• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
pinctrl_provide_dummies(void)70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
get_pinctrl_dev_from_devname(const char * devname)101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
get_pinctrl_dev_from_of_node(struct device_node * np)123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned pin)168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (desc == NULL) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
pin_is_valid(struct pinctrl_dev * pctldev,int pin)190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_pins)206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc != NULL) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    const struct pinctrl_pin_desc *pin)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, pin->number);
233 	if (pindesc != NULL) {
234 		dev_err(pctldev->dev, "pin %d already registered\n",
235 			pin->number);
236 		return -EINVAL;
237 	}
238 
239 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 	if (pindesc == NULL) {
241 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 		return -ENOMEM;
243 	}
244 
245 	/* Set owner */
246 	pindesc->pctldev = pctldev;
247 
248 	/* Copy basic pin info */
249 	if (pin->name) {
250 		pindesc->name = pin->name;
251 	} else {
252 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
253 		if (pindesc->name == NULL) {
254 			kfree(pindesc);
255 			return -ENOMEM;
256 		}
257 		pindesc->dynamic_name = true;
258 	}
259 
260 	pindesc->drv_data = pin->drv_data;
261 
262 	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
263 	pr_debug("registered pin %d (%s) on %s\n",
264 		 pin->number, pindesc->name, pctldev->desc->name);
265 	return 0;
266 }
267 
pinctrl_register_pins(struct pinctrl_dev * pctldev,struct pinctrl_pin_desc const * pins,unsigned num_descs)268 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
269 				 struct pinctrl_pin_desc const *pins,
270 				 unsigned num_descs)
271 {
272 	unsigned i;
273 	int ret = 0;
274 
275 	for (i = 0; i < num_descs; i++) {
276 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
277 		if (ret)
278 			return ret;
279 	}
280 
281 	return 0;
282 }
283 
284 /**
285  * gpio_to_pin() - GPIO range GPIO number to pin number translation
286  * @range: GPIO range used for the translation
287  * @gpio: gpio pin to translate to a pin number
288  *
289  * Finds the pin number for a given GPIO using the specified GPIO range
290  * as a base for translation. The distinction between linear GPIO ranges
291  * and pin list based GPIO ranges is managed correctly by this function.
292  *
293  * This function assumes the gpio is part of the specified GPIO range, use
294  * only after making sure this is the case (e.g. by calling it on the
295  * result of successful pinctrl_get_device_gpio_range calls)!
296  */
gpio_to_pin(struct pinctrl_gpio_range * range,unsigned int gpio)297 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
298 				unsigned int gpio)
299 {
300 	unsigned int offset = gpio - range->base;
301 	if (range->pins)
302 		return range->pins[offset];
303 	else
304 		return range->pin_base + offset;
305 }
306 
307 /**
308  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
309  * @pctldev: pin controller device to check
310  * @gpio: gpio pin to check taken from the global GPIO pin space
311  *
312  * Tries to match a GPIO pin number to the ranges handled by a certain pin
313  * controller, return the range or NULL
314  */
315 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,unsigned gpio)316 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
317 {
318 	struct pinctrl_gpio_range *range = NULL;
319 
320 	mutex_lock(&pctldev->mutex);
321 	/* Loop over the ranges */
322 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
323 		/* Check if we're in the valid range */
324 		if (gpio >= range->base &&
325 		    gpio < range->base + range->npins) {
326 			mutex_unlock(&pctldev->mutex);
327 			return range;
328 		}
329 	}
330 	mutex_unlock(&pctldev->mutex);
331 	return NULL;
332 }
333 
334 /**
335  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
336  * the same GPIO chip are in range
337  * @gpio: gpio pin to check taken from the global GPIO pin space
338  *
339  * This function is complement of pinctrl_match_gpio_range(). If the return
340  * value of pinctrl_match_gpio_range() is NULL, this function could be used
341  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
342  * of the same GPIO chip don't have back-end pinctrl interface.
343  * If the return value is true, it means that pinctrl device is ready & the
344  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
345  * is false, it means that pinctrl device may not be ready.
346  */
347 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(unsigned gpio)348 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
349 {
350 	struct pinctrl_dev *pctldev;
351 	struct pinctrl_gpio_range *range = NULL;
352 	struct gpio_chip *chip = gpio_to_chip(gpio);
353 
354 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
355 		return false;
356 
357 	mutex_lock(&pinctrldev_list_mutex);
358 
359 	/* Loop over the pin controllers */
360 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
361 		/* Loop over the ranges */
362 		mutex_lock(&pctldev->mutex);
363 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
364 			/* Check if any gpio range overlapped with gpio chip */
365 			if (range->base + range->npins - 1 < chip->base ||
366 			    range->base > chip->base + chip->ngpio - 1)
367 				continue;
368 			mutex_unlock(&pctldev->mutex);
369 			mutex_unlock(&pinctrldev_list_mutex);
370 			return true;
371 		}
372 		mutex_unlock(&pctldev->mutex);
373 	}
374 
375 	mutex_unlock(&pinctrldev_list_mutex);
376 
377 	return false;
378 }
379 #else
pinctrl_ready_for_gpio_range(unsigned gpio)380 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
381 #endif
382 
383 /**
384  * pinctrl_get_device_gpio_range() - find device for GPIO range
385  * @gpio: the pin to locate the pin controller for
386  * @outdev: the pin control device if found
387  * @outrange: the GPIO range if found
388  *
389  * Find the pin controller handling a certain GPIO pin from the pinspace of
390  * the GPIO subsystem, return the device and the matching GPIO range. Returns
391  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
392  * may still have not been registered.
393  */
pinctrl_get_device_gpio_range(unsigned gpio,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)394 static int pinctrl_get_device_gpio_range(unsigned gpio,
395 					 struct pinctrl_dev **outdev,
396 					 struct pinctrl_gpio_range **outrange)
397 {
398 	struct pinctrl_dev *pctldev = NULL;
399 
400 	mutex_lock(&pinctrldev_list_mutex);
401 
402 	/* Loop over the pin controllers */
403 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
404 		struct pinctrl_gpio_range *range;
405 
406 		range = pinctrl_match_gpio_range(pctldev, gpio);
407 		if (range != NULL) {
408 			*outdev = pctldev;
409 			*outrange = range;
410 			mutex_unlock(&pinctrldev_list_mutex);
411 			return 0;
412 		}
413 	}
414 
415 	mutex_unlock(&pinctrldev_list_mutex);
416 
417 	return -EPROBE_DEFER;
418 }
419 
420 /**
421  * pinctrl_add_gpio_range() - register a GPIO range for a controller
422  * @pctldev: pin controller device to add the range to
423  * @range: the GPIO range to add
424  *
425  * This adds a range of GPIOs to be handled by a certain pin controller. Call
426  * this to register handled ranges after registering your pin controller.
