1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "xattr.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28 static struct kmem_cache *nat_entry_slab;
29 static struct kmem_cache *free_nid_slab;
30 static struct kmem_cache *nat_entry_set_slab;
31
available_free_memory(struct f2fs_sb_info * sbi,int type)32 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 {
34 struct f2fs_nm_info *nm_i = NM_I(sbi);
35 struct sysinfo val;
36 unsigned long avail_ram;
37 unsigned long mem_size = 0;
38 bool res = false;
39
40 si_meminfo(&val);
41
42 /* only uses low memory */
43 avail_ram = val.totalram - val.totalhigh;
44
45 /*
46 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 */
48 if (type == FREE_NIDS) {
49 mem_size = (nm_i->nid_cnt[FREE_NID] *
50 sizeof(struct free_nid)) >> PAGE_SHIFT;
51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 } else if (type == NAT_ENTRIES) {
53 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54 PAGE_SHIFT;
55 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56 if (excess_cached_nats(sbi))
57 res = false;
58 } else if (type == DIRTY_DENTS) {
59 if (sbi->sb->s_bdi->wb.dirty_exceeded)
60 return false;
61 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63 } else if (type == INO_ENTRIES) {
64 int i;
65
66 for (i = 0; i < MAX_INO_ENTRY; i++)
67 mem_size += sbi->im[i].ino_num *
68 sizeof(struct ino_entry);
69 mem_size >>= PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 } else if (type == EXTENT_CACHE) {
72 mem_size = (atomic_read(&sbi->total_ext_tree) *
73 sizeof(struct extent_tree) +
74 atomic_read(&sbi->total_ext_node) *
75 sizeof(struct extent_node)) >> PAGE_SHIFT;
76 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77 } else if (type == INMEM_PAGES) {
78 /* it allows 20% / total_ram for inmemory pages */
79 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
80 res = mem_size < (val.totalram / 5);
81 } else {
82 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
83 return true;
84 }
85 return res;
86 }
87
clear_node_page_dirty(struct page * page)88 static void clear_node_page_dirty(struct page *page)
89 {
90 struct address_space *mapping = page->mapping;
91 unsigned int long flags;
92
93 if (PageDirty(page)) {
94 spin_lock_irqsave(&mapping->tree_lock, flags);
95 radix_tree_tag_clear(&mapping->page_tree,
96 page_index(page),
97 PAGECACHE_TAG_DIRTY);
98 spin_unlock_irqrestore(&mapping->tree_lock, flags);
99
100 clear_page_dirty_for_io(page);
101 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
102 }
103 ClearPageUptodate(page);
104 }
105
get_current_nat_page(struct f2fs_sb_info * sbi,nid_t nid)106 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107 {
108 pgoff_t index = current_nat_addr(sbi, nid);
109 return get_meta_page(sbi, index);
110 }
111
get_next_nat_page(struct f2fs_sb_info * sbi,nid_t nid)112 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113 {
114 struct page *src_page;
115 struct page *dst_page;
116 pgoff_t src_off;
117 pgoff_t dst_off;
118 void *src_addr;
119 void *dst_addr;
120 struct f2fs_nm_info *nm_i = NM_I(sbi);
121
122 src_off = current_nat_addr(sbi, nid);
123 dst_off = next_nat_addr(sbi, src_off);
124
125 /* get current nat block page with lock */
126 src_page = get_meta_page(sbi, src_off);
127 dst_page = grab_meta_page(sbi, dst_off);
128 f2fs_bug_on(sbi, PageDirty(src_page));
129
130 src_addr = page_address(src_page);
131 dst_addr = page_address(dst_page);
132 memcpy(dst_addr, src_addr, PAGE_SIZE);
133 set_page_dirty(dst_page);
134 f2fs_put_page(src_page, 1);
135
136 set_to_next_nat(nm_i, nid);
137
138 return dst_page;
139 }
140
__alloc_nat_entry(nid_t nid,bool no_fail)141 static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
142 {
143 struct nat_entry *new;
144
145 if (no_fail)
146 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
147 else
148 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
149 if (new) {
150 nat_set_nid(new, nid);
151 nat_reset_flag(new);
152 }
153 return new;
154 }
155
__free_nat_entry(struct nat_entry * e)156 static void __free_nat_entry(struct nat_entry *e)
157 {
158 kmem_cache_free(nat_entry_slab, e);
159 }
160
161 /* must be locked by nat_tree_lock */
__init_nat_entry(struct f2fs_nm_info * nm_i,struct nat_entry * ne,struct f2fs_nat_entry * raw_ne,bool no_fail)162 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
163 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
164 {
165 if (no_fail)
166 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
167 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
168 return NULL;
169
170 if (raw_ne)
171 node_info_from_raw_nat(&ne->ni, raw_ne);
172 list_add_tail(&ne->list, &nm_i->nat_entries);
173 nm_i->nat_cnt++;
174 return ne;
175 }
176
__lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t n)177 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
178 {
179 return radix_tree_lookup(&nm_i->nat_root, n);
180 }
181
__gang_lookup_nat_cache(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry ** ep)182 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
183 nid_t start, unsigned int nr, struct nat_entry **ep)
184 {
185 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
186 }
187
__del_from_nat_cache(struct f2fs_nm_info * nm_i,struct nat_entry * e)188 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
189 {
190 list_del(&e->list);
191 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
192 nm_i->nat_cnt--;
193 __free_nat_entry(e);
194 }
195
__grab_nat_entry_set(struct f2fs_nm_info * nm_i,struct nat_entry * ne)196 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
197 struct nat_entry *ne)
198 {
199 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
200 struct nat_entry_set *head;
201
202 head = radix_tree_lookup(&nm_i->nat_set_root, set);
203 if (!head) {
204 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
205
206 INIT_LIST_HEAD(&head->entry_list);
207 INIT_LIST_HEAD(&head->set_list);
208 head->set = set;
209 head->entry_cnt = 0;
210 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
211 }
212 return head;
213 }
214
__set_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry * ne)215 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
216 struct nat_entry *ne)
217 {
218 struct nat_entry_set *head;
219 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
220
221 if (!new_ne)
222 head = __grab_nat_entry_set(nm_i, ne);
223
224 /*
225 * update entry_cnt in below condition:
226 * 1. update NEW_ADDR to valid block address;
227 * 2. update old block address to new one;
228 */
229 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
230 !get_nat_flag(ne, IS_DIRTY)))
231 head->entry_cnt++;
232
233 set_nat_flag(ne, IS_PREALLOC, new_ne);
234
235 if (get_nat_flag(ne, IS_DIRTY))
236 goto refresh_list;
237
238 nm_i->dirty_nat_cnt++;
239 set_nat_flag(ne, IS_DIRTY, true);
240 refresh_list:
241 if (new_ne)
242 list_del_init(&ne->list);
243 else
244 list_move_tail(&ne->list, &head->entry_list);
245 }
246
__clear_nat_cache_dirty(struct f2fs_nm_info * nm_i,struct nat_entry_set * set,struct nat_entry * ne)247 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
248 struct nat_entry_set *set, struct nat_entry *ne)
249 {
250 list_move_tail(&ne->list, &nm_i->nat_entries);
251 set_nat_flag(ne, IS_DIRTY, false);
252 set->entry_cnt--;
253 nm_i->dirty_nat_cnt--;
254 }
255
__gang_lookup_nat_set(struct f2fs_nm_info * nm_i,nid_t start,unsigned int nr,struct nat_entry_set ** ep)256 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
257 nid_t start, unsigned int nr, struct nat_entry_set **ep)
258 {
259 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
260 start, nr);
261 }
262
need_dentry_mark(struct f2fs_sb_info * sbi,nid_t nid)263 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
264 {
265 struct f2fs_nm_info *nm_i = NM_I(sbi);
266 struct nat_entry *e;
267 bool need = false;
268
269 down_read(&nm_i->nat_tree_lock);
270 e = __lookup_nat_cache(nm_i, nid);
271 if (e) {
272 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
273 !get_nat_flag(e, HAS_FSYNCED_INODE))
274 need = true;
275 }
276 up_read(&nm_i->nat_tree_lock);
277 return need;
278 }
279
is_checkpointed_node(struct f2fs_sb_info * sbi,nid_t nid)280 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
281 {
282 struct f2fs_nm_info *nm_i = NM_I(sbi);
283 struct nat_entry *e;
284 bool is_cp = true;
285
286 down_read(&nm_i->nat_tree_lock);
287 e = __lookup_nat_cache(nm_i, nid);
288 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
289 is_cp = false;
290 up_read(&nm_i->nat_tree_lock);
291 return is_cp;
292 }
293
need_inode_block_update(struct f2fs_sb_info * sbi,nid_t ino)294 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
295 {
296 struct f2fs_nm_info *nm_i = NM_I(sbi);
297 struct nat_entry *e;
298 bool need_update = true;
299
300 down_read(&nm_i->nat_tree_lock);
301 e = __lookup_nat_cache(nm_i, ino);
302 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
303 (get_nat_flag(e, IS_CHECKPOINTED) ||
304 get_nat_flag(e, HAS_FSYNCED_INODE)))
305 need_update = false;
306 up_read(&nm_i->nat_tree_lock);
307 return need_update;
308 }
309
310 /* must be locked by nat_tree_lock */
cache_nat_entry(struct f2fs_sb_info * sbi,nid_t nid,struct f2fs_nat_entry * ne)311 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
312 struct f2fs_nat_entry *ne)
313 {
314 struct f2fs_nm_info *nm_i = NM_I(sbi);
315 struct nat_entry *new, *e;
316
317 new = __alloc_nat_entry(nid, false);
318 if (!new)
319 return;
320
321 down_write(&nm_i->nat_tree_lock);
322 e = __lookup_nat_cache(nm_i, nid);
323 if (!e)
324 e = __init_nat_entry(nm_i, new, ne, false);
325 else
326 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
327 nat_get_blkaddr(e) !=
328 le32_to_cpu(ne->block_addr) ||
329 nat_get_version(e) != ne->version);
330 up_write(&nm_i->nat_tree_lock);
331 if (e != new)
332 __free_nat_entry(new);
333 }
334
set_node_addr(struct f2fs_sb_info * sbi,struct node_info * ni,block_t new_blkaddr,bool fsync_done)335 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
336 block_t new_blkaddr, bool fsync_done)
337 {
338 struct f2fs_nm_info *nm_i = NM_I(sbi);
339 struct nat_entry *e;
340 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
341
342 down_write(&nm_i->nat_tree_lock);
343 e = __lookup_nat_cache(nm_i, ni->nid);
344 if (!e) {
345 e = __init_nat_entry(nm_i, new, NULL, true);
346 copy_node_info(&e->ni, ni);
347 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
348 } else if (new_blkaddr == NEW_ADDR) {
349 /*
350 * when nid is reallocated,
351 * previous nat entry can be remained in nat cache.
