• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h>	/* for try_to_release_page(),
30 					buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50 
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53 
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56 
57 #include "internal.h"
58 
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61 
62 struct scan_control {
63 	/* How many pages shrink_list() should reclaim */
64 	unsigned long nr_to_reclaim;
65 
66 	/* This context's GFP mask */
67 	gfp_t gfp_mask;
68 
69 	/* Allocation order */
70 	int order;
71 
72 	/*
73 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 	 * are scanned.
75 	 */
76 	nodemask_t	*nodemask;
77 
78 	/*
79 	 * The memory cgroup that hit its limit and as a result is the
80 	 * primary target of this reclaim invocation.
81 	 */
82 	struct mem_cgroup *target_mem_cgroup;
83 
84 	/* Scan (total_size >> priority) pages at once */
85 	int priority;
86 
87 	/* The highest zone to isolate pages for reclaim from */
88 	enum zone_type reclaim_idx;
89 
90 	unsigned int may_writepage:1;
91 
92 	/* Can mapped pages be reclaimed? */
93 	unsigned int may_unmap:1;
94 
95 	/* Can pages be swapped as part of reclaim? */
96 	unsigned int may_swap:1;
97 
98 	/* Can cgroups be reclaimed below their normal consumption range? */
99 	unsigned int may_thrash:1;
100 
101 	unsigned int hibernation_mode:1;
102 
103 	/* One of the zones is ready for compaction */
104 	unsigned int compaction_ready:1;
105 
106 	/* Incremented by the number of inactive pages that were scanned */
107 	unsigned long nr_scanned;
108 
109 	/* Number of pages freed so far during a call to shrink_zones() */
110 	unsigned long nr_reclaimed;
111 };
112 
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field)			\
115 	do {								\
116 		if ((_page)->lru.prev != _base) {			\
117 			struct page *prev;				\
118 									\
119 			prev = lru_to_page(&(_page->lru));		\
120 			prefetch(&prev->_field);			\
121 		}							\
122 	} while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126 
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field)			\
129 	do {								\
130 		if ((_page)->lru.prev != _base) {			\
131 			struct page *prev;				\
132 									\
133 			prev = lru_to_page(&(_page->lru));		\
134 			prefetchw(&prev->_field);			\
135 		}							\
136 	} while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140 
141 /*
142  * From 0 .. 100.  Higher means more swappy.
143  */
144 int vm_swappiness = 60;
145 /*
146  * The total number of pages which are beyond the high watermark within all
147  * zones.
148  */
149 unsigned long vm_total_pages;
150 
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153 
154 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)155 static bool global_reclaim(struct scan_control *sc)
156 {
157 	return !sc->target_mem_cgroup;
158 }
159 
160 /**
161  * sane_reclaim - is the usual dirty throttling mechanism operational?
162  * @sc: scan_control in question
163  *
164  * The normal page dirty throttling mechanism in balance_dirty_pages() is
165  * completely broken with the legacy memcg and direct stalling in
166  * shrink_page_list() is used for throttling instead, which lacks all the
167  * niceties such as fairness, adaptive pausing, bandwidth proportional
168  * allocation and configurability.
169  *
170  * This function tests whether the vmscan currently in progress can assume
171  * that the normal dirty throttling mechanism is operational.
172  */
sane_reclaim(struct scan_control * sc)173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
176 
177 	if (!memcg)
178 		return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 		return true;
182 #endif
183 	return false;
184 }
185 #else
global_reclaim(struct scan_control * sc)186 static bool global_reclaim(struct scan_control *sc)
187 {
188 	return true;
189 }
190 
sane_reclaim(struct scan_control * sc)191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 	return true;
194 }
195 #endif
196 
197 /*
198  * This misses isolated pages which are not accounted for to save counters.
199  * As the data only determines if reclaim or compaction continues, it is
200  * not expected that isolated pages will be a dominating factor.
201  */
zone_reclaimable_pages(struct zone * zone)202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 	unsigned long nr;
205 
206 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 	if (get_nr_swap_pages() > 0)
209 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211 
212 	return nr;
213 }
214 
pgdat_reclaimable_pages(struct pglist_data * pgdat)215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216 {
217 	unsigned long nr;
218 
219 	nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 	     node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 	     node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222 
223 	if (get_nr_swap_pages() > 0)
224 		nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 		      node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 		      node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227 
228 	return nr;
229 }
230 
pgdat_reclaimable(struct pglist_data * pgdat)231 bool pgdat_reclaimable(struct pglist_data *pgdat)
232 {
233 	return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 		pgdat_reclaimable_pages(pgdat) * 6;
235 }
236 
237 /**
238  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
239  * @lruvec: lru vector
240  * @lru: lru to use
241  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
242  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)243 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
244 {
245 	unsigned long lru_size;
246 	int zid;
247 
248 	if (!mem_cgroup_disabled())
249 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
250 	else
251 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
252 
253 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
254 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
255 		unsigned long size;
256 
257 		if (!managed_zone(zone))
258 			continue;
259 
260 		if (!mem_cgroup_disabled())
261 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
262 		else
263 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
264 				       NR_ZONE_LRU_BASE + lru);
265 		lru_size -= min(size, lru_size);
266 	}
267 
268 	return lru_size;
269 
270 }
271 
272 /*
273  * Add a shrinker callback to be called from the vm.
274  */
register_shrinker(struct shrinker * shrinker)275 int register_shrinker(struct shrinker *shrinker)
276 {
277 	size_t size = sizeof(*shrinker->nr_deferred);
278 
279 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
280 		size *= nr_node_ids;
281 
282 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
283 	if (!shrinker->nr_deferred)
284 		return -ENOMEM;
285 
286 	down_write(&shrinker_rwsem);
287 	list_add_tail(&shrinker->list, &shrinker_list);
288 	up_write(&shrinker_rwsem);
289 	return 0;
290 }
291 EXPORT_SYMBOL(register_shrinker);
292 
293 /*
294  * Remove one
295  */
unregister_shrinker(struct shrinker * shrinker)296 void unregister_shrinker(struct shrinker *shrinker)
297 {
298 	if (!shrinker->nr_deferred)
299 		return;
300 	down_write(&shrinker_rwsem);
301 	list_del(&shrinker->list);
302 	up_write(&shrinker_rwsem);
303 	kfree(shrinker->nr_deferred);
304 	shrinker->nr_deferred = NULL;
305 }
306 EXPORT_SYMBOL(unregister_shrinker);
307 
308 #define SHRINK_BATCH 128
309 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_scanned,unsigned long nr_eligible)310 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
311 				    struct shrinker *shrinker,
312 				    unsigned long nr_scanned,
313 				    unsigned long nr_eligible)
314 {
315 	unsigned long freed = 0;
316 	unsigned long long delta;
317 	long total_scan;
318 	long freeable;
319 	long nr;
320 	long new_nr;
321 	int nid = shrinkctl->nid;
322 	long batch_size = shrinker->batch ? shrinker->batch
323 					  : SHRINK_BATCH;
324 	long scanned = 0, next_deferred;
325 
326 	freeable = shrinker->count_objects(shrinker, shrinkctl);
327 	if (freeable == 0)
328 		return 0;
329 
330 	/*
331 	 * copy the current shrinker scan count into a local variable
332 	 * and zero it so that other concurrent shrinker invocations
333 	 * don't also do this scanning work.
334 	 */
335 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
336 
337 	total_scan = nr;
338 	delta = (4 * nr_scanned) / shrinker->seeks;
339 	delta *= freeable;
340 	do_div(delta, nr_eligible + 1);
341 	total_scan += delta;
342 	if (total_scan < 0) {
343 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
344 		       shrinker->scan_objects, total_scan);
345 		total_scan = freeable;
346 		next_deferred = nr;
347 	} else
348 		next_deferred = total_scan;
349 
350 	/*
351 	 * We need to avoid excessive windup on filesystem shrinkers
352 	 * due to large numbers of GFP_NOFS allocations causing the
353 	 * shrinkers to return -1 all the time. This results in a large
354 	 * nr being built up so when a shrink that can do some work
355 	 * comes along it empties the entire cache due to nr >>>
356 	 * freeable. This is bad for sustaining a working set in
357 	 * memory.
358 	 *
359 	 * Hence only allow the shrinker to scan the entire cache when
360 	 * a large delta change is calculated directly.
361 	 */
362 	if (delta < freeable / 4)
363 		total_scan = min(total_scan, freeable / 2);
364 
365 	/*
366 	 * Avoid risking looping forever due to too large nr value:
367 	 * never try to free more than twice the estimate number of
368 	 * freeable entries.
369 	 */
370 	if (total_scan > freeable * 2)
371 		total_scan = freeable * 2;
372 
373 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
374 				   nr_scanned, nr_eligible,
375 				   freeable, delta, total_scan);
376 
377 	/*
378 	 * Normally, we should not scan less than batch_size objects in one
379 	 * pass to avoid too frequent shrinker calls, but if the slab has less
380 	 * than batch_size objects in total and we are really tight on memory,
381 	 * we will try to reclaim all available objects, otherwise we can end
382 	 * up failing allocations although there are plenty of reclaimable
383 	 * objects spread over several slabs with usage less than the
384 	 * batch_size.
385 	 *
386 	 * We detect the "tight on memory" situations by looking at the total
387 	 * number of objects we want to scan (total_scan). If it is greater
388 	 * than the total number of objects on slab (freeable), we must be
389 	 * scanning at high prio and therefore should try to reclaim as much as
390 	 * possible.
391 	 */
392 	while (total_scan >= batch_size ||
393 	       total_scan >= freeable) {
394 		unsigned long ret;
395 		unsigned long nr_to_scan = min(batch_size, total_scan);
396 
397 		shrinkctl->nr_to_scan = nr_to_scan;
398 		ret = shrinker->scan_objects(shrinker, shrinkctl);
399 		if (ret == SHRINK_STOP)
400 			break;
401 		freed += ret;
402 
403 		count_vm_events(SLABS_SCANNED, nr_to_scan);
404 		total_scan -= nr_to_scan;
405 		scanned += nr_to_scan;
406 
407 		cond_resched();
408 	}
409 
410 	if (next_deferred >= scanned)
411 		next_deferred -= scanned;
412 	else
413 		next_deferred = 0;
414 	/*
415 	 * move the unused scan count back into the shrinker in a
416 	 * manner that handles concurrent updates. If we exhausted the
417 	 * scan, there is no need to do an update.
418 	 */
419 	if (next_deferred > 0)
420 		new_nr = atomic_long_add_return(next_deferred,
421 						&shrinker->nr_deferred[nid]);
422 	else
423 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
424 
425 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
426 	return freed;
427 }
428 
429 /**
430  * shrink_slab - shrink slab caches
431  * @gfp_mask: allocation context
432  * @nid: node whose slab caches to target
433  * @memcg: memory cgroup whose slab caches to target
434  * @nr_scanned: pressure numerator
435  * @nr_eligible: pressure denominator
436  *
437  * Call the shrink functions to age shrinkable caches.
438  *
439  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
440  * unaware shrinkers will receive a node id of 0 instead.
441  *
442  * @memcg specifies the memory cgroup to target. If it is not NULL,
443  * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
444  * objects from the memory cgroup specified. Otherwise, only unaware
445  * shrinkers are called.
446  *
447  * @nr_scanned and @nr_eligible form a ratio that indicate how much of
448  * the available objects should be scanned.  Page reclaim for example
449  * passes the number of pages scanned and the number of pages on the
450  * LRU lists that it considered on @nid, plus a bias in @nr_scanned
451  * when it encountered mapped pages.  The ratio is further biased by
452  * the ->seeks setting of the shrink function, which indicates the
453  * cost to recreate an object relative to that of an LRU page.
454  *
455  * Returns the number of reclaimed slab objects.
456  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,unsigned long nr_scanned,unsigned long nr_eligible)457 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
458 				 struct mem_cgroup *memcg,
459 				 unsigned long nr_scanned,
460 				 unsigned long nr_eligible)
461 {
462 	struct shrinker *shrinker;
463 	unsigned long freed = 0;
464 
465 	if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
466 		return 0;
467 
468 	if (nr_scanned == 0)
469 		nr_scanned = SWAP_CLUSTER_MAX;
470 
471 	if (!down_read_trylock(&shrinker_rwsem)) {
472 		/*
473 		 * If we would return 0, our callers would understand that we
474 		 * have nothing else to shrink and give up trying. By returning
475 		 * 1 we keep it going and assume we'll be able to shrink next
476 		 * time.
477 		 */
478 		freed = 1;
479 		goto out;
480 	}
481 
482 	list_for_each_entry(shrinker, &shrinker_list, list) {
483 		struct shrink_control sc = {
484 			.gfp_mask = gfp_mask,
485 			.nid = nid,
486 			.memcg = memcg,
487 		};
488 
489 		/*
490 		 * If kernel memory accounting is disabled, we ignore
491 		 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
492 		 * passing NULL for memcg.
493 		 */
494 		if (memcg_kmem_enabled() &&
495 		    !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
496 			continue;
497 
498 		if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
499 			sc.nid = 0;
500 
501 		freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
502 	}
503 
504 	up_read(&shrinker_rwsem);
505 out:
506 	cond_resched();
507 	return freed;
508 }
509 
drop_slab_node(int nid)510 void drop_slab_node(int nid)
511 {
512 	unsigned long freed;
513 
514 	do {
515 		struct mem_cgroup *memcg = NULL;
516 
517 		freed = 0;
518 		do {
519 			freed += shrink_slab(GFP_KERNEL, nid, memcg,
520 					     1000, 1000);
521 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
522 	} while (freed > 10);
523 }
524 
drop_slab(void)525 void drop_slab(void)
526 {
527 	int nid;
528 
529 	for_each_online_node(nid)
530 		drop_slab_node(nid);
531 }
532 
is_page_cache_freeable(struct page * page)533 static inline int is_page_cache_freeable(struct page *page)
534 {
535 	/*
536 	 * A freeable page cache page is referenced only by the caller
537 	 * that isolated the page, the page cache radix tree and
538 	 * optional buffer heads at page->private.
539 	 */
540 	return page_count(page) - page_has_private(page) == 2;
541 }
542 
may_write_to_inode(struct inode * inode,struct scan_control * sc)543 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
544 {
545 	if (current->flags & PF_SWAPWRITE)
546 		return 1;
547 	if (!inode_write_congested(inode))
548 		return 1;
549 	if (inode_to_bdi(inode) == current->backing_dev_info)
550 		return 1;
551 	return 0;
552 }
553 
554 /*
555  * We detected a synchronous write error writing a page out.  Probably
556  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
557  * fsync(), msync() or close().
558  *
559  * The tricky part is that after writepage we cannot touch the mapping: nothing
560  * prevents it from being freed up.  But we have a ref on the page and once
561  * that page is locked, the mapping is pinned.
562  *
563  * We're allowed to run sleeping lock_page() here because we know the caller has
564  * __GFP_FS.
565  */
handle_write_error(struct address_space * mapping,struct page * page,int error)566 static void handle_write_error(struct address_space *mapping,
567 				struct page *page, int error)
568 {
569 	lock_page(page);
570 	if (page_mapping(page) == mapping)
571 		mapping_set_error(mapping, error);
572 	unlock_page(page);
573 }
574 
575 /* possible outcome of pageout() */
576 typedef enum {
577 	/* failed to write page out, page is locked */
578 	PAGE_KEEP,
579 	/* move page to the active list, page is locked */
580 	PAGE_ACTIVATE,
581 	/* page has been sent to the disk successfully, page is unlocked */
582 	PAGE_SUCCESS,
583 	/* page is clean and locked */
584 	PAGE_CLEAN,
585 } pageout_t;
586 
587 /*
588  * pageout is called by shrink_page_list() for each dirty page.
589  * Calls ->writepage().
590  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)591 static pageout_t pageout(struct page *page, struct address_space *mapping,
592 			 struct scan_control *sc)
593 {
594 	/*
595 	 * If the page is dirty, only perform writeback if that write
596 	 * will be non-blocking.  To prevent this allocation from being
597 	 * stalled by pagecache activity.  But note that there may be
598 	 * stalls if we need to run get_block().  We could test
599 	 * PagePrivate for that.
