1 /*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
50
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
53
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
56
57 #include "internal.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
61
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
68
69 /* Allocation order */
70 int order;
71
72 /*
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
75 */
76 nodemask_t *nodemask;
77
78 /*
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
81 */
82 struct mem_cgroup *target_mem_cgroup;
83
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
86
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
89
90 unsigned int may_writepage:1;
91
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
94
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
97
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
100
101 unsigned int hibernation_mode:1;
102
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
105
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
108
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
111 };
112
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
121 } \
122 } while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
126
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
132 \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
135 } \
136 } while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
140
141 /*
142 * From 0 .. 100. Higher means more swappy.
143 */
144 int vm_swappiness = 60;
145 /*
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
148 */
149 unsigned long vm_total_pages;
150
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
153
154 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)155 static bool global_reclaim(struct scan_control *sc)
156 {
157 return !sc->target_mem_cgroup;
158 }
159
160 /**
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
163 *
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
169 *
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
172 */
sane_reclaim(struct scan_control * sc)173 static bool sane_reclaim(struct scan_control *sc)
174 {
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
176
177 if (!memcg)
178 return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 return true;
182 #endif
183 return false;
184 }
185 #else
global_reclaim(struct scan_control * sc)186 static bool global_reclaim(struct scan_control *sc)
187 {
188 return true;
189 }
190
sane_reclaim(struct scan_control * sc)191 static bool sane_reclaim(struct scan_control *sc)
192 {
193 return true;
194 }
195 #endif
196
197 /*
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
201 */
zone_reclaimable_pages(struct zone * zone)202 unsigned long zone_reclaimable_pages(struct zone *zone)
203 {
204 unsigned long nr;
205
206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 if (get_nr_swap_pages() > 0)
209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
211
212 return nr;
213 }
214
pgdat_reclaimable_pages(struct pglist_data * pgdat)215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
216 {
217 unsigned long nr;
218
219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
222
223 if (get_nr_swap_pages() > 0)
224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
227
228 return nr;
229 }
230
pgdat_reclaimable(struct pglist_data * pgdat)231 bool pgdat_reclaimable(struct pglist_data *pgdat)
232 {
233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 pgdat_reclaimable_pages(pgdat) * 6;
235 }
236
237 /**
238 * lruvec_lru_size - Returns the number of pages on the given LRU list.
239 * @lruvec: lru vector
240 * @lru: lru to use
241 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
242 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)243 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
244 {
245 unsigned long lru_size;
246 int zid;
247
248 if (!mem_cgroup_disabled())
249 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
250 else
251 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
252
253 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
254 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
255 unsigned long size;
256
257 if (!managed_zone(zone))
258 continue;
259
260 if (!mem_cgroup_disabled())
261 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
262 else
263 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
264 NR_ZONE_LRU_BASE + lru);
265 lru_size -= min(size, lru_size);
266 }
267
268 return lru_size;
269
270 }
271
272 /*
273 * Add a shrinker callback to be called from the vm.
274 */
register_shrinker(struct shrinker * shrinker)275 int register_shrinker(struct shrinker *shrinker)
276 {
277 size_t size = sizeof(*shrinker->nr_deferred);
278
279 if (shrinker->flags & SHRINKER_NUMA_AWARE)
280 size *= nr_node_ids;
281
282 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
283 if (!shrinker->nr_deferred)
284 return -ENOMEM;
285
286 down_write(&shrinker_rwsem);
287 list_add_tail(&shrinker->list, &shrinker_list);
288 up_write(&shrinker_rwsem);
289 return 0;
290 }
291 EXPORT_SYMBOL(register_shrinker);
292
293 /*
294 * Remove one
295 */
unregister_shrinker(struct shrinker * shrinker)296 void unregister_shrinker(struct shrinker *shrinker)
297 {
298 if (!shrinker->nr_deferred)
299 return;
300 down_write(&shrinker_rwsem);
301 list_del(&shrinker->list);
302 up_write(&shrinker_rwsem);
303 kfree(shrinker->nr_deferred);
304 shrinker->nr_deferred = NULL;
305 }
306 EXPORT_SYMBOL(unregister_shrinker);
307
308 #define SHRINK_BATCH 128
309
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,unsigned long nr_scanned,unsigned long nr_eligible)310 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
311 struct shrinker *shrinker,
312 unsigned long nr_scanned,
313 unsigned long nr_eligible)
314 {
315 unsigned long freed = 0;
316 unsigned long long delta;
317 long total_scan;
318 long freeable;
319 long nr;
320 long new_nr;
321 int nid = shrinkctl->nid;
322 long batch_size = shrinker->batch ? shrinker->batch
323 : SHRINK_BATCH;
324 long scanned = 0, next_deferred;
325
326 freeable = shrinker->count_objects(shrinker, shrinkctl);
327 if (freeable == 0)
328 return 0;
329
330 /*
331 * copy the current shrinker scan count into a local variable
332 * and zero it so that other concurrent shrinker invocations
333 * don't also do this scanning work.
334 */
335 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
336
337 total_scan = nr;
338 delta = (4 * nr_scanned) / shrinker->seeks;
339 delta *= freeable;
340 do_div(delta, nr_eligible + 1);
341 total_scan += delta;
342 if (total_scan < 0) {
343 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
344 shrinker->scan_objects, total_scan);
345 total_scan = freeable;
346 next_deferred = nr;
347 } else
348 next_deferred = total_scan;
349
350 /*
351 * We need to avoid excessive windup on filesystem shrinkers
352 * due to large numbers of GFP_NOFS allocations causing the
353 * shrinkers to return -1 all the time. This results in a large
354 * nr being built up so when a shrink that can do some work
355 * comes along it empties the entire cache due to nr >>>
356 * freeable. This is bad for sustaining a working set in
357 * memory.
358 *
359 * Hence only allow the shrinker to scan the entire cache when
360 * a large delta change is calculated directly.
361 */
362 if (delta < freeable / 4)
363 total_scan = min(total_scan, freeable / 2);
364
365 /*
366 * Avoid risking looping forever due to too large nr value:
367 * never try to free more than twice the estimate number of
368 * freeable entries.
369 */
370 if (total_scan > freeable * 2)
371 total_scan = freeable * 2;
372
373 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
374 nr_scanned, nr_eligible,
375 freeable, delta, total_scan);
376
377 /*
378 * Normally, we should not scan less than batch_size objects in one
379 * pass to avoid too frequent shrinker calls, but if the slab has less
380 * than batch_size objects in total and we are really tight on memory,
381 * we will try to reclaim all available objects, otherwise we can end
382 * up failing allocations although there are plenty of reclaimable
383 * objects spread over several slabs with usage less than the
384 * batch_size.
385 *
386 * We detect the "tight on memory" situations by looking at the total
387 * number of objects we want to scan (total_scan). If it is greater
388 * than the total number of objects on slab (freeable), we must be
389 * scanning at high prio and therefore should try to reclaim as much as
390 * possible.
391 */
392 while (total_scan >= batch_size ||
393 total_scan >= freeable) {
394 unsigned long ret;
395 unsigned long nr_to_scan = min(batch_size, total_scan);
396
397 shrinkctl->nr_to_scan = nr_to_scan;
398 ret = shrinker->scan_objects(shrinker, shrinkctl);
399 if (ret == SHRINK_STOP)
400 break;
401 freed += ret;
402
403 count_vm_events(SLABS_SCANNED, nr_to_scan);
404 total_scan -= nr_to_scan;
405 scanned += nr_to_scan;
406
407 cond_resched();
408 }
409
410 if (next_deferred >= scanned)
411 next_deferred -= scanned;
412 else
413 next_deferred = 0;
414 /*
415 * move the unused scan count back into the shrinker in a
416 * manner that handles concurrent updates. If we exhausted the
417 * scan, there is no need to do an update.
418 */
419 if (next_deferred > 0)
420 new_nr = atomic_long_add_return(next_deferred,
421 &shrinker->nr_deferred[nid]);
422 else
423 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
424
425 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
426 return freed;
427 }
428
429 /**
430 * shrink_slab - shrink slab caches
431 * @gfp_mask: allocation context
432 * @nid: node whose slab caches to target
433 * @memcg: memory cgroup whose slab caches to target
434 * @nr_scanned: pressure numerator
435 * @nr_eligible: pressure denominator
436 *
437 * Call the shrink functions to age shrinkable caches.
438 *
439 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
440 * unaware shrinkers will receive a node id of 0 instead.
441 *
442 * @memcg specifies the memory cgroup to target. If it is not NULL,
443 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
444 * objects from the memory cgroup specified. Otherwise, only unaware
445 * shrinkers are called.
446 *
447 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
448 * the available objects should be scanned. Page reclaim for example
449 * passes the number of pages scanned and the number of pages on the
450 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
451 * when it encountered mapped pages. The ratio is further biased by
452 * the ->seeks setting of the shrink function, which indicates the
453 * cost to recreate an object relative to that of an LRU page.
454 *
455 * Returns the number of reclaimed slab objects.
456 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,unsigned long nr_scanned,unsigned long nr_eligible)457 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
458 struct mem_cgroup *memcg,
459 unsigned long nr_scanned,
460 unsigned long nr_eligible)
461 {
462 struct shrinker *shrinker;
463 unsigned long freed = 0;
464
465 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
466 return 0;
467
468 if (nr_scanned == 0)
469 nr_scanned = SWAP_CLUSTER_MAX;
470
471 if (!down_read_trylock(&shrinker_rwsem)) {
472 /*
473 * If we would return 0, our callers would understand that we
474 * have nothing else to shrink and give up trying. By returning
475 * 1 we keep it going and assume we'll be able to shrink next
476 * time.
477 */
478 freed = 1;
479 goto out;
480 }
481
482 list_for_each_entry(shrinker, &shrinker_list, list) {
483 struct shrink_control sc = {
484 .gfp_mask = gfp_mask,
485 .nid = nid,
486 .memcg = memcg,
487 };
488
489 /*
490 * If kernel memory accounting is disabled, we ignore
491 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
492 * passing NULL for memcg.
493 */
494 if (memcg_kmem_enabled() &&
495 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
496 continue;
497
498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
499 sc.nid = 0;
500
501 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
502 }
503
504 up_read(&shrinker_rwsem);
505 out:
506 cond_resched();
507 return freed;
508 }
509
drop_slab_node(int nid)510 void drop_slab_node(int nid)
511 {
512 unsigned long freed;
513
514 do {
515 struct mem_cgroup *memcg = NULL;
516
517 freed = 0;
518 do {
519 freed += shrink_slab(GFP_KERNEL, nid, memcg,
520 1000, 1000);
521 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
522 } while (freed > 10);
523 }
524
drop_slab(void)525 void drop_slab(void)
526 {
527 int nid;
528
529 for_each_online_node(nid)
530 drop_slab_node(nid);
531 }
532
is_page_cache_freeable(struct page * page)533 static inline int is_page_cache_freeable(struct page *page)
534 {
535 /*
536 * A freeable page cache page is referenced only by the caller
537 * that isolated the page, the page cache radix tree and
538 * optional buffer heads at page->private.
539 */
540 return page_count(page) - page_has_private(page) == 2;
541 }
542
may_write_to_inode(struct inode * inode,struct scan_control * sc)543 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
544 {
545 if (current->flags & PF_SWAPWRITE)
546 return 1;
547 if (!inode_write_congested(inode))
548 return 1;
549 if (inode_to_bdi(inode) == current->backing_dev_info)
550 return 1;
551 return 0;
552 }
553
554 /*
555 * We detected a synchronous write error writing a page out. Probably
556 * -ENOSPC. We need to propagate that into the address_space for a subsequent
557 * fsync(), msync() or close().
558 *
559 * The tricky part is that after writepage we cannot touch the mapping: nothing
560 * prevents it from being freed up. But we have a ref on the page and once
561 * that page is locked, the mapping is pinned.
562 *
563 * We're allowed to run sleeping lock_page() here because we know the caller has
564 * __GFP_FS.
565 */
handle_write_error(struct address_space * mapping,struct page * page,int error)566 static void handle_write_error(struct address_space *mapping,
567 struct page *page, int error)
568 {
569 lock_page(page);
570 if (page_mapping(page) == mapping)
571 mapping_set_error(mapping, error);
572 unlock_page(page);
573 }
574
575 /* possible outcome of pageout() */
576 typedef enum {
577 /* failed to write page out, page is locked */
578 PAGE_KEEP,
579 /* move page to the active list, page is locked */
580 PAGE_ACTIVATE,
581 /* page has been sent to the disk successfully, page is unlocked */
582 PAGE_SUCCESS,
583 /* page is clean and locked */
584 PAGE_CLEAN,
585 } pageout_t;
586
587 /*
588 * pageout is called by shrink_page_list() for each dirty page.
589 * Calls ->writepage().
590 */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)591 static pageout_t pageout(struct page *page, struct address_space *mapping,
592 struct scan_control *sc)
593 {
594 /*
595 * If the page is dirty, only perform writeback if that write
596 * will be non-blocking. To prevent this allocation from being
597 * stalled by pagecache activity. But note that there may be
598 * stalls if we need to run get_block(). We could test
599 * PagePrivate for that.
600 *
601 * If this process is currently in __generic_file_write_iter() against
602 * this page's queue, we can perform writeback even if that
603 * will block.
604 *
605 * If the page is swapcache, write it back even if that would
606 * block, for some throttling. This happens by accident, because
607 * swap_backing_dev_info is bust: it doesn't reflect the
608 * congestion state of the swapdevs. Easy to fix, if needed.
609 */
610 if (!is_page_cache_freeable(page))
611 return PAGE_KEEP;
612 if (!mapping) {
613 /*
614 * Some data journaling orphaned pages can have
615 * page->mapping == NULL while being dirty with clean buffers.
616 */
617 if (page_has_private(page)) {
618 if (try_to_free_buffers(page)) {
619 ClearPageDirty(page);
620 pr_info("%s: orphaned page\n", __func__);
621 return PAGE_CLEAN;
622 }
623 }
624 return PAGE_KEEP;
625 }
626 if (mapping->a_ops->writepage == NULL)
627 return PAGE_ACTIVATE;
628 if (!may_write_to_inode(mapping->host, sc))
629 return PAGE_KEEP;
630
631 if (clear_page_dirty_for_io(page)) {
632 int res;
633 struct writeback_control wbc = {
634 .sync_mode = WB_SYNC_NONE,
635 .nr_to_write = SWAP_CLUSTER_MAX,
636 .range_start = 0,
637 .range_end = LLONG_MAX,
638 .for_reclaim = 1,
639 };
640
641 SetPageReclaim(page);
642 res = mapping->a_ops->writepage(page, &wbc);
643 if (res < 0)
644 handle_write_error(mapping, page, res);
645 if (res == AOP_WRITEPAGE_ACTIVATE) {
646 ClearPageReclaim(page);
647 return PAGE_ACTIVATE;
648 }
649
650 if (!PageWriteback(page)) {
651 /* synchronous write or broken a_ops? */
652 ClearPageReclaim(page);
653 }
654 trace_mm_vmscan_writepage(page);
655 inc_node_page_state(page, NR_VMSCAN_WRITE);
656 return PAGE_SUCCESS;
657 }
658
659 return PAGE_CLEAN;
660 }
661
662 /*
663 * Same as remove_mapping, but if the page is removed from the mapping, it
664 * gets returned with a refcount of 0.
