• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41 
42 /**
43  *	t4_wait_op_done_val - wait until an operation is completed
44  *	@adapter: the adapter performing the operation
45  *	@reg: the register to check for completion
46  *	@mask: a single-bit field within @reg that indicates completion
47  *	@polarity: the value of the field when the operation is completed
48  *	@attempts: number of check iterations
49  *	@delay: delay in usecs between iterations
50  *	@valp: where to store the value of the register at completion time
51  *
52  *	Wait until an operation is completed by checking a bit in a register
53  *	up to @attempts times.  If @valp is not NULL the value of the register
54  *	at the time it indicated completion is stored there.  Returns 0 if the
55  *	operation completes and	-EAGAIN	otherwise.
56  */
t4_wait_op_done_val(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay,u32 * valp)57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 			       int polarity, int attempts, int delay, u32 *valp)
59 {
60 	while (1) {
61 		u32 val = t4_read_reg(adapter, reg);
62 
63 		if (!!(val & mask) == polarity) {
64 			if (valp)
65 				*valp = val;
66 			return 0;
67 		}
68 		if (--attempts == 0)
69 			return -EAGAIN;
70 		if (delay)
71 			udelay(delay);
72 	}
73 }
74 
t4_wait_op_done(struct adapter * adapter,int reg,u32 mask,int polarity,int attempts,int delay)75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 				  int polarity, int attempts, int delay)
77 {
78 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 				   delay, NULL);
80 }
81 
82 /**
83  *	t4_set_reg_field - set a register field to a value
84  *	@adapter: the adapter to program
85  *	@addr: the register address
86  *	@mask: specifies the portion of the register to modify
87  *	@val: the new value for the register field
88  *
89  *	Sets a register field specified by the supplied mask to the
90  *	given value.
91  */
t4_set_reg_field(struct adapter * adapter,unsigned int addr,u32 mask,u32 val)92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 		      u32 val)
94 {
95 	u32 v = t4_read_reg(adapter, addr) & ~mask;
96 
97 	t4_write_reg(adapter, addr, v | val);
98 	(void) t4_read_reg(adapter, addr);      /* flush */
99 }
100 
101 /**
102  *	t4_read_indirect - read indirectly addressed registers
103  *	@adap: the adapter
104  *	@addr_reg: register holding the indirect address
105  *	@data_reg: register holding the value of the indirect register
106  *	@vals: where the read register values are stored
107  *	@nregs: how many indirect registers to read
108  *	@start_idx: index of first indirect register to read
109  *
110  *	Reads registers that are accessed indirectly through an address/data
111  *	register pair.
112  */
t4_read_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,u32 * vals,unsigned int nregs,unsigned int start_idx)113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 			     unsigned int data_reg, u32 *vals,
115 			     unsigned int nregs, unsigned int start_idx)
116 {
117 	while (nregs--) {
118 		t4_write_reg(adap, addr_reg, start_idx);
119 		*vals++ = t4_read_reg(adap, data_reg);
120 		start_idx++;
121 	}
122 }
123 
124 /**
125  *	t4_write_indirect - write indirectly addressed registers
126  *	@adap: the adapter
127  *	@addr_reg: register holding the indirect addresses
128  *	@data_reg: register holding the value for the indirect registers
129  *	@vals: values to write
130  *	@nregs: how many indirect registers to write
131  *	@start_idx: address of first indirect register to write
132  *
133  *	Writes a sequential block of registers that are accessed indirectly
134  *	through an address/data register pair.
135  */
t4_write_indirect(struct adapter * adap,unsigned int addr_reg,unsigned int data_reg,const u32 * vals,unsigned int nregs,unsigned int start_idx)136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 		       unsigned int data_reg, const u32 *vals,
138 		       unsigned int nregs, unsigned int start_idx)
139 {
140 	while (nregs--) {
141 		t4_write_reg(adap, addr_reg, start_idx++);
142 		t4_write_reg(adap, data_reg, *vals++);
143 	}
144 }
145 
146 /*
147  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148  * mechanism.  This guarantees that we get the real value even if we're
149  * operating within a Virtual Machine and the Hypervisor is trapping our
150  * Configuration Space accesses.
151  */
t4_hw_pci_read_cfg4(struct adapter * adap,int reg,u32 * val)152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 	u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155 
156 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 		req |= ENABLE_F;
158 	else
159 		req |= T6_ENABLE_F;
160 
161 	if (is_t4(adap->params.chip))
162 		req |= LOCALCFG_F;
163 
164 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 	*val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166 
167 	/* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 	 * Configuration Space read.  (None of the other fields matter when
169 	 * ENABLE is 0 so a simple register write is easier than a
170 	 * read-modify-write via t4_set_reg_field().)
171 	 */
172 	t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174 
175 /*
176  * t4_report_fw_error - report firmware error
177  * @adap: the adapter
178  *
179  * The adapter firmware can indicate error conditions to the host.
180  * If the firmware has indicated an error, print out the reason for
181  * the firmware error.
182  */
t4_report_fw_error(struct adapter * adap)183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 	static const char *const reason[] = {
186 		"Crash",                        /* PCIE_FW_EVAL_CRASH */
187 		"During Device Preparation",    /* PCIE_FW_EVAL_PREP */
188 		"During Device Configuration",  /* PCIE_FW_EVAL_CONF */
189 		"During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 		"Unexpected Event",             /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 		"Insufficient Airflow",         /* PCIE_FW_EVAL_OVERHEAT */
192 		"Device Shutdown",              /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 		"Reserved",                     /* reserved */
194 	};
195 	u32 pcie_fw;
196 
197 	pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 	if (pcie_fw & PCIE_FW_ERR_F)
199 		dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 			reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202 
203 /*
204  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205  */
get_mbox_rpl(struct adapter * adap,__be64 * rpl,int nflit,u32 mbox_addr)206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 			 u32 mbox_addr)
208 {
209 	for ( ; nflit; nflit--, mbox_addr += 8)
210 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212 
213 /*
214  * Handle a FW assertion reported in a mailbox.
215  */
fw_asrt(struct adapter * adap,u32 mbox_addr)216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 	struct fw_debug_cmd asrt;
219 
220 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 	dev_alert(adap->pdev_dev,
222 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 		  asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 		  be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226 
227 /**
228  *	t4_record_mbox - record a Firmware Mailbox Command/Reply in the log
229  *	@adapter: the adapter
230  *	@cmd: the Firmware Mailbox Command or Reply
231  *	@size: command length in bytes
232  *	@access: the time (ms) needed to access the Firmware Mailbox
233  *	@execute: the time (ms) the command spent being executed
234  */
t4_record_mbox(struct adapter * adapter,const __be64 * cmd,unsigned int size,int access,int execute)235 static void t4_record_mbox(struct adapter *adapter,
236 			   const __be64 *cmd, unsigned int size,
237 			   int access, int execute)
238 {
239 	struct mbox_cmd_log *log = adapter->mbox_log;
240 	struct mbox_cmd *entry;
241 	int i;
242 
243 	entry = mbox_cmd_log_entry(log, log->cursor++);
244 	if (log->cursor == log->size)
245 		log->cursor = 0;
246 
247 	for (i = 0; i < size / 8; i++)
248 		entry->cmd[i] = be64_to_cpu(cmd[i]);
249 	while (i < MBOX_LEN / 8)
250 		entry->cmd[i++] = 0;
251 	entry->timestamp = jiffies;
252 	entry->seqno = log->seqno++;
253 	entry->access = access;
254 	entry->execute = execute;
255 }
256 
257 /**
258  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
259  *	@adap: the adapter
260  *	@mbox: index of the mailbox to use
261  *	@cmd: the command to write
262  *	@size: command length in bytes
263  *	@rpl: where to optionally store the reply
264  *	@sleep_ok: if true we may sleep while awaiting command completion
265  *	@timeout: time to wait for command to finish before timing out
266  *
267  *	Sends the given command to FW through the selected mailbox and waits
268  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
269  *	store the FW's reply to the command.  The command and its optional
270  *	reply are of the same length.  FW can take up to %FW_CMD_MAX_TIMEOUT ms
271  *	to respond.  @sleep_ok determines whether we may sleep while awaiting
272  *	the response.  If sleeping is allowed we use progressive backoff
273  *	otherwise we spin.
274  *
275  *	The return value is 0 on success or a negative errno on failure.  A
276  *	failure can happen either because we are not able to execute the
277  *	command or FW executes it but signals an error.  In the latter case
278  *	the return value is the error code indicated by FW (negated).
279  */
t4_wr_mbox_meat_timeout(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok,int timeout)280 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
281 			    int size, void *rpl, bool sleep_ok, int timeout)
282 {
283 	static const int delay[] = {
284 		1, 1, 3, 5, 10, 10, 20, 50, 100, 200
285 	};
286 
287 	u16 access = 0;
288 	u16 execute = 0;
289 	u32 v;
290 	u64 res;
291 	int i, ms, delay_idx, ret;
292 	const __be64 *p = cmd;
293 	u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
294 	u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
295 	__be64 cmd_rpl[MBOX_LEN / 8];
296 	u32 pcie_fw;
297 
298 	if ((size & 15) || size > MBOX_LEN)
299 		return -EINVAL;
300 
301 	/*
302 	 * If the device is off-line, as in EEH, commands will time out.
303 	 * Fail them early so we don't waste time waiting.
304 	 */
305 	if (adap->pdev->error_state != pci_channel_io_normal)
306 		return -EIO;
307 
308 	/* If we have a negative timeout, that implies that we can't sleep. */
309 	if (timeout < 0) {
310 		sleep_ok = false;
311 		timeout = -timeout;
312 	}
313 
314 	v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
315 	for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
316 		v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
317 
318 	if (v != MBOX_OWNER_DRV) {
319 		ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
320 		t4_record_mbox(adap, cmd, size, access, ret);
321 		return ret;
322 	}
323 
324 	/* Copy in the new mailbox command and send it on its way ... */
325 	t4_record_mbox(adap, cmd, size, access, 0);
326 	for (i = 0; i < size; i += 8)
327 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
328 
329 	t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
330 	t4_read_reg(adap, ctl_reg);          /* flush write */
331 
332 	delay_idx = 0;
333 	ms = delay[0];
334 
335 	for (i = 0;
336 	     !((pcie_fw = t4_read_reg(adap, PCIE_FW_A)) & PCIE_FW_ERR_F) &&
337 	     i < timeout;
338 	     i += ms) {
339 		if (sleep_ok) {
340 			ms = delay[delay_idx];  /* last element may repeat */
341 			if (delay_idx < ARRAY_SIZE(delay) - 1)
342 				delay_idx++;
343 			msleep(ms);
344 		} else
345 			mdelay(ms);
346 
347 		v = t4_read_reg(adap, ctl_reg);
348 		if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
349 			if (!(v & MBMSGVALID_F)) {
350 				t4_write_reg(adap, ctl_reg, 0);
351 				continue;
352 			}
353 
354 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN / 8, data_reg);
355 			res = be64_to_cpu(cmd_rpl[0]);
356 
357 			if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
358 				fw_asrt(adap, data_reg);
359 				res = FW_CMD_RETVAL_V(EIO);
360 			} else if (rpl) {
361 				memcpy(rpl, cmd_rpl, size);
362 			}
363 
364 			t4_write_reg(adap, ctl_reg, 0);
365 
366 			execute = i + ms;
367 			t4_record_mbox(adap, cmd_rpl,
368 				       MBOX_LEN, access, execute);
369 			return -FW_CMD_RETVAL_G((int)res);
370 		}
371 	}
372 
373 	ret = (pcie_fw & PCIE_FW_ERR_F) ? -ENXIO : -ETIMEDOUT;
374 	t4_record_mbox(adap, cmd, size, access, ret);
375 	dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
376 		*(const u8 *)cmd, mbox);
377 	t4_report_fw_error(adap);
378 	return ret;
379 }
380 
t4_wr_mbox_meat(struct adapter * adap,int mbox,const void * cmd,int size,void * rpl,bool sleep_ok)381 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
382 		    void *rpl, bool sleep_ok)
383 {
384 	return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
385 				       FW_CMD_MAX_TIMEOUT);
386 }
387 
t4_edc_err_read(struct adapter * adap,int idx)388 static int t4_edc_err_read(struct adapter *adap, int idx)
389 {
390 	u32 edc_ecc_err_addr_reg;
391 	u32 rdata_reg;
392 
393 	if (is_t4(adap->params.chip)) {
394 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
395 		return 0;
396 	}
397 	if (idx != 0 && idx != 1) {
398 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
399 		return 0;
400 	}
401 
402 	edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
403 	rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
404 
405 	CH_WARN(adap,
406 		"edc%d err addr 0x%x: 0x%x.\n",
407 		idx, edc_ecc_err_addr_reg,
408 		t4_read_reg(adap, edc_ecc_err_addr_reg));
409 	CH_WARN(adap,
410 		"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
411 		rdata_reg,
412 		(unsigned long long)t4_read_reg64(adap, rdata_reg),
413 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
414 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
415 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
416 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
417 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
418 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
419 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
420 		(unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
421 
422 	return 0;
423 }
424 
425 /**
426  *	t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
427  *	@adap: the adapter
428  *	@win: PCI-E Memory Window to use
429  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
430  *	@addr: address within indicated memory type
431  *	@len: amount of memory to transfer
432  *	@hbuf: host memory buffer
433  *	@dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
434  *
435  *	Reads/writes an [almost] arbitrary memory region in the firmware: the
436  *	firmware memory address and host buffer must be aligned on 32-bit
437  *	boudaries; the length may be arbitrary.  The memory is transferred as
438  *	a raw byte sequence from/to the firmware's memory.  If this memory
439  *	contains data structures which contain multi-byte integers, it's the
440  *	caller's responsibility to perform appropriate byte order conversions.
441  */
t4_memory_rw(struct adapter * adap,int win,int mtype,u32 addr,u32 len,void * hbuf,int dir)442 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
443 		 u32 len, void *hbuf, int dir)
444 {
445 	u32 pos, offset, resid, memoffset;
446 	u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
447 	u32 *buf;
448 
449 	/* Argument sanity checks ...
450 	 */
451 	if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
452 		return -EINVAL;
453 	buf = (u32 *)hbuf;
454 
455 	/* It's convenient to be able to handle lengths which aren't a
456 	 * multiple of 32-bits because we often end up transferring files to
457 	 * the firmware.  So we'll handle that by normalizing the length here
458 	 * and then handling any residual transfer at the end.
459 	 */
460 	resid = len & 0x3;
461 	len -= resid;
462 
463 	/* Offset into the region of memory which is being accessed
464 	 * MEM_EDC0 = 0
465 	 * MEM_EDC1 = 1
466 	 * MEM_MC   = 2 -- MEM_MC for chips with only 1 memory controller
467 	 * MEM_MC1  = 3 -- for chips with 2 memory controllers (e.g. T5)
468 	 */
469 	edc_size  = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
470 	if (mtype != MEM_MC1)
471 		memoffset = (mtype * (edc_size * 1024 * 1024));
472 	else {
473 		mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
474 						      MA_EXT_MEMORY0_BAR_A));
475 		memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
476 	}
477 
478 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
479 	addr = addr + memoffset;
480 
481 	/* Each PCI-E Memory Window is programmed with a window size -- or
482 	 * "aperture" -- which controls the granularity of its mapping onto
483 	 * adapter memory.  We need to grab that aperture in order to know
484 	 * how to use the specified window.  The window is also programmed
485 	 * with the base address of the Memory Window in BAR0's address
486 	 * space.  For T4 this is an absolute PCI-E Bus Address.  For T5
487 	 * the address is relative to BAR0.
488 	 */
489 	mem_reg = t4_read_reg(adap,
490 			      PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
491 						  win));
492 	mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
493 	mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
494 	if (is_t4(adap->params.chip))
495 		mem_base -= adap->t4_bar0;
496 	win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
497 
498 	/* Calculate our initial PCI-E Memory Window Position and Offset into
499 	 * that Window.
500 	 */
501 	pos = addr & ~(mem_aperture-1);
502 	offset = addr - pos;
503 
504 	/* Set up initial PCI-E Memory Window to cover the start of our
505 	 * transfer.  (Read it back to ensure that changes propagate before we
506 	 * attempt to use the new value.)
507 	 */
508 	t4_write_reg(adap,
509 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
510 		     pos | win_pf);
511 	t4_read_reg(adap,
512 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
513 
514 	/* Transfer data to/from the adapter as long as there's an integral
515 	 * number of 32-bit transfers to complete.
516 	 *
517 	 * A note on Endianness issues:
518 	 *
519 	 * The "register" reads and writes below from/to the PCI-E Memory
520 	 * Window invoke the standard adapter Big-Endian to PCI-E Link
521 	 * Little-Endian "swizzel."  As a result, if we have the following
522 	 * data in adapter memory:
523 	 *
524 	 *     Memory:  ... | b0 | b1 | b2 | b3 | ...
525 	 *     Address:      i+0  i+1  i+2  i+3
526 	 *
527 	 * Then a read of the adapter memory via the PCI-E Memory Window
528 	 * will yield:
529 	 *
530 	 *     x = readl(i)
531 	 *         31                  0
532 	 *         [ b3 | b2 | b1 | b0 ]
533 	 *
534 	 * If this value is stored into local memory on a Little-Endian system
535 	 * it will show up correctly in local memory as:
536 	 *
537 	 *     ( ..., b0, b1, b2, b3, ... )
538 	 *
539 	 * But on a Big-Endian system, the store will show up in memory
540 	 * incorrectly swizzled as:
541 	 *
542 	 *     ( ..., b3, b2, b1, b0, ... )
543 	 *
544 	 * So we need to account for this in the reads and writes to the
545 	 * PCI-E Memory Window below by undoing the register read/write
546 	 * swizzels.
547 	 */
548 	while (len > 0) {
549 		if (dir == T4_MEMORY_READ)
550 			*buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
551 						mem_base + offset));
552 		else
553 			t4_write_reg(adap, mem_base + offset,
554 				     (__force u32)cpu_to_le32(*buf++));
555 		offset += sizeof(__be32);
556 		len -= sizeof(__be32);
557 
558 		/* If we've reached the end of our current window aperture,
559 		 * move the PCI-E Memory Window on to the next.  Note that
560 		 * doing this here after "len" may be 0 allows us to set up
561 		 * the PCI-E Memory Window for a possible final residual
562 		 * transfer below ...
563 		 */
564 		if (offset == mem_aperture) {
565 			pos += mem_aperture;
566 			offset = 0;
567 			t4_write_reg(adap,
568 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
569 						    win), pos | win_pf);
570 			t4_read_reg(adap,
571 				PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
572 						    win));
573 		}
574 	}
575 
576 	/* If the original transfer had a length which wasn't a multiple of
577 	 * 32-bits, now's where we need to finish off the transfer of the
578 	 * residual amount.  The PCI-E Memory Window has already been moved
579 	 * above (if necessary) to cover this final transfer.
580 	 */
581 	if (resid) {
582 		union {
583 			u32 word;
584 			char byte[4];
585 		} last;
586 		unsigned char *bp;
587 		int i;
588 
589 		if (dir == T4_MEMORY_READ) {
590 			last.word = le32_to_cpu(
591 					(__force __le32)t4_read_reg(adap,
592 						mem_base + offset));
593 			for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
594 				bp[i] = last.byte[i];
595 		} else {
596 			last.word = *buf;
597 			for (i = resid; i < 4; i++)
598 				last.byte[i] = 0;
599 			t4_write_reg(adap, mem_base + offset,
600 				     (__force u32)cpu_to_le32(last.word));
601 		}
602 	}
603 
604 	return 0;
605 }
606 
607 /* Return the specified PCI-E Configuration Space register from our Physical
608  * Function.  We try first via a Firmware LDST Command since we prefer to let
609  * the firmware own all of these registers, but if that fails we go for it
610  * directly ourselves.
611  */
t4_read_pcie_cfg4(struct adapter * adap,int reg)612 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
613 {
614 	u32 val, ldst_addrspace;
615 
616 	/* If fw_attach != 0, construct and send the Firmware LDST Command to
617 	 * retrieve the specified PCI-E Configuration Space register.
618 	 */
619 	struct fw_ldst_cmd ldst_cmd;
620 	int ret;
621 
622 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
623 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
624 	ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
625 					       FW_CMD_REQUEST_F |
626 					       FW_CMD_READ_F |
627 					       ldst_addrspace);
628 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
629 	ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
630 	ldst_cmd.u.pcie.ctrl_to_fn =
631 		(FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
632 	ldst_cmd.u.pcie.r = reg;
633 
634 	/* If the LDST Command succeeds, return the result, otherwise
635 	 * fall through to reading it directly ourselves ...
636 	 */
637 	ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
638 			 &ldst_cmd);
639 	if (ret == 0)
640 		val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
641 	else
642 		/* Read the desired Configuration Space register via the PCI-E
643 		 * Backdoor mechanism.
644 		 */
645 		t4_hw_pci_read_cfg4(adap, reg, &val);
646 	return val;
647 }
648 
649 /* Get the window based on base passed to it.
650  * Window aperture is currently unhandled, but there is no use case for it
651  * right now
652  */
t4_get_window(struct adapter * adap,u32 pci_base,u64 pci_mask,u32 memwin_base)653 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
654 			 u32 memwin_base)
655 {
656 	u32 ret;
657 
658 	if (is_t4(adap->params.chip)) {
659 		u32 bar0;
660 
661 		/* Truncation intentional: we only read the bottom 32-bits of
662 		 * the 64-bit BAR0/BAR1 ...  We use the hardware backdoor
663 		 * mechanism to read BAR0 instead of using
664 		 * pci_resource_start() because we could be operating from
665 		 * within a Virtual Machine which is trapping our accesses to
666 		 * our Configuration Space and we need to set up the PCI-E
667 		 * Memory Window decoders with the actual addresses which will
668 		 * be coming across the PCI-E link.
669 		 */
670 		bar0 = t4_read_pcie_cfg4(adap, pci_base);
671 		bar0 &= pci_mask;
672 		adap->t4_bar0 = bar0;
673 
674 		ret = bar0 + memwin_base;
675 	} else {
676 		/* For T5, only relative offset inside the PCIe BAR is passed */
677 		ret = memwin_base;
678 	}
679 	return ret;
680 }
681 
682 /* Get the default utility window (win0) used by everyone */
t4_get_util_window(struct adapter * adap)683 u32 t4_get_util_window(struct adapter *adap)
684 {
685 	return t4_get_window(adap, PCI_BASE_ADDRESS_0,
686 			     PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
687 }
688 
689 /* Set up memory window for accessing adapter memory ranges.  (Read
690  * back MA register to ensure that changes propagate before we attempt
691  * to use the new values.)
692  */
t4_setup_memwin(struct adapter * adap,u32 memwin_base,u32 window)693 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
694 {
695 	t4_write_reg(adap,
696 		     PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
697 		     memwin_base | BIR_V(0) |
698 		     WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
699 	t4_read_reg(adap,
700 		    PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
701 }
702 
703 /**
704  *	t4_get_regs_len - return the size of the chips register set
705  *	@adapter: the adapter
706  *
707  *	Returns the size of the chip's BAR0 register space.
708  */
t4_get_regs_len(struct adapter * adapter)709 unsigned int t4_get_regs_len(struct adapter *adapter)
710 {
711 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
712 
713 	switch (chip_version) {
714 	case CHELSIO_T4:
715 		return T4_REGMAP_SIZE;
716 
717 	case CHELSIO_T5:
718 	case CHELSIO_T6:
719 		return T5_REGMAP_SIZE;
720 	}
721 
722 	dev_err(adapter->pdev_dev,
723 		"Unsupported chip version %d\n", chip_version);
724 	return 0;
725 }
726 
727 /**
728  *	t4_get_regs - read chip registers into provided buffer
729  *	@adap: the adapter
730  *	@buf: register buffer
731  *	@buf_size: size (in bytes) of register buffer
732  *
733  *	If the provided register buffer isn't large enough for the chip's
734  *	full register range, the register dump will be truncated to the
735  *	register buffer's size.
736  */
t4_get_regs(struct adapter * adap,void * buf,size_t buf_size)737 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
738 {
739 	static const unsigned int t4_reg_ranges[] = {
740 		0x1008, 0x1108,
741 		0x1180, 0x1184,
742 		0x1190, 0x1194,