600 	 *
601 	 * If this process is currently in __generic_file_write_iter() against
602 	 * this page's queue, we can perform writeback even if that
603 	 * will block.
604 	 *
605 	 * If the page is swapcache, write it back even if that would
606 	 * block, for some throttling. This happens by accident, because
607 	 * swap_backing_dev_info is bust: it doesn't reflect the
608 	 * congestion state of the swapdevs.  Easy to fix, if needed.
609 	 */
610 	if (!is_page_cache_freeable(page))
611 		return PAGE_KEEP;
612 	if (!mapping) {
613 		/*
614 		 * Some data journaling orphaned pages can have
615 		 * page->mapping == NULL while being dirty with clean buffers.
616 		 */
617 		if (page_has_private(page)) {
618 			if (try_to_free_buffers(page)) {
619 				ClearPageDirty(page);
620 				pr_info("%s: orphaned page\n", __func__);
621 				return PAGE_CLEAN;
622 			}
623 		}
624 		return PAGE_KEEP;
625 	}
626 	if (mapping->a_ops->writepage == NULL)
627 		return PAGE_ACTIVATE;
628 	if (!may_write_to_inode(mapping->host, sc))
629 		return PAGE_KEEP;
630 
631 	if (clear_page_dirty_for_io(page)) {
632 		int res;
633 		struct writeback_control wbc = {
634 			.sync_mode = WB_SYNC_NONE,
635 			.nr_to_write = SWAP_CLUSTER_MAX,
636 			.range_start = 0,
637 			.range_end = LLONG_MAX,
638 			.for_reclaim = 1,
639 		};
640 
641 		SetPageReclaim(page);
642 		res = mapping->a_ops->writepage(page, &wbc);
643 		if (res < 0)
644 			handle_write_error(mapping, page, res);
645 		if (res == AOP_WRITEPAGE_ACTIVATE) {
646 			ClearPageReclaim(page);
647 			return PAGE_ACTIVATE;
648 		}
649 
650 		if (!PageWriteback(page)) {
651 			/* synchronous write or broken a_ops? */
652 			ClearPageReclaim(page);
653 		}
654 		trace_mm_vmscan_writepage(page);
655 		inc_node_page_state(page, NR_VMSCAN_WRITE);
656 		return PAGE_SUCCESS;
657 	}
658 
659 	return PAGE_CLEAN;
660 }
661 
662 /*
663  * Same as remove_mapping, but if the page is removed from the mapping, it
664  * gets returned with a refcount of 0.
665  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)666 static int __remove_mapping(struct address_space *mapping, struct page *page,
667 			    bool reclaimed)
668 {
669 	unsigned long flags;
670 
671 	BUG_ON(!PageLocked(page));
672 	BUG_ON(mapping != page_mapping(page));
673 
674 	spin_lock_irqsave(&mapping->tree_lock, flags);
675 	/*
676 	 * The non racy check for a busy page.
677 	 *
678 	 * Must be careful with the order of the tests. When someone has
679 	 * a ref to the page, it may be possible that they dirty it then
680 	 * drop the reference. So if PageDirty is tested before page_count
681 	 * here, then the following race may occur:
682 	 *
683 	 * get_user_pages(&page);
684 	 * [user mapping goes away]
685 	 * write_to(page);
686 	 *				!PageDirty(page)    [good]
687 	 * SetPageDirty(page);
688 	 * put_page(page);
689 	 *				!page_count(page)   [good, discard it]
690 	 *
691 	 * [oops, our write_to data is lost]
692 	 *
693 	 * Reversing the order of the tests ensures such a situation cannot
694 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
695 	 * load is not satisfied before that of page->_refcount.
696 	 *
697 	 * Note that if SetPageDirty is always performed via set_page_dirty,
698 	 * and thus under tree_lock, then this ordering is not required.
699 	 */
700 	if (!page_ref_freeze(page, 2))
701 		goto cannot_free;
702 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
703 	if (unlikely(PageDirty(page))) {
704 		page_ref_unfreeze(page, 2);
705 		goto cannot_free;
706 	}
707 
708 	if (PageSwapCache(page)) {
709 		swp_entry_t swap = { .val = page_private(page) };
710 		mem_cgroup_swapout(page, swap);
711 		__delete_from_swap_cache(page);
712 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
713 		swapcache_free(swap);
714 	} else {
715 		void (*freepage)(struct page *);
716 		void *shadow = NULL;
717 
718 		freepage = mapping->a_ops->freepage;
719 		/*
720 		 * Remember a shadow entry for reclaimed file cache in
721 		 * order to detect refaults, thus thrashing, later on.
722 		 *
723 		 * But don't store shadows in an address space that is
724 		 * already exiting.  This is not just an optizimation,
725 		 * inode reclaim needs to empty out the radix tree or
726 		 * the nodes are lost.  Don't plant shadows behind its
727 		 * back.
728 		 *
729 		 * We also don't store shadows for DAX mappings because the
730 		 * only page cache pages found in these are zero pages
731 		 * covering holes, and because we don't want to mix DAX
732 		 * exceptional entries and shadow exceptional entries in the
733 		 * same page_tree.
734 		 */
735 		if (reclaimed && page_is_file_cache(page) &&
736 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
737 			shadow = workingset_eviction(mapping, page);
738 		__delete_from_page_cache(page, shadow);
739 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
740 
741 		if (freepage != NULL)
742 			freepage(page);
743 	}
744 
745 	return 1;
746 
747 cannot_free:
748 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
749 	return 0;
750 }
751 
752 /*
753  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
754  * someone else has a ref on the page, abort and return 0.  If it was
755  * successfully detached, return 1.  Assumes the caller has a single ref on
756  * this page.
757  */
remove_mapping(struct address_space * mapping,struct page * page)758 int remove_mapping(struct address_space *mapping, struct page *page)
759 {
760 	if (__remove_mapping(mapping, page, false)) {
761 		/*
762 		 * Unfreezing the refcount with 1 rather than 2 effectively
763 		 * drops the pagecache ref for us without requiring another
764 		 * atomic operation.
765 		 */
766 		page_ref_unfreeze(page, 1);
767 		return 1;
768 	}
769 	return 0;
770 }
771 
772 /**
773  * putback_lru_page - put previously isolated page onto appropriate LRU list
774  * @page: page to be put back to appropriate lru list
775  *
776  * Add previously isolated @page to appropriate LRU list.
777  * Page may still be unevictable for other reasons.
778  *
779  * lru_lock must not be held, interrupts must be enabled.
780  */
putback_lru_page(struct page * page)781 void putback_lru_page(struct page *page)
782 {
783 	bool is_unevictable;
784 	int was_unevictable = PageUnevictable(page);
785 
786 	VM_BUG_ON_PAGE(PageLRU(page), page);
787 
788 redo:
789 	ClearPageUnevictable(page);
790 
791 	if (page_evictable(page)) {
792 		/*
793 		 * For evictable pages, we can use the cache.
794 		 * In event of a race, worst case is we end up with an
795 		 * unevictable page on [in]active list.
796 		 * We know how to handle that.
797 		 */
798 		is_unevictable = false;
799 		lru_cache_add(page);
800 	} else {
801 		/*
802 		 * Put unevictable pages directly on zone's unevictable
803 		 * list.
804 		 */
805 		is_unevictable = true;
806 		add_page_to_unevictable_list(page);
807 		/*
808 		 * When racing with an mlock or AS_UNEVICTABLE clearing
809 		 * (page is unlocked) make sure that if the other thread
810 		 * does not observe our setting of PG_lru and fails
811 		 * isolation/check_move_unevictable_pages,
812 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
813 		 * the page back to the evictable list.
814 		 *
815 		 * The other side is TestClearPageMlocked() or shmem_lock().
816 		 */
817 		smp_mb();
818 	}
819 
820 	/*
821 	 * page's status can change while we move it among lru. If an evictable
822 	 * page is on unevictable list, it never be freed. To avoid that,
823 	 * check after we added it to the list, again.
824 	 */
825 	if (is_unevictable && page_evictable(page)) {
826 		if (!isolate_lru_page(page)) {
827 			put_page(page);
828 			goto redo;
829 		}
830 		/* This means someone else dropped this page from LRU
831 		 * So, it will be freed or putback to LRU again. There is
832 		 * nothing to do here.
833 		 */
834 	}
835 
836 	if (was_unevictable && !is_unevictable)
837 		count_vm_event(UNEVICTABLE_PGRESCUED);
838 	else if (!was_unevictable && is_unevictable)
839 		count_vm_event(UNEVICTABLE_PGCULLED);
840 
841 	put_page(page);		/* drop ref from isolate */
842 }
843 
844 enum page_references {
845 	PAGEREF_RECLAIM,
846 	PAGEREF_RECLAIM_CLEAN,
847 	PAGEREF_KEEP,
848 	PAGEREF_ACTIVATE,
849 };
850 
page_check_references(struct page * page,struct scan_control * sc)851 static enum page_references page_check_references(struct page *page,
852 						  struct scan_control *sc)
853 {
854 	int referenced_ptes, referenced_page;
855 	unsigned long vm_flags;
856 
857 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
858 					  &vm_flags);
859 	referenced_page = TestClearPageReferenced(page);
860 
861 	/*
862 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
863 	 * move the page to the unevictable list.
864 	 */
865 	if (vm_flags & VM_LOCKED)
866 		return PAGEREF_RECLAIM;
867 
868 	if (referenced_ptes) {
869 		if (PageSwapBacked(page))
870 			return PAGEREF_ACTIVATE;
871 		/*
872 		 * All mapped pages start out with page table
873 		 * references from the instantiating fault, so we need
874 		 * to look twice if a mapped file page is used more
875 		 * than once.
876 		 *
877 		 * Mark it and spare it for another trip around the
878 		 * inactive list.  Another page table reference will
879 		 * lead to its activation.
880 		 *
881 		 * Note: the mark is set for activated pages as well
882 		 * so that recently deactivated but used pages are
883 		 * quickly recovered.
884 		 */
885 		SetPageReferenced(page);
886 
887 		if (referenced_page || referenced_ptes > 1)
888 			return PAGEREF_ACTIVATE;
889 
890 		/*
891 		 * Activate file-backed executable pages after first usage.
892 		 */
893 		if (vm_flags & VM_EXEC)
894 			return PAGEREF_ACTIVATE;
895 
896 		return PAGEREF_KEEP;
897 	}
898 
899 	/* Reclaim if clean, defer dirty pages to writeback */
900 	if (referenced_page && !PageSwapBacked(page))
901 		return PAGEREF_RECLAIM_CLEAN;
902 
903 	return PAGEREF_RECLAIM;
904 }
905 
906 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)907 static void page_check_dirty_writeback(struct page *page,
908 				       bool *dirty, bool *writeback)
909 {
910 	struct address_space *mapping;
911 
912 	/*
913 	 * Anonymous pages are not handled by flushers and must be written
914 	 * from reclaim context. Do not stall reclaim based on them
915 	 */
916 	if (!page_is_file_cache(page)) {
917 		*dirty = false;
918 		*writeback = false;
919 		return;
920 	}
921 
922 	/* By default assume that the page flags are accurate */
923 	*dirty = PageDirty(page);
924 	*writeback = PageWriteback(page);
925 
926 	/* Verify dirty/writeback state if the filesystem supports it */
927 	if (!page_has_private(page))
928 		return;
929 
930 	mapping = page_mapping(page);
931 	if (mapping && mapping->a_ops->is_dirty_writeback)
932 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
933 }
934 
935 /*
936  * shrink_page_list() returns the number of reclaimed pages
937  */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,unsigned long * ret_nr_dirty,unsigned long * ret_nr_unqueued_dirty,unsigned long * ret_nr_congested,unsigned long * ret_nr_writeback,unsigned long * ret_nr_immediate,bool force_reclaim)938 static unsigned long shrink_page_list(struct list_head *page_list,
939 				      struct pglist_data *pgdat,
940 				      struct scan_control *sc,
941 				      enum ttu_flags ttu_flags,
942 				      unsigned long *ret_nr_dirty,
943 				      unsigned long *ret_nr_unqueued_dirty,
944 				      unsigned long *ret_nr_congested,
945 				      unsigned long *ret_nr_writeback,
946 				      unsigned long *ret_nr_immediate,
947 				      bool force_reclaim)
948 {
949 	LIST_HEAD(ret_pages);
950 	LIST_HEAD(free_pages);
951 	int pgactivate = 0;
952 	unsigned long nr_unqueued_dirty = 0;
953 	unsigned long nr_dirty = 0;
954 	unsigned long nr_congested = 0;
955 	unsigned long nr_reclaimed = 0;
956 	unsigned long nr_writeback = 0;
957 	unsigned long nr_immediate = 0;
958 
959 	cond_resched();
960 
961 	while (!list_empty(page_list)) {
962 		struct address_space *mapping;
963 		struct page *page;
964 		int may_enter_fs;
965 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
966 		bool dirty, writeback;
967 		bool lazyfree = false;
968 		int ret = SWAP_SUCCESS;
969 
970 		cond_resched();
971 
972 		page = lru_to_page(page_list);
973 		list_del(&page->lru);
974 
975 		if (!trylock_page(page))
976 			goto keep;
977 
978 		VM_BUG_ON_PAGE(PageActive(page), page);
979 
980 		sc->nr_scanned++;
981 
982 		if (unlikely(!page_evictable(page)))
983 			goto cull_mlocked;
984 
985 		if (!sc->may_unmap && page_mapped(page))
986 			goto keep_locked;
987 
988 		/* Double the slab pressure for mapped and swapcache pages */
989 		if (page_mapped(page) || PageSwapCache(page))
990 			sc->nr_scanned++;
991 
992 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
993 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
994 
995 		/*
996 		 * The number of dirty pages determines if a zone is marked
997 		 * reclaim_congested which affects wait_iff_congested. kswapd
998 		 * will stall and start writing pages if the tail of the LRU
999 		 * is all dirty unqueued pages.
1000 		 */
1001 		page_check_dirty_writeback(page, &dirty, &writeback);
1002 		if (dirty || writeback)
1003 			nr_dirty++;
1004 
1005 		if (dirty && !writeback)
1006 			nr_unqueued_dirty++;
1007 
1008 		/*
1009 		 * Treat this page as congested if the underlying BDI is or if
1010 		 * pages are cycling through the LRU so quickly that the
1011 		 * pages marked for immediate reclaim are making it to the
1012 		 * end of the LRU a second time.
1013 		 */
1014 		mapping = page_mapping(page);
1015 		if (((dirty || writeback) && mapping &&
1016 		     inode_write_congested(mapping->host)) ||
1017 		    (writeback && PageReclaim(page)))
1018 			nr_congested++;
1019 
1020 		/*
1021 		 * If a page at the tail of the LRU is under writeback, there
1022 		 * are three cases to consider.
1023 		 *
1024 		 * 1) If reclaim is encountering an excessive number of pages
1025 		 *    under writeback and this page is both under writeback and
1026 		 *    PageReclaim then it indicates that pages are being queued
1027 		 *    for IO but are being recycled through the LRU before the
1028 		 *    IO can complete. Waiting on the page itself risks an
1029 		 *    indefinite stall if it is impossible to writeback the
1030 		 *    page due to IO error or disconnected storage so instead
1031 		 *    note that the LRU is being scanned too quickly and the
1032 		 *    caller can stall after page list has been processed.
1033 		 *
1034 		 * 2) Global or new memcg reclaim encounters a page that is
1035 		 *    not marked for immediate reclaim, or the caller does not
1036 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1037 		 *    not to fs). In this case mark the page for immediate
1038 		 *    reclaim and continue scanning.
1039 		 *
1040 		 *    Require may_enter_fs because we would wait on fs, which
1041 		 *    may not have submitted IO yet. And the loop driver might
1042 		 *    enter reclaim, and deadlock if it waits on a page for
1043 		 *    which it is needed to do the write (loop masks off
1044 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1045 		 *    would probably show more reasons.