427  */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)428 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
429 			    struct pinctrl_gpio_range *range)
430 {
431 	mutex_lock(&pctldev->mutex);
432 	list_add_tail(&range->node, &pctldev->gpio_ranges);
433 	mutex_unlock(&pctldev->mutex);
434 }
435 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
436 
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned nranges)437 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
438 			     struct pinctrl_gpio_range *ranges,
439 			     unsigned nranges)
440 {
441 	int i;
442 
443 	for (i = 0; i < nranges; i++)
444 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
445 }
446 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
447 
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)448 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
449 		struct pinctrl_gpio_range *range)
450 {
451 	struct pinctrl_dev *pctldev;
452 
453 	pctldev = get_pinctrl_dev_from_devname(devname);
454 
455 	/*
456 	 * If we can't find this device, let's assume that is because
457 	 * it has not probed yet, so the driver trying to register this
458 	 * range need to defer probing.
459 	 */
460 	if (!pctldev) {
461 		return ERR_PTR(-EPROBE_DEFER);
462 	}
463 	pinctrl_add_gpio_range(pctldev, range);
464 
465 	return pctldev;
466 }
467 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
468 
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned ** pins,unsigned * num_pins)469 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
470 				const unsigned **pins, unsigned *num_pins)
471 {
472 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
473 	int gs;
474 
475 	if (!pctlops->get_group_pins)
476 		return -EINVAL;
477 
478 	gs = pinctrl_get_group_selector(pctldev, pin_group);
479 	if (gs < 0)
480 		return gs;
481 
482 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
483 }
484 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
485 
486 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)487 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
488 					unsigned int pin)
489 {
490 	struct pinctrl_gpio_range *range;
491 
492 	/* Loop over the ranges */
493 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
494 		/* Check if we're in the valid range */
495 		if (range->pins) {
496 			int a;
497 			for (a = 0; a < range->npins; a++) {
498 				if (range->pins[a] == pin)
499 					return range;
500 			}
501 		} else if (pin >= range->pin_base &&
502 			   pin < range->pin_base + range->npins)
503 			return range;
504 	}
505 
506 	return NULL;
507 }
508 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
509 
510 /**
511  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
512  * @pctldev: the pin controller device to look in
513  * @pin: a controller-local number to find the range for
514  */
515 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)516 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
517 				 unsigned int pin)
518 {
519 	struct pinctrl_gpio_range *range;
520 
521 	mutex_lock(&pctldev->mutex);
522 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
523 	mutex_unlock(&pctldev->mutex);
524 
525 	return range;
526 }
527 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
528 
529 /**
530  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
531  * @pctldev: pin controller device to remove the range from
532  * @range: the GPIO range to remove
533  */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)534 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
535 			       struct pinctrl_gpio_range *range)
536 {
537 	mutex_lock(&pctldev->mutex);
538 	list_del(&range->node);
539 	mutex_unlock(&pctldev->mutex);
540 }
541 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
542 
543 /**
544  * pinctrl_get_group_selector() - returns the group selector for a group
545  * @pctldev: the pin controller handling the group
546  * @pin_group: the pin group to look up
547  */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)548 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
549 			       const char *pin_group)
550 {
551 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
552 	unsigned ngroups = pctlops->get_groups_count(pctldev);
553 	unsigned group_selector = 0;
554 
555 	while (group_selector < ngroups) {
556 		const char *gname = pctlops->get_group_name(pctldev,
557 							    group_selector);
558 		if (!strcmp(gname, pin_group)) {
559 			dev_dbg(pctldev->dev,
560 				"found group selector %u for %s\n",
561 				group_selector,
562 				pin_group);
563 			return group_selector;
564 		}
565 
566 		group_selector++;
567 	}
568 
569 	dev_err(pctldev->dev, "does not have pin group %s\n",
570 		pin_group);
571 
572 	return -EINVAL;
573 }
574 
575 /**
576  * pinctrl_request_gpio() - request a single pin to be used as GPIO
577  * @gpio: the GPIO pin number from the GPIO subsystem number space
578  *
579  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
580  * as part of their gpio_request() semantics, platforms and individual drivers
581  * shall *NOT* request GPIO pins to be muxed in.
582  */
pinctrl_request_gpio(unsigned gpio)583 int pinctrl_request_gpio(unsigned gpio)
584 {
585 	struct pinctrl_dev *pctldev;
586 	struct pinctrl_gpio_range *range;
587 	int ret;
588 	int pin;
589 
590 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
591 	if (ret) {
592 		if (pinctrl_ready_for_gpio_range(gpio))
593 			ret = 0;
594 		return ret;
595 	}
596 
597 	mutex_lock(&pctldev->mutex);
598 
599 	/* Convert to the pin controllers number space */
600 	pin = gpio_to_pin(range, gpio);
601 
602 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
603 
604 	mutex_unlock(&pctldev->mutex);
605 
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
609 
610 /**
611  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
612  * @gpio: the GPIO pin number from the GPIO subsystem number space
613  *
614  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
615  * as part of their gpio_free() semantics, platforms and individual drivers
616  * shall *NOT* request GPIO pins to be muxed out.
617  */
pinctrl_free_gpio(unsigned gpio)618 void pinctrl_free_gpio(unsigned gpio)
619 {
620 	struct pinctrl_dev *pctldev;
621 	struct pinctrl_gpio_range *range;
622 	int ret;
623 	int pin;
624 
625 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
626 	if (ret) {
627 		return;
628 	}
629 	mutex_lock(&pctldev->mutex);
630 
631 	/* Convert to the pin controllers number space */
632 	pin = gpio_to_pin(range, gpio);
633 
634 	pinmux_free_gpio(pctldev, pin, range);
635 
636 	mutex_unlock(&pctldev->mutex);
637 }
638 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
639 
pinctrl_gpio_direction(unsigned gpio,bool input)640 static int pinctrl_gpio_direction(unsigned gpio, bool input)
641 {
642 	struct pinctrl_dev *pctldev;
643 	struct pinctrl_gpio_range *range;
644 	int ret;
645 	int pin;
646 
647 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
648 	if (ret) {
649 		return ret;
650 	}
651 
652 	mutex_lock(&pctldev->mutex);
653 
654 	/* Convert to the pin controllers number space */
655 	pin = gpio_to_pin(range, gpio);
656 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
657 
658 	mutex_unlock(&pctldev->mutex);
659 
660 	return ret;
661 }
662 
663 /**
664  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
665  * @gpio: the GPIO pin number from the GPIO subsystem number space
666  *
667  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
668  * as part of their gpio_direction_input() semantics, platforms and individual
669  * drivers shall *NOT* touch pin control GPIO calls.
670  */
pinctrl_gpio_direction_input(unsigned gpio)671 int pinctrl_gpio_direction_input(unsigned gpio)
672 {
673 	return pinctrl_gpio_direction(gpio, true);
674 }
675 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
676 
677 /**
678  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
679  * @gpio: the GPIO pin number from the GPIO subsystem number space
680  *
681  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
682  * as part of their gpio_direction_output() semantics, platforms and individual
683  * drivers shall *NOT* touch pin control GPIO calls.
