      "user stack dump failure\n"))
1942 				return -EFAULT;
1943 		}
1944 	}
1945 
1946 	if (type & PERF_SAMPLE_WEIGHT) {
1947 		OVERFLOW_CHECK_u64(array);
1948 		data->weight = *array;
1949 		array++;
1950 	}
1951 
1952 	data->data_src = PERF_MEM_DATA_SRC_NONE;
1953 	if (type & PERF_SAMPLE_DATA_SRC) {
1954 		OVERFLOW_CHECK_u64(array);
1955 		data->data_src = *array;
1956 		array++;
1957 	}
1958 
1959 	data->transaction = 0;
1960 	if (type & PERF_SAMPLE_TRANSACTION) {
1961 		OVERFLOW_CHECK_u64(array);
1962 		data->transaction = *array;
1963 		array++;
1964 	}
1965 
1966 	data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1967 	if (type & PERF_SAMPLE_REGS_INTR) {
1968 		OVERFLOW_CHECK_u64(array);
1969 		data->intr_regs.abi = *array;
1970 		array++;
1971 
1972 		if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1973 			u64 mask = evsel->attr.sample_regs_intr;
1974 
1975 			sz = hweight_long(mask) * sizeof(u64);
1976 			OVERFLOW_CHECK(array, sz, max_size);
1977 			data->intr_regs.mask = mask;
1978 			data->intr_regs.regs = (u64 *)array;
1979 			array = (void *)array + sz;
1980 		}
1981 	}
1982 
1983 	return 0;
1984 }
1985 
perf_event__sample_event_size(const struct perf_sample * sample,u64 type,u64 read_format)1986 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1987 				     u64 read_format)
1988 {
1989 	size_t sz, result = sizeof(struct sample_event);
1990 
1991 	if (type & PERF_SAMPLE_IDENTIFIER)
1992 		result += sizeof(u64);
1993 
1994 	if (type & PERF_SAMPLE_IP)
1995 		result += sizeof(u64);
1996 
1997 	if (type & PERF_SAMPLE_TID)
1998 		result += sizeof(u64);
1999 
2000 	if (type & PERF_SAMPLE_TIME)
2001 		result += sizeof(u64);
2002 
2003 	if (type & PERF_SAMPLE_ADDR)
2004 		result += sizeof(u64);
2005 
2006 	if (type & PERF_SAMPLE_ID)
2007 		result += sizeof(u64);
2008 
2009 	if (type & PERF_SAMPLE_STREAM_ID)
2010 		result += sizeof(u64);
2011 
2012 	if (type & PERF_SAMPLE_CPU)
2013 		result += sizeof(u64);
2014 
2015 	if (type & PERF_SAMPLE_PERIOD)
2016 		result += sizeof(u64);
2017 
2018 	if (type & PERF_SAMPLE_READ) {
2019 		result += sizeof(u64);
2020 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2021 			result += sizeof(u64);
2022 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2023 			result += sizeof(u64);
2024 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2025 		if (read_format & PERF_FORMAT_GROUP) {
2026 			sz = sample->read.group.nr *
2027 			     sizeof(struct sample_read_value);
2028 			result += sz;
2029 		} else {
2030 			result += sizeof(u64);
2031 		}
2032 	}
2033 
2034 	if (type & PERF_SAMPLE_CALLCHAIN) {
2035 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2036 		result += sz;
2037 	}
2038 
2039 	if (type & PERF_SAMPLE_RAW) {
2040 		result += sizeof(u32);
2041 		result += sample->raw_size;
2042 	}
2043 
2044 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2045 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2046 		sz += sizeof(u64);
2047 		result += sz;
2048 	}
2049 
2050 	if (type & PERF_SAMPLE_REGS_USER) {
2051 		if (sample->user_regs.abi) {
2052 			result += sizeof(u64);
2053 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2054 			result += sz;
2055 		} else {
2056 			result += sizeof(u64);
2057 		}
2058 	}
2059 
2060 	if (type & PERF_SAMPLE_STACK_USER) {
2061 		sz = sample->user_stack.size;
2062 		result += sizeof(u64);
2063 		if (sz) {
2064 			result += sz;
2065 			result += sizeof(u64);
2066 		}
2067 	}
2068 
2069 	if (type & PERF_SAMPLE_WEIGHT)
2070 		result += sizeof(u64);
2071 
2072 	if (type & PERF_SAMPLE_DATA_SRC)
2073 		result += sizeof(u64);
2074 
2075 	if (type & PERF_SAMPLE_TRANSACTION)
2076 		result += sizeof(u64);
2077 
2078 	if (type & PERF_SAMPLE_REGS_INTR) {
2079 		if (sample->intr_regs.abi) {
2080 			result += sizeof(u64);
2081 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2082 			result += sz;
2083 		} else {
2084 			result += sizeof(u64);
2085 		}
2086 	}
2087 
2088 	return result;
2089 }
2090 
perf_event__synthesize_sample(union perf_event * event,u64 type,u64 read_format,const struct perf_sample * sample,bool swapped)2091 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2092 				  u64 read_format,
2093 				  const struct perf_sample *sample,
2094 				  bool swapped)
2095 {
2096 	u64 *array;
2097 	size_t sz;
2098 	/*
2099 	 * used for cross-endian analysis. See git commit 65014ab3
2100 	 * for why this goofiness is needed.