1046 		 *
1047 		 * 3) Legacy memcg encounters a page that is already marked
1048 		 *    PageReclaim. memcg does not have any dirty pages
1049 		 *    throttling so we could easily OOM just because too many
1050 		 *    pages are in writeback and there is nothing else to
1051 		 *    reclaim. Wait for the writeback to complete.
1052 		 */
1053 		if (PageWriteback(page)) {
1054 			/* Case 1 above */
1055 			if (current_is_kswapd() &&
1056 			    PageReclaim(page) &&
1057 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1058 				nr_immediate++;
1059 				goto keep_locked;
1060 
1061 			/* Case 2 above */
1062 			} else if (sane_reclaim(sc) ||
1063 			    !PageReclaim(page) || !may_enter_fs) {
1064 				/*
1065 				 * This is slightly racy - end_page_writeback()
1066 				 * might have just cleared PageReclaim, then
1067 				 * setting PageReclaim here end up interpreted
1068 				 * as PageReadahead - but that does not matter
1069 				 * enough to care.  What we do want is for this
1070 				 * page to have PageReclaim set next time memcg
1071 				 * reclaim reaches the tests above, so it will
1072 				 * then wait_on_page_writeback() to avoid OOM;
1073 				 * and it's also appropriate in global reclaim.
1074 				 */
1075 				SetPageReclaim(page);
1076 				nr_writeback++;
1077 				goto keep_locked;
1078 
1079 			/* Case 3 above */
1080 			} else {
1081 				unlock_page(page);
1082 				wait_on_page_writeback(page);
1083 				/* then go back and try same page again */
1084 				list_add_tail(&page->lru, page_list);
1085 				continue;
1086 			}
1087 		}
1088 
1089 		if (!force_reclaim)
1090 			references = page_check_references(page, sc);
1091 
1092 		switch (references) {
1093 		case PAGEREF_ACTIVATE:
1094 			goto activate_locked;
1095 		case PAGEREF_KEEP:
1096 			goto keep_locked;
1097 		case PAGEREF_RECLAIM:
1098 		case PAGEREF_RECLAIM_CLEAN:
1099 			; /* try to reclaim the page below */
1100 		}
1101 
1102 		/*
1103 		 * Anonymous process memory has backing store?
1104 		 * Try to allocate it some swap space here.
1105 		 */
1106 		if (PageAnon(page) && !PageSwapCache(page)) {
1107 			if (!(sc->gfp_mask & __GFP_IO))
1108 				goto keep_locked;
1109 			if (!add_to_swap(page, page_list))
1110 				goto activate_locked;
1111 			lazyfree = true;
1112 			may_enter_fs = 1;
1113 
1114 			/* Adding to swap updated mapping */
1115 			mapping = page_mapping(page);
1116 		} else if (unlikely(PageTransHuge(page))) {
1117 			/* Split file THP */
1118 			if (split_huge_page_to_list(page, page_list))
1119 				goto keep_locked;
1120 		}
1121 
1122 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
1123 
1124 		/*
1125 		 * The page is mapped into the page tables of one or more
1126 		 * processes. Try to unmap it here.
1127 		 */
1128 		if (page_mapped(page) && mapping) {
1129 			switch (ret = try_to_unmap(page, lazyfree ?
1130 				(ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1131 				(ttu_flags | TTU_BATCH_FLUSH))) {
1132 			case SWAP_FAIL:
1133 				goto activate_locked;
1134 			case SWAP_AGAIN:
1135 				goto keep_locked;
1136 			case SWAP_MLOCK:
1137 				goto cull_mlocked;
1138 			case SWAP_LZFREE:
1139 				goto lazyfree;
1140 			case SWAP_SUCCESS:
1141 				; /* try to free the page below */
1142 			}
1143 		}
1144 
1145 		if (PageDirty(page)) {
1146 			/*
1147 			 * Only kswapd can writeback filesystem pages to
1148 			 * avoid risk of stack overflow but only writeback
1149 			 * if many dirty pages have been encountered.
1150 			 */
1151 			if (page_is_file_cache(page) &&
1152 					(!current_is_kswapd() ||
1153 					 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1154 				/*
1155 				 * Immediately reclaim when written back.
1156 				 * Similar in principal to deactivate_page()
1157 				 * except we already have the page isolated
1158 				 * and know it's dirty
1159 				 */
1160 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1161 				SetPageReclaim(page);
1162 
1163 				goto keep_locked;
1164 			}
1165 
1166 			if (references == PAGEREF_RECLAIM_CLEAN)
1167 				goto keep_locked;
1168 			if (!may_enter_fs)
1169 				goto keep_locked;
1170 			if (!sc->may_writepage)
1171 				goto keep_locked;
1172 
1173 			/*
1174 			 * Page is dirty. Flush the TLB if a writable entry
1175 			 * potentially exists to avoid CPU writes after IO
1176 			 * starts and then write it out here.
1177 			 */
1178 			try_to_unmap_flush_dirty();
1179 			switch (pageout(page, mapping, sc)) {
1180 			case PAGE_KEEP:
1181 				goto keep_locked;
1182 			case PAGE_ACTIVATE:
1183 				goto activate_locked;
1184 			case PAGE_SUCCESS:
1185 				if (PageWriteback(page))
1186 					goto keep;
1187 				if (PageDirty(page))
1188 					goto keep;
1189 
1190 				/*
1191 				 * A synchronous write - probably a ramdisk.  Go
1192 				 * ahead and try to reclaim the page.
1193 				 */
1194 				if (!trylock_page(page))
1195 					goto keep;
1196 				if (PageDirty(page) || PageWriteback(page))
1197 					goto keep_locked;
1198 				mapping = page_mapping(page);
1199 			case PAGE_CLEAN:
1200 				; /* try to free the page below */
1201 			}
1202 		}
1203 
1204 		/*
1205 		 * If the page has buffers, try to free the buffer mappings
1206 		 * associated with this page. If we succeed we try to free
1207 		 * the page as well.
1208 		 *
1209 		 * We do this even if the page is PageDirty().
1210 		 * try_to_release_page() does not perform I/O, but it is
1211 		 * possible for a page to have PageDirty set, but it is actually
1212 		 * clean (all its buffers are clean).  This happens if the
1213 		 * buffers were written out directly, with submit_bh(). ext3
1214 		 * will do this, as well as the blockdev mapping.
1215 		 * try_to_release_page() will discover that cleanness and will
1216 		 * drop the buffers and mark the page clean - it can be freed.
1217 		 *
1218 		 * Rarely, pages can have buffers and no ->mapping.  These are
1219 		 * the pages which were not successfully invalidated in
1220 		 * truncate_complete_page().  We try to drop those buffers here
1221 		 * and if that worked, and the page is no longer mapped into
1222 		 * process address space (page_count == 1) it can be freed.
1223 		 * Otherwise, leave the page on the LRU so it is swappable.
1224 		 */
1225 		if (page_has_private(page)) {
1226 			if (!try_to_release_page(page, sc->gfp_mask))
1227 				goto activate_locked;
1228 			if (!mapping && page_count(page) == 1) {
1229 				unlock_page(page);
1230 				if (put_page_testzero(page))
1231 					goto free_it;
1232 				else {
1233 					/*
1234 					 * rare race with speculative reference.
1235 					 * the speculative reference will free
1236 					 * this page shortly, so we may
1237 					 * increment nr_reclaimed here (and
1238 					 * leave it off the LRU).
1239 					 */
1240 					nr_reclaimed++;
1241 					continue;
1242 				}
1243 			}
1244 		}
1245 
1246 lazyfree:
1247 		if (!mapping || !__remove_mapping(mapping, page, true))
1248 			goto keep_locked;
1249 
1250 		/*
1251 		 * At this point, we have no other references and there is
1252 		 * no way to pick any more up (removed from LRU, removed
1253 		 * from pagecache). Can use non-atomic bitops now (and
1254 		 * we obviously don't have to worry about waking up a process
1255 		 * waiting on the page lock, because there are no references.
1256 		 */
1257 		__ClearPageLocked(page);
1258 free_it:
1259 		if (ret == SWAP_LZFREE)
1260 			count_vm_event(PGLAZYFREED);
1261 
1262 		nr_reclaimed++;
1263 
1264 		/*
1265 		 * Is there need to periodically free_page_list? It would
1266 		 * appear not as the counts should be low
1267 		 */
1268 		list_add(&page->lru, &free_pages);
1269 		continue;
1270 
1271 cull_mlocked:
1272 		if (PageSwapCache(page))
1273 			try_to_free_swap(page);
1274 		unlock_page(page);
1275 		list_add(&page->lru, &ret_pages);
1276 		continue;
1277 
1278 activate_locked:
1279 		/* Not a candidate for swapping, so reclaim swap space. */
1280 		if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1281 			try_to_free_swap(page);
1282 		VM_BUG_ON_PAGE(PageActive(page), page);
1283 		SetPageActive(page);
1284 		pgactivate++;
1285 keep_locked:
1286 		unlock_page(page);
1287 keep:
1288 		list_add(&page->lru, &ret_pages);
1289 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1290 	}
1291 
1292 	mem_cgroup_uncharge_list(&free_pages);
1293 	try_to_unmap_flush();
1294 	free_hot_cold_page_list(&free_pages, true);
1295 
1296 	list_splice(&ret_pages, page_list);
1297 	count_vm_events(PGACTIVATE, pgactivate);
1298 
1299 	*ret_nr_dirty += nr_dirty;
1300 	*ret_nr_congested += nr_congested;
1301 	*ret_nr_unqueued_dirty += nr_unqueued_dirty;
1302 	*ret_nr_writeback += nr_writeback;
1303 	*ret_nr_immediate += nr_immediate;
1304 	return nr_reclaimed;
1305 }
1306 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1307 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1308 					    struct list_head *page_list)
1309 {
1310 	struct scan_control sc = {
1311 		.gfp_mask = GFP_KERNEL,
1312 		.priority = DEF_PRIORITY,
1313 		.may_unmap = 1,
1314 	};
1315 	unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1316 	struct page *page, *next;
1317 	LIST_HEAD(clean_pages);
1318 
1319 	list_for_each_entry_safe(page, next, page_list, lru) {
1320 		if (page_is_file_cache(page) && !PageDirty(page) &&
1321 		    !__PageMovable(page)) {
1322 			ClearPageActive(page);
1323 			list_move(&page->lru, &clean_pages);
1324 		}
1325 	}
1326 
1327 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1328 			TTU_UNMAP|TTU_IGNORE_ACCESS,
1329 			&dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1330 	list_splice(&clean_pages, page_list);
1331 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1332 	return ret;
1333 }
1334 
1335 /*
1336  * Attempt to remove the specified page from its LRU.  Only take this page
1337  * if it is of the appropriate PageActive status.  Pages which are being
1338  * freed elsewhere are also ignored.
1339  *
1340  * page:	page to consider
1341  * mode:	one of the LRU isolation modes defined above
1342  *
1343  * returns 0 on success, -ve errno on failure.
1344  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1345 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1346 {
1347 	int ret = -EINVAL;
1348 
1349 	/* Only take pages on the LRU. */
1350 	if (!PageLRU(page))
1351 		return ret;
1352 
1353 	/* Compaction should not handle unevictable pages but CMA can do so */
1354 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1355 		return ret;
1356 
1357 	ret = -EBUSY;
1358 
1359 	/*
1360 	 * To minimise LRU disruption, the caller can indicate that it only
1361 	 * wants to isolate pages it will be able to operate on without
1362 	 * blocking - clean pages for the most part.
1363 	 *
1364 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1365 	 * is used by reclaim when it is cannot write to backing storage
1366 	 *
1367 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1368 	 * that it is possible to migrate without blocking
1369 	 */
1370 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1371 		/* All the caller can do on PageWriteback is block */
1372 		if (PageWriteback(page))
1373 			return ret;
1374 
1375 		if (PageDirty(page)) {
1376 			struct address_space *mapping;
1377 
1378 			/* ISOLATE_CLEAN means only clean pages */
1379 			if (mode & ISOLATE_CLEAN)
1380 				return ret;
1381 
1382 			/*
1383 			 * Only pages without mappings or that have a
1384 			 * ->migratepage callback are possible to migrate
1385 			 * without blocking
1386 			 */
1387 			mapping = page_mapping(page);
1388 			if (mapping && !mapping->a_ops->migratepage)
1389 				return ret;
1390 		}
1391 	}
1392 
1393 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1394 		return ret;
1395 
1396 	if (likely(get_page_unless_zero(page))) {
1397 		/*
1398 		 * Be careful not to clear PageLRU until after we're
1399 		 * sure the page is not being freed elsewhere -- the
1400 		 * page release code relies on it.
1401 		 */
1402 		ClearPageLRU(page);
1403 		ret = 0;
1404 	}
1405 
1406 	return ret;
1407 }
1408 
1409 
1410 /*
1411  * Update LRU sizes after isolating pages. The LRU size updates must
1412  * be complete before mem_cgroup_update_lru_size due to a santity check.
1413  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1414 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1415 			enum lru_list lru, unsigned long *nr_zone_taken)
1416 {
1417 	int zid;
1418 
1419 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1420 		if (!nr_zone_taken[zid])
1421 			continue;
1422 
1423 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1424 #ifdef CONFIG_MEMCG
1425 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1426 #endif
1427 	}
1428 
1429 }
1430 
1431 /*
1432  * zone_lru_lock is heavily contended.  Some of the functions that
1433  * shrink the lists perform better by taking out a batch of pages
1434  * and working on them outside the LRU lock.
1435  *
1436  * For pagecache intensive workloads, this function is the hottest
1437  * spot in the kernel (apart from copy_*_user functions).
1438  *
1439  * Appropriate locks must be held before calling this function.
1440  *
1441  * @nr_to_scan:	The number of pages to look through on the list.
1442  * @lruvec:	The LRU vector to pull pages from.
1443  * @dst:	The temp list to put pages on to.
1444  * @nr_scanned:	The number of pages that were scanned.
1445  * @sc:		The scan_control struct for this reclaim session
1446  * @mode:	One of the LRU isolation modes
1447  * @lru:	LRU list id for isolating
1448  *
1449  * returns how many pages were moved onto *@dst.
1450  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1451 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1452 		struct lruvec *lruvec, struct list_head *dst,
1453 		unsigned long *nr_scanned, struct scan_control *sc,
1454 		isolate_mode_t mode, enum lru_list lru)
1455 {
1456 	struct list_head *src = &lruvec->lists[lru];
1457 	unsigned long nr_taken = 0;
1458 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1459 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1460 	unsigned long scan, nr_pages;
1461 	LIST_HEAD(pages_skipped);
1462 
1463 	for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1464 					!list_empty(src);) {
1465 		struct page *page;
1466 
1467 		page = lru_to_page(src);
1468 		prefetchw_prev_lru_page(page, src, flags);
1469 
1470 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1471 
1472 		if (page_zonenum(page) > sc->reclaim_idx) {
1473 			list_move(&page->lru, &pages_skipped);
1474 			nr_skipped[page_zonenum(page)]++;
1475 			continue;
1476 		}
1477 
1478 		/*
1479 		 * Account for scanned and skipped separetly to avoid the pgdat
1480 		 * being prematurely marked unreclaimable by pgdat_reclaimable.
1481 		 */
1482 		scan++;
1483 
1484 		switch (__isolate_lru_page(page, mode)) {
1485 		case 0:
1486 			nr_pages = hpage_nr_pages(page);
1487 			nr_taken += nr_pages;
1488 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1489 			list_move(&page->lru, dst);
1490 			break;
1491 
1492 		case -EBUSY:
1493 			/* else it is being freed elsewhere */
1494 			list_move(&page->lru, src);
1495 			continue;
1496 
1497 		default:
1498 			BUG();
1499 		}
1500 	}
1501 
1502 	/*
1503 	 * Splice any skipped pages to the start of the LRU list. Note that
1504 	 * this disrupts the LRU order when reclaiming for lower zones but
1505 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1506 	 * scanning would soon rescan the same pages to skip and put the
1507 	 * system at risk of premature OOM.