352 * So, reinitialize it with new information.
353 */
354 copy_node_info(&e->ni, ni);
355 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
356 }
357 /* let's free early to reduce memory consumption */
358 if (e != new)
359 __free_nat_entry(new);
360
361 /* sanity check */
362 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
363 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
364 new_blkaddr == NULL_ADDR);
365 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
366 new_blkaddr == NEW_ADDR);
367 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
368 nat_get_blkaddr(e) != NULL_ADDR &&
369 new_blkaddr == NEW_ADDR);
370
371 /* increment version no as node is removed */
372 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
373 unsigned char version = nat_get_version(e);
374 nat_set_version(e, inc_node_version(version));
375 }
376
377 /* change address */
378 nat_set_blkaddr(e, new_blkaddr);
379 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
380 set_nat_flag(e, IS_CHECKPOINTED, false);
381 __set_nat_cache_dirty(nm_i, e);
382
383 /* update fsync_mark if its inode nat entry is still alive */
384 if (ni->nid != ni->ino)
385 e = __lookup_nat_cache(nm_i, ni->ino);
386 if (e) {
387 if (fsync_done && ni->nid == ni->ino)
388 set_nat_flag(e, HAS_FSYNCED_INODE, true);
389 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
390 }
391 up_write(&nm_i->nat_tree_lock);
392 }
393
try_to_free_nats(struct f2fs_sb_info * sbi,int nr_shrink)394 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
395 {
396 struct f2fs_nm_info *nm_i = NM_I(sbi);
397 int nr = nr_shrink;
398
399 if (!down_write_trylock(&nm_i->nat_tree_lock))
400 return 0;
401
402 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
403 struct nat_entry *ne;
404 ne = list_first_entry(&nm_i->nat_entries,
405 struct nat_entry, list);
406 __del_from_nat_cache(nm_i, ne);
407 nr_shrink--;
408 }
409 up_write(&nm_i->nat_tree_lock);
410 return nr - nr_shrink;
411 }
412
413 /*
414 * This function always returns success
415 */
get_node_info(struct f2fs_sb_info * sbi,nid_t nid,struct node_info * ni)416 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
417 {
418 struct f2fs_nm_info *nm_i = NM_I(sbi);
419 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
420 struct f2fs_journal *journal = curseg->journal;
421 nid_t start_nid = START_NID(nid);
422 struct f2fs_nat_block *nat_blk;
423 struct page *page = NULL;
424 struct f2fs_nat_entry ne;
425 struct nat_entry *e;
426 pgoff_t index;
427 int i;
428
429 ni->nid = nid;
430
431 /* Check nat cache */
432 down_read(&nm_i->nat_tree_lock);
433 e = __lookup_nat_cache(nm_i, nid);
434 if (e) {
435 ni->ino = nat_get_ino(e);
436 ni->blk_addr = nat_get_blkaddr(e);
437 ni->version = nat_get_version(e);
438 up_read(&nm_i->nat_tree_lock);
439 return;
440 }
441
442 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
443
444 /* Check current segment summary */
445 down_read(&curseg->journal_rwsem);
446 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
447 if (i >= 0) {
448 ne = nat_in_journal(journal, i);
449 node_info_from_raw_nat(ni, &ne);
450 }
451 up_read(&curseg->journal_rwsem);
452 if (i >= 0) {
453 up_read(&nm_i->nat_tree_lock);
454 goto cache;
455 }
456
457 /* Fill node_info from nat page */
458 index = current_nat_addr(sbi, nid);
459 up_read(&nm_i->nat_tree_lock);
460
461 page = get_meta_page(sbi, index);
462 nat_blk = (struct f2fs_nat_block *)page_address(page);
463 ne = nat_blk->entries[nid - start_nid];
464 node_info_from_raw_nat(ni, &ne);
465 f2fs_put_page(page, 1);
466 cache:
467 /* cache nat entry */
468 cache_nat_entry(sbi, nid, &ne);
469 }
470
471 /*
472 * readahead MAX_RA_NODE number of node pages.
473 */
ra_node_pages(struct page * parent,int start,int n)474 static void ra_node_pages(struct page *parent, int start, int n)
475 {
476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
477 struct blk_plug plug;
478 int i, end;
479 nid_t nid;
480
481 blk_start_plug(&plug);
482
483 /* Then, try readahead for siblings of the desired node */
484 end = start + n;
485 end = min(end, NIDS_PER_BLOCK);
486 for (i = start; i < end; i++) {
487 nid = get_nid(parent, i, false);
488 ra_node_page(sbi, nid);
489 }
490
491 blk_finish_plug(&plug);
492 }
493
get_next_page_offset(struct dnode_of_data * dn,pgoff_t pgofs)494 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
495 {
496 const long direct_index = ADDRS_PER_INODE(dn->inode);
497 const long direct_blks = ADDRS_PER_BLOCK;
498 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
499 unsigned int skipped_unit = ADDRS_PER_BLOCK;
500 int cur_level = dn->cur_level;
501 int max_level = dn->max_level;
502 pgoff_t base = 0;
503
504 if (!dn->max_level)
505 return pgofs + 1;
506
507 while (max_level-- > cur_level)
508 skipped_unit *= NIDS_PER_BLOCK;
509
510 switch (dn->max_level) {
511 case 3:
512 base += 2 * indirect_blks;
513 case 2:
514 base += 2 * direct_blks;
515 case 1:
516 base += direct_index;
517 break;
518 default:
519 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
520 }
521
522 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
523 }
524
525 /*
526 * The maximum depth is four.
527 * Offset[0] will have raw inode offset.
528 */
get_node_path(struct inode * inode,long block,int offset[4],unsigned int noffset[4])529 static int get_node_path(struct inode *inode, long block,
530 int offset[4], unsigned int noffset[4])
531 {
532 const long direct_index = ADDRS_PER_INODE(inode);
533 const long direct_blks = ADDRS_PER_BLOCK;
534 const long dptrs_per_blk = NIDS_PER_BLOCK;
535 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
536 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
537 int n = 0;
538 int level = 0;
539
540 noffset[0] = 0;
541
542 if (block < direct_index) {
543 offset[n] = block;
544 goto got;
545 }
546 block -= direct_index;
547 if (block < direct_blks) {
548 offset[n++] = NODE_DIR1_BLOCK;
549 noffset[n] = 1;
550 offset[n] = block;
551 level = 1;
552 goto got;
553 }
554 block -= direct_blks;
555 if (block < direct_blks) {
556 offset[n++] = NODE_DIR2_BLOCK;
557 noffset[n] = 2;
558 offset[n] = block;
559 level = 1;
560 goto got;
561 }
562 block -= direct_blks;
563 if (block < indirect_blks) {
564 offset[n++] = NODE_IND1_BLOCK;
565 noffset[n] = 3;
566 offset[n++] = block / direct_blks;
567 noffset[n] = 4 + offset[n - 1];
568 offset[n] = block % direct_blks;
569 level = 2;
570 goto got;
571 }
572 block -= indirect_blks;
573 if (block < indirect_blks) {
574 offset[n++] = NODE_IND2_BLOCK;
575 noffset[n] = 4 + dptrs_per_blk;
576 offset[n++] = block / direct_blks;
577 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
578 offset[n] = block % direct_blks;
579 level = 2;
580 goto got;
581 }
582 block -= indirect_blks;
583 if (block < dindirect_blks) {
584 offset[n++] = NODE_DIND_BLOCK;
585 noffset[n] = 5 + (dptrs_per_blk * 2);
586 offset[n++] = block / indirect_blks;
587 noffset[n] = 6 + (dptrs_per_blk * 2) +
588 offset[n - 1] * (dptrs_per_blk + 1);
589 offset[n++] = (block / direct_blks) % dptrs_per_blk;
590 noffset[n] = 7 + (dptrs_per_blk * 2) +
591 offset[n - 2] * (dptrs_per_blk + 1) +
592 offset[n - 1];
593 offset[n] = block % direct_blks;
594 level = 3;
595 goto got;
596 } else {
597 return -E2BIG;
598 }
599 got:
600 return level;
601 }
602
603 /*
604 * Caller should call f2fs_put_dnode(dn).
605 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
606 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
607 * In the case of RDONLY_NODE, we don't need to care about mutex.