665 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)666 static int __remove_mapping(struct address_space *mapping, struct page *page,
667 bool reclaimed)
668 {
669 unsigned long flags;
670
671 BUG_ON(!PageLocked(page));
672 BUG_ON(mapping != page_mapping(page));
673
674 spin_lock_irqsave(&mapping->tree_lock, flags);
675 /*
676 * The non racy check for a busy page.
677 *
678 * Must be careful with the order of the tests. When someone has
679 * a ref to the page, it may be possible that they dirty it then
680 * drop the reference. So if PageDirty is tested before page_count
681 * here, then the following race may occur:
682 *
683 * get_user_pages(&page);
684 * [user mapping goes away]
685 * write_to(page);
686 * !PageDirty(page) [good]
687 * SetPageDirty(page);
688 * put_page(page);
689 * !page_count(page) [good, discard it]
690 *
691 * [oops, our write_to data is lost]
692 *
693 * Reversing the order of the tests ensures such a situation cannot
694 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
695 * load is not satisfied before that of page->_refcount.
696 *
697 * Note that if SetPageDirty is always performed via set_page_dirty,
698 * and thus under tree_lock, then this ordering is not required.
699 */
700 if (!page_ref_freeze(page, 2))
701 goto cannot_free;
702 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
703 if (unlikely(PageDirty(page))) {
704 page_ref_unfreeze(page, 2);
705 goto cannot_free;
706 }
707
708 if (PageSwapCache(page)) {
709 swp_entry_t swap = { .val = page_private(page) };
710 mem_cgroup_swapout(page, swap);
711 __delete_from_swap_cache(page);
712 spin_unlock_irqrestore(&mapping->tree_lock, flags);
713 swapcache_free(swap);
714 } else {
715 void (*freepage)(struct page *);
716 void *shadow = NULL;
717
718 freepage = mapping->a_ops->freepage;
719 /*
720 * Remember a shadow entry for reclaimed file cache in
721 * order to detect refaults, thus thrashing, later on.
722 *
723 * But don't store shadows in an address space that is
724 * already exiting. This is not just an optizimation,
725 * inode reclaim needs to empty out the radix tree or
726 * the nodes are lost. Don't plant shadows behind its
727 * back.
728 *
729 * We also don't store shadows for DAX mappings because the
730 * only page cache pages found in these are zero pages
731 * covering holes, and because we don't want to mix DAX
732 * exceptional entries and shadow exceptional entries in the
733 * same page_tree.
734 */
735 if (reclaimed && page_is_file_cache(page) &&
736 !mapping_exiting(mapping) && !dax_mapping(mapping))
737 shadow = workingset_eviction(mapping, page);
738 __delete_from_page_cache(page, shadow);
739 spin_unlock_irqrestore(&mapping->tree_lock, flags);
740
741 if (freepage != NULL)
742 freepage(page);
743 }
744
745 return 1;
746
747 cannot_free:
748 spin_unlock_irqrestore(&mapping->tree_lock, flags);
749 return 0;
750 }
751
752 /*
753 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
754 * someone else has a ref on the page, abort and return 0. If it was
755 * successfully detached, return 1. Assumes the caller has a single ref on
756 * this page.
757 */
remove_mapping(struct address_space * mapping,struct page * page)758 int remove_mapping(struct address_space *mapping, struct page *page)
759 {
760 if (__remove_mapping(mapping, page, false)) {
761 /*
762 * Unfreezing the refcount with 1 rather than 2 effectively
763 * drops the pagecache ref for us without requiring another
764 * atomic operation.
765 */
766 page_ref_unfreeze(page, 1);
767 return 1;
768 }
769 return 0;
770 }
771
772 /**
773 * putback_lru_page - put previously isolated page onto appropriate LRU list
774 * @page: page to be put back to appropriate lru list
775 *
776 * Add previously isolated @page to appropriate LRU list.
777 * Page may still be unevictable for other reasons.
778 *
779 * lru_lock must not be held, interrupts must be enabled.
780 */
putback_lru_page(struct page * page)781 void putback_lru_page(struct page *page)
782 {
783 bool is_unevictable;
784 int was_unevictable = PageUnevictable(page);
785
786 VM_BUG_ON_PAGE(PageLRU(page), page);
787
788 redo:
789 ClearPageUnevictable(page);
790
791 if (page_evictable(page)) {
792 /*
793 * For evictable pages, we can use the cache.
794 * In event of a race, worst case is we end up with an
795 * unevictable page on [in]active list.
796 * We know how to handle that.
797 */
798 is_unevictable = false;
799 lru_cache_add(page);
800 } else {
801 /*
802 * Put unevictable pages directly on zone's unevictable
803 * list.
804 */
805 is_unevictable = true;
806 add_page_to_unevictable_list(page);
807 /*
808 * When racing with an mlock or AS_UNEVICTABLE clearing
809 * (page is unlocked) make sure that if the other thread
810 * does not observe our setting of PG_lru and fails
811 * isolation/check_move_unevictable_pages,
812 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
813 * the page back to the evictable list.
814 *
815 * The other side is TestClearPageMlocked() or shmem_lock().
816 */
817 smp_mb();
818 }
819
820 /*
821 * page's status can change while we move it among lru. If an evictable
822 * page is on unevictable list, it never be freed. To avoid that,
823 * check after we added it to the list, again.
824 */
825 if (is_unevictable && page_evictable(page)) {
826 if (!isolate_lru_page(page)) {
827 put_page(page);
828 goto redo;
829 }
830 /* This means someone else dropped this page from LRU
831 * So, it will be freed or putback to LRU again. There is
832 * nothing to do here.
833 */
834 }
835
836 if (was_unevictable && !is_unevictable)
837 count_vm_event(UNEVICTABLE_PGRESCUED);
838 else if (!was_unevictable && is_unevictable)
839 count_vm_event(UNEVICTABLE_PGCULLED);
840
841 put_page(page); /* drop ref from isolate */
842 }
843
844 enum page_references {
845 PAGEREF_RECLAIM,
846 PAGEREF_RECLAIM_CLEAN,
847 PAGEREF_KEEP,
848 PAGEREF_ACTIVATE,
849 };
850
page_check_references(struct page * page,struct scan_control * sc)851 static enum page_references page_check_references(struct page *page,
852 struct scan_control *sc)
853 {
854 int referenced_ptes, referenced_page;
855 unsigned long vm_flags;
856
857 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
858 &vm_flags);
859 referenced_page = TestClearPageReferenced(page);
860
861 /*
862 * Mlock lost the isolation race with us. Let try_to_unmap()
863 * move the page to the unevictable list.
864 */
865 if (vm_flags & VM_LOCKED)
866 return PAGEREF_RECLAIM;
867
868 if (referenced_ptes) {
869 if (PageSwapBacked(page))
870 return PAGEREF_ACTIVATE;
871 /*
872 * All mapped pages start out with page table
873 * references from the instantiating fault, so we need
874 * to look twice if a mapped file page is used more
875 * than once.
876 *
877 * Mark it and spare it for another trip around the
878 * inactive list. Another page table reference will
879 * lead to its activation.
880 *
881 * Note: the mark is set for activated pages as well
882 * so that recently deactivated but used pages are
883 * quickly recovered.
884 */
885 SetPageReferenced(page);
886
887 if (referenced_page || referenced_ptes > 1)
888 return PAGEREF_ACTIVATE;
889
890 /*
891 * Activate file-backed executable pages after first usage.
892 */
893 if (vm_flags & VM_EXEC)
894 return PAGEREF_ACTIVATE;
895
896 return PAGEREF_KEEP;
897 }
898
899 /* Reclaim if clean, defer dirty pages to writeback */
900 if (referenced_page && !PageSwapBacked(page))
901 return PAGEREF_RECLAIM_CLEAN;
902
903 return PAGEREF_RECLAIM;
904 }
905
906 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)907 static void page_check_dirty_writeback(struct page *page,
908 bool *dirty, bool *writeback)
909 {
910 struct address_space *mapping;
911
912 /*
913 * Anonymous pages are not handled by flushers and must be written
914 * from reclaim context. Do not stall reclaim based on them
915 */
916 if (!page_is_file_cache(page)) {
917 *dirty = false;
918 *writeback = false;
919 return;
920 }
921
922 /* By default assume that the page flags are accurate */
923 *dirty = PageDirty(page);
924 *writeback = PageWriteback(page);
925
926 /* Verify dirty/writeback state if the filesystem supports it */
927 if (!page_has_private(page))
928 return;
929
930 mapping = page_mapping(page);
931 if (mapping && mapping->a_ops->is_dirty_writeback)
932 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
933 }
934
935 /*
936 * shrink_page_list() returns the number of reclaimed pages
937 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,unsigned long * ret_nr_dirty,unsigned long * ret_nr_unqueued_dirty,unsigned long * ret_nr_congested,unsigned long * ret_nr_writeback,unsigned long * ret_nr_immediate,bool force_reclaim)938 static unsigned long shrink_page_list(struct list_head *page_list,
939 struct pglist_data *pgdat,
940 struct scan_control *sc,
941 enum ttu_flags ttu_flags,
942 unsigned long *ret_nr_dirty,
943 unsigned long *ret_nr_unqueued_dirty,
944 unsigned long *ret_nr_congested,
945 unsigned long *ret_nr_writeback,
946 unsigned long *ret_nr_immediate,
947 bool force_reclaim)
948 {
949 LIST_HEAD(ret_pages);
950 LIST_HEAD(free_pages);
951 int pgactivate = 0;
952 unsigned long nr_unqueued_dirty = 0;
953 unsigned long nr_dirty = 0;
954 unsigned long nr_congested = 0;
955 unsigned long nr_reclaimed = 0;
956 unsigned long nr_writeback = 0;
957 unsigned long nr_immediate = 0;
958
959 cond_resched();
960
961 while (!list_empty(page_list)) {
962 struct address_space *mapping;
963 struct page *page;
964 int may_enter_fs;
965 enum page_references references = PAGEREF_RECLAIM_CLEAN;
966 bool dirty, writeback;
967 bool lazyfree = false;
968 int ret = SWAP_SUCCESS;
969
970 cond_resched();
971
972 page = lru_to_page(page_list);
973 list_del(&page->lru);
974
975 if (!trylock_page(page))
976 goto keep;
977
978 VM_BUG_ON_PAGE(PageActive(page), page);
979
980 sc->nr_scanned++;
981
982 if (unlikely(!page_evictable(page)))
983 goto cull_mlocked;
984
985 if (!sc->may_unmap && page_mapped(page))
986 goto keep_locked;
987
988 /* Double the slab pressure for mapped and swapcache pages */
989 if (page_mapped(page) || PageSwapCache(page))
990 sc->nr_scanned++;
991
992 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
993 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
994
995 /*
996 * The number of dirty pages determines if a zone is marked
997 * reclaim_congested which affects wait_iff_congested. kswapd
998 * will stall and start writing pages if the tail of the LRU
999 * is all dirty unqueued pages.
1000 */
1001 page_check_dirty_writeback(page, &dirty, &writeback);
1002 if (dirty || writeback)
1003 nr_dirty++;
1004
1005 if (dirty && !writeback)
1006 nr_unqueued_dirty++;
1007
1008 /*
1009 * Treat this page as congested if the underlying BDI is or if
1010 * pages are cycling through the LRU so quickly that the
1011 * pages marked for immediate reclaim are making it to the
1012 * end of the LRU a second time.
1013 */
1014 mapping = page_mapping(page);
1015 if (((dirty || writeback) && mapping &&
1016 inode_write_congested(mapping->host)) ||
1017 (writeback && PageReclaim(page)))
1018 nr_congested++;
1019
1020 /*
1021 * If a page at the tail of the LRU is under writeback, there
1022 * are three cases to consider.
1023 *
1024 * 1) If reclaim is encountering an excessive number of pages
1025 * under writeback and this page is both under writeback and
1026 * PageReclaim then it indicates that pages are being queued
1027 * for IO but are being recycled through the LRU before the
1028 * IO can complete. Waiting on the page itself risks an
1029 * indefinite stall if it is impossible to writeback the
1030 * page due to IO error or disconnected storage so instead
1031 * note that the LRU is being scanned too quickly and the
1032 * caller can stall after page list has been processed.
1033 *
1034 * 2) Global or new memcg reclaim encounters a page that is
1035 * not marked for immediate reclaim, or the caller does not
1036 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1037 * not to fs). In this case mark the page for immediate
1038 * reclaim and continue scanning.
1039 *
1040 * Require may_enter_fs because we would wait on fs, which
1041 * may not have submitted IO yet. And the loop driver might
1042 * enter reclaim, and deadlock if it waits on a page for
1043 * which it is needed to do the write (loop masks off
1044 * __GFP_IO|__GFP_FS for this reason); but more thought
1045 * would probably show more reasons.
1046 *
1047 * 3) Legacy memcg encounters a page that is already marked
1048 * PageReclaim. memcg does not have any dirty pages
1049 * throttling so we could easily OOM just because too many
1050 * pages are in writeback and there is nothing else to
1051 * reclaim. Wait for the writeback to complete.
1052 */
1053 if (PageWriteback(page)) {
1054 /* Case 1 above */
1055 if (current_is_kswapd() &&
1056 PageReclaim(page) &&
1057 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1058 nr_immediate++;
1059 goto keep_locked;
1060
1061 /* Case 2 above */
1062 } else if (sane_reclaim(sc) ||
1063 !PageReclaim(page) || !may_enter_fs) {
1064 /*
1065 * This is slightly racy - end_page_writeback()
1066 * might have just cleared PageReclaim, then
1067 * setting PageReclaim here end up interpreted
1068 * as PageReadahead - but that does not matter
1069 * enough to care. What we do want is for this
1070 * page to have PageReclaim set next time memcg
1071 * reclaim reaches the tests above, so it will
1072 * then wait_on_page_writeback() to avoid OOM;
1073 * and it's also appropriate in global reclaim.