1508 	 */
1509 	if (!list_empty(&pages_skipped)) {
1510 		int zid;
1511 		unsigned long total_skipped = 0;
1512 
1513 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1514 			if (!nr_skipped[zid])
1515 				continue;
1516 
1517 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1518 			total_skipped += nr_skipped[zid];
1519 		}
1520 
1521 		/*
1522 		 * Account skipped pages as a partial scan as the pgdat may be
1523 		 * close to unreclaimable. If the LRU list is empty, account
1524 		 * skipped pages as a full scan.
1525 		 */
1526 		scan += list_empty(src) ? total_skipped : total_skipped >> 2;
1527 
1528 		list_splice(&pages_skipped, src);
1529 	}
1530 	*nr_scanned = scan;
1531 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1532 				    nr_taken, mode, is_file_lru(lru));
1533 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1534 	return nr_taken;
1535 }
1536 
1537 /**
1538  * isolate_lru_page - tries to isolate a page from its LRU list
1539  * @page: page to isolate from its LRU list
1540  *
1541  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1542  * vmstat statistic corresponding to whatever LRU list the page was on.
1543  *
1544  * Returns 0 if the page was removed from an LRU list.
1545  * Returns -EBUSY if the page was not on an LRU list.
1546  *
1547  * The returned page will have PageLRU() cleared.  If it was found on
1548  * the active list, it will have PageActive set.  If it was found on
1549  * the unevictable list, it will have the PageUnevictable bit set. That flag
1550  * may need to be cleared by the caller before letting the page go.
1551  *
1552  * The vmstat statistic corresponding to the list on which the page was
1553  * found will be decremented.
1554  *
1555  * Restrictions:
1556  * (1) Must be called with an elevated refcount on the page. This is a
1557  *     fundamentnal difference from isolate_lru_pages (which is called
1558  *     without a stable reference).
1559  * (2) the lru_lock must not be held.
1560  * (3) interrupts must be enabled.
1561  */
isolate_lru_page(struct page * page)1562 int isolate_lru_page(struct page *page)
1563 {
1564 	int ret = -EBUSY;
1565 
1566 	VM_BUG_ON_PAGE(!page_count(page), page);
1567 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1568 
1569 	if (PageLRU(page)) {
1570 		struct zone *zone = page_zone(page);
1571 		struct lruvec *lruvec;
1572 
1573 		spin_lock_irq(zone_lru_lock(zone));
1574 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1575 		if (PageLRU(page)) {
1576 			int lru = page_lru(page);
1577 			get_page(page);
1578 			ClearPageLRU(page);
1579 			del_page_from_lru_list(page, lruvec, lru);
1580 			ret = 0;
1581 		}
1582 		spin_unlock_irq(zone_lru_lock(zone));
1583 	}
1584 	return ret;
1585 }
1586 
1587 /*
1588  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1589  * then get resheduled. When there are massive number of tasks doing page
1590  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1591  * the LRU list will go small and be scanned faster than necessary, leading to
1592  * unnecessary swapping, thrashing and OOM.
1593  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1594 static int too_many_isolated(struct pglist_data *pgdat, int file,
1595 		struct scan_control *sc)
1596 {
1597 	unsigned long inactive, isolated;
1598 
1599 	if (current_is_kswapd())
1600 		return 0;
1601 
1602 	if (!sane_reclaim(sc))
1603 		return 0;
1604 
1605 	if (file) {
1606 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1607 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1608 	} else {
1609 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1610 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1611 	}
1612 
1613 	/*
1614 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1615 	 * won't get blocked by normal direct-reclaimers, forming a circular
1616 	 * deadlock.
1617 	 */
1618 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1619 		inactive >>= 3;
1620 
1621 	return isolated > inactive;
1622 }
1623 
1624 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1625 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1626 {
1627 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1628 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1629 	LIST_HEAD(pages_to_free);
1630 
1631 	/*
1632 	 * Put back any unfreeable pages.
1633 	 */
1634 	while (!list_empty(page_list)) {
1635 		struct page *page = lru_to_page(page_list);
1636 		int lru;
1637 
1638 		VM_BUG_ON_PAGE(PageLRU(page), page);
1639 		list_del(&page->lru);
1640 		if (unlikely(!page_evictable(page))) {
1641 			spin_unlock_irq(&pgdat->lru_lock);
1642 			putback_lru_page(page);
1643 			spin_lock_irq(&pgdat->lru_lock);
1644 			continue;
1645 		}
1646 
1647 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1648 
1649 		SetPageLRU(page);
1650 		lru = page_lru(page);
1651 		add_page_to_lru_list(page, lruvec, lru);
1652 
1653 		if (is_active_lru(lru)) {
1654 			int file = is_file_lru(lru);
1655 			int numpages = hpage_nr_pages(page);
1656 			reclaim_stat->recent_rotated[file] += numpages;
1657 		}
1658 		if (put_page_testzero(page)) {
1659 			__ClearPageLRU(page);
1660 			__ClearPageActive(page);
1661 			del_page_from_lru_list(page, lruvec, lru);
1662 
1663 			if (unlikely(PageCompound(page))) {
1664 				spin_unlock_irq(&pgdat->lru_lock);
1665 				mem_cgroup_uncharge(page);
1666 				(*get_compound_page_dtor(page))(page);
1667 				spin_lock_irq(&pgdat->lru_lock);
1668 			} else
1669 				list_add(&page->lru, &pages_to_free);
1670 		}
1671 	}
1672 
1673 	/*
1674 	 * To save our caller's stack, now use input list for pages to free.
1675 	 */
1676 	list_splice(&pages_to_free, page_list);
1677 }
1678 
1679 /*
1680  * If a kernel thread (such as nfsd for loop-back mounts) services
1681  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1682  * In that case we should only throttle if the backing device it is
1683  * writing to is congested.  In other cases it is safe to throttle.
1684  */
current_may_throttle(void)1685 static int current_may_throttle(void)
1686 {
1687 	return !(current->flags & PF_LESS_THROTTLE) ||
1688 		current->backing_dev_info == NULL ||
1689 		bdi_write_congested(current->backing_dev_info);
1690 }
1691 
inactive_reclaimable_pages(struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1692 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1693 				struct scan_control *sc, enum lru_list lru)
1694 {
1695 	int zid;
1696 	struct zone *zone;
1697 	int file = is_file_lru(lru);
1698 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1699 
1700 	if (!global_reclaim(sc))
1701 		return true;
1702 
1703 	for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1704 		zone = &pgdat->node_zones[zid];
1705 		if (!managed_zone(zone))
1706 			continue;
1707 
1708 		if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1709 				LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1710 			return true;
1711 	}
1712 
1713 	return false;
1714 }
1715 
1716 /*
1717  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1718  * of reclaimed pages
1719  */
1720 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1721 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1722 		     struct scan_control *sc, enum lru_list lru)
1723 {
1724 	LIST_HEAD(page_list);
1725 	unsigned long nr_scanned;
1726 	unsigned long nr_reclaimed = 0;
1727 	unsigned long nr_taken;
1728 	unsigned long nr_dirty = 0;
1729 	unsigned long nr_congested = 0;
1730 	unsigned long nr_unqueued_dirty = 0;
1731 	unsigned long nr_writeback = 0;
1732 	unsigned long nr_immediate = 0;
1733 	isolate_mode_t isolate_mode = 0;
1734 	int file = is_file_lru(lru);
1735 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1736 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1737 
1738 	if (!inactive_reclaimable_pages(lruvec, sc, lru))
1739 		return 0;
1740 
1741 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1742 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1743 
1744 		/* We are about to die and free our memory. Return now. */
1745 		if (fatal_signal_pending(current))
1746 			return SWAP_CLUSTER_MAX;
1747 	}
1748 
1749 	lru_add_drain();
1750 
1751 	if (!sc->may_unmap)
1752 		isolate_mode |= ISOLATE_UNMAPPED;
1753 	if (!sc->may_writepage)
1754 		isolate_mode |= ISOLATE_CLEAN;
1755 
1756 	spin_lock_irq(&pgdat->lru_lock);
1757 
1758 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1759 				     &nr_scanned, sc, isolate_mode, lru);
1760 
1761 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1762 	reclaim_stat->recent_scanned[file] += nr_taken;
1763 
1764 	if (global_reclaim(sc)) {
1765 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1766 		if (current_is_kswapd())
1767 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1768 		else
1769 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1770 	}
1771 	spin_unlock_irq(&pgdat->lru_lock);
1772 
1773 	if (nr_taken == 0)
1774 		return 0;
1775 
1776 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1777 				&nr_dirty, &nr_unqueued_dirty, &nr_congested,
1778 				&nr_writeback, &nr_immediate,
1779 				false);
1780 
1781 	spin_lock_irq(&pgdat->lru_lock);
1782 
1783 	if (global_reclaim(sc)) {
1784 		if (current_is_kswapd())
1785 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1786 		else
1787 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1788 	}
1789 
1790 	putback_inactive_pages(lruvec, &page_list);
1791 
1792 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1793 
1794 	spin_unlock_irq(&pgdat->lru_lock);
1795 
1796 	mem_cgroup_uncharge_list(&page_list);
1797 	free_hot_cold_page_list(&page_list, true);
1798 
1799 	/*
1800 	 * If reclaim is isolating dirty pages under writeback, it implies
1801 	 * that the long-lived page allocation rate is exceeding the page
1802 	 * laundering rate. Either the global limits are not being effective
1803 	 * at throttling processes due to the page distribution throughout
1804 	 * zones or there is heavy usage of a slow backing device. The
1805 	 * only option is to throttle from reclaim context which is not ideal
1806 	 * as there is no guarantee the dirtying process is throttled in the
1807 	 * same way balance_dirty_pages() manages.
1808 	 *
1809 	 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1810 	 * of pages under pages flagged for immediate reclaim and stall if any
1811 	 * are encountered in the nr_immediate check below.
1812 	 */
1813 	if (nr_writeback && nr_writeback == nr_taken)
1814 		set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1815 
1816 	/*
1817 	 * Legacy memcg will stall in page writeback so avoid forcibly
1818 	 * stalling here.
1819 	 */
1820 	if (sane_reclaim(sc)) {
1821 		/*
1822 		 * Tag a zone as congested if all the dirty pages scanned were
1823 		 * backed by a congested BDI and wait_iff_congested will stall.
1824 		 */
1825 		if (nr_dirty && nr_dirty == nr_congested)
1826 			set_bit(PGDAT_CONGESTED, &pgdat->flags);
1827 
1828 		/*
1829 		 * If dirty pages are scanned that are not queued for IO, it
1830 		 * implies that flushers are not keeping up. In this case, flag
1831 		 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1832 		 * reclaim context.
1833 		 */
1834 		if (nr_unqueued_dirty == nr_taken)
1835 			set_bit(PGDAT_DIRTY, &pgdat->flags);
1836 
1837 		/*
1838 		 * If kswapd scans pages marked marked for immediate
1839 		 * reclaim and under writeback (nr_immediate), it implies
1840 		 * that pages are cycling through the LRU faster than
1841 		 * they are written so also forcibly stall.
1842 		 */
1843 		if (nr_immediate && current_may_throttle())
1844 			congestion_wait(BLK_RW_ASYNC, HZ/10);
1845 	}
1846 
1847 	/*
1848 	 * Stall direct reclaim for IO completions if underlying BDIs or zone
1849 	 * is congested. Allow kswapd to continue until it starts encountering
1850 	 * unqueued dirty pages or cycling through the LRU too quickly.
1851 	 */
1852 	if (!sc->hibernation_mode && !current_is_kswapd() &&
1853 	    current_may_throttle())
1854 		wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1855 
1856 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1857 			nr_scanned, nr_reclaimed,
1858 			sc->priority, file);
1859 	return nr_reclaimed;
1860 }
1861 
1862 /*
1863  * This moves pages from the active list to the inactive list.
1864  *
1865  * We move them the other way if the page is referenced by one or more
1866  * processes, from rmap.
1867  *
1868  * If the pages are mostly unmapped, the processing is fast and it is
1869  * appropriate to hold zone_lru_lock across the whole operation.  But if
1870  * the pages are mapped, the processing is slow (page_referenced()) so we
1871  * should drop zone_lru_lock around each page.  It's impossible to balance
1872  * this, so instead we remove the pages from the LRU while processing them.
1873  * It is safe to rely on PG_active against the non-LRU pages in here because
1874  * nobody will play with that bit on a non-LRU page.
1875  *
1876  * The downside is that we have to touch page->_refcount against each page.
1877  * But we had to alter page->flags anyway.
1878  */
1879 
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1880 static void move_active_pages_to_lru(struct lruvec *lruvec,
1881 				     struct list_head *list,
1882 				     struct list_head *pages_to_free,
1883 				     enum lru_list lru)
1884 {
1885 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1886 	unsigned long pgmoved = 0;
1887 	struct page *page;
1888 	int nr_pages;
1889 
1890 	while (!list_empty(list)) {
1891 		page = lru_to_page(list);
1892 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1893 
1894 		VM_BUG_ON_PAGE(PageLRU(page), page);
1895 		SetPageLRU(page);
1896 
1897 		nr_pages = hpage_nr_pages(page);
1898 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1899 		list_move(&page->lru, &lruvec->lists[lru]);
1900 		pgmoved += nr_pages;
1901 
1902 		if (put_page_testzero(page)) {
1903 			__ClearPageLRU(page);
1904 			__ClearPageActive(page);
1905 			del_page_from_lru_list(page, lruvec, lru);
1906 
1907 			if (unlikely(PageCompound(page))) {
1908 				spin_unlock_irq(&pgdat->lru_lock);
1909 				mem_cgroup_uncharge(page);
1910 				(*get_compound_page_dtor(page))(page);
1911 				spin_lock_irq(&pgdat->lru_lock);
1912 			} else
1913 				list_add(&page->lru, pages_to_free);
1914 		}
1915 	}
1916 
1917 	if (!is_active_lru(lru))
1918 		__count_vm_events(PGDEACTIVATE, pgmoved);
1919 }
1920 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1921 static void shrink_active_list(unsigned long nr_to_scan,
1922 			       struct lruvec *lruvec,
1923 			       struct scan_control *sc,
1924 			       enum lru_list lru)
1925 {
1926 	unsigned long nr_taken;
1927 	unsigned long nr_scanned;
1928 	unsigned long vm_flags;
1929 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1930 	LIST_HEAD(l_active);
1931 	LIST_HEAD(l_inactive);
1932 	struct page *page;
1933 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1934 	unsigned long nr_rotated = 0;
1935 	isolate_mode_t isolate_mode = 0;
1936 	int file = is_file_lru(lru);
1937 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1938 
1939 	lru_add_drain();
1940 
1941 	if (!sc->may_unmap)
1942 		isolate_mode |= ISOLATE_UNMAPPED;
1943 	if (!sc->may_writepage)
1944 		isolate_mode |= ISOLATE_CLEAN;
1945 
1946 	spin_lock_irq(&pgdat->lru_lock);
1947 
1948 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1949 				     &nr_scanned, sc, isolate_mode, lru);
1950 
1951 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1952 	reclaim_stat->recent_scanned[file] += nr_taken;
1953 
1954 	if (global_reclaim(sc))
1955 		__mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1956 	__count_vm_events(PGREFILL, nr_scanned);
1957 
1958 	spin_unlock_irq(&pgdat->lru_lock);
1959 
1960 	while (!list_empty(&l_hold)) {
1961 		cond_resched();
1962 		page = lru_to_page(&l_hold);
1963 		list_del(&page->lru);
1964 
1965 		if (unlikely(!page_evictable(page))) {
1966 			putback_lru_page(page);
1967 			continue;
1968 		}
1969 
1970 		if (unlikely(buffer_heads_over_limit)) {
1971 			if (page_has_private(page) && trylock_page(page)) {
1972 				if (page_has_private(page))
1973 					try_to_release_page(page, 0);
1974 				unlock_page(page);
1975 			}
1976 		}
1977 
1978 		if (page_referenced(page, 0, sc->target_mem_cgroup,
1979 				    &vm_flags)) {
1980 			nr_rotated += hpage_nr_pages(page);
1981 			/*
1982 			 * Identify referenced, file-backed active pages and
1983 			 * give them one more trip around the active list. So
1984 			 * that executable code get better chances to stay in
1985 			 * memory under moderate memory pressure.  Anon pages
1986 			 * are not likely to be evicted by use-once streaming
1987 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1988 			 * so we ignore them here.