743 		0x11a0, 0x11a4,
744 		0x11b0, 0x11b4,
745 		0x11fc, 0x123c,
746 		0x1300, 0x173c,
747 		0x1800, 0x18fc,
748 		0x3000, 0x30d8,
749 		0x30e0, 0x30e4,
750 		0x30ec, 0x5910,
751 		0x5920, 0x5924,
752 		0x5960, 0x5960,
753 		0x5968, 0x5968,
754 		0x5970, 0x5970,
755 		0x5978, 0x5978,
756 		0x5980, 0x5980,
757 		0x5988, 0x5988,
758 		0x5990, 0x5990,
759 		0x5998, 0x5998,
760 		0x59a0, 0x59d4,
761 		0x5a00, 0x5ae0,
762 		0x5ae8, 0x5ae8,
763 		0x5af0, 0x5af0,
764 		0x5af8, 0x5af8,
765 		0x6000, 0x6098,
766 		0x6100, 0x6150,
767 		0x6200, 0x6208,
768 		0x6240, 0x6248,
769 		0x6280, 0x62b0,
770 		0x62c0, 0x6338,
771 		0x6370, 0x638c,
772 		0x6400, 0x643c,
773 		0x6500, 0x6524,
774 		0x6a00, 0x6a04,
775 		0x6a14, 0x6a38,
776 		0x6a60, 0x6a70,
777 		0x6a78, 0x6a78,
778 		0x6b00, 0x6b0c,
779 		0x6b1c, 0x6b84,
780 		0x6bf0, 0x6bf8,
781 		0x6c00, 0x6c0c,
782 		0x6c1c, 0x6c84,
783 		0x6cf0, 0x6cf8,
784 		0x6d00, 0x6d0c,
785 		0x6d1c, 0x6d84,
786 		0x6df0, 0x6df8,
787 		0x6e00, 0x6e0c,
788 		0x6e1c, 0x6e84,
789 		0x6ef0, 0x6ef8,
790 		0x6f00, 0x6f0c,
791 		0x6f1c, 0x6f84,
792 		0x6ff0, 0x6ff8,
793 		0x7000, 0x700c,
794 		0x701c, 0x7084,
795 		0x70f0, 0x70f8,
796 		0x7100, 0x710c,
797 		0x711c, 0x7184,
798 		0x71f0, 0x71f8,
799 		0x7200, 0x720c,
800 		0x721c, 0x7284,
801 		0x72f0, 0x72f8,
802 		0x7300, 0x730c,
803 		0x731c, 0x7384,
804 		0x73f0, 0x73f8,
805 		0x7400, 0x7450,
806 		0x7500, 0x7530,
807 		0x7600, 0x760c,
808 		0x7614, 0x761c,
809 		0x7680, 0x76cc,
810 		0x7700, 0x7798,
811 		0x77c0, 0x77fc,
812 		0x7900, 0x79fc,
813 		0x7b00, 0x7b58,
814 		0x7b60, 0x7b84,
815 		0x7b8c, 0x7c38,
816 		0x7d00, 0x7d38,
817 		0x7d40, 0x7d80,
818 		0x7d8c, 0x7ddc,
819 		0x7de4, 0x7e04,
820 		0x7e10, 0x7e1c,
821 		0x7e24, 0x7e38,
822 		0x7e40, 0x7e44,
823 		0x7e4c, 0x7e78,
824 		0x7e80, 0x7ea4,
825 		0x7eac, 0x7edc,
826 		0x7ee8, 0x7efc,
827 		0x8dc0, 0x8e04,
828 		0x8e10, 0x8e1c,
829 		0x8e30, 0x8e78,
830 		0x8ea0, 0x8eb8,
831 		0x8ec0, 0x8f6c,
832 		0x8fc0, 0x9008,
833 		0x9010, 0x9058,
834 		0x9060, 0x9060,
835 		0x9068, 0x9074,
836 		0x90fc, 0x90fc,
837 		0x9400, 0x9408,
838 		0x9410, 0x9458,
839 		0x9600, 0x9600,
840 		0x9608, 0x9638,
841 		0x9640, 0x96bc,
842 		0x9800, 0x9808,
843 		0x9820, 0x983c,
844 		0x9850, 0x9864,
845 		0x9c00, 0x9c6c,
846 		0x9c80, 0x9cec,
847 		0x9d00, 0x9d6c,
848 		0x9d80, 0x9dec,
849 		0x9e00, 0x9e6c,
850 		0x9e80, 0x9eec,
851 		0x9f00, 0x9f6c,
852 		0x9f80, 0x9fec,
853 		0xd004, 0xd004,
854 		0xd010, 0xd03c,
855 		0xdfc0, 0xdfe0,
856 		0xe000, 0xea7c,
857 		0xf000, 0x11190,
858 		0x19040, 0x1906c,
859 		0x19078, 0x19080,
860 		0x1908c, 0x190e4,
861 		0x190f0, 0x190f8,
862 		0x19100, 0x19110,
863 		0x19120, 0x19124,
864 		0x19150, 0x19194,
865 		0x1919c, 0x191b0,
866 		0x191d0, 0x191e8,
867 		0x19238, 0x1924c,
868 		0x193f8, 0x1943c,
869 		0x1944c, 0x19474,
870 		0x19490, 0x194e0,
871 		0x194f0, 0x194f8,
872 		0x19800, 0x19c08,
873 		0x19c10, 0x19c90,
874 		0x19ca0, 0x19ce4,
875 		0x19cf0, 0x19d40,
876 		0x19d50, 0x19d94,
877 		0x19da0, 0x19de8,
878 		0x19df0, 0x19e40,
879 		0x19e50, 0x19e90,
880 		0x19ea0, 0x19f4c,
881 		0x1a000, 0x1a004,
882 		0x1a010, 0x1a06c,
883 		0x1a0b0, 0x1a0e4,
884 		0x1a0ec, 0x1a0f4,
885 		0x1a100, 0x1a108,
886 		0x1a114, 0x1a120,
887 		0x1a128, 0x1a130,
888 		0x1a138, 0x1a138,
889 		0x1a190, 0x1a1c4,
890 		0x1a1fc, 0x1a1fc,
891 		0x1e040, 0x1e04c,
892 		0x1e284, 0x1e28c,
893 		0x1e2c0, 0x1e2c0,
894 		0x1e2e0, 0x1e2e0,
895 		0x1e300, 0x1e384,
896 		0x1e3c0, 0x1e3c8,
897 		0x1e440, 0x1e44c,
898 		0x1e684, 0x1e68c,
899 		0x1e6c0, 0x1e6c0,
900 		0x1e6e0, 0x1e6e0,
901 		0x1e700, 0x1e784,
902 		0x1e7c0, 0x1e7c8,
903 		0x1e840, 0x1e84c,
904 		0x1ea84, 0x1ea8c,
905 		0x1eac0, 0x1eac0,
906 		0x1eae0, 0x1eae0,
907 		0x1eb00, 0x1eb84,
908 		0x1ebc0, 0x1ebc8,
909 		0x1ec40, 0x1ec4c,
910 		0x1ee84, 0x1ee8c,
911 		0x1eec0, 0x1eec0,
912 		0x1eee0, 0x1eee0,
913 		0x1ef00, 0x1ef84,
914 		0x1efc0, 0x1efc8,
915 		0x1f040, 0x1f04c,
916 		0x1f284, 0x1f28c,
917 		0x1f2c0, 0x1f2c0,
918 		0x1f2e0, 0x1f2e0,
919 		0x1f300, 0x1f384,
920 		0x1f3c0, 0x1f3c8,
921 		0x1f440, 0x1f44c,
922 		0x1f684, 0x1f68c,
923 		0x1f6c0, 0x1f6c0,
924 		0x1f6e0, 0x1f6e0,
925 		0x1f700, 0x1f784,
926 		0x1f7c0, 0x1f7c8,
927 		0x1f840, 0x1f84c,
928 		0x1fa84, 0x1fa8c,
929 		0x1fac0, 0x1fac0,
930 		0x1fae0, 0x1fae0,
931 		0x1fb00, 0x1fb84,
932 		0x1fbc0, 0x1fbc8,
933 		0x1fc40, 0x1fc4c,
934 		0x1fe84, 0x1fe8c,
935 		0x1fec0, 0x1fec0,
936 		0x1fee0, 0x1fee0,
937 		0x1ff00, 0x1ff84,
938 		0x1ffc0, 0x1ffc8,
939 		0x20000, 0x2002c,
940 		0x20100, 0x2013c,
941 		0x20190, 0x201a0,
942 		0x201a8, 0x201b8,
943 		0x201c4, 0x201c8,
944 		0x20200, 0x20318,
945 		0x20400, 0x204b4,
946 		0x204c0, 0x20528,
947 		0x20540, 0x20614,
948 		0x21000, 0x21040,
949 		0x2104c, 0x21060,
950 		0x210c0, 0x210ec,
951 		0x21200, 0x21268,
952 		0x21270, 0x21284,
953 		0x212fc, 0x21388,
954 		0x21400, 0x21404,
955 		0x21500, 0x21500,
956 		0x21510, 0x21518,
957 		0x2152c, 0x21530,
958 		0x2153c, 0x2153c,
959 		0x21550, 0x21554,
960 		0x21600, 0x21600,
961 		0x21608, 0x2161c,
962 		0x21624, 0x21628,
963 		0x21630, 0x21634,
964 		0x2163c, 0x2163c,
965 		0x21700, 0x2171c,
966 		0x21780, 0x2178c,
967 		0x21800, 0x21818,
968 		0x21820, 0x21828,
969 		0x21830, 0x21848,
970 		0x21850, 0x21854,
971 		0x21860, 0x21868,
972 		0x21870, 0x21870,
973 		0x21878, 0x21898,
974 		0x218a0, 0x218a8,
975 		0x218b0, 0x218c8,
976 		0x218d0, 0x218d4,
977 		0x218e0, 0x218e8,
978 		0x218f0, 0x218f0,
979 		0x218f8, 0x21a18,
980 		0x21a20, 0x21a28,
981 		0x21a30, 0x21a48,
982 		0x21a50, 0x21a54,
983 		0x21a60, 0x21a68,
984 		0x21a70, 0x21a70,
985 		0x21a78, 0x21a98,
986 		0x21aa0, 0x21aa8,
987 		0x21ab0, 0x21ac8,
988 		0x21ad0, 0x21ad4,
989 		0x21ae0, 0x21ae8,
990 		0x21af0, 0x21af0,
991 		0x21af8, 0x21c18,
992 		0x21c20, 0x21c20,
993 		0x21c28, 0x21c30,
994 		0x21c38, 0x21c38,
995 		0x21c80, 0x21c98,
996 		0x21ca0, 0x21ca8,
997 		0x21cb0, 0x21cc8,
998 		0x21cd0, 0x21cd4,
999 		0x21ce0, 0x21ce8,
1000 		0x21cf0, 0x21cf0,
1001 		0x21cf8, 0x21d7c,
1002 		0x21e00, 0x21e04,
1003 		0x22000, 0x2202c,
1004 		0x22100, 0x2213c,
1005 		0x22190, 0x221a0,
1006 		0x221a8, 0x221b8,
1007 		0x221c4, 0x221c8,
1008 		0x22200, 0x22318,
1009 		0x22400, 0x224b4,
1010 		0x224c0, 0x22528,
1011 		0x22540, 0x22614,
1012 		0x23000, 0x23040,
1013 		0x2304c, 0x23060,
1014 		0x230c0, 0x230ec,
1015 		0x23200, 0x23268,
1016 		0x23270, 0x23284,
1017 		0x232fc, 0x23388,
1018 		0x23400, 0x23404,
1019 		0x23500, 0x23500,
1020 		0x23510, 0x23518,
1021 		0x2352c, 0x23530,
1022 		0x2353c, 0x2353c,
1023 		0x23550, 0x23554,
1024 		0x23600, 0x23600,
1025 		0x23608, 0x2361c,
1026 		0x23624, 0x23628,
1027 		0x23630, 0x23634,
1028 		0x2363c, 0x2363c,
1029 		0x23700, 0x2371c,
1030 		0x23780, 0x2378c,
1031 		0x23800, 0x23818,
1032 		0x23820, 0x23828,
1033 		0x23830, 0x23848,
1034 		0x23850, 0x23854,
1035 		0x23860, 0x23868,
1036 		0x23870, 0x23870,
1037 		0x23878, 0x23898,
1038 		0x238a0, 0x238a8,
1039 		0x238b0, 0x238c8,
1040 		0x238d0, 0x238d4,
1041 		0x238e0, 0x238e8,
1042 		0x238f0, 0x238f0,
1043 		0x238f8, 0x23a18,
1044 		0x23a20, 0x23a28,
1045 		0x23a30, 0x23a48,
1046 		0x23a50, 0x23a54,
1047 		0x23a60, 0x23a68,
1048 		0x23a70, 0x23a70,
1049 		0x23a78, 0x23a98,
1050 		0x23aa0, 0x23aa8,
1051 		0x23ab0, 0x23ac8,
1052 		0x23ad0, 0x23ad4,
1053 		0x23ae0, 0x23ae8,
1054 		0x23af0, 0x23af0,
1055 		0x23af8, 0x23c18,
1056 		0x23c20, 0x23c20,
1057 		0x23c28, 0x23c30,
1058 		0x23c38, 0x23c38,
1059 		0x23c80, 0x23c98,
1060 		0x23ca0, 0x23ca8,
1061 		0x23cb0, 0x23cc8,
1062 		0x23cd0, 0x23cd4,
1063 		0x23ce0, 0x23ce8,
1064 		0x23cf0, 0x23cf0,
1065 		0x23cf8, 0x23d7c,
1066 		0x23e00, 0x23e04,
1067 		0x24000, 0x2402c,
1068 		0x24100, 0x2413c,
1069 		0x24190, 0x241a0,
1070 		0x241a8, 0x241b8,
1071 		0x241c4, 0x241c8,
1072 		0x24200, 0x24318,
1073 		0x24400, 0x244b4,
1074 		0x244c0, 0x24528,
1075 		0x24540, 0x24614,
1076 		0x25000, 0x25040,
1077 		0x2504c, 0x25060,
1078 		0x250c0, 0x250ec,
1079 		0x25200, 0x25268,
1080 		0x25270, 0x25284,
1081 		0x252fc, 0x25388,
1082 		0x25400, 0x25404,
1083 		0x25500, 0x25500,
1084 		0x25510, 0x25518,
1085 		0x2552c, 0x25530,
1086 		0x2553c, 0x2553c,
1087 		0x25550, 0x25554,
1088 		0x25600, 0x25600,
1089 		0x25608, 0x2561c,
1090 		0x25624, 0x25628,
1091 		0x25630, 0x25634,
1092 		0x2563c, 0x2563c,
1093 		0x25700, 0x2571c,
1094 		0x25780, 0x2578c,
1095 		0x25800, 0x25818,
1096 		0x25820, 0x25828,
1097 		0x25830, 0x25848,
1098 		0x25850, 0x25854,
1099 		0x25860, 0x25868,
1100 		0x25870, 0x25870,
1101 		0x25878, 0x25898,
1102 		0x258a0, 0x258a8,
1103 		0x258b0, 0x258c8,
1104 		0x258d0, 0x258d4,
1105 		0x258e0, 0x258e8,
1106 		0x258f0, 0x258f0,
1107 		0x258f8, 0x25a18,
1108 		0x25a20, 0x25a28,
1109 		0x25a30, 0x25a48,
1110 		0x25a50, 0x25a54,
1111 		0x25a60, 0x25a68,
1112 		0x25a70, 0x25a70,
1113 		0x25a78, 0x25a98,
1114 		0x25aa0, 0x25aa8,
1115 		0x25ab0, 0x25ac8,
1116 		0x25ad0, 0x25ad4,
1117 		0x25ae0, 0x25ae8,
1118 		0x25af0, 0x25af0,
1119 		0x25af8, 0x25c18,
1120 		0x25c20, 0x25c20,
1121 		0x25c28, 0x25c30,
1122 		0x25c38, 0x25c38,
1123 		0x25c80, 0x25c98,
1124 		0x25ca0, 0x25ca8,
1125 		0x25cb0, 0x25cc8,
1126 		0x25cd0, 0x25cd4,
1127 		0x25ce0, 0x25ce8,
1128 		0x25cf0, 0x25cf0,
1129 		0x25cf8, 0x25d7c,
1130 		0x25e00, 0x25e04,
1131 		0x26000, 0x2602c,
1132 		0x26100, 0x2613c,
1133 		0x26190, 0x261a0,
1134 		0x261a8, 0x261b8,
1135 		0x261c4, 0x261c8,
1136 		0x26200, 0x26318,
1137 		0x26400, 0x264b4,
1138 		0x264c0, 0x26528,
1139 		0x26540, 0x26614,
1140 		0x27000, 0x27040,
1141 		0x2704c, 0x27060,
1142 		0x270c0, 0x270ec,
1143 		0x27200, 0x27268,
1144 		0x27270, 0x27284,
1145 		0x272fc, 0x27388,
1146 		0x27400, 0x27404,
1147 		0x27500, 0x27500,
1148 		0x27510, 0x27518,
1149 		0x2752c, 0x27530,
1150 		0x2753c, 0x2753c,
1151 		0x27550, 0x27554,
1152 		0x27600, 0x27600,
1153 		0x27608, 0x2761c,
1154 		0x27624, 0x27628,
1155 		0x27630, 0x27634,
1156 		0x2763c, 0x2763c,
1157 		0x27700, 0x2771c,
1158 		0x27780, 0x2778c,
1159 		0x27800, 0x27818,
1160 		0x27820, 0x27828,
1161 		0x27830, 0x27848,
1162 		0x27850, 0x27854,
1163 		0x27860, 0x27868,
1164 		0x27870, 0x27870,
1165 		0x27878, 0x27898,
1166 		0x278a0, 0x278a8,
1167 		0x278b0, 0x278c8,
1168 		0x278d0, 0x278d4,
1169 		0x278e0, 0x278e8,
1170 		0x278f0, 0x278f0,
1171 		0x278f8, 0x27a18,
1172 		0x27a20, 0x27a28,
1173 		0x27a30, 0x27a48,
1174 		0x27a50, 0x27a54,
1175 		0x27a60, 0x27a68,
1176 		0x27a70, 0x27a70,
1177 		0x27a78, 0x27a98,
1178 		0x27aa0, 0x27aa8,
1179 		0x27ab0, 0x27ac8,
1180 		0x27ad0, 0x27ad4,
1181 		0x27ae0, 0x27ae8,
1182 		0x27af0, 0x27af0,
1183 		0x27af8, 0x27c18,
1184 		0x27c20, 0x27c20,
1185 		0x27c28, 0x27c30,
1186 		0x27c38, 0x27c38,
1187 		0x27c80, 0x27c98,
1188 		0x27ca0, 0x27ca8,
1189 		0x27cb0, 0x27cc8,
1190 		0x27cd0, 0x27cd4,
1191 		0x27ce0, 0x27ce8,
1192 		0x27cf0, 0x27cf0,
1193 		0x27cf8, 0x27d7c,
1194 		0x27e00, 0x27e04,
1195 	};
1196 
1197 	static const unsigned int t5_reg_ranges[] = {
1198 		0x1008, 0x10c0,
1199 		0x10cc, 0x10f8,
1200 		0x1100, 0x1100,
1201 		0x110c, 0x1148,
1202 		0x1180, 0x1184,
1203 		0x1190, 0x1194,
1204 		0x11a0, 0x11a4,
1205 		0x11b0, 0x11b4,
1206 		0x11fc, 0x123c,
1207 		0x1280, 0x173c,
1208 		0x1800, 0x18fc,
1209 		0x3000, 0x3028,
1210 		0x3060, 0x30b0,
1211 		0x30b8, 0x30d8,
1212 		0x30e0, 0x30fc,
1213 		0x3140, 0x357c,
1214 		0x35a8, 0x35cc,
1215 		0x35ec, 0x35ec,
1216 		0x3600, 0x5624,
1217 		0x56cc, 0x56ec,
1218 		0x56f4, 0x5720,
1219 		0x5728, 0x575c,
1220 		0x580c, 0x5814,
1221 		0x5890, 0x589c,
1222 		0x58a4, 0x58ac,
1223 		0x58b8, 0x58bc,
1224 		0x5940, 0x59c8,
1225 		0x59d0, 0x59dc,
1226 		0x59fc, 0x5a18,
1227 		0x5a60, 0x5a70,
1228 		0x5a80, 0x5a9c,
1229 		0x5b94, 0x5bfc,
1230 		0x6000, 0x6020,
1231 		0x6028, 0x6040,
1232 		0x6058, 0x609c,
1233 		0x60a8, 0x614c,
1234 		0x7700, 0x7798,
1235 		0x77c0, 0x78fc,
1236 		0x7b00, 0x7b58,
1237 		0x7b60, 0x7b84,
1238 		0x7b8c, 0x7c54,
1239 		0x7d00, 0x7d38,
1240 		0x7d40, 0x7d80,
1241 		0x7d8c, 0x7ddc,
1242 		0x7de4, 0x7e04,
1243 		0x7e10, 0x7e1c,
1244 		0x7e24, 0x7e38,
1245 		0x7e40, 0x7e44,
1246 		0x7e4c, 0x7e78,
1247 		0x7e80, 0x7edc,
1248 		0x7ee8, 0x7efc,
1249 		0x8dc0, 0x8de0,
1250 		0x8df8, 0x8e04,
1251 		0x8e10, 0x8e84,
1252 		0x8ea0, 0x8f84,
1253 		0x8fc0, 0x9058,
1254 		0x9060, 0x9060,
1255 		0x9068, 0x90f8,
1256 		0x9400, 0x9408,
1257 		0x9410, 0x9470,
1258 		0x9600, 0x9600,
1259 		0x9608, 0x9638,
1260 		0x9640, 0x96f4,
1261 		0x9800, 0x9808,
1262 		0x9820, 0x983c,
1263 		0x9850, 0x9864,
1264 		0x9c00, 0x9c6c,
1265 		0x9c80, 0x9cec,
1266 		0x9d00, 0x9d6c,
1267 		0x9d80, 0x9dec,
1268 		0x9e00, 0x9e6c,
1269 		0x9e80, 0x9eec,
1270 		0x9f00, 0x9f6c,
1271 		0x9f80, 0xa020,
1272 		0xd004, 0xd004,
1273 		0xd010, 0xd03c,
1274 		0xdfc0, 0xdfe0,
1275 		0xe000, 0x1106c,
1276 		0x11074, 0x11088,
1277 		0x1109c, 0x1117c,
1278 		0x11190, 0x11204,
1279 		0x19040, 0x1906c,
1280 		0x19078, 0x19080,
1281 		0x1908c, 0x190e8,
1282 		0x190f0, 0x190f8,
1283 		0x19100, 0x19110,
1284 		0x19120, 0x19124,
1285 		0x19150, 0x19194,
1286 		0x1919c, 0x191b0,
1287 		0x191d0, 0x191e8,
1288 		0x19238, 0x19290,
1289 		0x193f8, 0x19428,
1290 		0x19430, 0x19444,
1291 		0x1944c, 0x1946c,
1292 		0x19474, 0x19474,
1293 		0x19490, 0x194cc,
1294 		0x194f0, 0x194f8,
1295 		0x19c00, 0x19c08,
1296 		0x19c10, 0x19c60,
1297 		0x19c94, 0x19ce4,
1298 		0x19cf0, 0x19d40,
1299 		0x19d50, 0x19d94,
1300 		0x19da0, 0x19de8,
1301 		0x19df0, 0x19e10,
1302 		0x19e50, 0x19e90,
1303 		0x19ea0, 0x19f24,
1304 		0x19f34, 0x19f34,
1305 		0x19f40, 0x19f50,
1306 		0x19f90, 0x19fb4,
1307 		0x19fc4, 0x19fe4,
1308 		0x1a000, 0x1a004,
1309 		0x1a010, 0x1a06c,
1310 		0x1a0b0, 0x1a0e4,
1311 		0x1a0ec, 0x1a0f8,
1312 		0x1a100, 0x1a108,
1313 		0x1a114, 0x1a120,
1314 		0x1a128, 0x1a130,
1315 		0x1a138, 0x1a138,
1316 		0x1a190, 0x1a1c4,
1317 		0x1a1fc, 0x1a1fc,
1318 		0x1e008, 0x1e00c,
1319 		0x1e040, 0x1e044,
1320 		0x1e04c, 0x1e04c,
1321 		0x1e284, 0x1e290,
1322 		0x1e2c0, 0x1e2c0,
1323 		0x1e2e0, 0x1e2e0,
1324 		0x1e300, 0x1e384,
1325 		0x1e3c0, 0x1e3c8,
1326 		0x1e408, 0x1e40c,
1327 		0x1e440, 0x1e444,
1328 		0x1e44c, 0x1e44c,
1329 		0x1e684, 0x1e690,
1330 		0x1e6c0, 0x1e6c0,
1331 		0x1e6e0, 0x1e6e0,
1332 		0x1e700, 0x1e784,
1333 		0x1e7c0, 0x1e7c8,
1334 		0x1e808, 0x1e80c,
1335 		0x1e840, 0x1e844,
1336 		0x1e84c, 0x1e84c,
1337 		0x1ea84, 0x1ea90,
1338 		0x1eac0, 0x1eac0,
1339 		0x1eae0, 0x1eae0,
1340 		0x1eb00, 0x1eb84,
1341 		0x1ebc0, 0x1ebc8,
1342 		0x1ec08, 0x1ec0c,
1343 		0x1ec40, 0x1ec44,
1344 		0x1ec4c, 0x1ec4c,
1345 		0x1ee84, 0x1ee90,
1346 		0x1eec0, 0x1eec0,
1347 		0x1eee0, 0x1eee0,
1348 		0x1ef00, 0x1ef84,
1349 		0x1efc0, 0x1efc8,
1350 		0x1f008, 0x1f00c,
1351 		0x1f040, 0x1f044,
1352 		0x1f04c, 0x1f04c,
1353 		0x1f284, 0x1f290,
1354 		0x1f2c0, 0x1f2c0,
1355 		0x1f2e0, 0x1f2e0,
1356 		0x1f300, 0x1f384,
1357 		0x1f3c0, 0x1f3c8,
1358 		0x1f408, 0x1f40c,
1359 		0x1f440, 0x1f444,
1360 		0x1f44c, 0x1f44c,
1361 		0x1f684, 0x1f690,
1362 		0x1f6c0, 0x1f6c0,
1363 		0x1f6e0, 0x1f6e0,
1364 		0x1f700, 0x1f784,
1365 		0x1f7c0, 0x1f7c8,
1366 		0x1f808, 0x1f80c,
1367 		0x1f840, 0x1f844,
1368 		0x1f84c, 0x1f84c,
1369 		0x1fa84, 0x1fa90,
1370 		0x1fac0, 0x1fac0,
1371 		0x1fae0, 0x1fae0,
1372 		0x1fb00, 0x1fb84,
1373 		0x1fbc0, 0x1fbc8,
1374 		0x1fc08, 0x1fc0c,
1375 		0x1fc40, 0x1fc44,
1376 		0x1fc4c, 0x1fc4c,
1377 		0x1fe84, 0x1fe90,
1378 		0x1fec0, 0x1fec0,
1379 		0x1fee0, 0x1fee0,
1380 		0x1ff00, 0x1ff84,
1381 		0x1ffc0, 0x1ffc8,
1382 		0x30000, 0x30030,
1383 		0x30038, 0x30038,
1384 		0x30040, 0x30040,
1385 		0x30100, 0x30144,
1386 		0x30190, 0x301a0,
1387 		0x301a8, 0x301b8,
1388 		0x301c4, 0x301c8,
1389 		0x301d0, 0x301d0,
1390 		0x30200, 0x30318,
1391 		0x30400, 0x304b4,
1392 		0x304c0, 0x3052c,
1393 		0x30540, 0x3061c,
1394 		0x30800, 0x30828,
1395 		0x30834, 0x30834,
1396 		0x308c0, 0x30908,
1397 		0x30910, 0x309ac,
1398 		0x30a00, 0x30a14,
1399 		0x30a1c, 0x30a2c,
1400 		0x30a44, 0x30a50,
1401 		0x30a74, 0x30a74,
1402 		0x30a7c, 0x30afc,
1403 		0x30b08, 0x30c24,
1404 		0x30d00, 0x30d00,
1405 		0x30d08, 0x30d14,
1406 		0x30d1c, 0x30d20,
1407 		0x30d3c, 0x30d3c,
1408 		0x30d48, 0x30d50,
1409 		0x31200, 0x3120c,
1410 		0x31220, 0x31220,
1411 		0x31240, 0x31240,
1412 		0x31600, 0x3160c,
1413 		0x31a00, 0x31a1c,
1414 		0x31e00, 0x31e20,
1415 		0x31e38, 0x31e3c,
1416 		0x31e80, 0x31e80,
1417 		0x31e88, 0x31ea8,
1418 		0x31eb0, 0x31eb4,
1419 		0x31ec8, 0x31ed4,
1420 		0x31fb8, 0x32004,
1421 		0x32200, 0x32200,
1422 		0x32208, 0x32240,
1423 		0x32248, 0x32280,
1424 		0x32288, 0x322c0,
1425 		0x322c8, 0x322fc,
1426 		0x32600, 0x32630,
1427 		0x32a00, 0x32abc,
1428 		0x32b00, 0x32b10,
1429 		0x32b20, 0x32b30,
1430 		0x32b40, 0x32b50,
1431 		0x32b60, 0x32b70,
1432 		0x33000, 0x33028,
1433 		0x33030, 0x33048,
1434 		0x33060, 0x33068,
1435 		0x33070, 0x3309c,
1436 		0x330f0, 0x33128,
1437 		0x33130, 0x33148,
1438 		0x33160, 0x33168,
1439 		0x33170, 0x3319c,
1440 		0x331f0, 0x33238,
1441 		0x33240, 0x33240,
1442 		0x33248, 0x33250,
1443 		0x3325c, 0x33264,
1444 		0x33270, 0x332b8,
1445 		0x332c0, 0x332e4,
1446 		0x332f8, 0x33338,
1447 		0x33340, 0x33340,
1448 		0x33348, 0x33350,
1449 		0x3335c, 0x33364,
1450 		0x33370, 0x333b8,
1451 		0x333c0, 0x333e4,
1452 		0x333f8, 0x33428,
1453 		0x33430, 0x33448,
1454 		0x33460, 0x33468,
1455 		0x33470, 0x3349c,
1456 		0x334f0, 0x33528,
1457 		0x33530, 0x33548,
1458 		0x33560, 0x33568,
1459 		0x33570, 0x3359c,
1460 		0x335f0, 0x33638,
1461 		0x33640, 0x33640,
1462 		0x33648, 0x33650,
1463 		0x3365c, 0x33664,
1464 		0x33670, 0x336b8,
1465 		0x336c0, 0x336e4,
1466 		0x336f8, 0x33738,
1467 		0x33740, 0x33740,
1468 		0x33748, 0x33750,
1469 		0x3375c, 0x33764,
1470 		0x33770, 0x337b8,
1471 		0x337c0, 0x337e4,
1472 		0x337f8, 0x337fc,
1473 		0x33814, 0x33814,
1474 		0x3382c, 0x3382c,
1475 		0x33880, 0x3388c,
1476 		0x338e8, 0x338ec,
1477 		0x33900, 0x33928,
1478 		0x33930, 0x33948,
1479 		0x33960, 0x33968,
1480 		0x33970, 0x3399c,
1481 		0x339f0, 0x33a38,
1482 		0x33a40, 0x33a40,
1483 		0x33a48, 0x33a50,
1484 		0x33a5c, 0x33a64,
1485 		0x33a70, 0x33ab8,
1486 		0x33ac0, 0x33ae4,
1487 		0x33af8, 0x33b10,
1488 		0x33b28, 0x33b28,
1489 		0x33b3c, 0x33b50,
1490 		0x33bf0, 0x33c10,
1491 		0x33c28, 0x33c28,
1492 		0x33c3c, 0x33c50,
1493 		0x33cf0, 0x33cfc,
1494 		0x34000, 0x34030,
1495 		0x34038, 0x34038,
1496 		0x34040, 0x34040,
1497 		0x34100, 0x34144,
1498 		0x34190, 0x341a0,
1499 		0x341a8, 0x341b8,
1500 		0x341c4, 0x341c8,
1501 		0x341d0, 0x341d0,
1502 		0x34200, 0x34318,
1503 		0x34400, 0x344b4,
1504 		0x344c0, 0x3452c,
1505 		0x34540, 0x3461c,
1506 		0x34800, 0x34828,
1507 		0x34834, 0x34834,
1508 		0x348c0, 0x34908,
1509 		0x34910, 0x349ac,
1510 		0x34a00, 0x34a14,
1511 		0x34a1c, 0x34a2c,
1512 		0x34a44, 0x34a50,
1513 		0x34a74, 0x34a74,
1514 		0x34a7c, 0x34afc,
1515 		0x34b08, 0x34c24,
1516 		0x34d00, 0x34d00,
1517 		0x34d08, 0x34d14,
1518 		0x34d1c, 0x34d20,
1519 		0x34d3c, 0x34d3c,
1520 		0x34d48, 0x34d50,
1521 		0x35200, 0x3520c,
1522 		0x35220, 0x35220,
1523 		0x35240, 0x35240,
1524 		0x35600, 0x3560c,
1525 		0x35a00, 0x35a1c,
1526 		0x35e00, 0x35e20,
1527 		0x35e38, 0x35e3c,
1528 		0x35e80, 0x35e80,
1529 		0x35e88, 0x35ea8,
1530 		0x35eb0, 0x35eb4,
1531 		0x35ec8, 0x35ed4,
1532 		0x35fb8, 0x36004,
1533 		0x36200, 0x36200,
1534 		0x36208, 0x36240,
1535 		0x36248, 0x36280,
1536 		0x36288, 0x362c0,
1537 		0x362c8, 0x362fc,
1538 		0x36600, 0x36630,
1539 		0x36a00, 0x36abc,
1540 		0x36b00, 0x36b10,
1541 		0x36b20, 0x36b30,
1542 		0x36b40, 0x36b50,
1543 		0x36b60, 0x36b70,
1544 		0x37000, 0x37028,
1545 		0x37030, 0x37048,
1546 		0x37060, 0x37068,
1547 		0x37070, 0x3709c,
1548 		0x370f0, 0x37128,
1549 		0x37130, 0x37148,
1550 		0x37160, 0x37168,
1551 		0x37170, 0x3719c,
1552 		0x371f0, 0x37238,
1553 		0x37240, 0x37240,
1554 		0x37248, 0x37250,
1555 		0x3725c, 0x37264,
1556 		0x37270, 0x372b8,
1557 		0x372c0, 0x372e4,
1558 		0x372f8, 0x37338,
1559 		0x37340, 0x37340,
1560 		0x37348, 0x37350,
1561 		0x3735c, 0x37364,
1562 		0x37370, 0x373b8,
1563 		0x373c0, 0x373e4,
1564 		0x373f8, 0x37428,
1565 		0x37430, 0x37448,
1566 		0x37460, 0x37468,
1567 		0x37470, 0x3749c,
1568 		0x374f0, 0x37528,
1569 		0x37530, 0x37548,
1570 		0x37560, 0x37568,
1571 		0x37570, 0x3759c,
1572 		0x375f0, 0x37638,
1573 		0x37640, 0x37640,
1574 		0x37648, 0x37650,
1575 		0x3765c, 0x37664,
1576 		0x37670, 0x376b8,
1577 		0x376c0, 0x376e4,
1578 		0x376f8, 0x37738,
1579 		0x37740, 0x37740,
1580 		0x37748, 0x37750,
1581 		0x3775c, 0x37764,
1582 		0x37770, 0x377b8,
1583 		0x377c0, 0x377e4,
1584 		0x377f8, 0x377fc,
1585 		0x37814, 0x37814,
1586 		0x3782c, 0x3782c,
1587 		0x37880, 0x3788c,
1588 		0x378e8, 0x378ec,
1589 		0x37900, 0x37928,
1590 		0x37930, 0x37948,
1591 		0x37960, 0x37968,
1592 		0x37970, 0x3799c,
1593 		0x379f0, 0x37a38,
1594 		0x37a40, 0x37a40,
1595 		0x37a48, 0x37a50,
1596 		0x37a5c, 0x37a64,
1597 		0x37a70, 0x37ab8,
1598 		0x37ac0, 0x37ae4,
1599 		0x37af8, 0x37b10,
1600 		0x37b28, 0x37b28,
1601 		0x37b3c, 0x37b50,
1602 		0x37bf0, 0x37c10,
1603 		0x37c28, 0x37c28,
1604 		0x37c3c, 0x37c50,
1605 		0x37cf0, 0x37cfc,
1606 		0x38000, 0x38030,
1607 		0x38038, 0x38038,
1608 		0x38040, 0x38040,
1609 		0x38100, 0x38144,
1610 		0x38190, 0x381a0,
1611 		0x381a8, 0x381b8,
1612 		0x381c4, 0x381c8,
1613 		0x381d0, 0x381d0,
1614 		0x38200, 0x38318,
1615 		0x38400, 0x384b4,
1616 		0x384c0, 0x3852c,
1617 		0x38540, 0x3861c,
1618 		0x38800, 0x38828,
1619 		0x38834, 0x38834,
1620 		0x388c0, 0x38908,
1621 		0x38910, 0x389ac,
1622 		0x38a00, 0x38a14,
1623 		0x38a1c, 0x38a2c,
1624 		0x38a44, 0x38a50,
1625 		0x38a74, 0x38a74,
1626 		0x38a7c, 0x38afc,
1627 		0x38b08, 0x38c24,
1628 		0x38d00, 0x38d00,
1629 		0x38d08, 0x38d14,
1630 		0x38d1c, 0x38d20,
1631 		0x38d3c, 0x38d3c,
1632 		0x38d48, 0x38d50,
1633 		0x39200, 0x3920c,
1634 		0x39220, 0x39220,
1635 		0x39240, 0x39240,
1636 		0x39600, 0x3960c,
1637 		0x39a00, 0x39a1c,
1638 		0x39e00, 0x39e20,
1639 		0x39e38, 0x39e3c,
1640 		0x39e80, 0x39e80,
1641 		0x39e88, 0x39ea8,
1642 		0x39eb0, 0x39eb4,
1643 		0x39ec8, 0x39ed4,
1644 		0x39fb8, 0x3a004,
1645 		0x3a200, 0x3a200,
1646 		0x3a208, 0x3a240,
1647 		0x3a248, 0x3a280,
1648 		0x3a288, 0x3a2c0,
1649 		0x3a2c8, 0x3a2fc,
1650 		0x3a600, 0x3a630,
1651 		0x3aa00, 0x3aabc,
1652 		0x3ab00, 0x3ab10,
1653 		0x3ab20, 0x3ab30,
1654 		0x3ab40, 0x3ab50,
1655 		0x3ab60, 0x3ab70,
1656 		0x3b000, 0x3b028,
1657 		0x3b030, 0x3b048,
1658 		0x3b060, 0x3b068,
1659 		0x3b070, 0x3b09c,
1660 		0x3b0f0, 0x3b128,
1661 		0x3b130, 0x3b148,
1662 		0x3b160, 0x3b168,
1663 		0x3b170, 0x3b19c,
1664 		0x3b1f0, 0x3b238,
1665 		0x3b240, 0x3b240,
1666 		0x3b248, 0x3b250,
1667 		0x3b25c, 0x3b264,
1668 		0x3b270, 0x3b2b8,
1669 		0x3b2c0, 0x3b2e4,
1670 		0x3b2f8, 0x3b338,
1671 		0x3b340, 0x3b340,
1672 		0x3b348, 0x3b350,
1673 		0x3b35c, 0x3b364,
1674 		0x3b370, 0x3b3b8,
1675 		0x3b3c0, 0x3b3e4,
1676 		0x3b3f8, 0x3b428,
1677 		0x3b430, 0x3b448,
1678 		0x3b460, 0x3b468,
1679 		0x3b470, 0x3b49c,
1680 		0x3b4f0, 0x3b528,
1681 		0x3b530, 0x3b548,
1682 		0x3b560, 0x3b568,
1683 		0x3b570, 0x3b59c,
1684 		0x3b5f0, 0x3b638,
1685 		0x3b640, 0x3b640,
1686 		0x3b648, 0x3b650,
1687 		0x3b65c, 0x3b664,
1688 		0x3b670, 0x3b6b8,
1689 		0x3b6c0, 0x3b6e4,
1690 		0x3b6f8, 0x3b738,
1691 		0x3b740, 0x3b740,
1692 		0x3b748, 0x3b750,
1693 		0x3b75c, 0x3b764,
1694 		0x3b770, 0x3b7b8,
1695 		0x3b7c0, 0x3b7e4,
1696 		0x3b7f8, 0x3b7fc,
1697 		0x3b814, 0x3b814,
1698 		0x3b82c, 0x3b82c,
1699 		0x3b880, 0x3b88c,
1700 		0x3b8e8, 0x3b8ec,
1701 		0x3b900, 0x3b928,
1702 		0x3b930, 0x3b948,
1703 		0x3b960, 0x3b968,
1704 		0x3b970, 0x3b99c,
1705 		0x3b9f0, 0x3ba38,
1706 		0x3ba40, 0x3ba40,
1707 		0x3ba48, 0x3ba50,
1708 		0x3ba5c, 0x3ba64,
1709 		0x3ba70, 0x3bab8,
1710 		0x3bac0, 0x3bae4,
1711 		0x3baf8, 0x3bb10,
1712 		0x3bb28, 0x3bb28,
1713 		0x3bb3c, 0x3bb50,
1714 		0x3bbf0, 0x3bc10,
1715 		0x3bc28, 0x3bc28,
1716 		0x3bc3c, 0x3bc50,
1717 		0x3bcf0, 0x3bcfc,
1718 		0x3c000, 0x3c030,
1719 		0x3c038, 0x3c038,
1720 		0x3c040, 0x3c040,
1721 		0x3c100, 0x3c144,
1722 		0x3c190, 0x3c1a0,
1723 		0x3c1a8, 0x3c1b8,
1724 		0x3c1c4, 0x3c1c8,
1725 		0x3c1d0, 0x3c1d0,
1726 		0x3c200, 0x3c318,
1727 		0x3c400, 0x3c4b4,
1728 		0x3c4c0, 0x3c52c,
1729 		0x3c540, 0x3c61c,
1730 		0x3c800, 0x3c828,
1731 		0x3c834, 0x3c834,
1732 		0x3c8c0, 0x3c908,
1733 		0x3c910, 0x3c9ac,
1734 		0x3ca00, 0x3ca14,
1735 		0x3ca1c, 0x3ca2c,
1736 		0x3ca44, 0x3ca50,
1737 		0x3ca74, 0x3ca74,
1738 		0x3ca7c, 0x3cafc,
1739 		0x3cb08, 0x3cc24,
1740 		0x3cd00, 0x3cd00,
1741 		0x3cd08, 0x3cd14,
1742 		0x3cd1c, 0x3cd20,
1743 		0x3cd3c, 0x3cd3c,
1744 		0x3cd48, 0x3cd50,
1745 		0x3d200, 0x3d20c,
1746 		0x3d220, 0x3d220,
1747 		0x3d240, 0x3d240,
1748 		0x3d600, 0x3d60c,
1749 		0x3da00, 0x3da1c,
1750 		0x3de00, 0x3de20,
1751 		0x3de38, 0x3de3c,
1752 		0x3de80, 0x3de80,
1753 		0x3de88, 0x3dea8,
1754 		0x3deb0, 0x3deb4,
1755 		0x3dec8, 0x3ded4,
1756 		0x3dfb8, 0x3e004,
1757 		0x3e200, 0x3e200,
1758 		0x3e208, 0x3e240,
1759 		0x3e248, 0x3e280,
1760 		0x3e288, 0x3e2c0,
1761 		0x3e2c8, 0x3e2fc,
1762 		0x3e600, 0x3e630,
1763 		0x3ea00, 0x3eabc,
1764 		0x3eb00, 0x3eb10,
1765 		0x3eb20, 0x3eb30,
1766 		0x3eb40, 0x3eb50,
1767 		0x3eb60, 0x3eb70,
1768 		0x3f000, 0x3f028,
1769 		0x3f030, 0x3f048,
1770 		0x3f060, 0x3f068,
1771 		0x3f070, 0x3f09c,
1772 		0x3f0f0, 0x3f128,
1773 		0x3f130, 0x3f148,
1774 		0x3f160, 0x3f168,
1775 		0x3f170, 0x3f19c,
1776 		0x3f1f0, 0x3f238,
1777 		0x3f240, 0x3f240,
1778 		0x3f248, 0x3f250,
1779 		0x3f25c, 0x3f264,
1780 		0x3f270, 0x3f2b8,
1781 		0x3f2c0, 0x3f2e4,
1782 		0x3f2f8, 0x3f338,
1783 		0x3f340, 0x3f340,
1784 		0x3f348, 0x3f350,
1785 		0x3f35c, 0x3f364,
1786 		0x3f370, 0x3f3b8,
1787 		0x3f3c0, 0x3f3e4,
1788 		0x3f3f8, 0x3f428,
1789 		0x3f430, 0x3f448,
1790 		0x3f460, 0x3f468,
1791 		0x3f470, 0x3f49c,
1792 		0x3f4f0, 0x3f528,
1793 		0x3f530, 0x3f548,
1794 		0x3f560, 0x3f568,
1795 		0x3f570, 0x3f59c,
1796 		0x3f5f0, 0x3f638,
1797 		0x3f640, 0x3f640,
1798 		0x3f648, 0x3f650,
1799 		0x3f65c, 0x3f664,
1800 		0x3f670, 0x3f6b8,
1801 		0x3f6c0, 0x3f6e4,
1802 		0x3f6f8, 0x3f738,
1803 		0x3f740, 0x3f740,
1804 		0x3f748, 0x3f750,
1805 		0x3f75c, 0x3f764,
1806 		0x3f770, 0x3f7b8,
1807 		0x3f7c0, 0x3f7e4,
1808 		0x3f7f8, 0x3f7fc,
1809 		0x3f814, 0x3f814,