608 */
get_dnode_of_data(struct dnode_of_data * dn,pgoff_t index,int mode)609 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
610 {
611 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
612 struct page *npage[4];
613 struct page *parent = NULL;
614 int offset[4];
615 unsigned int noffset[4];
616 nid_t nids[4];
617 int level, i = 0;
618 int err = 0;
619
620 level = get_node_path(dn->inode, index, offset, noffset);
621 if (level < 0)
622 return level;
623
624 nids[0] = dn->inode->i_ino;
625 npage[0] = dn->inode_page;
626
627 if (!npage[0]) {
628 npage[0] = get_node_page(sbi, nids[0]);
629 if (IS_ERR(npage[0]))
630 return PTR_ERR(npage[0]);
631 }
632
633 /* if inline_data is set, should not report any block indices */
634 if (f2fs_has_inline_data(dn->inode) && index) {
635 err = -ENOENT;
636 f2fs_put_page(npage[0], 1);
637 goto release_out;
638 }
639
640 parent = npage[0];
641 if (level != 0)
642 nids[1] = get_nid(parent, offset[0], true);
643 dn->inode_page = npage[0];
644 dn->inode_page_locked = true;
645
646 /* get indirect or direct nodes */
647 for (i = 1; i <= level; i++) {
648 bool done = false;
649
650 if (!nids[i] && mode == ALLOC_NODE) {
651 /* alloc new node */
652 if (!alloc_nid(sbi, &(nids[i]))) {
653 err = -ENOSPC;
654 goto release_pages;
655 }
656
657 dn->nid = nids[i];
658 npage[i] = new_node_page(dn, noffset[i]);
659 if (IS_ERR(npage[i])) {
660 alloc_nid_failed(sbi, nids[i]);
661 err = PTR_ERR(npage[i]);
662 goto release_pages;
663 }
664
665 set_nid(parent, offset[i - 1], nids[i], i == 1);
666 alloc_nid_done(sbi, nids[i]);
667 done = true;
668 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
669 npage[i] = get_node_page_ra(parent, offset[i - 1]);
670 if (IS_ERR(npage[i])) {
671 err = PTR_ERR(npage[i]);
672 goto release_pages;
673 }
674 done = true;
675 }
676 if (i == 1) {
677 dn->inode_page_locked = false;
678 unlock_page(parent);
679 } else {
680 f2fs_put_page(parent, 1);
681 }
682
683 if (!done) {
684 npage[i] = get_node_page(sbi, nids[i]);
685 if (IS_ERR(npage[i])) {
686 err = PTR_ERR(npage[i]);
687 f2fs_put_page(npage[0], 0);
688 goto release_out;
689 }
690 }
691 if (i < level) {
692 parent = npage[i];
693 nids[i + 1] = get_nid(parent, offset[i], false);
694 }
695 }
696 dn->nid = nids[level];
697 dn->ofs_in_node = offset[level];
698 dn->node_page = npage[level];
699 dn->data_blkaddr = datablock_addr(dn->inode,
700 dn->node_page, dn->ofs_in_node);
701 return 0;
702
703 release_pages:
704 f2fs_put_page(parent, 1);
705 if (i > 1)
706 f2fs_put_page(npage[0], 0);
707 release_out:
708 dn->inode_page = NULL;
709 dn->node_page = NULL;
710 if (err == -ENOENT) {
711 dn->cur_level = i;
712 dn->max_level = level;
713 dn->ofs_in_node = offset[level];
714 }
715 return err;
716 }
717
truncate_node(struct dnode_of_data * dn)718 static void truncate_node(struct dnode_of_data *dn)
719 {
720 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 struct node_info ni;
722
723 get_node_info(sbi, dn->nid, &ni);
724
725 /* Deallocate node address */
726 invalidate_blocks(sbi, ni.blk_addr);
727 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
728 set_node_addr(sbi, &ni, NULL_ADDR, false);
729
730 if (dn->nid == dn->inode->i_ino) {
731 remove_orphan_inode(sbi, dn->nid);
732 dec_valid_inode_count(sbi);
733 f2fs_inode_synced(dn->inode);
734 }
735
736 clear_node_page_dirty(dn->node_page);
737 set_sbi_flag(sbi, SBI_IS_DIRTY);
738
739 f2fs_put_page(dn->node_page, 1);
740
741 invalidate_mapping_pages(NODE_MAPPING(sbi),
742 dn->node_page->index, dn->node_page->index);
743
744 dn->node_page = NULL;
745 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
746 }
747
truncate_dnode(struct dnode_of_data * dn)748 static int truncate_dnode(struct dnode_of_data *dn)
749 {
750 struct page *page;
751
752 if (dn->nid == 0)
753 return 1;
754
755 /* get direct node */
756 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
757 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
758 return 1;
759 else if (IS_ERR(page))
760 return PTR_ERR(page);
761
762 /* Make dnode_of_data for parameter */
763 dn->node_page = page;
764 dn->ofs_in_node = 0;
765 truncate_data_blocks(dn);
766 truncate_node(dn);
767 return 1;
768 }
769
truncate_nodes(struct dnode_of_data * dn,unsigned int nofs,int ofs,int depth)770 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
771 int ofs, int depth)
772 {
773 struct dnode_of_data rdn = *dn;
774 struct page *page;
775 struct f2fs_node *rn;
776 nid_t child_nid;
777 unsigned int child_nofs;
778 int freed = 0;
779 int i, ret;
780
781 if (dn->nid == 0)
782 return NIDS_PER_BLOCK + 1;
783
784 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
785
786 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
787 if (IS_ERR(page)) {
788 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
789 return PTR_ERR(page);
790 }
791
792 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
793
794 rn = F2FS_NODE(page);
795 if (depth < 3) {
796 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
797 child_nid = le32_to_cpu(rn->in.nid[i]);
798 if (child_nid == 0)
799 continue;
800 rdn.nid = child_nid;
801 ret = truncate_dnode(&rdn);
802 if (ret < 0)
803 goto out_err;
804 if (set_nid(page, i, 0, false))
805 dn->node_changed = true;
806 }
807 } else {
808 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
809 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
810 child_nid = le32_to_cpu(rn->in.nid[i]);
811 if (child_nid == 0) {
812 child_nofs += NIDS_PER_BLOCK + 1;
813 continue;
814 }
815 rdn.nid = child_nid;
816 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
817 if (ret == (NIDS_PER_BLOCK + 1)) {
818 if (set_nid(page, i, 0, false))
819 dn->node_changed = true;
820 child_nofs += ret;
821 } else if (ret < 0 && ret != -ENOENT) {
822 goto out_err;
823 }
824 }
825 freed = child_nofs;
826 }
827
828 if (!ofs) {
829 /* remove current indirect node */
830 dn->node_page = page;
831 truncate_node(dn);
832 freed++;
833 } else {
834 f2fs_put_page(page, 1);
835 }
836 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
837 return freed;
838
839 out_err:
840 f2fs_put_page(page, 1);
841 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
842 return ret;
843 }
844
truncate_partial_nodes(struct dnode_of_data * dn,struct f2fs_inode * ri,int * offset,int depth)845 static int truncate_partial_nodes(struct dnode_of_data *dn,
846 struct f2fs_inode *ri, int *offset, int depth)
847 {
848 struct page *pages[2];
849 nid_t nid[3];
850 nid_t child_nid;
851 int err = 0;
852 int i;
853 int idx = depth - 2;
854
855 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
856 if (!nid[0])
857 return 0;
858
859 /* get indirect nodes in the path */
860 for (i = 0; i < idx + 1; i++) {
861 /* reference count'll be increased */
862 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
863 if (IS_ERR(pages[i])) {
864 err = PTR_ERR(pages[i]);
865 idx = i - 1;
866 goto fail;
867 }
868 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
869 }
870
871 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
872
873 /* free direct nodes linked to a partial indirect node */
874 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
875 child_nid = get_nid(pages[idx], i, false);
876 if (!child_nid)
877 continue;
878 dn->nid = child_nid;
879 err = truncate_dnode(dn);
880 if (err < 0)
881 goto fail;
882 if (set_nid(pages[idx], i, 0, false))
883 dn->node_changed = true;
884 }
885
886 if (offset[idx + 1] == 0) {
887 dn->node_page = pages[idx];
888 dn->nid = nid[idx];
889 truncate_node(dn);
890 } else {
891 f2fs_put_page(pages[idx], 1);
892 }
893 offset[idx]++;
894 offset[idx + 1] = 0;
895 idx--;
896 fail:
897 for (i = idx; i >= 0; i--)
898 f2fs_put_page(pages[i], 1);
899
900 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
901
902 return err;
903 }
904
905 /*
906 * All the block addresses of data and nodes should be nullified.
907 */
truncate_inode_blocks(struct inode * inode,pgoff_t from)908 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
909 {
910 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
911 int err = 0, cont = 1;
912 int level, offset[4], noffset[4];
913 unsigned int nofs = 0;
914 struct f2fs_inode *ri;
915 struct dnode_of_data dn;
916 struct page *page;
917
918 trace_f2fs_truncate_inode_blocks_enter(inode, from);
919
920 level = get_node_path(inode, from, offset, noffset);
921 if (level < 0)
922 return level;
923
924 page = get_node_page(sbi, inode->i_ino);
925 if (IS_ERR(page)) {
926 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
927 return PTR_ERR(page);
928 }
929
930 set_new_dnode(&dn, inode, page, NULL, 0);
931 unlock_page(page);
932
933 ri = F2FS_INODE(page);
934 switch (level) {
935 case 0:
936 case 1:
937 nofs = noffset[1];
938 break;
939 case 2:
940 nofs = noffset[1];
941 if (!offset[level - 1])
942 goto skip_partial;
943 err = truncate_partial_nodes(&dn, ri, offset, level);
944 if (err < 0 && err != -ENOENT)
945 goto fail;
946 nofs += 1 + NIDS_PER_BLOCK;
947 break;
948 case 3:
949 nofs = 5 + 2 * NIDS_PER_BLOCK;
950 if (!offset[level - 1])
951 goto skip_partial;
952 err = truncate_partial_nodes(&dn, ri, offset, level);
953 if (err < 0 && err != -ENOENT)
954 goto fail;
955 break;
956 default:
957 BUG();
958 }
959
960 skip_partial:
961 while (cont) {
962 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
963 switch (offset[0]) {
964 case NODE_DIR1_BLOCK:
965 case NODE_DIR2_BLOCK:
966 err = truncate_dnode(&dn);
967 break;
968
969 case NODE_IND1_BLOCK:
970 case NODE_IND2_BLOCK:
971 err = truncate_nodes(&dn, nofs, offset[1], 2);
972 break;
973
974 case NODE_DIND_BLOCK:
975 err = truncate_nodes(&dn, nofs, offset[1], 3);
976 cont = 0;
977 break;
978
979 default:
980 BUG();
981 }
982 if (err < 0 && err != -ENOENT)
983 goto fail;
984 if (offset[1] == 0 &&
985 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
986 lock_page(page);
987 BUG_ON(page->mapping != NODE_MAPPING(sbi));
988 f2fs_wait_on_page_writeback(page, NODE, true);
989 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
990 set_page_dirty(page);
991 unlock_page(page);
992 }
993 offset[1] = 0;
994 offset[0]++;
995 nofs += err;
996 }
997 fail:
998 f2fs_put_page(page, 0);
999 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1000 return err > 0 ? 0 : err;
1001 }
1002
1003 /* caller must lock inode page */
truncate_xattr_node(struct inode * inode)1004 int truncate_xattr_node(struct inode *inode)
1005 {
1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1008 struct dnode_of_data dn;
1009 struct page *npage;
1010
1011 if (!nid)
1012 return 0;
1013
1014 npage = get_node_page(sbi, nid);
1015 if (IS_ERR(npage))
1016 return PTR_ERR(npage);
1017
1018 f2fs_i_xnid_write(inode, 0);
1019
1020 set_new_dnode(&dn, inode, NULL, npage, nid);
1021 truncate_node(&dn);
1022 return 0;
1023 }
1024
1025 /*
1026 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1027 * f2fs_unlock_op().