1989 			 */
1990 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1991 				list_add(&page->lru, &l_active);
1992 				continue;
1993 			}
1994 		}
1995 
1996 		ClearPageActive(page);	/* we are de-activating */
1997 		list_add(&page->lru, &l_inactive);
1998 	}
1999 
2000 	/*
2001 	 * Move pages back to the lru list.
2002 	 */
2003 	spin_lock_irq(&pgdat->lru_lock);
2004 	/*
2005 	 * Count referenced pages from currently used mappings as rotated,
2006 	 * even though only some of them are actually re-activated.  This
2007 	 * helps balance scan pressure between file and anonymous pages in
2008 	 * get_scan_count.
2009 	 */
2010 	reclaim_stat->recent_rotated[file] += nr_rotated;
2011 
2012 	move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2013 	move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2014 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2015 	spin_unlock_irq(&pgdat->lru_lock);
2016 
2017 	mem_cgroup_uncharge_list(&l_hold);
2018 	free_hot_cold_page_list(&l_hold, true);
2019 }
2020 
2021 /*
2022  * The inactive anon list should be small enough that the VM never has
2023  * to do too much work.
2024  *
2025  * The inactive file list should be small enough to leave most memory
2026  * to the established workingset on the scan-resistant active list,
2027  * but large enough to avoid thrashing the aggregate readahead window.
2028  *
2029  * Both inactive lists should also be large enough that each inactive
2030  * page has a chance to be referenced again before it is reclaimed.
2031  *
2032  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2033  * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2034  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2035  *
2036  * total     target    max
2037  * memory    ratio     inactive
2038  * -------------------------------------
2039  *   10MB       1         5MB
2040  *  100MB       1        50MB
2041  *    1GB       3       250MB
2042  *   10GB      10       0.9GB
2043  *  100GB      31         3GB
2044  *    1TB     101        10GB
2045  *   10TB     320        32GB
2046  */
inactive_list_is_low(struct lruvec * lruvec,bool file,struct scan_control * sc)2047 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2048 						struct scan_control *sc)
2049 {
2050 	unsigned long inactive_ratio;
2051 	unsigned long inactive, active;
2052 	enum lru_list inactive_lru = file * LRU_FILE;
2053 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2054 	unsigned long gb;
2055 
2056 	/*
2057 	 * If we don't have swap space, anonymous page deactivation
2058 	 * is pointless.
2059 	 */
2060 	if (!file && !total_swap_pages)
2061 		return false;
2062 
2063 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2064 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2065 
2066 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
2067 	if (gb)
2068 		inactive_ratio = int_sqrt(10 * gb);
2069 	else
2070 		inactive_ratio = 1;
2071 
2072 	return inactive * inactive_ratio < active;
2073 }
2074 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2075 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2076 				 struct lruvec *lruvec, struct scan_control *sc)
2077 {
2078 	if (is_active_lru(lru)) {
2079 		if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2080 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2081 		return 0;
2082 	}
2083 
2084 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2085 }
2086 
2087 enum scan_balance {
2088 	SCAN_EQUAL,
2089 	SCAN_FRACT,
2090 	SCAN_ANON,
2091 	SCAN_FILE,
2092 };
2093 
2094 /*
2095  * Determine how aggressively the anon and file LRU lists should be
2096  * scanned.  The relative value of each set of LRU lists is determined
2097  * by looking at the fraction of the pages scanned we did rotate back
2098  * onto the active list instead of evict.
2099  *
2100  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2101  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2102  */
get_scan_count(struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)2103 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2104 			   struct scan_control *sc, unsigned long *nr,
2105 			   unsigned long *lru_pages)
2106 {
2107 	int swappiness = mem_cgroup_swappiness(memcg);
2108 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2109 	u64 fraction[2];
2110 	u64 denominator = 0;	/* gcc */
2111 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2112 	unsigned long anon_prio, file_prio;
2113 	enum scan_balance scan_balance;
2114 	unsigned long anon, file;
2115 	bool force_scan = false;
2116 	unsigned long ap, fp;
2117 	enum lru_list lru;
2118 	bool some_scanned;
2119 	int pass;
2120 
2121 	/*
2122 	 * If the zone or memcg is small, nr[l] can be 0.  This
2123 	 * results in no scanning on this priority and a potential
2124 	 * priority drop.  Global direct reclaim can go to the next
2125 	 * zone and tends to have no problems. Global kswapd is for
2126 	 * zone balancing and it needs to scan a minimum amount. When
2127 	 * reclaiming for a memcg, a priority drop can cause high
2128 	 * latencies, so it's better to scan a minimum amount there as
2129 	 * well.
2130 	 */
2131 	if (current_is_kswapd()) {
2132 		if (!pgdat_reclaimable(pgdat))
2133 			force_scan = true;
2134 		if (!mem_cgroup_online(memcg))
2135 			force_scan = true;
2136 	}
2137 	if (!global_reclaim(sc))
2138 		force_scan = true;
2139 
2140 	/* If we have no swap space, do not bother scanning anon pages. */
2141 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2142 		scan_balance = SCAN_FILE;
2143 		goto out;
2144 	}
2145 
2146 	/*
2147 	 * Global reclaim will swap to prevent OOM even with no
2148 	 * swappiness, but memcg users want to use this knob to
2149 	 * disable swapping for individual groups completely when
2150 	 * using the memory controller's swap limit feature would be
2151 	 * too expensive.
2152 	 */
2153 	if (!global_reclaim(sc) && !swappiness) {
2154 		scan_balance = SCAN_FILE;
2155 		goto out;
2156 	}
2157 
2158 	/*
2159 	 * Do not apply any pressure balancing cleverness when the
2160 	 * system is close to OOM, scan both anon and file equally
2161 	 * (unless the swappiness setting disagrees with swapping).
2162 	 */
2163 	if (!sc->priority && swappiness) {
2164 		scan_balance = SCAN_EQUAL;
2165 		goto out;
2166 	}
2167 
2168 	/*
2169 	 * Prevent the reclaimer from falling into the cache trap: as
2170 	 * cache pages start out inactive, every cache fault will tip
2171 	 * the scan balance towards the file LRU.  And as the file LRU
2172 	 * shrinks, so does the window for rotation from references.
2173 	 * This means we have a runaway feedback loop where a tiny
2174 	 * thrashing file LRU becomes infinitely more attractive than
2175 	 * anon pages.  Try to detect this based on file LRU size.
2176 	 */
2177 	if (global_reclaim(sc)) {
2178 		unsigned long pgdatfile;
2179 		unsigned long pgdatfree;
2180 		int z;
2181 		unsigned long total_high_wmark = 0;
2182 
2183 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2184 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2185 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2186 
2187 		for (z = 0; z < MAX_NR_ZONES; z++) {
2188 			struct zone *zone = &pgdat->node_zones[z];
2189 			if (!managed_zone(zone))
2190 				continue;
2191 
2192 			total_high_wmark += high_wmark_pages(zone);
2193 		}
2194 
2195 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2196 			scan_balance = SCAN_ANON;
2197 			goto out;
2198 		}
2199 	}
2200 
2201 	/*
2202 	 * If there is enough inactive page cache, i.e. if the size of the
2203 	 * inactive list is greater than that of the active list *and* the
2204 	 * inactive list actually has some pages to scan on this priority, we
2205 	 * do not reclaim anything from the anonymous working set right now.
2206 	 * Without the second condition we could end up never scanning an
2207 	 * lruvec even if it has plenty of old anonymous pages unless the
2208 	 * system is under heavy pressure.
2209 	 */
2210 	if (!inactive_list_is_low(lruvec, true, sc) &&
2211 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2212 		scan_balance = SCAN_FILE;
2213 		goto out;
2214 	}
2215 
2216 	scan_balance = SCAN_FRACT;
2217 
2218 	/*
2219 	 * With swappiness at 100, anonymous and file have the same priority.
2220 	 * This scanning priority is essentially the inverse of IO cost.
2221 	 */
2222 	anon_prio = swappiness;
2223 	file_prio = 200 - anon_prio;
2224 
2225 	/*
2226 	 * OK, so we have swap space and a fair amount of page cache
2227 	 * pages.  We use the recently rotated / recently scanned
2228 	 * ratios to determine how valuable each cache is.
2229 	 *
2230 	 * Because workloads change over time (and to avoid overflow)
2231 	 * we keep these statistics as a floating average, which ends
2232 	 * up weighing recent references more than old ones.
2233 	 *
2234 	 * anon in [0], file in [1]
2235 	 */
2236 
2237 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2238 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2239 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2240 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2241 
2242 	spin_lock_irq(&pgdat->lru_lock);
2243 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2244 		reclaim_stat->recent_scanned[0] /= 2;
2245 		reclaim_stat->recent_rotated[0] /= 2;
2246 	}
2247 
2248 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2249 		reclaim_stat->recent_scanned[1] /= 2;
2250 		reclaim_stat->recent_rotated[1] /= 2;
2251 	}
2252 
2253 	/*
2254 	 * The amount of pressure on anon vs file pages is inversely
2255 	 * proportional to the fraction of recently scanned pages on
2256 	 * each list that were recently referenced and in active use.
2257 	 */
2258 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2259 	ap /= reclaim_stat->recent_rotated[0] + 1;
2260 
2261 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2262 	fp /= reclaim_stat->recent_rotated[1] + 1;
2263 	spin_unlock_irq(&pgdat->lru_lock);
2264 
2265 	fraction[0] = ap;
2266 	fraction[1] = fp;
2267 	denominator = ap + fp + 1;
2268 out:
2269 	some_scanned = false;
2270 	/* Only use force_scan on second pass. */
2271 	for (pass = 0; !some_scanned && pass < 2; pass++) {
2272 		*lru_pages = 0;
2273 		for_each_evictable_lru(lru) {
2274 			int file = is_file_lru(lru);
2275 			unsigned long size;
2276 			unsigned long scan;
2277 
2278 			size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2279 			scan = size >> sc->priority;
2280 
2281 			if (!scan && pass && force_scan)
2282 				scan = min(size, SWAP_CLUSTER_MAX);
2283 
2284 			switch (scan_balance) {
2285 			case SCAN_EQUAL:
2286 				/* Scan lists relative to size */
2287 				break;
2288 			case SCAN_FRACT:
2289 				/*
2290 				 * Scan types proportional to swappiness and
2291 				 * their relative recent reclaim efficiency.
2292 				 */
2293 				scan = div64_u64(scan * fraction[file],
2294 							denominator);
2295 				break;
2296 			case SCAN_FILE:
2297 			case SCAN_ANON:
2298 				/* Scan one type exclusively */
2299 				if ((scan_balance == SCAN_FILE) != file) {
2300 					size = 0;
2301 					scan = 0;
2302 				}
2303 				break;
2304 			default:
2305 				/* Look ma, no brain */
2306 				BUG();
2307 			}
2308 
2309 			*lru_pages += size;
2310 			nr[lru] = scan;
2311 
2312 			/*
2313 			 * Skip the second pass and don't force_scan,
2314 			 * if we found something to scan.
2315 			 */
2316 			some_scanned |= !!scan;
2317 		}
2318 	}
2319 }
2320 
2321 /*
2322  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2323  */
shrink_node_memcg(struct pglist_data * pgdat,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * lru_pages)2324 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2325 			      struct scan_control *sc, unsigned long *lru_pages)
2326 {
2327 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2328 	unsigned long nr[NR_LRU_LISTS];
2329 	unsigned long targets[NR_LRU_LISTS];
2330 	unsigned long nr_to_scan;
2331 	enum lru_list lru;
2332 	unsigned long nr_reclaimed = 0;
2333 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2334 	struct blk_plug plug;
2335 	bool scan_adjusted;
2336 
2337 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2338 
2339 	/* Record the original scan target for proportional adjustments later */
2340 	memcpy(targets, nr, sizeof(nr));
2341 
2342 	/*
2343 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2344 	 * event that can occur when there is little memory pressure e.g.
2345 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2346 	 * when the requested number of pages are reclaimed when scanning at
2347 	 * DEF_PRIORITY on the assumption that the fact we are direct
2348 	 * reclaiming implies that kswapd is not keeping up and it is best to
2349 	 * do a batch of work at once. For memcg reclaim one check is made to
2350 	 * abort proportional reclaim if either the file or anon lru has already
2351 	 * dropped to zero at the first pass.
2352 	 */
2353 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2354 			 sc->priority == DEF_PRIORITY);
2355 
2356 	blk_start_plug(&plug);
2357 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2358 					nr[LRU_INACTIVE_FILE]) {
2359 		unsigned long nr_anon, nr_file, percentage;
2360 		unsigned long nr_scanned;
2361 
2362 		for_each_evictable_lru(lru) {
2363 			if (nr[lru]) {
2364 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2365 				nr[lru] -= nr_to_scan;
2366 
2367 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2368 							    lruvec, sc);
2369 			}
2370 		}
2371 
2372 		cond_resched();
2373 
2374 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2375 			continue;
2376 
2377 		/*
2378 		 * For kswapd and memcg, reclaim at least the number of pages
2379 		 * requested. Ensure that the anon and file LRUs are scanned
2380 		 * proportionally what was requested by get_scan_count(). We
2381 		 * stop reclaiming one LRU and reduce the amount scanning
2382 		 * proportional to the original scan target.
2383 		 */
2384 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2385 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2386 
2387 		/*
2388 		 * It's just vindictive to attack the larger once the smaller
2389 		 * has gone to zero.  And given the way we stop scanning the
2390 		 * smaller below, this makes sure that we only make one nudge
2391 		 * towards proportionality once we've got nr_to_reclaim.
2392 		 */
2393 		if (!nr_file || !nr_anon)
2394 			break;
2395 
2396 		if (nr_file > nr_anon) {
2397 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2398 						targets[LRU_ACTIVE_ANON] + 1;
2399 			lru = LRU_BASE;
2400 			percentage = nr_anon * 100 / scan_target;
2401 		} else {
2402 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2403 						targets[LRU_ACTIVE_FILE] + 1;
2404 			lru = LRU_FILE;
2405 			percentage = nr_file * 100 / scan_target;
2406 		}
2407 
2408 		/* Stop scanning the smaller of the LRU */
2409 		nr[lru] = 0;
2410 		nr[lru + LRU_ACTIVE] = 0;
2411 
2412 		/*
2413 		 * Recalculate the other LRU scan count based on its original
2414 		 * scan target and the percentage scanning already complete
2415 		 */
2416 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2417 		nr_scanned = targets[lru] - nr[lru];
2418 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2419 		nr[lru] -= min(nr[lru], nr_scanned);
2420 
2421 		lru += LRU_ACTIVE;
2422 		nr_scanned = targets[lru] - nr[lru];
2423 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2424 		nr[lru] -= min(nr[lru], nr_scanned);
2425 
2426 		scan_adjusted = true;
2427 	}
2428 	blk_finish_plug(&plug);
2429 	sc->nr_reclaimed += nr_reclaimed;
2430 
2431 	/*
2432 	 * Even if we did not try to evict anon pages at all, we want to
2433 	 * rebalance the anon lru active/inactive ratio.