1810 		0x3f82c, 0x3f82c,
1811 		0x3f880, 0x3f88c,
1812 		0x3f8e8, 0x3f8ec,
1813 		0x3f900, 0x3f928,
1814 		0x3f930, 0x3f948,
1815 		0x3f960, 0x3f968,
1816 		0x3f970, 0x3f99c,
1817 		0x3f9f0, 0x3fa38,
1818 		0x3fa40, 0x3fa40,
1819 		0x3fa48, 0x3fa50,
1820 		0x3fa5c, 0x3fa64,
1821 		0x3fa70, 0x3fab8,
1822 		0x3fac0, 0x3fae4,
1823 		0x3faf8, 0x3fb10,
1824 		0x3fb28, 0x3fb28,
1825 		0x3fb3c, 0x3fb50,
1826 		0x3fbf0, 0x3fc10,
1827 		0x3fc28, 0x3fc28,
1828 		0x3fc3c, 0x3fc50,
1829 		0x3fcf0, 0x3fcfc,
1830 		0x40000, 0x4000c,
1831 		0x40040, 0x40050,
1832 		0x40060, 0x40068,
1833 		0x4007c, 0x4008c,
1834 		0x40094, 0x400b0,
1835 		0x400c0, 0x40144,
1836 		0x40180, 0x4018c,
1837 		0x40200, 0x40254,
1838 		0x40260, 0x40264,
1839 		0x40270, 0x40288,
1840 		0x40290, 0x40298,
1841 		0x402ac, 0x402c8,
1842 		0x402d0, 0x402e0,
1843 		0x402f0, 0x402f0,
1844 		0x40300, 0x4033c,
1845 		0x403f8, 0x403fc,
1846 		0x41304, 0x413c4,
1847 		0x41400, 0x4140c,
1848 		0x41414, 0x4141c,
1849 		0x41480, 0x414d0,
1850 		0x44000, 0x44054,
1851 		0x4405c, 0x44078,
1852 		0x440c0, 0x44174,
1853 		0x44180, 0x441ac,
1854 		0x441b4, 0x441b8,
1855 		0x441c0, 0x44254,
1856 		0x4425c, 0x44278,
1857 		0x442c0, 0x44374,
1858 		0x44380, 0x443ac,
1859 		0x443b4, 0x443b8,
1860 		0x443c0, 0x44454,
1861 		0x4445c, 0x44478,
1862 		0x444c0, 0x44574,
1863 		0x44580, 0x445ac,
1864 		0x445b4, 0x445b8,
1865 		0x445c0, 0x44654,
1866 		0x4465c, 0x44678,
1867 		0x446c0, 0x44774,
1868 		0x44780, 0x447ac,
1869 		0x447b4, 0x447b8,
1870 		0x447c0, 0x44854,
1871 		0x4485c, 0x44878,
1872 		0x448c0, 0x44974,
1873 		0x44980, 0x449ac,
1874 		0x449b4, 0x449b8,
1875 		0x449c0, 0x449fc,
1876 		0x45000, 0x45004,
1877 		0x45010, 0x45030,
1878 		0x45040, 0x45060,
1879 		0x45068, 0x45068,
1880 		0x45080, 0x45084,
1881 		0x450a0, 0x450b0,
1882 		0x45200, 0x45204,
1883 		0x45210, 0x45230,
1884 		0x45240, 0x45260,
1885 		0x45268, 0x45268,
1886 		0x45280, 0x45284,
1887 		0x452a0, 0x452b0,
1888 		0x460c0, 0x460e4,
1889 		0x47000, 0x4703c,
1890 		0x47044, 0x4708c,
1891 		0x47200, 0x47250,
1892 		0x47400, 0x47408,
1893 		0x47414, 0x47420,
1894 		0x47600, 0x47618,
1895 		0x47800, 0x47814,
1896 		0x48000, 0x4800c,
1897 		0x48040, 0x48050,
1898 		0x48060, 0x48068,
1899 		0x4807c, 0x4808c,
1900 		0x48094, 0x480b0,
1901 		0x480c0, 0x48144,
1902 		0x48180, 0x4818c,
1903 		0x48200, 0x48254,
1904 		0x48260, 0x48264,
1905 		0x48270, 0x48288,
1906 		0x48290, 0x48298,
1907 		0x482ac, 0x482c8,
1908 		0x482d0, 0x482e0,
1909 		0x482f0, 0x482f0,
1910 		0x48300, 0x4833c,
1911 		0x483f8, 0x483fc,
1912 		0x49304, 0x493c4,
1913 		0x49400, 0x4940c,
1914 		0x49414, 0x4941c,
1915 		0x49480, 0x494d0,
1916 		0x4c000, 0x4c054,
1917 		0x4c05c, 0x4c078,
1918 		0x4c0c0, 0x4c174,
1919 		0x4c180, 0x4c1ac,
1920 		0x4c1b4, 0x4c1b8,
1921 		0x4c1c0, 0x4c254,
1922 		0x4c25c, 0x4c278,
1923 		0x4c2c0, 0x4c374,
1924 		0x4c380, 0x4c3ac,
1925 		0x4c3b4, 0x4c3b8,
1926 		0x4c3c0, 0x4c454,
1927 		0x4c45c, 0x4c478,
1928 		0x4c4c0, 0x4c574,
1929 		0x4c580, 0x4c5ac,
1930 		0x4c5b4, 0x4c5b8,
1931 		0x4c5c0, 0x4c654,
1932 		0x4c65c, 0x4c678,
1933 		0x4c6c0, 0x4c774,
1934 		0x4c780, 0x4c7ac,
1935 		0x4c7b4, 0x4c7b8,
1936 		0x4c7c0, 0x4c854,
1937 		0x4c85c, 0x4c878,
1938 		0x4c8c0, 0x4c974,
1939 		0x4c980, 0x4c9ac,
1940 		0x4c9b4, 0x4c9b8,
1941 		0x4c9c0, 0x4c9fc,
1942 		0x4d000, 0x4d004,
1943 		0x4d010, 0x4d030,
1944 		0x4d040, 0x4d060,
1945 		0x4d068, 0x4d068,
1946 		0x4d080, 0x4d084,
1947 		0x4d0a0, 0x4d0b0,
1948 		0x4d200, 0x4d204,
1949 		0x4d210, 0x4d230,
1950 		0x4d240, 0x4d260,
1951 		0x4d268, 0x4d268,
1952 		0x4d280, 0x4d284,
1953 		0x4d2a0, 0x4d2b0,
1954 		0x4e0c0, 0x4e0e4,
1955 		0x4f000, 0x4f03c,
1956 		0x4f044, 0x4f08c,
1957 		0x4f200, 0x4f250,
1958 		0x4f400, 0x4f408,
1959 		0x4f414, 0x4f420,
1960 		0x4f600, 0x4f618,
1961 		0x4f800, 0x4f814,
1962 		0x50000, 0x50084,
1963 		0x50090, 0x500cc,
1964 		0x50400, 0x50400,
1965 		0x50800, 0x50884,
1966 		0x50890, 0x508cc,
1967 		0x50c00, 0x50c00,
1968 		0x51000, 0x5101c,
1969 		0x51300, 0x51308,
1970 	};
1971 
1972 	static const unsigned int t6_reg_ranges[] = {
1973 		0x1008, 0x101c,
1974 		0x1024, 0x10a8,
1975 		0x10b4, 0x10f8,
1976 		0x1100, 0x1114,
1977 		0x111c, 0x112c,
1978 		0x1138, 0x113c,
1979 		0x1144, 0x114c,
1980 		0x1180, 0x1184,
1981 		0x1190, 0x1194,
1982 		0x11a0, 0x11a4,
1983 		0x11b0, 0x11b4,
1984 		0x11fc, 0x1258,
1985 		0x1280, 0x12d4,
1986 		0x12d9, 0x12d9,
1987 		0x12de, 0x12de,
1988 		0x12e3, 0x12e3,
1989 		0x12e8, 0x133c,
1990 		0x1800, 0x18fc,
1991 		0x3000, 0x302c,
1992 		0x3060, 0x30b0,
1993 		0x30b8, 0x30d8,
1994 		0x30e0, 0x30fc,
1995 		0x3140, 0x357c,
1996 		0x35a8, 0x35cc,
1997 		0x35ec, 0x35ec,
1998 		0x3600, 0x5624,
1999 		0x56cc, 0x56ec,
2000 		0x56f4, 0x5720,
2001 		0x5728, 0x575c,
2002 		0x580c, 0x5814,
2003 		0x5890, 0x589c,
2004 		0x58a4, 0x58ac,
2005 		0x58b8, 0x58bc,
2006 		0x5940, 0x595c,
2007 		0x5980, 0x598c,
2008 		0x59b0, 0x59c8,
2009 		0x59d0, 0x59dc,
2010 		0x59fc, 0x5a18,
2011 		0x5a60, 0x5a6c,
2012 		0x5a80, 0x5a8c,
2013 		0x5a94, 0x5a9c,
2014 		0x5b94, 0x5bfc,
2015 		0x5c10, 0x5e48,
2016 		0x5e50, 0x5e94,
2017 		0x5ea0, 0x5eb0,
2018 		0x5ec0, 0x5ec0,
2019 		0x5ec8, 0x5ed0,
2020 		0x6000, 0x6020,
2021 		0x6028, 0x6040,
2022 		0x6058, 0x609c,
2023 		0x60a8, 0x619c,
2024 		0x7700, 0x7798,
2025 		0x77c0, 0x7880,
2026 		0x78cc, 0x78fc,
2027 		0x7b00, 0x7b58,
2028 		0x7b60, 0x7b84,
2029 		0x7b8c, 0x7c54,
2030 		0x7d00, 0x7d38,
2031 		0x7d40, 0x7d84,
2032 		0x7d8c, 0x7ddc,
2033 		0x7de4, 0x7e04,
2034 		0x7e10, 0x7e1c,
2035 		0x7e24, 0x7e38,
2036 		0x7e40, 0x7e44,
2037 		0x7e4c, 0x7e78,
2038 		0x7e80, 0x7edc,
2039 		0x7ee8, 0x7efc,
2040 		0x8dc0, 0x8de4,
2041 		0x8df8, 0x8e04,
2042 		0x8e10, 0x8e84,
2043 		0x8ea0, 0x8f88,
2044 		0x8fb8, 0x9058,
2045 		0x9060, 0x9060,
2046 		0x9068, 0x90f8,
2047 		0x9100, 0x9124,
2048 		0x9400, 0x9470,
2049 		0x9600, 0x9600,
2050 		0x9608, 0x9638,
2051 		0x9640, 0x9704,
2052 		0x9710, 0x971c,
2053 		0x9800, 0x9808,
2054 		0x9820, 0x983c,
2055 		0x9850, 0x9864,
2056 		0x9c00, 0x9c6c,
2057 		0x9c80, 0x9cec,
2058 		0x9d00, 0x9d6c,
2059 		0x9d80, 0x9dec,
2060 		0x9e00, 0x9e6c,
2061 		0x9e80, 0x9eec,
2062 		0x9f00, 0x9f6c,
2063 		0x9f80, 0xa020,
2064 		0xd004, 0xd03c,
2065 		0xd100, 0xd118,
2066 		0xd200, 0xd214,
2067 		0xd220, 0xd234,
2068 		0xd240, 0xd254,
2069 		0xd260, 0xd274,
2070 		0xd280, 0xd294,
2071 		0xd2a0, 0xd2b4,
2072 		0xd2c0, 0xd2d4,
2073 		0xd2e0, 0xd2f4,
2074 		0xd300, 0xd31c,
2075 		0xdfc0, 0xdfe0,
2076 		0xe000, 0xf008,
2077 		0x11000, 0x11014,
2078 		0x11048, 0x1106c,
2079 		0x11074, 0x11088,
2080 		0x11098, 0x11120,
2081 		0x1112c, 0x1117c,
2082 		0x11190, 0x112e0,
2083 		0x11300, 0x1130c,
2084 		0x12000, 0x1206c,
2085 		0x19040, 0x1906c,
2086 		0x19078, 0x19080,
2087 		0x1908c, 0x190e8,
2088 		0x190f0, 0x190f8,
2089 		0x19100, 0x19110,
2090 		0x19120, 0x19124,
2091 		0x19150, 0x19194,
2092 		0x1919c, 0x191b0,
2093 		0x191d0, 0x191e8,
2094 		0x19238, 0x19290,
2095 		0x192a4, 0x192b0,
2096 		0x192bc, 0x192bc,
2097 		0x19348, 0x1934c,
2098 		0x193f8, 0x19418,
2099 		0x19420, 0x19428,
2100 		0x19430, 0x19444,
2101 		0x1944c, 0x1946c,
2102 		0x19474, 0x19474,
2103 		0x19490, 0x194cc,
2104 		0x194f0, 0x194f8,
2105 		0x19c00, 0x19c48,
2106 		0x19c50, 0x19c80,
2107 		0x19c94, 0x19c98,
2108 		0x19ca0, 0x19cbc,
2109 		0x19ce4, 0x19ce4,
2110 		0x19cf0, 0x19cf8,
2111 		0x19d00, 0x19d28,
2112 		0x19d50, 0x19d78,
2113 		0x19d94, 0x19d98,
2114 		0x19da0, 0x19dc8,
2115 		0x19df0, 0x19e10,
2116 		0x19e50, 0x19e6c,
2117 		0x19ea0, 0x19ebc,
2118 		0x19ec4, 0x19ef4,
2119 		0x19f04, 0x19f2c,
2120 		0x19f34, 0x19f34,
2121 		0x19f40, 0x19f50,
2122 		0x19f90, 0x19fac,
2123 		0x19fc4, 0x19fc8,
2124 		0x19fd0, 0x19fe4,
2125 		0x1a000, 0x1a004,
2126 		0x1a010, 0x1a06c,
2127 		0x1a0b0, 0x1a0e4,
2128 		0x1a0ec, 0x1a0f8,
2129 		0x1a100, 0x1a108,
2130 		0x1a114, 0x1a120,
2131 		0x1a128, 0x1a130,
2132 		0x1a138, 0x1a138,
2133 		0x1a190, 0x1a1c4,
2134 		0x1a1fc, 0x1a1fc,
2135 		0x1e008, 0x1e00c,
2136 		0x1e040, 0x1e044,
2137 		0x1e04c, 0x1e04c,
2138 		0x1e284, 0x1e290,
2139 		0x1e2c0, 0x1e2c0,
2140 		0x1e2e0, 0x1e2e0,
2141 		0x1e300, 0x1e384,
2142 		0x1e3c0, 0x1e3c8,
2143 		0x1e408, 0x1e40c,
2144 		0x1e440, 0x1e444,
2145 		0x1e44c, 0x1e44c,
2146 		0x1e684, 0x1e690,
2147 		0x1e6c0, 0x1e6c0,
2148 		0x1e6e0, 0x1e6e0,
2149 		0x1e700, 0x1e784,
2150 		0x1e7c0, 0x1e7c8,
2151 		0x1e808, 0x1e80c,
2152 		0x1e840, 0x1e844,
2153 		0x1e84c, 0x1e84c,
2154 		0x1ea84, 0x1ea90,
2155 		0x1eac0, 0x1eac0,
2156 		0x1eae0, 0x1eae0,
2157 		0x1eb00, 0x1eb84,
2158 		0x1ebc0, 0x1ebc8,
2159 		0x1ec08, 0x1ec0c,
2160 		0x1ec40, 0x1ec44,
2161 		0x1ec4c, 0x1ec4c,
2162 		0x1ee84, 0x1ee90,
2163 		0x1eec0, 0x1eec0,
2164 		0x1eee0, 0x1eee0,
2165 		0x1ef00, 0x1ef84,
2166 		0x1efc0, 0x1efc8,
2167 		0x1f008, 0x1f00c,
2168 		0x1f040, 0x1f044,
2169 		0x1f04c, 0x1f04c,
2170 		0x1f284, 0x1f290,
2171 		0x1f2c0, 0x1f2c0,
2172 		0x1f2e0, 0x1f2e0,
2173 		0x1f300, 0x1f384,
2174 		0x1f3c0, 0x1f3c8,
2175 		0x1f408, 0x1f40c,
2176 		0x1f440, 0x1f444,
2177 		0x1f44c, 0x1f44c,
2178 		0x1f684, 0x1f690,
2179 		0x1f6c0, 0x1f6c0,
2180 		0x1f6e0, 0x1f6e0,
2181 		0x1f700, 0x1f784,
2182 		0x1f7c0, 0x1f7c8,
2183 		0x1f808, 0x1f80c,
2184 		0x1f840, 0x1f844,
2185 		0x1f84c, 0x1f84c,
2186 		0x1fa84, 0x1fa90,
2187 		0x1fac0, 0x1fac0,
2188 		0x1fae0, 0x1fae0,
2189 		0x1fb00, 0x1fb84,
2190 		0x1fbc0, 0x1fbc8,
2191 		0x1fc08, 0x1fc0c,
2192 		0x1fc40, 0x1fc44,
2193 		0x1fc4c, 0x1fc4c,
2194 		0x1fe84, 0x1fe90,
2195 		0x1fec0, 0x1fec0,
2196 		0x1fee0, 0x1fee0,
2197 		0x1ff00, 0x1ff84,
2198 		0x1ffc0, 0x1ffc8,
2199 		0x30000, 0x30030,
2200 		0x30038, 0x30038,
2201 		0x30040, 0x30040,
2202 		0x30048, 0x30048,
2203 		0x30050, 0x30050,
2204 		0x3005c, 0x30060,
2205 		0x30068, 0x30068,
2206 		0x30070, 0x30070,
2207 		0x30100, 0x30168,
2208 		0x30190, 0x301a0,
2209 		0x301a8, 0x301b8,
2210 		0x301c4, 0x301c8,
2211 		0x301d0, 0x301d0,
2212 		0x30200, 0x30320,
2213 		0x30400, 0x304b4,
2214 		0x304c0, 0x3052c,
2215 		0x30540, 0x3061c,
2216 		0x30800, 0x308a0,
2217 		0x308c0, 0x30908,
2218 		0x30910, 0x309b8,
2219 		0x30a00, 0x30a04,
2220 		0x30a0c, 0x30a14,
2221 		0x30a1c, 0x30a2c,
2222 		0x30a44, 0x30a50,
2223 		0x30a74, 0x30a74,
2224 		0x30a7c, 0x30afc,
2225 		0x30b08, 0x30c24,
2226 		0x30d00, 0x30d14,
2227 		0x30d1c, 0x30d3c,
2228 		0x30d44, 0x30d4c,
2229 		0x30d54, 0x30d74,
2230 		0x30d7c, 0x30d7c,
2231 		0x30de0, 0x30de0,
2232 		0x30e00, 0x30ed4,
2233 		0x30f00, 0x30fa4,
2234 		0x30fc0, 0x30fc4,
2235 		0x31000, 0x31004,
2236 		0x31080, 0x310fc,
2237 		0x31208, 0x31220,
2238 		0x3123c, 0x31254,
2239 		0x31300, 0x31300,
2240 		0x31308, 0x3131c,
2241 		0x31338, 0x3133c,
2242 		0x31380, 0x31380,
2243 		0x31388, 0x313a8,
2244 		0x313b4, 0x313b4,
2245 		0x31400, 0x31420,
2246 		0x31438, 0x3143c,
2247 		0x31480, 0x31480,
2248 		0x314a8, 0x314a8,
2249 		0x314b0, 0x314b4,
2250 		0x314c8, 0x314d4,
2251 		0x31a40, 0x31a4c,
2252 		0x31af0, 0x31b20,
2253 		0x31b38, 0x31b3c,
2254 		0x31b80, 0x31b80,
2255 		0x31ba8, 0x31ba8,
2256 		0x31bb0, 0x31bb4,
2257 		0x31bc8, 0x31bd4,
2258 		0x32140, 0x3218c,
2259 		0x321f0, 0x321f4,
2260 		0x32200, 0x32200,
2261 		0x32218, 0x32218,
2262 		0x32400, 0x32400,
2263 		0x32408, 0x3241c,
2264 		0x32618, 0x32620,
2265 		0x32664, 0x32664,
2266 		0x326a8, 0x326a8,
2267 		0x326ec, 0x326ec,
2268 		0x32a00, 0x32abc,
2269 		0x32b00, 0x32b38,
2270 		0x32b40, 0x32b58,
2271 		0x32b60, 0x32b78,
2272 		0x32c00, 0x32c00,
2273 		0x32c08, 0x32c3c,
2274 		0x32e00, 0x32e2c,
2275 		0x32f00, 0x32f2c,
2276 		0x33000, 0x3302c,
2277 		0x33034, 0x33050,
2278 		0x33058, 0x33058,
2279 		0x33060, 0x3308c,
2280 		0x3309c, 0x330ac,
2281 		0x330c0, 0x330c0,
2282 		0x330c8, 0x330d0,
2283 		0x330d8, 0x330e0,
2284 		0x330ec, 0x3312c,
2285 		0x33134, 0x33150,
2286 		0x33158, 0x33158,
2287 		0x33160, 0x3318c,
2288 		0x3319c, 0x331ac,
2289 		0x331c0, 0x331c0,
2290 		0x331c8, 0x331d0,
2291 		0x331d8, 0x331e0,
2292 		0x331ec, 0x33290,
2293 		0x33298, 0x332c4,
2294 		0x332e4, 0x33390,
2295 		0x33398, 0x333c4,
2296 		0x333e4, 0x3342c,
2297 		0x33434, 0x33450,
2298 		0x33458, 0x33458,
2299 		0x33460, 0x3348c,
2300 		0x3349c, 0x334ac,
2301 		0x334c0, 0x334c0,
2302 		0x334c8, 0x334d0,
2303 		0x334d8, 0x334e0,
2304 		0x334ec, 0x3352c,
2305 		0x33534, 0x33550,
2306 		0x33558, 0x33558,
2307 		0x33560, 0x3358c,
2308 		0x3359c, 0x335ac,
2309 		0x335c0, 0x335c0,
2310 		0x335c8, 0x335d0,
2311 		0x335d8, 0x335e0,
2312 		0x335ec, 0x33690,
2313 		0x33698, 0x336c4,
2314 		0x336e4, 0x33790,
2315 		0x33798, 0x337c4,
2316 		0x337e4, 0x337fc,
2317 		0x33814, 0x33814,
2318 		0x33854, 0x33868,
2319 		0x33880, 0x3388c,
2320 		0x338c0, 0x338d0,
2321 		0x338e8, 0x338ec,
2322 		0x33900, 0x3392c,
2323 		0x33934, 0x33950,
2324 		0x33958, 0x33958,
2325 		0x33960, 0x3398c,
2326 		0x3399c, 0x339ac,
2327 		0x339c0, 0x339c0,
2328 		0x339c8, 0x339d0,
2329 		0x339d8, 0x339e0,
2330 		0x339ec, 0x33a90,
2331 		0x33a98, 0x33ac4,
2332 		0x33ae4, 0x33b10,
2333 		0x33b24, 0x33b28,
2334 		0x33b38, 0x33b50,
2335 		0x33bf0, 0x33c10,
2336 		0x33c24, 0x33c28,
2337 		0x33c38, 0x33c50,
2338 		0x33cf0, 0x33cfc,
2339 		0x34000, 0x34030,
2340 		0x34038, 0x34038,
2341 		0x34040, 0x34040,
2342 		0x34048, 0x34048,
2343 		0x34050, 0x34050,
2344 		0x3405c, 0x34060,
2345 		0x34068, 0x34068,
2346 		0x34070, 0x34070,
2347 		0x34100, 0x34168,
2348 		0x34190, 0x341a0,
2349 		0x341a8, 0x341b8,
2350 		0x341c4, 0x341c8,
2351 		0x341d0, 0x341d0,
2352 		0x34200, 0x34320,
2353 		0x34400, 0x344b4,
2354 		0x344c0, 0x3452c,
2355 		0x34540, 0x3461c,
2356 		0x34800, 0x348a0,
2357 		0x348c0, 0x34908,
2358 		0x34910, 0x349b8,
2359 		0x34a00, 0x34a04,
2360 		0x34a0c, 0x34a14,
2361 		0x34a1c, 0x34a2c,
2362 		0x34a44, 0x34a50,
2363 		0x34a74, 0x34a74,
2364 		0x34a7c, 0x34afc,
2365 		0x34b08, 0x34c24,
2366 		0x34d00, 0x34d14,
2367 		0x34d1c, 0x34d3c,
2368 		0x34d44, 0x34d4c,
2369 		0x34d54, 0x34d74,
2370 		0x34d7c, 0x34d7c,
2371 		0x34de0, 0x34de0,
2372 		0x34e00, 0x34ed4,
2373 		0x34f00, 0x34fa4,
2374 		0x34fc0, 0x34fc4,
2375 		0x35000, 0x35004,
2376 		0x35080, 0x350fc,
2377 		0x35208, 0x35220,
2378 		0x3523c, 0x35254,
2379 		0x35300, 0x35300,
2380 		0x35308, 0x3531c,
2381 		0x35338, 0x3533c,
2382 		0x35380, 0x35380,
2383 		0x35388, 0x353a8,
2384 		0x353b4, 0x353b4,
2385 		0x35400, 0x35420,
2386 		0x35438, 0x3543c,
2387 		0x35480, 0x35480,
2388 		0x354a8, 0x354a8,
2389 		0x354b0, 0x354b4,
2390 		0x354c8, 0x354d4,
2391 		0x35a40, 0x35a4c,
2392 		0x35af0, 0x35b20,
2393 		0x35b38, 0x35b3c,
2394 		0x35b80, 0x35b80,
2395 		0x35ba8, 0x35ba8,
2396 		0x35bb0, 0x35bb4,
2397 		0x35bc8, 0x35bd4,
2398 		0x36140, 0x3618c,
2399 		0x361f0, 0x361f4,
2400 		0x36200, 0x36200,
2401 		0x36218, 0x36218,
2402 		0x36400, 0x36400,
2403 		0x36408, 0x3641c,
2404 		0x36618, 0x36620,
2405 		0x36664, 0x36664,
2406 		0x366a8, 0x366a8,
2407 		0x366ec, 0x366ec,
2408 		0x36a00, 0x36abc,
2409 		0x36b00, 0x36b38,
2410 		0x36b40, 0x36b58,
2411 		0x36b60, 0x36b78,
2412 		0x36c00, 0x36c00,
2413 		0x36c08, 0x36c3c,
2414 		0x36e00, 0x36e2c,
2415 		0x36f00, 0x36f2c,
2416 		0x37000, 0x3702c,
2417 		0x37034, 0x37050,
2418 		0x37058, 0x37058,
2419 		0x37060, 0x3708c,
2420 		0x3709c, 0x370ac,
2421 		0x370c0, 0x370c0,
2422 		0x370c8, 0x370d0,
2423 		0x370d8, 0x370e0,
2424 		0x370ec, 0x3712c,
2425 		0x37134, 0x37150,
2426 		0x37158, 0x37158,
2427 		0x37160, 0x3718c,
2428 		0x3719c, 0x371ac,
2429 		0x371c0, 0x371c0,
2430 		0x371c8, 0x371d0,
2431 		0x371d8, 0x371e0,
2432 		0x371ec, 0x37290,
2433 		0x37298, 0x372c4,
2434 		0x372e4, 0x37390,
2435 		0x37398, 0x373c4,
2436 		0x373e4, 0x3742c,
2437 		0x37434, 0x37450,
2438 		0x37458, 0x37458,
2439 		0x37460, 0x3748c,
2440 		0x3749c, 0x374ac,
2441 		0x374c0, 0x374c0,
2442 		0x374c8, 0x374d0,
2443 		0x374d8, 0x374e0,
2444 		0x374ec, 0x3752c,
2445 		0x37534, 0x37550,
2446 		0x37558, 0x37558,
2447 		0x37560, 0x3758c,
2448 		0x3759c, 0x375ac,
2449 		0x375c0, 0x375c0,
2450 		0x375c8, 0x375d0,
2451 		0x375d8, 0x375e0,
2452 		0x375ec, 0x37690,
2453 		0x37698, 0x376c4,
2454 		0x376e4, 0x37790,
2455 		0x37798, 0x377c4,
2456 		0x377e4, 0x377fc,
2457 		0x37814, 0x37814,
2458 		0x37854, 0x37868,
2459 		0x37880, 0x3788c,
2460 		0x378c0, 0x378d0,
2461 		0x378e8, 0x378ec,
2462 		0x37900, 0x3792c,
2463 		0x37934, 0x37950,
2464 		0x37958, 0x37958,
2465 		0x37960, 0x3798c,
2466 		0x3799c, 0x379ac,
2467 		0x379c0, 0x379c0,
2468 		0x379c8, 0x379d0,
2469 		0x379d8, 0x379e0,
2470 		0x379ec, 0x37a90,
2471 		0x37a98, 0x37ac4,
2472 		0x37ae4, 0x37b10,
2473 		0x37b24, 0x37b28,
2474 		0x37b38, 0x37b50,
2475 		0x37bf0, 0x37c10,
2476 		0x37c24, 0x37c28,
2477 		0x37c38, 0x37c50,
2478 		0x37cf0, 0x37cfc,
2479 		0x40040, 0x40040,
2480 		0x40080, 0x40084,
2481 		0x40100, 0x40100,
2482 		0x40140, 0x401bc,
2483 		0x40200, 0x40214,
2484 		0x40228, 0x40228,
2485 		0x40240, 0x40258,
2486 		0x40280, 0x40280,
2487 		0x40304, 0x40304,
2488 		0x40330, 0x4033c,
2489 		0x41304, 0x413b8,
2490 		0x413c0, 0x413c8,
2491 		0x413d0, 0x413dc,
2492 		0x413f0, 0x413f0,
2493 		0x41400, 0x4140c,
2494 		0x41414, 0x4141c,
2495 		0x41480, 0x414d0,
2496 		0x44000, 0x4407c,
2497 		0x440c0, 0x441ac,
2498 		0x441b4, 0x4427c,
2499 		0x442c0, 0x443ac,
2500 		0x443b4, 0x4447c,
2501 		0x444c0, 0x445ac,
2502 		0x445b4, 0x4467c,
2503 		0x446c0, 0x447ac,
2504 		0x447b4, 0x4487c,
2505 		0x448c0, 0x449ac,
2506 		0x449b4, 0x44a7c,
2507 		0x44ac0, 0x44bac,
2508 		0x44bb4, 0x44c7c,
2509 		0x44cc0, 0x44dac,
2510 		0x44db4, 0x44e7c,
2511 		0x44ec0, 0x44fac,
2512 		0x44fb4, 0x4507c,
2513 		0x450c0, 0x451ac,
2514 		0x451b4, 0x451fc,
2515 		0x45800, 0x45804,
2516 		0x45810, 0x45830,
2517 		0x45840, 0x45860,
2518 		0x45868, 0x45868,
2519 		0x45880, 0x45884,
2520 		0x458a0, 0x458b0,
2521 		0x45a00, 0x45a04,
2522 		0x45a10, 0x45a30,
2523 		0x45a40, 0x45a60,
2524 		0x45a68, 0x45a68,
2525 		0x45a80, 0x45a84,
2526 		0x45aa0, 0x45ab0,
2527 		0x460c0, 0x460e4,
2528 		0x47000, 0x4703c,
2529 		0x47044, 0x4708c,
2530 		0x47200, 0x47250,
2531 		0x47400, 0x47408,
2532 		0x47414, 0x47420,
2533 		0x47600, 0x47618,
2534 		0x47800, 0x47814,
2535 		0x47820, 0x4782c,
2536 		0x50000, 0x50084,
2537 		0x50090, 0x500cc,
2538 		0x50300, 0x50384,
2539 		0x50400, 0x50400,
2540 		0x50800, 0x50884,
2541 		0x50890, 0x508cc,
2542 		0x50b00, 0x50b84,
2543 		0x50c00, 0x50c00,
2544 		0x51000, 0x51020,
2545 		0x51028, 0x510b0,
2546 		0x51300, 0x51324,
2547 	};
2548 
2549 	u32 *buf_end = (u32 *)((char *)buf + buf_size);
2550 	const unsigned int *reg_ranges;
2551 	int reg_ranges_size, range;
2552 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2553 
2554 	/* Select the right set of register ranges to dump depending on the
2555 	 * adapter chip type.
2556 	 */
2557 	switch (chip_version) {
2558 	case CHELSIO_T4:
2559 		reg_ranges = t4_reg_ranges;
2560 		reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2561 		break;
2562 
2563 	case CHELSIO_T5:
2564 		reg_ranges = t5_reg_ranges;
2565 		reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2566 		break;
2567 
2568 	case CHELSIO_T6:
2569 		reg_ranges = t6_reg_ranges;
2570 		reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2571 		break;
2572 
2573 	default:
2574 		dev_err(adap->pdev_dev,
2575 			"Unsupported chip version %d\n", chip_version);
2576 		return;
2577 	}
2578 
2579 	/* Clear the register buffer and insert the appropriate register
2580 	 * values selected by the above register ranges.
2581 	 */
2582 	memset(buf, 0, buf_size);
2583 	for (range = 0; range < reg_ranges_size; range += 2) {
2584 		unsigned int reg = reg_ranges[range];
2585 		unsigned int last_reg = reg_ranges[range + 1];
2586 		u32 *bufp = (u32 *)((char *)buf + reg);
2587 
2588 		/* Iterate across the register range filling in the register
2589 		 * buffer but don't write past the end of the register buffer.
2590 		 */
2591 		while (reg <= last_reg && bufp < buf_end) {
2592 			*bufp++ = t4_read_reg(adap, reg);
2593 			reg += sizeof(u32);
2594 		}
2595 	}
2596 }
2597 
2598 #define EEPROM_STAT_ADDR   0x7bfc
2599 #define VPD_BASE           0x400
2600 #define VPD_BASE_OLD       0
2601 #define VPD_LEN            1024
2602 #define CHELSIO_VPD_UNIQUE_ID 0x82
2603 
2604 /**
2605  *	t4_seeprom_wp - enable/disable EEPROM write protection
2606  *	@adapter: the adapter
2607  *	@enable: whether to enable or disable write protection
2608  *
2609  *	Enables or disables write protection on the serial EEPROM.
2610  */
t4_seeprom_wp(struct adapter * adapter,bool enable)2611 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2612 {
2613 	unsigned int v = enable ? 0xc : 0;
2614 	int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2615 	return ret < 0 ? ret : 0;
2616 }
2617 
2618 /**
2619  *	t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2620  *	@adapter: adapter to read
2621  *	@p: where to store the parameters
2622  *
2623  *	Reads card parameters stored in VPD EEPROM.
2624  */
t4_get_raw_vpd_params(struct adapter * adapter,struct vpd_params * p)2625 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2626 {
2627 	int i, ret = 0, addr;
2628 	int ec, sn, pn, na;
2629 	u8 *vpd, csum;
2630 	unsigned int vpdr_len, kw_offset, id_len;
2631 
2632 	vpd = vmalloc(VPD_LEN);
2633 	if (!vpd)
2634 		return -ENOMEM;
2635 
2636 	/* Card information normally starts at VPD_BASE but early cards had
2637 	 * it at 0.
2638 	 */
2639 	ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2640 	if (ret < 0)
2641 		goto out;
2642 
2643 	/* The VPD shall have a unique identifier specified by the PCI SIG.
2644 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2645 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2646 	 * is expected to automatically put this entry at the
2647 	 * beginning of the VPD.
2648 	 */
2649 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2650 
2651 	ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2652 	if (ret < 0)
2653 		goto out;
2654 
2655 	if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2656 		dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2657 		ret = -EINVAL;
2658 		goto out;
2659 	}
2660 
2661 	id_len = pci_vpd_lrdt_size(vpd);
2662 	if (id_len > ID_LEN)
2663 		id_len = ID_LEN;
2664 
2665 	i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2666 	if (i < 0) {
2667 		dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2668 		ret = -EINVAL;
2669 		goto out;
2670 	}
2671 
2672 	vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2673 	kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2674 	if (vpdr_len + kw_offset > VPD_LEN) {
2675 		dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2676 		ret = -EINVAL;
2677 		goto out;
2678 	}
2679 
2680 #define FIND_VPD_KW(var, name) do { \
2681 	var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2682 	if (var < 0) { \
2683 		dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2684 		ret = -EINVAL; \
2685 		goto out; \
2686 	} \
2687 	var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2688 } while (0)
2689 
2690 	FIND_VPD_KW(i, "RV");
2691 	for (csum = 0; i >= 0; i--)
2692 		csum += vpd[i];
2693 
2694 	if (csum) {
2695 		dev_err(adapter->pdev_dev,
2696 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2697 		ret = -EINVAL;
2698 		goto out;
2699 	}
2700 
2701 	FIND_VPD_KW(ec, "EC");
2702 	FIND_VPD_KW(sn, "SN");
2703 	FIND_VPD_KW(pn, "PN");
2704 	FIND_VPD_KW(na, "NA");
2705 #undef FIND_VPD_KW
2706 
2707 	memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2708 	strim(p->id);
2709 	memcpy(p->ec, vpd + ec, EC_LEN);
2710 	strim(p->ec);
2711 	i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2712 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2713 	strim(p->sn);
2714 	i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2715 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2716 	strim(p->pn);
2717 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2718 	strim((char *)p->na);
2719 
2720 out:
2721 	vfree(vpd);
2722 	return ret < 0 ? ret : 0;
2723 }
2724 
2725 /**
2726  *	t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2727  *	@adapter: adapter to read
2728  *	@p: where to store the parameters
2729  *
2730  *	Reads card parameters stored in VPD EEPROM and retrieves the Core
2731  *	Clock.  This can only be called after a connection to the firmware
2732  *	is established.
2733  */
t4_get_vpd_params(struct adapter * adapter,struct vpd_params * p)2734 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2735 {
2736 	u32 cclk_param, cclk_val;
2737 	int ret;
2738 
2739 	/* Grab the raw VPD parameters.
2740 	 */
2741 	ret = t4_get_raw_vpd_params(adapter, p);
2742 	if (ret)
2743 		return ret;
2744 
2745 	/* Ask firmware for the Core Clock since it knows how to translate the
2746 	 * Reference Clock ('V2') VPD field into a Core Clock value ...
2747 	 */
2748 	cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2749 		      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2750 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2751 			      1, &cclk_param, &cclk_val);
2752 
2753 	if (ret)
2754 		return ret;
2755 	p->cclk = cclk_val;
2756 
2757 	return 0;
2758 }
2759 
2760 /* serial flash and firmware constants */
2761 enum {
2762 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
2763 
2764 	/* flash command opcodes */
2765 	SF_PROG_PAGE    = 2,          /* program page */
2766 	SF_WR_DISABLE   = 4,          /* disable writes */
2767 	SF_RD_STATUS    = 5,          /* read status register */
2768 	SF_WR_ENABLE    = 6,          /* enable writes */
2769 	SF_RD_DATA_FAST = 0xb,        /* read flash */
2770 	SF_RD_ID        = 0x9f,       /* read ID */
2771 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
2772 
2773 	FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2774 };
2775 
2776 /**
2777  *	sf1_read - read data from the serial flash
2778  *	@adapter: the adapter
2779  *	@byte_cnt: number of bytes to read
2780  *	@cont: whether another operation will be chained
2781  *	@lock: whether to lock SF for PL access only
2782  *	@valp: where to store the read data
2783  *
2784  *	Reads up to 4 bytes of data from the serial flash.  The location of
2785  *	the read needs to be specified prior to calling this by issuing the
2786  *	appropriate commands to the serial flash.