2101 	 */
2102 	union u64_swap u;
2103 
2104 	array = event->sample.array;
2105 
2106 	if (type & PERF_SAMPLE_IDENTIFIER) {
2107 		*array = sample->id;
2108 		array++;
2109 	}
2110 
2111 	if (type & PERF_SAMPLE_IP) {
2112 		*array = sample->ip;
2113 		array++;
2114 	}
2115 
2116 	if (type & PERF_SAMPLE_TID) {
2117 		u.val32[0] = sample->pid;
2118 		u.val32[1] = sample->tid;
2119 		if (swapped) {
2120 			/*
2121 			 * Inverse of what is done in perf_evsel__parse_sample
2122 			 */
2123 			u.val32[0] = bswap_32(u.val32[0]);
2124 			u.val32[1] = bswap_32(u.val32[1]);
2125 			u.val64 = bswap_64(u.val64);
2126 		}
2127 
2128 		*array = u.val64;
2129 		array++;
2130 	}
2131 
2132 	if (type & PERF_SAMPLE_TIME) {
2133 		*array = sample->time;
2134 		array++;
2135 	}
2136 
2137 	if (type & PERF_SAMPLE_ADDR) {
2138 		*array = sample->addr;
2139 		array++;
2140 	}
2141 
2142 	if (type & PERF_SAMPLE_ID) {
2143 		*array = sample->id;
2144 		array++;
2145 	}
2146 
2147 	if (type & PERF_SAMPLE_STREAM_ID) {
2148 		*array = sample->stream_id;
2149 		array++;
2150 	}
2151 
2152 	if (type & PERF_SAMPLE_CPU) {
2153 		u.val32[0] = sample->cpu;
2154 		if (swapped) {
2155 			/*
2156 			 * Inverse of what is done in perf_evsel__parse_sample
2157 			 */
2158 			u.val32[0] = bswap_32(u.val32[0]);
2159 			u.val64 = bswap_64(u.val64);
2160 		}
2161 		*array = u.val64;
2162 		array++;
2163 	}
2164 
2165 	if (type & PERF_SAMPLE_PERIOD) {
2166 		*array = sample->period;
2167 		array++;
2168 	}
2169 
2170 	if (type & PERF_SAMPLE_READ) {
2171 		if (read_format & PERF_FORMAT_GROUP)
2172 			*array = sample->read.group.nr;
2173 		else
2174 			*array = sample->read.one.value;
2175 		array++;
2176 
2177 		if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2178 			*array = sample->read.time_enabled;
2179 			array++;
2180 		}
2181 
2182 		if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2183 			*array = sample->read.time_running;
2184 			array++;
2185 		}
2186 
2187 		/* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2188 		if (read_format & PERF_FORMAT_GROUP) {
2189 			sz = sample->read.group.nr *
2190 			     sizeof(struct sample_read_value);
2191 			memcpy(array, sample->read.group.values, sz);
2192 			array = (void *)array + sz;
2193 		} else {
2194 			*array = sample->read.one.id;
2195 			array++;
2196 		}
2197 	}
2198 
2199 	if (type & PERF_SAMPLE_CALLCHAIN) {
2200 		sz = (sample->callchain->nr + 1) * sizeof(u64);
2201 		memcpy(array, sample->callchain, sz);
2202 		array = (void *)array + sz;
2203 	}
2204 
2205 	if (type & PERF_SAMPLE_RAW) {
2206 		u.val32[0] = sample->raw_size;
2207 		if (WARN_ONCE(swapped,
2208 			      "Endianness of raw data not corrected!\n")) {
2209 			/*
2210 			 * Inverse of what is done in perf_evsel__parse_sample
2211 			 */
2212 			u.val32[0] = bswap_32(u.val32[0]);
2213 			u.val32[1] = bswap_32(u.val32[1]);
2214 			u.val64 = bswap_64(u.val64);
2215 		}
2216 		*array = u.val64;
2217 		array = (void *)array + sizeof(u32);
2218 
2219 		memcpy(array, sample->raw_data, sample->raw_size);
2220 		array = (void *)array + sample->raw_size;
2221 	}
2222 
2223 	if (type & PERF_SAMPLE_BRANCH_STACK) {
2224 		sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2225 		sz += sizeof(u64);
2226 		memcpy(array, sample->branch_stack, sz);
2227 		array = (void *)array + sz;
2228 	}
2229 
2230 	if (type & PERF_SAMPLE_REGS_USER) {
2231 		if (sample->user_regs.abi) {
2232 			*array++ = sample->user_regs.abi;
2233 			sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2234 			memcpy(array, sample->user_regs.regs, sz);
2235 			array = (void *)array + sz;