1028 */
remove_inode_page(struct inode * inode)1029 int remove_inode_page(struct inode *inode)
1030 {
1031 struct dnode_of_data dn;
1032 int err;
1033
1034 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1035 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1036 if (err)
1037 return err;
1038
1039 err = truncate_xattr_node(inode);
1040 if (err) {
1041 f2fs_put_dnode(&dn);
1042 return err;
1043 }
1044
1045 /* remove potential inline_data blocks */
1046 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1047 S_ISLNK(inode->i_mode))
1048 truncate_data_blocks_range(&dn, 1);
1049
1050 /* 0 is possible, after f2fs_new_inode() has failed */
1051 f2fs_bug_on(F2FS_I_SB(inode),
1052 inode->i_blocks != 0 && inode->i_blocks != 8);
1053
1054 /* will put inode & node pages */
1055 truncate_node(&dn);
1056 return 0;
1057 }
1058
new_inode_page(struct inode * inode)1059 struct page *new_inode_page(struct inode *inode)
1060 {
1061 struct dnode_of_data dn;
1062
1063 /* allocate inode page for new inode */
1064 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1065
1066 /* caller should f2fs_put_page(page, 1); */
1067 return new_node_page(&dn, 0);
1068 }
1069
new_node_page(struct dnode_of_data * dn,unsigned int ofs)1070 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1071 {
1072 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073 struct node_info new_ni;
1074 struct page *page;
1075 int err;
1076
1077 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078 return ERR_PTR(-EPERM);
1079
1080 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1081 if (!page)
1082 return ERR_PTR(-ENOMEM);
1083
1084 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1085 goto fail;
1086
1087 #ifdef CONFIG_F2FS_CHECK_FS
1088 get_node_info(sbi, dn->nid, &new_ni);
1089 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1090 #endif
1091 new_ni.nid = dn->nid;
1092 new_ni.ino = dn->inode->i_ino;
1093 new_ni.blk_addr = NULL_ADDR;
1094 new_ni.flag = 0;
1095 new_ni.version = 0;
1096 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1097
1098 f2fs_wait_on_page_writeback(page, NODE, true);
1099 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1100 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1101 if (!PageUptodate(page))
1102 SetPageUptodate(page);
1103 if (set_page_dirty(page))
1104 dn->node_changed = true;
1105
1106 if (f2fs_has_xattr_block(ofs))
1107 f2fs_i_xnid_write(dn->inode, dn->nid);
1108
1109 if (ofs == 0)
1110 inc_valid_inode_count(sbi);
1111 return page;
1112
1113 fail:
1114 clear_node_page_dirty(page);
1115 f2fs_put_page(page, 1);
1116 return ERR_PTR(err);
1117 }
1118
1119 /*
1120 * Caller should do after getting the following values.
1121 * 0: f2fs_put_page(page, 0)
1122 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1123 */
read_node_page(struct page * page,int op_flags)1124 static int read_node_page(struct page *page, int op_flags)
1125 {
1126 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1127 struct node_info ni;
1128 struct f2fs_io_info fio = {
1129 .sbi = sbi,
1130 .type = NODE,
1131 .op = REQ_OP_READ,
1132 .op_flags = op_flags,
1133 .page = page,
1134 .encrypted_page = NULL,
1135 };
1136
1137 if (PageUptodate(page))
1138 return LOCKED_PAGE;
1139
1140 get_node_info(sbi, page->index, &ni);
1141
1142 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1143 ClearPageUptodate(page);
1144 return -ENOENT;
1145 }
1146
1147 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1148 return f2fs_submit_page_bio(&fio);
1149 }
1150
1151 /*
1152 * Readahead a node page
1153 */
ra_node_page(struct f2fs_sb_info * sbi,nid_t nid)1154 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1155 {
1156 struct page *apage;
1157 int err;
1158
1159 if (!nid)
1160 return;
1161 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1162
1163 rcu_read_lock();
1164 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1165 rcu_read_unlock();
1166 if (apage)
1167 return;
1168
1169 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170 if (!apage)
1171 return;
1172
1173 err = read_node_page(apage, REQ_RAHEAD);
1174 f2fs_put_page(apage, err ? 1 : 0);
1175 }
1176
__get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid,struct page * parent,int start)1177 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1178 struct page *parent, int start)
1179 {
1180 struct page *page;
1181 int err;
1182
1183 if (!nid)
1184 return ERR_PTR(-ENOENT);
1185 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1186 repeat:
1187 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1188 if (!page)
1189 return ERR_PTR(-ENOMEM);
1190
1191 err = read_node_page(page, 0);
1192 if (err < 0) {
1193 f2fs_put_page(page, 1);
1194 return ERR_PTR(err);
1195 } else if (err == LOCKED_PAGE) {
1196 err = 0;
1197 goto page_hit;
1198 }
1199
1200 if (parent)
1201 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1202
1203 lock_page(page);
1204
1205 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1206 f2fs_put_page(page, 1);
1207 goto repeat;
1208 }
1209
1210 if (unlikely(!PageUptodate(page))) {
1211 err = -EIO;
1212 goto out_err;
1213 }
1214
1215 if (!f2fs_inode_chksum_verify(sbi, page)) {
1216 err = -EBADMSG;
1217 goto out_err;
1218 }
1219 page_hit:
1220 if(unlikely(nid != nid_of_node(page))) {
1221 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1222 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1223 nid, nid_of_node(page), ino_of_node(page),
1224 ofs_of_node(page), cpver_of_node(page),
1225 next_blkaddr_of_node(page));
1226 err = -EINVAL;
1227 out_err:
1228 ClearPageUptodate(page);
1229 f2fs_put_page(page, 1);
1230 return ERR_PTR(err);
1231 }
1232 return page;
1233 }
1234
get_node_page(struct f2fs_sb_info * sbi,pgoff_t nid)1235 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1236 {
1237 return __get_node_page(sbi, nid, NULL, 0);
1238 }
1239
get_node_page_ra(struct page * parent,int start)1240 struct page *get_node_page_ra(struct page *parent, int start)
1241 {
1242 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1243 nid_t nid = get_nid(parent, start, false);
1244
1245 return __get_node_page(sbi, nid, parent, start);
1246 }
1247
flush_inline_data(struct f2fs_sb_info * sbi,nid_t ino)1248 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1249 {
1250 struct inode *inode;
1251 struct page *page;
1252 int ret;
1253
1254 /* should flush inline_data before evict_inode */
1255 inode = ilookup(sbi->sb, ino);
1256 if (!inode)
1257 return;
1258
1259 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1260 FGP_LOCK|FGP_NOWAIT, 0);
1261 if (!page)
1262 goto iput_out;
1263
1264 if (!PageUptodate(page))
1265 goto page_out;
1266
1267 if (!PageDirty(page))
1268 goto page_out;
1269
1270 if (!clear_page_dirty_for_io(page))
1271 goto page_out;
1272
1273 ret = f2fs_write_inline_data(inode, page);
1274 inode_dec_dirty_pages(inode);
1275 remove_dirty_inode(inode);
1276 if (ret)
1277 set_page_dirty(page);
1278 page_out:
1279 f2fs_put_page(page, 1);
1280 iput_out:
1281 iput(inode);
1282 }
1283
last_fsync_dnode(struct f2fs_sb_info * sbi,nid_t ino)1284 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1285 {
1286 pgoff_t index, end;
1287 struct pagevec pvec;
1288 struct page *last_page = NULL;
1289
1290 pagevec_init(&pvec, 0);
1291 index = 0;
1292 end = ULONG_MAX;
1293
1294 while (index <= end) {
1295 int i, nr_pages;
1296 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1297 PAGECACHE_TAG_DIRTY,
1298 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1299 if (nr_pages == 0)
1300 break;
1301
1302 for (i = 0; i < nr_pages; i++) {
1303 struct page *page = pvec.pages[i];
1304
1305 if (unlikely(f2fs_cp_error(sbi))) {
1306 f2fs_put_page(last_page, 0);
1307 pagevec_release(&pvec);
1308 return ERR_PTR(-EIO);
1309 }
1310
1311 if (!IS_DNODE(page) || !is_cold_node(page))
1312 continue;
1313 if (ino_of_node(page) != ino)
1314 continue;
1315
1316 lock_page(page);
1317
1318 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1319 continue_unlock:
1320 unlock_page(page);
1321 continue;
1322 }
1323 if (ino_of_node(page) != ino)
1324 goto continue_unlock;
1325
1326 if (!PageDirty(page)) {
1327 /* someone wrote it for us */
1328 goto continue_unlock;
1329 }
1330
1331 if (last_page)
1332 f2fs_put_page(last_page, 0);
1333
1334 get_page(page);
1335 last_page = page;
1336 unlock_page(page);
1337 }
1338 pagevec_release(&pvec);
1339 cond_resched();
1340 }
1341 return last_page;
1342 }
1343
__write_node_page(struct page * page,bool atomic,bool * submitted,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1344 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1345 struct writeback_control *wbc, bool do_balance,
1346 enum iostat_type io_type)
1347 {
1348 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1349 nid_t nid;
1350 struct node_info ni;
1351 struct f2fs_io_info fio = {
1352 .sbi = sbi,
1353 .ino = ino_of_node(page),
1354 .type = NODE,
1355 .op = REQ_OP_WRITE,
1356 .op_flags = wbc_to_write_flags(wbc),