2787  */
sf1_read(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 * valp)2788 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2789 		    int lock, u32 *valp)
2790 {
2791 	int ret;
2792 
2793 	if (!byte_cnt || byte_cnt > 4)
2794 		return -EINVAL;
2795 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2796 		return -EBUSY;
2797 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2798 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2799 	ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2800 	if (!ret)
2801 		*valp = t4_read_reg(adapter, SF_DATA_A);
2802 	return ret;
2803 }
2804 
2805 /**
2806  *	sf1_write - write data to the serial flash
2807  *	@adapter: the adapter
2808  *	@byte_cnt: number of bytes to write
2809  *	@cont: whether another operation will be chained
2810  *	@lock: whether to lock SF for PL access only
2811  *	@val: value to write
2812  *
2813  *	Writes up to 4 bytes of data to the serial flash.  The location of
2814  *	the write needs to be specified prior to calling this by issuing the
2815  *	appropriate commands to the serial flash.
2816  */
sf1_write(struct adapter * adapter,unsigned int byte_cnt,int cont,int lock,u32 val)2817 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2818 		     int lock, u32 val)
2819 {
2820 	if (!byte_cnt || byte_cnt > 4)
2821 		return -EINVAL;
2822 	if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2823 		return -EBUSY;
2824 	t4_write_reg(adapter, SF_DATA_A, val);
2825 	t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2826 		     SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2827 	return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2828 }
2829 
2830 /**
2831  *	flash_wait_op - wait for a flash operation to complete
2832  *	@adapter: the adapter
2833  *	@attempts: max number of polls of the status register
2834  *	@delay: delay between polls in ms
2835  *
2836  *	Wait for a flash operation to complete by polling the status register.
2837  */
flash_wait_op(struct adapter * adapter,int attempts,int delay)2838 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2839 {
2840 	int ret;
2841 	u32 status;
2842 
2843 	while (1) {
2844 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2845 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2846 			return ret;
2847 		if (!(status & 1))
2848 			return 0;
2849 		if (--attempts == 0)
2850 			return -EAGAIN;
2851 		if (delay)
2852 			msleep(delay);
2853 	}
2854 }
2855 
2856 /**
2857  *	t4_read_flash - read words from serial flash
2858  *	@adapter: the adapter
2859  *	@addr: the start address for the read
2860  *	@nwords: how many 32-bit words to read
2861  *	@data: where to store the read data
2862  *	@byte_oriented: whether to store data as bytes or as words
2863  *
2864  *	Read the specified number of 32-bit words from the serial flash.
2865  *	If @byte_oriented is set the read data is stored as a byte array
2866  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
2867  *	natural endianness.
2868  */
t4_read_flash(struct adapter * adapter,unsigned int addr,unsigned int nwords,u32 * data,int byte_oriented)2869 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2870 		  unsigned int nwords, u32 *data, int byte_oriented)
2871 {
2872 	int ret;
2873 
2874 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2875 		return -EINVAL;
2876 
2877 	addr = swab32(addr) | SF_RD_DATA_FAST;
2878 
2879 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2880 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2881 		return ret;
2882 
2883 	for ( ; nwords; nwords--, data++) {
2884 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2885 		if (nwords == 1)
2886 			t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2887 		if (ret)
2888 			return ret;
2889 		if (byte_oriented)
2890 			*data = (__force __u32)(cpu_to_be32(*data));
2891 	}
2892 	return 0;
2893 }
2894 
2895 /**
2896  *	t4_write_flash - write up to a page of data to the serial flash
2897  *	@adapter: the adapter
2898  *	@addr: the start address to write
2899  *	@n: length of data to write in bytes
2900  *	@data: the data to write
2901  *
2902  *	Writes up to a page of data (256 bytes) to the serial flash starting
2903  *	at the given address.  All the data must be written to the same page.
2904  */
t4_write_flash(struct adapter * adapter,unsigned int addr,unsigned int n,const u8 * data)2905 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2906 			  unsigned int n, const u8 *data)
2907 {
2908 	int ret;
2909 	u32 buf[64];
2910 	unsigned int i, c, left, val, offset = addr & 0xff;
2911 
2912 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2913 		return -EINVAL;
2914 
2915 	val = swab32(addr) | SF_PROG_PAGE;
2916 
2917 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2918 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2919 		goto unlock;
2920 
2921 	for (left = n; left; left -= c) {
2922 		c = min(left, 4U);
2923 		for (val = 0, i = 0; i < c; ++i)
2924 			val = (val << 8) + *data++;
2925 
2926 		ret = sf1_write(adapter, c, c != left, 1, val);
2927 		if (ret)
2928 			goto unlock;
2929 	}
2930 	ret = flash_wait_op(adapter, 8, 1);
2931 	if (ret)
2932 		goto unlock;
2933 
2934 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2935 
2936 	/* Read the page to verify the write succeeded */
2937 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2938 	if (ret)
2939 		return ret;
2940 
2941 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
2942 		dev_err(adapter->pdev_dev,
2943 			"failed to correctly write the flash page at %#x\n",
2944 			addr);
2945 		return -EIO;
2946 	}
2947 	return 0;
2948 
2949 unlock:
2950 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
2951 	return ret;
2952 }
2953 
2954 /**
2955  *	t4_get_fw_version - read the firmware version
2956  *	@adapter: the adapter
2957  *	@vers: where to place the version
2958  *
2959  *	Reads the FW version from flash.
2960  */
t4_get_fw_version(struct adapter * adapter,u32 * vers)2961 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2962 {
2963 	return t4_read_flash(adapter, FLASH_FW_START +
2964 			     offsetof(struct fw_hdr, fw_ver), 1,
2965 			     vers, 0);
2966 }
2967 
2968 /**
2969  *	t4_get_bs_version - read the firmware bootstrap version
2970  *	@adapter: the adapter
2971  *	@vers: where to place the version
2972  *
2973  *	Reads the FW Bootstrap version from flash.
2974  */
t4_get_bs_version(struct adapter * adapter,u32 * vers)2975 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
2976 {
2977 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
2978 			     offsetof(struct fw_hdr, fw_ver), 1,
2979 			     vers, 0);
2980 }
2981 
2982 /**
2983  *	t4_get_tp_version - read the TP microcode version
2984  *	@adapter: the adapter
2985  *	@vers: where to place the version
2986  *
2987  *	Reads the TP microcode version from flash.
2988  */
t4_get_tp_version(struct adapter * adapter,u32 * vers)2989 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2990 {
2991 	return t4_read_flash(adapter, FLASH_FW_START +
2992 			     offsetof(struct fw_hdr, tp_microcode_ver),
2993 			     1, vers, 0);
2994 }
2995 
2996 /**
2997  *	t4_get_exprom_version - return the Expansion ROM version (if any)
2998  *	@adapter: the adapter
2999  *	@vers: where to place the version
3000  *
3001  *	Reads the Expansion ROM header from FLASH and returns the version
3002  *	number (if present) through the @vers return value pointer.  We return
3003  *	this in the Firmware Version Format since it's convenient.  Return
3004  *	0 on success, -ENOENT if no Expansion ROM is present.
3005  */
t4_get_exprom_version(struct adapter * adap,u32 * vers)3006 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3007 {
3008 	struct exprom_header {
3009 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3010 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3011 	} *hdr;
3012 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3013 					   sizeof(u32))];
3014 	int ret;
3015 
3016 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3017 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3018 			    0);
3019 	if (ret)
3020 		return ret;
3021 
3022 	hdr = (struct exprom_header *)exprom_header_buf;
3023 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3024 		return -ENOENT;
3025 
3026 	*vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
3027 		 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
3028 		 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
3029 		 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
3030 	return 0;
3031 }
3032 
3033 /**
3034  *	t4_check_fw_version - check if the FW is supported with this driver
3035  *	@adap: the adapter
3036  *
3037  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
3038  *	if there's exact match, a negative error if the version could not be
3039  *	read or there's a major version mismatch
3040  */
t4_check_fw_version(struct adapter * adap)3041 int t4_check_fw_version(struct adapter *adap)
3042 {
3043 	int i, ret, major, minor, micro;
3044 	int exp_major, exp_minor, exp_micro;
3045 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3046 
3047 	ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3048 	/* Try multiple times before returning error */
3049 	for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3050 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3051 
3052 	if (ret)
3053 		return ret;
3054 
3055 	major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3056 	minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3057 	micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3058 
3059 	switch (chip_version) {
3060 	case CHELSIO_T4:
3061 		exp_major = T4FW_MIN_VERSION_MAJOR;
3062 		exp_minor = T4FW_MIN_VERSION_MINOR;
3063 		exp_micro = T4FW_MIN_VERSION_MICRO;
3064 		break;
3065 	case CHELSIO_T5:
3066 		exp_major = T5FW_MIN_VERSION_MAJOR;
3067 		exp_minor = T5FW_MIN_VERSION_MINOR;
3068 		exp_micro = T5FW_MIN_VERSION_MICRO;
3069 		break;
3070 	case CHELSIO_T6:
3071 		exp_major = T6FW_MIN_VERSION_MAJOR;
3072 		exp_minor = T6FW_MIN_VERSION_MINOR;
3073 		exp_micro = T6FW_MIN_VERSION_MICRO;
3074 		break;
3075 	default:
3076 		dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3077 			adap->chip);
3078 		return -EINVAL;
3079 	}
3080 
3081 	if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3082 	    (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3083 		dev_err(adap->pdev_dev,
3084 			"Card has firmware version %u.%u.%u, minimum "
3085 			"supported firmware is %u.%u.%u.\n", major, minor,
3086 			micro, exp_major, exp_minor, exp_micro);
3087 		return -EFAULT;
3088 	}
3089 	return 0;
3090 }
3091 
3092 /* Is the given firmware API compatible with the one the driver was compiled
3093  * with?
3094  */
fw_compatible(const struct fw_hdr * hdr1,const struct fw_hdr * hdr2)3095 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3096 {
3097 
3098 	/* short circuit if it's the exact same firmware version */
3099 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3100 		return 1;
3101 
3102 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3103 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3104 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3105 		return 1;
3106 #undef SAME_INTF
3107 
3108 	return 0;
3109 }
3110 
3111 /* The firmware in the filesystem is usable, but should it be installed?
3112  * This routine explains itself in detail if it indicates the filesystem
3113  * firmware should be installed.
3114  */
should_install_fs_fw(struct adapter * adap,int card_fw_usable,int k,int c)3115 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3116 				int k, int c)
3117 {
3118 	const char *reason;
3119 
3120 	if (!card_fw_usable) {
3121 		reason = "incompatible or unusable";
3122 		goto install;
3123 	}
3124 
3125 	if (k > c) {
3126 		reason = "older than the version supported with this driver";
3127 		goto install;
3128 	}
3129 
3130 	return 0;
3131 
3132 install:
3133 	dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3134 		"installing firmware %u.%u.%u.%u on card.\n",
3135 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3136 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3137 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3138 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3139 
3140 	return 1;
3141 }
3142 
t4_prep_fw(struct adapter * adap,struct fw_info * fw_info,const u8 * fw_data,unsigned int fw_size,struct fw_hdr * card_fw,enum dev_state state,int * reset)3143 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3144 	       const u8 *fw_data, unsigned int fw_size,
3145 	       struct fw_hdr *card_fw, enum dev_state state,
3146 	       int *reset)
3147 {
3148 	int ret, card_fw_usable, fs_fw_usable;
3149 	const struct fw_hdr *fs_fw;
3150 	const struct fw_hdr *drv_fw;
3151 
3152 	drv_fw = &fw_info->fw_hdr;
3153 
3154 	/* Read the header of the firmware on the card */
3155 	ret = -t4_read_flash(adap, FLASH_FW_START,
3156 			    sizeof(*card_fw) / sizeof(uint32_t),
3157 			    (uint32_t *)card_fw, 1);
3158 	if (ret == 0) {
3159 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3160 	} else {
3161 		dev_err(adap->pdev_dev,
3162 			"Unable to read card's firmware header: %d\n", ret);
3163 		card_fw_usable = 0;
3164 	}
3165 
3166 	if (fw_data != NULL) {
3167 		fs_fw = (const void *)fw_data;
3168 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3169 	} else {
3170 		fs_fw = NULL;
3171 		fs_fw_usable = 0;
3172 	}
3173 
3174 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3175 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3176 		/* Common case: the firmware on the card is an exact match and
3177 		 * the filesystem one is an exact match too, or the filesystem
3178 		 * one is absent/incompatible.
3179 		 */
3180 	} else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3181 		   should_install_fs_fw(adap, card_fw_usable,
3182 					be32_to_cpu(fs_fw->fw_ver),
3183 					be32_to_cpu(card_fw->fw_ver))) {
3184 		ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3185 				     fw_size, 0);
3186 		if (ret != 0) {
3187 			dev_err(adap->pdev_dev,
3188 				"failed to install firmware: %d\n", ret);
3189 			goto bye;
3190 		}
3191 
3192 		/* Installed successfully, update the cached header too. */
3193 		*card_fw = *fs_fw;
3194 		card_fw_usable = 1;
3195 		*reset = 0;	/* already reset as part of load_fw */
3196 	}
3197 
3198 	if (!card_fw_usable) {
3199 		uint32_t d, c, k;
3200 
3201 		d = be32_to_cpu(drv_fw->fw_ver);
3202 		c = be32_to_cpu(card_fw->fw_ver);
3203 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3204 
3205 		dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3206 			"chip state %d, "
3207 			"driver compiled with %d.%d.%d.%d, "
3208 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3209 			state,
3210 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3211 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3212 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3213 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3214 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3215 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3216 		ret = EINVAL;
3217 		goto bye;
3218 	}
3219 
3220 	/* We're using whatever's on the card and it's known to be good. */
3221 	adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3222 	adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3223 
3224 bye:
3225 	return ret;
3226 }
3227 
3228 /**
3229  *	t4_flash_erase_sectors - erase a range of flash sectors
3230  *	@adapter: the adapter
3231  *	@start: the first sector to erase
3232  *	@end: the last sector to erase
3233  *
3234  *	Erases the sectors in the given inclusive range.
3235  */
t4_flash_erase_sectors(struct adapter * adapter,int start,int end)3236 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3237 {
3238 	int ret = 0;
3239 
3240 	if (end >= adapter->params.sf_nsec)
3241 		return -EINVAL;
3242 
3243 	while (start <= end) {
3244 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3245 		    (ret = sf1_write(adapter, 4, 0, 1,
3246 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3247 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3248 			dev_err(adapter->pdev_dev,
3249 				"erase of flash sector %d failed, error %d\n",
3250 				start, ret);
3251 			break;
3252 		}
3253 		start++;
3254 	}
3255 	t4_write_reg(adapter, SF_OP_A, 0);    /* unlock SF */
3256 	return ret;
3257 }
3258 
3259 /**
3260  *	t4_flash_cfg_addr - return the address of the flash configuration file
3261  *	@adapter: the adapter
3262  *
3263  *	Return the address within the flash where the Firmware Configuration
3264  *	File is stored.
3265  */
t4_flash_cfg_addr(struct adapter * adapter)3266 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3267 {
3268 	if (adapter->params.sf_size == 0x100000)
3269 		return FLASH_FPGA_CFG_START;
3270 	else
3271 		return FLASH_CFG_START;
3272 }
3273 
3274 /* Return TRUE if the specified firmware matches the adapter.  I.e. T4
3275  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3276  * and emit an error message for mismatched firmware to save our caller the
3277  * effort ...
3278  */
t4_fw_matches_chip(const struct adapter * adap,const struct fw_hdr * hdr)3279 static bool t4_fw_matches_chip(const struct adapter *adap,
3280 			       const struct fw_hdr *hdr)
3281 {
3282 	/* The expression below will return FALSE for any unsupported adapter
3283 	 * which will keep us "honest" in the future ...
3284 	 */
3285 	if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3286 	    (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3287 	    (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3288 		return true;
3289 
3290 	dev_err(adap->pdev_dev,
3291 		"FW image (%d) is not suitable for this adapter (%d)\n",
3292 		hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3293 	return false;
3294 }
3295 
3296 /**
3297  *	t4_load_fw - download firmware
3298  *	@adap: the adapter
3299  *	@fw_data: the firmware image to write
3300  *	@size: image size
3301  *
3302  *	Write the supplied firmware image to the card's serial flash.
3303  */
t4_load_fw(struct adapter * adap,const u8 * fw_data,unsigned int size)3304 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3305 {
3306 	u32 csum;
3307 	int ret, addr;
3308 	unsigned int i;
3309 	u8 first_page[SF_PAGE_SIZE];
3310 	const __be32 *p = (const __be32 *)fw_data;
3311 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3312 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3313 	unsigned int fw_img_start = adap->params.sf_fw_start;
3314 	unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3315 
3316 	if (!size) {
3317 		dev_err(adap->pdev_dev, "FW image has no data\n");
3318 		return -EINVAL;
3319 	}
3320 	if (size & 511) {
3321 		dev_err(adap->pdev_dev,
3322 			"FW image size not multiple of 512 bytes\n");
3323 		return -EINVAL;
3324 	}
3325 	if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3326 		dev_err(adap->pdev_dev,
3327 			"FW image size differs from size in FW header\n");
3328 		return -EINVAL;
3329 	}
3330 	if (size > FW_MAX_SIZE) {
3331 		dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3332 			FW_MAX_SIZE);
3333 		return -EFBIG;
3334 	}
3335 	if (!t4_fw_matches_chip(adap, hdr))
3336 		return -EINVAL;
3337 
3338 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3339 		csum += be32_to_cpu(p[i]);
3340 
3341 	if (csum != 0xffffffff) {
3342 		dev_err(adap->pdev_dev,
3343 			"corrupted firmware image, checksum %#x\n", csum);
3344 		return -EINVAL;
3345 	}
3346 
3347 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
3348 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3349 	if (ret)
3350 		goto out;
3351 
3352 	/*
3353 	 * We write the correct version at the end so the driver can see a bad
3354 	 * version if the FW write fails.  Start by writing a copy of the
3355 	 * first page with a bad version.
3356 	 */
3357 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3358 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3359 	ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3360 	if (ret)
3361 		goto out;
3362 
3363 	addr = fw_img_start;
3364 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3365 		addr += SF_PAGE_SIZE;
3366 		fw_data += SF_PAGE_SIZE;
3367 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3368 		if (ret)
3369 			goto out;
3370 	}
3371 
3372 	ret = t4_write_flash(adap,
3373 			     fw_img_start + offsetof(struct fw_hdr, fw_ver),
3374 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3375 out:
3376 	if (ret)
3377 		dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3378 			ret);
3379 	else
3380 		ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3381 	return ret;
3382 }
3383 
3384 /**
3385  *	t4_phy_fw_ver - return current PHY firmware version
3386  *	@adap: the adapter
3387  *	@phy_fw_ver: return value buffer for PHY firmware version
3388  *
3389  *	Returns the current version of external PHY firmware on the
3390  *	adapter.
3391  */
t4_phy_fw_ver(struct adapter * adap,int * phy_fw_ver)3392 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3393 {
3394 	u32 param, val;
3395 	int ret;
3396 
3397 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3398 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3399 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3400 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3401 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3402 			      &param, &val);
3403 	if (ret < 0)
3404 		return ret;
3405 	*phy_fw_ver = val;
3406 	return 0;
3407 }
3408 
3409 /**
3410  *	t4_load_phy_fw - download port PHY firmware
3411  *	@adap: the adapter
3412  *	@win: the PCI-E Memory Window index to use for t4_memory_rw()
3413  *	@win_lock: the lock to use to guard the memory copy
3414  *	@phy_fw_version: function to check PHY firmware versions
3415  *	@phy_fw_data: the PHY firmware image to write
3416  *	@phy_fw_size: image size
3417  *
3418  *	Transfer the specified PHY firmware to the adapter.  If a non-NULL
3419  *	@phy_fw_version is supplied, then it will be used to determine if
3420  *	it's necessary to perform the transfer by comparing the version
3421  *	of any existing adapter PHY firmware with that of the passed in
3422  *	PHY firmware image.  If @win_lock is non-NULL then it will be used
3423  *	around the call to t4_memory_rw() which transfers the PHY firmware
3424  *	to the adapter.
3425  *
3426  *	A negative error number will be returned if an error occurs.  If
3427  *	version number support is available and there's no need to upgrade
3428  *	the firmware, 0 will be returned.  If firmware is successfully
3429  *	transferred to the adapter, 1 will be retured.
3430  *
3431  *	NOTE: some adapters only have local RAM to store the PHY firmware.  As
3432  *	a result, a RESET of the adapter would cause that RAM to lose its
3433  *	contents.  Thus, loading PHY firmware on such adapters must happen
3434  *	after any FW_RESET_CMDs ...
3435  */
t4_load_phy_fw(struct adapter * adap,int win,spinlock_t * win_lock,int (* phy_fw_version)(const u8 *,size_t),const u8 * phy_fw_data,size_t phy_fw_size)3436 int t4_load_phy_fw(struct adapter *adap,
3437 		   int win, spinlock_t *win_lock,
3438 		   int (*phy_fw_version)(const u8 *, size_t),
3439 		   const u8 *phy_fw_data, size_t phy_fw_size)
3440 {
3441 	unsigned long mtype = 0, maddr = 0;
3442 	u32 param, val;
3443 	int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3444 	int ret;
3445 
3446 	/* If we have version number support, then check to see if the adapter
3447 	 * already has up-to-date PHY firmware loaded.
3448 	 */
3449 	 if (phy_fw_version) {
3450 		new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3451 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3452 		if (ret < 0)
3453 			return ret;
3454 
3455 		if (cur_phy_fw_ver >= new_phy_fw_vers) {
3456 			CH_WARN(adap, "PHY Firmware already up-to-date, "
3457 				"version %#x\n", cur_phy_fw_ver);
3458 			return 0;
3459 		}
3460 	}
3461 
3462 	/* Ask the firmware where it wants us to copy the PHY firmware image.
3463 	 * The size of the file requires a special version of the READ coommand
3464 	 * which will pass the file size via the values field in PARAMS_CMD and
3465 	 * retrieve the return value from firmware and place it in the same
3466 	 * buffer values
3467 	 */
3468 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3469 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3470 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3471 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3472 	val = phy_fw_size;
3473 	ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3474 				 &param, &val, 1);
3475 	if (ret < 0)
3476 		return ret;
3477 	mtype = val >> 8;
3478 	maddr = (val & 0xff) << 16;
3479 
3480 	/* Copy the supplied PHY Firmware image to the adapter memory location
3481 	 * allocated by the adapter firmware.
3482 	 */
3483 	if (win_lock)
3484 		spin_lock_bh(win_lock);
3485 	ret = t4_memory_rw(adap, win, mtype, maddr,
3486 			   phy_fw_size, (__be32 *)phy_fw_data,
3487 			   T4_MEMORY_WRITE);
3488 	if (win_lock)
3489 		spin_unlock_bh(win_lock);
3490 	if (ret)
3491 		return ret;
3492 
3493 	/* Tell the firmware that the PHY firmware image has been written to
3494 	 * RAM and it can now start copying it over to the PHYs.  The chip
3495 	 * firmware will RESET the affected PHYs as part of this operation
3496 	 * leaving them running the new PHY firmware image.
3497 	 */
3498 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3499 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3500 		 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3501 		 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3502 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3503 				    &param, &val, 30000);
3504 
3505 	/* If we have version number support, then check to see that the new
3506 	 * firmware got loaded properly.
3507 	 */
3508 	if (phy_fw_version) {
3509 		ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3510 		if (ret < 0)
3511 			return ret;
3512 
3513 		if (cur_phy_fw_ver != new_phy_fw_vers) {
3514 			CH_WARN(adap, "PHY Firmware did not update: "
3515 				"version on adapter %#x, "
3516 				"version flashed %#x\n",
3517 				cur_phy_fw_ver, new_phy_fw_vers);
3518 			return -ENXIO;
3519 		}
3520 	}
3521 
3522 	return 1;
3523 }
3524 
3525 /**
3526  *	t4_fwcache - firmware cache operation
3527  *	@adap: the adapter
3528  *	@op  : the operation (flush or flush and invalidate)
3529  */
t4_fwcache(struct adapter * adap,enum fw_params_param_dev_fwcache op)3530 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3531 {
3532 	struct fw_params_cmd c;
3533 
3534 	memset(&c, 0, sizeof(c));
3535 	c.op_to_vfn =
3536 		cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3537 			    FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3538 			    FW_PARAMS_CMD_PFN_V(adap->pf) |
3539 			    FW_PARAMS_CMD_VFN_V(0));
3540 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3541 	c.param[0].mnem =
3542 		cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3543 			    FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3544 	c.param[0].val = (__force __be32)op;
3545 
3546 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3547 }
3548 
t4_cim_read_pif_la(struct adapter * adap,u32 * pif_req,u32 * pif_rsp,unsigned int * pif_req_wrptr,unsigned int * pif_rsp_wrptr)3549 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3550 			unsigned int *pif_req_wrptr,
3551 			unsigned int *pif_rsp_wrptr)
3552 {
3553 	int i, j;
3554 	u32 cfg, val, req, rsp;
3555 
3556 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3557 	if (cfg & LADBGEN_F)
3558 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3559 
3560 	val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3561 	req = POLADBGWRPTR_G(val);
3562 	rsp = PILADBGWRPTR_G(val);
3563 	if (pif_req_wrptr)
3564 		*pif_req_wrptr = req;
3565 	if (pif_rsp_wrptr)
3566 		*pif_rsp_wrptr = rsp;
3567 
3568 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3569 		for (j = 0; j < 6; j++) {
3570 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3571 				     PILADBGRDPTR_V(rsp));
3572 			*pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3573 			*pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3574 			req++;
3575 			rsp++;
3576 		}
3577 		req = (req + 2) & POLADBGRDPTR_M;
3578 		rsp = (rsp + 2) & PILADBGRDPTR_M;
3579 	}
3580 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3581 }
3582 
t4_cim_read_ma_la(struct adapter * adap,u32 * ma_req,u32 * ma_rsp)3583 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3584 {
3585 	u32 cfg;
3586 	int i, j, idx;
3587 
3588 	cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3589 	if (cfg & LADBGEN_F)
3590 		t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3591 
3592 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3593 		for (j = 0; j < 5; j++) {
3594 			idx = 8 * i + j;
3595 			t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3596 				     PILADBGRDPTR_V(idx));
3597 			*ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3598 			*ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3599 		}
3600 	}
3601 	t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3602 }
3603 
t4_ulprx_read_la(struct adapter * adap,u32 * la_buf)3604 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3605 {
3606 	unsigned int i, j;
3607 
3608 	for (i = 0; i < 8; i++) {
3609 		u32 *p = la_buf + i;
3610 
3611 		t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3612 		j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3613 		t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3614 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3615 			*p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3616 	}
3617 }
3618 
3619 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3620 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3621 		     FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
3622 		     FW_PORT_CAP_ANEG)
3623 
3624 /**
3625  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3626  *	@phy: the PHY to setup
3627  *	@mac: the MAC to setup
3628  *	@lc: the requested link configuration
3629  *
3630  *	Set up a port's MAC and PHY according to a desired link configuration.
3631  *	- If the PHY can auto-negotiate first decide what to advertise, then
3632  *	  enable/disable auto-negotiation as desired, and reset.
3633  *	- If the PHY does not auto-negotiate just reset it.
3634  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3635  *	  otherwise do it later based on the outcome of auto-negotiation.
3636  */
t4_link_l1cfg(struct adapter * adap,unsigned int mbox,unsigned int port,struct link_config * lc)3637 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3638 		  struct link_config *lc)
3639 {
3640 	struct fw_port_cmd c;
3641 	unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3642 
3643 	lc->link_ok = 0;
3644 	if (lc->requested_fc & PAUSE_RX)
3645 		fc |= FW_PORT_CAP_FC_RX;
3646 	if (lc->requested_fc & PAUSE_TX)
3647 		fc |= FW_PORT_CAP_FC_TX;
3648 
3649 	memset(&c, 0, sizeof(c));
3650 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3651 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3652 				     FW_PORT_CMD_PORTID_V(port));
3653 	c.action_to_len16 =
3654 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3655 			    FW_LEN16(c));
3656 
3657 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3658 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3659 					     fc);
3660 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3661 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3662 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3663 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3664 	} else
3665 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3666 
3667 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3668 }
3669 
3670 /**
3671  *	t4_restart_aneg - restart autonegotiation
3672  *	@adap: the adapter
3673  *	@mbox: mbox to use for the FW command
3674  *	@port: the port id
3675  *
3676  *	Restarts autonegotiation for the selected port.
3677  */
t4_restart_aneg(struct adapter * adap,unsigned int mbox,unsigned int port)3678 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3679 {
3680 	struct fw_port_cmd c;
3681 
3682 	memset(&c, 0, sizeof(c));
3683 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3684 				     FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3685 				     FW_PORT_CMD_PORTID_V(port));
3686 	c.action_to_len16 =
3687 		cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3688 			    FW_LEN16(c));
3689 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3690 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3691 }
3692 
3693 typedef void (*int_handler_t)(struct adapter *adap);
3694 
3695 struct intr_info {
3696 	unsigned int mask;       /* bits to check in interrupt status */
3697 	const char *msg;         /* message to print or NULL */
3698 	short stat_idx;          /* stat counter to increment or -1 */
3699 	unsigned short fatal;    /* whether the condition reported is fatal */
3700 	int_handler_t int_handler; /* platform-specific int handler */
3701 };
3702 
3703 /**
3704  *	t4_handle_intr_status - table driven interrupt handler
3705  *	@adapter: the adapter that generated the interrupt
3706  *	@reg: the interrupt status register to process
3707  *	@acts: table of interrupt actions
3708  *
3709  *	A table driven interrupt handler that applies a set of masks to an
3710  *	interrupt status word and performs the corresponding actions if the
3711  *	interrupts described by the mask have occurred.  The actions include
3712  *	optionally emitting a warning or alert message.  The table is terminated
3713  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3714  *	conditions.
3715  */
t4_handle_intr_status(struct adapter * adapter,unsigned int reg,const struct intr_info * acts)3716 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3717 				 const struct intr_info *acts)
3718 {
3719 	int fatal = 0;
3720 	unsigned int mask = 0;
3721 	unsigned int status = t4_read_reg(adapter, reg);
3722 
3723 	for ( ; acts->mask; ++acts) {
3724 		if (!(status & acts->mask))
3725 			continue;
3726 		if (acts->fatal) {
3727 			fatal++;
3728 			dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3729 				  status & acts->mask);
3730 		} else if (acts->msg && printk_ratelimit())
3731 			dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3732 				 status & acts->mask);
3733 		if (acts->int_handler)
3734 			acts->int_handler(adapter);
3735 		mask |= acts->mask;
3736 	}
3737 	status &= mask;
3738 	if (status)                           /* clear processed interrupts */
3739 		t4_write_reg(adapter, reg, status);
3740 	return fatal;
3741 }
3742 
3743 /*
3744  * Interrupt handler for the PCIE module.
3745  */
pcie_intr_handler(struct adapter * adapter)3746 static void pcie_intr_handler(struct adapter *adapter)
3747 {
3748 	static const struct intr_info sysbus_intr_info[] = {
3749 		{ RNPP_F, "RXNP array parity error", -1, 1 },
3750 		{ RPCP_F, "RXPC array parity error", -1, 1 },
3751 		{ RCIP_F, "RXCIF array parity error", -1, 1 },
3752 		{ RCCP_F, "Rx completions control array parity error", -1, 1 },
3753 		{ RFTP_F, "RXFT array parity error", -1, 1 },
3754 		{ 0 }
3755 	};
3756 	static const struct intr_info pcie_port_intr_info[] = {
3757 		{ TPCP_F, "TXPC array parity error", -1, 1 },
3758 		{ TNPP_F, "TXNP array parity error", -1, 1 },
3759 		{ TFTP_F, "TXFT array parity error", -1, 1 },
3760 		{ TCAP_F, "TXCA array parity error", -1, 1 },
3761 		{ TCIP_F, "TXCIF array parity error", -1, 1 },
3762 		{ RCAP_F, "RXCA array parity error", -1, 1 },
3763 		{ OTDD_F, "outbound request TLP discarded", -1, 1 },
3764 		{ RDPE_F, "Rx data parity error", -1, 1 },
3765 		{ TDUE_F, "Tx uncorrectable data error", -1, 1 },
3766 		{ 0 }
3767 	};
3768 	static const struct intr_info pcie_intr_info[] = {
3769 		{ MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3770 		{ MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3771 		{ MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3772 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3773 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3774 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3775 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3776 		{ PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3777 		{ PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3778 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3779 		{ CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3780 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3781 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3782 		{ DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3783 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3784 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3785 		{ HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3786 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3787 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3788 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3789 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3790 		{ INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3791 		{ MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3792 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3793 		{ RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3794 		{ RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3795 		{ RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3796 		{ PCIESINT_F, "PCI core secondary fault", -1, 1 },
3797 		{ PCIEPINT_F, "PCI core primary fault", -1, 1 },
3798 		{ UNXSPLCPLERR_F, "PCI unexpected split completion error",
3799 		  -1, 0 },
3800 		{ 0 }
3801 	};
3802 
3803 	static struct intr_info t5_pcie_intr_info[] = {
3804 		{ MSTGRPPERR_F, "Master Response Read Queue parity error",
3805 		  -1, 1 },
3806 		{ MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3807 		{ MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3808 		{ MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3809 		{ MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3810 		{ MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3811 		{ MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3812 		{ PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3813 		  -1, 1 },
3814 		{ PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3815 		  -1, 1 },
3816 		{ TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3817 		{ MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3818 		{ CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3819 		{ CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3820 		{ DREQWRPERR_F, "PCI DMA channel write request parity error",
3821 		  -1, 1 },
3822 		{ DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3823 		{ DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3824 		{ HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3825 		{ HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3826 		{ HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3827 		{ CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3828 		{ FIDPERR_F, "PCI FID parity error", -1, 1 },
3829 		{ VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3830 		{ MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3831 		{ PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3832 		{ IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3833 		  -1, 1 },
3834 		{ IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3835 		  -1, 1 },
3836 		{ RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3837 		{ IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3838 		{ TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3839 		{ READRSPERR_F, "Outbound read error", -1, 0 },
3840 		{ 0 }
3841 	};
3842 
3843 	int fat;
3844 
3845 	if (is_t4(adapter->params.chip))
3846 		fat = t4_handle_intr_status(adapter,
3847 				PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3848 				sysbus_intr_info) +
3849 			t4_handle_intr_status(adapter,
3850 					PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3851 					pcie_port_intr_info) +
3852 			t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3853 					      pcie_intr_info);
3854 	else
3855 		fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3856 					    t5_pcie_intr_info);
3857 
3858 	if (fat)
3859 		t4_fatal_err(adapter);
3860 }
3861 
3862 /*
3863  * TP interrupt handler.
3864  */
tp_intr_handler(struct adapter * adapter)3865 static void tp_intr_handler(struct adapter *adapter)
3866 {
3867 	static const struct intr_info tp_intr_info[] = {
3868 		{ 0x3fffffff, "TP parity error", -1, 1 },
3869 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3870 		{ 0 }
3871 	};
3872 
3873 	if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3874 		t4_fatal_err(adapter);
3875 }
3876 
3877 /*
3878  * SGE interrupt handler.
3879  */
sge_intr_handler(struct adapter * adapter)3880 static void sge_intr_handler(struct adapter *adapter)
3881 {
3882 	u64 v;
3883 	u32 err;
3884 
3885 	static const struct intr_info sge_intr_info[] = {
3886 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3887 		  "SGE received CPL exceeding IQE size", -1, 1 },
3888 		{ ERR_INVALID_CIDX_INC_F,
3889 		  "SGE GTS CIDX increment too large", -1, 0 },
3890 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3891 		{ DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3892 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3893 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3894 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3895 		  0 },
3896 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3897 		  0 },
3898 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3899 		  0 },
3900 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3901 		  0 },
3902 		{ ERR_ING_CTXT_PRIO_F,
3903 		  "SGE too many priority ingress contexts", -1, 0 },
3904 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3905 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3906 		{ 0 }
3907 	};
3908 
3909 	static struct intr_info t4t5_sge_intr_info[] = {
3910 		{ ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3911 		{ DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3912 		{ ERR_EGR_CTXT_PRIO_F,
3913 		  "SGE too many priority egress contexts", -1, 0 },
3914 		{ 0 }
3915 	};
3916 
3917 	v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3918 		((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3919 	if (v) {
3920 		dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3921 				(unsigned long long)v);
3922 		t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3923 		t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3924 	}
3925 
3926 	v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3927 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3928 		v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3929 					   t4t5_sge_intr_info);
3930 
3931 	err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3932 	if (err & ERROR_QID_VALID_F) {
3933 		dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3934 			ERROR_QID_G(err));
3935 		if (err & UNCAPTURED_ERROR_F)
3936 			dev_err(adapter->pdev_dev,
3937 				"SGE UNCAPTURED_ERROR set (clearing)\n");
3938 		t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3939 			     UNCAPTURED_ERROR_F);
3940 	}
3941 
3942 	if (v != 0)
3943 		t4_fatal_err(adapter);
3944 }
3945 
3946 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3947 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3948 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3949 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3950 
3951 /*
3952  * CIM interrupt handler.