2434 	 */
2435 	if (inactive_list_is_low(lruvec, false, sc))
2436 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2437 				   sc, LRU_ACTIVE_ANON);
2438 }
2439 
2440 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2441 static bool in_reclaim_compaction(struct scan_control *sc)
2442 {
2443 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2444 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2445 			 sc->priority < DEF_PRIORITY - 2))
2446 		return true;
2447 
2448 	return false;
2449 }
2450 
2451 /*
2452  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2453  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2454  * true if more pages should be reclaimed such that when the page allocator
2455  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2456  * It will give up earlier than that if there is difficulty reclaiming pages.
2457  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2458 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2459 					unsigned long nr_reclaimed,
2460 					unsigned long nr_scanned,
2461 					struct scan_control *sc)
2462 {
2463 	unsigned long pages_for_compaction;
2464 	unsigned long inactive_lru_pages;
2465 	int z;
2466 
2467 	/* If not in reclaim/compaction mode, stop */
2468 	if (!in_reclaim_compaction(sc))
2469 		return false;
2470 
2471 	/* Consider stopping depending on scan and reclaim activity */
2472 	if (sc->gfp_mask & __GFP_REPEAT) {
2473 		/*
2474 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2475 		 * full LRU list has been scanned and we are still failing
2476 		 * to reclaim pages. This full LRU scan is potentially
2477 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2478 		 */
2479 		if (!nr_reclaimed && !nr_scanned)
2480 			return false;
2481 	} else {
2482 		/*
2483 		 * For non-__GFP_REPEAT allocations which can presumably
2484 		 * fail without consequence, stop if we failed to reclaim
2485 		 * any pages from the last SWAP_CLUSTER_MAX number of
2486 		 * pages that were scanned. This will return to the
2487 		 * caller faster at the risk reclaim/compaction and
2488 		 * the resulting allocation attempt fails
2489 		 */
2490 		if (!nr_reclaimed)
2491 			return false;
2492 	}
2493 
2494 	/*
2495 	 * If we have not reclaimed enough pages for compaction and the
2496 	 * inactive lists are large enough, continue reclaiming
2497 	 */
2498 	pages_for_compaction = compact_gap(sc->order);
2499 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2500 	if (get_nr_swap_pages() > 0)
2501 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2502 	if (sc->nr_reclaimed < pages_for_compaction &&
2503 			inactive_lru_pages > pages_for_compaction)
2504 		return true;
2505 
2506 	/* If compaction would go ahead or the allocation would succeed, stop */
2507 	for (z = 0; z <= sc->reclaim_idx; z++) {
2508 		struct zone *zone = &pgdat->node_zones[z];
2509 		if (!managed_zone(zone))
2510 			continue;
2511 
2512 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2513 		case COMPACT_SUCCESS:
2514 		case COMPACT_CONTINUE:
2515 			return false;
2516 		default:
2517 			/* check next zone */
2518 			;
2519 		}
2520 	}
2521 	return true;
2522 }
2523 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2524 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2525 {
2526 	struct reclaim_state *reclaim_state = current->reclaim_state;
2527 	unsigned long nr_reclaimed, nr_scanned;
2528 	bool reclaimable = false;
2529 
2530 	do {
2531 		struct mem_cgroup *root = sc->target_mem_cgroup;
2532 		struct mem_cgroup_reclaim_cookie reclaim = {
2533 			.pgdat = pgdat,
2534 			.priority = sc->priority,
2535 		};
2536 		unsigned long node_lru_pages = 0;
2537 		struct mem_cgroup *memcg;
2538 
2539 		nr_reclaimed = sc->nr_reclaimed;
2540 		nr_scanned = sc->nr_scanned;
2541 
2542 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2543 		do {
2544 			unsigned long lru_pages;
2545 			unsigned long reclaimed;
2546 			unsigned long scanned;
2547 
2548 			if (mem_cgroup_low(root, memcg)) {
2549 				if (!sc->may_thrash)
2550 					continue;
2551 				mem_cgroup_events(memcg, MEMCG_LOW, 1);
2552 			}
2553 
2554 			reclaimed = sc->nr_reclaimed;
2555 			scanned = sc->nr_scanned;
2556 
2557 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2558 			node_lru_pages += lru_pages;
2559 
2560 			if (memcg)
2561 				shrink_slab(sc->gfp_mask, pgdat->node_id,
2562 					    memcg, sc->nr_scanned - scanned,
2563 					    lru_pages);
2564 
2565 			/* Record the group's reclaim efficiency */
2566 			vmpressure(sc->gfp_mask, memcg, false,
2567 				   sc->nr_scanned - scanned,
2568 				   sc->nr_reclaimed - reclaimed);
2569 
2570 			/*
2571 			 * Direct reclaim and kswapd have to scan all memory
2572 			 * cgroups to fulfill the overall scan target for the
2573 			 * node.
2574 			 *
2575 			 * Limit reclaim, on the other hand, only cares about
2576 			 * nr_to_reclaim pages to be reclaimed and it will
2577 			 * retry with decreasing priority if one round over the
2578 			 * whole hierarchy is not sufficient.
2579 			 */
2580 			if (!global_reclaim(sc) &&
2581 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2582 				mem_cgroup_iter_break(root, memcg);
2583 				break;
2584 			}
2585 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2586 
2587 		/*
2588 		 * Shrink the slab caches in the same proportion that
2589 		 * the eligible LRU pages were scanned.
2590 		 */
2591 		if (global_reclaim(sc))
2592 			shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2593 				    sc->nr_scanned - nr_scanned,
2594 				    node_lru_pages);
2595 
2596 		if (reclaim_state) {
2597 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2598 			reclaim_state->reclaimed_slab = 0;
2599 		}
2600 
2601 		/* Record the subtree's reclaim efficiency */
2602 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2603 			   sc->nr_scanned - nr_scanned,
2604 			   sc->nr_reclaimed - nr_reclaimed);
2605 
2606 		if (sc->nr_reclaimed - nr_reclaimed)
2607 			reclaimable = true;
2608 
2609 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2610 					 sc->nr_scanned - nr_scanned, sc));
2611 
2612 	/*
2613 	 * Kswapd gives up on balancing particular nodes after too
2614 	 * many failures to reclaim anything from them and goes to
2615 	 * sleep. On reclaim progress, reset the failure counter. A
2616 	 * successful direct reclaim run will revive a dormant kswapd.
2617 	 */
2618 	if (reclaimable)
2619 		pgdat->kswapd_failures = 0;
2620 
2621 	return reclaimable;
2622 }
2623 
2624 /*
2625  * Returns true if compaction should go ahead for a costly-order request, or
2626  * the allocation would already succeed without compaction. Return false if we
2627  * should reclaim first.
2628  */
compaction_ready(struct zone * zone,struct scan_control * sc)2629 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2630 {
2631 	unsigned long watermark;
2632 	enum compact_result suitable;
2633 
2634 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2635 	if (suitable == COMPACT_SUCCESS)
2636 		/* Allocation should succeed already. Don't reclaim. */
2637 		return true;
2638 	if (suitable == COMPACT_SKIPPED)
2639 		/* Compaction cannot yet proceed. Do reclaim. */
2640 		return false;
2641 
2642 	/*
2643 	 * Compaction is already possible, but it takes time to run and there
2644 	 * are potentially other callers using the pages just freed. So proceed
2645 	 * with reclaim to make a buffer of free pages available to give
2646 	 * compaction a reasonable chance of completing and allocating the page.
2647 	 * Note that we won't actually reclaim the whole buffer in one attempt
2648 	 * as the target watermark in should_continue_reclaim() is lower. But if
2649 	 * we are already above the high+gap watermark, don't reclaim at all.
2650 	 */
2651 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2652 
2653 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2654 }
2655 
2656 /*
2657  * This is the direct reclaim path, for page-allocating processes.  We only
2658  * try to reclaim pages from zones which will satisfy the caller's allocation
2659  * request.
2660  *
2661  * If a zone is deemed to be full of pinned pages then just give it a light
2662  * scan then give up on it.
2663  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2664 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2665 {
2666 	struct zoneref *z;
2667 	struct zone *zone;
2668 	unsigned long nr_soft_reclaimed;
2669 	unsigned long nr_soft_scanned;
2670 	gfp_t orig_mask;
2671 	pg_data_t *last_pgdat = NULL;
2672 
2673 	/*
2674 	 * If the number of buffer_heads in the machine exceeds the maximum
2675 	 * allowed level, force direct reclaim to scan the highmem zone as
2676 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2677 	 */
2678 	orig_mask = sc->gfp_mask;
2679 	if (buffer_heads_over_limit) {
2680 		sc->gfp_mask |= __GFP_HIGHMEM;
2681 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2682 	}
2683 
2684 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2685 					sc->reclaim_idx, sc->nodemask) {
2686 		/*
2687 		 * Take care memory controller reclaiming has small influence
2688 		 * to global LRU.
2689 		 */
2690 		if (global_reclaim(sc)) {
2691 			if (!cpuset_zone_allowed(zone,
2692 						 GFP_KERNEL | __GFP_HARDWALL))
2693 				continue;
2694 
2695 			/*
2696 			 * If we already have plenty of memory free for
2697 			 * compaction in this zone, don't free any more.
2698 			 * Even though compaction is invoked for any
2699 			 * non-zero order, only frequent costly order
2700 			 * reclamation is disruptive enough to become a
2701 			 * noticeable problem, like transparent huge
2702 			 * page allocations.
2703 			 */
2704 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2705 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2706 			    compaction_ready(zone, sc)) {
2707 				sc->compaction_ready = true;
2708 				continue;
2709 			}
2710 
2711 			/*
2712 			 * Shrink each node in the zonelist once. If the
2713 			 * zonelist is ordered by zone (not the default) then a
2714 			 * node may be shrunk multiple times but in that case
2715 			 * the user prefers lower zones being preserved.
2716 			 */
2717 			if (zone->zone_pgdat == last_pgdat)
2718 				continue;
2719 
2720 			/*
2721 			 * This steals pages from memory cgroups over softlimit
2722 			 * and returns the number of reclaimed pages and
2723 			 * scanned pages. This works for global memory pressure
2724 			 * and balancing, not for a memcg's limit.
2725 			 */
2726 			nr_soft_scanned = 0;
2727 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2728 						sc->order, sc->gfp_mask,
2729 						&nr_soft_scanned);
2730 			sc->nr_reclaimed += nr_soft_reclaimed;
2731 			sc->nr_scanned += nr_soft_scanned;
2732 			/* need some check for avoid more shrink_zone() */
2733 		}
2734 
2735 		/* See comment about same check for global reclaim above */
2736 		if (zone->zone_pgdat == last_pgdat)
2737 			continue;
2738 		last_pgdat = zone->zone_pgdat;
2739 		shrink_node(zone->zone_pgdat, sc);
2740 	}
2741 
2742 	/*
2743 	 * Restore to original mask to avoid the impact on the caller if we
2744 	 * promoted it to __GFP_HIGHMEM.
2745 	 */
2746 	sc->gfp_mask = orig_mask;
2747 }
2748 
2749 /*
2750  * This is the main entry point to direct page reclaim.
2751  *
2752  * If a full scan of the inactive list fails to free enough memory then we
2753  * are "out of memory" and something needs to be killed.
2754  *
2755  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2756  * high - the zone may be full of dirty or under-writeback pages, which this
2757  * caller can't do much about.  We kick the writeback threads and take explicit
2758  * naps in the hope that some of these pages can be written.  But if the
2759  * allocating task holds filesystem locks which prevent writeout this might not
2760  * work, and the allocation attempt will fail.
2761  *
2762  * returns:	0, if no pages reclaimed
2763  * 		else, the number of pages reclaimed
2764  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2765 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2766 					  struct scan_control *sc)
2767 {
2768 	int initial_priority = sc->priority;
2769 	unsigned long total_scanned = 0;
2770 	unsigned long writeback_threshold;
2771 retry:
2772 	delayacct_freepages_start();
2773 
2774 	if (global_reclaim(sc))
2775 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2776 
2777 	do {
2778 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2779 				sc->priority);
2780 		sc->nr_scanned = 0;
2781 		shrink_zones(zonelist, sc);
2782 
2783 		total_scanned += sc->nr_scanned;
2784 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2785 			break;
2786 
2787 		if (sc->compaction_ready)
2788 			break;
2789 
2790 		/*
2791 		 * If we're getting trouble reclaiming, start doing
2792 		 * writepage even in laptop mode.
2793 		 */
2794 		if (sc->priority < DEF_PRIORITY - 2)
2795 			sc->may_writepage = 1;
2796 
2797 		/*
2798 		 * Try to write back as many pages as we just scanned.  This
2799 		 * tends to cause slow streaming writers to write data to the
2800 		 * disk smoothly, at the dirtying rate, which is nice.   But
2801 		 * that's undesirable in laptop mode, where we *want* lumpy
2802 		 * writeout.  So in laptop mode, write out the whole world.
2803 		 */
2804 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2805 		if (total_scanned > writeback_threshold) {
2806 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2807 						WB_REASON_TRY_TO_FREE_PAGES);
2808 			sc->may_writepage = 1;
2809 		}
2810 	} while (--sc->priority >= 0);
2811 
2812 	delayacct_freepages_end();
2813 
2814 	if (sc->nr_reclaimed)
2815 		return sc->nr_reclaimed;
2816 
2817 	/* Aborted reclaim to try compaction? don't OOM, then */
2818 	if (sc->compaction_ready)
2819 		return 1;
2820 
2821 	/* Untapped cgroup reserves?  Don't OOM, retry. */
2822 	if (!sc->may_thrash) {
2823 		sc->priority = initial_priority;
2824 		sc->may_thrash = 1;
2825 		goto retry;
2826 	}
2827 
2828 	return 0;
2829 }
2830 
allow_direct_reclaim(pg_data_t * pgdat)2831 static bool allow_direct_reclaim(pg_data_t *pgdat)
2832 {
2833 	struct zone *zone;
2834 	unsigned long pfmemalloc_reserve = 0;
2835 	unsigned long free_pages = 0;
2836 	int i;
2837 	bool wmark_ok;
2838 
2839 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2840 		return true;
2841 
2842 	for (i = 0; i <= ZONE_NORMAL; i++) {
2843 		zone = &pgdat->node_zones[i];
2844 		if (!managed_zone(zone))
2845 			continue;
2846 
2847 		if (!zone_reclaimable_pages(zone))
2848 			continue;
2849 
2850 		pfmemalloc_reserve += min_wmark_pages(zone);
2851 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
2852 	}
2853 
2854 	/* If there are no reserves (unexpected config) then do not throttle */
2855 	if (!pfmemalloc_reserve)
2856 		return true;
2857 
2858 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
2859 
2860 	/* kswapd must be awake if processes are being throttled */
2861 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2862 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2863 						(enum zone_type)ZONE_NORMAL);
2864 		wake_up_interruptible(&pgdat->kswapd_wait);
2865 	}
2866 
2867 	return wmark_ok;
2868 }
2869 
2870 /*
2871  * Throttle direct reclaimers if backing storage is backed by the network
2872  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2873  * depleted. kswapd will continue to make progress and wake the processes
2874  * when the low watermark is reached.
2875  *
2876  * Returns true if a fatal signal was delivered during throttling. If this
2877  * happens, the page allocator should not consider triggering the OOM killer.
2878  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2879 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2880 					nodemask_t *nodemask)
2881 {
2882 	struct zoneref *z;
2883 	struct zone *zone;
2884 	pg_data_t *pgdat = NULL;
2885 
2886 	/*
2887 	 * Kernel threads should not be throttled as they may be indirectly
2888 	 * responsible for cleaning pages necessary for reclaim to make forward
2889 	 * progress. kjournald for example may enter direct reclaim while
2890 	 * committing a transaction where throttling it could forcing other
2891 	 * processes to block on log_wait_commit().
2892 	 */
2893 	if (current->flags & PF_KTHREAD)
2894 		goto out;
2895 
2896 	/*
2897 	 * If a fatal signal is pending, this process should not throttle.