684  */
pinctrl_gpio_direction_output(unsigned gpio)685 int pinctrl_gpio_direction_output(unsigned gpio)
686 {
687 	return pinctrl_gpio_direction(gpio, false);
688 }
689 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
690 
find_state(struct pinctrl * p,const char * name)691 static struct pinctrl_state *find_state(struct pinctrl *p,
692 					const char *name)
693 {
694 	struct pinctrl_state *state;
695 
696 	list_for_each_entry(state, &p->states, node)
697 		if (!strcmp(state->name, name))
698 			return state;
699 
700 	return NULL;
701 }
702 
create_state(struct pinctrl * p,const char * name)703 static struct pinctrl_state *create_state(struct pinctrl *p,
704 					  const char *name)
705 {
706 	struct pinctrl_state *state;
707 
708 	state = kzalloc(sizeof(*state), GFP_KERNEL);
709 	if (state == NULL) {
710 		dev_err(p->dev,
711 			"failed to alloc struct pinctrl_state\n");
712 		return ERR_PTR(-ENOMEM);
713 	}
714 
715 	state->name = name;
716 	INIT_LIST_HEAD(&state->settings);
717 
718 	list_add_tail(&state->node, &p->states);
719 
720 	return state;
721 }
722 
add_setting(struct pinctrl * p,struct pinctrl_map const * map)723 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
724 {
725 	struct pinctrl_state *state;
726 	struct pinctrl_setting *setting;
727 	int ret;
728 
729 	state = find_state(p, map->name);
730 	if (!state)
731 		state = create_state(p, map->name);
732 	if (IS_ERR(state))
733 		return PTR_ERR(state);
734 
735 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
736 		return 0;
737 
738 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
739 	if (setting == NULL) {
740 		dev_err(p->dev,
741 			"failed to alloc struct pinctrl_setting\n");
742 		return -ENOMEM;
743 	}
744 
745 	setting->type = map->type;
746 
747 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
748 	if (setting->pctldev == NULL) {
749 		kfree(setting);
750 		/* Do not defer probing of hogs (circular loop) */
751 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
752 			return -ENODEV;
753 		/*
754 		 * OK let us guess that the driver is not there yet, and
755 		 * let's defer obtaining this pinctrl handle to later...
756 		 */
757 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
758 			map->ctrl_dev_name);
759 		return -EPROBE_DEFER;
760 	}
761 
762 	setting->dev_name = map->dev_name;
763 
764 	switch (map->type) {
765 	case PIN_MAP_TYPE_MUX_GROUP:
766 		ret = pinmux_map_to_setting(map, setting);
767 		break;
768 	case PIN_MAP_TYPE_CONFIGS_PIN:
769 	case PIN_MAP_TYPE_CONFIGS_GROUP:
770 		ret = pinconf_map_to_setting(map, setting);
771 		break;
772 	default:
773 		ret = -EINVAL;
774 		break;
775 	}
776 	if (ret < 0) {
777 		kfree(setting);
778 		return ret;
779 	}
780 
781 	list_add_tail(&setting->node, &state->settings);
782 
783 	return 0;
784 }
785 
find_pinctrl(struct device * dev)786 static struct pinctrl *find_pinctrl(struct device *dev)
787 {
788 	struct pinctrl *p;
789 
790 	mutex_lock(&pinctrl_list_mutex);
791 	list_for_each_entry(p, &pinctrl_list, node)
792 		if (p->dev == dev) {
793 			mutex_unlock(&pinctrl_list_mutex);
794 			return p;
795 		}
796 
797 	mutex_unlock(&pinctrl_list_mutex);
798 	return NULL;
799 }
800 
801 static void pinctrl_free(struct pinctrl *p, bool inlist);
802 
create_pinctrl(struct device * dev)803 static struct pinctrl *create_pinctrl(struct device *dev)
804 {
805 	struct pinctrl *p;
806 	const char *devname;
807 	struct pinctrl_maps *maps_node;
808 	int i;
809 	struct pinctrl_map const *map;
810 	int ret;
811 
812 	/*
813 	 * create the state cookie holder struct pinctrl for each
814 	 * mapping, this is what consumers will get when requesting
815 	 * a pin control handle with pinctrl_get()
816 	 */
817 	p = kzalloc(sizeof(*p), GFP_KERNEL);
818 	if (p == NULL) {
819 		dev_err(dev, "failed to alloc struct pinctrl\n");
820 		return ERR_PTR(-ENOMEM);
821 	}
822 	p->dev = dev;
823 	INIT_LIST_HEAD(&p->states);
824 	INIT_LIST_HEAD(&p->dt_maps);
825 
826 	ret = pinctrl_dt_to_map(p);
827 	if (ret < 0) {
828 		kfree(p);
829 		return ERR_PTR(ret);
830 	}
831 
832 	devname = dev_name(dev);
833 
834 	mutex_lock(&pinctrl_maps_mutex);
835 	/* Iterate over the pin control maps to locate the right ones */
836 	for_each_maps(maps_node, i, map) {
837 		/* Map must be for this device */
838 		if (strcmp(map->dev_name, devname))
839 			continue;
840 
841 		ret = add_setting(p, map);
842 		/*
843 		 * At this point the adding of a setting may:
844 		 *
845 		 * - Defer, if the pinctrl device is not yet available
846 		 * - Fail, if the pinctrl device is not yet available,
847 		 *   AND the setting is a hog. We cannot defer that, since
848 		 *   the hog will kick in immediately after the device
849 		 *   is registered.
850 		 *
851 		 * If the error returned was not -EPROBE_DEFER then we
852 		 * accumulate the errors to see if we end up with
853 		 * an -EPROBE_DEFER later, as that is the worst case.
854 		 */
855 		if (ret == -EPROBE_DEFER) {
856 			pinctrl_free(p, false);
857 			mutex_unlock(&pinctrl_maps_mutex);
858 			return ERR_PTR(ret);
859 		}
860 	}
861 	mutex_unlock(&pinctrl_maps_mutex);
862 
863 	if (ret < 0) {
864 		/* If some other error than deferral occured, return here */
865 		pinctrl_free(p, false);
866 		return ERR_PTR(ret);
867 	}
868 
869 	kref_init(&p->users);
870 
871 	/* Add the pinctrl handle to the global list */
872 	mutex_lock(&pinctrl_list_mutex);
873 	list_add_tail(&p->node, &pinctrl_list);
874 	mutex_unlock(&pinctrl_list_mutex);
875 
876 	return p;
877 }
878 
879 /**
880  * pinctrl_get() - retrieves the pinctrl handle for a device
881  * @dev: the device to obtain the handle for
882  */
pinctrl_get(struct device * dev)883 struct pinctrl *pinctrl_get(struct device *dev)
884 {
885 	struct pinctrl *p;
886 
887 	if (WARN_ON(!dev))
888 		return ERR_PTR(-EINVAL);
889 
890 	/*
891 	 * See if somebody else (such as the device core) has already
892 	 * obtained a handle to the pinctrl for this device. In that case,
893 	 * return another pointer to it.