3953  */
cim_intr_handler(struct adapter * adapter)3954 static void cim_intr_handler(struct adapter *adapter)
3955 {
3956 	static const struct intr_info cim_intr_info[] = {
3957 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3958 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3959 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3960 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3961 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3962 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3963 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3964 		{ 0 }
3965 	};
3966 	static const struct intr_info cim_upintr_info[] = {
3967 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3968 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3969 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3970 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3971 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3972 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3973 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3974 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3975 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3976 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3977 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3978 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3979 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3980 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3981 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3982 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3983 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3984 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3985 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3986 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3987 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3988 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3989 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3990 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3991 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3992 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3993 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3994 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3995 		{ 0 }
3996 	};
3997 
3998 	int fat;
3999 
4000 	if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
4001 		t4_report_fw_error(adapter);
4002 
4003 	fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
4004 				    cim_intr_info) +
4005 	      t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
4006 				    cim_upintr_info);
4007 	if (fat)
4008 		t4_fatal_err(adapter);
4009 }
4010 
4011 /*
4012  * ULP RX interrupt handler.
4013  */
ulprx_intr_handler(struct adapter * adapter)4014 static void ulprx_intr_handler(struct adapter *adapter)
4015 {
4016 	static const struct intr_info ulprx_intr_info[] = {
4017 		{ 0x1800000, "ULPRX context error", -1, 1 },
4018 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4019 		{ 0 }
4020 	};
4021 
4022 	if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
4023 		t4_fatal_err(adapter);
4024 }
4025 
4026 /*
4027  * ULP TX interrupt handler.
4028  */
ulptx_intr_handler(struct adapter * adapter)4029 static void ulptx_intr_handler(struct adapter *adapter)
4030 {
4031 	static const struct intr_info ulptx_intr_info[] = {
4032 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
4033 		  0 },
4034 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
4035 		  0 },
4036 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
4037 		  0 },
4038 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
4039 		  0 },
4040 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4041 		{ 0 }
4042 	};
4043 
4044 	if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
4045 		t4_fatal_err(adapter);
4046 }
4047 
4048 /*
4049  * PM TX interrupt handler.
4050  */
pmtx_intr_handler(struct adapter * adapter)4051 static void pmtx_intr_handler(struct adapter *adapter)
4052 {
4053 	static const struct intr_info pmtx_intr_info[] = {
4054 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4055 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4056 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4057 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4058 		{ PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4059 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4060 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4061 		  -1, 1 },
4062 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4063 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4064 		{ 0 }
4065 	};
4066 
4067 	if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4068 		t4_fatal_err(adapter);
4069 }
4070 
4071 /*
4072  * PM RX interrupt handler.
4073  */
pmrx_intr_handler(struct adapter * adapter)4074 static void pmrx_intr_handler(struct adapter *adapter)
4075 {
4076 	static const struct intr_info pmrx_intr_info[] = {
4077 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4078 		{ PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4079 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4080 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4081 		  -1, 1 },
4082 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4083 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4084 		{ 0 }
4085 	};
4086 
4087 	if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4088 		t4_fatal_err(adapter);
4089 }
4090 
4091 /*
4092  * CPL switch interrupt handler.
4093  */
cplsw_intr_handler(struct adapter * adapter)4094 static void cplsw_intr_handler(struct adapter *adapter)
4095 {
4096 	static const struct intr_info cplsw_intr_info[] = {
4097 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4098 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4099 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4100 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4101 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4102 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4103 		{ 0 }
4104 	};
4105 
4106 	if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4107 		t4_fatal_err(adapter);
4108 }
4109 
4110 /*
4111  * LE interrupt handler.
4112  */
le_intr_handler(struct adapter * adap)4113 static void le_intr_handler(struct adapter *adap)
4114 {
4115 	enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4116 	static const struct intr_info le_intr_info[] = {
4117 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
4118 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
4119 		{ PARITYERR_F, "LE parity error", -1, 1 },
4120 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4121 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
4122 		{ 0 }
4123 	};
4124 
4125 	static struct intr_info t6_le_intr_info[] = {
4126 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4127 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4128 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
4129 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4130 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4131 		{ 0 }
4132 	};
4133 
4134 	if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4135 				  (chip <= CHELSIO_T5) ?
4136 				  le_intr_info : t6_le_intr_info))
4137 		t4_fatal_err(adap);
4138 }
4139 
4140 /*
4141  * MPS interrupt handler.
4142  */
mps_intr_handler(struct adapter * adapter)4143 static void mps_intr_handler(struct adapter *adapter)
4144 {
4145 	static const struct intr_info mps_rx_intr_info[] = {
4146 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4147 		{ 0 }
4148 	};
4149 	static const struct intr_info mps_tx_intr_info[] = {
4150 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4151 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4152 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4153 		  -1, 1 },
4154 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4155 		  -1, 1 },
4156 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
4157 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4158 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
4159 		{ 0 }
4160 	};
4161 	static const struct intr_info mps_trc_intr_info[] = {
4162 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4163 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4164 		  -1, 1 },
4165 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4166 		{ 0 }
4167 	};
4168 	static const struct intr_info mps_stat_sram_intr_info[] = {
4169 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4170 		{ 0 }
4171 	};
4172 	static const struct intr_info mps_stat_tx_intr_info[] = {
4173 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4174 		{ 0 }
4175 	};
4176 	static const struct intr_info mps_stat_rx_intr_info[] = {
4177 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4178 		{ 0 }
4179 	};
4180 	static const struct intr_info mps_cls_intr_info[] = {
4181 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4182 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4183 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4184 		{ 0 }
4185 	};
4186 
4187 	int fat;
4188 
4189 	fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4190 				    mps_rx_intr_info) +
4191 	      t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4192 				    mps_tx_intr_info) +
4193 	      t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4194 				    mps_trc_intr_info) +
4195 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4196 				    mps_stat_sram_intr_info) +
4197 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4198 				    mps_stat_tx_intr_info) +
4199 	      t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4200 				    mps_stat_rx_intr_info) +
4201 	      t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4202 				    mps_cls_intr_info);
4203 
4204 	t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4205 	t4_read_reg(adapter, MPS_INT_CAUSE_A);                    /* flush */
4206 	if (fat)
4207 		t4_fatal_err(adapter);
4208 }
4209 
4210 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4211 		      ECC_UE_INT_CAUSE_F)
4212 
4213 /*
4214  * EDC/MC interrupt handler.
4215  */
mem_intr_handler(struct adapter * adapter,int idx)4216 static void mem_intr_handler(struct adapter *adapter, int idx)
4217 {
4218 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4219 
4220 	unsigned int addr, cnt_addr, v;
4221 
4222 	if (idx <= MEM_EDC1) {
4223 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4224 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4225 	} else if (idx == MEM_MC) {
4226 		if (is_t4(adapter->params.chip)) {
4227 			addr = MC_INT_CAUSE_A;
4228 			cnt_addr = MC_ECC_STATUS_A;
4229 		} else {
4230 			addr = MC_P_INT_CAUSE_A;
4231 			cnt_addr = MC_P_ECC_STATUS_A;
4232 		}
4233 	} else {
4234 		addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4235 		cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4236 	}
4237 
4238 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4239 	if (v & PERR_INT_CAUSE_F)
4240 		dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4241 			  name[idx]);
4242 	if (v & ECC_CE_INT_CAUSE_F) {
4243 		u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4244 
4245 		t4_edc_err_read(adapter, idx);
4246 
4247 		t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4248 		if (printk_ratelimit())
4249 			dev_warn(adapter->pdev_dev,
4250 				 "%u %s correctable ECC data error%s\n",
4251 				 cnt, name[idx], cnt > 1 ? "s" : "");
4252 	}
4253 	if (v & ECC_UE_INT_CAUSE_F)
4254 		dev_alert(adapter->pdev_dev,
4255 			  "%s uncorrectable ECC data error\n", name[idx]);
4256 
4257 	t4_write_reg(adapter, addr, v);
4258 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4259 		t4_fatal_err(adapter);
4260 }
4261 
4262 /*
4263  * MA interrupt handler.
4264  */
ma_intr_handler(struct adapter * adap)4265 static void ma_intr_handler(struct adapter *adap)
4266 {
4267 	u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4268 
4269 	if (status & MEM_PERR_INT_CAUSE_F) {
4270 		dev_alert(adap->pdev_dev,
4271 			  "MA parity error, parity status %#x\n",
4272 			  t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4273 		if (is_t5(adap->params.chip))
4274 			dev_alert(adap->pdev_dev,
4275 				  "MA parity error, parity status %#x\n",
4276 				  t4_read_reg(adap,
4277 					      MA_PARITY_ERROR_STATUS2_A));
4278 	}
4279 	if (status & MEM_WRAP_INT_CAUSE_F) {
4280 		v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4281 		dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4282 			  "client %u to address %#x\n",
4283 			  MEM_WRAP_CLIENT_NUM_G(v),
4284 			  MEM_WRAP_ADDRESS_G(v) << 4);
4285 	}
4286 	t4_write_reg(adap, MA_INT_CAUSE_A, status);
4287 	t4_fatal_err(adap);
4288 }
4289 
4290 /*
4291  * SMB interrupt handler.
4292  */
smb_intr_handler(struct adapter * adap)4293 static void smb_intr_handler(struct adapter *adap)
4294 {
4295 	static const struct intr_info smb_intr_info[] = {
4296 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4297 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4298 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4299 		{ 0 }
4300 	};
4301 
4302 	if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4303 		t4_fatal_err(adap);
4304 }
4305 
4306 /*
4307  * NC-SI interrupt handler.
4308  */
ncsi_intr_handler(struct adapter * adap)4309 static void ncsi_intr_handler(struct adapter *adap)
4310 {
4311 	static const struct intr_info ncsi_intr_info[] = {
4312 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4313 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4314 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4315 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4316 		{ 0 }
4317 	};
4318 
4319 	if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4320 		t4_fatal_err(adap);
4321 }
4322 
4323 /*
4324  * XGMAC interrupt handler.
4325  */
xgmac_intr_handler(struct adapter * adap,int port)4326 static void xgmac_intr_handler(struct adapter *adap, int port)
4327 {
4328 	u32 v, int_cause_reg;
4329 
4330 	if (is_t4(adap->params.chip))
4331 		int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4332 	else
4333 		int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4334 
4335 	v = t4_read_reg(adap, int_cause_reg);
4336 
4337 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4338 	if (!v)
4339 		return;
4340 
4341 	if (v & TXFIFO_PRTY_ERR_F)
4342 		dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4343 			  port);
4344 	if (v & RXFIFO_PRTY_ERR_F)
4345 		dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4346 			  port);
4347 	t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4348 	t4_fatal_err(adap);
4349 }
4350 
4351 /*
4352  * PL interrupt handler.
4353  */
pl_intr_handler(struct adapter * adap)4354 static void pl_intr_handler(struct adapter *adap)
4355 {
4356 	static const struct intr_info pl_intr_info[] = {
4357 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
4358 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4359 		{ 0 }
4360 	};
4361 
4362 	if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4363 		t4_fatal_err(adap);
4364 }
4365 
4366 #define PF_INTR_MASK (PFSW_F)
4367 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4368 		EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4369 		CPL_SWITCH_F | SGE_F | ULP_TX_F)
4370 
4371 /**
4372  *	t4_slow_intr_handler - control path interrupt handler
4373  *	@adapter: the adapter
4374  *
4375  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4376  *	The designation 'slow' is because it involves register reads, while
4377  *	data interrupts typically don't involve any MMIOs.
4378  */
t4_slow_intr_handler(struct adapter * adapter)4379 int t4_slow_intr_handler(struct adapter *adapter)
4380 {
4381 	u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4382 
4383 	if (!(cause & GLBL_INTR_MASK))
4384 		return 0;
4385 	if (cause & CIM_F)
4386 		cim_intr_handler(adapter);
4387 	if (cause & MPS_F)
4388 		mps_intr_handler(adapter);
4389 	if (cause & NCSI_F)
4390 		ncsi_intr_handler(adapter);
4391 	if (cause & PL_F)
4392 		pl_intr_handler(adapter);
4393 	if (cause & SMB_F)
4394 		smb_intr_handler(adapter);
4395 	if (cause & XGMAC0_F)
4396 		xgmac_intr_handler(adapter, 0);
4397 	if (cause & XGMAC1_F)
4398 		xgmac_intr_handler(adapter, 1);
4399 	if (cause & XGMAC_KR0_F)
4400 		xgmac_intr_handler(adapter, 2);
4401 	if (cause & XGMAC_KR1_F)
4402 		xgmac_intr_handler(adapter, 3);
4403 	if (cause & PCIE_F)
4404 		pcie_intr_handler(adapter);
4405 	if (cause & MC_F)
4406 		mem_intr_handler(adapter, MEM_MC);
4407 	if (is_t5(adapter->params.chip) && (cause & MC1_F))
4408 		mem_intr_handler(adapter, MEM_MC1);
4409 	if (cause & EDC0_F)
4410 		mem_intr_handler(adapter, MEM_EDC0);
4411 	if (cause & EDC1_F)
4412 		mem_intr_handler(adapter, MEM_EDC1);
4413 	if (cause & LE_F)
4414 		le_intr_handler(adapter);
4415 	if (cause & TP_F)
4416 		tp_intr_handler(adapter);
4417 	if (cause & MA_F)
4418 		ma_intr_handler(adapter);
4419 	if (cause & PM_TX_F)
4420 		pmtx_intr_handler(adapter);
4421 	if (cause & PM_RX_F)
4422 		pmrx_intr_handler(adapter);
4423 	if (cause & ULP_RX_F)
4424 		ulprx_intr_handler(adapter);
4425 	if (cause & CPL_SWITCH_F)
4426 		cplsw_intr_handler(adapter);
4427 	if (cause & SGE_F)
4428 		sge_intr_handler(adapter);
4429 	if (cause & ULP_TX_F)
4430 		ulptx_intr_handler(adapter);
4431 
4432 	/* Clear the interrupts just processed for which we are the master. */
4433 	t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4434 	(void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4435 	return 1;
4436 }
4437 
4438 /**
4439  *	t4_intr_enable - enable interrupts
4440  *	@adapter: the adapter whose interrupts should be enabled
4441  *
4442  *	Enable PF-specific interrupts for the calling function and the top-level
4443  *	interrupt concentrator for global interrupts.  Interrupts are already
4444  *	enabled at each module,	here we just enable the roots of the interrupt
4445  *	hierarchies.
4446  *
4447  *	Note: this function should be called only when the driver manages
4448  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4449  *	function at a time should be doing this.
4450  */
t4_intr_enable(struct adapter * adapter)4451 void t4_intr_enable(struct adapter *adapter)
4452 {
4453 	u32 val = 0;
4454 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4455 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4456 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4457 
4458 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4459 		val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4460 	t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4461 		     ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4462 		     ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4463 		     ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4464 		     ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4465 		     ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4466 		     DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4467 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4468 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4469 }
4470 
4471 /**
4472  *	t4_intr_disable - disable interrupts
4473  *	@adapter: the adapter whose interrupts should be disabled
4474  *
4475  *	Disable interrupts.  We only disable the top-level interrupt
4476  *	concentrators.  The caller must be a PCI function managing global
4477  *	interrupts.
4478  */
t4_intr_disable(struct adapter * adapter)4479 void t4_intr_disable(struct adapter *adapter)
4480 {
4481 	u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4482 	u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4483 			SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4484 
4485 	t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4486 	t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4487 }
4488 
4489 /**
4490  *	t4_config_rss_range - configure a portion of the RSS mapping table
4491  *	@adapter: the adapter
4492  *	@mbox: mbox to use for the FW command
4493  *	@viid: virtual interface whose RSS subtable is to be written
4494  *	@start: start entry in the table to write
4495  *	@n: how many table entries to write
4496  *	@rspq: values for the response queue lookup table
4497  *	@nrspq: number of values in @rspq
4498  *
4499  *	Programs the selected part of the VI's RSS mapping table with the
4500  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4501  *	until the full table range is populated.
4502  *
4503  *	The caller must ensure the values in @rspq are in the range allowed for
4504  *	@viid.
4505  */
t4_config_rss_range(struct adapter * adapter,int mbox,unsigned int viid,int start,int n,const u16 * rspq,unsigned int nrspq)4506 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4507 			int start, int n, const u16 *rspq, unsigned int nrspq)
4508 {
4509 	int ret;
4510 	const u16 *rsp = rspq;
4511 	const u16 *rsp_end = rspq + nrspq;
4512 	struct fw_rss_ind_tbl_cmd cmd;
4513 
4514 	memset(&cmd, 0, sizeof(cmd));
4515 	cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4516 			       FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4517 			       FW_RSS_IND_TBL_CMD_VIID_V(viid));
4518 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4519 
4520 	/* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4521 	while (n > 0) {
4522 		int nq = min(n, 32);
4523 		__be32 *qp = &cmd.iq0_to_iq2;
4524 
4525 		cmd.niqid = cpu_to_be16(nq);
4526 		cmd.startidx = cpu_to_be16(start);
4527 
4528 		start += nq;
4529 		n -= nq;
4530 
4531 		while (nq > 0) {
4532 			unsigned int v;
4533 
4534 			v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4535 			if (++rsp >= rsp_end)
4536 				rsp = rspq;
4537 			v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4538 			if (++rsp >= rsp_end)
4539 				rsp = rspq;
4540 			v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4541 			if (++rsp >= rsp_end)
4542 				rsp = rspq;
4543 
4544 			*qp++ = cpu_to_be32(v);
4545 			nq -= 3;
4546 		}
4547 
4548 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4549 		if (ret)
4550 			return ret;
4551 	}
4552 	return 0;
4553 }
4554 
4555 /**
4556  *	t4_config_glbl_rss - configure the global RSS mode
4557  *	@adapter: the adapter
4558  *	@mbox: mbox to use for the FW command
4559  *	@mode: global RSS mode
4560  *	@flags: mode-specific flags
4561  *
4562  *	Sets the global RSS mode.
4563  */
t4_config_glbl_rss(struct adapter * adapter,int mbox,unsigned int mode,unsigned int flags)4564 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4565 		       unsigned int flags)
4566 {
4567 	struct fw_rss_glb_config_cmd c;
4568 
4569 	memset(&c, 0, sizeof(c));
4570 	c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4571 				    FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4572 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4573 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4574 		c.u.manual.mode_pkd =
4575 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4576 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4577 		c.u.basicvirtual.mode_pkd =
4578 			cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4579 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4580 	} else
4581 		return -EINVAL;
4582 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4583 }
4584 
4585 /**
4586  *	t4_config_vi_rss - configure per VI RSS settings
4587  *	@adapter: the adapter
4588  *	@mbox: mbox to use for the FW command
4589  *	@viid: the VI id
4590  *	@flags: RSS flags
4591  *	@defq: id of the default RSS queue for the VI.
4592  *
4593  *	Configures VI-specific RSS properties.
4594  */
t4_config_vi_rss(struct adapter * adapter,int mbox,unsigned int viid,unsigned int flags,unsigned int defq)4595 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4596 		     unsigned int flags, unsigned int defq)
4597 {
4598 	struct fw_rss_vi_config_cmd c;
4599 
4600 	memset(&c, 0, sizeof(c));
4601 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4602 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4603 				   FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4604 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4605 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4606 					FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4607 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4608 }
4609 
4610 /* Read an RSS table row */
rd_rss_row(struct adapter * adap,int row,u32 * val)4611 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4612 {
4613 	t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4614 	return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4615 				   5, 0, val);
4616 }
4617 
4618 /**
4619  *	t4_read_rss - read the contents of the RSS mapping table
4620  *	@adapter: the adapter
4621  *	@map: holds the contents of the RSS mapping table
4622  *
4623  *	Reads the contents of the RSS hash->queue mapping table.
4624  */
t4_read_rss(struct adapter * adapter,u16 * map)4625 int t4_read_rss(struct adapter *adapter, u16 *map)
4626 {
4627 	u32 val;
4628 	int i, ret;
4629 
4630 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4631 		ret = rd_rss_row(adapter, i, &val);
4632 		if (ret)
4633 			return ret;
4634 		*map++ = LKPTBLQUEUE0_G(val);
4635 		*map++ = LKPTBLQUEUE1_G(val);
4636 	}
4637 	return 0;
4638 }
4639 
t4_use_ldst(struct adapter * adap)4640 static unsigned int t4_use_ldst(struct adapter *adap)
4641 {
4642 	return (adap->flags & FW_OK) || !adap->use_bd;
4643 }
4644 
4645 /**
4646  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4647  *	@adap: the adapter
4648  *	@vals: where the indirect register values are stored/written
4649  *	@nregs: how many indirect registers to read/write
4650  *	@start_idx: index of first indirect register to read/write
4651  *	@rw: Read (1) or Write (0)
4652  *
4653  *	Access TP PIO registers through LDST
4654  */
t4_fw_tp_pio_rw(struct adapter * adap,u32 * vals,unsigned int nregs,unsigned int start_index,unsigned int rw)4655 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4656 			    unsigned int start_index, unsigned int rw)
4657 {
4658 	int ret, i;
4659 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4660 	struct fw_ldst_cmd c;
4661 
4662 	for (i = 0 ; i < nregs; i++) {
4663 		memset(&c, 0, sizeof(c));
4664 		c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4665 						FW_CMD_REQUEST_F |
4666 						(rw ? FW_CMD_READ_F :
4667 						      FW_CMD_WRITE_F) |
4668 						FW_LDST_CMD_ADDRSPACE_V(cmd));
4669 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4670 
4671 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4672 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4673 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4674 		if (!ret && rw)
4675 			vals[i] = be32_to_cpu(c.u.addrval.val);
4676 	}
4677 }
4678 
4679 /**
4680  *	t4_read_rss_key - read the global RSS key
4681  *	@adap: the adapter
4682  *	@key: 10-entry array holding the 320-bit RSS key
4683  *
4684  *	Reads the global 320-bit RSS key.
4685  */
t4_read_rss_key(struct adapter * adap,u32 * key)4686 void t4_read_rss_key(struct adapter *adap, u32 *key)
4687 {
4688 	if (t4_use_ldst(adap))
4689 		t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4690 	else
4691 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4692 				 TP_RSS_SECRET_KEY0_A);
4693 }
4694 
4695 /**
4696  *	t4_write_rss_key - program one of the RSS keys
4697  *	@adap: the adapter
4698  *	@key: 10-entry array holding the 320-bit RSS key
4699  *	@idx: which RSS key to write
4700  *
4701  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4702  *	0..15 the corresponding entry in the RSS key table is written,
4703  *	otherwise the global RSS key is written.
4704  */
t4_write_rss_key(struct adapter * adap,const u32 * key,int idx)4705 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4706 {
4707 	u8 rss_key_addr_cnt = 16;
4708 	u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4709 
4710 	/* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4711 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4712 	 * as index[5:4](upper 2) into key table
4713 	 */
4714 	if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4715 	    (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4716 		rss_key_addr_cnt = 32;
4717 
4718 	if (t4_use_ldst(adap))
4719 		t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4720 	else
4721 		t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4722 				  TP_RSS_SECRET_KEY0_A);
4723 
4724 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4725 		if (rss_key_addr_cnt > 16)
4726 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4727 				     KEYWRADDRX_V(idx >> 4) |
4728 				     T6_VFWRADDR_V(idx) | KEYWREN_F);
4729 		else
4730 			t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4731 				     KEYWRADDR_V(idx) | KEYWREN_F);
4732 	}
4733 }
4734 
4735 /**
4736  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4737  *	@adapter: the adapter
4738  *	@index: the entry in the PF RSS table to read
4739  *	@valp: where to store the returned value
4740  *
4741  *	Reads the PF RSS Configuration Table at the specified index and returns
4742  *	the value found there.
4743  */
t4_read_rss_pf_config(struct adapter * adapter,unsigned int index,u32 * valp)4744 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4745 			   u32 *valp)
4746 {
4747 	if (t4_use_ldst(adapter))
4748 		t4_fw_tp_pio_rw(adapter, valp, 1,
4749 				TP_RSS_PF0_CONFIG_A + index, 1);
4750 	else
4751 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4752 				 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4753 }
4754 
4755 /**
4756  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4757  *	@adapter: the adapter
4758  *	@index: the entry in the VF RSS table to read
4759  *	@vfl: where to store the returned VFL
4760  *	@vfh: where to store the returned VFH
4761  *
4762  *	Reads the VF RSS Configuration Table at the specified index and returns
4763  *	the (VFL, VFH) values found there.
4764  */
t4_read_rss_vf_config(struct adapter * adapter,unsigned int index,u32 * vfl,u32 * vfh)4765 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4766 			   u32 *vfl, u32 *vfh)
4767 {
4768 	u32 vrt, mask, data;
4769 
4770 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4771 		mask = VFWRADDR_V(VFWRADDR_M);
4772 		data = VFWRADDR_V(index);
4773 	} else {
4774 		 mask =  T6_VFWRADDR_V(T6_VFWRADDR_M);
4775 		 data = T6_VFWRADDR_V(index);
4776 	}
4777 
4778 	/* Request that the index'th VF Table values be read into VFL/VFH.
4779 	 */
4780 	vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4781 	vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4782 	vrt |= data | VFRDEN_F;
4783 	t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4784 
4785 	/* Grab the VFL/VFH values ...
4786 	 */
4787 	if (t4_use_ldst(adapter)) {
4788 		t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4789 		t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4790 	} else {
4791 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4792 				 vfl, 1, TP_RSS_VFL_CONFIG_A);
4793 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4794 				 vfh, 1, TP_RSS_VFH_CONFIG_A);
4795 	}
4796 }
4797 
4798 /**
4799  *	t4_read_rss_pf_map - read PF RSS Map
4800  *	@adapter: the adapter
4801  *
4802  *	Reads the PF RSS Map register and returns its value.
4803  */
t4_read_rss_pf_map(struct adapter * adapter)4804 u32 t4_read_rss_pf_map(struct adapter *adapter)
4805 {
4806 	u32 pfmap;
4807 
4808 	if (t4_use_ldst(adapter))
4809 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4810 	else
4811 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4812 				 &pfmap, 1, TP_RSS_PF_MAP_A);
4813 	return pfmap;
4814 }
4815 
4816 /**
4817  *	t4_read_rss_pf_mask - read PF RSS Mask
4818  *	@adapter: the adapter
4819  *
4820  *	Reads the PF RSS Mask register and returns its value.
4821  */
t4_read_rss_pf_mask(struct adapter * adapter)4822 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4823 {
4824 	u32 pfmask;
4825 
4826 	if (t4_use_ldst(adapter))
4827 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4828 	else
4829 		t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4830 				 &pfmask, 1, TP_RSS_PF_MSK_A);
4831 	return pfmask;
4832 }
4833 
4834 /**
4835  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4836  *	@adap: the adapter
4837  *	@v4: holds the TCP/IP counter values
4838  *	@v6: holds the TCP/IPv6 counter values
4839  *
4840  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4841  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4842  */
t4_tp_get_tcp_stats(struct adapter * adap,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)4843 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4844 			 struct tp_tcp_stats *v6)
4845 {
4846 	u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4847 
4848 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4849 #define STAT(x)     val[STAT_IDX(x)]
4850 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4851 
4852 	if (v4) {
4853 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4854 				 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4855 		v4->tcp_out_rsts = STAT(OUT_RST);
4856 		v4->tcp_in_segs  = STAT64(IN_SEG);
4857 		v4->tcp_out_segs = STAT64(OUT_SEG);
4858 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
4859 	}
4860 	if (v6) {
4861 		t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4862 				 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4863 		v6->tcp_out_rsts = STAT(OUT_RST);
4864 		v6->tcp_in_segs  = STAT64(IN_SEG);
4865 		v6->tcp_out_segs = STAT64(OUT_SEG);
4866 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
4867 	}
4868 #undef STAT64
4869 #undef STAT
4870 #undef STAT_IDX
4871 }
4872 
4873 /**
4874  *	t4_tp_get_err_stats - read TP's error MIB counters
4875  *	@adap: the adapter
4876  *	@st: holds the counter values
4877  *
4878  *	Returns the values of TP's error counters.
4879  */
t4_tp_get_err_stats(struct adapter * adap,struct tp_err_stats * st)4880 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4881 {
4882 	int nchan = adap->params.arch.nchan;
4883 
4884 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4885 			 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4886 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4887 			 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4888 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4889 			 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4890 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4891 			 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4892 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4893 			 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4894 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4895 			 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4896 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4897 			 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4898 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4899 			 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4900 
4901 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4902 			 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4903 }
4904 
4905 /**
4906  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
4907  *	@adap: the adapter
4908  *	@st: holds the counter values
4909  *
4910  *	Returns the values of TP's CPL counters.
4911  */
t4_tp_get_cpl_stats(struct adapter * adap,struct tp_cpl_stats * st)4912 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4913 {
4914 	int nchan = adap->params.arch.nchan;
4915 
4916 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4917 			 nchan, TP_MIB_CPL_IN_REQ_0_A);
4918 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4919 			 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4920 
4921 }
4922 
4923 /**
4924  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4925  *	@adap: the adapter
4926  *	@st: holds the counter values
4927  *
4928  *	Returns the values of TP's RDMA counters.
4929  */
t4_tp_get_rdma_stats(struct adapter * adap,struct tp_rdma_stats * st)4930 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4931 {
4932 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4933 			 2, TP_MIB_RQE_DFR_PKT_A);
4934 }
4935 
4936 /**
4937  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4938  *	@adap: the adapter
4939  *	@idx: the port index
4940  *	@st: holds the counter values
4941  *
4942  *	Returns the values of TP's FCoE counters for the selected port.
4943  */
t4_get_fcoe_stats(struct adapter * adap,unsigned int idx,struct tp_fcoe_stats * st)4944 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4945 		       struct tp_fcoe_stats *st)
4946 {
4947 	u32 val[2];
4948 
4949 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4950 			 1, TP_MIB_FCOE_DDP_0_A + idx);
4951 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4952 			 1, TP_MIB_FCOE_DROP_0_A + idx);
4953 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4954 			 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4955 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
4956 }
4957 
4958 /**
4959  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4960  *	@adap: the adapter
4961  *	@st: holds the counter values
4962  *
4963  *	Returns the values of TP's counters for non-TCP directly-placed packets.
4964  */
t4_get_usm_stats(struct adapter * adap,struct tp_usm_stats * st)4965 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4966 {
4967 	u32 val[4];
4968 
4969 	t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4970 			 TP_MIB_USM_PKTS_A);
4971 	st->frames = val[0];
4972 	st->drops = val[1];
4973 	st->octets = ((u64)val[2] << 32) | val[3];
4974 }
4975 
4976 /**
4977  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
4978  *	@adap: the adapter
4979  *	@mtus: where to store the MTU values
4980  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
4981  *
4982  *	Reads the HW path MTU table.
4983  */
t4_read_mtu_tbl(struct adapter * adap,u16 * mtus,u8 * mtu_log)4984 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4985 {
4986 	u32 v;
4987 	int i;
4988 
4989 	for (i = 0; i < NMTUS; ++i) {
4990 		t4_write_reg(adap, TP_MTU_TABLE_A,
4991 			     MTUINDEX_V(0xff) | MTUVALUE_V(i));
4992 		v = t4_read_reg(adap, TP_MTU_TABLE_A);
4993 		mtus[i] = MTUVALUE_G(v);
4994 		if (mtu_log)
4995 			mtu_log[i] = MTUWIDTH_G(v);
4996 	}
4997 }
4998 
4999 /**
5000  *	t4_read_cong_tbl - reads the congestion control table
5001  *	@adap: the adapter
5002  *	@incr: where to store the alpha values
5003  *
5004  *	Reads the additive increments programmed into the HW congestion
5005  *	control table.
5006  */
t4_read_cong_tbl(struct adapter * adap,u16 incr[NMTUS][NCCTRL_WIN])5007 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5008 {
5009 	unsigned int mtu, w;
5010 
5011 	for (mtu = 0; mtu < NMTUS; ++mtu)
5012 		for (w = 0; w < NCCTRL_WIN; ++w) {
5013 			t4_write_reg(adap, TP_CCTRL_TABLE_A,
5014 				     ROWINDEX_V(0xffff) | (mtu << 5) | w);
5015 			incr[mtu][w] = (u16)t4_read_reg(adap,
5016 						TP_CCTRL_TABLE_A) & 0x1fff;
5017 		}
5018 }
5019 
5020 /**
5021  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5022  *	@adap: the adapter
5023  *	@addr: the indirect TP register address
5024  *	@mask: specifies the field within the register to modify
5025  *	@val: new value for the field
5026  *
5027  *	Sets a field of an indirect TP register to the given value.
5028  */
t4_tp_wr_bits_indirect(struct adapter * adap,unsigned int addr,unsigned int mask,unsigned int val)5029 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5030 			    unsigned int mask, unsigned int val)
5031 {
5032 	t4_write_reg(adap, TP_PIO_ADDR_A, addr);
5033 	val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
5034 	t4_write_reg(adap, TP_PIO_DATA_A, val);
5035 }
5036 
5037 /**
5038  *	init_cong_ctrl - initialize congestion control parameters
5039  *	@a: the alpha values for congestion control
5040  *	@b: the beta values for congestion control
5041  *
5042  *	Initialize the congestion control parameters.
5043  */
init_cong_ctrl(unsigned short * a,unsigned short * b)5044 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5045 {
5046 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5047 	a[9] = 2;
5048 	a[10] = 3;
5049 	a[11] = 4;
5050 	a[12] = 5;
5051 	a[13] = 6;
5052 	a[14] = 7;
5053 	a[15] = 8;
5054 	a[16] = 9;
5055 	a[17] = 10;
5056 	a[18] = 14;
5057 	a[19] = 17;
5058 	a[20] = 21;
5059 	a[21] = 25;
5060 	a[22] = 30;
5061 	a[23] = 35;
5062 	a[24] = 45;
5063 	a[25] = 60;
5064 	a[26] = 80;
5065 	a[27] = 100;
5066 	a[28] = 200;
5067 	a[29] = 300;
5068 	a[30] = 400;
5069 	a[31] = 500;
5070 
5071 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5072 	b[9] = b[10] = 1;
5073 	b[11] = b[12] = 2;
5074 	b[13] = b[14] = b[15] = b[16] = 3;
5075 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5076 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5077 	b[28] = b[29] = 6;
5078 	b[30] = b[31] = 7;
5079 }
5080 
5081 /* The minimum additive increment value for the congestion control table */
5082 #define CC_MIN_INCR 2U
5083 
5084 /**
5085  *	t4_load_mtus - write the MTU and congestion control HW tables
5086  *	@adap: the adapter
5087  *	@mtus: the values for the MTU table
5088  *	@alpha: the values for the congestion control alpha parameter
5089  *	@beta: the values for the congestion control beta parameter
5090  *
5091  *	Write the HW MTU table with the supplied MTUs and the high-speed
5092  *	congestion control table with the supplied alpha, beta, and MTUs.
5093  *	We write the two tables together because the additive increments
5094  *	depend on the MTUs.
5095  */
t4_load_mtus(struct adapter * adap,const unsigned short * mtus,const unsigned short * alpha,const unsigned short * beta)5096 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5097 		  const unsigned short *alpha, const unsigned short *beta)
5098 {
5099 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5100 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5101 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5102 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5103 	};
5104 
5105 	unsigned int i, w;
5106 
5107 	for (i = 0; i < NMTUS; ++i) {
5108 		unsigned int mtu = mtus[i];
5109 		unsigned int log2 = fls(mtu);
5110 
5111 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5112 			log2--;
5113 		t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5114 			     MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5115 
5116 		for (w = 0; w < NCCTRL_WIN; ++w) {
5117 			unsigned int inc;
5118 
5119 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5120 				  CC_MIN_INCR);
5121 
5122 			t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5123 				     (w << 16) | (beta[w] << 13) | inc);
5124 		}
5125 	}
5126 }
5127 
5128 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5129  * clocks.  The formula is
5130  *
5131  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5132  *
5133  * which is equivalent to
5134  *
5135  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5136  */
chan_rate(struct adapter * adap,unsigned int bytes256)5137 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5138 {
5139 	u64 v = bytes256 * adap->params.vpd.cclk;
5140 
5141 	return v * 62 + v / 2;
5142 }
5143 
5144 /**
5145  *	t4_get_chan_txrate - get the current per channel Tx rates
5146  *	@adap: the adapter
5147  *	@nic_rate: rates for NIC traffic
5148  *	@ofld_rate: rates for offloaded traffic
5149  *
5150  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5151  *	for each channel.