1357 .page = page,
1358 .encrypted_page = NULL,
1359 .submitted = false,
1360 .io_type = io_type,
1361 .io_wbc = wbc,
1362 };
1363
1364 trace_f2fs_writepage(page, NODE);
1365
1366 if (unlikely(f2fs_cp_error(sbi))) {
1367 dec_page_count(sbi, F2FS_DIRTY_NODES);
1368 unlock_page(page);
1369 return 0;
1370 }
1371
1372 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1373 goto redirty_out;
1374
1375 /* get old block addr of this node page */
1376 nid = nid_of_node(page);
1377 f2fs_bug_on(sbi, page->index != nid);
1378
1379 if (wbc->for_reclaim) {
1380 if (!down_read_trylock(&sbi->node_write))
1381 goto redirty_out;
1382 } else {
1383 down_read(&sbi->node_write);
1384 }
1385
1386 get_node_info(sbi, nid, &ni);
1387
1388 /* This page is already truncated */
1389 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1390 ClearPageUptodate(page);
1391 dec_page_count(sbi, F2FS_DIRTY_NODES);
1392 up_read(&sbi->node_write);
1393 unlock_page(page);
1394 return 0;
1395 }
1396
1397 if (atomic && !test_opt(sbi, NOBARRIER))
1398 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1399
1400 set_page_writeback(page);
1401 fio.old_blkaddr = ni.blk_addr;
1402 write_node_page(nid, &fio);
1403 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1404 dec_page_count(sbi, F2FS_DIRTY_NODES);
1405 up_read(&sbi->node_write);
1406
1407 if (wbc->for_reclaim) {
1408 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1409 page->index, NODE);
1410 submitted = NULL;
1411 }
1412
1413 unlock_page(page);
1414
1415 if (unlikely(f2fs_cp_error(sbi))) {
1416 f2fs_submit_merged_write(sbi, NODE);
1417 submitted = NULL;
1418 }
1419 if (submitted)
1420 *submitted = fio.submitted;
1421
1422 if (do_balance)
1423 f2fs_balance_fs(sbi, false);
1424 return 0;
1425
1426 redirty_out:
1427 redirty_page_for_writepage(wbc, page);
1428 return AOP_WRITEPAGE_ACTIVATE;
1429 }
1430
move_node_page(struct page * node_page,int gc_type)1431 void move_node_page(struct page *node_page, int gc_type)
1432 {
1433 if (gc_type == FG_GC) {
1434 struct writeback_control wbc = {
1435 .sync_mode = WB_SYNC_ALL,
1436 .nr_to_write = 1,
1437 .for_reclaim = 0,
1438 };
1439
1440 set_page_dirty(node_page);
1441 f2fs_wait_on_page_writeback(node_page, NODE, true);
1442
1443 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1444 if (!clear_page_dirty_for_io(node_page))
1445 goto out_page;
1446
1447 if (__write_node_page(node_page, false, NULL,
1448 &wbc, false, FS_GC_NODE_IO))
1449 unlock_page(node_page);
1450 goto release_page;
1451 } else {
1452 /* set page dirty and write it */
1453 if (!PageWriteback(node_page))
1454 set_page_dirty(node_page);
1455 }
1456 out_page:
1457 unlock_page(node_page);
1458 release_page:
1459 f2fs_put_page(node_page, 0);
1460 }
1461
f2fs_write_node_page(struct page * page,struct writeback_control * wbc)1462 static int f2fs_write_node_page(struct page *page,
1463 struct writeback_control *wbc)
1464 {
1465 return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1466 }
1467
fsync_node_pages(struct f2fs_sb_info * sbi,struct inode * inode,struct writeback_control * wbc,bool atomic)1468 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1469 struct writeback_control *wbc, bool atomic)
1470 {
1471 pgoff_t index, end;
1472 pgoff_t last_idx = ULONG_MAX;
1473 struct pagevec pvec;
1474 int ret = 0;
1475 struct page *last_page = NULL;
1476 bool marked = false;
1477 nid_t ino = inode->i_ino;
1478
1479 if (atomic) {
1480 last_page = last_fsync_dnode(sbi, ino);
1481 if (IS_ERR_OR_NULL(last_page))
1482 return PTR_ERR_OR_ZERO(last_page);
1483 }
1484 retry:
1485 pagevec_init(&pvec, 0);
1486 index = 0;
1487 end = ULONG_MAX;
1488
1489 while (index <= end) {
1490 int i, nr_pages;
1491 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1492 PAGECACHE_TAG_DIRTY,
1493 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1494 if (nr_pages == 0)
1495 break;
1496
1497 for (i = 0; i < nr_pages; i++) {
1498 struct page *page = pvec.pages[i];
1499 bool submitted = false;
1500
1501 if (unlikely(f2fs_cp_error(sbi))) {
1502 f2fs_put_page(last_page, 0);
1503 pagevec_release(&pvec);
1504 ret = -EIO;
1505 goto out;
1506 }
1507
1508 if (!IS_DNODE(page) || !is_cold_node(page))
1509 continue;
1510 if (ino_of_node(page) != ino)
1511 continue;
1512
1513 lock_page(page);
1514
1515 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1516 continue_unlock:
1517 unlock_page(page);
1518 continue;
1519 }
1520 if (ino_of_node(page) != ino)
1521 goto continue_unlock;
1522
1523 if (!PageDirty(page) && page != last_page) {
1524 /* someone wrote it for us */
1525 goto continue_unlock;
1526 }
1527
1528 f2fs_wait_on_page_writeback(page, NODE, true);
1529 BUG_ON(PageWriteback(page));
1530
1531 set_fsync_mark(page, 0);
1532 set_dentry_mark(page, 0);
1533
1534 if (!atomic || page == last_page) {
1535 set_fsync_mark(page, 1);
1536 if (IS_INODE(page)) {
1537 if (is_inode_flag_set(inode,
1538 FI_DIRTY_INODE))
1539 update_inode(inode, page);
1540 set_dentry_mark(page,
1541 need_dentry_mark(sbi, ino));
1542 }
1543 /* may be written by other thread */
1544 if (!PageDirty(page))
1545 set_page_dirty(page);
1546 }
1547
1548 if (!clear_page_dirty_for_io(page))
1549 goto continue_unlock;
1550
1551 ret = __write_node_page(page, atomic &&
1552 page == last_page,
1553 &submitted, wbc, true,
1554 FS_NODE_IO);
1555 if (ret) {
1556 unlock_page(page);
1557 f2fs_put_page(last_page, 0);
1558 break;
1559 } else if (submitted) {
1560 last_idx = page->index;
1561 }
1562
1563 if (page == last_page) {
1564 f2fs_put_page(page, 0);
1565 marked = true;
1566 break;
1567 }
1568 }
1569 pagevec_release(&pvec);
1570 cond_resched();
1571
1572 if (ret || marked)
1573 break;
1574 }
1575 if (!ret && atomic && !marked) {
1576 f2fs_msg(sbi->sb, KERN_DEBUG,
1577 "Retry to write fsync mark: ino=%u, idx=%lx",
1578 ino, last_page->index);
1579 lock_page(last_page);
1580 f2fs_wait_on_page_writeback(last_page, NODE, true);
1581 set_page_dirty(last_page);
1582 unlock_page(last_page);
1583 goto retry;
1584 }
1585 out:
1586 if (last_idx != ULONG_MAX)
1587 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1588 return ret ? -EIO: 0;
1589 }
1590
sync_node_pages(struct f2fs_sb_info * sbi,struct writeback_control * wbc,bool do_balance,enum iostat_type io_type)1591 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1592 bool do_balance, enum iostat_type io_type)
1593 {
1594 pgoff_t index, end;
1595 struct pagevec pvec;
1596 int step = 0;
1597 int nwritten = 0;
1598 int ret = 0;
1599
1600 pagevec_init(&pvec, 0);
1601
1602 next_step:
1603 index = 0;
1604 end = ULONG_MAX;
1605
1606 while (index <= end) {
1607 int i, nr_pages;
1608 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1609 PAGECACHE_TAG_DIRTY,
1610 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1611 if (nr_pages == 0)
1612 break;
1613
1614 for (i = 0; i < nr_pages; i++) {
1615 struct page *page = pvec.pages[i];
1616 bool submitted = false;
1617
1618 /*
1619 * flushing sequence with step:
1620 * 0. indirect nodes
1621 * 1. dentry dnodes
1622 * 2. file dnodes
1623 */
1624 if (step == 0 && IS_DNODE(page))
1625 continue;
1626 if (step == 1 && (!IS_DNODE(page) ||
1627 is_cold_node(page)))
1628 continue;
1629 if (step == 2 && (!IS_DNODE(page) ||
1630 !is_cold_node(page)))
1631 continue;
1632 lock_node:
1633 if (!trylock_page(page))
1634 continue;
1635
1636 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1637 continue_unlock:
1638 unlock_page(page);
1639 continue;
1640 }
1641
1642 if (!PageDirty(page)) {
1643 /* someone wrote it for us */
1644 goto continue_unlock;
1645 }
1646
1647 /* flush inline_data */
1648 if (is_inline_node(page)) {
1649 clear_inline_node(page);
1650 unlock_page(page);
1651 flush_inline_data(sbi, ino_of_node(page));
1652 goto lock_node;
1653 }
1654
1655 f2fs_wait_on_page_writeback(page, NODE, true);
1656
1657 BUG_ON(PageWriteback(page));
1658 if (!clear_page_dirty_for_io(page))
1659 goto continue_unlock;
1660
1661 set_fsync_mark(page, 0);
1662 set_dentry_mark(page, 0);
1663
1664 ret = __write_node_page(page, false, &submitted,
1665 wbc, do_balance, io_type);
1666 if (ret)
1667 unlock_page(page);
1668 else if (submitted)
1669 nwritten++;
1670
1671 if (--wbc->nr_to_write == 0)
1672 break;
1673 }
1674 pagevec_release(&pvec);
1675 cond_resched();
1676
1677 if (wbc->nr_to_write == 0) {
1678 step = 2;
1679 break;
1680 }
1681 }
1682
1683 if (step < 2) {
1684 step++;
1685 goto next_step;
1686 }
1687
1688 if (nwritten)
1689 f2fs_submit_merged_write(sbi, NODE);
1690
1691 if (unlikely(f2fs_cp_error(sbi)))
1692 return -EIO;
1693 return ret;
1694 }
1695
wait_on_node_pages_writeback(struct f2fs_sb_info * sbi,nid_t ino)1696 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1697 {
1698 pgoff_t index = 0, end = ULONG_MAX;
1699 struct pagevec pvec;
1700 int ret2, ret = 0;
1701
1702 pagevec_init(&pvec, 0);
1703
1704 while (index <= end) {
1705 int i, nr_pages;
1706 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1707 PAGECACHE_TAG_WRITEBACK,