1074 */
1075 SetPageReclaim(page);
1076 nr_writeback++;
1077 goto keep_locked;
1078
1079 /* Case 3 above */
1080 } else {
1081 unlock_page(page);
1082 wait_on_page_writeback(page);
1083 /* then go back and try same page again */
1084 list_add_tail(&page->lru, page_list);
1085 continue;
1086 }
1087 }
1088
1089 if (!force_reclaim)
1090 references = page_check_references(page, sc);
1091
1092 switch (references) {
1093 case PAGEREF_ACTIVATE:
1094 goto activate_locked;
1095 case PAGEREF_KEEP:
1096 goto keep_locked;
1097 case PAGEREF_RECLAIM:
1098 case PAGEREF_RECLAIM_CLEAN:
1099 ; /* try to reclaim the page below */
1100 }
1101
1102 /*
1103 * Anonymous process memory has backing store?
1104 * Try to allocate it some swap space here.
1105 */
1106 if (PageAnon(page) && !PageSwapCache(page)) {
1107 if (!(sc->gfp_mask & __GFP_IO))
1108 goto keep_locked;
1109 if (!add_to_swap(page, page_list))
1110 goto activate_locked;
1111 lazyfree = true;
1112 may_enter_fs = 1;
1113
1114 /* Adding to swap updated mapping */
1115 mapping = page_mapping(page);
1116 } else if (unlikely(PageTransHuge(page))) {
1117 /* Split file THP */
1118 if (split_huge_page_to_list(page, page_list))
1119 goto keep_locked;
1120 }
1121
1122 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1123
1124 /*
1125 * The page is mapped into the page tables of one or more
1126 * processes. Try to unmap it here.
1127 */
1128 if (page_mapped(page) && mapping) {
1129 switch (ret = try_to_unmap(page, lazyfree ?
1130 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1131 (ttu_flags | TTU_BATCH_FLUSH))) {
1132 case SWAP_FAIL:
1133 goto activate_locked;
1134 case SWAP_AGAIN:
1135 goto keep_locked;
1136 case SWAP_MLOCK:
1137 goto cull_mlocked;
1138 case SWAP_LZFREE:
1139 goto lazyfree;
1140 case SWAP_SUCCESS:
1141 ; /* try to free the page below */
1142 }
1143 }
1144
1145 if (PageDirty(page)) {
1146 /*
1147 * Only kswapd can writeback filesystem pages to
1148 * avoid risk of stack overflow but only writeback
1149 * if many dirty pages have been encountered.
1150 */
1151 if (page_is_file_cache(page) &&
1152 (!current_is_kswapd() ||
1153 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1154 /*
1155 * Immediately reclaim when written back.
1156 * Similar in principal to deactivate_page()
1157 * except we already have the page isolated
1158 * and know it's dirty
1159 */
1160 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1161 SetPageReclaim(page);
1162
1163 goto keep_locked;
1164 }
1165
1166 if (references == PAGEREF_RECLAIM_CLEAN)
1167 goto keep_locked;
1168 if (!may_enter_fs)
1169 goto keep_locked;
1170 if (!sc->may_writepage)
1171 goto keep_locked;
1172
1173 /*
1174 * Page is dirty. Flush the TLB if a writable entry
1175 * potentially exists to avoid CPU writes after IO
1176 * starts and then write it out here.
1177 */
1178 try_to_unmap_flush_dirty();
1179 switch (pageout(page, mapping, sc)) {
1180 case PAGE_KEEP:
1181 goto keep_locked;
1182 case PAGE_ACTIVATE:
1183 goto activate_locked;
1184 case PAGE_SUCCESS:
1185 if (PageWriteback(page))
1186 goto keep;
1187 if (PageDirty(page))
1188 goto keep;
1189
1190 /*
1191 * A synchronous write - probably a ramdisk. Go
1192 * ahead and try to reclaim the page.
1193 */
1194 if (!trylock_page(page))
1195 goto keep;
1196 if (PageDirty(page) || PageWriteback(page))
1197 goto keep_locked;
1198 mapping = page_mapping(page);
1199 case PAGE_CLEAN:
1200 ; /* try to free the page below */
1201 }
1202 }
1203
1204 /*
1205 * If the page has buffers, try to free the buffer mappings
1206 * associated with this page. If we succeed we try to free
1207 * the page as well.
1208 *
1209 * We do this even if the page is PageDirty().
1210 * try_to_release_page() does not perform I/O, but it is
1211 * possible for a page to have PageDirty set, but it is actually
1212 * clean (all its buffers are clean). This happens if the
1213 * buffers were written out directly, with submit_bh(). ext3
1214 * will do this, as well as the blockdev mapping.
1215 * try_to_release_page() will discover that cleanness and will
1216 * drop the buffers and mark the page clean - it can be freed.
1217 *
1218 * Rarely, pages can have buffers and no ->mapping. These are
1219 * the pages which were not successfully invalidated in
1220 * truncate_complete_page(). We try to drop those buffers here
1221 * and if that worked, and the page is no longer mapped into
1222 * process address space (page_count == 1) it can be freed.
1223 * Otherwise, leave the page on the LRU so it is swappable.
1224 */
1225 if (page_has_private(page)) {
1226 if (!try_to_release_page(page, sc->gfp_mask))
1227 goto activate_locked;
1228 if (!mapping && page_count(page) == 1) {
1229 unlock_page(page);
1230 if (put_page_testzero(page))
1231 goto free_it;
1232 else {
1233 /*
1234 * rare race with speculative reference.
1235 * the speculative reference will free
1236 * this page shortly, so we may
1237 * increment nr_reclaimed here (and
1238 * leave it off the LRU).
1239 */
1240 nr_reclaimed++;
1241 continue;
1242 }
1243 }
1244 }
1245
1246 lazyfree:
1247 if (!mapping || !__remove_mapping(mapping, page, true))
1248 goto keep_locked;
1249
1250 /*
1251 * At this point, we have no other references and there is
1252 * no way to pick any more up (removed from LRU, removed
1253 * from pagecache). Can use non-atomic bitops now (and
1254 * we obviously don't have to worry about waking up a process
1255 * waiting on the page lock, because there are no references.
1256 */
1257 __ClearPageLocked(page);
1258 free_it:
1259 if (ret == SWAP_LZFREE)
1260 count_vm_event(PGLAZYFREED);
1261
1262 nr_reclaimed++;
1263
1264 /*
1265 * Is there need to periodically free_page_list? It would
1266 * appear not as the counts should be low
1267 */
1268 list_add(&page->lru, &free_pages);
1269 continue;
1270
1271 cull_mlocked:
1272 if (PageSwapCache(page))
1273 try_to_free_swap(page);
1274 unlock_page(page);
1275 list_add(&page->lru, &ret_pages);
1276 continue;
1277
1278 activate_locked:
1279 /* Not a candidate for swapping, so reclaim swap space. */
1280 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1281 try_to_free_swap(page);
1282 VM_BUG_ON_PAGE(PageActive(page), page);
1283 SetPageActive(page);
1284 pgactivate++;
1285 keep_locked:
1286 unlock_page(page);
1287 keep:
1288 list_add(&page->lru, &ret_pages);
1289 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1290 }
1291
1292 mem_cgroup_uncharge_list(&free_pages);
1293 try_to_unmap_flush();
1294 free_hot_cold_page_list(&free_pages, true);
1295
1296 list_splice(&ret_pages, page_list);
1297 count_vm_events(PGACTIVATE, pgactivate);
1298
1299 *ret_nr_dirty += nr_dirty;
1300 *ret_nr_congested += nr_congested;
1301 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1302 *ret_nr_writeback += nr_writeback;
1303 *ret_nr_immediate += nr_immediate;
1304 return nr_reclaimed;
1305 }
1306
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1307 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1308 struct list_head *page_list)
1309 {
1310 struct scan_control sc = {
1311 .gfp_mask = GFP_KERNEL,
1312 .priority = DEF_PRIORITY,
1313 .may_unmap = 1,
1314 };
1315 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1316 struct page *page, *next;
1317 LIST_HEAD(clean_pages);
1318
1319 list_for_each_entry_safe(page, next, page_list, lru) {
1320 if (page_is_file_cache(page) && !PageDirty(page) &&
1321 !__PageMovable(page)) {
1322 ClearPageActive(page);
1323 list_move(&page->lru, &clean_pages);
1324 }
1325 }
1326
1327 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1328 TTU_UNMAP|TTU_IGNORE_ACCESS,
1329 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1330 list_splice(&clean_pages, page_list);
1331 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1332 return ret;
1333 }
1334
1335 /*
1336 * Attempt to remove the specified page from its LRU. Only take this page
1337 * if it is of the appropriate PageActive status. Pages which are being
1338 * freed elsewhere are also ignored.
1339 *
1340 * page: page to consider
1341 * mode: one of the LRU isolation modes defined above
1342 *
1343 * returns 0 on success, -ve errno on failure.
1344 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1345 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1346 {
1347 int ret = -EINVAL;
1348
1349 /* Only take pages on the LRU. */
1350 if (!PageLRU(page))
1351 return ret;
1352
1353 /* Compaction should not handle unevictable pages but CMA can do so */
1354 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1355 return ret;
1356
1357 ret = -EBUSY;
1358
1359 /*
1360 * To minimise LRU disruption, the caller can indicate that it only
1361 * wants to isolate pages it will be able to operate on without
1362 * blocking - clean pages for the most part.
1363 *
1364 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1365 * is used by reclaim when it is cannot write to backing storage
1366 *
1367 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1368 * that it is possible to migrate without blocking
1369 */
1370 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1371 /* All the caller can do on PageWriteback is block */
1372 if (PageWriteback(page))
1373 return ret;
1374
1375 if (PageDirty(page)) {
1376 struct address_space *mapping;
1377
1378 /* ISOLATE_CLEAN means only clean pages */
1379 if (mode & ISOLATE_CLEAN)
1380 return ret;
1381
1382 /*
1383 * Only pages without mappings or that have a
1384 * ->migratepage callback are possible to migrate
1385 * without blocking
1386 */
1387 mapping = page_mapping(page);
1388 if (mapping && !mapping->a_ops->migratepage)
1389 return ret;
1390 }
1391 }
1392
1393 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1394 return ret;
1395
1396 if (likely(get_page_unless_zero(page))) {
1397 /*
1398 * Be careful not to clear PageLRU until after we're
1399 * sure the page is not being freed elsewhere -- the
1400 * page release code relies on it.
1401 */
1402 ClearPageLRU(page);
1403 ret = 0;
1404 }
1405
1406 return ret;
1407 }
1408
1409
1410 /*
1411 * Update LRU sizes after isolating pages. The LRU size updates must
1412 * be complete before mem_cgroup_update_lru_size due to a santity check.
1413 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1414 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1415 enum lru_list lru, unsigned long *nr_zone_taken)
1416 {
1417 int zid;
1418
1419 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1420 if (!nr_zone_taken[zid])
1421 continue;
1422
1423 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1424 #ifdef CONFIG_MEMCG
1425 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1426 #endif
1427 }
1428
1429 }
1430
1431 /*
1432 * zone_lru_lock is heavily contended. Some of the functions that
1433 * shrink the lists perform better by taking out a batch of pages
1434 * and working on them outside the LRU lock.
1435 *
1436 * For pagecache intensive workloads, this function is the hottest
1437 * spot in the kernel (apart from copy_*_user functions).
1438 *
1439 * Appropriate locks must be held before calling this function.
1440 *
1441 * @nr_to_scan: The number of pages to look through on the list.
1442 * @lruvec: The LRU vector to pull pages from.
1443 * @dst: The temp list to put pages on to.
1444 * @nr_scanned: The number of pages that were scanned.
1445 * @sc: The scan_control struct for this reclaim session
1446 * @mode: One of the LRU isolation modes
1447 * @lru: LRU list id for isolating
1448 *
1449 * returns how many pages were moved onto *@dst.
1450 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1451 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1452 struct lruvec *lruvec, struct list_head *dst,
1453 unsigned long *nr_scanned, struct scan_control *sc,
1454 isolate_mode_t mode, enum lru_list lru)
1455 {
1456 struct list_head *src = &lruvec->lists[lru];
1457 unsigned long nr_taken = 0;
1458 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1459 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1460 unsigned long scan, nr_pages;
1461 LIST_HEAD(pages_skipped);
1462
1463 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1464 !list_empty(src);) {
1465 struct page *page;
1466
1467 page = lru_to_page(src);
1468 prefetchw_prev_lru_page(page, src, flags);
1469
1470 VM_BUG_ON_PAGE(!PageLRU(page), page);
1471
1472 if (page_zonenum(page) > sc->reclaim_idx) {
1473 list_move(&page->lru, &pages_skipped);
1474 nr_skipped[page_zonenum(page)]++;
1475 continue;
1476 }
1477
1478 /*
1479 * Account for scanned and skipped separetly to avoid the pgdat
1480 * being prematurely marked unreclaimable by pgdat_reclaimable.
1481 */
1482 scan++;
1483
1484 switch (__isolate_lru_page(page, mode)) {
1485 case 0:
1486 nr_pages = hpage_nr_pages(page);
1487 nr_taken += nr_pages;
1488 nr_zone_taken[page_zonenum(page)] += nr_pages;
1489 list_move(&page->lru, dst);
1490 break;
1491
1492 case -EBUSY:
1493 /* else it is being freed elsewhere */
1494 list_move(&page->lru, src);
1495 continue;
1496
1497 default:
1498 BUG();
1499 }
1500 }
1501
1502 /*
1503 * Splice any skipped pages to the start of the LRU list. Note that
1504 * this disrupts the LRU order when reclaiming for lower zones but
1505 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1506 * scanning would soon rescan the same pages to skip and put the
1507 * system at risk of premature OOM.
1508 */
1509 if (!list_empty(&pages_skipped)) {
1510 int zid;
1511 unsigned long total_skipped = 0;
1512
1513 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1514 if (!nr_skipped[zid])
1515 continue;
1516
1517 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1518 total_skipped += nr_skipped[zid];
1519 }
1520
1521 /*
1522 * Account skipped pages as a partial scan as the pgdat may be
1523 * close to unreclaimable. If the LRU list is empty, account
1524 * skipped pages as a full scan.
1525 */
1526 scan += list_empty(src) ? total_skipped : total_skipped >> 2;
1527
1528 list_splice(&pages_skipped, src);
1529 }
1530 *nr_scanned = scan;
1531 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1532 nr_taken, mode, is_file_lru(lru));
1533 update_lru_sizes(lruvec, lru, nr_zone_taken);
1534 return nr_taken;
1535 }
1536
1537 /**
1538 * isolate_lru_page - tries to isolate a page from its LRU list
1539 * @page: page to isolate from its LRU list
1540 *
1541 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1542 * vmstat statistic corresponding to whatever LRU list the page was on.
1543 *
1544 * Returns 0 if the page was removed from an LRU list.
1545 * Returns -EBUSY if the page was not on an LRU list.
1546 *
1547 * The returned page will have PageLRU() cleared. If it was found on
1548 * the active list, it will have PageActive set. If it was found on
1549 * the unevictable list, it will have the PageUnevictable bit set. That flag
1550 * may need to be cleared by the caller before letting the page go.