5152  */
t4_get_chan_txrate(struct adapter * adap,u64 * nic_rate,u64 * ofld_rate)5153 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5154 {
5155 	u32 v;
5156 
5157 	v = t4_read_reg(adap, TP_TX_TRATE_A);
5158 	nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5159 	nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5160 	if (adap->params.arch.nchan == NCHAN) {
5161 		nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5162 		nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5163 	}
5164 
5165 	v = t4_read_reg(adap, TP_TX_ORATE_A);
5166 	ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5167 	ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5168 	if (adap->params.arch.nchan == NCHAN) {
5169 		ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5170 		ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5171 	}
5172 }
5173 
5174 /**
5175  *	t4_set_trace_filter - configure one of the tracing filters
5176  *	@adap: the adapter
5177  *	@tp: the desired trace filter parameters
5178  *	@idx: which filter to configure
5179  *	@enable: whether to enable or disable the filter
5180  *
5181  *	Configures one of the tracing filters available in HW.  If @enable is
5182  *	%0 @tp is not examined and may be %NULL. The user is responsible to
5183  *	set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5184  */
t4_set_trace_filter(struct adapter * adap,const struct trace_params * tp,int idx,int enable)5185 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5186 			int idx, int enable)
5187 {
5188 	int i, ofst = idx * 4;
5189 	u32 data_reg, mask_reg, cfg;
5190 	u32 multitrc = TRCMULTIFILTER_F;
5191 
5192 	if (!enable) {
5193 		t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5194 		return 0;
5195 	}
5196 
5197 	cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5198 	if (cfg & TRCMULTIFILTER_F) {
5199 		/* If multiple tracers are enabled, then maximum
5200 		 * capture size is 2.5KB (FIFO size of a single channel)
5201 		 * minus 2 flits for CPL_TRACE_PKT header.
5202 		 */
5203 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5204 			return -EINVAL;
5205 	} else {
5206 		/* If multiple tracers are disabled, to avoid deadlocks
5207 		 * maximum packet capture size of 9600 bytes is recommended.
5208 		 * Also in this mode, only trace0 can be enabled and running.
5209 		 */
5210 		multitrc = 0;
5211 		if (tp->snap_len > 9600 || idx)
5212 			return -EINVAL;
5213 	}
5214 
5215 	if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5216 	    tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5217 	    tp->min_len > TFMINPKTSIZE_M)
5218 		return -EINVAL;
5219 
5220 	/* stop the tracer we'll be changing */
5221 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5222 
5223 	idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5224 	data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5225 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5226 
5227 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5228 		t4_write_reg(adap, data_reg, tp->data[i]);
5229 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5230 	}
5231 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5232 		     TFCAPTUREMAX_V(tp->snap_len) |
5233 		     TFMINPKTSIZE_V(tp->min_len));
5234 	t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5235 		     TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5236 		     (is_t4(adap->params.chip) ?
5237 		     TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5238 		     T5_TFPORT_V(tp->port) | T5_TFEN_F |
5239 		     T5_TFINVERTMATCH_V(tp->invert)));
5240 
5241 	return 0;
5242 }
5243 
5244 /**
5245  *	t4_get_trace_filter - query one of the tracing filters
5246  *	@adap: the adapter
5247  *	@tp: the current trace filter parameters
5248  *	@idx: which trace filter to query
5249  *	@enabled: non-zero if the filter is enabled
5250  *
5251  *	Returns the current settings of one of the HW tracing filters.
5252  */
t4_get_trace_filter(struct adapter * adap,struct trace_params * tp,int idx,int * enabled)5253 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5254 			 int *enabled)
5255 {
5256 	u32 ctla, ctlb;
5257 	int i, ofst = idx * 4;
5258 	u32 data_reg, mask_reg;
5259 
5260 	ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5261 	ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5262 
5263 	if (is_t4(adap->params.chip)) {
5264 		*enabled = !!(ctla & TFEN_F);
5265 		tp->port =  TFPORT_G(ctla);
5266 		tp->invert = !!(ctla & TFINVERTMATCH_F);
5267 	} else {
5268 		*enabled = !!(ctla & T5_TFEN_F);
5269 		tp->port = T5_TFPORT_G(ctla);
5270 		tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5271 	}
5272 	tp->snap_len = TFCAPTUREMAX_G(ctlb);
5273 	tp->min_len = TFMINPKTSIZE_G(ctlb);
5274 	tp->skip_ofst = TFOFFSET_G(ctla);
5275 	tp->skip_len = TFLENGTH_G(ctla);
5276 
5277 	ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5278 	data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5279 	mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5280 
5281 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5282 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5283 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5284 	}
5285 }
5286 
5287 /**
5288  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5289  *	@adap: the adapter
5290  *	@cnt: where to store the count statistics
5291  *	@cycles: where to store the cycle statistics
5292  *
5293  *	Returns performance statistics from PMTX.
5294  */
t4_pmtx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])5295 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5296 {
5297 	int i;
5298 	u32 data[2];
5299 
5300 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5301 		t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5302 		cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5303 		if (is_t4(adap->params.chip)) {
5304 			cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5305 		} else {
5306 			t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5307 					 PM_TX_DBG_DATA_A, data, 2,
5308 					 PM_TX_DBG_STAT_MSB_A);
5309 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5310 		}
5311 	}
5312 }
5313 
5314 /**
5315  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5316  *	@adap: the adapter
5317  *	@cnt: where to store the count statistics
5318  *	@cycles: where to store the cycle statistics
5319  *
5320  *	Returns performance statistics from PMRX.
5321  */
t4_pmrx_get_stats(struct adapter * adap,u32 cnt[],u64 cycles[])5322 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5323 {
5324 	int i;
5325 	u32 data[2];
5326 
5327 	for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5328 		t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5329 		cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5330 		if (is_t4(adap->params.chip)) {
5331 			cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5332 		} else {
5333 			t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5334 					 PM_RX_DBG_DATA_A, data, 2,
5335 					 PM_RX_DBG_STAT_MSB_A);
5336 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5337 		}
5338 	}
5339 }
5340 
5341 /**
5342  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5343  *	@adap: the adapter
5344  *	@idx: the port index
5345  *
5346  *	Returns a bitmap indicating which MPS buffer groups are associated
5347  *	with the given port.  Bit i is set if buffer group i is used by the
5348  *	port.
5349  */
t4_get_mps_bg_map(struct adapter * adap,int idx)5350 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5351 {
5352 	u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5353 
5354 	if (n == 0)
5355 		return idx == 0 ? 0xf : 0;
5356 	/* In T6 (which is a 2 port card),
5357 	 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5358 	 * For 2 port T4/T5 adapter,
5359 	 * port 0 is mapped to channel 0 and 1,
5360 	 * port 1 is mapped to channel 2 and 3.
5361 	 */
5362 	if ((n == 1) &&
5363 	    (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5364 		return idx < 2 ? (3 << (2 * idx)) : 0;
5365 	return 1 << idx;
5366 }
5367 
5368 /**
5369  *      t4_get_port_type_description - return Port Type string description
5370  *      @port_type: firmware Port Type enumeration
5371  */
t4_get_port_type_description(enum fw_port_type port_type)5372 const char *t4_get_port_type_description(enum fw_port_type port_type)
5373 {
5374 	static const char *const port_type_description[] = {
5375 		"R XFI",
5376 		"R XAUI",
5377 		"T SGMII",
5378 		"T XFI",
5379 		"T XAUI",
5380 		"KX4",
5381 		"CX4",
5382 		"KX",
5383 		"KR",
5384 		"R SFP+",
5385 		"KR/KX",
5386 		"KR/KX/KX4",
5387 		"R QSFP_10G",
5388 		"R QSA",
5389 		"R QSFP",
5390 		"R BP40_BA",
5391 	};
5392 
5393 	if (port_type < ARRAY_SIZE(port_type_description))
5394 		return port_type_description[port_type];
5395 	return "UNKNOWN";
5396 }
5397 
5398 /**
5399  *      t4_get_port_stats_offset - collect port stats relative to a previous
5400  *                                 snapshot
5401  *      @adap: The adapter
5402  *      @idx: The port
5403  *      @stats: Current stats to fill
5404  *      @offset: Previous stats snapshot
5405  */
t4_get_port_stats_offset(struct adapter * adap,int idx,struct port_stats * stats,struct port_stats * offset)5406 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5407 			      struct port_stats *stats,
5408 			      struct port_stats *offset)
5409 {
5410 	u64 *s, *o;
5411 	int i;
5412 
5413 	t4_get_port_stats(adap, idx, stats);
5414 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5415 			i < (sizeof(struct port_stats) / sizeof(u64));
5416 			i++, s++, o++)
5417 		*s -= *o;
5418 }
5419 
5420 /**
5421  *	t4_get_port_stats - collect port statistics
5422  *	@adap: the adapter
5423  *	@idx: the port index
5424  *	@p: the stats structure to fill
5425  *
5426  *	Collect statistics related to the given port from HW.
5427  */
t4_get_port_stats(struct adapter * adap,int idx,struct port_stats * p)5428 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5429 {
5430 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5431 
5432 #define GET_STAT(name) \
5433 	t4_read_reg64(adap, \
5434 	(is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5435 	T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5436 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5437 
5438 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
5439 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
5440 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
5441 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
5442 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
5443 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
5444 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
5445 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
5446 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
5447 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
5448 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
5449 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5450 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
5451 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
5452 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
5453 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
5454 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
5455 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
5456 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
5457 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
5458 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
5459 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
5460 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
5461 
5462 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
5463 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
5464 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
5465 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
5466 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
5467 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
5468 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5469 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
5470 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
5471 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
5472 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
5473 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
5474 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
5475 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
5476 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
5477 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
5478 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5479 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
5480 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
5481 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
5482 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
5483 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
5484 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
5485 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
5486 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
5487 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
5488 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
5489 
5490 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5491 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5492 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5493 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5494 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5495 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5496 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5497 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5498 
5499 #undef GET_STAT
5500 #undef GET_STAT_COM
5501 }
5502 
5503 /**
5504  *	t4_get_lb_stats - collect loopback port statistics
5505  *	@adap: the adapter
5506  *	@idx: the loopback port index
5507  *	@p: the stats structure to fill
5508  *
5509  *	Return HW statistics for the given loopback port.
5510  */
t4_get_lb_stats(struct adapter * adap,int idx,struct lb_port_stats * p)5511 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5512 {
5513 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5514 
5515 #define GET_STAT(name) \
5516 	t4_read_reg64(adap, \
5517 	(is_t4(adap->params.chip) ? \
5518 	PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5519 	T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5520 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5521 
5522 	p->octets           = GET_STAT(BYTES);
5523 	p->frames           = GET_STAT(FRAMES);
5524 	p->bcast_frames     = GET_STAT(BCAST);
5525 	p->mcast_frames     = GET_STAT(MCAST);
5526 	p->ucast_frames     = GET_STAT(UCAST);
5527 	p->error_frames     = GET_STAT(ERROR);
5528 
5529 	p->frames_64        = GET_STAT(64B);
5530 	p->frames_65_127    = GET_STAT(65B_127B);
5531 	p->frames_128_255   = GET_STAT(128B_255B);
5532 	p->frames_256_511   = GET_STAT(256B_511B);
5533 	p->frames_512_1023  = GET_STAT(512B_1023B);
5534 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
5535 	p->frames_1519_max  = GET_STAT(1519B_MAX);
5536 	p->drop             = GET_STAT(DROP_FRAMES);
5537 
5538 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5539 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5540 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5541 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5542 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5543 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5544 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5545 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5546 
5547 #undef GET_STAT
5548 #undef GET_STAT_COM
5549 }
5550 
5551 /*     t4_mk_filtdelwr - create a delete filter WR
5552  *     @ftid: the filter ID
5553  *     @wr: the filter work request to populate
5554  *     @qid: ingress queue to receive the delete notification
5555  *
5556  *     Creates a filter work request to delete the supplied filter.  If @qid is
5557  *     negative the delete notification is suppressed.
5558  */
t4_mk_filtdelwr(unsigned int ftid,struct fw_filter_wr * wr,int qid)5559 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5560 {
5561 	memset(wr, 0, sizeof(*wr));
5562 	wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5563 	wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5564 	wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5565 				    FW_FILTER_WR_NOREPLY_V(qid < 0));
5566 	wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5567 	if (qid >= 0)
5568 		wr->rx_chan_rx_rpl_iq =
5569 			cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5570 }
5571 
5572 #define INIT_CMD(var, cmd, rd_wr) do { \
5573 	(var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5574 					FW_CMD_REQUEST_F | \
5575 					FW_CMD_##rd_wr##_F); \
5576 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5577 } while (0)
5578 
t4_fwaddrspace_write(struct adapter * adap,unsigned int mbox,u32 addr,u32 val)5579 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5580 			  u32 addr, u32 val)
5581 {
5582 	u32 ldst_addrspace;
5583 	struct fw_ldst_cmd c;
5584 
5585 	memset(&c, 0, sizeof(c));
5586 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5587 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5588 					FW_CMD_REQUEST_F |
5589 					FW_CMD_WRITE_F |
5590 					ldst_addrspace);
5591 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5592 	c.u.addrval.addr = cpu_to_be32(addr);
5593 	c.u.addrval.val = cpu_to_be32(val);
5594 
5595 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5596 }
5597 
5598 /**
5599  *	t4_mdio_rd - read a PHY register through MDIO
5600  *	@adap: the adapter
5601  *	@mbox: mailbox to use for the FW command
5602  *	@phy_addr: the PHY address
5603  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5604  *	@reg: the register to read
5605  *	@valp: where to store the value
5606  *
5607  *	Issues a FW command through the given mailbox to read a PHY register.
5608  */
t4_mdio_rd(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 * valp)5609 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5610 	       unsigned int mmd, unsigned int reg, u16 *valp)
5611 {
5612 	int ret;
5613 	u32 ldst_addrspace;
5614 	struct fw_ldst_cmd c;
5615 
5616 	memset(&c, 0, sizeof(c));
5617 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5618 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5619 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5620 					ldst_addrspace);
5621 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5622 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5623 					 FW_LDST_CMD_MMD_V(mmd));
5624 	c.u.mdio.raddr = cpu_to_be16(reg);
5625 
5626 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5627 	if (ret == 0)
5628 		*valp = be16_to_cpu(c.u.mdio.rval);
5629 	return ret;
5630 }
5631 
5632 /**
5633  *	t4_mdio_wr - write a PHY register through MDIO
5634  *	@adap: the adapter
5635  *	@mbox: mailbox to use for the FW command
5636  *	@phy_addr: the PHY address
5637  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5638  *	@reg: the register to write
5639  *	@valp: value to write
5640  *
5641  *	Issues a FW command through the given mailbox to write a PHY register.
5642  */
t4_mdio_wr(struct adapter * adap,unsigned int mbox,unsigned int phy_addr,unsigned int mmd,unsigned int reg,u16 val)5643 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5644 	       unsigned int mmd, unsigned int reg, u16 val)
5645 {
5646 	u32 ldst_addrspace;
5647 	struct fw_ldst_cmd c;
5648 
5649 	memset(&c, 0, sizeof(c));
5650 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5651 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5652 					FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5653 					ldst_addrspace);
5654 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5655 	c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5656 					 FW_LDST_CMD_MMD_V(mmd));
5657 	c.u.mdio.raddr = cpu_to_be16(reg);
5658 	c.u.mdio.rval = cpu_to_be16(val);
5659 
5660 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5661 }
5662 
5663 /**
5664  *	t4_sge_decode_idma_state - decode the idma state
5665  *	@adap: the adapter
5666  *	@state: the state idma is stuck in
5667  */
t4_sge_decode_idma_state(struct adapter * adapter,int state)5668 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5669 {
5670 	static const char * const t4_decode[] = {
5671 		"IDMA_IDLE",
5672 		"IDMA_PUSH_MORE_CPL_FIFO",
5673 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5674 		"Not used",
5675 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5676 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5677 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5678 		"IDMA_SEND_FIFO_TO_IMSG",
5679 		"IDMA_FL_REQ_DATA_FL_PREP",
5680 		"IDMA_FL_REQ_DATA_FL",
5681 		"IDMA_FL_DROP",
5682 		"IDMA_FL_H_REQ_HEADER_FL",
5683 		"IDMA_FL_H_SEND_PCIEHDR",
5684 		"IDMA_FL_H_PUSH_CPL_FIFO",
5685 		"IDMA_FL_H_SEND_CPL",
5686 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5687 		"IDMA_FL_H_SEND_IP_HDR",
5688 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5689 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5690 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5691 		"IDMA_FL_D_SEND_PCIEHDR",
5692 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5693 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5694 		"IDMA_FL_SEND_PCIEHDR",
5695 		"IDMA_FL_PUSH_CPL_FIFO",
5696 		"IDMA_FL_SEND_CPL",
5697 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5698 		"IDMA_FL_SEND_PAYLOAD",
5699 		"IDMA_FL_REQ_NEXT_DATA_FL",
5700 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5701 		"IDMA_FL_SEND_PADDING",
5702 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5703 		"IDMA_FL_SEND_FIFO_TO_IMSG",
5704 		"IDMA_FL_REQ_DATAFL_DONE",
5705 		"IDMA_FL_REQ_HEADERFL_DONE",
5706 	};
5707 	static const char * const t5_decode[] = {
5708 		"IDMA_IDLE",
5709 		"IDMA_ALMOST_IDLE",
5710 		"IDMA_PUSH_MORE_CPL_FIFO",
5711 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5712 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5713 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5714 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5715 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5716 		"IDMA_SEND_FIFO_TO_IMSG",
5717 		"IDMA_FL_REQ_DATA_FL",
5718 		"IDMA_FL_DROP",
5719 		"IDMA_FL_DROP_SEND_INC",
5720 		"IDMA_FL_H_REQ_HEADER_FL",
5721 		"IDMA_FL_H_SEND_PCIEHDR",
5722 		"IDMA_FL_H_PUSH_CPL_FIFO",
5723 		"IDMA_FL_H_SEND_CPL",
5724 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5725 		"IDMA_FL_H_SEND_IP_HDR",
5726 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5727 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5728 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5729 		"IDMA_FL_D_SEND_PCIEHDR",
5730 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5731 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5732 		"IDMA_FL_SEND_PCIEHDR",
5733 		"IDMA_FL_PUSH_CPL_FIFO",
5734 		"IDMA_FL_SEND_CPL",
5735 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5736 		"IDMA_FL_SEND_PAYLOAD",
5737 		"IDMA_FL_REQ_NEXT_DATA_FL",
5738 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5739 		"IDMA_FL_SEND_PADDING",
5740 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5741 	};
5742 	static const char * const t6_decode[] = {
5743 		"IDMA_IDLE",
5744 		"IDMA_PUSH_MORE_CPL_FIFO",
5745 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5746 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5747 		"IDMA_PHYSADDR_SEND_PCIEHDR",
5748 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5749 		"IDMA_PHYSADDR_SEND_PAYLOAD",
5750 		"IDMA_FL_REQ_DATA_FL",
5751 		"IDMA_FL_DROP",
5752 		"IDMA_FL_DROP_SEND_INC",
5753 		"IDMA_FL_H_REQ_HEADER_FL",
5754 		"IDMA_FL_H_SEND_PCIEHDR",
5755 		"IDMA_FL_H_PUSH_CPL_FIFO",
5756 		"IDMA_FL_H_SEND_CPL",
5757 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
5758 		"IDMA_FL_H_SEND_IP_HDR",
5759 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
5760 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
5761 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
5762 		"IDMA_FL_D_SEND_PCIEHDR",
5763 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5764 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
5765 		"IDMA_FL_SEND_PCIEHDR",
5766 		"IDMA_FL_PUSH_CPL_FIFO",
5767 		"IDMA_FL_SEND_CPL",
5768 		"IDMA_FL_SEND_PAYLOAD_FIRST",
5769 		"IDMA_FL_SEND_PAYLOAD",
5770 		"IDMA_FL_REQ_NEXT_DATA_FL",
5771 		"IDMA_FL_SEND_NEXT_PCIEHDR",
5772 		"IDMA_FL_SEND_PADDING",
5773 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
5774 	};
5775 	static const u32 sge_regs[] = {
5776 		SGE_DEBUG_DATA_LOW_INDEX_2_A,
5777 		SGE_DEBUG_DATA_LOW_INDEX_3_A,
5778 		SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5779 	};
5780 	const char **sge_idma_decode;
5781 	int sge_idma_decode_nstates;
5782 	int i;
5783 	unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5784 
5785 	/* Select the right set of decode strings to dump depending on the
5786 	 * adapter chip type.
5787 	 */
5788 	switch (chip_version) {
5789 	case CHELSIO_T4:
5790 		sge_idma_decode = (const char **)t4_decode;
5791 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5792 		break;
5793 
5794 	case CHELSIO_T5:
5795 		sge_idma_decode = (const char **)t5_decode;
5796 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5797 		break;
5798 
5799 	case CHELSIO_T6:
5800 		sge_idma_decode = (const char **)t6_decode;
5801 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5802 		break;
5803 
5804 	default:
5805 		dev_err(adapter->pdev_dev,
5806 			"Unsupported chip version %d\n", chip_version);
5807 		return;
5808 	}
5809 
5810 	if (is_t4(adapter->params.chip)) {
5811 		sge_idma_decode = (const char **)t4_decode;
5812 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5813 	} else {
5814 		sge_idma_decode = (const char **)t5_decode;
5815 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5816 	}
5817 
5818 	if (state < sge_idma_decode_nstates)
5819 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5820 	else
5821 		CH_WARN(adapter, "idma state %d unknown\n", state);
5822 
5823 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5824 		CH_WARN(adapter, "SGE register %#x value %#x\n",
5825 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5826 }
5827 
5828 /**
5829  *      t4_sge_ctxt_flush - flush the SGE context cache
5830  *      @adap: the adapter
5831  *      @mbox: mailbox to use for the FW command
5832  *
5833  *      Issues a FW command through the given mailbox to flush the
5834  *      SGE context cache.
5835  */
t4_sge_ctxt_flush(struct adapter * adap,unsigned int mbox)5836 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5837 {
5838 	int ret;
5839 	u32 ldst_addrspace;
5840 	struct fw_ldst_cmd c;
5841 
5842 	memset(&c, 0, sizeof(c));
5843 	ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5844 	c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5845 					FW_CMD_REQUEST_F | FW_CMD_READ_F |
5846 					ldst_addrspace);
5847 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5848 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5849 
5850 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5851 	return ret;
5852 }
5853 
5854 /**
5855  *      t4_fw_hello - establish communication with FW
5856  *      @adap: the adapter
5857  *      @mbox: mailbox to use for the FW command
5858  *      @evt_mbox: mailbox to receive async FW events
5859  *      @master: specifies the caller's willingness to be the device master
5860  *	@state: returns the current device state (if non-NULL)
5861  *
5862  *	Issues a command to establish communication with FW.  Returns either
5863  *	an error (negative integer) or the mailbox of the Master PF.
5864  */
t4_fw_hello(struct adapter * adap,unsigned int mbox,unsigned int evt_mbox,enum dev_master master,enum dev_state * state)5865 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5866 		enum dev_master master, enum dev_state *state)
5867 {
5868 	int ret;
5869 	struct fw_hello_cmd c;
5870 	u32 v;
5871 	unsigned int master_mbox;
5872 	int retries = FW_CMD_HELLO_RETRIES;
5873 
5874 retry:
5875 	memset(&c, 0, sizeof(c));
5876 	INIT_CMD(c, HELLO, WRITE);
5877 	c.err_to_clearinit = cpu_to_be32(
5878 		FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5879 		FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5880 		FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5881 					mbox : FW_HELLO_CMD_MBMASTER_M) |
5882 		FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5883 		FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5884 		FW_HELLO_CMD_CLEARINIT_F);
5885 
5886 	/*
5887 	 * Issue the HELLO command to the firmware.  If it's not successful
5888 	 * but indicates that we got a "busy" or "timeout" condition, retry
5889 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
5890 	 * retry limit, check to see if the firmware left us any error
5891 	 * information and report that if so.
5892 	 */
5893 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5894 	if (ret < 0) {
5895 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5896 			goto retry;
5897 		if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5898 			t4_report_fw_error(adap);
5899 		return ret;
5900 	}
5901 
5902 	v = be32_to_cpu(c.err_to_clearinit);
5903 	master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5904 	if (state) {
5905 		if (v & FW_HELLO_CMD_ERR_F)
5906 			*state = DEV_STATE_ERR;
5907 		else if (v & FW_HELLO_CMD_INIT_F)
5908 			*state = DEV_STATE_INIT;
5909 		else
5910 			*state = DEV_STATE_UNINIT;
5911 	}
5912 
5913 	/*
5914 	 * If we're not the Master PF then we need to wait around for the
5915 	 * Master PF Driver to finish setting up the adapter.
5916 	 *
5917 	 * Note that we also do this wait if we're a non-Master-capable PF and
5918 	 * there is no current Master PF; a Master PF may show up momentarily
5919 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
5920 	 * OS loads lots of different drivers rapidly at the same time).  In
5921 	 * this case, the Master PF returned by the firmware will be
5922 	 * PCIE_FW_MASTER_M so the test below will work ...
5923 	 */
5924 	if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5925 	    master_mbox != mbox) {
5926 		int waiting = FW_CMD_HELLO_TIMEOUT;
5927 
5928 		/*
5929 		 * Wait for the firmware to either indicate an error or
5930 		 * initialized state.  If we see either of these we bail out
5931 		 * and report the issue to the caller.  If we exhaust the
5932 		 * "hello timeout" and we haven't exhausted our retries, try
5933 		 * again.  Otherwise bail with a timeout error.
5934 		 */
5935 		for (;;) {
5936 			u32 pcie_fw;
5937 
5938 			msleep(50);
5939 			waiting -= 50;
5940 
5941 			/*
5942 			 * If neither Error nor Initialialized are indicated
5943 			 * by the firmware keep waiting till we exaust our
5944 			 * timeout ... and then retry if we haven't exhausted
5945 			 * our retries ...
5946 			 */
5947 			pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5948 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5949 				if (waiting <= 0) {
5950 					if (retries-- > 0)
5951 						goto retry;
5952 
5953 					return -ETIMEDOUT;
5954 				}
5955 				continue;
5956 			}
5957 
5958 			/*
5959 			 * We either have an Error or Initialized condition
5960 			 * report errors preferentially.
5961 			 */
5962 			if (state) {
5963 				if (pcie_fw & PCIE_FW_ERR_F)
5964 					*state = DEV_STATE_ERR;
5965 				else if (pcie_fw & PCIE_FW_INIT_F)
5966 					*state = DEV_STATE_INIT;
5967 			}
5968 
5969 			/*
5970 			 * If we arrived before a Master PF was selected and
5971 			 * there's not a valid Master PF, grab its identity
5972 			 * for our caller.
5973 			 */
5974 			if (master_mbox == PCIE_FW_MASTER_M &&
5975 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
5976 				master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5977 			break;
5978 		}
5979 	}
5980 
5981 	return master_mbox;
5982 }
5983 
5984 /**
5985  *	t4_fw_bye - end communication with FW
5986  *	@adap: the adapter
5987  *	@mbox: mailbox to use for the FW command
5988  *
5989  *	Issues a command to terminate communication with FW.
5990  */
t4_fw_bye(struct adapter * adap,unsigned int mbox)5991 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5992 {
5993 	struct fw_bye_cmd c;
5994 
5995 	memset(&c, 0, sizeof(c));
5996 	INIT_CMD(c, BYE, WRITE);
5997 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5998 }
5999 
6000 /**
6001  *	t4_init_cmd - ask FW to initialize the device
6002  *	@adap: the adapter
6003  *	@mbox: mailbox to use for the FW command
6004  *
6005  *	Issues a command to FW to partially initialize the device.  This
6006  *	performs initialization that generally doesn't depend on user input.
6007  */
t4_early_init(struct adapter * adap,unsigned int mbox)6008 int t4_early_init(struct adapter *adap, unsigned int mbox)
6009 {
6010 	struct fw_initialize_cmd c;
6011 
6012 	memset(&c, 0, sizeof(c));
6013 	INIT_CMD(c, INITIALIZE, WRITE);
6014 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6015 }
6016 
6017 /**
6018  *	t4_fw_reset - issue a reset to FW
6019  *	@adap: the adapter
6020  *	@mbox: mailbox to use for the FW command
6021  *	@reset: specifies the type of reset to perform
6022  *
6023  *	Issues a reset command of the specified type to FW.
6024  */
t4_fw_reset(struct adapter * adap,unsigned int mbox,int reset)6025 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6026 {
6027 	struct fw_reset_cmd c;
6028 
6029 	memset(&c, 0, sizeof(c));
6030 	INIT_CMD(c, RESET, WRITE);
6031 	c.val = cpu_to_be32(reset);
6032 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6033 }
6034 
6035 /**
6036  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6037  *	@adap: the adapter
6038  *	@mbox: mailbox to use for the FW RESET command (if desired)
6039  *	@force: force uP into RESET even if FW RESET command fails
6040  *
6041  *	Issues a RESET command to firmware (if desired) with a HALT indication
6042  *	and then puts the microprocessor into RESET state.  The RESET command
6043  *	will only be issued if a legitimate mailbox is provided (mbox <=
6044  *	PCIE_FW_MASTER_M).
6045  *
6046  *	This is generally used in order for the host to safely manipulate the
6047  *	adapter without fear of conflicting with whatever the firmware might
6048  *	be doing.  The only way out of this state is to RESTART the firmware
6049  *	...
6050  */
t4_fw_halt(struct adapter * adap,unsigned int mbox,int force)6051 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6052 {
6053 	int ret = 0;
6054 
6055 	/*
6056 	 * If a legitimate mailbox is provided, issue a RESET command
6057 	 * with a HALT indication.
6058 	 */
6059 	if (mbox <= PCIE_FW_MASTER_M) {
6060 		struct fw_reset_cmd c;
6061 
6062 		memset(&c, 0, sizeof(c));
6063 		INIT_CMD(c, RESET, WRITE);
6064 		c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6065 		c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6066 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6067 	}
6068 
6069 	/*
6070 	 * Normally we won't complete the operation if the firmware RESET
6071 	 * command fails but if our caller insists we'll go ahead and put the
6072 	 * uP into RESET.  This can be useful if the firmware is hung or even
6073 	 * missing ...  We'll have to take the risk of putting the uP into
6074 	 * RESET without the cooperation of firmware in that case.
6075 	 *
6076 	 * We also force the firmware's HALT flag to be on in case we bypassed
6077 	 * the firmware RESET command above or we're dealing with old firmware
6078 	 * which doesn't have the HALT capability.  This will serve as a flag
6079 	 * for the incoming firmware to know that it's coming out of a HALT
6080 	 * rather than a RESET ... if it's new enough to understand that ...
6081 	 */
6082 	if (ret == 0 || force) {
6083 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6084 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6085 				 PCIE_FW_HALT_F);
6086 	}
6087 
6088 	/*
6089 	 * And we always return the result of the firmware RESET command
6090 	 * even when we force the uP into RESET ...
6091 	 */
6092 	return ret;
6093 }
6094 
6095 /**
6096  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6097  *	@adap: the adapter
6098  *	@reset: if we want to do a RESET to restart things
6099  *
6100  *	Restart firmware previously halted by t4_fw_halt().  On successful
6101  *	return the previous PF Master remains as the new PF Master and there
6102  *	is no need to issue a new HELLO command, etc.
6103  *
6104  *	We do this in two ways:
6105  *
6106  *	 1. If we're dealing with newer firmware we'll simply want to take
6107  *	    the chip's microprocessor out of RESET.  This will cause the
6108  *	    firmware to start up from its start vector.  And then we'll loop
6109  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6110  *	    reset to 0) or we timeout.
6111  *
6112  *	 2. If we're dealing with older firmware then we'll need to RESET
6113  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6114  *	    flag and automatically RESET itself on startup.
6115  */
t4_fw_restart(struct adapter * adap,unsigned int mbox,int reset)6116 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6117 {
6118 	if (reset) {
6119 		/*
6120 		 * Since we're directing the RESET instead of the firmware
6121 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6122 		 * bit.
6123 		 */
6124 		t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6125 
6126 		/*
6127 		 * If we've been given a valid mailbox, first try to get the
6128 		 * firmware to do the RESET.  If that works, great and we can
6129 		 * return success.  Otherwise, if we haven't been given a
6130 		 * valid mailbox or the RESET command failed, fall back to
6131 		 * hitting the chip with a hammer.
6132 		 */
6133 		if (mbox <= PCIE_FW_MASTER_M) {
6134 			t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6135 			msleep(100);
6136 			if (t4_fw_reset(adap, mbox,
6137 					PIORST_F | PIORSTMODE_F) == 0)
6138 				return 0;
6139 		}
6140 
6141 		t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6142 		msleep(2000);
6143 	} else {
6144 		int ms;
6145 
6146 		t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6147 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6148 			if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6149 				return 0;
6150 			msleep(100);
6151 			ms += 100;
6152 		}
6153 		return -ETIMEDOUT;
6154 	}
6155 	return 0;
6156 }
6157 
6158 /**
6159  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6160  *	@adap: the adapter
6161  *	@mbox: mailbox to use for the FW RESET command (if desired)
6162  *	@fw_data: the firmware image to write
6163  *	@size: image size
6164  *	@force: force upgrade even if firmware doesn't cooperate
6165  *
6166  *	Perform all of the steps necessary for upgrading an adapter's
6167  *	firmware image.  Normally this requires the cooperation of the
6168  *	existing firmware in order to halt all existing activities
6169  *	but if an invalid mailbox token is passed in we skip that step
6170  *	(though we'll still put the adapter microprocessor into RESET in
6171  *	that case).
6172  *
6173  *	On successful return the new firmware will have been loaded and
6174  *	the adapter will have been fully RESET losing all previous setup
6175  *	state.  On unsuccessful return the adapter may be completely hosed ...
6176  *	positive errno indicates that the adapter is ~probably~ intact, a
6177  *	negative errno indicates that things are looking bad ...
6178  */
t4_fw_upgrade(struct adapter * adap,unsigned int mbox,const u8 * fw_data,unsigned int size,int force)6179 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6180 		  const u8 *fw_data, unsigned int size, int force)
6181 {
6182 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6183 	int reset, ret;
6184 
6185 	if (!t4_fw_matches_chip(adap, fw_hdr))
6186 		return -EINVAL;
6187 
6188 	/* Disable FW_OK flag so that mbox commands with FW_OK flag set
6189 	 * wont be sent when we are flashing FW.
6190 	 */
6191 	adap->flags &= ~FW_OK;
6192 
6193 	ret = t4_fw_halt(adap, mbox, force);
6194 	if (ret < 0 && !force)
6195 		goto out;
6196 
6197 	ret = t4_load_fw(adap, fw_data, size);
6198 	if (ret < 0)
6199 		goto out;
6200 
6201 	/*
6202 	 * Older versions of the firmware don't understand the new
6203 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6204 	 * restart.  So for newly loaded older firmware we'll have to do the
6205 	 * RESET for it so it starts up on a clean slate.  We can tell if
6206 	 * the newly loaded firmware will handle this right by checking
6207 	 * its header flags to see if it advertises the capability.
6208 	 */
6209 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6210 	ret = t4_fw_restart(adap, mbox, reset);
6211 
6212 	/* Grab potentially new Firmware Device Log parameters so we can see
6213 	 * how healthy the new Firmware is.  It's okay to contact the new
6214 	 * Firmware for these parameters even though, as far as it's
6215 	 * concerned, we've never said "HELLO" to it ...
6216 	 */
6217 	(void)t4_init_devlog_params(adap);
6218 out:
6219 	adap->flags |= FW_OK;
6220 	return ret;
6221 }
6222 
6223 /**
6224  *	t4_fl_pkt_align - return the fl packet alignment
6225  *	@adap: the adapter
6226  *
6227  *	T4 has a single field to specify the packing and padding boundary.
6228  *	T5 onwards has separate fields for this and hence the alignment for
6229  *	next packet offset is maximum of these two.