2898 	 * It should return quickly so it can exit and free its memory
2899 	 */
2900 	if (fatal_signal_pending(current))
2901 		goto out;
2902 
2903 	/*
2904 	 * Check if the pfmemalloc reserves are ok by finding the first node
2905 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2906 	 * GFP_KERNEL will be required for allocating network buffers when
2907 	 * swapping over the network so ZONE_HIGHMEM is unusable.
2908 	 *
2909 	 * Throttling is based on the first usable node and throttled processes
2910 	 * wait on a queue until kswapd makes progress and wakes them. There
2911 	 * is an affinity then between processes waking up and where reclaim
2912 	 * progress has been made assuming the process wakes on the same node.
2913 	 * More importantly, processes running on remote nodes will not compete
2914 	 * for remote pfmemalloc reserves and processes on different nodes
2915 	 * should make reasonable progress.
2916 	 */
2917 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2918 					gfp_zone(gfp_mask), nodemask) {
2919 		if (zone_idx(zone) > ZONE_NORMAL)
2920 			continue;
2921 
2922 		/* Throttle based on the first usable node */
2923 		pgdat = zone->zone_pgdat;
2924 		if (allow_direct_reclaim(pgdat))
2925 			goto out;
2926 		break;
2927 	}
2928 
2929 	/* If no zone was usable by the allocation flags then do not throttle */
2930 	if (!pgdat)
2931 		goto out;
2932 
2933 	/* Account for the throttling */
2934 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
2935 
2936 	/*
2937 	 * If the caller cannot enter the filesystem, it's possible that it
2938 	 * is due to the caller holding an FS lock or performing a journal
2939 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
2940 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
2941 	 * blocked waiting on the same lock. Instead, throttle for up to a
2942 	 * second before continuing.
2943 	 */
2944 	if (!(gfp_mask & __GFP_FS)) {
2945 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2946 			allow_direct_reclaim(pgdat), HZ);
2947 
2948 		goto check_pending;
2949 	}
2950 
2951 	/* Throttle until kswapd wakes the process */
2952 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2953 		allow_direct_reclaim(pgdat));
2954 
2955 check_pending:
2956 	if (fatal_signal_pending(current))
2957 		return true;
2958 
2959 out:
2960 	return false;
2961 }
2962 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2963 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2964 				gfp_t gfp_mask, nodemask_t *nodemask)
2965 {
2966 	unsigned long nr_reclaimed;
2967 	struct scan_control sc = {
2968 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2969 		.gfp_mask = memalloc_noio_flags(gfp_mask),
2970 		.reclaim_idx = gfp_zone(gfp_mask),
2971 		.order = order,
2972 		.nodemask = nodemask,
2973 		.priority = DEF_PRIORITY,
2974 		.may_writepage = !laptop_mode,
2975 		.may_unmap = 1,
2976 		.may_swap = 1,
2977 	};
2978 
2979 	/*
2980 	 * Do not enter reclaim if fatal signal was delivered while throttled.
2981 	 * 1 is returned so that the page allocator does not OOM kill at this
2982 	 * point.
2983 	 */
2984 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
2985 		return 1;
2986 
2987 	trace_mm_vmscan_direct_reclaim_begin(order,
2988 				sc.may_writepage,
2989 				sc.gfp_mask,
2990 				sc.reclaim_idx);
2991 
2992 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2993 
2994 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2995 
2996 	return nr_reclaimed;
2997 }
2998 
2999 #ifdef CONFIG_MEMCG
3000 
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3001 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3002 						gfp_t gfp_mask, bool noswap,
3003 						pg_data_t *pgdat,
3004 						unsigned long *nr_scanned)
3005 {
3006 	struct scan_control sc = {
3007 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3008 		.target_mem_cgroup = memcg,
3009 		.may_writepage = !laptop_mode,
3010 		.may_unmap = 1,
3011 		.reclaim_idx = MAX_NR_ZONES - 1,
3012 		.may_swap = !noswap,
3013 	};
3014 	unsigned long lru_pages;
3015 
3016 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3017 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3018 
3019 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3020 						      sc.may_writepage,
3021 						      sc.gfp_mask,
3022 						      sc.reclaim_idx);
3023 
3024 	/*
3025 	 * NOTE: Although we can get the priority field, using it
3026 	 * here is not a good idea, since it limits the pages we can scan.
3027 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3028 	 * will pick up pages from other mem cgroup's as well. We hack
3029 	 * the priority and make it zero.
3030 	 */
3031 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3032 
3033 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3034 
3035 	*nr_scanned = sc.nr_scanned;
3036 	return sc.nr_reclaimed;
3037 }
3038 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3039 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3040 					   unsigned long nr_pages,
3041 					   gfp_t gfp_mask,
3042 					   bool may_swap)
3043 {
3044 	struct zonelist *zonelist;
3045 	unsigned long nr_reclaimed;
3046 	int nid;
3047 	struct scan_control sc = {
3048 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3049 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3050 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3051 		.reclaim_idx = MAX_NR_ZONES - 1,
3052 		.target_mem_cgroup = memcg,
3053 		.priority = DEF_PRIORITY,
3054 		.may_writepage = !laptop_mode,
3055 		.may_unmap = 1,
3056 		.may_swap = may_swap,
3057 	};
3058 
3059 	/*
3060 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3061 	 * take care of from where we get pages. So the node where we start the
3062 	 * scan does not need to be the current node.
3063 	 */
3064 	nid = mem_cgroup_select_victim_node(memcg);
3065 
3066 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3067 
3068 	trace_mm_vmscan_memcg_reclaim_begin(0,
3069 					    sc.may_writepage,
3070 					    sc.gfp_mask,
3071 					    sc.reclaim_idx);
3072 
3073 	current->flags |= PF_MEMALLOC;
3074 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3075 	current->flags &= ~PF_MEMALLOC;
3076 
3077 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3078 
3079 	return nr_reclaimed;
3080 }
3081 #endif
3082 
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3083 static void age_active_anon(struct pglist_data *pgdat,
3084 				struct scan_control *sc)
3085 {
3086 	struct mem_cgroup *memcg;
3087 
3088 	if (!total_swap_pages)
3089 		return;
3090 
3091 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3092 	do {
3093 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3094 
3095 		if (inactive_list_is_low(lruvec, false, sc))
3096 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3097 					   sc, LRU_ACTIVE_ANON);
3098 
3099 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3100 	} while (memcg);
3101 }
3102 
zone_balanced(struct zone * zone,int order,int classzone_idx)3103 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3104 {
3105 	unsigned long mark = high_wmark_pages(zone);
3106 
3107 	if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3108 		return false;
3109 
3110 	/*
3111 	 * If any eligible zone is balanced then the node is not considered
3112 	 * to be congested or dirty
3113 	 */
3114 	clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3115 	clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3116 
3117 	return true;
3118 }
3119 
3120 /*
3121  * Prepare kswapd for sleeping. This verifies that there are no processes
3122  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3123  *
3124  * Returns true if kswapd is ready to sleep
3125  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int classzone_idx)3126 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3127 {
3128 	int i;
3129 
3130 	/*
3131 	 * The throttled processes are normally woken up in balance_pgdat() as
3132 	 * soon as allow_direct_reclaim() is true. But there is a potential
3133 	 * race between when kswapd checks the watermarks and a process gets
3134 	 * throttled. There is also a potential race if processes get
3135 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3136 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3137 	 * the wake up checks. If kswapd is going to sleep, no process should
3138 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3139 	 * the wake up is premature, processes will wake kswapd and get
3140 	 * throttled again. The difference from wake ups in balance_pgdat() is
3141 	 * that here we are under prepare_to_wait().
3142 	 */
3143 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3144 		wake_up_all(&pgdat->pfmemalloc_wait);
3145 
3146 	/* Hopeless node, leave it to direct reclaim */
3147 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3148 		return true;
3149 
3150 	for (i = 0; i <= classzone_idx; i++) {
3151 		struct zone *zone = pgdat->node_zones + i;
3152 
3153 		if (!managed_zone(zone))
3154 			continue;
3155 
3156 		if (!zone_balanced(zone, order, classzone_idx))
3157 			return false;
3158 	}
3159 
3160 	return true;
3161 }
3162 
3163 /*
3164  * kswapd shrinks a node of pages that are at or below the highest usable
3165  * zone that is currently unbalanced.
3166  *
3167  * Returns true if kswapd scanned at least the requested number of pages to
3168  * reclaim or if the lack of progress was due to pages under writeback.
3169  * This is used to determine if the scanning priority needs to be raised.
3170  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3171 static bool kswapd_shrink_node(pg_data_t *pgdat,
3172 			       struct scan_control *sc)
3173 {
3174 	struct zone *zone;
3175 	int z;
3176 
3177 	/* Reclaim a number of pages proportional to the number of zones */
3178 	sc->nr_to_reclaim = 0;
3179 	for (z = 0; z <= sc->reclaim_idx; z++) {
3180 		zone = pgdat->node_zones + z;
3181 		if (!managed_zone(zone))
3182 			continue;
3183 
3184 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3185 	}
3186 
3187 	/*
3188 	 * Historically care was taken to put equal pressure on all zones but
3189 	 * now pressure is applied based on node LRU order.
3190 	 */
3191 	shrink_node(pgdat, sc);
3192 
3193 	/*
3194 	 * Fragmentation may mean that the system cannot be rebalanced for
3195 	 * high-order allocations. If twice the allocation size has been
3196 	 * reclaimed then recheck watermarks only at order-0 to prevent
3197 	 * excessive reclaim. Assume that a process requested a high-order
3198 	 * can direct reclaim/compact.
3199 	 */
3200 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3201 		sc->order = 0;
3202 
3203 	return sc->nr_scanned >= sc->nr_to_reclaim;
3204 }
3205 
3206 /*
3207  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3208  * that are eligible for use by the caller until at least one zone is
3209  * balanced.
3210  *
3211  * Returns the order kswapd finished reclaiming at.
3212  *
3213  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3214  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3215  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3216  * or lower is eligible for reclaim until at least one usable zone is
3217  * balanced.
3218  */
balance_pgdat(pg_data_t * pgdat,int order,int classzone_idx)3219 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3220 {
3221 	int i;
3222 	unsigned long nr_soft_reclaimed;
3223 	unsigned long nr_soft_scanned;
3224 	struct zone *zone;
3225 	struct scan_control sc = {
3226 		.gfp_mask = GFP_KERNEL,
3227 		.order = order,
3228 		.priority = DEF_PRIORITY,
3229 		.may_writepage = !laptop_mode,
3230 		.may_unmap = 1,
3231 		.may_swap = 1,
3232 	};
3233 	count_vm_event(PAGEOUTRUN);
3234 
3235 	do {
3236 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3237 		bool raise_priority = true;
3238 
3239 		sc.reclaim_idx = classzone_idx;
3240 
3241 		/*
3242 		 * If the number of buffer_heads exceeds the maximum allowed
3243 		 * then consider reclaiming from all zones. This has a dual
3244 		 * purpose -- on 64-bit systems it is expected that
3245 		 * buffer_heads are stripped during active rotation. On 32-bit
3246 		 * systems, highmem pages can pin lowmem memory and shrinking
3247 		 * buffers can relieve lowmem pressure. Reclaim may still not
3248 		 * go ahead if all eligible zones for the original allocation
3249 		 * request are balanced to avoid excessive reclaim from kswapd.
3250 		 */
3251 		if (buffer_heads_over_limit) {
3252 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3253 				zone = pgdat->node_zones + i;
3254 				if (!managed_zone(zone))
3255 					continue;
3256 
3257 				sc.reclaim_idx = i;
3258 				break;
3259 			}
3260 		}
3261 
3262 		/*
3263 		 * Only reclaim if there are no eligible zones. Check from
3264 		 * high to low zone as allocations prefer higher zones.
3265 		 * Scanning from low to high zone would allow congestion to be
3266 		 * cleared during a very small window when a small low
3267 		 * zone was balanced even under extreme pressure when the
3268 		 * overall node may be congested. Note that sc.reclaim_idx
3269 		 * is not used as buffer_heads_over_limit may have adjusted
3270 		 * it.
3271 		 */
3272 		for (i = classzone_idx; i >= 0; i--) {
3273 			zone = pgdat->node_zones + i;
3274 			if (!managed_zone(zone))
3275 				continue;
3276 
3277 			if (zone_balanced(zone, sc.order, classzone_idx))
3278 				goto out;
3279 		}
3280 
3281 		/*
3282 		 * Do some background aging of the anon list, to give
3283 		 * pages a chance to be referenced before reclaiming. All
3284 		 * pages are rotated regardless of classzone as this is
3285 		 * about consistent aging.
3286 		 */
3287 		age_active_anon(pgdat, &sc);
3288 
3289 		/*
3290 		 * If we're getting trouble reclaiming, start doing writepage
3291 		 * even in laptop mode.
3292 		 */
3293 		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3294 			sc.may_writepage = 1;
3295 
3296 		/* Call soft limit reclaim before calling shrink_node. */
3297 		sc.nr_scanned = 0;
3298 		nr_soft_scanned = 0;
3299 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3300 						sc.gfp_mask, &nr_soft_scanned);
3301 		sc.nr_reclaimed += nr_soft_reclaimed;
3302 
3303 		/*
3304 		 * There should be no need to raise the scanning priority if
3305 		 * enough pages are already being scanned that that high
3306 		 * watermark would be met at 100% efficiency.
3307 		 */
3308 		if (kswapd_shrink_node(pgdat, &sc))
3309 			raise_priority = false;
3310 
3311 		/*
3312 		 * If the low watermark is met there is no need for processes
3313 		 * to be throttled on pfmemalloc_wait as they should not be
3314 		 * able to safely make forward progress. Wake them
3315 		 */
3316 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3317 				allow_direct_reclaim(pgdat))
3318 			wake_up_all(&pgdat->pfmemalloc_wait);
3319 
3320 		/* Check if kswapd should be suspending */
3321 		if (try_to_freeze() || kthread_should_stop())
3322 			break;
3323 
3324 		/*
3325 		 * Raise priority if scanning rate is too low or there was no
3326 		 * progress in reclaiming pages
3327 		 */
3328 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3329 		if (raise_priority || !nr_reclaimed)
3330 			sc.priority--;
3331 	} while (sc.priority >= 1);
3332 
3333 	if (!sc.nr_reclaimed)
3334 		pgdat->kswapd_failures++;
3335 
3336 out:
3337 	/*
3338 	 * Return the order kswapd stopped reclaiming at as
3339 	 * prepare_kswapd_sleep() takes it into account. If another caller
3340 	 * entered the allocator slow path while kswapd was awake, order will
3341 	 * remain at the higher level.
3342 	 */
3343 	return sc.order;
3344 }
3345 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int classzone_idx)3346 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3347 				unsigned int classzone_idx)
3348 {
3349 	long remaining = 0;
3350 	DEFINE_WAIT(wait);
3351 
3352 	if (freezing(current) || kthread_should_stop())
3353 		return;
3354 
3355 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3356 
3357 	/* Try to sleep for a short interval */
3358 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3359 		/*
3360 		 * Compaction records what page blocks it recently failed to
3361 		 * isolate pages from and skips them in the future scanning.
3362 		 * When kswapd is going to sleep, it is reasonable to assume
3363 		 * that pages and compaction may succeed so reset the cache.
3364 		 */
3365 		reset_isolation_suitable(pgdat);
3366 
3367 		/*
3368 		 * We have freed the memory, now we should compact it to make
3369 		 * allocation of the requested order possible.
3370 		 */
3371 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3372 
3373 		remaining = schedule_timeout(HZ/10);
3374 
3375 		/*
3376 		 * If woken prematurely then reset kswapd_classzone_idx and
3377 		 * order. The values will either be from a wakeup request or
3378 		 * the previous request that slept prematurely.
3379 		 */
3380 		if (remaining) {
3381 			pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3382 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3383 		}
3384 
3385 		finish_wait(&pgdat->kswapd_wait, &wait);
3386 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3387 	}
3388 
3389 	/*
3390 	 * After a short sleep, check if it was a premature sleep. If not, then
3391 	 * go fully to sleep until explicitly woken up.