1551 *
1552 * The vmstat statistic corresponding to the list on which the page was
1553 * found will be decremented.
1554 *
1555 * Restrictions:
1556 * (1) Must be called with an elevated refcount on the page. This is a
1557 * fundamentnal difference from isolate_lru_pages (which is called
1558 * without a stable reference).
1559 * (2) the lru_lock must not be held.
1560 * (3) interrupts must be enabled.
1561 */
isolate_lru_page(struct page * page)1562 int isolate_lru_page(struct page *page)
1563 {
1564 int ret = -EBUSY;
1565
1566 VM_BUG_ON_PAGE(!page_count(page), page);
1567 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1568
1569 if (PageLRU(page)) {
1570 struct zone *zone = page_zone(page);
1571 struct lruvec *lruvec;
1572
1573 spin_lock_irq(zone_lru_lock(zone));
1574 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1575 if (PageLRU(page)) {
1576 int lru = page_lru(page);
1577 get_page(page);
1578 ClearPageLRU(page);
1579 del_page_from_lru_list(page, lruvec, lru);
1580 ret = 0;
1581 }
1582 spin_unlock_irq(zone_lru_lock(zone));
1583 }
1584 return ret;
1585 }
1586
1587 /*
1588 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1589 * then get resheduled. When there are massive number of tasks doing page
1590 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1591 * the LRU list will go small and be scanned faster than necessary, leading to
1592 * unnecessary swapping, thrashing and OOM.
1593 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1594 static int too_many_isolated(struct pglist_data *pgdat, int file,
1595 struct scan_control *sc)
1596 {
1597 unsigned long inactive, isolated;
1598
1599 if (current_is_kswapd())
1600 return 0;
1601
1602 if (!sane_reclaim(sc))
1603 return 0;
1604
1605 if (file) {
1606 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1607 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1608 } else {
1609 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1610 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1611 }
1612
1613 /*
1614 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1615 * won't get blocked by normal direct-reclaimers, forming a circular
1616 * deadlock.
1617 */
1618 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1619 inactive >>= 3;
1620
1621 return isolated > inactive;
1622 }
1623
1624 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1625 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1626 {
1627 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1628 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1629 LIST_HEAD(pages_to_free);
1630
1631 /*
1632 * Put back any unfreeable pages.
1633 */
1634 while (!list_empty(page_list)) {
1635 struct page *page = lru_to_page(page_list);
1636 int lru;
1637
1638 VM_BUG_ON_PAGE(PageLRU(page), page);
1639 list_del(&page->lru);
1640 if (unlikely(!page_evictable(page))) {
1641 spin_unlock_irq(&pgdat->lru_lock);
1642 putback_lru_page(page);
1643 spin_lock_irq(&pgdat->lru_lock);
1644 continue;
1645 }
1646
1647 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1648
1649 SetPageLRU(page);
1650 lru = page_lru(page);
1651 add_page_to_lru_list(page, lruvec, lru);
1652
1653 if (is_active_lru(lru)) {
1654 int file = is_file_lru(lru);
1655 int numpages = hpage_nr_pages(page);
1656 reclaim_stat->recent_rotated[file] += numpages;
1657 }
1658 if (put_page_testzero(page)) {
1659 __ClearPageLRU(page);
1660 __ClearPageActive(page);
1661 del_page_from_lru_list(page, lruvec, lru);
1662
1663 if (unlikely(PageCompound(page))) {
1664 spin_unlock_irq(&pgdat->lru_lock);
1665 mem_cgroup_uncharge(page);
1666 (*get_compound_page_dtor(page))(page);
1667 spin_lock_irq(&pgdat->lru_lock);
1668 } else
1669 list_add(&page->lru, &pages_to_free);
1670 }
1671 }
1672
1673 /*
1674 * To save our caller's stack, now use input list for pages to free.
1675 */
1676 list_splice(&pages_to_free, page_list);
1677 }
1678
1679 /*
1680 * If a kernel thread (such as nfsd for loop-back mounts) services
1681 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1682 * In that case we should only throttle if the backing device it is
1683 * writing to is congested. In other cases it is safe to throttle.
1684 */
current_may_throttle(void)1685 static int current_may_throttle(void)
1686 {
1687 return !(current->flags & PF_LESS_THROTTLE) ||
1688 current->backing_dev_info == NULL ||
1689 bdi_write_congested(current->backing_dev_info);
1690 }
1691
inactive_reclaimable_pages(struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1692 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1693 struct scan_control *sc, enum lru_list lru)
1694 {
1695 int zid;
1696 struct zone *zone;
1697 int file = is_file_lru(lru);
1698 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1699
1700 if (!global_reclaim(sc))
1701 return true;
1702
1703 for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1704 zone = &pgdat->node_zones[zid];
1705 if (!managed_zone(zone))
1706 continue;
1707
1708 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1709 LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1710 return true;
1711 }
1712
1713 return false;
1714 }
1715
1716 /*
1717 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1718 * of reclaimed pages
1719 */
1720 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1721 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1722 struct scan_control *sc, enum lru_list lru)
1723 {
1724 LIST_HEAD(page_list);
1725 unsigned long nr_scanned;
1726 unsigned long nr_reclaimed = 0;
1727 unsigned long nr_taken;
1728 unsigned long nr_dirty = 0;
1729 unsigned long nr_congested = 0;
1730 unsigned long nr_unqueued_dirty = 0;
1731 unsigned long nr_writeback = 0;
1732 unsigned long nr_immediate = 0;
1733 isolate_mode_t isolate_mode = 0;
1734 int file = is_file_lru(lru);
1735 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1736 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1737
1738 if (!inactive_reclaimable_pages(lruvec, sc, lru))
1739 return 0;
1740
1741 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1742 congestion_wait(BLK_RW_ASYNC, HZ/10);
1743
1744 /* We are about to die and free our memory. Return now. */
1745 if (fatal_signal_pending(current))
1746 return SWAP_CLUSTER_MAX;
1747 }
1748
1749 lru_add_drain();
1750
1751 if (!sc->may_unmap)
1752 isolate_mode |= ISOLATE_UNMAPPED;
1753 if (!sc->may_writepage)
1754 isolate_mode |= ISOLATE_CLEAN;
1755
1756 spin_lock_irq(&pgdat->lru_lock);
1757
1758 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1759 &nr_scanned, sc, isolate_mode, lru);
1760
1761 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1762 reclaim_stat->recent_scanned[file] += nr_taken;
1763
1764 if (global_reclaim(sc)) {
1765 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1766 if (current_is_kswapd())
1767 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1768 else
1769 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1770 }
1771 spin_unlock_irq(&pgdat->lru_lock);
1772
1773 if (nr_taken == 0)
1774 return 0;
1775
1776 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1777 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1778 &nr_writeback, &nr_immediate,
1779 false);
1780
1781 spin_lock_irq(&pgdat->lru_lock);
1782
1783 if (global_reclaim(sc)) {
1784 if (current_is_kswapd())
1785 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1786 else
1787 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1788 }
1789
1790 putback_inactive_pages(lruvec, &page_list);
1791
1792 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1793
1794 spin_unlock_irq(&pgdat->lru_lock);
1795
1796 mem_cgroup_uncharge_list(&page_list);
1797 free_hot_cold_page_list(&page_list, true);
1798
1799 /*
1800 * If reclaim is isolating dirty pages under writeback, it implies
1801 * that the long-lived page allocation rate is exceeding the page
1802 * laundering rate. Either the global limits are not being effective
1803 * at throttling processes due to the page distribution throughout
1804 * zones or there is heavy usage of a slow backing device. The
1805 * only option is to throttle from reclaim context which is not ideal
1806 * as there is no guarantee the dirtying process is throttled in the
1807 * same way balance_dirty_pages() manages.
1808 *
1809 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1810 * of pages under pages flagged for immediate reclaim and stall if any
1811 * are encountered in the nr_immediate check below.
1812 */
1813 if (nr_writeback && nr_writeback == nr_taken)
1814 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1815
1816 /*
1817 * Legacy memcg will stall in page writeback so avoid forcibly
1818 * stalling here.
1819 */
1820 if (sane_reclaim(sc)) {
1821 /*
1822 * Tag a zone as congested if all the dirty pages scanned were
1823 * backed by a congested BDI and wait_iff_congested will stall.
1824 */
1825 if (nr_dirty && nr_dirty == nr_congested)
1826 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1827
1828 /*
1829 * If dirty pages are scanned that are not queued for IO, it
1830 * implies that flushers are not keeping up. In this case, flag
1831 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1832 * reclaim context.
1833 */
1834 if (nr_unqueued_dirty == nr_taken)
1835 set_bit(PGDAT_DIRTY, &pgdat->flags);
1836
1837 /*
1838 * If kswapd scans pages marked marked for immediate
1839 * reclaim and under writeback (nr_immediate), it implies
1840 * that pages are cycling through the LRU faster than
1841 * they are written so also forcibly stall.
1842 */
1843 if (nr_immediate && current_may_throttle())
1844 congestion_wait(BLK_RW_ASYNC, HZ/10);
1845 }
1846
1847 /*
1848 * Stall direct reclaim for IO completions if underlying BDIs or zone
1849 * is congested. Allow kswapd to continue until it starts encountering
1850 * unqueued dirty pages or cycling through the LRU too quickly.
1851 */
1852 if (!sc->hibernation_mode && !current_is_kswapd() &&
1853 current_may_throttle())
1854 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1855
1856 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1857 nr_scanned, nr_reclaimed,
1858 sc->priority, file);
1859 return nr_reclaimed;
1860 }
1861
1862 /*
1863 * This moves pages from the active list to the inactive list.
1864 *
1865 * We move them the other way if the page is referenced by one or more
1866 * processes, from rmap.
1867 *
1868 * If the pages are mostly unmapped, the processing is fast and it is
1869 * appropriate to hold zone_lru_lock across the whole operation. But if
1870 * the pages are mapped, the processing is slow (page_referenced()) so we
1871 * should drop zone_lru_lock around each page. It's impossible to balance
1872 * this, so instead we remove the pages from the LRU while processing them.
1873 * It is safe to rely on PG_active against the non-LRU pages in here because
1874 * nobody will play with that bit on a non-LRU page.
1875 *
1876 * The downside is that we have to touch page->_refcount against each page.
1877 * But we had to alter page->flags anyway.
1878 */
1879
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1880 static void move_active_pages_to_lru(struct lruvec *lruvec,
1881 struct list_head *list,
1882 struct list_head *pages_to_free,
1883 enum lru_list lru)
1884 {
1885 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1886 unsigned long pgmoved = 0;
1887 struct page *page;
1888 int nr_pages;
1889
1890 while (!list_empty(list)) {
1891 page = lru_to_page(list);
1892 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1893
1894 VM_BUG_ON_PAGE(PageLRU(page), page);
1895 SetPageLRU(page);
1896
1897 nr_pages = hpage_nr_pages(page);
1898 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1899 list_move(&page->lru, &lruvec->lists[lru]);
1900 pgmoved += nr_pages;
1901
1902 if (put_page_testzero(page)) {
1903 __ClearPageLRU(page);
1904 __ClearPageActive(page);
1905 del_page_from_lru_list(page, lruvec, lru);
1906
1907 if (unlikely(PageCompound(page))) {
1908 spin_unlock_irq(&pgdat->lru_lock);
1909 mem_cgroup_uncharge(page);
1910 (*get_compound_page_dtor(page))(page);
1911 spin_lock_irq(&pgdat->lru_lock);
1912 } else
1913 list_add(&page->lru, pages_to_free);
1914 }
1915 }
1916
1917 if (!is_active_lru(lru))
1918 __count_vm_events(PGDEACTIVATE, pgmoved);
1919 }
1920
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1921 static void shrink_active_list(unsigned long nr_to_scan,
1922 struct lruvec *lruvec,
1923 struct scan_control *sc,
1924 enum lru_list lru)
1925 {
1926 unsigned long nr_taken;
1927 unsigned long nr_scanned;
1928 unsigned long vm_flags;
1929 LIST_HEAD(l_hold); /* The pages which were snipped off */
1930 LIST_HEAD(l_active);
1931 LIST_HEAD(l_inactive);
1932 struct page *page;
1933 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1934 unsigned long nr_rotated = 0;
1935 isolate_mode_t isolate_mode = 0;
1936 int file = is_file_lru(lru);
1937 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1938
1939 lru_add_drain();
1940
1941 if (!sc->may_unmap)
1942 isolate_mode |= ISOLATE_UNMAPPED;
1943 if (!sc->may_writepage)
1944 isolate_mode |= ISOLATE_CLEAN;
1945
1946 spin_lock_irq(&pgdat->lru_lock);
1947
1948 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1949 &nr_scanned, sc, isolate_mode, lru);
1950
1951 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1952 reclaim_stat->recent_scanned[file] += nr_taken;
1953
1954 if (global_reclaim(sc))
1955 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1956 __count_vm_events(PGREFILL, nr_scanned);
1957
1958 spin_unlock_irq(&pgdat->lru_lock);
1959
1960 while (!list_empty(&l_hold)) {
1961 cond_resched();
1962 page = lru_to_page(&l_hold);
1963 list_del(&page->lru);
1964
1965 if (unlikely(!page_evictable(page))) {
1966 putback_lru_page(page);
1967 continue;
1968 }
1969
1970 if (unlikely(buffer_heads_over_limit)) {
1971 if (page_has_private(page) && trylock_page(page)) {
1972 if (page_has_private(page))
1973 try_to_release_page(page, 0);
1974 unlock_page(page);
1975 }
1976 }
1977
1978 if (page_referenced(page, 0, sc->target_mem_cgroup,
1979 &vm_flags)) {
1980 nr_rotated += hpage_nr_pages(page);
1981 /*
1982 * Identify referenced, file-backed active pages and
1983 * give them one more trip around the active list. So
1984 * that executable code get better chances to stay in
1985 * memory under moderate memory pressure. Anon pages
1986 * are not likely to be evicted by use-once streaming
1987 * IO, plus JVM can create lots of anon VM_EXEC pages,
1988 * so we ignore them here.
1989 */
1990 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1991 list_add(&page->lru, &l_active);
1992 continue;
1993 }
1994 }
1995
1996 ClearPageActive(page); /* we are de-activating */
1997 list_add(&page->lru, &l_inactive);
1998 }
1999
2000 /*
2001 * Move pages back to the lru list.
2002 */
2003 spin_lock_irq(&pgdat->lru_lock);
2004 /*
2005 * Count referenced pages from currently used mappings as rotated,
2006 * even though only some of them are actually re-activated. This
2007 * helps balance scan pressure between file and anonymous pages in
2008 * get_scan_count.