2236 		} else {
2237 			*array++ = 0;
2238 		}
2239 	}
2240 
2241 	if (type & PERF_SAMPLE_STACK_USER) {
2242 		sz = sample->user_stack.size;
2243 		*array++ = sz;
2244 		if (sz) {
2245 			memcpy(array, sample->user_stack.data, sz);
2246 			array = (void *)array + sz;
2247 			*array++ = sz;
2248 		}
2249 	}
2250 
2251 	if (type & PERF_SAMPLE_WEIGHT) {
2252 		*array = sample->weight;
2253 		array++;
2254 	}
2255 
2256 	if (type & PERF_SAMPLE_DATA_SRC) {
2257 		*array = sample->data_src;
2258 		array++;
2259 	}
2260 
2261 	if (type & PERF_SAMPLE_TRANSACTION) {
2262 		*array = sample->transaction;
2263 		array++;
2264 	}
2265 
2266 	if (type & PERF_SAMPLE_REGS_INTR) {
2267 		if (sample->intr_regs.abi) {
2268 			*array++ = sample->intr_regs.abi;
2269 			sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2270 			memcpy(array, sample->intr_regs.regs, sz);
2271 			array = (void *)array + sz;
2272 		} else {
2273 			*array++ = 0;
2274 		}
2275 	}
2276 
2277 	return 0;
2278 }
2279 
perf_evsel__field(struct perf_evsel * evsel,const char * name)2280 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2281 {
2282 	return pevent_find_field(evsel->tp_format, name);
2283 }
2284 
perf_evsel__rawptr(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2285 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2286 			 const char *name)
2287 {
2288 	struct format_field *field = perf_evsel__field(evsel, name);
2289 	int offset;
2290 
2291 	if (!field)
2292 		return NULL;
2293 
2294 	offset = field->offset;
2295 
2296 	if (field->flags & FIELD_IS_DYNAMIC) {
2297 		offset = *(int *)(sample->raw_data + field->offset);
2298 		offset &= 0xffff;
2299 	}
2300 
2301 	return sample->raw_data + offset;
2302 }
2303 
format_field__intval(struct format_field * field,struct perf_sample * sample,bool needs_swap)2304 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2305 			 bool needs_swap)
2306 {
2307 	u64 value;
2308 	void *ptr = sample->raw_data + field->offset;
2309 
2310 	switch (field->size) {
2311 	case 1:
2312 		return *(u8 *)ptr;
2313 	case 2:
2314 		value = *(u16 *)ptr;
2315 		break;
2316 	case 4:
2317 		value = *(u32 *)ptr;
2318 		break;
2319 	case 8:
2320 		memcpy(&value, ptr, sizeof(u64));
2321 		break;
2322 	default:
2323 		return 0;
2324 	}
2325 
2326 	if (!needs_swap)
2327 		return value;
2328 
2329 	switch (field->size) {
2330 	case 2:
2331 		return bswap_16(value);
2332 	case 4:
2333 		return bswap_32(value);
2334 	case 8:
2335 		return bswap_64(value);
2336 	default:
2337 		return 0;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
perf_evsel__intval(struct perf_evsel * evsel,struct perf_sample * sample,const char * name)2343 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2344 		       const char *name)
2345 {
2346 	struct format_field *field = perf_evsel__field(evsel, name);
2347 
2348 	if (!field)
2349 		return 0;
2350 
2351 	return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2352 }
2353 
perf_evsel__fallback(struct perf_evsel * evsel,int err,char * msg,size_t msgsize)2354 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2355 			  char *msg, size_t msgsize)
2356 {
2357 	int paranoid;
2358 
2359 	if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2360 	    evsel->attr.type   == PERF_TYPE_HARDWARE &&
2361 	    evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2362 		/*
2363 		 * If it's cycles then fall back to hrtimer based
2364 		 * cpu-clock-tick sw counter, which is always available even if
2365 		 * no PMU support.
2366 		 *
2367 		 * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2368 		 * b0a873e).