3392 	 */
3393 	if (!remaining &&
3394 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3395 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3396 
3397 		/*
3398 		 * vmstat counters are not perfectly accurate and the estimated
3399 		 * value for counters such as NR_FREE_PAGES can deviate from the
3400 		 * true value by nr_online_cpus * threshold. To avoid the zone
3401 		 * watermarks being breached while under pressure, we reduce the
3402 		 * per-cpu vmstat threshold while kswapd is awake and restore
3403 		 * them before going back to sleep.
3404 		 */
3405 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3406 
3407 		if (!kthread_should_stop())
3408 			schedule();
3409 
3410 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3411 	} else {
3412 		if (remaining)
3413 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3414 		else
3415 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3416 	}
3417 	finish_wait(&pgdat->kswapd_wait, &wait);
3418 }
3419 
3420 /*
3421  * The background pageout daemon, started as a kernel thread
3422  * from the init process.
3423  *
3424  * This basically trickles out pages so that we have _some_
3425  * free memory available even if there is no other activity
3426  * that frees anything up. This is needed for things like routing
3427  * etc, where we otherwise might have all activity going on in
3428  * asynchronous contexts that cannot page things out.
3429  *
3430  * If there are applications that are active memory-allocators
3431  * (most normal use), this basically shouldn't matter.
3432  */
kswapd(void * p)3433 static int kswapd(void *p)
3434 {
3435 	unsigned int alloc_order, reclaim_order, classzone_idx;
3436 	pg_data_t *pgdat = (pg_data_t*)p;
3437 	struct task_struct *tsk = current;
3438 
3439 	struct reclaim_state reclaim_state = {
3440 		.reclaimed_slab = 0,
3441 	};
3442 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3443 
3444 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3445 
3446 	if (!cpumask_empty(cpumask))
3447 		set_cpus_allowed_ptr(tsk, cpumask);
3448 	current->reclaim_state = &reclaim_state;
3449 
3450 	/*
3451 	 * Tell the memory management that we're a "memory allocator",
3452 	 * and that if we need more memory we should get access to it
3453 	 * regardless (see "__alloc_pages()"). "kswapd" should
3454 	 * never get caught in the normal page freeing logic.
3455 	 *
3456 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3457 	 * you need a small amount of memory in order to be able to
3458 	 * page out something else, and this flag essentially protects
3459 	 * us from recursively trying to free more memory as we're
3460 	 * trying to free the first piece of memory in the first place).
3461 	 */
3462 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3463 	set_freezable();
3464 
3465 	pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3466 	pgdat->kswapd_classzone_idx = classzone_idx = 0;
3467 	for ( ; ; ) {
3468 		bool ret;
3469 
3470 kswapd_try_sleep:
3471 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3472 					classzone_idx);
3473 
3474 		/* Read the new order and classzone_idx */
3475 		alloc_order = reclaim_order = pgdat->kswapd_order;
3476 		classzone_idx = pgdat->kswapd_classzone_idx;
3477 		pgdat->kswapd_order = 0;
3478 		pgdat->kswapd_classzone_idx = 0;
3479 
3480 		ret = try_to_freeze();
3481 		if (kthread_should_stop())
3482 			break;
3483 
3484 		/*
3485 		 * We can speed up thawing tasks if we don't call balance_pgdat
3486 		 * after returning from the refrigerator
3487 		 */
3488 		if (ret)
3489 			continue;
3490 
3491 		/*
3492 		 * Reclaim begins at the requested order but if a high-order
3493 		 * reclaim fails then kswapd falls back to reclaiming for
3494 		 * order-0. If that happens, kswapd will consider sleeping
3495 		 * for the order it finished reclaiming at (reclaim_order)
3496 		 * but kcompactd is woken to compact for the original
3497 		 * request (alloc_order).
3498 		 */
3499 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3500 						alloc_order);
3501 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3502 		if (reclaim_order < alloc_order)
3503 			goto kswapd_try_sleep;
3504 
3505 		alloc_order = reclaim_order = pgdat->kswapd_order;
3506 		classzone_idx = pgdat->kswapd_classzone_idx;
3507 	}
3508 
3509 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3510 	current->reclaim_state = NULL;
3511 	lockdep_clear_current_reclaim_state();
3512 
3513 	return 0;
3514 }
3515 
3516 /*
3517  * A zone is low on free memory, so wake its kswapd task to service it.
3518  */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3519 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3520 {
3521 	pg_data_t *pgdat;
3522 	int z;
3523 
3524 	if (!managed_zone(zone))
3525 		return;
3526 
3527 	if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3528 		return;
3529 	pgdat = zone->zone_pgdat;
3530 	pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3531 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3532 	if (!waitqueue_active(&pgdat->kswapd_wait))
3533 		return;
3534 
3535 	/* Hopeless node, leave it to direct reclaim */
3536 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3537 		return;
3538 
3539 	/* Only wake kswapd if all zones are unbalanced */
3540 	for (z = 0; z <= classzone_idx; z++) {
3541 		zone = pgdat->node_zones + z;
3542 		if (!managed_zone(zone))
3543 			continue;
3544 
3545 		if (zone_balanced(zone, order, classzone_idx))
3546 			return;
3547 	}
3548 
3549 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3550 	wake_up_interruptible(&pgdat->kswapd_wait);
3551 }
3552 
3553 #ifdef CONFIG_HIBERNATION
3554 /*
3555  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3556  * freed pages.
3557  *
3558  * Rather than trying to age LRUs the aim is to preserve the overall
3559  * LRU order by reclaiming preferentially
3560  * inactive > active > active referenced > active mapped
3561  */
shrink_all_memory(unsigned long nr_to_reclaim)3562 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3563 {
3564 	struct reclaim_state reclaim_state;
3565 	struct scan_control sc = {
3566 		.nr_to_reclaim = nr_to_reclaim,
3567 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3568 		.reclaim_idx = MAX_NR_ZONES - 1,
3569 		.priority = DEF_PRIORITY,
3570 		.may_writepage = 1,
3571 		.may_unmap = 1,
3572 		.may_swap = 1,
3573 		.hibernation_mode = 1,
3574 	};
3575 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3576 	struct task_struct *p = current;
3577 	unsigned long nr_reclaimed;
3578 
3579 	p->flags |= PF_MEMALLOC;
3580 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3581 	reclaim_state.reclaimed_slab = 0;
3582 	p->reclaim_state = &reclaim_state;
3583 
3584 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3585 
3586 	p->reclaim_state = NULL;
3587 	lockdep_clear_current_reclaim_state();
3588 	p->flags &= ~PF_MEMALLOC;
3589 
3590 	return nr_reclaimed;
3591 }
3592 #endif /* CONFIG_HIBERNATION */
3593 
3594 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3595    not required for correctness.  So if the last cpu in a node goes
3596    away, we get changed to run anywhere: as the first one comes back,
3597    restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3598 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3599 			void *hcpu)
3600 {
3601 	int nid;
3602 
3603 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3604 		for_each_node_state(nid, N_MEMORY) {
3605 			pg_data_t *pgdat = NODE_DATA(nid);
3606 			const struct cpumask *mask;
3607 
3608 			mask = cpumask_of_node(pgdat->node_id);
3609 
3610 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3611 				/* One of our CPUs online: restore mask */
3612 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3613 		}
3614 	}
3615 	return NOTIFY_OK;
3616 }
3617 
3618 /*
3619  * This kswapd start function will be called by init and node-hot-add.
3620  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3621  */
kswapd_run(int nid)3622 int kswapd_run(int nid)
3623 {
3624 	pg_data_t *pgdat = NODE_DATA(nid);
3625 	int ret = 0;
3626 
3627 	if (pgdat->kswapd)
3628 		return 0;
3629 
3630 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3631 	if (IS_ERR(pgdat->kswapd)) {
3632 		/* failure at boot is fatal */
3633 		BUG_ON(system_state == SYSTEM_BOOTING);
3634 		pr_err("Failed to start kswapd on node %d\n", nid);
3635 		ret = PTR_ERR(pgdat->kswapd);
3636 		pgdat->kswapd = NULL;
3637 	}
3638 	return ret;
3639 }
3640 
3641 /*
3642  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3643  * hold mem_hotplug_begin/end().
3644  */
kswapd_stop(int nid)3645 void kswapd_stop(int nid)
3646 {
3647 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3648 
3649 	if (kswapd) {
3650 		kthread_stop(kswapd);
3651 		NODE_DATA(nid)->kswapd = NULL;
3652 	}
3653 }
3654 
kswapd_init(void)3655 static int __init kswapd_init(void)
3656 {
3657 	int nid;
3658 
3659 	swap_setup();
3660 	for_each_node_state(nid, N_MEMORY)
3661  		kswapd_run(nid);
3662 	hotcpu_notifier(cpu_callback, 0);
3663 	return 0;
3664 }
3665 
3666 module_init(kswapd_init)
3667 
3668 #ifdef CONFIG_NUMA
3669 /*
3670  * Node reclaim mode
3671  *
3672  * If non-zero call node_reclaim when the number of free pages falls below
3673  * the watermarks.
3674  */
3675 int node_reclaim_mode __read_mostly;
3676 
3677 #define RECLAIM_OFF 0
3678 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3679 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3680 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3681 
3682 /*
3683  * Priority for NODE_RECLAIM. This determines the fraction of pages
3684  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3685  * a zone.
3686  */
3687 #define NODE_RECLAIM_PRIORITY 4
3688 
3689 /*
3690  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3691  * occur.
3692  */
3693 int sysctl_min_unmapped_ratio = 1;
3694 
3695 /*
3696  * If the number of slab pages in a zone grows beyond this percentage then
3697  * slab reclaim needs to occur.
3698  */
3699 int sysctl_min_slab_ratio = 5;
3700 
node_unmapped_file_pages(struct pglist_data * pgdat)3701 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3702 {
3703 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3704 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3705 		node_page_state(pgdat, NR_ACTIVE_FILE);
3706 
3707 	/*
3708 	 * It's possible for there to be more file mapped pages than
3709 	 * accounted for by the pages on the file LRU lists because
3710 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3711 	 */
3712 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3713 }
3714 
3715 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)3716 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3717 {
3718 	unsigned long nr_pagecache_reclaimable;
3719 	unsigned long delta = 0;
3720 
3721 	/*
3722 	 * If RECLAIM_UNMAP is set, then all file pages are considered
3723 	 * potentially reclaimable. Otherwise, we have to worry about
3724 	 * pages like swapcache and node_unmapped_file_pages() provides
3725 	 * a better estimate
3726 	 */
3727 	if (node_reclaim_mode & RECLAIM_UNMAP)
3728 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3729 	else
3730 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3731 
3732 	/* If we can't clean pages, remove dirty pages from consideration */
3733 	if (!(node_reclaim_mode & RECLAIM_WRITE))
3734 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
3735 
3736 	/* Watch for any possible underflows due to delta */
3737 	if (unlikely(delta > nr_pagecache_reclaimable))
3738 		delta = nr_pagecache_reclaimable;
3739 
3740 	return nr_pagecache_reclaimable - delta;
3741 }
3742 
3743 /*
3744  * Try to free up some pages from this node through reclaim.
3745  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)3746 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3747 {
3748 	/* Minimum pages needed in order to stay on node */
3749 	const unsigned long nr_pages = 1 << order;
3750 	struct task_struct *p = current;
3751 	struct reclaim_state reclaim_state;
3752 	struct scan_control sc = {
3753 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3754 		.gfp_mask = memalloc_noio_flags(gfp_mask),
3755 		.order = order,
3756 		.priority = NODE_RECLAIM_PRIORITY,
3757 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3758 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3759 		.may_swap = 1,
3760 		.reclaim_idx = gfp_zone(gfp_mask),
3761 	};
3762 
3763 	cond_resched();
3764 	/*
3765 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3766 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3767 	 * and RECLAIM_UNMAP.
3768 	 */
3769 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3770 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3771 	reclaim_state.reclaimed_slab = 0;
3772 	p->reclaim_state = &reclaim_state;
3773 
3774 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3775 		/*
3776 		 * Free memory by calling shrink zone with increasing
3777 		 * priorities until we have enough memory freed.
3778 		 */
3779 		do {
3780 			shrink_node(pgdat, &sc);
3781 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3782 	}
3783 
3784 	p->reclaim_state = NULL;
3785 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3786 	lockdep_clear_current_reclaim_state();
3787 	return sc.nr_reclaimed >= nr_pages;
3788 }
3789 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)3790 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3791 {
3792 	int ret;
3793 
3794 	/*
3795 	 * Node reclaim reclaims unmapped file backed pages and
3796 	 * slab pages if we are over the defined limits.
3797 	 *
3798 	 * A small portion of unmapped file backed pages is needed for
3799 	 * file I/O otherwise pages read by file I/O will be immediately
3800 	 * thrown out if the node is overallocated. So we do not reclaim
3801 	 * if less than a specified percentage of the node is used by
3802 	 * unmapped file backed pages.
3803 	 */
3804 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3805 	    sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3806 		return NODE_RECLAIM_FULL;
3807 
3808 	/*
3809 	 * Do not scan if the allocation should not be delayed.
3810 	 */
3811 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3812 		return NODE_RECLAIM_NOSCAN;
3813 
3814 	/*
3815 	 * Only run node reclaim on the local node or on nodes that do not
3816 	 * have associated processors. This will favor the local processor
3817 	 * over remote processors and spread off node memory allocations
3818 	 * as wide as possible.
3819 	 */
3820 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3821 		return NODE_RECLAIM_NOSCAN;
3822 
3823 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3824 		return NODE_RECLAIM_NOSCAN;
3825 
3826 	ret = __node_reclaim(pgdat, gfp_mask, order);
3827 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3828 
3829 	if (!ret)
3830 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3831 
3832 	return ret;
3833 }
3834 #endif
3835 
3836 /*
3837  * page_evictable - test whether a page is evictable
3838  * @page: the page to test
3839  *
3840  * Test whether page is evictable--i.e., should be placed on active/inactive
3841  * lists vs unevictable list.
3842  *
3843  * Reasons page might not be evictable:
3844  * (1) page's mapping marked unevictable
3845  * (2) page is part of an mlocked VMA
3846  *
3847  */
page_evictable(struct page * page)3848 int page_evictable(struct page *page)
3849 {
3850 	return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3851 }
3852 
3853 #ifdef CONFIG_SHMEM
3854 /**
3855  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3856  * @pages:	array of pages to check
3857  * @nr_pages:	number of pages to check
3858  *
3859  * Checks pages for evictability and moves them to the appropriate lru list.
3860  *
3861  * This function is only used for SysV IPC SHM_UNLOCK.
3862  */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3863 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3864 {
3865 	struct lruvec *lruvec;
3866 	struct pglist_data *pgdat = NULL;
3867 	int pgscanned = 0;
3868 	int pgrescued = 0;
3869 	int i;
3870 
3871 	for (i = 0; i < nr_pages; i++) {
3872 		struct page *page = pages[i];
3873 		struct pglist_data *pagepgdat = page_pgdat(page);
3874 
3875 		pgscanned++;
3876 		if (pagepgdat != pgdat) {
3877 			if (pgdat)
3878 				spin_unlock_irq(&pgdat->lru_lock);
3879 			pgdat = pagepgdat;
3880 			spin_lock_irq(&pgdat->lru_lock);
3881 		}
3882 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
3883 
3884 		if (!PageLRU(page) || !PageUnevictable(page))
3885 			continue;
3886 
3887 		if (page_evictable(page)) {
3888 			enum lru_list lru = page_lru_base_type(page);
3889 
3890 			VM_BUG_ON_PAGE(PageActive(page), page);
3891 			ClearPageUnevictable(page);
3892 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3893 			add_page_to_lru_list(page, lruvec, lru);
3894 			pgrescued++;
3895 		}
3896 	}
3897 
3898 	if (pgdat) {
3899 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3900 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3901 		spin_unlock_irq(&pgdat->lru_lock);
3902 	}
3903 }
3904 #endif /* CONFIG_SHMEM */
3905