2009 */
2010 reclaim_stat->recent_rotated[file] += nr_rotated;
2011
2012 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2013 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2014 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2015 spin_unlock_irq(&pgdat->lru_lock);
2016
2017 mem_cgroup_uncharge_list(&l_hold);
2018 free_hot_cold_page_list(&l_hold, true);
2019 }
2020
2021 /*
2022 * The inactive anon list should be small enough that the VM never has
2023 * to do too much work.
2024 *
2025 * The inactive file list should be small enough to leave most memory
2026 * to the established workingset on the scan-resistant active list,
2027 * but large enough to avoid thrashing the aggregate readahead window.
2028 *
2029 * Both inactive lists should also be large enough that each inactive
2030 * page has a chance to be referenced again before it is reclaimed.
2031 *
2032 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2033 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2034 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2035 *
2036 * total target max
2037 * memory ratio inactive
2038 * -------------------------------------
2039 * 10MB 1 5MB
2040 * 100MB 1 50MB
2041 * 1GB 3 250MB
2042 * 10GB 10 0.9GB
2043 * 100GB 31 3GB
2044 * 1TB 101 10GB
2045 * 10TB 320 32GB
2046 */
inactive_list_is_low(struct lruvec * lruvec,bool file,struct scan_control * sc)2047 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2048 struct scan_control *sc)
2049 {
2050 unsigned long inactive_ratio;
2051 unsigned long inactive, active;
2052 enum lru_list inactive_lru = file * LRU_FILE;
2053 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2054 unsigned long gb;
2055
2056 /*
2057 * If we don't have swap space, anonymous page deactivation
2058 * is pointless.
2059 */
2060 if (!file && !total_swap_pages)
2061 return false;
2062
2063 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2064 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2065
2066 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2067 if (gb)
2068 inactive_ratio = int_sqrt(10 * gb);
2069 else
2070 inactive_ratio = 1;
2071
2072 return inactive * inactive_ratio < active;
2073 }
2074
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2075 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2076 struct lruvec *lruvec, struct scan_control *sc)
2077 {
2078 if (is_active_lru(lru)) {
2079 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2080 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2081 return 0;
2082 }
2083
2084 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2085 }
2086
2087 enum scan_balance {
2088 SCAN_EQUAL,
2089 SCAN_FRACT,
2090 SCAN_ANON,
2091 SCAN_FILE,
2092 };
2093
2094 /*
2095 * Determine how aggressively the anon and file LRU lists should be
2096 * scanned. The relative value of each set of LRU lists is determined
2097 * by looking at the fraction of the pages scanned we did rotate back
2098 * onto the active list instead of evict.
2099 *
2100 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2101 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2102 */
get_scan_count(struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)2103 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2104 struct scan_control *sc, unsigned long *nr,
2105 unsigned long *lru_pages)
2106 {
2107 int swappiness = mem_cgroup_swappiness(memcg);
2108 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2109 u64 fraction[2];
2110 u64 denominator = 0; /* gcc */
2111 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2112 unsigned long anon_prio, file_prio;
2113 enum scan_balance scan_balance;
2114 unsigned long anon, file;
2115 bool force_scan = false;
2116 unsigned long ap, fp;
2117 enum lru_list lru;
2118 bool some_scanned;
2119 int pass;
2120
2121 /*
2122 * If the zone or memcg is small, nr[l] can be 0. This
2123 * results in no scanning on this priority and a potential
2124 * priority drop. Global direct reclaim can go to the next
2125 * zone and tends to have no problems. Global kswapd is for
2126 * zone balancing and it needs to scan a minimum amount. When
2127 * reclaiming for a memcg, a priority drop can cause high
2128 * latencies, so it's better to scan a minimum amount there as
2129 * well.
2130 */
2131 if (current_is_kswapd()) {
2132 if (!pgdat_reclaimable(pgdat))
2133 force_scan = true;
2134 if (!mem_cgroup_online(memcg))
2135 force_scan = true;
2136 }
2137 if (!global_reclaim(sc))
2138 force_scan = true;
2139
2140 /* If we have no swap space, do not bother scanning anon pages. */
2141 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2142 scan_balance = SCAN_FILE;
2143 goto out;
2144 }
2145
2146 /*
2147 * Global reclaim will swap to prevent OOM even with no
2148 * swappiness, but memcg users want to use this knob to
2149 * disable swapping for individual groups completely when
2150 * using the memory controller's swap limit feature would be
2151 * too expensive.
2152 */
2153 if (!global_reclaim(sc) && !swappiness) {
2154 scan_balance = SCAN_FILE;
2155 goto out;
2156 }
2157
2158 /*
2159 * Do not apply any pressure balancing cleverness when the
2160 * system is close to OOM, scan both anon and file equally
2161 * (unless the swappiness setting disagrees with swapping).
2162 */
2163 if (!sc->priority && swappiness) {
2164 scan_balance = SCAN_EQUAL;
2165 goto out;
2166 }
2167
2168 /*
2169 * Prevent the reclaimer from falling into the cache trap: as
2170 * cache pages start out inactive, every cache fault will tip
2171 * the scan balance towards the file LRU. And as the file LRU
2172 * shrinks, so does the window for rotation from references.
2173 * This means we have a runaway feedback loop where a tiny
2174 * thrashing file LRU becomes infinitely more attractive than
2175 * anon pages. Try to detect this based on file LRU size.
2176 */
2177 if (global_reclaim(sc)) {
2178 unsigned long pgdatfile;
2179 unsigned long pgdatfree;
2180 int z;
2181 unsigned long total_high_wmark = 0;
2182
2183 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2184 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2185 node_page_state(pgdat, NR_INACTIVE_FILE);
2186
2187 for (z = 0; z < MAX_NR_ZONES; z++) {
2188 struct zone *zone = &pgdat->node_zones[z];
2189 if (!managed_zone(zone))
2190 continue;
2191
2192 total_high_wmark += high_wmark_pages(zone);
2193 }
2194
2195 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2196 scan_balance = SCAN_ANON;
2197 goto out;
2198 }
2199 }
2200
2201 /*
2202 * If there is enough inactive page cache, i.e. if the size of the
2203 * inactive list is greater than that of the active list *and* the
2204 * inactive list actually has some pages to scan on this priority, we
2205 * do not reclaim anything from the anonymous working set right now.
2206 * Without the second condition we could end up never scanning an
2207 * lruvec even if it has plenty of old anonymous pages unless the
2208 * system is under heavy pressure.
2209 */
2210 if (!inactive_list_is_low(lruvec, true, sc) &&
2211 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2212 scan_balance = SCAN_FILE;
2213 goto out;
2214 }
2215
2216 scan_balance = SCAN_FRACT;
2217
2218 /*
2219 * With swappiness at 100, anonymous and file have the same priority.
2220 * This scanning priority is essentially the inverse of IO cost.
2221 */
2222 anon_prio = swappiness;
2223 file_prio = 200 - anon_prio;
2224
2225 /*
2226 * OK, so we have swap space and a fair amount of page cache
2227 * pages. We use the recently rotated / recently scanned
2228 * ratios to determine how valuable each cache is.
2229 *
2230 * Because workloads change over time (and to avoid overflow)
2231 * we keep these statistics as a floating average, which ends
2232 * up weighing recent references more than old ones.
2233 *
2234 * anon in [0], file in [1]
2235 */
2236
2237 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2238 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2239 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2240 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2241
2242 spin_lock_irq(&pgdat->lru_lock);
2243 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2244 reclaim_stat->recent_scanned[0] /= 2;
2245 reclaim_stat->recent_rotated[0] /= 2;
2246 }
2247
2248 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2249 reclaim_stat->recent_scanned[1] /= 2;
2250 reclaim_stat->recent_rotated[1] /= 2;
2251 }
2252
2253 /*
2254 * The amount of pressure on anon vs file pages is inversely
2255 * proportional to the fraction of recently scanned pages on
2256 * each list that were recently referenced and in active use.
2257 */
2258 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2259 ap /= reclaim_stat->recent_rotated[0] + 1;
2260
2261 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2262 fp /= reclaim_stat->recent_rotated[1] + 1;
2263 spin_unlock_irq(&pgdat->lru_lock);
2264
2265 fraction[0] = ap;
2266 fraction[1] = fp;
2267 denominator = ap + fp + 1;
2268 out:
2269 some_scanned = false;
2270 /* Only use force_scan on second pass. */
2271 for (pass = 0; !some_scanned && pass < 2; pass++) {
2272 *lru_pages = 0;
2273 for_each_evictable_lru(lru) {
2274 int file = is_file_lru(lru);
2275 unsigned long size;
2276 unsigned long scan;
2277
2278 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2279 scan = size >> sc->priority;
2280
2281 if (!scan && pass && force_scan)
2282 scan = min(size, SWAP_CLUSTER_MAX);
2283
2284 switch (scan_balance) {
2285 case SCAN_EQUAL:
2286 /* Scan lists relative to size */
2287 break;
2288 case SCAN_FRACT:
2289 /*
2290 * Scan types proportional to swappiness and
2291 * their relative recent reclaim efficiency.
2292 */
2293 scan = div64_u64(scan * fraction[file],
2294 denominator);
2295 break;
2296 case SCAN_FILE:
2297 case SCAN_ANON:
2298 /* Scan one type exclusively */
2299 if ((scan_balance == SCAN_FILE) != file) {
2300 size = 0;
2301 scan = 0;
2302 }
2303 break;
2304 default:
2305 /* Look ma, no brain */
2306 BUG();
2307 }
2308
2309 *lru_pages += size;
2310 nr[lru] = scan;
2311
2312 /*
2313 * Skip the second pass and don't force_scan,
2314 * if we found something to scan.
2315 */
2316 some_scanned |= !!scan;
2317 }
2318 }
2319 }
2320
2321 /*
2322 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2323 */
shrink_node_memcg(struct pglist_data * pgdat,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * lru_pages)2324 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2325 struct scan_control *sc, unsigned long *lru_pages)
2326 {
2327 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2328 unsigned long nr[NR_LRU_LISTS];
2329 unsigned long targets[NR_LRU_LISTS];
2330 unsigned long nr_to_scan;
2331 enum lru_list lru;
2332 unsigned long nr_reclaimed = 0;
2333 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2334 struct blk_plug plug;
2335 bool scan_adjusted;
2336
2337 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2338
2339 /* Record the original scan target for proportional adjustments later */
2340 memcpy(targets, nr, sizeof(nr));
2341
2342 /*
2343 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2344 * event that can occur when there is little memory pressure e.g.
2345 * multiple streaming readers/writers. Hence, we do not abort scanning
2346 * when the requested number of pages are reclaimed when scanning at
2347 * DEF_PRIORITY on the assumption that the fact we are direct
2348 * reclaiming implies that kswapd is not keeping up and it is best to
2349 * do a batch of work at once. For memcg reclaim one check is made to
2350 * abort proportional reclaim if either the file or anon lru has already
2351 * dropped to zero at the first pass.
2352 */
2353 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2354 sc->priority == DEF_PRIORITY);
2355
2356 blk_start_plug(&plug);
2357 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2358 nr[LRU_INACTIVE_FILE]) {
2359 unsigned long nr_anon, nr_file, percentage;
2360 unsigned long nr_scanned;
2361
2362 for_each_evictable_lru(lru) {
2363 if (nr[lru]) {
2364 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2365 nr[lru] -= nr_to_scan;
2366
2367 nr_reclaimed += shrink_list(lru, nr_to_scan,
2368 lruvec, sc);
2369 }
2370 }
2371
2372 cond_resched();
2373
2374 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2375 continue;
2376
2377 /*
2378 * For kswapd and memcg, reclaim at least the number of pages
2379 * requested. Ensure that the anon and file LRUs are scanned
2380 * proportionally what was requested by get_scan_count(). We
2381 * stop reclaiming one LRU and reduce the amount scanning
2382 * proportional to the original scan target.
2383 */
2384 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2385 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2386
2387 /*
2388 * It's just vindictive to attack the larger once the smaller
2389 * has gone to zero. And given the way we stop scanning the
2390 * smaller below, this makes sure that we only make one nudge
2391 * towards proportionality once we've got nr_to_reclaim.
2392 */
2393 if (!nr_file || !nr_anon)
2394 break;
2395
2396 if (nr_file > nr_anon) {
2397 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2398 targets[LRU_ACTIVE_ANON] + 1;
2399 lru = LRU_BASE;
2400 percentage = nr_anon * 100 / scan_target;
2401 } else {
2402 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2403 targets[LRU_ACTIVE_FILE] + 1;
2404 lru = LRU_FILE;
2405 percentage = nr_file * 100 / scan_target;
2406 }
2407
2408 /* Stop scanning the smaller of the LRU */
2409 nr[lru] = 0;
2410 nr[lru + LRU_ACTIVE] = 0;
2411
2412 /*
2413 * Recalculate the other LRU scan count based on its original
2414 * scan target and the percentage scanning already complete
2415 */
2416 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2417 nr_scanned = targets[lru] - nr[lru];
2418 nr[lru] = targets[lru] * (100 - percentage) / 100;
2419 nr[lru] -= min(nr[lru], nr_scanned);
2420
2421 lru += LRU_ACTIVE;
2422 nr_scanned = targets[lru] - nr[lru];
2423 nr[lru] = targets[lru] * (100 - percentage) / 100;
2424 nr[lru] -= min(nr[lru], nr_scanned);
2425
2426 scan_adjusted = true;
2427 }
2428 blk_finish_plug(&plug);
2429 sc->nr_reclaimed += nr_reclaimed;
2430
2431 /*
2432 * Even if we did not try to evict anon pages at all, we want to
2433 * rebalance the anon lru active/inactive ratio.
2434 */
2435 if (inactive_list_is_low(lruvec, false, sc))
2436 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2437 sc, LRU_ACTIVE_ANON);
2438 }
2439
2440 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2441 static bool in_reclaim_compaction(struct scan_control *sc)
2442 {
2443 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2444 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2445 sc->priority < DEF_PRIORITY - 2))
2446 return true;
2447
2448 return false;
2449 }
2450
2451 /*
2452 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2453 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2454 * true if more pages should be reclaimed such that when the page allocator
2455 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2456 * It will give up earlier than that if there is difficulty reclaiming pages.