894 	 */
895 	p = find_pinctrl(dev);
896 	if (p != NULL) {
897 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
898 		kref_get(&p->users);
899 		return p;
900 	}
901 
902 	return create_pinctrl(dev);
903 }
904 EXPORT_SYMBOL_GPL(pinctrl_get);
905 
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)906 static void pinctrl_free_setting(bool disable_setting,
907 				 struct pinctrl_setting *setting)
908 {
909 	switch (setting->type) {
910 	case PIN_MAP_TYPE_MUX_GROUP:
911 		if (disable_setting)
912 			pinmux_disable_setting(setting);
913 		pinmux_free_setting(setting);
914 		break;
915 	case PIN_MAP_TYPE_CONFIGS_PIN:
916 	case PIN_MAP_TYPE_CONFIGS_GROUP:
917 		pinconf_free_setting(setting);
918 		break;
919 	default:
920 		break;
921 	}
922 }
923 
pinctrl_free(struct pinctrl * p,bool inlist)924 static void pinctrl_free(struct pinctrl *p, bool inlist)
925 {
926 	struct pinctrl_state *state, *n1;
927 	struct pinctrl_setting *setting, *n2;
928 
929 	mutex_lock(&pinctrl_list_mutex);
930 	list_for_each_entry_safe(state, n1, &p->states, node) {
931 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
932 			pinctrl_free_setting(state == p->state, setting);
933 			list_del(&setting->node);
934 			kfree(setting);
935 		}
936 		list_del(&state->node);
937 		kfree(state);
938 	}
939 
940 	pinctrl_dt_free_maps(p);
941 
942 	if (inlist)
943 		list_del(&p->node);
944 	kfree(p);
945 	mutex_unlock(&pinctrl_list_mutex);
946 }
947 
948 /**
949  * pinctrl_release() - release the pinctrl handle
950  * @kref: the kref in the pinctrl being released
951  */
pinctrl_release(struct kref * kref)952 static void pinctrl_release(struct kref *kref)
953 {
954 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
955 
956 	pinctrl_free(p, true);
957 }
958 
959 /**
960  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
961  * @p: the pinctrl handle to release
962  */
pinctrl_put(struct pinctrl * p)963 void pinctrl_put(struct pinctrl *p)
964 {
965 	kref_put(&p->users, pinctrl_release);
966 }
967 EXPORT_SYMBOL_GPL(pinctrl_put);
968 
969 /**
970  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
971  * @p: the pinctrl handle to retrieve the state from
972  * @name: the state name to retrieve
973  */
pinctrl_lookup_state(struct pinctrl * p,const char * name)974 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
975 						 const char *name)
976 {
977 	struct pinctrl_state *state;
978 
979 	state = find_state(p, name);
980 	if (!state) {
981 		if (pinctrl_dummy_state) {
982 			/* create dummy state */
983 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
984 				name);
985 			state = create_state(p, name);
986 		} else
987 			state = ERR_PTR(-ENODEV);
988 	}
989 
990 	return state;
991 }
992 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
993 
994 /**
995  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
996  * @p: the pinctrl handle for the device that requests configuration
997  * @state: the state handle to select/activate/program
998  */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)999 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1000 {
1001 	struct pinctrl_setting *setting, *setting2;
1002 	struct pinctrl_state *old_state = p->state;
1003 	int ret;
1004 
1005 	if (p->state) {
1006 		/*
1007 		 * For each pinmux setting in the old state, forget SW's record
1008 		 * of mux owner for that pingroup. Any pingroups which are
1009 		 * still owned by the new state will be re-acquired by the call
1010 		 * to pinmux_enable_setting() in the loop below.
1011 		 */
1012 		list_for_each_entry(setting, &p->state->settings, node) {
1013 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1014 				continue;
1015 			pinmux_disable_setting(setting);
1016 		}
1017 	}
1018 
1019 	p->state = NULL;
1020 
1021 	/* Apply all the settings for the new state */
1022 	list_for_each_entry(setting, &state->settings, node) {
1023 		switch (setting->type) {
1024 		case PIN_MAP_TYPE_MUX_GROUP:
1025 			ret = pinmux_enable_setting(setting);
1026 			break;
1027 		case PIN_MAP_TYPE_CONFIGS_PIN:
1028 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1029 			ret = pinconf_apply_setting(setting);
1030 			break;
1031 		default:
1032 			ret = -EINVAL;
1033 			break;
1034 		}
1035 
1036 		if (ret < 0) {
1037 			goto unapply_new_state;
1038 		}
1039 	}
1040 
1041 	p->state = state;
1042 
1043 	return 0;
1044 
1045 unapply_new_state:
1046 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1047 
1048 	list_for_each_entry(setting2, &state->settings, node) {
1049 		if (&setting2->node == &setting->node)
1050 			break;
1051 		/*
1052 		 * All we can do here is pinmux_disable_setting.
1053 		 * That means that some pins are muxed differently now
1054 		 * than they were before applying the setting (We can't
1055 		 * "unmux a pin"!), but it's not a big deal since the pins
1056 		 * are free to be muxed by another apply_setting.
1057 		 */
1058 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1059 			pinmux_disable_setting(setting2);
1060 	}
1061 
1062 	/* There's no infinite recursive loop here because p->state is NULL */
1063 	if (old_state)
1064 		pinctrl_select_state(p, old_state);
1065 
1066 	return ret;
1067 }
1068 
1069 /**
1070  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1071  * @p: the pinctrl handle for the device that requests configuration
1072  * @state: the state handle to select/activate/program
1073  */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1074 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1075 {
1076 	if (p->state == state)
1077 		return 0;
1078 
1079 	return pinctrl_commit_state(p, state);
1080 }
1081 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1082 
devm_pinctrl_release(struct device * dev,void * res)1083 static void devm_pinctrl_release(struct device *dev, void *res)
1084 {
1085 	pinctrl_put(*(struct pinctrl **)res);
1086 }
1087 
1088 /**
1089  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1090  * @dev: the device to obtain the handle for
1091  *
1092  * If there is a need to explicitly destroy the returned struct pinctrl,
1093  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1094  */
devm_pinctrl_get(struct device * dev)1095 struct pinctrl *devm_pinctrl_get(struct device *dev)
1096 {
1097 	struct pinctrl **ptr, *p;
1098 
1099 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1100 	if (!ptr)
1101 		return ERR_PTR(-ENOMEM);
1102 
1103 	p = pinctrl_get(dev);
1104 	if (!IS_ERR(p)) {
1105 		*ptr = p;
1106 		devres_add(dev, ptr);
1107 	} else {
1108 		devres_free(ptr);
1109 	}
1110 
1111 	return p;
1112 }
1113 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1114 
devm_pinctrl_match(struct device * dev,void * res,void * data)1115 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1116 {
1117 	struct pinctrl **p = res;
1118 
1119 	return *p == data;
1120 }
1121 
1122 /**
1123  * devm_pinctrl_put() - Resource managed pinctrl_put()
1124  * @p: the pinctrl handle to release
1125  *
1126  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1127  * this function will not need to be called and the resource management
1128  * code will ensure that the resource is freed.