1708 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1709 if (nr_pages == 0)
1710 break;
1711
1712 for (i = 0; i < nr_pages; i++) {
1713 struct page *page = pvec.pages[i];
1714
1715 /* until radix tree lookup accepts end_index */
1716 if (unlikely(page->index > end))
1717 continue;
1718
1719 if (ino && ino_of_node(page) == ino) {
1720 f2fs_wait_on_page_writeback(page, NODE, true);
1721 if (TestClearPageError(page))
1722 ret = -EIO;
1723 }
1724 }
1725 pagevec_release(&pvec);
1726 cond_resched();
1727 }
1728
1729 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1730 if (!ret)
1731 ret = ret2;
1732 return ret;
1733 }
1734
f2fs_write_node_pages(struct address_space * mapping,struct writeback_control * wbc)1735 static int f2fs_write_node_pages(struct address_space *mapping,
1736 struct writeback_control *wbc)
1737 {
1738 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1739 struct blk_plug plug;
1740 long diff;
1741
1742 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1743 goto skip_write;
1744
1745 /* balancing f2fs's metadata in background */
1746 f2fs_balance_fs_bg(sbi);
1747
1748 /* collect a number of dirty node pages and write together */
1749 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1750 goto skip_write;
1751
1752 trace_f2fs_writepages(mapping->host, wbc, NODE);
1753
1754 diff = nr_pages_to_write(sbi, NODE, wbc);
1755 wbc->sync_mode = WB_SYNC_NONE;
1756 blk_start_plug(&plug);
1757 sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1758 blk_finish_plug(&plug);
1759 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1760 return 0;
1761
1762 skip_write:
1763 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1764 trace_f2fs_writepages(mapping->host, wbc, NODE);
1765 return 0;
1766 }
1767
f2fs_set_node_page_dirty(struct page * page)1768 static int f2fs_set_node_page_dirty(struct page *page)
1769 {
1770 trace_f2fs_set_page_dirty(page, NODE);
1771
1772 if (!PageUptodate(page))
1773 SetPageUptodate(page);
1774 if (!PageDirty(page)) {
1775 __set_page_dirty_nobuffers(page);
1776 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1777 SetPagePrivate(page);
1778 f2fs_trace_pid(page);
1779 return 1;
1780 }
1781 return 0;
1782 }
1783
1784 /*
1785 * Structure of the f2fs node operations
1786 */
1787 const struct address_space_operations f2fs_node_aops = {
1788 .writepage = f2fs_write_node_page,
1789 .writepages = f2fs_write_node_pages,
1790 .set_page_dirty = f2fs_set_node_page_dirty,
1791 .invalidatepage = f2fs_invalidate_page,
1792 .releasepage = f2fs_release_page,
1793 #ifdef CONFIG_MIGRATION
1794 .migratepage = f2fs_migrate_page,
1795 #endif
1796 };
1797
__lookup_free_nid_list(struct f2fs_nm_info * nm_i,nid_t n)1798 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1799 nid_t n)
1800 {
1801 return radix_tree_lookup(&nm_i->free_nid_root, n);
1802 }
1803
__insert_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)1804 static int __insert_free_nid(struct f2fs_sb_info *sbi,
1805 struct free_nid *i, enum nid_state state)
1806 {
1807 struct f2fs_nm_info *nm_i = NM_I(sbi);
1808
1809 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1810 if (err)
1811 return err;
1812
1813 f2fs_bug_on(sbi, state != i->state);
1814 nm_i->nid_cnt[state]++;
1815 if (state == FREE_NID)
1816 list_add_tail(&i->list, &nm_i->free_nid_list);
1817 return 0;
1818 }
1819
__remove_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state state)1820 static void __remove_free_nid(struct f2fs_sb_info *sbi,
1821 struct free_nid *i, enum nid_state state)
1822 {
1823 struct f2fs_nm_info *nm_i = NM_I(sbi);
1824
1825 f2fs_bug_on(sbi, state != i->state);
1826 nm_i->nid_cnt[state]--;
1827 if (state == FREE_NID)
1828 list_del(&i->list);
1829 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1830 }
1831
__move_free_nid(struct f2fs_sb_info * sbi,struct free_nid * i,enum nid_state org_state,enum nid_state dst_state)1832 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1833 enum nid_state org_state, enum nid_state dst_state)
1834 {
1835 struct f2fs_nm_info *nm_i = NM_I(sbi);
1836
1837 f2fs_bug_on(sbi, org_state != i->state);
1838 i->state = dst_state;
1839 nm_i->nid_cnt[org_state]--;
1840 nm_i->nid_cnt[dst_state]++;
1841
1842 switch (dst_state) {
1843 case PREALLOC_NID:
1844 list_del(&i->list);
1845 break;
1846 case FREE_NID:
1847 list_add_tail(&i->list, &nm_i->free_nid_list);
1848 break;
1849 default:
1850 BUG_ON(1);
1851 }
1852 }
1853
update_free_nid_bitmap(struct f2fs_sb_info * sbi,nid_t nid,bool set,bool build)1854 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1855 bool set, bool build)
1856 {
1857 struct f2fs_nm_info *nm_i = NM_I(sbi);
1858 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1859 unsigned int nid_ofs = nid - START_NID(nid);
1860
1861 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1862 return;
1863
1864 if (set) {
1865 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1866 return;
1867 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1868 nm_i->free_nid_count[nat_ofs]++;
1869 } else {
1870 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1871 return;
1872 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1873 if (!build)
1874 nm_i->free_nid_count[nat_ofs]--;
1875 }
1876 }
1877
1878 /* return if the nid is recognized as free */
add_free_nid(struct f2fs_sb_info * sbi,nid_t nid,bool build,bool update)1879 static bool add_free_nid(struct f2fs_sb_info *sbi,
1880 nid_t nid, bool build, bool update)
1881 {
1882 struct f2fs_nm_info *nm_i = NM_I(sbi);
1883 struct free_nid *i, *e;
1884 struct nat_entry *ne;
1885 int err = -EINVAL;
1886 bool ret = false;
1887
1888 /* 0 nid should not be used */
1889 if (unlikely(nid == 0))
1890 return false;
1891
1892 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1893 i->nid = nid;
1894 i->state = FREE_NID;
1895
1896 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1897
1898 spin_lock(&nm_i->nid_list_lock);
1899
1900 if (build) {
1901 /*
1902 * Thread A Thread B
1903 * - f2fs_create
1904 * - f2fs_new_inode
1905 * - alloc_nid
1906 * - __insert_nid_to_list(PREALLOC_NID)
1907 * - f2fs_balance_fs_bg
1908 * - build_free_nids
1909 * - __build_free_nids
1910 * - scan_nat_page
1911 * - add_free_nid
1912 * - __lookup_nat_cache
1913 * - f2fs_add_link
1914 * - init_inode_metadata
1915 * - new_inode_page
1916 * - new_node_page
1917 * - set_node_addr
1918 * - alloc_nid_done
1919 * - __remove_nid_from_list(PREALLOC_NID)
1920 * - __insert_nid_to_list(FREE_NID)
1921 */
1922 ne = __lookup_nat_cache(nm_i, nid);
1923 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1924 nat_get_blkaddr(ne) != NULL_ADDR))
1925 goto err_out;
1926
1927 e = __lookup_free_nid_list(nm_i, nid);
1928 if (e) {
1929 if (e->state == FREE_NID)
1930 ret = true;
1931 goto err_out;
1932 }
1933 }
1934 ret = true;
1935 err = __insert_free_nid(sbi, i, FREE_NID);
1936 err_out:
1937 if (update) {
1938 update_free_nid_bitmap(sbi, nid, ret, build);
1939 if (!build)
1940 nm_i->available_nids++;
1941 }
1942 spin_unlock(&nm_i->nid_list_lock);
1943 radix_tree_preload_end();
1944
1945 if (err)
1946 kmem_cache_free(free_nid_slab, i);
1947 return ret;
1948 }
1949
remove_free_nid(struct f2fs_sb_info * sbi,nid_t nid)1950 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1951 {
1952 struct f2fs_nm_info *nm_i = NM_I(sbi);
1953 struct free_nid *i;
1954 bool need_free = false;
1955
1956 spin_lock(&nm_i->nid_list_lock);
1957 i = __lookup_free_nid_list(nm_i, nid);
1958 if (i && i->state == FREE_NID) {
1959 __remove_free_nid(sbi, i, FREE_NID);
1960 need_free = true;
1961 }
1962 spin_unlock(&nm_i->nid_list_lock);
1963
1964 if (need_free)
1965 kmem_cache_free(free_nid_slab, i);
1966 }
1967
scan_nat_page(struct f2fs_sb_info * sbi,struct page * nat_page,nid_t start_nid)1968 static void scan_nat_page(struct f2fs_sb_info *sbi,
1969 struct page *nat_page, nid_t start_nid)
1970 {
1971 struct f2fs_nm_info *nm_i = NM_I(sbi);
1972 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1973 block_t blk_addr;
1974 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1975 int i;
1976
1977 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1978
1979 i = start_nid % NAT_ENTRY_PER_BLOCK;
1980
1981 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1982 if (unlikely(start_nid >= nm_i->max_nid))
1983 break;
1984
1985 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1986 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1987 if (blk_addr == NULL_ADDR) {
1988 add_free_nid(sbi, start_nid, true, true);
1989 } else {
1990 spin_lock(&NM_I(sbi)->nid_list_lock);
1991 update_free_nid_bitmap(sbi, start_nid, false, true);
1992 spin_unlock(&NM_I(sbi)->nid_list_lock);
1993 }
1994 }
1995 }
1996
scan_curseg_cache(struct f2fs_sb_info * sbi)1997 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1998 {
1999 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2000 struct f2fs_journal *journal = curseg->journal;
2001 int i;
2002
2003 down_read(&curseg->journal_rwsem);