2457 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2458 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2459 unsigned long nr_reclaimed,
2460 unsigned long nr_scanned,
2461 struct scan_control *sc)
2462 {
2463 unsigned long pages_for_compaction;
2464 unsigned long inactive_lru_pages;
2465 int z;
2466
2467 /* If not in reclaim/compaction mode, stop */
2468 if (!in_reclaim_compaction(sc))
2469 return false;
2470
2471 /* Consider stopping depending on scan and reclaim activity */
2472 if (sc->gfp_mask & __GFP_REPEAT) {
2473 /*
2474 * For __GFP_REPEAT allocations, stop reclaiming if the
2475 * full LRU list has been scanned and we are still failing
2476 * to reclaim pages. This full LRU scan is potentially
2477 * expensive but a __GFP_REPEAT caller really wants to succeed
2478 */
2479 if (!nr_reclaimed && !nr_scanned)
2480 return false;
2481 } else {
2482 /*
2483 * For non-__GFP_REPEAT allocations which can presumably
2484 * fail without consequence, stop if we failed to reclaim
2485 * any pages from the last SWAP_CLUSTER_MAX number of
2486 * pages that were scanned. This will return to the
2487 * caller faster at the risk reclaim/compaction and
2488 * the resulting allocation attempt fails
2489 */
2490 if (!nr_reclaimed)
2491 return false;
2492 }
2493
2494 /*
2495 * If we have not reclaimed enough pages for compaction and the
2496 * inactive lists are large enough, continue reclaiming
2497 */
2498 pages_for_compaction = compact_gap(sc->order);
2499 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2500 if (get_nr_swap_pages() > 0)
2501 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2502 if (sc->nr_reclaimed < pages_for_compaction &&
2503 inactive_lru_pages > pages_for_compaction)
2504 return true;
2505
2506 /* If compaction would go ahead or the allocation would succeed, stop */
2507 for (z = 0; z <= sc->reclaim_idx; z++) {
2508 struct zone *zone = &pgdat->node_zones[z];
2509 if (!managed_zone(zone))
2510 continue;
2511
2512 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2513 case COMPACT_SUCCESS:
2514 case COMPACT_CONTINUE:
2515 return false;
2516 default:
2517 /* check next zone */
2518 ;
2519 }
2520 }
2521 return true;
2522 }
2523
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2524 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2525 {
2526 struct reclaim_state *reclaim_state = current->reclaim_state;
2527 unsigned long nr_reclaimed, nr_scanned;
2528 bool reclaimable = false;
2529
2530 do {
2531 struct mem_cgroup *root = sc->target_mem_cgroup;
2532 struct mem_cgroup_reclaim_cookie reclaim = {
2533 .pgdat = pgdat,
2534 .priority = sc->priority,
2535 };
2536 unsigned long node_lru_pages = 0;
2537 struct mem_cgroup *memcg;
2538
2539 nr_reclaimed = sc->nr_reclaimed;
2540 nr_scanned = sc->nr_scanned;
2541
2542 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2543 do {
2544 unsigned long lru_pages;
2545 unsigned long reclaimed;
2546 unsigned long scanned;
2547
2548 if (mem_cgroup_low(root, memcg)) {
2549 if (!sc->may_thrash)
2550 continue;
2551 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2552 }
2553
2554 reclaimed = sc->nr_reclaimed;
2555 scanned = sc->nr_scanned;
2556
2557 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2558 node_lru_pages += lru_pages;
2559
2560 if (memcg)
2561 shrink_slab(sc->gfp_mask, pgdat->node_id,
2562 memcg, sc->nr_scanned - scanned,
2563 lru_pages);
2564
2565 /* Record the group's reclaim efficiency */
2566 vmpressure(sc->gfp_mask, memcg, false,
2567 sc->nr_scanned - scanned,
2568 sc->nr_reclaimed - reclaimed);
2569
2570 /*
2571 * Direct reclaim and kswapd have to scan all memory
2572 * cgroups to fulfill the overall scan target for the
2573 * node.
2574 *
2575 * Limit reclaim, on the other hand, only cares about
2576 * nr_to_reclaim pages to be reclaimed and it will
2577 * retry with decreasing priority if one round over the
2578 * whole hierarchy is not sufficient.
2579 */
2580 if (!global_reclaim(sc) &&
2581 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2582 mem_cgroup_iter_break(root, memcg);
2583 break;
2584 }
2585 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2586
2587 /*
2588 * Shrink the slab caches in the same proportion that
2589 * the eligible LRU pages were scanned.
2590 */
2591 if (global_reclaim(sc))
2592 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2593 sc->nr_scanned - nr_scanned,
2594 node_lru_pages);
2595
2596 if (reclaim_state) {
2597 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2598 reclaim_state->reclaimed_slab = 0;
2599 }
2600
2601 /* Record the subtree's reclaim efficiency */
2602 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2603 sc->nr_scanned - nr_scanned,
2604 sc->nr_reclaimed - nr_reclaimed);
2605
2606 if (sc->nr_reclaimed - nr_reclaimed)
2607 reclaimable = true;
2608
2609 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2610 sc->nr_scanned - nr_scanned, sc));
2611
2612 /*
2613 * Kswapd gives up on balancing particular nodes after too
2614 * many failures to reclaim anything from them and goes to
2615 * sleep. On reclaim progress, reset the failure counter. A
2616 * successful direct reclaim run will revive a dormant kswapd.
2617 */
2618 if (reclaimable)
2619 pgdat->kswapd_failures = 0;
2620
2621 return reclaimable;
2622 }
2623
2624 /*
2625 * Returns true if compaction should go ahead for a costly-order request, or
2626 * the allocation would already succeed without compaction. Return false if we
2627 * should reclaim first.
2628 */
compaction_ready(struct zone * zone,struct scan_control * sc)2629 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2630 {
2631 unsigned long watermark;
2632 enum compact_result suitable;
2633
2634 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2635 if (suitable == COMPACT_SUCCESS)
2636 /* Allocation should succeed already. Don't reclaim. */
2637 return true;
2638 if (suitable == COMPACT_SKIPPED)
2639 /* Compaction cannot yet proceed. Do reclaim. */
2640 return false;
2641
2642 /*
2643 * Compaction is already possible, but it takes time to run and there
2644 * are potentially other callers using the pages just freed. So proceed
2645 * with reclaim to make a buffer of free pages available to give
2646 * compaction a reasonable chance of completing and allocating the page.
2647 * Note that we won't actually reclaim the whole buffer in one attempt
2648 * as the target watermark in should_continue_reclaim() is lower. But if
2649 * we are already above the high+gap watermark, don't reclaim at all.
2650 */
2651 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2652
2653 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2654 }
2655
2656 /*
2657 * This is the direct reclaim path, for page-allocating processes. We only
2658 * try to reclaim pages from zones which will satisfy the caller's allocation
2659 * request.
2660 *
2661 * If a zone is deemed to be full of pinned pages then just give it a light
2662 * scan then give up on it.
2663 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2664 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2665 {
2666 struct zoneref *z;
2667 struct zone *zone;
2668 unsigned long nr_soft_reclaimed;
2669 unsigned long nr_soft_scanned;
2670 gfp_t orig_mask;
2671 pg_data_t *last_pgdat = NULL;
2672
2673 /*
2674 * If the number of buffer_heads in the machine exceeds the maximum
2675 * allowed level, force direct reclaim to scan the highmem zone as
2676 * highmem pages could be pinning lowmem pages storing buffer_heads
2677 */
2678 orig_mask = sc->gfp_mask;
2679 if (buffer_heads_over_limit) {
2680 sc->gfp_mask |= __GFP_HIGHMEM;
2681 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2682 }
2683
2684 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2685 sc->reclaim_idx, sc->nodemask) {
2686 /*
2687 * Take care memory controller reclaiming has small influence
2688 * to global LRU.
2689 */
2690 if (global_reclaim(sc)) {
2691 if (!cpuset_zone_allowed(zone,
2692 GFP_KERNEL | __GFP_HARDWALL))
2693 continue;
2694
2695 /*
2696 * If we already have plenty of memory free for
2697 * compaction in this zone, don't free any more.
2698 * Even though compaction is invoked for any
2699 * non-zero order, only frequent costly order
2700 * reclamation is disruptive enough to become a
2701 * noticeable problem, like transparent huge
2702 * page allocations.
2703 */
2704 if (IS_ENABLED(CONFIG_COMPACTION) &&
2705 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2706 compaction_ready(zone, sc)) {
2707 sc->compaction_ready = true;
2708 continue;
2709 }
2710
2711 /*
2712 * Shrink each node in the zonelist once. If the
2713 * zonelist is ordered by zone (not the default) then a
2714 * node may be shrunk multiple times but in that case
2715 * the user prefers lower zones being preserved.
2716 */
2717 if (zone->zone_pgdat == last_pgdat)
2718 continue;
2719
2720 /*
2721 * This steals pages from memory cgroups over softlimit
2722 * and returns the number of reclaimed pages and
2723 * scanned pages. This works for global memory pressure
2724 * and balancing, not for a memcg's limit.
2725 */
2726 nr_soft_scanned = 0;
2727 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2728 sc->order, sc->gfp_mask,
2729 &nr_soft_scanned);
2730 sc->nr_reclaimed += nr_soft_reclaimed;
2731 sc->nr_scanned += nr_soft_scanned;
2732 /* need some check for avoid more shrink_zone() */
2733 }
2734
2735 /* See comment about same check for global reclaim above */
2736 if (zone->zone_pgdat == last_pgdat)
2737 continue;
2738 last_pgdat = zone->zone_pgdat;
2739 shrink_node(zone->zone_pgdat, sc);
2740 }
2741
2742 /*
2743 * Restore to original mask to avoid the impact on the caller if we
2744 * promoted it to __GFP_HIGHMEM.
2745 */
2746 sc->gfp_mask = orig_mask;
2747 }
2748
2749 /*
2750 * This is the main entry point to direct page reclaim.
2751 *
2752 * If a full scan of the inactive list fails to free enough memory then we
2753 * are "out of memory" and something needs to be killed.
2754 *
2755 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2756 * high - the zone may be full of dirty or under-writeback pages, which this
2757 * caller can't do much about. We kick the writeback threads and take explicit
2758 * naps in the hope that some of these pages can be written. But if the
2759 * allocating task holds filesystem locks which prevent writeout this might not
2760 * work, and the allocation attempt will fail.
2761 *
2762 * returns: 0, if no pages reclaimed
2763 * else, the number of pages reclaimed
2764 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)2765 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2766 struct scan_control *sc)
2767 {
2768 int initial_priority = sc->priority;
2769 unsigned long total_scanned = 0;
2770 unsigned long writeback_threshold;
2771 retry:
2772 delayacct_freepages_start();
2773
2774 if (global_reclaim(sc))
2775 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2776
2777 do {
2778 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2779 sc->priority);
2780 sc->nr_scanned = 0;
2781 shrink_zones(zonelist, sc);
2782
2783 total_scanned += sc->nr_scanned;
2784 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2785 break;
2786
2787 if (sc->compaction_ready)
2788 break;
2789
2790 /*
2791 * If we're getting trouble reclaiming, start doing
2792 * writepage even in laptop mode.
2793 */
2794 if (sc->priority < DEF_PRIORITY - 2)
2795 sc->may_writepage = 1;
2796
2797 /*
2798 * Try to write back as many pages as we just scanned. This
2799 * tends to cause slow streaming writers to write data to the
2800 * disk smoothly, at the dirtying rate, which is nice. But
2801 * that's undesirable in laptop mode, where we *want* lumpy
2802 * writeout. So in laptop mode, write out the whole world.
2803 */
2804 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2805 if (total_scanned > writeback_threshold) {
2806 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2807 WB_REASON_TRY_TO_FREE_PAGES);
2808 sc->may_writepage = 1;
2809 }
2810 } while (--sc->priority >= 0);
2811
2812 delayacct_freepages_end();
2813
2814 if (sc->nr_reclaimed)
2815 return sc->nr_reclaimed;
2816
2817 /* Aborted reclaim to try compaction? don't OOM, then */
2818 if (sc->compaction_ready)
2819 return 1;
2820
2821 /* Untapped cgroup reserves? Don't OOM, retry. */
2822 if (!sc->may_thrash) {
2823 sc->priority = initial_priority;
2824 sc->may_thrash = 1;
2825 goto retry;
2826 }
2827
2828 return 0;
2829 }
2830
allow_direct_reclaim(pg_data_t * pgdat)2831 static bool allow_direct_reclaim(pg_data_t *pgdat)
2832 {
2833 struct zone *zone;
2834 unsigned long pfmemalloc_reserve = 0;
2835 unsigned long free_pages = 0;
2836 int i;
2837 bool wmark_ok;
2838
2839 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2840 return true;
2841
2842 for (i = 0; i <= ZONE_NORMAL; i++) {
2843 zone = &pgdat->node_zones[i];
2844 if (!managed_zone(zone))
2845 continue;
2846
2847 if (!zone_reclaimable_pages(zone))
2848 continue;
2849
2850 pfmemalloc_reserve += min_wmark_pages(zone);
2851 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2852 }
2853
2854 /* If there are no reserves (unexpected config) then do not throttle */
2855 if (!pfmemalloc_reserve)
2856 return true;
2857
2858 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2859
2860 /* kswapd must be awake if processes are being throttled */
2861 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2862 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2863 (enum zone_type)ZONE_NORMAL);
2864 wake_up_interruptible(&pgdat->kswapd_wait);
2865 }
2866
2867 return wmark_ok;
2868 }
2869
2870 /*
2871 * Throttle direct reclaimers if backing storage is backed by the network
2872 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2873 * depleted. kswapd will continue to make progress and wake the processes
2874 * when the low watermark is reached.
2875 *
2876 * Returns true if a fatal signal was delivered during throttling. If this
2877 * happens, the page allocator should not consider triggering the OOM killer.
2878 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)2879 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2880 nodemask_t *nodemask)
2881 {
2882 struct zoneref *z;
2883 struct zone *zone;
2884 pg_data_t *pgdat = NULL;
2885
2886 /*
2887 * Kernel threads should not be throttled as they may be indirectly
2888 * responsible for cleaning pages necessary for reclaim to make forward
2889 * progress. kjournald for example may enter direct reclaim while
2890 * committing a transaction where throttling it could forcing other
2891 * processes to block on log_wait_commit().
2892 */
2893 if (current->flags & PF_KTHREAD)
2894 goto out;
2895
2896 /*
2897 * If a fatal signal is pending, this process should not throttle.
2898 * It should return quickly so it can exit and free its memory
2899 */
2900 if (fatal_signal_pending(current))
2901 goto out;
2902
2903 /*
2904 * Check if the pfmemalloc reserves are ok by finding the first node
2905 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2906 * GFP_KERNEL will be required for allocating network buffers when
2907 * swapping over the network so ZONE_HIGHMEM is unusable.
2908 *
2909 * Throttling is based on the first usable node and throttled processes
2910 * wait on a queue until kswapd makes progress and wakes them. There
2911 * is an affinity then between processes waking up and where reclaim
2912 * progress has been made assuming the process wakes on the same node.
2913 * More importantly, processes running on remote nodes will not compete
2914 * for remote pfmemalloc reserves and processes on different nodes
2915 * should make reasonable progress.