1129  */
devm_pinctrl_put(struct pinctrl * p)1130 void devm_pinctrl_put(struct pinctrl *p)
1131 {
1132 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1133 			       devm_pinctrl_match, p));
1134 }
1135 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1136 
pinctrl_register_map(struct pinctrl_map const * maps,unsigned num_maps,bool dup)1137 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1138 			 bool dup)
1139 {
1140 	int i, ret;
1141 	struct pinctrl_maps *maps_node;
1142 
1143 	pr_debug("add %u pinctrl maps\n", num_maps);
1144 
1145 	/* First sanity check the new mapping */
1146 	for (i = 0; i < num_maps; i++) {
1147 		if (!maps[i].dev_name) {
1148 			pr_err("failed to register map %s (%d): no device given\n",
1149 			       maps[i].name, i);
1150 			return -EINVAL;
1151 		}
1152 
1153 		if (!maps[i].name) {
1154 			pr_err("failed to register map %d: no map name given\n",
1155 			       i);
1156 			return -EINVAL;
1157 		}
1158 
1159 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1160 				!maps[i].ctrl_dev_name) {
1161 			pr_err("failed to register map %s (%d): no pin control device given\n",
1162 			       maps[i].name, i);
1163 			return -EINVAL;
1164 		}
1165 
1166 		switch (maps[i].type) {
1167 		case PIN_MAP_TYPE_DUMMY_STATE:
1168 			break;
1169 		case PIN_MAP_TYPE_MUX_GROUP:
1170 			ret = pinmux_validate_map(&maps[i], i);
1171 			if (ret < 0)
1172 				return ret;
1173 			break;
1174 		case PIN_MAP_TYPE_CONFIGS_PIN:
1175 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1176 			ret = pinconf_validate_map(&maps[i], i);
1177 			if (ret < 0)
1178 				return ret;
1179 			break;
1180 		default:
1181 			pr_err("failed to register map %s (%d): invalid type given\n",
1182 			       maps[i].name, i);
1183 			return -EINVAL;
1184 		}
1185 	}
1186 
1187 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1188 	if (!maps_node) {
1189 		pr_err("failed to alloc struct pinctrl_maps\n");
1190 		return -ENOMEM;
1191 	}
1192 
1193 	maps_node->num_maps = num_maps;
1194 	if (dup) {
1195 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1196 					  GFP_KERNEL);
1197 		if (!maps_node->maps) {
1198 			pr_err("failed to duplicate mapping table\n");
1199 			kfree(maps_node);
1200 			return -ENOMEM;
1201 		}
1202 	} else {
1203 		maps_node->maps = maps;
1204 	}
1205 
1206 	mutex_lock(&pinctrl_maps_mutex);
1207 	list_add_tail(&maps_node->node, &pinctrl_maps);
1208 	mutex_unlock(&pinctrl_maps_mutex);
1209 
1210 	return 0;
1211 }
1212 
1213 /**
1214  * pinctrl_register_mappings() - register a set of pin controller mappings
1215  * @maps: the pincontrol mappings table to register. This should probably be
1216  *	marked with __initdata so it can be discarded after boot. This
1217  *	function will perform a shallow copy for the mapping entries.
1218  * @num_maps: the number of maps in the mapping table
1219  */
pinctrl_register_mappings(struct pinctrl_map const * maps,unsigned num_maps)1220 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1221 			      unsigned num_maps)
1222 {
1223 	return pinctrl_register_map(maps, num_maps, true);
1224 }
1225 
pinctrl_unregister_map(struct pinctrl_map const * map)1226 void pinctrl_unregister_map(struct pinctrl_map const *map)
1227 {
1228 	struct pinctrl_maps *maps_node;
1229 
1230 	mutex_lock(&pinctrl_maps_mutex);
1231 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1232 		if (maps_node->maps == map) {
1233 			list_del(&maps_node->node);
1234 			kfree(maps_node);
1235 			mutex_unlock(&pinctrl_maps_mutex);
1236 			return;
1237 		}
1238 	}
1239 	mutex_unlock(&pinctrl_maps_mutex);
1240 }
1241 
1242 /**
1243  * pinctrl_force_sleep() - turn a given controller device into sleep state
1244  * @pctldev: pin controller device
1245  */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1246 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1247 {
1248 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1249 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1250 	return 0;
1251 }
1252 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1253 
1254 /**
1255  * pinctrl_force_default() - turn a given controller device into default state
1256  * @pctldev: pin controller device
1257  */
pinctrl_force_default(struct pinctrl_dev * pctldev)1258 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1259 {
1260 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1261 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1262 	return 0;
1263 }
1264 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1265 
1266 /**
1267  * pinctrl_init_done() - tell pinctrl probe is done
1268  *
1269  * We'll use this time to switch the pins from "init" to "default" unless the
1270  * driver selected some other state.