2004 for (i = 0; i < nats_in_cursum(journal); i++) {
2005 block_t addr;
2006 nid_t nid;
2007
2008 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2009 nid = le32_to_cpu(nid_in_journal(journal, i));
2010 if (addr == NULL_ADDR)
2011 add_free_nid(sbi, nid, true, false);
2012 else
2013 remove_free_nid(sbi, nid);
2014 }
2015 up_read(&curseg->journal_rwsem);
2016 }
2017
scan_free_nid_bits(struct f2fs_sb_info * sbi)2018 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2019 {
2020 struct f2fs_nm_info *nm_i = NM_I(sbi);
2021 unsigned int i, idx;
2022 nid_t nid;
2023
2024 down_read(&nm_i->nat_tree_lock);
2025
2026 for (i = 0; i < nm_i->nat_blocks; i++) {
2027 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2028 continue;
2029 if (!nm_i->free_nid_count[i])
2030 continue;
2031 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2032 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2033 NAT_ENTRY_PER_BLOCK, idx);
2034 if (idx >= NAT_ENTRY_PER_BLOCK)
2035 break;
2036
2037 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2038 add_free_nid(sbi, nid, true, false);
2039
2040 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2041 goto out;
2042 }
2043 }
2044 out:
2045 scan_curseg_cache(sbi);
2046
2047 up_read(&nm_i->nat_tree_lock);
2048 }
2049
__build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2050 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2051 {
2052 struct f2fs_nm_info *nm_i = NM_I(sbi);
2053 int i = 0;
2054 nid_t nid = nm_i->next_scan_nid;
2055
2056 if (unlikely(nid >= nm_i->max_nid))
2057 nid = 0;
2058
2059 /* Enough entries */
2060 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2061 return;
2062
2063 if (!sync && !available_free_memory(sbi, FREE_NIDS))
2064 return;
2065
2066 if (!mount) {
2067 /* try to find free nids in free_nid_bitmap */
2068 scan_free_nid_bits(sbi);
2069
2070 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2071 return;
2072 }
2073
2074 /* readahead nat pages to be scanned */
2075 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2076 META_NAT, true);
2077
2078 down_read(&nm_i->nat_tree_lock);
2079
2080 while (1) {
2081 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2082 nm_i->nat_block_bitmap)) {
2083 struct page *page = get_current_nat_page(sbi, nid);
2084
2085 scan_nat_page(sbi, page, nid);
2086 f2fs_put_page(page, 1);
2087 }
2088
2089 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2090 if (unlikely(nid >= nm_i->max_nid))
2091 nid = 0;
2092
2093 if (++i >= FREE_NID_PAGES)
2094 break;
2095 }
2096
2097 /* go to the next free nat pages to find free nids abundantly */
2098 nm_i->next_scan_nid = nid;
2099
2100 /* find free nids from current sum_pages */
2101 scan_curseg_cache(sbi);
2102
2103 up_read(&nm_i->nat_tree_lock);
2104
2105 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2106 nm_i->ra_nid_pages, META_NAT, false);
2107 }
2108
build_free_nids(struct f2fs_sb_info * sbi,bool sync,bool mount)2109 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2110 {
2111 mutex_lock(&NM_I(sbi)->build_lock);
2112 __build_free_nids(sbi, sync, mount);
2113 mutex_unlock(&NM_I(sbi)->build_lock);
2114 }
2115
2116 /*
2117 * If this function returns success, caller can obtain a new nid
2118 * from second parameter of this function.
2119 * The returned nid could be used ino as well as nid when inode is created.
2120 */
alloc_nid(struct f2fs_sb_info * sbi,nid_t * nid)2121 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2122 {
2123 struct f2fs_nm_info *nm_i = NM_I(sbi);
2124 struct free_nid *i = NULL;
2125 retry:
2126 #ifdef CONFIG_F2FS_FAULT_INJECTION
2127 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2128 f2fs_show_injection_info(FAULT_ALLOC_NID);
2129 return false;
2130 }
2131 #endif
2132 spin_lock(&nm_i->nid_list_lock);
2133
2134 if (unlikely(nm_i->available_nids == 0)) {
2135 spin_unlock(&nm_i->nid_list_lock);
2136 return false;
2137 }
2138
2139 /* We should not use stale free nids created by build_free_nids */
2140 if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2141 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2142 i = list_first_entry(&nm_i->free_nid_list,
2143 struct free_nid, list);
2144 *nid = i->nid;
2145
2146 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2147 nm_i->available_nids--;
2148
2149 update_free_nid_bitmap(sbi, *nid, false, false);
2150
2151 spin_unlock(&nm_i->nid_list_lock);
2152 return true;
2153 }
2154 spin_unlock(&nm_i->nid_list_lock);
2155
2156 /* Let's scan nat pages and its caches to get free nids */
2157 build_free_nids(sbi, true, false);
2158 goto retry;
2159 }
2160
2161 /*
2162 * alloc_nid() should be called prior to this function.
2163 */
alloc_nid_done(struct f2fs_sb_info * sbi,nid_t nid)2164 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2165 {
2166 struct f2fs_nm_info *nm_i = NM_I(sbi);
2167 struct free_nid *i;
2168
2169 spin_lock(&nm_i->nid_list_lock);
2170 i = __lookup_free_nid_list(nm_i, nid);
2171 f2fs_bug_on(sbi, !i);
2172 __remove_free_nid(sbi, i, PREALLOC_NID);
2173 spin_unlock(&nm_i->nid_list_lock);
2174
2175 kmem_cache_free(free_nid_slab, i);
2176 }
2177
2178 /*
2179 * alloc_nid() should be called prior to this function.
2180 */
alloc_nid_failed(struct f2fs_sb_info * sbi,nid_t nid)2181 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2182 {
2183 struct f2fs_nm_info *nm_i = NM_I(sbi);
2184 struct free_nid *i;
2185 bool need_free = false;
2186
2187 if (!nid)
2188 return;
2189
2190 spin_lock(&nm_i->nid_list_lock);
2191 i = __lookup_free_nid_list(nm_i, nid);
2192 f2fs_bug_on(sbi, !i);
2193
2194 if (!available_free_memory(sbi, FREE_NIDS)) {
2195 __remove_free_nid(sbi, i, PREALLOC_NID);
2196 need_free = true;
2197 } else {
2198 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2199 }
2200
2201 nm_i->available_nids++;
2202
2203 update_free_nid_bitmap(sbi, nid, true, false);
2204
2205 spin_unlock(&nm_i->nid_list_lock);
2206
2207 if (need_free)
2208 kmem_cache_free(free_nid_slab, i);
2209 }
2210
try_to_free_nids(struct f2fs_sb_info * sbi,int nr_shrink)2211 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2212 {
2213 struct f2fs_nm_info *nm_i = NM_I(sbi);
2214 struct free_nid *i, *next;
2215 int nr = nr_shrink;
2216
2217 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2218 return 0;
2219
2220 if (!mutex_trylock(&nm_i->build_lock))
2221 return 0;
2222
2223 spin_lock(&nm_i->nid_list_lock);
2224 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2225 if (nr_shrink <= 0 ||
2226 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2227 break;
2228
2229 __remove_free_nid(sbi, i, FREE_NID);
2230 kmem_cache_free(free_nid_slab, i);
2231 nr_shrink--;
2232 }
2233 spin_unlock(&nm_i->nid_list_lock);
2234 mutex_unlock(&nm_i->build_lock);
2235
2236 return nr - nr_shrink;
2237 }
2238
recover_inline_xattr(struct inode * inode,struct page * page)2239 void recover_inline_xattr(struct inode *inode, struct page *page)
2240 {
2241 void *src_addr, *dst_addr;
2242 size_t inline_size;
2243 struct page *ipage;
2244 struct f2fs_inode *ri;
2245
2246 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2247 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2248
2249 ri = F2FS_INODE(page);
2250 if (ri->i_inline & F2FS_INLINE_XATTR) {
2251 set_inode_flag(inode, FI_INLINE_XATTR);
2252 } else {
2253 clear_inode_flag(inode, FI_INLINE_XATTR);
2254 goto update_inode;
2255 }
2256
2257 dst_addr = inline_xattr_addr(inode, ipage);
2258 src_addr = inline_xattr_addr(inode, page);
2259 inline_size = inline_xattr_size(inode);
2260
2261 f2fs_wait_on_page_writeback(ipage, NODE, true);
2262 memcpy(dst_addr, src_addr, inline_size);
2263 update_inode:
2264 update_inode(inode, ipage);
2265 f2fs_put_page(ipage, 1);
2266 }
2267
recover_xattr_data(struct inode * inode,struct page * page)2268 int recover_xattr_data(struct inode *inode, struct page *page)
2269 {
2270 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2271 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2272 nid_t new_xnid;
2273 struct dnode_of_data dn;
2274 struct node_info ni;
2275 struct page *xpage;
2276
2277 if (!prev_xnid)
2278 goto recover_xnid;
2279
2280 /* 1: invalidate the previous xattr nid */
2281 get_node_info(sbi, prev_xnid, &ni);
2282 invalidate_blocks(sbi, ni.blk_addr);
2283 dec_valid_node_count(sbi, inode, false);
2284 set_node_addr(sbi, &ni, NULL_ADDR, false);
2285
2286 recover_xnid:
2287 /* 2: update xattr nid in inode */
2288 if (!alloc_nid(sbi, &new_xnid))
2289 return -ENOSPC;
2290
2291 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2292 xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2293 if (IS_ERR(xpage)) {
2294 alloc_nid_failed(sbi, new_xnid);
2295 return PTR_ERR(xpage);
2296 }
2297
2298 alloc_nid_done(sbi, new_xnid);
2299 update_inode_page(inode);
2300
2301 /* 3: update and set xattr node page dirty */
2302 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2303
2304 set_page_dirty(xpage);
2305 f2fs_put_page(xpage, 1);
2306
2307 return 0;
2308 }
2309