2916 */
2917 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2918 gfp_zone(gfp_mask), nodemask) {
2919 if (zone_idx(zone) > ZONE_NORMAL)
2920 continue;
2921
2922 /* Throttle based on the first usable node */
2923 pgdat = zone->zone_pgdat;
2924 if (allow_direct_reclaim(pgdat))
2925 goto out;
2926 break;
2927 }
2928
2929 /* If no zone was usable by the allocation flags then do not throttle */
2930 if (!pgdat)
2931 goto out;
2932
2933 /* Account for the throttling */
2934 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2935
2936 /*
2937 * If the caller cannot enter the filesystem, it's possible that it
2938 * is due to the caller holding an FS lock or performing a journal
2939 * transaction in the case of a filesystem like ext[3|4]. In this case,
2940 * it is not safe to block on pfmemalloc_wait as kswapd could be
2941 * blocked waiting on the same lock. Instead, throttle for up to a
2942 * second before continuing.
2943 */
2944 if (!(gfp_mask & __GFP_FS)) {
2945 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2946 allow_direct_reclaim(pgdat), HZ);
2947
2948 goto check_pending;
2949 }
2950
2951 /* Throttle until kswapd wakes the process */
2952 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2953 allow_direct_reclaim(pgdat));
2954
2955 check_pending:
2956 if (fatal_signal_pending(current))
2957 return true;
2958
2959 out:
2960 return false;
2961 }
2962
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2963 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2964 gfp_t gfp_mask, nodemask_t *nodemask)
2965 {
2966 unsigned long nr_reclaimed;
2967 struct scan_control sc = {
2968 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2969 .gfp_mask = memalloc_noio_flags(gfp_mask),
2970 .reclaim_idx = gfp_zone(gfp_mask),
2971 .order = order,
2972 .nodemask = nodemask,
2973 .priority = DEF_PRIORITY,
2974 .may_writepage = !laptop_mode,
2975 .may_unmap = 1,
2976 .may_swap = 1,
2977 };
2978
2979 /*
2980 * Do not enter reclaim if fatal signal was delivered while throttled.
2981 * 1 is returned so that the page allocator does not OOM kill at this
2982 * point.
2983 */
2984 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
2985 return 1;
2986
2987 trace_mm_vmscan_direct_reclaim_begin(order,
2988 sc.may_writepage,
2989 sc.gfp_mask,
2990 sc.reclaim_idx);
2991
2992 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2993
2994 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2995
2996 return nr_reclaimed;
2997 }
2998
2999 #ifdef CONFIG_MEMCG
3000
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3001 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3002 gfp_t gfp_mask, bool noswap,
3003 pg_data_t *pgdat,
3004 unsigned long *nr_scanned)
3005 {
3006 struct scan_control sc = {
3007 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3008 .target_mem_cgroup = memcg,
3009 .may_writepage = !laptop_mode,
3010 .may_unmap = 1,
3011 .reclaim_idx = MAX_NR_ZONES - 1,
3012 .may_swap = !noswap,
3013 };
3014 unsigned long lru_pages;
3015
3016 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3017 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3018
3019 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3020 sc.may_writepage,
3021 sc.gfp_mask,
3022 sc.reclaim_idx);
3023
3024 /*
3025 * NOTE: Although we can get the priority field, using it
3026 * here is not a good idea, since it limits the pages we can scan.
3027 * if we don't reclaim here, the shrink_node from balance_pgdat
3028 * will pick up pages from other mem cgroup's as well. We hack
3029 * the priority and make it zero.
3030 */
3031 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3032
3033 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3034
3035 *nr_scanned = sc.nr_scanned;
3036 return sc.nr_reclaimed;
3037 }
3038
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3039 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3040 unsigned long nr_pages,
3041 gfp_t gfp_mask,
3042 bool may_swap)
3043 {
3044 struct zonelist *zonelist;
3045 unsigned long nr_reclaimed;
3046 int nid;
3047 struct scan_control sc = {
3048 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3049 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3050 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3051 .reclaim_idx = MAX_NR_ZONES - 1,
3052 .target_mem_cgroup = memcg,
3053 .priority = DEF_PRIORITY,
3054 .may_writepage = !laptop_mode,
3055 .may_unmap = 1,
3056 .may_swap = may_swap,
3057 };
3058
3059 /*
3060 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3061 * take care of from where we get pages. So the node where we start the
3062 * scan does not need to be the current node.
3063 */
3064 nid = mem_cgroup_select_victim_node(memcg);
3065
3066 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3067
3068 trace_mm_vmscan_memcg_reclaim_begin(0,
3069 sc.may_writepage,
3070 sc.gfp_mask,
3071 sc.reclaim_idx);
3072
3073 current->flags |= PF_MEMALLOC;
3074 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3075 current->flags &= ~PF_MEMALLOC;
3076
3077 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3078
3079 return nr_reclaimed;
3080 }
3081 #endif
3082
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3083 static void age_active_anon(struct pglist_data *pgdat,
3084 struct scan_control *sc)
3085 {
3086 struct mem_cgroup *memcg;
3087
3088 if (!total_swap_pages)
3089 return;
3090
3091 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3092 do {
3093 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3094
3095 if (inactive_list_is_low(lruvec, false, sc))
3096 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3097 sc, LRU_ACTIVE_ANON);
3098
3099 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3100 } while (memcg);
3101 }
3102
zone_balanced(struct zone * zone,int order,int classzone_idx)3103 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3104 {
3105 unsigned long mark = high_wmark_pages(zone);
3106
3107 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3108 return false;
3109
3110 /*
3111 * If any eligible zone is balanced then the node is not considered
3112 * to be congested or dirty
3113 */
3114 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3115 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3116
3117 return true;
3118 }
3119
3120 /*
3121 * Prepare kswapd for sleeping. This verifies that there are no processes
3122 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3123 *
3124 * Returns true if kswapd is ready to sleep
3125 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int classzone_idx)3126 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3127 {
3128 int i;
3129
3130 /*
3131 * The throttled processes are normally woken up in balance_pgdat() as
3132 * soon as allow_direct_reclaim() is true. But there is a potential
3133 * race between when kswapd checks the watermarks and a process gets
3134 * throttled. There is also a potential race if processes get
3135 * throttled, kswapd wakes, a large process exits thereby balancing the
3136 * zones, which causes kswapd to exit balance_pgdat() before reaching
3137 * the wake up checks. If kswapd is going to sleep, no process should
3138 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3139 * the wake up is premature, processes will wake kswapd and get
3140 * throttled again. The difference from wake ups in balance_pgdat() is
3141 * that here we are under prepare_to_wait().
3142 */
3143 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3144 wake_up_all(&pgdat->pfmemalloc_wait);
3145
3146 /* Hopeless node, leave it to direct reclaim */
3147 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3148 return true;
3149
3150 for (i = 0; i <= classzone_idx; i++) {
3151 struct zone *zone = pgdat->node_zones + i;
3152
3153 if (!managed_zone(zone))
3154 continue;
3155
3156 if (!zone_balanced(zone, order, classzone_idx))
3157 return false;
3158 }
3159
3160 return true;
3161 }
3162
3163 /*
3164 * kswapd shrinks a node of pages that are at or below the highest usable
3165 * zone that is currently unbalanced.
3166 *
3167 * Returns true if kswapd scanned at least the requested number of pages to
3168 * reclaim or if the lack of progress was due to pages under writeback.
3169 * This is used to determine if the scanning priority needs to be raised.
3170 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3171 static bool kswapd_shrink_node(pg_data_t *pgdat,
3172 struct scan_control *sc)
3173 {
3174 struct zone *zone;
3175 int z;
3176
3177 /* Reclaim a number of pages proportional to the number of zones */
3178 sc->nr_to_reclaim = 0;
3179 for (z = 0; z <= sc->reclaim_idx; z++) {
3180 zone = pgdat->node_zones + z;
3181 if (!managed_zone(zone))
3182 continue;
3183
3184 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3185 }
3186
3187 /*
3188 * Historically care was taken to put equal pressure on all zones but
3189 * now pressure is applied based on node LRU order.
3190 */
3191 shrink_node(pgdat, sc);
3192
3193 /*
3194 * Fragmentation may mean that the system cannot be rebalanced for
3195 * high-order allocations. If twice the allocation size has been
3196 * reclaimed then recheck watermarks only at order-0 to prevent
3197 * excessive reclaim. Assume that a process requested a high-order
3198 * can direct reclaim/compact.
3199 */
3200 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3201 sc->order = 0;
3202
3203 return sc->nr_scanned >= sc->nr_to_reclaim;
3204 }
3205
3206 /*
3207 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3208 * that are eligible for use by the caller until at least one zone is
3209 * balanced.
3210 *
3211 * Returns the order kswapd finished reclaiming at.
3212 *
3213 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3214 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3215 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3216 * or lower is eligible for reclaim until at least one usable zone is
3217 * balanced.
3218 */
balance_pgdat(pg_data_t * pgdat,int order,int classzone_idx)3219 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3220 {
3221 int i;
3222 unsigned long nr_soft_reclaimed;
3223 unsigned long nr_soft_scanned;
3224 struct zone *zone;
3225 struct scan_control sc = {
3226 .gfp_mask = GFP_KERNEL,
3227 .order = order,
3228 .priority = DEF_PRIORITY,
3229 .may_writepage = !laptop_mode,
3230 .may_unmap = 1,
3231 .may_swap = 1,
3232 };
3233 count_vm_event(PAGEOUTRUN);
3234
3235 do {
3236 unsigned long nr_reclaimed = sc.nr_reclaimed;
3237 bool raise_priority = true;
3238
3239 sc.reclaim_idx = classzone_idx;
3240
3241 /*
3242 * If the number of buffer_heads exceeds the maximum allowed
3243 * then consider reclaiming from all zones. This has a dual
3244 * purpose -- on 64-bit systems it is expected that
3245 * buffer_heads are stripped during active rotation. On 32-bit
3246 * systems, highmem pages can pin lowmem memory and shrinking
3247 * buffers can relieve lowmem pressure. Reclaim may still not
3248 * go ahead if all eligible zones for the original allocation
3249 * request are balanced to avoid excessive reclaim from kswapd.
3250 */
3251 if (buffer_heads_over_limit) {
3252 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3253 zone = pgdat->node_zones + i;
3254 if (!managed_zone(zone))
3255 continue;
3256
3257 sc.reclaim_idx = i;
3258 break;
3259 }
3260 }
3261
3262 /*
3263 * Only reclaim if there are no eligible zones. Check from
3264 * high to low zone as allocations prefer higher zones.
3265 * Scanning from low to high zone would allow congestion to be
3266 * cleared during a very small window when a small low
3267 * zone was balanced even under extreme pressure when the
3268 * overall node may be congested. Note that sc.reclaim_idx
3269 * is not used as buffer_heads_over_limit may have adjusted
3270 * it.
3271 */
3272 for (i = classzone_idx; i >= 0; i--) {
3273 zone = pgdat->node_zones + i;
3274 if (!managed_zone(zone))
3275 continue;
3276
3277 if (zone_balanced(zone, sc.order, classzone_idx))
3278 goto out;
3279 }
3280
3281 /*
3282 * Do some background aging of the anon list, to give
3283 * pages a chance to be referenced before reclaiming. All
3284 * pages are rotated regardless of classzone as this is
3285 * about consistent aging.
3286 */
3287 age_active_anon(pgdat, &sc);
3288
3289 /*
3290 * If we're getting trouble reclaiming, start doing writepage
3291 * even in laptop mode.
3292 */
3293 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3294 sc.may_writepage = 1;
3295
3296 /* Call soft limit reclaim before calling shrink_node. */
3297 sc.nr_scanned = 0;
3298 nr_soft_scanned = 0;
3299 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3300 sc.gfp_mask, &nr_soft_scanned);
3301 sc.nr_reclaimed += nr_soft_reclaimed;
3302
3303 /*
3304 * There should be no need to raise the scanning priority if
3305 * enough pages are already being scanned that that high
3306 * watermark would be met at 100% efficiency.
3307 */
3308 if (kswapd_shrink_node(pgdat, &sc))
3309 raise_priority = false;
3310
3311 /*
3312 * If the low watermark is met there is no need for processes
3313 * to be throttled on pfmemalloc_wait as they should not be
3314 * able to safely make forward progress. Wake them
3315 */
3316 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3317 allow_direct_reclaim(pgdat))
3318 wake_up_all(&pgdat->pfmemalloc_wait);
3319
3320 /* Check if kswapd should be suspending */
3321 if (try_to_freeze() || kthread_should_stop())
3322 break;
3323
3324 /*
3325 * Raise priority if scanning rate is too low or there was no
3326 * progress in reclaiming pages
3327 */
3328 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3329 if (raise_priority || !nr_reclaimed)
3330 sc.priority--;
3331 } while (sc.priority >= 1);
3332
3333 if (!sc.nr_reclaimed)
3334 pgdat->kswapd_failures++;
3335
3336 out:
3337 /*
3338 * Return the order kswapd stopped reclaiming at as
3339 * prepare_kswapd_sleep() takes it into account. If another caller
3340 * entered the allocator slow path while kswapd was awake, order will
3341 * remain at the higher level.
3342 */
3343 return sc.order;
3344 }
3345
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int classzone_idx)3346 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3347 unsigned int classzone_idx)
3348 {
3349 long remaining = 0;
3350 DEFINE_WAIT(wait);
3351
3352 if (freezing(current) || kthread_should_stop())
3353 return;
3354
3355 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3356
3357 /* Try to sleep for a short interval */
3358 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3359 /*
3360 * Compaction records what page blocks it recently failed to
3361 * isolate pages from and skips them in the future scanning.
3362 * When kswapd is going to sleep, it is reasonable to assume
3363 * that pages and compaction may succeed so reset the cache.
3364 */
3365 reset_isolation_suitable(pgdat);
3366
3367 /*
3368 * We have freed the memory, now we should compact it to make
3369 * allocation of the requested order possible.
3370 */
3371 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3372
3373 remaining = schedule_timeout(HZ/10);
3374
3375 /*
3376 * If woken prematurely then reset kswapd_classzone_idx and
3377 * order. The values will either be from a wakeup request or
3378 * the previous request that slept prematurely.
3379 */
3380 if (remaining) {
3381 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3382 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3383 }
3384
3385 finish_wait(&pgdat->kswapd_wait, &wait);
3386 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3387 }
3388
3389 /*
3390 * After a short sleep, check if it was a premature sleep. If not, then
3391 * go fully to sleep until explicitly woken up.
3392 */
3393 if (!remaining &&
3394 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3395 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3396
3397 /*
3398 * vmstat counters are not perfectly accurate and the estimated
3399 * value for counters such as NR_FREE_PAGES can deviate from the
3400 * true value by nr_online_cpus * threshold. To avoid the zone
3401 * watermarks being breached while under pressure, we reduce the
3402 * per-cpu vmstat threshold while kswapd is awake and restore
3403 * them before going back to sleep.