1271  *
1272  * @dev: device to that's done probing
1273  */
pinctrl_init_done(struct device * dev)1274 int pinctrl_init_done(struct device *dev)
1275 {
1276 	struct dev_pin_info *pins = dev->pins;
1277 	int ret;
1278 
1279 	if (!pins)
1280 		return 0;
1281 
1282 	if (IS_ERR(pins->init_state))
1283 		return 0; /* No such state */
1284 
1285 	if (pins->p->state != pins->init_state)
1286 		return 0; /* Not at init anyway */
1287 
1288 	if (IS_ERR(pins->default_state))
1289 		return 0; /* No default state */
1290 
1291 	ret = pinctrl_select_state(pins->p, pins->default_state);
1292 	if (ret)
1293 		dev_err(dev, "failed to activate default pinctrl state\n");
1294 
1295 	return ret;
1296 }
1297 
1298 #ifdef CONFIG_PM
1299 
1300 /**
1301  * pinctrl_pm_select_state() - select pinctrl state for PM
1302  * @dev: device to select default state for
1303  * @state: state to set
1304  */
pinctrl_pm_select_state(struct device * dev,struct pinctrl_state * state)1305 static int pinctrl_pm_select_state(struct device *dev,
1306 				   struct pinctrl_state *state)
1307 {
1308 	struct dev_pin_info *pins = dev->pins;
1309 	int ret;
1310 
1311 	if (IS_ERR(state))
1312 		return 0; /* No such state */
1313 	ret = pinctrl_select_state(pins->p, state);
1314 	if (ret)
1315 		dev_err(dev, "failed to activate pinctrl state %s\n",
1316 			state->name);
1317 	return ret;
1318 }
1319 
1320 /**
1321  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1322  * @dev: device to select default state for
1323  */
pinctrl_pm_select_default_state(struct device * dev)1324 int pinctrl_pm_select_default_state(struct device *dev)
1325 {
1326 	if (!dev->pins)
1327 		return 0;
1328 
1329 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1330 }
1331 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1332 
1333 /**
1334  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1335  * @dev: device to select sleep state for
1336  */
pinctrl_pm_select_sleep_state(struct device * dev)1337 int pinctrl_pm_select_sleep_state(struct device *dev)
1338 {
1339 	if (!dev->pins)
1340 		return 0;
1341 
1342 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1343 }
1344 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1345 
1346 /**
1347  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1348  * @dev: device to select idle state for
1349  */
pinctrl_pm_select_idle_state(struct device * dev)1350 int pinctrl_pm_select_idle_state(struct device *dev)
1351 {
1352 	if (!dev->pins)
1353 		return 0;
1354 
1355 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1356 }
1357 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1358 #endif
1359 
1360 #ifdef CONFIG_DEBUG_FS
1361 
pinctrl_pins_show(struct seq_file * s,void * what)1362 static int pinctrl_pins_show(struct seq_file *s, void *what)
1363 {
1364 	struct pinctrl_dev *pctldev = s->private;
1365 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1366 	unsigned i, pin;
1367 
1368 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1369 
1370 	mutex_lock(&pctldev->mutex);
1371 
1372 	/* The pin number can be retrived from the pin controller descriptor */
1373 	for (i = 0; i < pctldev->desc->npins; i++) {
1374 		struct pin_desc *desc;
1375 
1376 		pin = pctldev->desc->pins[i].number;
1377 		desc = pin_desc_get(pctldev, pin);
1378 		/* Pin space may be sparse */
1379 		if (desc == NULL)
1380 			continue;
1381 
1382 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1383 
1384 		/* Driver-specific info per pin */
1385 		if (ops->pin_dbg_show)
1386 			ops->pin_dbg_show(pctldev, s, pin);
1387 
1388 		seq_puts(s, "\n");
1389 	}
1390 
1391 	mutex_unlock(&pctldev->mutex);
1392 
1393 	return 0;
1394 }
1395 
pinctrl_groups_show(struct seq_file * s,void * what)1396 static int pinctrl_groups_show(struct seq_file *s, void *what)
1397 {
1398 	struct pinctrl_dev *pctldev = s->private;
1399 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1400 	unsigned ngroups, selector = 0;
1401 
1402 	mutex_lock(&pctldev->mutex);
1403 
1404 	ngroups = ops->get_groups_count(pctldev);
1405 
1406 	seq_puts(s, "registered pin groups:\n");
1407 	while (selector < ngroups) {
1408 		const unsigned *pins = NULL;
1409 		unsigned num_pins = 0;
1410 		const char *gname = ops->get_group_name(pctldev, selector);
1411 		const char *pname;
1412 		int ret = 0;
1413 		int i;
1414 
1415 		if (ops->get_group_pins)
1416 			ret = ops->get_group_pins(pctldev, selector,
1417 						  &pins, &num_pins);
1418 		if (ret)
1419 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1420 				   gname);
1421 		else {
1422 			seq_printf(s, "group: %s\n", gname);
1423 			for (i = 0; i < num_pins; i++) {
1424 				pname = pin_get_name(pctldev, pins[i]);
1425 				if (WARN_ON(!pname)) {
1426 					mutex_unlock(&pctldev->mutex);
1427 					return -EINVAL;
1428 				}
1429 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1430 			}
1431 			seq_puts(s, "\n");
1432 		}
1433 		selector++;
1434 	}
1435 
1436 	mutex_unlock(&pctldev->mutex);
1437 
1438 	return 0;
1439 }
1440 
pinctrl_gpioranges_show(struct seq_file * s,void * what)1441 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1442 {
1443 	struct pinctrl_dev *pctldev = s->private;
1444 	struct pinctrl_gpio_range *range = NULL;
1445 
1446 	seq_puts(s, "GPIO ranges handled:\n");
1447 
1448 	mutex_lock(&pctldev->mutex);
1449 
1450 	/* Loop over the ranges */
1451 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1452 		if (range->pins) {
1453 			int a;
1454 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1455 				range->id, range->name,
1456 				range->base, (range->base + range->npins - 1));
1457 			for (a = 0; a < range->npins - 1; a++)
1458 				seq_printf(s, "%u, ", range->pins[a]);
1459 			seq_printf(s, "%u}\n", range->pins[a]);
1460 		}
1461 		else
1462 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1463 				range->id, range->name,
1464 				range->base, (range->base + range->npins - 1),
1465 				range->pin_base,
1466 				(range->pin_base + range->npins - 1));
1467 	}
1468 
1469 	mutex_unlock(&pctldev->mutex);
1470 
1471 	return 0;
1472 }
1473 
pinctrl_devices_show(struct seq_file * s,void * what)1474 static int pinctrl_devices_show(struct seq_file *s, void *what)
1475 {
1476 	struct pinctrl_dev *pctldev;
1477 
1478 	seq_puts(s, "name [pinmux] [pinconf]\n");
1479 
1480 	mutex_lock(&pinctrldev_list_mutex);
1481 
1482 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1483 		seq_printf(s, "%s ", pctldev->desc->name);
1484 		if (pctldev->desc->pmxops)
1485 			seq_puts(s, "yes ");
1486 		else
1487 			seq_puts(s, "no ");
1488 		if (pctldev->desc->confops)
1489 			seq_puts(s, "yes");
1490 		else
1491 			seq_puts(s, "no");
1492 		seq_puts(s, "\n");
1493 	}
1494 
1495 	mutex_unlock(&pinctrldev_list_mutex);
1496 
1497 	return 0;
1498 }
1499 
map_type(enum pinctrl_map_type type)1500 static inline const char *map_type(enum pinctrl_map_type type)
1501 {
1502 	static const char * const names[] = {
1503 		"INVALID",
1504 		"DUMMY_STATE",
1505 		"MUX_GROUP",
1506 		"CONFIGS_PIN",
1507 		"CONFIGS_GROUP",
1508 	};
1509 
1510 	if (type >= ARRAY_SIZE(names))
1511 		return "UNKNOWN";
1512 