6230  *
6231  */
t4_fl_pkt_align(struct adapter * adap)6232 int t4_fl_pkt_align(struct adapter *adap)
6233 {
6234 	u32 sge_control, sge_control2;
6235 	unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6236 
6237 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6238 
6239 	/* T4 uses a single control field to specify both the PCIe Padding and
6240 	 * Packing Boundary.  T5 introduced the ability to specify these
6241 	 * separately.  The actual Ingress Packet Data alignment boundary
6242 	 * within Packed Buffer Mode is the maximum of these two
6243 	 * specifications.  (Note that it makes no real practical sense to
6244 	 * have the Pading Boudary be larger than the Packing Boundary but you
6245 	 * could set the chip up that way and, in fact, legacy T4 code would
6246 	 * end doing this because it would initialize the Padding Boundary and
6247 	 * leave the Packing Boundary initialized to 0 (16 bytes).)
6248 	 * Padding Boundary values in T6 starts from 8B,
6249 	 * where as it is 32B for T4 and T5.
6250 	 */
6251 	if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6252 		ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6253 	else
6254 		ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6255 
6256 	ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6257 
6258 	fl_align = ingpadboundary;
6259 	if (!is_t4(adap->params.chip)) {
6260 		/* T5 has a weird interpretation of one of the PCIe Packing
6261 		 * Boundary values.  No idea why ...
6262 		 */
6263 		sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6264 		ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6265 		if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6266 			ingpackboundary = 16;
6267 		else
6268 			ingpackboundary = 1 << (ingpackboundary +
6269 						INGPACKBOUNDARY_SHIFT_X);
6270 
6271 		fl_align = max(ingpadboundary, ingpackboundary);
6272 	}
6273 	return fl_align;
6274 }
6275 
6276 /**
6277  *	t4_fixup_host_params - fix up host-dependent parameters
6278  *	@adap: the adapter
6279  *	@page_size: the host's Base Page Size
6280  *	@cache_line_size: the host's Cache Line Size
6281  *
6282  *	Various registers in T4 contain values which are dependent on the
6283  *	host's Base Page and Cache Line Sizes.  This function will fix all of
6284  *	those registers with the appropriate values as passed in ...
6285  */
t4_fixup_host_params(struct adapter * adap,unsigned int page_size,unsigned int cache_line_size)6286 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6287 			 unsigned int cache_line_size)
6288 {
6289 	unsigned int page_shift = fls(page_size) - 1;
6290 	unsigned int sge_hps = page_shift - 10;
6291 	unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6292 	unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6293 	unsigned int fl_align_log = fls(fl_align) - 1;
6294 	unsigned int ingpad;
6295 
6296 	t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6297 		     HOSTPAGESIZEPF0_V(sge_hps) |
6298 		     HOSTPAGESIZEPF1_V(sge_hps) |
6299 		     HOSTPAGESIZEPF2_V(sge_hps) |
6300 		     HOSTPAGESIZEPF3_V(sge_hps) |
6301 		     HOSTPAGESIZEPF4_V(sge_hps) |
6302 		     HOSTPAGESIZEPF5_V(sge_hps) |
6303 		     HOSTPAGESIZEPF6_V(sge_hps) |
6304 		     HOSTPAGESIZEPF7_V(sge_hps));
6305 
6306 	if (is_t4(adap->params.chip)) {
6307 		t4_set_reg_field(adap, SGE_CONTROL_A,
6308 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6309 				 EGRSTATUSPAGESIZE_F,
6310 				 INGPADBOUNDARY_V(fl_align_log -
6311 						  INGPADBOUNDARY_SHIFT_X) |
6312 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6313 	} else {
6314 		/* T5 introduced the separation of the Free List Padding and
6315 		 * Packing Boundaries.  Thus, we can select a smaller Padding
6316 		 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6317 		 * Bandwidth, and use a Packing Boundary which is large enough
6318 		 * to avoid false sharing between CPUs, etc.
6319 		 *
6320 		 * For the PCI Link, the smaller the Padding Boundary the
6321 		 * better.  For the Memory Controller, a smaller Padding
6322 		 * Boundary is better until we cross under the Memory Line
6323 		 * Size (the minimum unit of transfer to/from Memory).  If we
6324 		 * have a Padding Boundary which is smaller than the Memory
6325 		 * Line Size, that'll involve a Read-Modify-Write cycle on the
6326 		 * Memory Controller which is never good.  For T5 the smallest
6327 		 * Padding Boundary which we can select is 32 bytes which is
6328 		 * larger than any known Memory Controller Line Size so we'll
6329 		 * use that.
6330 		 *
6331 		 * T5 has a different interpretation of the "0" value for the
6332 		 * Packing Boundary.  This corresponds to 16 bytes instead of
6333 		 * the expected 32 bytes.  We never have a Packing Boundary
6334 		 * less than 32 bytes so we can't use that special value but
6335 		 * on the other hand, if we wanted 32 bytes, the best we can
6336 		 * really do is 64 bytes.
6337 		*/
6338 		if (fl_align <= 32) {
6339 			fl_align = 64;
6340 			fl_align_log = 6;
6341 		}
6342 
6343 		if (is_t5(adap->params.chip))
6344 			ingpad = INGPCIEBOUNDARY_32B_X;
6345 		else
6346 			ingpad = T6_INGPADBOUNDARY_32B_X;
6347 
6348 		t4_set_reg_field(adap, SGE_CONTROL_A,
6349 				 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6350 				 EGRSTATUSPAGESIZE_F,
6351 				 INGPADBOUNDARY_V(ingpad) |
6352 				 EGRSTATUSPAGESIZE_V(stat_len != 64));
6353 		t4_set_reg_field(adap, SGE_CONTROL2_A,
6354 				 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6355 				 INGPACKBOUNDARY_V(fl_align_log -
6356 						   INGPACKBOUNDARY_SHIFT_X));
6357 	}
6358 	/*
6359 	 * Adjust various SGE Free List Host Buffer Sizes.
6360 	 *
6361 	 * This is something of a crock since we're using fixed indices into
6362 	 * the array which are also known by the sge.c code and the T4
6363 	 * Firmware Configuration File.  We need to come up with a much better
6364 	 * approach to managing this array.  For now, the first four entries
6365 	 * are:
6366 	 *
6367 	 *   0: Host Page Size
6368 	 *   1: 64KB
6369 	 *   2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6370 	 *   3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6371 	 *
6372 	 * For the single-MTU buffers in unpacked mode we need to include
6373 	 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6374 	 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6375 	 * Padding boundary.  All of these are accommodated in the Factory
6376 	 * Default Firmware Configuration File but we need to adjust it for
6377 	 * this host's cache line size.
6378 	 */
6379 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6380 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6381 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6382 		     & ~(fl_align-1));
6383 	t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6384 		     (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6385 		     & ~(fl_align-1));
6386 
6387 	t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6388 
6389 	return 0;
6390 }
6391 
6392 /**
6393  *	t4_fw_initialize - ask FW to initialize the device
6394  *	@adap: the adapter
6395  *	@mbox: mailbox to use for the FW command
6396  *
6397  *	Issues a command to FW to partially initialize the device.  This
6398  *	performs initialization that generally doesn't depend on user input.
6399  */
t4_fw_initialize(struct adapter * adap,unsigned int mbox)6400 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6401 {
6402 	struct fw_initialize_cmd c;
6403 
6404 	memset(&c, 0, sizeof(c));
6405 	INIT_CMD(c, INITIALIZE, WRITE);
6406 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6407 }
6408 
6409 /**
6410  *	t4_query_params_rw - query FW or device parameters
6411  *	@adap: the adapter
6412  *	@mbox: mailbox to use for the FW command
6413  *	@pf: the PF
6414  *	@vf: the VF
6415  *	@nparams: the number of parameters
6416  *	@params: the parameter names
6417  *	@val: the parameter values
6418  *	@rw: Write and read flag
6419  *
6420  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6421  *	queried at once.
6422  */
t4_query_params_rw(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val,int rw)6423 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6424 		       unsigned int vf, unsigned int nparams, const u32 *params,
6425 		       u32 *val, int rw)
6426 {
6427 	int i, ret;
6428 	struct fw_params_cmd c;
6429 	__be32 *p = &c.param[0].mnem;
6430 
6431 	if (nparams > 7)
6432 		return -EINVAL;
6433 
6434 	memset(&c, 0, sizeof(c));
6435 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6436 				  FW_CMD_REQUEST_F | FW_CMD_READ_F |
6437 				  FW_PARAMS_CMD_PFN_V(pf) |
6438 				  FW_PARAMS_CMD_VFN_V(vf));
6439 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6440 
6441 	for (i = 0; i < nparams; i++) {
6442 		*p++ = cpu_to_be32(*params++);
6443 		if (rw)
6444 			*p = cpu_to_be32(*(val + i));
6445 		p++;
6446 	}
6447 
6448 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6449 	if (ret == 0)
6450 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6451 			*val++ = be32_to_cpu(*p);
6452 	return ret;
6453 }
6454 
t4_query_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,u32 * val)6455 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6456 		    unsigned int vf, unsigned int nparams, const u32 *params,
6457 		    u32 *val)
6458 {
6459 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6460 }
6461 
6462 /**
6463  *      t4_set_params_timeout - sets FW or device parameters
6464  *      @adap: the adapter
6465  *      @mbox: mailbox to use for the FW command
6466  *      @pf: the PF
6467  *      @vf: the VF
6468  *      @nparams: the number of parameters
6469  *      @params: the parameter names
6470  *      @val: the parameter values
6471  *      @timeout: the timeout time
6472  *
6473  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6474  *      specified at once.
6475  */
t4_set_params_timeout(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val,int timeout)6476 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6477 			  unsigned int pf, unsigned int vf,
6478 			  unsigned int nparams, const u32 *params,
6479 			  const u32 *val, int timeout)
6480 {
6481 	struct fw_params_cmd c;
6482 	__be32 *p = &c.param[0].mnem;
6483 
6484 	if (nparams > 7)
6485 		return -EINVAL;
6486 
6487 	memset(&c, 0, sizeof(c));
6488 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6489 				  FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6490 				  FW_PARAMS_CMD_PFN_V(pf) |
6491 				  FW_PARAMS_CMD_VFN_V(vf));
6492 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6493 
6494 	while (nparams--) {
6495 		*p++ = cpu_to_be32(*params++);
6496 		*p++ = cpu_to_be32(*val++);
6497 	}
6498 
6499 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6500 }
6501 
6502 /**
6503  *	t4_set_params - sets FW or device parameters
6504  *	@adap: the adapter
6505  *	@mbox: mailbox to use for the FW command
6506  *	@pf: the PF
6507  *	@vf: the VF
6508  *	@nparams: the number of parameters
6509  *	@params: the parameter names
6510  *	@val: the parameter values
6511  *
6512  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6513  *	specified at once.
6514  */
t4_set_params(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int nparams,const u32 * params,const u32 * val)6515 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6516 		  unsigned int vf, unsigned int nparams, const u32 *params,
6517 		  const u32 *val)
6518 {
6519 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6520 				     FW_CMD_MAX_TIMEOUT);
6521 }
6522 
6523 /**
6524  *	t4_cfg_pfvf - configure PF/VF resource limits
6525  *	@adap: the adapter
6526  *	@mbox: mailbox to use for the FW command
6527  *	@pf: the PF being configured
6528  *	@vf: the VF being configured
6529  *	@txq: the max number of egress queues
6530  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6531  *	@rxqi: the max number of interrupt-capable ingress queues
6532  *	@rxq: the max number of interruptless ingress queues
6533  *	@tc: the PCI traffic class
6534  *	@vi: the max number of virtual interfaces
6535  *	@cmask: the channel access rights mask for the PF/VF
6536  *	@pmask: the port access rights mask for the PF/VF
6537  *	@nexact: the maximum number of exact MPS filters
6538  *	@rcaps: read capabilities
6539  *	@wxcaps: write/execute capabilities
6540  *
6541  *	Configures resource limits and capabilities for a physical or virtual
6542  *	function.
6543  */
t4_cfg_pfvf(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int txq,unsigned int txq_eth_ctrl,unsigned int rxqi,unsigned int rxq,unsigned int tc,unsigned int vi,unsigned int cmask,unsigned int pmask,unsigned int nexact,unsigned int rcaps,unsigned int wxcaps)6544 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6545 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6546 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6547 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6548 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6549 {
6550 	struct fw_pfvf_cmd c;
6551 
6552 	memset(&c, 0, sizeof(c));
6553 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6554 				  FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6555 				  FW_PFVF_CMD_VFN_V(vf));
6556 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6557 	c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6558 				     FW_PFVF_CMD_NIQ_V(rxq));
6559 	c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6560 				    FW_PFVF_CMD_PMASK_V(pmask) |
6561 				    FW_PFVF_CMD_NEQ_V(txq));
6562 	c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6563 				      FW_PFVF_CMD_NVI_V(vi) |
6564 				      FW_PFVF_CMD_NEXACTF_V(nexact));
6565 	c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6566 					FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6567 					FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6568 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6569 }
6570 
6571 /**
6572  *	t4_alloc_vi - allocate a virtual interface
6573  *	@adap: the adapter
6574  *	@mbox: mailbox to use for the FW command
6575  *	@port: physical port associated with the VI
6576  *	@pf: the PF owning the VI
6577  *	@vf: the VF owning the VI
6578  *	@nmac: number of MAC addresses needed (1 to 5)
6579  *	@mac: the MAC addresses of the VI
6580  *	@rss_size: size of RSS table slice associated with this VI
6581  *
6582  *	Allocates a virtual interface for the given physical port.  If @mac is
6583  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6584  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6585  *	stored consecutively so the space needed is @nmac * 6 bytes.
6586  *	Returns a negative error number or the non-negative VI id.
6587  */
t4_alloc_vi(struct adapter * adap,unsigned int mbox,unsigned int port,unsigned int pf,unsigned int vf,unsigned int nmac,u8 * mac,unsigned int * rss_size)6588 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6589 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6590 		unsigned int *rss_size)
6591 {
6592 	int ret;
6593 	struct fw_vi_cmd c;
6594 
6595 	memset(&c, 0, sizeof(c));
6596 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6597 				  FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6598 				  FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6599 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6600 	c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6601 	c.nmac = nmac - 1;
6602 
6603 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6604 	if (ret)
6605 		return ret;
6606 
6607 	if (mac) {
6608 		memcpy(mac, c.mac, sizeof(c.mac));
6609 		switch (nmac) {
6610 		case 5:
6611 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6612 		case 4:
6613 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6614 		case 3:
6615 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6616 		case 2:
6617 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6618 		}
6619 	}
6620 	if (rss_size)
6621 		*rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6622 	return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6623 }
6624 
6625 /**
6626  *	t4_free_vi - free a virtual interface
6627  *	@adap: the adapter
6628  *	@mbox: mailbox to use for the FW command
6629  *	@pf: the PF owning the VI
6630  *	@vf: the VF owning the VI
6631  *	@viid: virtual interface identifiler
6632  *
6633  *	Free a previously allocated virtual interface.
6634  */
t4_free_vi(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int viid)6635 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6636 	       unsigned int vf, unsigned int viid)
6637 {
6638 	struct fw_vi_cmd c;
6639 
6640 	memset(&c, 0, sizeof(c));
6641 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6642 				  FW_CMD_REQUEST_F |
6643 				  FW_CMD_EXEC_F |
6644 				  FW_VI_CMD_PFN_V(pf) |
6645 				  FW_VI_CMD_VFN_V(vf));
6646 	c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6647 	c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6648 
6649 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6650 }
6651 
6652 /**
6653  *	t4_set_rxmode - set Rx properties of a virtual interface
6654  *	@adap: the adapter
6655  *	@mbox: mailbox to use for the FW command
6656  *	@viid: the VI id
6657  *	@mtu: the new MTU or -1
6658  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6659  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6660  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6661  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6662  *	@sleep_ok: if true we may sleep while awaiting command completion
6663  *
6664  *	Sets Rx properties of a virtual interface.
6665  */
t4_set_rxmode(struct adapter * adap,unsigned int mbox,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)6666 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6667 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6668 		  bool sleep_ok)
6669 {
6670 	struct fw_vi_rxmode_cmd c;
6671 
6672 	/* convert to FW values */
6673 	if (mtu < 0)
6674 		mtu = FW_RXMODE_MTU_NO_CHG;
6675 	if (promisc < 0)
6676 		promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6677 	if (all_multi < 0)
6678 		all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6679 	if (bcast < 0)
6680 		bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6681 	if (vlanex < 0)
6682 		vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6683 
6684 	memset(&c, 0, sizeof(c));
6685 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6686 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6687 				   FW_VI_RXMODE_CMD_VIID_V(viid));
6688 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6689 	c.mtu_to_vlanexen =
6690 		cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6691 			    FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6692 			    FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6693 			    FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6694 			    FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6695 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6696 }
6697 
6698 /**
6699  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6700  *	@adap: the adapter
6701  *	@mbox: mailbox to use for the FW command
6702  *	@viid: the VI id
6703  *	@free: if true any existing filters for this VI id are first removed
6704  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6705  *	@addr: the MAC address(es)
6706  *	@idx: where to store the index of each allocated filter
6707  *	@hash: pointer to hash address filter bitmap
6708  *	@sleep_ok: call is allowed to sleep
6709  *
6710  *	Allocates an exact-match filter for each of the supplied addresses and
6711  *	sets it to the corresponding address.  If @idx is not %NULL it should
6712  *	have at least @naddr entries, each of which will be set to the index of
6713  *	the filter allocated for the corresponding MAC address.  If a filter
6714  *	could not be allocated for an address its index is set to 0xffff.
6715  *	If @hash is not %NULL addresses that fail to allocate an exact filter
6716  *	are hashed and update the hash filter bitmap pointed at by @hash.
6717  *
6718  *	Returns a negative error number or the number of filters allocated.
6719  */
t4_alloc_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)6720 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6721 		      unsigned int viid, bool free, unsigned int naddr,
6722 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6723 {
6724 	int offset, ret = 0;
6725 	struct fw_vi_mac_cmd c;
6726 	unsigned int nfilters = 0;
6727 	unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6728 	unsigned int rem = naddr;
6729 
6730 	if (naddr > max_naddr)
6731 		return -EINVAL;
6732 
6733 	for (offset = 0; offset < naddr ; /**/) {
6734 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6735 					 rem : ARRAY_SIZE(c.u.exact));
6736 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6737 						     u.exact[fw_naddr]), 16);
6738 		struct fw_vi_mac_exact *p;
6739 		int i;
6740 
6741 		memset(&c, 0, sizeof(c));
6742 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6743 					   FW_CMD_REQUEST_F |
6744 					   FW_CMD_WRITE_F |
6745 					   FW_CMD_EXEC_V(free) |
6746 					   FW_VI_MAC_CMD_VIID_V(viid));
6747 		c.freemacs_to_len16 =
6748 			cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6749 				    FW_CMD_LEN16_V(len16));
6750 
6751 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6752 			p->valid_to_idx =
6753 				cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6754 					    FW_VI_MAC_CMD_IDX_V(
6755 						    FW_VI_MAC_ADD_MAC));
6756 			memcpy(p->macaddr, addr[offset + i],
6757 			       sizeof(p->macaddr));
6758 		}
6759 
6760 		/* It's okay if we run out of space in our MAC address arena.
6761 		 * Some of the addresses we submit may get stored so we need
6762 		 * to run through the reply to see what the results were ...
6763 		 */
6764 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6765 		if (ret && ret != -FW_ENOMEM)
6766 			break;
6767 
6768 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6769 			u16 index = FW_VI_MAC_CMD_IDX_G(
6770 					be16_to_cpu(p->valid_to_idx));
6771 
6772 			if (idx)
6773 				idx[offset + i] = (index >= max_naddr ?
6774 						   0xffff : index);
6775 			if (index < max_naddr)
6776 				nfilters++;
6777 			else if (hash)
6778 				*hash |= (1ULL <<
6779 					  hash_mac_addr(addr[offset + i]));
6780 		}
6781 
6782 		free = false;
6783 		offset += fw_naddr;
6784 		rem -= fw_naddr;
6785 	}
6786 
6787 	if (ret == 0 || ret == -FW_ENOMEM)
6788 		ret = nfilters;
6789 	return ret;
6790 }
6791 
6792 /**
6793  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
6794  *	@adap: the adapter
6795  *	@mbox: mailbox to use for the FW command
6796  *	@viid: the VI id
6797  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6798  *	@addr: the MAC address(es)
6799  *	@sleep_ok: call is allowed to sleep
6800  *
6801  *	Frees the exact-match filter for each of the supplied addresses
6802  *
6803  *	Returns a negative error number or the number of filters freed.
6804  */
t4_free_mac_filt(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)6805 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6806 		     unsigned int viid, unsigned int naddr,
6807 		     const u8 **addr, bool sleep_ok)
6808 {
6809 	int offset, ret = 0;
6810 	struct fw_vi_mac_cmd c;
6811 	unsigned int nfilters = 0;
6812 	unsigned int max_naddr = is_t4(adap->params.chip) ?
6813 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
6814 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6815 	unsigned int rem = naddr;
6816 
6817 	if (naddr > max_naddr)
6818 		return -EINVAL;
6819 
6820 	for (offset = 0; offset < (int)naddr ; /**/) {
6821 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6822 					 ? rem
6823 					 : ARRAY_SIZE(c.u.exact));
6824 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6825 						     u.exact[fw_naddr]), 16);
6826 		struct fw_vi_mac_exact *p;
6827 		int i;
6828 
6829 		memset(&c, 0, sizeof(c));
6830 		c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6831 				     FW_CMD_REQUEST_F |
6832 				     FW_CMD_WRITE_F |
6833 				     FW_CMD_EXEC_V(0) |
6834 				     FW_VI_MAC_CMD_VIID_V(viid));
6835 		c.freemacs_to_len16 =
6836 				cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6837 					    FW_CMD_LEN16_V(len16));
6838 
6839 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6840 			p->valid_to_idx = cpu_to_be16(
6841 				FW_VI_MAC_CMD_VALID_F |
6842 				FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6843 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6844 		}
6845 
6846 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6847 		if (ret)
6848 			break;
6849 
6850 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6851 			u16 index = FW_VI_MAC_CMD_IDX_G(
6852 						be16_to_cpu(p->valid_to_idx));
6853 
6854 			if (index < max_naddr)
6855 				nfilters++;
6856 		}
6857 
6858 		offset += fw_naddr;
6859 		rem -= fw_naddr;
6860 	}
6861 
6862 	if (ret == 0)
6863 		ret = nfilters;
6864 	return ret;
6865 }
6866 
6867 /**
6868  *	t4_change_mac - modifies the exact-match filter for a MAC address
6869  *	@adap: the adapter
6870  *	@mbox: mailbox to use for the FW command
6871  *	@viid: the VI id
6872  *	@idx: index of existing filter for old value of MAC address, or -1
6873  *	@addr: the new MAC address value
6874  *	@persist: whether a new MAC allocation should be persistent
6875  *	@add_smt: if true also add the address to the HW SMT
6876  *
6877  *	Modifies an exact-match filter and sets it to the new MAC address.
6878  *	Note that in general it is not possible to modify the value of a given
6879  *	filter so the generic way to modify an address filter is to free the one
6880  *	being used by the old address value and allocate a new filter for the
6881  *	new address value.  @idx can be -1 if the address is a new addition.
6882  *
6883  *	Returns a negative error number or the index of the filter with the new
6884  *	MAC value.
6885  */
t4_change_mac(struct adapter * adap,unsigned int mbox,unsigned int viid,int idx,const u8 * addr,bool persist,bool add_smt)6886 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6887 		  int idx, const u8 *addr, bool persist, bool add_smt)
6888 {
6889 	int ret, mode;
6890 	struct fw_vi_mac_cmd c;
6891 	struct fw_vi_mac_exact *p = c.u.exact;
6892 	unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6893 
6894 	if (idx < 0)                             /* new allocation */
6895 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6896 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6897 
6898 	memset(&c, 0, sizeof(c));
6899 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6900 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6901 				   FW_VI_MAC_CMD_VIID_V(viid));
6902 	c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6903 	p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6904 				      FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6905 				      FW_VI_MAC_CMD_IDX_V(idx));
6906 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
6907 
6908 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6909 	if (ret == 0) {
6910 		ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6911 		if (ret >= max_mac_addr)
6912 			ret = -ENOMEM;
6913 	}
6914 	return ret;
6915 }
6916 
6917 /**
6918  *	t4_set_addr_hash - program the MAC inexact-match hash filter
6919  *	@adap: the adapter
6920  *	@mbox: mailbox to use for the FW command
6921  *	@viid: the VI id
6922  *	@ucast: whether the hash filter should also match unicast addresses
6923  *	@vec: the value to be written to the hash filter
6924  *	@sleep_ok: call is allowed to sleep
6925  *
6926  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
6927  */
t4_set_addr_hash(struct adapter * adap,unsigned int mbox,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)6928 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6929 		     bool ucast, u64 vec, bool sleep_ok)
6930 {
6931 	struct fw_vi_mac_cmd c;
6932 
6933 	memset(&c, 0, sizeof(c));
6934 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6935 				   FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6936 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6937 	c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6938 					  FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6939 					  FW_CMD_LEN16_V(1));
6940 	c.u.hash.hashvec = cpu_to_be64(vec);
6941 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6942 }
6943 
6944 /**
6945  *      t4_enable_vi_params - enable/disable a virtual interface
6946  *      @adap: the adapter
6947  *      @mbox: mailbox to use for the FW command
6948  *      @viid: the VI id
6949  *      @rx_en: 1=enable Rx, 0=disable Rx
6950  *      @tx_en: 1=enable Tx, 0=disable Tx
6951  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
6952  *
6953  *      Enables/disables a virtual interface.  Note that setting DCB Enable
6954  *      only makes sense when enabling a Virtual Interface ...
6955  */
t4_enable_vi_params(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en,bool dcb_en)6956 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6957 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6958 {
6959 	struct fw_vi_enable_cmd c;
6960 
6961 	memset(&c, 0, sizeof(c));
6962 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6963 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6964 				   FW_VI_ENABLE_CMD_VIID_V(viid));
6965 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6966 				     FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6967 				     FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6968 				     FW_LEN16(c));
6969 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6970 }
6971 
6972 /**
6973  *	t4_enable_vi - enable/disable a virtual interface
6974  *	@adap: the adapter
6975  *	@mbox: mailbox to use for the FW command
6976  *	@viid: the VI id
6977  *	@rx_en: 1=enable Rx, 0=disable Rx
6978  *	@tx_en: 1=enable Tx, 0=disable Tx
6979  *
6980  *	Enables/disables a virtual interface.
6981  */
t4_enable_vi(struct adapter * adap,unsigned int mbox,unsigned int viid,bool rx_en,bool tx_en)6982 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6983 		 bool rx_en, bool tx_en)
6984 {
6985 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6986 }
6987 
6988 /**
6989  *	t4_identify_port - identify a VI's port by blinking its LED
6990  *	@adap: the adapter
6991  *	@mbox: mailbox to use for the FW command
6992  *	@viid: the VI id
6993  *	@nblinks: how many times to blink LED at 2.5 Hz
6994  *
6995  *	Identifies a VI's port by blinking its LED.
6996  */
t4_identify_port(struct adapter * adap,unsigned int mbox,unsigned int viid,unsigned int nblinks)6997 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6998 		     unsigned int nblinks)
6999 {
7000 	struct fw_vi_enable_cmd c;
7001 
7002 	memset(&c, 0, sizeof(c));
7003 	c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
7004 				   FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7005 				   FW_VI_ENABLE_CMD_VIID_V(viid));
7006 	c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
7007 	c.blinkdur = cpu_to_be16(nblinks);
7008 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7009 }
7010 
7011 /**
7012  *	t4_iq_stop - stop an ingress queue and its FLs
7013  *	@adap: the adapter
7014  *	@mbox: mailbox to use for the FW command
7015  *	@pf: the PF owning the queues
7016  *	@vf: the VF owning the queues
7017  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7018  *	@iqid: ingress queue id
7019  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7020  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7021  *
7022  *	Stops an ingress queue and its associated FLs, if any.  This causes
7023  *	any current or future data/messages destined for these queues to be
7024  *	tossed.
7025  */
t4_iq_stop(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)7026 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7027 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7028 	       unsigned int fl0id, unsigned int fl1id)
7029 {
7030 	struct fw_iq_cmd c;
7031 
7032 	memset(&c, 0, sizeof(c));
7033 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7034 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7035 				  FW_IQ_CMD_VFN_V(vf));
7036 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
7037 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7038 	c.iqid = cpu_to_be16(iqid);
7039 	c.fl0id = cpu_to_be16(fl0id);
7040 	c.fl1id = cpu_to_be16(fl1id);
7041 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7042 }
7043 
7044 /**
7045  *	t4_iq_free - free an ingress queue and its FLs
7046  *	@adap: the adapter
7047  *	@mbox: mailbox to use for the FW command
7048  *	@pf: the PF owning the queues
7049  *	@vf: the VF owning the queues
7050  *	@iqtype: the ingress queue type
7051  *	@iqid: ingress queue id
7052  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7053  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7054  *
7055  *	Frees an ingress queue and its associated FLs, if any.
7056  */
t4_iq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)7057 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7058 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7059 	       unsigned int fl0id, unsigned int fl1id)
7060 {
7061 	struct fw_iq_cmd c;
7062 
7063 	memset(&c, 0, sizeof(c));
7064 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7065 				  FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7066 				  FW_IQ_CMD_VFN_V(vf));
7067 	c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7068 	c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7069 	c.iqid = cpu_to_be16(iqid);
7070 	c.fl0id = cpu_to_be16(fl0id);
7071 	c.fl1id = cpu_to_be16(fl1id);
7072 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7073 }
7074 
7075 /**
7076  *	t4_eth_eq_free - free an Ethernet egress queue
7077  *	@adap: the adapter
7078  *	@mbox: mailbox to use for the FW command
7079  *	@pf: the PF owning the queue
7080  *	@vf: the VF owning the queue
7081  *	@eqid: egress queue id
7082  *
7083  *	Frees an Ethernet egress queue.
7084  */
t4_eth_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)7085 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7086 		   unsigned int vf, unsigned int eqid)
7087 {
7088 	struct fw_eq_eth_cmd c;
7089 
7090 	memset(&c, 0, sizeof(c));
7091 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7092 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7093 				  FW_EQ_ETH_CMD_PFN_V(pf) |
7094 				  FW_EQ_ETH_CMD_VFN_V(vf));
7095 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7096 	c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
7097 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7098 }
7099 
7100 /**
7101  *	t4_ctrl_eq_free - free a control egress queue
7102  *	@adap: the adapter
7103  *	@mbox: mailbox to use for the FW command
7104  *	@pf: the PF owning the queue
7105  *	@vf: the VF owning the queue
7106  *	@eqid: egress queue id
7107  *
7108  *	Frees a control egress queue.
7109  */
t4_ctrl_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)7110 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7111 		    unsigned int vf, unsigned int eqid)
7112 {
7113 	struct fw_eq_ctrl_cmd c;
7114 
7115 	memset(&c, 0, sizeof(c));
7116 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7117 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7118 				  FW_EQ_CTRL_CMD_PFN_V(pf) |
7119 				  FW_EQ_CTRL_CMD_VFN_V(vf));
7120 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7121 	c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7122 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7123 }
7124 
7125 /**
7126  *	t4_ofld_eq_free - free an offload egress queue
7127  *	@adap: the adapter
7128  *	@mbox: mailbox to use for the FW command
7129  *	@pf: the PF owning the queue
7130  *	@vf: the VF owning the queue
7131  *	@eqid: egress queue id
7132  *
7133  *	Frees a control egress queue.
7134  */
t4_ofld_eq_free(struct adapter * adap,unsigned int mbox,unsigned int pf,unsigned int vf,unsigned int eqid)7135 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7136 		    unsigned int vf, unsigned int eqid)
7137 {
7138 	struct fw_eq_ofld_cmd c;
7139 
7140 	memset(&c, 0, sizeof(c));
7141 	c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7142 				  FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7143 				  FW_EQ_OFLD_CMD_PFN_V(pf) |
7144 				  FW_EQ_OFLD_CMD_VFN_V(vf));
7145 	c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7146 	c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7147 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7148 }
7149 
7150 /**
7151  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7152  *	@adap: the adapter
7153  *	@link_down_rc: Link Down Reason Code
7154  *
7155  *	Returns a string representation of the Link Down Reason Code.
7156  */
t4_link_down_rc_str(unsigned char link_down_rc)7157 static const char *t4_link_down_rc_str(unsigned char link_down_rc)
7158 {
7159 	static const char * const reason[] = {
7160 		"Link Down",
7161 		"Remote Fault",
7162 		"Auto-negotiation Failure",
7163 		"Reserved",
7164 		"Insufficient Airflow",
7165 		"Unable To Determine Reason",
7166 		"No RX Signal Detected",
7167 		"Reserved",
7168 	};
7169 
7170 	if (link_down_rc >= ARRAY_SIZE(reason))
7171 		return "Bad Reason Code";
7172 
7173 	return reason[link_down_rc];
7174 }
7175 
7176 /**
7177  *	t4_handle_get_port_info - process a FW reply message
7178  *	@pi: the port info
7179  *	@rpl: start of the FW message
7180  *
7181  *	Processes a GET_PORT_INFO FW reply message.
7182  */
t4_handle_get_port_info(struct port_info * pi,const __be64 * rpl)7183 void t4_handle_get_port_info(struct port_info *pi, const __be64 *rpl)
7184 {
7185 	const struct fw_port_cmd *p = (const void *)rpl;
7186 	struct adapter *adap = pi->adapter;
7187 
7188 	/* link/module state change message */
7189 	int speed = 0, fc = 0;
7190 	struct link_config *lc;
7191 	u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7192 	int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7193 	u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7194 
7195 	if (stat & FW_PORT_CMD_RXPAUSE_F)
7196 		fc |= PAUSE_RX;
7197 	if (stat & FW_PORT_CMD_TXPAUSE_F)
7198 		fc |= PAUSE_TX;
7199 	if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7200 		speed = 100;
7201 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7202 		speed = 1000;
7203 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7204 		speed = 10000;
7205 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
7206 		speed = 25000;
7207 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7208 		speed = 40000;
7209 	else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
7210 		speed = 100000;
7211 
7212 	lc = &pi->link_cfg;
7213 
7214 	if (mod != pi->mod_type) {
7215 		pi->mod_type = mod;
7216 		t4_os_portmod_changed(adap, pi->port_id);
7217 	}
7218 	if (link_ok != lc->link_ok || speed != lc->speed ||
7219 	    fc != lc->fc) {	/* something changed */
7220 		if (!link_ok && lc->link_ok) {
7221 			unsigned char rc = FW_PORT_CMD_LINKDNRC_G(stat);
7222 
7223 			lc->link_down_rc = rc;
7224 			dev_warn(adap->pdev_dev,
7225 				 "Port %d link down, reason: %s\n",
7226 				 pi->port_id, t4_link_down_rc_str(rc));
7227 		}
7228 		lc->link_ok = link_ok;
7229 		lc->speed = speed;
7230 		lc->fc = fc;
7231 		lc->supported = be16_to_cpu(p->u.info.pcap);
7232 		lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7233 		t4_os_link_changed(adap, pi->port_id, link_ok);
7234 	}
7235 }
7236 
7237 /**
7238  *      t4_handle_fw_rpl - process a FW reply message
7239  *      @adap: the adapter
7240  *      @rpl: start of the FW message
7241  *
7242  *      Processes a FW message, such as link state change messages.
7243  */
t4_handle_fw_rpl(struct adapter * adap,const __be64 * rpl)7244 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7245 {
7246 	u8 opcode = *(const u8 *)rpl;
7247 
7248 	/* This might be a port command ... this simplifies the following
7249 	 * conditionals ...  We can get away with pre-dereferencing
7250 	 * action_to_len16 because it's in the first 16 bytes and all messages
7251 	 * will be at least that long.
7252 	 */
7253 	const struct fw_port_cmd *p = (const void *)rpl;
7254 	unsigned int action =
7255 		FW_PORT_CMD_ACTION_G(be32_to_cpu(p->action_to_len16));
7256 
7257 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7258 		int i;
7259 		int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7260 		struct port_info *pi = NULL;
7261 
7262 		for_each_port(adap, i) {
7263 			pi = adap2pinfo(adap, i);
7264 			if (pi->tx_chan == chan)
7265 				break;
7266 		}
7267 
7268 		t4_handle_get_port_info(pi, rpl);
7269 	} else {
7270 		dev_warn(adap->pdev_dev, "Unknown firmware reply %d\n", opcode);
7271 		return -EINVAL;
7272 	}
7273 	return 0;
7274 }
7275 
get_pci_mode(struct adapter * adapter,struct pci_params * p)7276 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7277 {
7278 	u16 val;
7279 
7280 	if (pci_is_pcie(adapter->pdev)) {
7281 		pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7282 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7283 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7284 	}
7285 }
7286 
7287 /**
7288  *	init_link_config - initialize a link's SW state
7289  *	@lc: structure holding the link state
7290  *	@caps: link capabilities
7291  *
7292  *	Initializes the SW state maintained for each link, including the link's
7293  *	capabilities and default speed/flow-control/autonegotiation settings.