3404 */
3405 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3406
3407 if (!kthread_should_stop())
3408 schedule();
3409
3410 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3411 } else {
3412 if (remaining)
3413 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3414 else
3415 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3416 }
3417 finish_wait(&pgdat->kswapd_wait, &wait);
3418 }
3419
3420 /*
3421 * The background pageout daemon, started as a kernel thread
3422 * from the init process.
3423 *
3424 * This basically trickles out pages so that we have _some_
3425 * free memory available even if there is no other activity
3426 * that frees anything up. This is needed for things like routing
3427 * etc, where we otherwise might have all activity going on in
3428 * asynchronous contexts that cannot page things out.
3429 *
3430 * If there are applications that are active memory-allocators
3431 * (most normal use), this basically shouldn't matter.
3432 */
kswapd(void * p)3433 static int kswapd(void *p)
3434 {
3435 unsigned int alloc_order, reclaim_order, classzone_idx;
3436 pg_data_t *pgdat = (pg_data_t*)p;
3437 struct task_struct *tsk = current;
3438
3439 struct reclaim_state reclaim_state = {
3440 .reclaimed_slab = 0,
3441 };
3442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3443
3444 lockdep_set_current_reclaim_state(GFP_KERNEL);
3445
3446 if (!cpumask_empty(cpumask))
3447 set_cpus_allowed_ptr(tsk, cpumask);
3448 current->reclaim_state = &reclaim_state;
3449
3450 /*
3451 * Tell the memory management that we're a "memory allocator",
3452 * and that if we need more memory we should get access to it
3453 * regardless (see "__alloc_pages()"). "kswapd" should
3454 * never get caught in the normal page freeing logic.
3455 *
3456 * (Kswapd normally doesn't need memory anyway, but sometimes
3457 * you need a small amount of memory in order to be able to
3458 * page out something else, and this flag essentially protects
3459 * us from recursively trying to free more memory as we're
3460 * trying to free the first piece of memory in the first place).
3461 */
3462 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3463 set_freezable();
3464
3465 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3466 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3467 for ( ; ; ) {
3468 bool ret;
3469
3470 kswapd_try_sleep:
3471 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3472 classzone_idx);
3473
3474 /* Read the new order and classzone_idx */
3475 alloc_order = reclaim_order = pgdat->kswapd_order;
3476 classzone_idx = pgdat->kswapd_classzone_idx;
3477 pgdat->kswapd_order = 0;
3478 pgdat->kswapd_classzone_idx = 0;
3479
3480 ret = try_to_freeze();
3481 if (kthread_should_stop())
3482 break;
3483
3484 /*
3485 * We can speed up thawing tasks if we don't call balance_pgdat
3486 * after returning from the refrigerator
3487 */
3488 if (ret)
3489 continue;
3490
3491 /*
3492 * Reclaim begins at the requested order but if a high-order
3493 * reclaim fails then kswapd falls back to reclaiming for
3494 * order-0. If that happens, kswapd will consider sleeping
3495 * for the order it finished reclaiming at (reclaim_order)
3496 * but kcompactd is woken to compact for the original
3497 * request (alloc_order).
3498 */
3499 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3500 alloc_order);
3501 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3502 if (reclaim_order < alloc_order)
3503 goto kswapd_try_sleep;
3504
3505 alloc_order = reclaim_order = pgdat->kswapd_order;
3506 classzone_idx = pgdat->kswapd_classzone_idx;
3507 }
3508
3509 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3510 current->reclaim_state = NULL;
3511 lockdep_clear_current_reclaim_state();
3512
3513 return 0;
3514 }
3515
3516 /*
3517 * A zone is low on free memory, so wake its kswapd task to service it.
3518 */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3519 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3520 {
3521 pg_data_t *pgdat;
3522 int z;
3523
3524 if (!managed_zone(zone))
3525 return;
3526
3527 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3528 return;
3529 pgdat = zone->zone_pgdat;
3530 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3531 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3532 if (!waitqueue_active(&pgdat->kswapd_wait))
3533 return;
3534
3535 /* Hopeless node, leave it to direct reclaim */
3536 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3537 return;
3538
3539 /* Only wake kswapd if all zones are unbalanced */
3540 for (z = 0; z <= classzone_idx; z++) {
3541 zone = pgdat->node_zones + z;
3542 if (!managed_zone(zone))
3543 continue;
3544
3545 if (zone_balanced(zone, order, classzone_idx))
3546 return;
3547 }
3548
3549 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3550 wake_up_interruptible(&pgdat->kswapd_wait);
3551 }
3552
3553 #ifdef CONFIG_HIBERNATION
3554 /*
3555 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3556 * freed pages.
3557 *
3558 * Rather than trying to age LRUs the aim is to preserve the overall
3559 * LRU order by reclaiming preferentially
3560 * inactive > active > active referenced > active mapped
3561 */
shrink_all_memory(unsigned long nr_to_reclaim)3562 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3563 {
3564 struct reclaim_state reclaim_state;
3565 struct scan_control sc = {
3566 .nr_to_reclaim = nr_to_reclaim,
3567 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3568 .reclaim_idx = MAX_NR_ZONES - 1,
3569 .priority = DEF_PRIORITY,
3570 .may_writepage = 1,
3571 .may_unmap = 1,
3572 .may_swap = 1,
3573 .hibernation_mode = 1,
3574 };
3575 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3576 struct task_struct *p = current;
3577 unsigned long nr_reclaimed;
3578
3579 p->flags |= PF_MEMALLOC;
3580 lockdep_set_current_reclaim_state(sc.gfp_mask);
3581 reclaim_state.reclaimed_slab = 0;
3582 p->reclaim_state = &reclaim_state;
3583
3584 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3585
3586 p->reclaim_state = NULL;
3587 lockdep_clear_current_reclaim_state();
3588 p->flags &= ~PF_MEMALLOC;
3589
3590 return nr_reclaimed;
3591 }
3592 #endif /* CONFIG_HIBERNATION */
3593
3594 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3595 not required for correctness. So if the last cpu in a node goes
3596 away, we get changed to run anywhere: as the first one comes back,
3597 restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3598 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3599 void *hcpu)
3600 {
3601 int nid;
3602
3603 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3604 for_each_node_state(nid, N_MEMORY) {
3605 pg_data_t *pgdat = NODE_DATA(nid);
3606 const struct cpumask *mask;
3607
3608 mask = cpumask_of_node(pgdat->node_id);
3609
3610 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3611 /* One of our CPUs online: restore mask */
3612 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3613 }
3614 }
3615 return NOTIFY_OK;
3616 }
3617
3618 /*
3619 * This kswapd start function will be called by init and node-hot-add.
3620 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3621 */
kswapd_run(int nid)3622 int kswapd_run(int nid)
3623 {
3624 pg_data_t *pgdat = NODE_DATA(nid);
3625 int ret = 0;
3626
3627 if (pgdat->kswapd)
3628 return 0;
3629
3630 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3631 if (IS_ERR(pgdat->kswapd)) {
3632 /* failure at boot is fatal */
3633 BUG_ON(system_state == SYSTEM_BOOTING);
3634 pr_err("Failed to start kswapd on node %d\n", nid);
3635 ret = PTR_ERR(pgdat->kswapd);
3636 pgdat->kswapd = NULL;
3637 }
3638 return ret;
3639 }
3640
3641 /*
3642 * Called by memory hotplug when all memory in a node is offlined. Caller must
3643 * hold mem_hotplug_begin/end().
3644 */
kswapd_stop(int nid)3645 void kswapd_stop(int nid)
3646 {
3647 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3648
3649 if (kswapd) {
3650 kthread_stop(kswapd);
3651 NODE_DATA(nid)->kswapd = NULL;
3652 }
3653 }
3654
kswapd_init(void)3655 static int __init kswapd_init(void)
3656 {
3657 int nid;
3658
3659 swap_setup();
3660 for_each_node_state(nid, N_MEMORY)
3661 kswapd_run(nid);
3662 hotcpu_notifier(cpu_callback, 0);
3663 return 0;
3664 }
3665
3666 module_init(kswapd_init)
3667
3668 #ifdef CONFIG_NUMA
3669 /*
3670 * Node reclaim mode
3671 *
3672 * If non-zero call node_reclaim when the number of free pages falls below
3673 * the watermarks.
3674 */
3675 int node_reclaim_mode __read_mostly;
3676
3677 #define RECLAIM_OFF 0
3678 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3679 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3680 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3681
3682 /*
3683 * Priority for NODE_RECLAIM. This determines the fraction of pages
3684 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3685 * a zone.
3686 */
3687 #define NODE_RECLAIM_PRIORITY 4
3688
3689 /*
3690 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3691 * occur.
3692 */
3693 int sysctl_min_unmapped_ratio = 1;
3694
3695 /*
3696 * If the number of slab pages in a zone grows beyond this percentage then
3697 * slab reclaim needs to occur.
3698 */
3699 int sysctl_min_slab_ratio = 5;
3700
node_unmapped_file_pages(struct pglist_data * pgdat)3701 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3702 {
3703 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3704 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3705 node_page_state(pgdat, NR_ACTIVE_FILE);
3706
3707 /*
3708 * It's possible for there to be more file mapped pages than
3709 * accounted for by the pages on the file LRU lists because
3710 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3711 */
3712 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3713 }
3714
3715 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)3716 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3717 {
3718 unsigned long nr_pagecache_reclaimable;
3719 unsigned long delta = 0;
3720
3721 /*
3722 * If RECLAIM_UNMAP is set, then all file pages are considered
3723 * potentially reclaimable. Otherwise, we have to worry about
3724 * pages like swapcache and node_unmapped_file_pages() provides
3725 * a better estimate
3726 */
3727 if (node_reclaim_mode & RECLAIM_UNMAP)
3728 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3729 else
3730 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3731
3732 /* If we can't clean pages, remove dirty pages from consideration */
3733 if (!(node_reclaim_mode & RECLAIM_WRITE))
3734 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3735
3736 /* Watch for any possible underflows due to delta */
3737 if (unlikely(delta > nr_pagecache_reclaimable))
3738 delta = nr_pagecache_reclaimable;
3739
3740 return nr_pagecache_reclaimable - delta;
3741 }
3742
3743 /*
3744 * Try to free up some pages from this node through reclaim.
3745 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)3746 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3747 {
3748 /* Minimum pages needed in order to stay on node */
3749 const unsigned long nr_pages = 1 << order;
3750 struct task_struct *p = current;
3751 struct reclaim_state reclaim_state;
3752 struct scan_control sc = {
3753 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3754 .gfp_mask = memalloc_noio_flags(gfp_mask),
3755 .order = order,
3756 .priority = NODE_RECLAIM_PRIORITY,
3757 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3758 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3759 .may_swap = 1,
3760 .reclaim_idx = gfp_zone(gfp_mask),
3761 };
3762
3763 cond_resched();
3764 /*
3765 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3766 * and we also need to be able to write out pages for RECLAIM_WRITE
3767 * and RECLAIM_UNMAP.
3768 */
3769 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3770 lockdep_set_current_reclaim_state(sc.gfp_mask);
3771 reclaim_state.reclaimed_slab = 0;
3772 p->reclaim_state = &reclaim_state;
3773
3774 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3775 /*
3776 * Free memory by calling shrink zone with increasing
3777 * priorities until we have enough memory freed.
3778 */
3779 do {
3780 shrink_node(pgdat, &sc);
3781 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3782 }
3783
3784 p->reclaim_state = NULL;
3785 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3786 lockdep_clear_current_reclaim_state();
3787 return sc.nr_reclaimed >= nr_pages;
3788 }
3789
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)3790 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3791 {
3792 int ret;
3793
3794 /*
3795 * Node reclaim reclaims unmapped file backed pages and
3796 * slab pages if we are over the defined limits.
3797 *
3798 * A small portion of unmapped file backed pages is needed for
3799 * file I/O otherwise pages read by file I/O will be immediately
3800 * thrown out if the node is overallocated. So we do not reclaim
3801 * if less than a specified percentage of the node is used by
3802 * unmapped file backed pages.
3803 */
3804 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3805 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3806 return NODE_RECLAIM_FULL;
3807
3808 /*
3809 * Do not scan if the allocation should not be delayed.
3810 */
3811 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3812 return NODE_RECLAIM_NOSCAN;
3813
3814 /*
3815 * Only run node reclaim on the local node or on nodes that do not
3816 * have associated processors. This will favor the local processor
3817 * over remote processors and spread off node memory allocations
3818 * as wide as possible.
3819 */
3820 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3821 return NODE_RECLAIM_NOSCAN;
3822
3823 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3824 return NODE_RECLAIM_NOSCAN;
3825
3826 ret = __node_reclaim(pgdat, gfp_mask, order);
3827 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3828
3829 if (!ret)
3830 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3831
3832 return ret;
3833 }
3834 #endif
3835
3836 /*
3837 * page_evictable - test whether a page is evictable
3838 * @page: the page to test
3839 *
3840 * Test whether page is evictable--i.e., should be placed on active/inactive
3841 * lists vs unevictable list.
3842 *
3843 * Reasons page might not be evictable:
3844 * (1) page's mapping marked unevictable
3845 * (2) page is part of an mlocked VMA
3846 *
3847 */
page_evictable(struct page * page)3848 int page_evictable(struct page *page)
3849 {
3850 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3851 }
3852
3853 #ifdef CONFIG_SHMEM
3854 /**
3855 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3856 * @pages: array of pages to check
3857 * @nr_pages: number of pages to check
3858 *
3859 * Checks pages for evictability and moves them to the appropriate lru list.
3860 *
3861 * This function is only used for SysV IPC SHM_UNLOCK.
3862 */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3863 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3864 {
3865 struct lruvec *lruvec;
3866 struct pglist_data *pgdat = NULL;
3867 int pgscanned = 0;
3868 int pgrescued = 0;
3869 int i;
3870
3871 for (i = 0; i < nr_pages; i++) {
3872 struct page *page = pages[i];
3873 struct pglist_data *pagepgdat = page_pgdat(page);
3874
3875 pgscanned++;
3876 if (pagepgdat != pgdat) {
3877 if (pgdat)
3878 spin_unlock_irq(&pgdat->lru_lock);
3879 pgdat = pagepgdat;
3880 spin_lock_irq(&pgdat->lru_lock);
3881 }
3882 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3883
3884 if (!PageLRU(page) || !PageUnevictable(page))
3885 continue;
3886
3887 if (page_evictable(page)) {
3888 enum lru_list lru = page_lru_base_type(page);
3889
3890 VM_BUG_ON_PAGE(PageActive(page), page);
3891 ClearPageUnevictable(page);
3892 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3893 add_page_to_lru_list(page, lruvec, lru);
3894 pgrescued++;
3895 }
3896 }
3897
3898 if (pgdat) {
3899 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3900 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3901 spin_unlock_irq(&pgdat->lru_lock);
3902 }
3903 }
3904 #endif /* CONFIG_SHMEM */
3905