1513 	return names[type];
1514 }
1515 
pinctrl_maps_show(struct seq_file * s,void * what)1516 static int pinctrl_maps_show(struct seq_file *s, void *what)
1517 {
1518 	struct pinctrl_maps *maps_node;
1519 	int i;
1520 	struct pinctrl_map const *map;
1521 
1522 	seq_puts(s, "Pinctrl maps:\n");
1523 
1524 	mutex_lock(&pinctrl_maps_mutex);
1525 	for_each_maps(maps_node, i, map) {
1526 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1527 			   map->dev_name, map->name, map_type(map->type),
1528 			   map->type);
1529 
1530 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1531 			seq_printf(s, "controlling device %s\n",
1532 				   map->ctrl_dev_name);
1533 
1534 		switch (map->type) {
1535 		case PIN_MAP_TYPE_MUX_GROUP:
1536 			pinmux_show_map(s, map);
1537 			break;
1538 		case PIN_MAP_TYPE_CONFIGS_PIN:
1539 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1540 			pinconf_show_map(s, map);
1541 			break;
1542 		default:
1543 			break;
1544 		}
1545 
1546 		seq_printf(s, "\n");
1547 	}
1548 	mutex_unlock(&pinctrl_maps_mutex);
1549 
1550 	return 0;
1551 }
1552 
pinctrl_show(struct seq_file * s,void * what)1553 static int pinctrl_show(struct seq_file *s, void *what)
1554 {
1555 	struct pinctrl *p;
1556 	struct pinctrl_state *state;
1557 	struct pinctrl_setting *setting;
1558 
1559 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1560 
1561 	mutex_lock(&pinctrl_list_mutex);
1562 
1563 	list_for_each_entry(p, &pinctrl_list, node) {
1564 		seq_printf(s, "device: %s current state: %s\n",
1565 			   dev_name(p->dev),
1566 			   p->state ? p->state->name : "none");
1567 
1568 		list_for_each_entry(state, &p->states, node) {
1569 			seq_printf(s, "  state: %s\n", state->name);
1570 
1571 			list_for_each_entry(setting, &state->settings, node) {
1572 				struct pinctrl_dev *pctldev = setting->pctldev;
1573 
1574 				seq_printf(s, "    type: %s controller %s ",
1575 					   map_type(setting->type),
1576 					   pinctrl_dev_get_name(pctldev));
1577 
1578 				switch (setting->type) {
1579 				case PIN_MAP_TYPE_MUX_GROUP:
1580 					pinmux_show_setting(s, setting);
1581 					break;
1582 				case PIN_MAP_TYPE_CONFIGS_PIN:
1583 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1584 					pinconf_show_setting(s, setting);
1585 					break;
1586 				default:
1587 					break;
1588 				}
1589 			}
1590 		}
1591 	}
1592 
1593 	mutex_unlock(&pinctrl_list_mutex);
1594 
1595 	return 0;
1596 }
1597 
pinctrl_pins_open(struct inode * inode,struct file * file)1598 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1599 {
1600 	return single_open(file, pinctrl_pins_show, inode->i_private);
1601 }
1602 
pinctrl_groups_open(struct inode * inode,struct file * file)1603 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1604 {
1605 	return single_open(file, pinctrl_groups_show, inode->i_private);
1606 }
1607 
pinctrl_gpioranges_open(struct inode * inode,struct file * file)1608 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1609 {
1610 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1611 }
1612 
pinctrl_devices_open(struct inode * inode,struct file * file)1613 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1614 {
1615 	return single_open(file, pinctrl_devices_show, NULL);
1616 }
1617 
pinctrl_maps_open(struct inode * inode,struct file * file)1618 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1619 {
1620 	return single_open(file, pinctrl_maps_show, NULL);
1621 }
1622 
pinctrl_open(struct inode * inode,struct file * file)1623 static int pinctrl_open(struct inode *inode, struct file *file)
1624 {
1625 	return single_open(file, pinctrl_show, NULL);
1626 }
1627 
1628 static const struct file_operations pinctrl_pins_ops = {
1629 	.open		= pinctrl_pins_open,
1630 	.read		= seq_read,
1631 	.llseek		= seq_lseek,
1632 	.release	= single_release,
1633 };
1634 
1635 static const struct file_operations pinctrl_groups_ops = {
1636 	.open		= pinctrl_groups_open,
1637 	.read		= seq_read,
1638 	.llseek		= seq_lseek,
1639 	.release	= single_release,
1640 };
1641 
1642 static const struct file_operations pinctrl_gpioranges_ops = {
1643 	.open		= pinctrl_gpioranges_open,
1644 	.read		= seq_read,
1645 	.llseek		= seq_lseek,
1646 	.release	= single_release,
1647 };
1648 
1649 static const struct file_operations pinctrl_devices_ops = {
1650 	.open		= pinctrl_devices_open,
1651 	.read		= seq_read,
1652 	.llseek		= seq_lseek,
1653 	.release	= single_release,
1654 };
1655 
1656 static const struct file_operations pinctrl_maps_ops = {
1657 	.open		= pinctrl_maps_open,
1658 	.read		= seq_read,
1659 	.llseek		= seq_lseek,
1660 	.release	= single_release,
1661 };
1662 
1663 static const struct file_operations pinctrl_ops = {
1664 	.open		= pinctrl_open,
1665 	.read		= seq_read,
1666 	.llseek		= seq_lseek,
1667 	.release	= single_release,
1668 };
1669 
1670 static struct dentry *debugfs_root;
1671 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1672 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1673 {
1674 	struct dentry *device_root;
1675 
1676 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1677 					 debugfs_root);
1678 	pctldev->device_root = device_root;
1679 
1680 	if (IS_ERR(device_root) || !device_root) {
1681 		pr_warn("failed to create debugfs directory for %s\n",
1682 			dev_name(pctldev->dev));
1683 		return;
1684 	}
1685 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1686 			    device_root, pctldev, &pinctrl_pins_ops);
1687 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1688 			    device_root, pctldev, &pinctrl_groups_ops);
1689 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1690 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1691 	if (pctldev->desc->pmxops)
1692 		pinmux_init_device_debugfs(device_root, pctldev);
1693 	if (pctldev->desc->confops)
1694 		pinconf_init_device_debugfs(device_root, pctldev);
1695 }
1696 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1697 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1698 {
1699 	debugfs_remove_recursive(pctldev->device_root);
1700 }
1701 
pinctrl_init_debugfs(void)1702 static void pinctrl_init_debugfs(void)
1703 {
1704 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1705 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1706 		pr_warn("failed to create debugfs directory\n");
1707 		debugfs_root = NULL;
1708 		return;
1709 	}
1710 
1711 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1712 			    debugfs_root, NULL, &pinctrl_devices_ops);
1713 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1714 			    debugfs_root, NULL, &pinctrl_maps_ops);
1715 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1716 			    debugfs_root, NULL, &pinctrl_ops);
1717 }
1718 
1719 #else /* CONFIG_DEBUG_FS */
1720 
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1721 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1722 {
1723 }
1724 
pinctrl_init_debugfs(void)1725 static void pinctrl_init_debugfs(void)
1726 {
1727 }
1728 
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1729 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1730 {
1731 }
1732 
1733 #endif
1734 