2369 		 */
2370 		scnprintf(msg, msgsize, "%s",
2371 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2372 
2373 		evsel->attr.type   = PERF_TYPE_SOFTWARE;
2374 		evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2375 
2376 		zfree(&evsel->name);
2377 		return true;
2378 	} else if (err == EACCES && !evsel->attr.exclude_kernel &&
2379 		   (paranoid = perf_event_paranoid()) > 1) {
2380 		const char *name = perf_evsel__name(evsel);
2381 		char *new_name;
2382 
2383 		if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2384 			return false;
2385 
2386 		if (evsel->name)
2387 			free(evsel->name);
2388 		evsel->name = new_name;
2389 		scnprintf(msg, msgsize,
2390 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2391 		evsel->attr.exclude_kernel = 1;
2392 
2393 		return true;
2394 	}
2395 
2396 	return false;
2397 }
2398 
perf_evsel__open_strerror(struct perf_evsel * evsel,struct target * target,int err,char * msg,size_t size)2399 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2400 			      int err, char *msg, size_t size)
2401 {
2402 	char sbuf[STRERR_BUFSIZE];
2403 	int printed = 0;
2404 
2405 	switch (err) {
2406 	case EPERM:
2407 	case EACCES:
2408 		if (err == EPERM)
2409 			printed = scnprintf(msg, size,
2410 				"No permission to enable %s event.\n\n",
2411 				perf_evsel__name(evsel));
2412 
2413 		return scnprintf(msg + printed, size - printed,
2414 		 "You may not have permission to collect %sstats.\n\n"
2415 		 "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2416 		 "which controls use of the performance events system by\n"
2417 		 "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2418 		 "The current value is %d:\n\n"
2419 		 "  -1: Allow use of (almost) all events by all users\n"
2420 		 ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2421 		 ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2422 		 ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2423 				 target->system_wide ? "system-wide " : "",
2424 				 perf_event_paranoid());
2425 	case ENOENT:
2426 		return scnprintf(msg, size, "The %s event is not supported.",
2427 				 perf_evsel__name(evsel));
2428 	case EMFILE:
2429 		return scnprintf(msg, size, "%s",
2430 			 "Too many events are opened.\n"
2431 			 "Probably the maximum number of open file descriptors has been reached.\n"
2432 			 "Hint: Try again after reducing the number of events.\n"
2433 			 "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2434 	case ENOMEM:
2435 		if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2436 		    access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2437 			return scnprintf(msg, size,
2438 					 "Not enough memory to setup event with callchain.\n"
2439 					 "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2440 					 "Hint: Current value: %d", sysctl_perf_event_max_stack);
2441 		break;
2442 	case ENODEV:
2443 		if (target->cpu_list)
2444 			return scnprintf(msg, size, "%s",
2445 	 "No such device - did you specify an out-of-range profile CPU?");
2446 		break;
2447 	case EOPNOTSUPP:
2448 		if (evsel->attr.sample_period != 0)
2449 			return scnprintf(msg, size, "%s",
2450 	"PMU Hardware doesn't support sampling/overflow-interrupts.");
2451 		if (evsel->attr.precise_ip)
2452 			return scnprintf(msg, size, "%s",
2453 	"\'precise\' request may not be supported. Try removing 'p' modifier.");
2454 #if defined(__i386__) || defined(__x86_64__)
2455 		if (evsel->attr.type == PERF_TYPE_HARDWARE)
2456 			return scnprintf(msg, size, "%s",
2457 	"No hardware sampling interrupt available.\n"
2458 	"No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2459 #endif
2460 		break;
2461 	case EBUSY:
2462 		if (find_process("oprofiled"))
2463 			return scnprintf(msg, size,
2464 	"The PMU counters are busy/taken by another profiler.\n"
2465 	"We found oprofile daemon running, please stop it and try again.");
2466 		break;
2467 	case EINVAL:
2468 		if (evsel->attr.write_backward && perf_missing_features.write_backward)
2469 			return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2470 		if (perf_missing_features.clockid)
2471 			return scnprintf(msg, size, "clockid feature not supported.");
2472 		if (perf_missing_features.clockid_wrong)
2473 			return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2474 		break;
2475 	default:
2476 		break;
2477 	}
2478 
2479 	return scnprintf(msg, size,
2480 	"The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2481 	"/bin/dmesg may provide additional information.\n"
2482 	"No CONFIG_PERF_EVENTS=y kernel support configured?",
2483 			 err, str_error_r(err, sbuf, sizeof(sbuf)),
2484 			 perf_evsel__name(evsel));
2485 }
2486 
perf_evsel__env_arch(struct perf_evsel * evsel)2487 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2488 {
2489 	if (evsel && evsel->evlist && evsel->evlist->env)
2490 		return evsel->evlist->env->arch;
2491 	return NULL;
2492 }
2493