7294  */
init_link_config(struct link_config * lc,unsigned int caps)7295 static void init_link_config(struct link_config *lc, unsigned int caps)
7296 {
7297 	lc->supported = caps;
7298 	lc->lp_advertising = 0;
7299 	lc->requested_speed = 0;
7300 	lc->speed = 0;
7301 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7302 	if (lc->supported & FW_PORT_CAP_ANEG) {
7303 		lc->advertising = lc->supported & ADVERT_MASK;
7304 		lc->autoneg = AUTONEG_ENABLE;
7305 		lc->requested_fc |= PAUSE_AUTONEG;
7306 	} else {
7307 		lc->advertising = 0;
7308 		lc->autoneg = AUTONEG_DISABLE;
7309 	}
7310 }
7311 
7312 #define CIM_PF_NOACCESS 0xeeeeeeee
7313 
t4_wait_dev_ready(void __iomem * regs)7314 int t4_wait_dev_ready(void __iomem *regs)
7315 {
7316 	u32 whoami;
7317 
7318 	whoami = readl(regs + PL_WHOAMI_A);
7319 	if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7320 		return 0;
7321 
7322 	msleep(500);
7323 	whoami = readl(regs + PL_WHOAMI_A);
7324 	return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7325 }
7326 
7327 struct flash_desc {
7328 	u32 vendor_and_model_id;
7329 	u32 size_mb;
7330 };
7331 
get_flash_params(struct adapter * adap)7332 static int get_flash_params(struct adapter *adap)
7333 {
7334 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
7335 	 * to the preexisting code.  All flash parts have 64KB sectors.
7336 	 */
7337 	static struct flash_desc supported_flash[] = {
7338 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7339 	};
7340 
7341 	int ret;
7342 	u32 info;
7343 
7344 	ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7345 	if (!ret)
7346 		ret = sf1_read(adap, 3, 0, 1, &info);
7347 	t4_write_reg(adap, SF_OP_A, 0);                    /* unlock SF */
7348 	if (ret)
7349 		return ret;
7350 
7351 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7352 		if (supported_flash[ret].vendor_and_model_id == info) {
7353 			adap->params.sf_size = supported_flash[ret].size_mb;
7354 			adap->params.sf_nsec =
7355 				adap->params.sf_size / SF_SEC_SIZE;
7356 			return 0;
7357 		}
7358 
7359 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
7360 		return -EINVAL;
7361 	info >>= 16;                           /* log2 of size */
7362 	if (info >= 0x14 && info < 0x18)
7363 		adap->params.sf_nsec = 1 << (info - 16);
7364 	else if (info == 0x18)
7365 		adap->params.sf_nsec = 64;
7366 	else
7367 		return -EINVAL;
7368 	adap->params.sf_size = 1 << info;
7369 	adap->params.sf_fw_start =
7370 		t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7371 
7372 	if (adap->params.sf_size < FLASH_MIN_SIZE)
7373 		dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7374 			 adap->params.sf_size, FLASH_MIN_SIZE);
7375 	return 0;
7376 }
7377 
set_pcie_completion_timeout(struct adapter * adapter,u8 range)7378 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7379 {
7380 	u16 val;
7381 	u32 pcie_cap;
7382 
7383 	pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7384 	if (pcie_cap) {
7385 		pci_read_config_word(adapter->pdev,
7386 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
7387 		val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7388 		val |= range;
7389 		pci_write_config_word(adapter->pdev,
7390 				      pcie_cap + PCI_EXP_DEVCTL2, val);
7391 	}
7392 }
7393 
7394 /**
7395  *	t4_prep_adapter - prepare SW and HW for operation
7396  *	@adapter: the adapter
7397  *	@reset: if true perform a HW reset
7398  *
7399  *	Initialize adapter SW state for the various HW modules, set initial
7400  *	values for some adapter tunables, take PHYs out of reset, and
7401  *	initialize the MDIO interface.
7402  */
t4_prep_adapter(struct adapter * adapter)7403 int t4_prep_adapter(struct adapter *adapter)
7404 {
7405 	int ret, ver;
7406 	uint16_t device_id;
7407 	u32 pl_rev;
7408 
7409 	get_pci_mode(adapter, &adapter->params.pci);
7410 	pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7411 
7412 	ret = get_flash_params(adapter);
7413 	if (ret < 0) {
7414 		dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7415 		return ret;
7416 	}
7417 
7418 	/* Retrieve adapter's device ID
7419 	 */
7420 	pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7421 	ver = device_id >> 12;
7422 	adapter->params.chip = 0;
7423 	switch (ver) {
7424 	case CHELSIO_T4:
7425 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7426 		adapter->params.arch.sge_fl_db = DBPRIO_F;
7427 		adapter->params.arch.mps_tcam_size =
7428 				 NUM_MPS_CLS_SRAM_L_INSTANCES;
7429 		adapter->params.arch.mps_rplc_size = 128;
7430 		adapter->params.arch.nchan = NCHAN;
7431 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7432 		adapter->params.arch.vfcount = 128;
7433 		/* Congestion map is for 4 channels so that
7434 		 * MPS can have 4 priority per port.
7435 		 */
7436 		adapter->params.arch.cng_ch_bits_log = 2;
7437 		break;
7438 	case CHELSIO_T5:
7439 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7440 		adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7441 		adapter->params.arch.mps_tcam_size =
7442 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7443 		adapter->params.arch.mps_rplc_size = 128;
7444 		adapter->params.arch.nchan = NCHAN;
7445 		adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7446 		adapter->params.arch.vfcount = 128;
7447 		adapter->params.arch.cng_ch_bits_log = 2;
7448 		break;
7449 	case CHELSIO_T6:
7450 		adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7451 		adapter->params.arch.sge_fl_db = 0;
7452 		adapter->params.arch.mps_tcam_size =
7453 				 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7454 		adapter->params.arch.mps_rplc_size = 256;
7455 		adapter->params.arch.nchan = 2;
7456 		adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7457 		adapter->params.arch.vfcount = 256;
7458 		/* Congestion map will be for 2 channels so that
7459 		 * MPS can have 8 priority per port.
7460 		 */
7461 		adapter->params.arch.cng_ch_bits_log = 3;
7462 		break;
7463 	default:
7464 		dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7465 			device_id);
7466 		return -EINVAL;
7467 	}
7468 
7469 	adapter->params.cim_la_size = CIMLA_SIZE;
7470 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7471 
7472 	/*
7473 	 * Default port for debugging in case we can't reach FW.
7474 	 */
7475 	adapter->params.nports = 1;
7476 	adapter->params.portvec = 1;
7477 	adapter->params.vpd.cclk = 50000;
7478 
7479 	/* Set pci completion timeout value to 4 seconds. */
7480 	set_pcie_completion_timeout(adapter, 0xd);
7481 	return 0;
7482 }
7483 
7484 /**
7485  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7486  *	@adapter: the adapter
7487  *	@qid: the Queue ID
7488  *	@qtype: the Ingress or Egress type for @qid
7489  *	@user: true if this request is for a user mode queue
7490  *	@pbar2_qoffset: BAR2 Queue Offset
7491  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7492  *
7493  *	Returns the BAR2 SGE Queue Registers information associated with the
7494  *	indicated Absolute Queue ID.  These are passed back in return value
7495  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7496  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7497  *
7498  *	This may return an error which indicates that BAR2 SGE Queue
7499  *	registers aren't available.  If an error is not returned, then the
7500  *	following values are returned:
7501  *
7502  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7503  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7504  *
7505  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7506  *	require the "Inferred Queue ID" ability may be used.  E.g. the
7507  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7508  *	then these "Inferred Queue ID" register may not be used.
7509  */
t4_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)7510 int t4_bar2_sge_qregs(struct adapter *adapter,
7511 		      unsigned int qid,
7512 		      enum t4_bar2_qtype qtype,
7513 		      int user,
7514 		      u64 *pbar2_qoffset,
7515 		      unsigned int *pbar2_qid)
7516 {
7517 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7518 	u64 bar2_page_offset, bar2_qoffset;
7519 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7520 
7521 	/* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7522 	if (!user && is_t4(adapter->params.chip))
7523 		return -EINVAL;
7524 
7525 	/* Get our SGE Page Size parameters.
7526 	 */
7527 	page_shift = adapter->params.sge.hps + 10;
7528 	page_size = 1 << page_shift;
7529 
7530 	/* Get the right Queues per Page parameters for our Queue.
7531 	 */
7532 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7533 		     ? adapter->params.sge.eq_qpp
7534 		     : adapter->params.sge.iq_qpp);
7535 	qpp_mask = (1 << qpp_shift) - 1;
7536 
7537 	/*  Calculate the basics of the BAR2 SGE Queue register area:
7538 	 *  o The BAR2 page the Queue registers will be in.
7539 	 *  o The BAR2 Queue ID.
7540 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
7541 	 */
7542 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7543 	bar2_qid = qid & qpp_mask;
7544 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7545 
7546 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
7547 	 * hardware will infer the Absolute Queue ID simply from the writes to
7548 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7549 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
7550 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7551 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7552 	 * from the BAR2 Page and BAR2 Queue ID.
7553 	 *
7554 	 * One important censequence of this is that some BAR2 SGE registers
7555 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7556 	 * there.  But other registers synthesize the SGE Queue ID purely
7557 	 * from the writes to the registers -- the Write Combined Doorbell
7558 	 * Buffer is a good example.  These BAR2 SGE Registers are only
7559 	 * available for those BAR2 SGE Register areas where the SGE Absolute
7560 	 * Queue ID can be inferred from simple writes.
7561 	 */
7562 	bar2_qoffset = bar2_page_offset;
7563 	bar2_qinferred = (bar2_qid_offset < page_size);
7564 	if (bar2_qinferred) {
7565 		bar2_qoffset += bar2_qid_offset;
7566 		bar2_qid = 0;
7567 	}
7568 
7569 	*pbar2_qoffset = bar2_qoffset;
7570 	*pbar2_qid = bar2_qid;
7571 	return 0;
7572 }
7573 
7574 /**
7575  *	t4_init_devlog_params - initialize adapter->params.devlog
7576  *	@adap: the adapter
7577  *
7578  *	Initialize various fields of the adapter's Firmware Device Log
7579  *	Parameters structure.
7580  */
t4_init_devlog_params(struct adapter * adap)7581 int t4_init_devlog_params(struct adapter *adap)
7582 {
7583 	struct devlog_params *dparams = &adap->params.devlog;
7584 	u32 pf_dparams;
7585 	unsigned int devlog_meminfo;
7586 	struct fw_devlog_cmd devlog_cmd;
7587 	int ret;
7588 
7589 	/* If we're dealing with newer firmware, the Device Log Paramerters
7590 	 * are stored in a designated register which allows us to access the
7591 	 * Device Log even if we can't talk to the firmware.
7592 	 */
7593 	pf_dparams =
7594 		t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7595 	if (pf_dparams) {
7596 		unsigned int nentries, nentries128;
7597 
7598 		dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7599 		dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7600 
7601 		nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7602 		nentries = (nentries128 + 1) * 128;
7603 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7604 
7605 		return 0;
7606 	}
7607 
7608 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7609 	 */
7610 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7611 	devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7612 					     FW_CMD_REQUEST_F | FW_CMD_READ_F);
7613 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7614 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7615 			 &devlog_cmd);
7616 	if (ret)
7617 		return ret;
7618 
7619 	devlog_meminfo =
7620 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7621 	dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7622 	dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7623 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7624 
7625 	return 0;
7626 }
7627 
7628 /**
7629  *	t4_init_sge_params - initialize adap->params.sge
7630  *	@adapter: the adapter
7631  *
7632  *	Initialize various fields of the adapter's SGE Parameters structure.
7633  */
t4_init_sge_params(struct adapter * adapter)7634 int t4_init_sge_params(struct adapter *adapter)
7635 {
7636 	struct sge_params *sge_params = &adapter->params.sge;
7637 	u32 hps, qpp;
7638 	unsigned int s_hps, s_qpp;
7639 
7640 	/* Extract the SGE Page Size for our PF.
7641 	 */
7642 	hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7643 	s_hps = (HOSTPAGESIZEPF0_S +
7644 		 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7645 	sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7646 
7647 	/* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7648 	 */
7649 	s_qpp = (QUEUESPERPAGEPF0_S +
7650 		(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7651 	qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7652 	sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7653 	qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7654 	sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7655 
7656 	return 0;
7657 }
7658 
7659 /**
7660  *      t4_init_tp_params - initialize adap->params.tp
7661  *      @adap: the adapter
7662  *
7663  *      Initialize various fields of the adapter's TP Parameters structure.
7664  */
t4_init_tp_params(struct adapter * adap)7665 int t4_init_tp_params(struct adapter *adap)
7666 {
7667 	int chan;
7668 	u32 v;
7669 
7670 	v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7671 	adap->params.tp.tre = TIMERRESOLUTION_G(v);
7672 	adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7673 
7674 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7675 	for (chan = 0; chan < NCHAN; chan++)
7676 		adap->params.tp.tx_modq[chan] = chan;
7677 
7678 	/* Cache the adapter's Compressed Filter Mode and global Incress
7679 	 * Configuration.
7680 	 */
7681 	if (t4_use_ldst(adap)) {
7682 		t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7683 				TP_VLAN_PRI_MAP_A, 1);
7684 		t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7685 				TP_INGRESS_CONFIG_A, 1);
7686 	} else {
7687 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7688 				 &adap->params.tp.vlan_pri_map, 1,
7689 				 TP_VLAN_PRI_MAP_A);
7690 		t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7691 				 &adap->params.tp.ingress_config, 1,
7692 				 TP_INGRESS_CONFIG_A);
7693 	}
7694 
7695 	/* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7696 	 * shift positions of several elements of the Compressed Filter Tuple
7697 	 * for this adapter which we need frequently ...
7698 	 */
7699 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7700 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7701 	adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7702 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7703 							       PROTOCOL_F);
7704 
7705 	/* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7706 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7707 	 */
7708 	if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7709 		adap->params.tp.vnic_shift = -1;
7710 
7711 	return 0;
7712 }
7713 
7714 /**
7715  *      t4_filter_field_shift - calculate filter field shift
7716  *      @adap: the adapter
7717  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7718  *
7719  *      Return the shift position of a filter field within the Compressed
7720  *      Filter Tuple.  The filter field is specified via its selection bit
7721  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7722  */
t4_filter_field_shift(const struct adapter * adap,int filter_sel)7723 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7724 {
7725 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7726 	unsigned int sel;
7727 	int field_shift;
7728 
7729 	if ((filter_mode & filter_sel) == 0)
7730 		return -1;
7731 
7732 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7733 		switch (filter_mode & sel) {
7734 		case FCOE_F:
7735 			field_shift += FT_FCOE_W;
7736 			break;
7737 		case PORT_F:
7738 			field_shift += FT_PORT_W;
7739 			break;
7740 		case VNIC_ID_F:
7741 			field_shift += FT_VNIC_ID_W;
7742 			break;
7743 		case VLAN_F:
7744 			field_shift += FT_VLAN_W;
7745 			break;
7746 		case TOS_F:
7747 			field_shift += FT_TOS_W;
7748 			break;
7749 		case PROTOCOL_F:
7750 			field_shift += FT_PROTOCOL_W;
7751 			break;
7752 		case ETHERTYPE_F:
7753 			field_shift += FT_ETHERTYPE_W;
7754 			break;
7755 		case MACMATCH_F:
7756 			field_shift += FT_MACMATCH_W;
7757 			break;
7758 		case MPSHITTYPE_F:
7759 			field_shift += FT_MPSHITTYPE_W;
7760 			break;
7761 		case FRAGMENTATION_F:
7762 			field_shift += FT_FRAGMENTATION_W;
7763 			break;
7764 		}
7765 	}
7766 	return field_shift;
7767 }
7768 
t4_init_rss_mode(struct adapter * adap,int mbox)7769 int t4_init_rss_mode(struct adapter *adap, int mbox)
7770 {
7771 	int i, ret;
7772 	struct fw_rss_vi_config_cmd rvc;
7773 
7774 	memset(&rvc, 0, sizeof(rvc));
7775 
7776 	for_each_port(adap, i) {
7777 		struct port_info *p = adap2pinfo(adap, i);
7778 
7779 		rvc.op_to_viid =
7780 			cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7781 				    FW_CMD_REQUEST_F | FW_CMD_READ_F |
7782 				    FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7783 		rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7784 		ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7785 		if (ret)
7786 			return ret;
7787 		p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7788 	}
7789 	return 0;
7790 }
7791 
7792 /**
7793  *	t4_init_portinfo - allocate a virtual interface amd initialize port_info
7794  *	@pi: the port_info
7795  *	@mbox: mailbox to use for the FW command
7796  *	@port: physical port associated with the VI
7797  *	@pf: the PF owning the VI
7798  *	@vf: the VF owning the VI
7799  *	@mac: the MAC address of the VI
7800  *
7801  *	Allocates a virtual interface for the given physical port.  If @mac is
7802  *	not %NULL it contains the MAC address of the VI as assigned by FW.
7803  *	@mac should be large enough to hold an Ethernet address.
7804  *	Returns < 0 on error.
7805  */
t4_init_portinfo(struct port_info * pi,int mbox,int port,int pf,int vf,u8 mac[])7806 int t4_init_portinfo(struct port_info *pi, int mbox,
7807 		     int port, int pf, int vf, u8 mac[])
7808 {
7809 	int ret;
7810 	struct fw_port_cmd c;
7811 	unsigned int rss_size;
7812 
7813 	memset(&c, 0, sizeof(c));
7814 	c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7815 				     FW_CMD_REQUEST_F | FW_CMD_READ_F |
7816 				     FW_PORT_CMD_PORTID_V(port));
7817 	c.action_to_len16 = cpu_to_be32(
7818 		FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7819 		FW_LEN16(c));
7820 	ret = t4_wr_mbox(pi->adapter, mbox, &c, sizeof(c), &c);
7821 	if (ret)
7822 		return ret;
7823 
7824 	ret = t4_alloc_vi(pi->adapter, mbox, port, pf, vf, 1, mac, &rss_size);
7825 	if (ret < 0)
7826 		return ret;
7827 
7828 	pi->viid = ret;
7829 	pi->tx_chan = port;
7830 	pi->lport = port;
7831 	pi->rss_size = rss_size;
7832 
7833 	ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7834 	pi->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7835 		FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7836 	pi->port_type = FW_PORT_CMD_PTYPE_G(ret);
7837 	pi->mod_type = FW_PORT_MOD_TYPE_NA;
7838 
7839 	init_link_config(&pi->link_cfg, be16_to_cpu(c.u.info.pcap));
7840 	return 0;
7841 }
7842 
t4_port_init(struct adapter * adap,int mbox,int pf,int vf)7843 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7844 {
7845 	u8 addr[6];
7846 	int ret, i, j = 0;
7847 
7848 	for_each_port(adap, i) {
7849 		struct port_info *pi = adap2pinfo(adap, i);
7850 
7851 		while ((adap->params.portvec & (1 << j)) == 0)
7852 			j++;
7853 
7854 		ret = t4_init_portinfo(pi, mbox, j, pf, vf, addr);
7855 		if (ret)
7856 			return ret;
7857 
7858 		memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7859 		j++;
7860 	}
7861 	return 0;
7862 }
7863 
7864 /**
7865  *	t4_read_cimq_cfg - read CIM queue configuration
7866  *	@adap: the adapter
7867  *	@base: holds the queue base addresses in bytes
7868  *	@size: holds the queue sizes in bytes
7869  *	@thres: holds the queue full thresholds in bytes
7870  *
7871  *	Returns the current configuration of the CIM queues, starting with
7872  *	the IBQs, then the OBQs.
7873  */
t4_read_cimq_cfg(struct adapter * adap,u16 * base,u16 * size,u16 * thres)7874 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7875 {
7876 	unsigned int i, v;
7877 	int cim_num_obq = is_t4(adap->params.chip) ?
7878 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7879 
7880 	for (i = 0; i < CIM_NUM_IBQ; i++) {
7881 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7882 			     QUENUMSELECT_V(i));
7883 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7884 		/* value is in 256-byte units */
7885 		*base++ = CIMQBASE_G(v) * 256;
7886 		*size++ = CIMQSIZE_G(v) * 256;
7887 		*thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7888 	}
7889 	for (i = 0; i < cim_num_obq; i++) {
7890 		t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7891 			     QUENUMSELECT_V(i));
7892 		v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7893 		/* value is in 256-byte units */
7894 		*base++ = CIMQBASE_G(v) * 256;
7895 		*size++ = CIMQSIZE_G(v) * 256;
7896 	}
7897 }
7898 
7899 /**
7900  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
7901  *	@adap: the adapter
7902  *	@qid: the queue index
7903  *	@data: where to store the queue contents
7904  *	@n: capacity of @data in 32-bit words
7905  *
7906  *	Reads the contents of the selected CIM queue starting at address 0 up
7907  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7908  *	error and the number of 32-bit words actually read on success.
7909  */
t4_read_cim_ibq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)7910 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7911 {
7912 	int i, err, attempts;
7913 	unsigned int addr;
7914 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
7915 
7916 	if (qid > 5 || (n & 3))
7917 		return -EINVAL;
7918 
7919 	addr = qid * nwords;
7920 	if (n > nwords)
7921 		n = nwords;
7922 
7923 	/* It might take 3-10ms before the IBQ debug read access is allowed.
7924 	 * Wait for 1 Sec with a delay of 1 usec.
7925 	 */
7926 	attempts = 1000000;
7927 
7928 	for (i = 0; i < n; i++, addr++) {
7929 		t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7930 			     IBQDBGEN_F);
7931 		err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7932 				      attempts, 1);
7933 		if (err)
7934 			return err;
7935 		*data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7936 	}
7937 	t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7938 	return i;
7939 }
7940 
7941 /**
7942  *	t4_read_cim_obq - read the contents of a CIM outbound queue
7943  *	@adap: the adapter
7944  *	@qid: the queue index
7945  *	@data: where to store the queue contents
7946  *	@n: capacity of @data in 32-bit words
7947  *
7948  *	Reads the contents of the selected CIM queue starting at address 0 up
7949  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
7950  *	error and the number of 32-bit words actually read on success.
7951  */
t4_read_cim_obq(struct adapter * adap,unsigned int qid,u32 * data,size_t n)7952 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7953 {
7954 	int i, err;
7955 	unsigned int addr, v, nwords;
7956 	int cim_num_obq = is_t4(adap->params.chip) ?
7957 				CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7958 
7959 	if ((qid > (cim_num_obq - 1)) || (n & 3))
7960 		return -EINVAL;
7961 
7962 	t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7963 		     QUENUMSELECT_V(qid));
7964 	v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7965 
7966 	addr = CIMQBASE_G(v) * 64;    /* muliple of 256 -> muliple of 4 */
7967 	nwords = CIMQSIZE_G(v) * 64;  /* same */
7968 	if (n > nwords)
7969 		n = nwords;
7970 
7971 	for (i = 0; i < n; i++, addr++) {
7972 		t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7973 			     OBQDBGEN_F);
7974 		err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7975 				      2, 1);
7976 		if (err)
7977 			return err;
7978 		*data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7979 	}
7980 	t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7981 	return i;
7982 }
7983 
7984 /**
7985  *	t4_cim_read - read a block from CIM internal address space
7986  *	@adap: the adapter
7987  *	@addr: the start address within the CIM address space
7988  *	@n: number of words to read
7989  *	@valp: where to store the result
7990  *
7991  *	Reads a block of 4-byte words from the CIM intenal address space.
7992  */
t4_cim_read(struct adapter * adap,unsigned int addr,unsigned int n,unsigned int * valp)7993 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7994 		unsigned int *valp)
7995 {
7996 	int ret = 0;
7997 
7998 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7999 		return -EBUSY;
8000 
8001 	for ( ; !ret && n--; addr += 4) {
8002 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
8003 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8004 				      0, 5, 2);
8005 		if (!ret)
8006 			*valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
8007 	}
8008 	return ret;
8009 }
8010 
8011 /**
8012  *	t4_cim_write - write a block into CIM internal address space
8013  *	@adap: the adapter
8014  *	@addr: the start address within the CIM address space
8015  *	@n: number of words to write
8016  *	@valp: set of values to write
8017  *
8018  *	Writes a block of 4-byte words into the CIM intenal address space.
8019  */
t4_cim_write(struct adapter * adap,unsigned int addr,unsigned int n,const unsigned int * valp)8020 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8021 		 const unsigned int *valp)
8022 {
8023 	int ret = 0;
8024 
8025 	if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
8026 		return -EBUSY;
8027 
8028 	for ( ; !ret && n--; addr += 4) {
8029 		t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
8030 		t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
8031 		ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
8032 				      0, 5, 2);
8033 	}
8034 	return ret;
8035 }
8036 
t4_cim_write1(struct adapter * adap,unsigned int addr,unsigned int val)8037 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8038 			 unsigned int val)
8039 {
8040 	return t4_cim_write(adap, addr, 1, &val);
8041 }
8042 
8043 /**
8044  *	t4_cim_read_la - read CIM LA capture buffer
8045  *	@adap: the adapter
8046  *	@la_buf: where to store the LA data
8047  *	@wrptr: the HW write pointer within the capture buffer
8048  *
8049  *	Reads the contents of the CIM LA buffer with the most recent entry at
8050  *	the end	of the returned data and with the entry at @wrptr first.
8051  *	We try to leave the LA in the running state we find it in.
8052  */
t4_cim_read_la(struct adapter * adap,u32 * la_buf,unsigned int * wrptr)8053 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8054 {
8055 	int i, ret;
8056 	unsigned int cfg, val, idx;
8057 
8058 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
8059 	if (ret)
8060 		return ret;
8061 
8062 	if (cfg & UPDBGLAEN_F) {	/* LA is running, freeze it */
8063 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
8064 		if (ret)
8065 			return ret;
8066 	}
8067 
8068 	ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8069 	if (ret)
8070 		goto restart;
8071 
8072 	idx = UPDBGLAWRPTR_G(val);
8073 	if (wrptr)
8074 		*wrptr = idx;
8075 
8076 	for (i = 0; i < adap->params.cim_la_size; i++) {
8077 		ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8078 				    UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
8079 		if (ret)
8080 			break;
8081 		ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
8082 		if (ret)
8083 			break;
8084 		if (val & UPDBGLARDEN_F) {
8085 			ret = -ETIMEDOUT;
8086 			break;
8087 		}
8088 		ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
8089 		if (ret)
8090 			break;
8091 
8092 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8093 		 * identify the 32-bit portion of the full 312-bit data
8094 		 */
8095 		if (is_t6(adap->params.chip) && (idx & 0xf) >= 9)
8096 			idx = (idx & 0xff0) + 0x10;
8097 		else
8098 			idx++;
8099 		/* address can't exceed 0xfff */
8100 		idx &= UPDBGLARDPTR_M;
8101 	}
8102 restart:
8103 	if (cfg & UPDBGLAEN_F) {
8104 		int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
8105 				      cfg & ~UPDBGLARDEN_F);
8106 		if (!ret)
8107 			ret = r;
8108 	}
8109 	return ret;
8110 }
8111 
8112 /**
8113  *	t4_tp_read_la - read TP LA capture buffer
8114  *	@adap: the adapter
8115  *	@la_buf: where to store the LA data
8116  *	@wrptr: the HW write pointer within the capture buffer
8117  *
8118  *	Reads the contents of the TP LA buffer with the most recent entry at
8119  *	the end	of the returned data and with the entry at @wrptr first.
8120  *	We leave the LA in the running state we find it in.
8121  */
t4_tp_read_la(struct adapter * adap,u64 * la_buf,unsigned int * wrptr)8122 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8123 {
8124 	bool last_incomplete;
8125 	unsigned int i, cfg, val, idx;
8126 
8127 	cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
8128 	if (cfg & DBGLAENABLE_F)			/* freeze LA */
8129 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8130 			     adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
8131 
8132 	val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
8133 	idx = DBGLAWPTR_G(val);
8134 	last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
8135 	if (last_incomplete)
8136 		idx = (idx + 1) & DBGLARPTR_M;
8137 	if (wrptr)
8138 		*wrptr = idx;
8139 
8140 	val &= 0xffff;
8141 	val &= ~DBGLARPTR_V(DBGLARPTR_M);
8142 	val |= adap->params.tp.la_mask;
8143 
8144 	for (i = 0; i < TPLA_SIZE; i++) {
8145 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
8146 		la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
8147 		idx = (idx + 1) & DBGLARPTR_M;
8148 	}
8149 
8150 	/* Wipe out last entry if it isn't valid */
8151 	if (last_incomplete)
8152 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8153 
8154 	if (cfg & DBGLAENABLE_F)                    /* restore running state */
8155 		t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8156 			     cfg | adap->params.tp.la_mask);
8157 }
8158 
8159 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8160  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8161  * state for more than the Warning Threshold then we'll issue a warning about
8162  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8163  * appears to be hung every Warning Repeat second till the situation clears.
8164  * If the situation clears, we'll note that as well.
8165  */
8166 #define SGE_IDMA_WARN_THRESH 1
8167 #define SGE_IDMA_WARN_REPEAT 300
8168 
8169 /**
8170  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8171  *	@adapter: the adapter
8172  *	@idma: the adapter IDMA Monitor state
8173  *
8174  *	Initialize the state of an SGE Ingress DMA Monitor.
8175  */
t4_idma_monitor_init(struct adapter * adapter,struct sge_idma_monitor_state * idma)8176 void t4_idma_monitor_init(struct adapter *adapter,
8177 			  struct sge_idma_monitor_state *idma)
8178 {
8179 	/* Initialize the state variables for detecting an SGE Ingress DMA
8180 	 * hang.  The SGE has internal counters which count up on each clock
8181 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8182 	 * same state they were on the previous clock tick.  The clock used is
8183 	 * the Core Clock so we have a limit on the maximum "time" they can
8184 	 * record; typically a very small number of seconds.  For instance,
8185 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8186 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8187 	 * risk of having the "timers" overflow and give us the flexibility to
8188 	 * maintain a Hung SGE State Machine of our own which operates across
8189 	 * a longer time frame.
8190 	 */
8191 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8192 	idma->idma_stalled[0] = 0;
8193 	idma->idma_stalled[1] = 0;
8194 }
8195 
8196 /**
8197  *	t4_idma_monitor - monitor SGE Ingress DMA state
8198  *	@adapter: the adapter
8199  *	@idma: the adapter IDMA Monitor state
8200  *	@hz: number of ticks/second
8201  *	@ticks: number of ticks since the last IDMA Monitor call
8202  */
t4_idma_monitor(struct adapter * adapter,struct sge_idma_monitor_state * idma,int hz,int ticks)8203 void t4_idma_monitor(struct adapter *adapter,
8204 		     struct sge_idma_monitor_state *idma,
8205 		     int hz, int ticks)
8206 {
8207 	int i, idma_same_state_cnt[2];
8208 
8209 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8210 	  * are counters inside the SGE which count up on each clock when the
8211 	  * SGE finds its Ingress DMA State Engines in the same states they
8212 	  * were in the previous clock.  The counters will peg out at
8213 	  * 0xffffffff without wrapping around so once they pass the 1s
8214 	  * threshold they'll stay above that till the IDMA state changes.
8215 	  */
8216 	t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8217 	idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8218 	idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8219 
8220 	for (i = 0; i < 2; i++) {
8221 		u32 debug0, debug11;
8222 
8223 		/* If the Ingress DMA Same State Counter ("timer") is less
8224 		 * than 1s, then we can reset our synthesized Stall Timer and
8225 		 * continue.  If we have previously emitted warnings about a
8226 		 * potential stalled Ingress Queue, issue a note indicating
8227 		 * that the Ingress Queue has resumed forward progress.
8228 		 */
8229 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8230 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8231 				dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8232 					 "resumed after %d seconds\n",
8233 					 i, idma->idma_qid[i],
8234 					 idma->idma_stalled[i] / hz);
8235 			idma->idma_stalled[i] = 0;
8236 			continue;
8237 		}
8238 
8239 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8240 		 * domain.  The first time we get here it'll be because we
8241 		 * passed the 1s Threshold; each additional time it'll be
8242 		 * because the RX Timer Callback is being fired on its regular
8243 		 * schedule.
8244 		 *
8245 		 * If the stall is below our Potential Hung Ingress Queue
8246 		 * Warning Threshold, continue.
8247 		 */
8248 		if (idma->idma_stalled[i] == 0) {
8249 			idma->idma_stalled[i] = hz;
8250 			idma->idma_warn[i] = 0;
8251 		} else {
8252 			idma->idma_stalled[i] += ticks;
8253 			idma->idma_warn[i] -= ticks;
8254 		}
8255 
8256 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8257 			continue;
8258 
8259 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8260 		 */
8261 		if (idma->idma_warn[i] > 0)
8262 			continue;
8263 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8264 
8265 		/* Read and save the SGE IDMA State and Queue ID information.
8266 		 * We do this every time in case it changes across time ...
8267 		 * can't be too careful ...
8268 		 */
8269 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8270 		debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8271 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8272 
8273 		t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8274 		debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8275 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8276 
8277 		dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8278 			 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8279 			 i, idma->idma_qid[i], idma->idma_state[i],
8280 			 idma->idma_stalled[i] / hz,
8281 			 debug0, debug11);
8282 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8283 	}
8284 }
8285 
8286 /**
8287  *	t4_set_vf_mac - Set MAC address for the specified VF
8288  *	@adapter: The adapter
8289  *	@vf: one of the VFs instantiated by the specified PF
8290  *	@naddr: the number of MAC addresses
8291  *	@addr: the MAC address(es) to be set to the specified VF
8292  */
t4_set_vf_mac_acl(struct adapter * adapter,unsigned int vf,unsigned int naddr,u8 * addr)8293 int t4_set_vf_mac_acl(struct adapter *adapter, unsigned int vf,
8294 		      unsigned int naddr, u8 *addr)
8295 {
8296 	struct fw_acl_mac_cmd cmd;
8297 
8298 	memset(&cmd, 0, sizeof(cmd));
8299 	cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
8300 				    FW_CMD_REQUEST_F |
8301 				    FW_CMD_WRITE_F |
8302 				    FW_ACL_MAC_CMD_PFN_V(adapter->pf) |
8303 				    FW_ACL_MAC_CMD_VFN_V(vf));
8304 
8305 	/* Note: Do not enable the ACL */
8306 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
8307 	cmd.nmac = naddr;
8308 
8309 	switch (adapter->pf) {
8310 	case 3:
8311 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
8312 		break;
8313 	case 2:
8314 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
8315 		break;
8316 	case 1:
8317 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
8318 		break;
8319 	case 0:
8320 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
8321 		break;
8322 	}
8323 
8324 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
8325 }
8326 
t4_sched_params(struct adapter * adapter,int type,int level,int mode,int rateunit,int ratemode,int channel,int class,int minrate,int maxrate,int weight,int pktsize)8327 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
8328 		    int rateunit, int ratemode, int channel, int class,
8329 		    int minrate, int maxrate, int weight, int pktsize)
8330 {
8331 	struct fw_sched_cmd cmd;
8332 
8333 	memset(&cmd, 0, sizeof(cmd));
8334 	cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_SCHED_CMD) |
8335 				      FW_CMD_REQUEST_F |
8336 				      FW_CMD_WRITE_F);
8337 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
8338 
8339 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
8340 	cmd.u.params.type = type;
8341 	cmd.u.params.level = level;
8342 	cmd.u.params.mode = mode;
8343 	cmd.u.params.ch = channel;
8344 	cmd.u.params.cl = class;
8345 	cmd.u.params.unit = rateunit;
8346 	cmd.u.params.rate = ratemode;
8347 	cmd.u.params.min = cpu_to_be32(minrate);
8348 	cmd.u.params.max = cpu_to_be32(maxrate);
8349 	cmd.u.params.weight = cpu_to_be16(weight);
8350 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
8351 
8352 	return t4_wr_mbox_meat(adapter, adapter->mbox, &cmd, sizeof(cmd),
8353 			       NULL, 1);
8354 }
8355