pinctrl_check_ops(struct pinctrl_dev * pctldev)1735 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1736 {
1737 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1738 
1739 	if (!ops ||
1740 	    !ops->get_groups_count ||
1741 	    !ops->get_group_name)
1742 		return -EINVAL;
1743 
1744 	if (ops->dt_node_to_map && !ops->dt_free_map)
1745 		return -EINVAL;
1746 
1747 	return 0;
1748 }
1749 
1750 /**
1751  * pinctrl_register() - register a pin controller device
1752  * @pctldesc: descriptor for this pin controller
1753  * @dev: parent device for this pin controller
1754  * @driver_data: private pin controller data for this pin controller
1755  */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)1756 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1757 				    struct device *dev, void *driver_data)
1758 {
1759 	struct pinctrl_dev *pctldev;
1760 	int ret;
1761 
1762 	if (!pctldesc)
1763 		return ERR_PTR(-EINVAL);
1764 	if (!pctldesc->name)
1765 		return ERR_PTR(-EINVAL);
1766 
1767 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1768 	if (pctldev == NULL) {
1769 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1770 		return ERR_PTR(-ENOMEM);
1771 	}
1772 
1773 	/* Initialize pin control device struct */
1774 	pctldev->owner = pctldesc->owner;
1775 	pctldev->desc = pctldesc;
1776 	pctldev->driver_data = driver_data;
1777 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1778 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1779 	pctldev->dev = dev;
1780 	mutex_init(&pctldev->mutex);
1781 
1782 	/* check core ops for sanity */
1783 	ret = pinctrl_check_ops(pctldev);
1784 	if (ret) {
1785 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1786 		goto out_err;
1787 	}
1788 
1789 	/* If we're implementing pinmuxing, check the ops for sanity */
1790 	if (pctldesc->pmxops) {
1791 		ret = pinmux_check_ops(pctldev);
1792 		if (ret)
1793 			goto out_err;
1794 	}
1795 
1796 	/* If we're implementing pinconfig, check the ops for sanity */
1797 	if (pctldesc->confops) {
1798 		ret = pinconf_check_ops(pctldev);
1799 		if (ret)
1800 			goto out_err;
1801 	}
1802 
1803 	/* Register all the pins */
1804 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1805 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1806 	if (ret) {
1807 		dev_err(dev, "error during pin registration\n");
1808 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1809 				      pctldesc->npins);
1810 		goto out_err;
1811 	}
1812 
1813 	mutex_lock(&pinctrldev_list_mutex);
1814 	list_add_tail(&pctldev->node, &pinctrldev_list);
1815 	mutex_unlock(&pinctrldev_list_mutex);
1816 
1817 	pctldev->p = pinctrl_get(pctldev->dev);
1818 
1819 	if (!IS_ERR(pctldev->p)) {
1820 		pctldev->hog_default =
1821 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1822 		if (IS_ERR(pctldev->hog_default)) {
1823 			dev_dbg(dev, "failed to lookup the default state\n");
1824 		} else {
1825 			if (pinctrl_select_state(pctldev->p,
1826 						pctldev->hog_default))
1827 				dev_err(dev,
1828 					"failed to select default state\n");
1829 		}
1830 
1831 		pctldev->hog_sleep =
1832 			pinctrl_lookup_state(pctldev->p,
1833 						    PINCTRL_STATE_SLEEP);
1834 		if (IS_ERR(pctldev->hog_sleep))
1835 			dev_dbg(dev, "failed to lookup the sleep state\n");
1836 	}
1837 
1838 	pinctrl_init_device_debugfs(pctldev);
1839 
1840 	return pctldev;
1841 
1842 out_err:
1843 	mutex_destroy(&pctldev->mutex);
1844 	kfree(pctldev);
1845 	return ERR_PTR(ret);
1846 }
1847 EXPORT_SYMBOL_GPL(pinctrl_register);
1848 
1849 /**
1850  * pinctrl_unregister() - unregister pinmux
1851  * @pctldev: pin controller to unregister
1852  *
1853  * Called by pinmux drivers to unregister a pinmux.
1854  */
pinctrl_unregister(struct pinctrl_dev * pctldev)1855 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1856 {
1857 	struct pinctrl_gpio_range *range, *n;
1858 	if (pctldev == NULL)
1859 		return;
1860 
1861 	mutex_lock(&pctldev->mutex);
1862 	pinctrl_remove_device_debugfs(pctldev);
1863 	mutex_unlock(&pctldev->mutex);
1864 
1865 	if (!IS_ERR(pctldev->p))
1866 		pinctrl_put(pctldev->p);
1867 
1868 	mutex_lock(&pinctrldev_list_mutex);
1869 	mutex_lock(&pctldev->mutex);
1870 	/* TODO: check that no pinmuxes are still active? */
1871 	list_del(&pctldev->node);
1872 	/* Destroy descriptor tree */
1873 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1874 			      pctldev->desc->npins);
1875 	/* remove gpio ranges map */
1876 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1877 		list_del(&range->node);
1878 
1879 	mutex_unlock(&pctldev->mutex);
1880 	mutex_destroy(&pctldev->mutex);
1881 	kfree(pctldev);
1882 	mutex_unlock(&pinctrldev_list_mutex);
1883 }
1884 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1885 
devm_pinctrl_dev_release(struct device * dev,void * res)1886 static void devm_pinctrl_dev_release(struct device *dev, void *res)
1887 {
1888 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
1889 
1890 	pinctrl_unregister(pctldev);
1891 }
1892 
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)1893 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
1894 {
1895 	struct pctldev **r = res;
1896 
1897 	if (WARN_ON(!r || !*r))
1898 		return 0;
1899 
1900 	return *r == data;
1901 }
1902 
1903 /**
1904  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
1905  * @dev: parent device for this pin controller
1906  * @pctldesc: descriptor for this pin controller
1907  * @driver_data: private pin controller data for this pin controller
1908  *
1909  * Returns an error pointer if pincontrol register failed. Otherwise
1910  * it returns valid pinctrl handle.
1911  *
1912  * The pinctrl device will be automatically released when the device is unbound.
1913  */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)1914 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
1915 					  struct pinctrl_desc *pctldesc,
1916 					  void *driver_data)
1917 {
1918 	struct pinctrl_dev **ptr, *pctldev;
1919 
1920 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
1921 	if (!ptr)
1922 		return ERR_PTR(-ENOMEM);
1923 
1924 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
1925 	if (IS_ERR(pctldev)) {
1926 		devres_free(ptr);
1927 		return pctldev;
1928 	}
1929 
1930 	*ptr = pctldev;
1931 	devres_add(dev, ptr);
1932 
1933 	return pctldev;
1934 }
1935 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
1936 
1937 /**
1938  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
1939  * @dev: device for which which resource was allocated
1940  * @pctldev: the pinctrl device to unregister.
1941  */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)1942 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
1943 {
1944 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
1945 			       devm_pinctrl_dev_match, pctldev));
1946 }
1947 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
1948 
pinctrl_init(void)1949 static int __init pinctrl_init(void)
1950 {
1951 	pr_info("initialized pinctrl subsystem\n");
1952 	pinctrl_init_debugfs();
1953 	return 0;
1954 }
1955 
1956 /* init early since many drivers really need to initialized pinmux early */
1957 core_initcall(pinctrl_init);
1958