recover_inode_page(struct f2fs_sb_info * sbi,struct page * page)2310 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2311 {
2312 struct f2fs_inode *src, *dst;
2313 nid_t ino = ino_of_node(page);
2314 struct node_info old_ni, new_ni;
2315 struct page *ipage;
2316
2317 get_node_info(sbi, ino, &old_ni);
2318
2319 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2320 return -EINVAL;
2321 retry:
2322 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2323 if (!ipage) {
2324 congestion_wait(BLK_RW_ASYNC, HZ/50);
2325 goto retry;
2326 }
2327
2328 /* Should not use this inode from free nid list */
2329 remove_free_nid(sbi, ino);
2330
2331 if (!PageUptodate(ipage))
2332 SetPageUptodate(ipage);
2333 fill_node_footer(ipage, ino, ino, 0, true);
2334 set_cold_node(page, false);
2335
2336 src = F2FS_INODE(page);
2337 dst = F2FS_INODE(ipage);
2338
2339 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2340 dst->i_size = 0;
2341 dst->i_blocks = cpu_to_le64(1);
2342 dst->i_links = cpu_to_le32(1);
2343 dst->i_xattr_nid = 0;
2344 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2345 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2346 dst->i_extra_isize = src->i_extra_isize;
2347
2348 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2349 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2350 i_inline_xattr_size))
2351 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2352
2353 if (f2fs_sb_has_project_quota(sbi->sb) &&
2354 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2355 i_projid))
2356 dst->i_projid = src->i_projid;
2357 }
2358
2359 new_ni = old_ni;
2360 new_ni.ino = ino;
2361
2362 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2363 WARN_ON(1);
2364 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2365 inc_valid_inode_count(sbi);
2366 set_page_dirty(ipage);
2367 f2fs_put_page(ipage, 1);
2368 return 0;
2369 }
2370
restore_node_summary(struct f2fs_sb_info * sbi,unsigned int segno,struct f2fs_summary_block * sum)2371 void restore_node_summary(struct f2fs_sb_info *sbi,
2372 unsigned int segno, struct f2fs_summary_block *sum)
2373 {
2374 struct f2fs_node *rn;
2375 struct f2fs_summary *sum_entry;
2376 block_t addr;
2377 int i, idx, last_offset, nrpages;
2378
2379 /* scan the node segment */
2380 last_offset = sbi->blocks_per_seg;
2381 addr = START_BLOCK(sbi, segno);
2382 sum_entry = &sum->entries[0];
2383
2384 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2385 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2386
2387 /* readahead node pages */
2388 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2389
2390 for (idx = addr; idx < addr + nrpages; idx++) {
2391 struct page *page = get_tmp_page(sbi, idx);
2392
2393 rn = F2FS_NODE(page);
2394 sum_entry->nid = rn->footer.nid;
2395 sum_entry->version = 0;
2396 sum_entry->ofs_in_node = 0;
2397 sum_entry++;
2398 f2fs_put_page(page, 1);
2399 }
2400
2401 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2402 addr + nrpages);
2403 }
2404 }
2405
remove_nats_in_journal(struct f2fs_sb_info * sbi)2406 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2407 {
2408 struct f2fs_nm_info *nm_i = NM_I(sbi);
2409 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2410 struct f2fs_journal *journal = curseg->journal;
2411 int i;
2412
2413 down_write(&curseg->journal_rwsem);
2414 for (i = 0; i < nats_in_cursum(journal); i++) {
2415 struct nat_entry *ne;
2416 struct f2fs_nat_entry raw_ne;
2417 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2418
2419 raw_ne = nat_in_journal(journal, i);
2420
2421 ne = __lookup_nat_cache(nm_i, nid);
2422 if (!ne) {
2423 ne = __alloc_nat_entry(nid, true);
2424 __init_nat_entry(nm_i, ne, &raw_ne, true);
2425 }
2426
2427 /*
2428 * if a free nat in journal has not been used after last
2429 * checkpoint, we should remove it from available nids,
2430 * since later we will add it again.
2431 */
2432 if (!get_nat_flag(ne, IS_DIRTY) &&
2433 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2434 spin_lock(&nm_i->nid_list_lock);
2435 nm_i->available_nids--;
2436 spin_unlock(&nm_i->nid_list_lock);
2437 }
2438
2439 __set_nat_cache_dirty(nm_i, ne);
2440 }
2441 update_nats_in_cursum(journal, -i);
2442 up_write(&curseg->journal_rwsem);
2443 }
2444
__adjust_nat_entry_set(struct nat_entry_set * nes,struct list_head * head,int max)2445 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2446 struct list_head *head, int max)
2447 {
2448 struct nat_entry_set *cur;
2449
2450 if (nes->entry_cnt >= max)
2451 goto add_out;
2452
2453 list_for_each_entry(cur, head, set_list) {
2454 if (cur->entry_cnt >= nes->entry_cnt) {
2455 list_add(&nes->set_list, cur->set_list.prev);
2456 return;
2457 }
2458 }
2459 add_out:
2460 list_add_tail(&nes->set_list, head);
2461 }
2462
__update_nat_bits(struct f2fs_sb_info * sbi,nid_t start_nid,struct page * page)2463 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2464 struct page *page)
2465 {
2466 struct f2fs_nm_info *nm_i = NM_I(sbi);
2467 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2468 struct f2fs_nat_block *nat_blk = page_address(page);
2469 int valid = 0;
2470 int i = 0;
2471
2472 if (!enabled_nat_bits(sbi, NULL))
2473 return;
2474
2475 if (nat_index == 0) {
2476 valid = 1;
2477 i = 1;
2478 }
2479 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2480 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2481 valid++;
2482 }
2483 if (valid == 0) {
2484 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2485 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2486 return;
2487 }
2488
2489 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2490 if (valid == NAT_ENTRY_PER_BLOCK)
2491 __set_bit_le(nat_index, nm_i->full_nat_bits);
2492 else
2493 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2494 }
2495
__flush_nat_entry_set(struct f2fs_sb_info * sbi,struct nat_entry_set * set,struct cp_control * cpc)2496 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2497 struct nat_entry_set *set, struct cp_control *cpc)
2498 {
2499 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2500 struct f2fs_journal *journal = curseg->journal;
2501 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2502 bool to_journal = true;
2503 struct f2fs_nat_block *nat_blk;
2504 struct nat_entry *ne, *cur;
2505 struct page *page = NULL;
2506
2507 /*
2508 * there are two steps to flush nat entries:
2509 * #1, flush nat entries to journal in current hot data summary block.
2510 * #2, flush nat entries to nat page.
2511 */
2512 if (enabled_nat_bits(sbi, cpc) ||
2513 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2514 to_journal = false;
2515
2516 if (to_journal) {
2517 down_write(&curseg->journal_rwsem);
2518 } else {
2519 page = get_next_nat_page(sbi, start_nid);
2520 nat_blk = page_address(page);
2521 f2fs_bug_on(sbi, !nat_blk);
2522 }
2523
2524 /* flush dirty nats in nat entry set */
2525 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2526 struct f2fs_nat_entry *raw_ne;
2527 nid_t nid = nat_get_nid(ne);
2528 int offset;
2529
2530 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2531
2532 if (to_journal) {
2533 offset = lookup_journal_in_cursum(journal,
2534 NAT_JOURNAL, nid, 1);
2535 f2fs_bug_on(sbi, offset < 0);
2536 raw_ne = &nat_in_journal(journal, offset);
2537 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2538 } else {
2539 raw_ne = &nat_blk->entries[nid - start_nid];
2540 }
2541 raw_nat_from_node_info(raw_ne, &ne->ni);
2542 nat_reset_flag(ne);
2543 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2544 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2545 add_free_nid(sbi, nid, false, true);
2546 } else {
2547 spin_lock(&NM_I(sbi)->nid_list_lock);
2548 update_free_nid_bitmap(sbi, nid, false, false);
2549 spin_unlock(&NM_I(sbi)->nid_list_lock);
2550 }
2551 }
2552
2553 if (to_journal) {
2554 up_write(&curseg->journal_rwsem);
2555 } else {
2556 __update_nat_bits(sbi, start_nid, page);
2557 f2fs_put_page(page, 1);
2558 }
2559
2560 /* Allow dirty nats by node block allocation in write_begin */
2561 if (!set->entry_cnt) {
2562 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2563 kmem_cache_free(nat_entry_set_slab, set);
2564 }
2565 }
2566
2567 /*
2568 * This function is called during the checkpointing process.
2569 */
flush_nat_entries(struct f2fs_sb_info * sbi,struct cp_control * cpc)2570 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2571 {
2572 struct f2fs_nm_info *nm_i = NM_I(sbi);
2573 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2574 struct f2fs_journal *journal = curseg->journal;
2575 struct nat_entry_set *setvec[SETVEC_SIZE];
2576 struct nat_entry_set *set, *tmp;
2577 unsigned int found;
2578 nid_t set_idx = 0;
2579 LIST_HEAD(sets);
2580
2581 if (!nm_i->dirty_nat_cnt)
2582 return;
2583
2584 down_write(&nm_i->nat_tree_lock);
2585
2586 /*
2587 * if there are no enough space in journal to store dirty nat
2588 * entries, remove all entries from journal and merge them
2589 * into nat entry set.
2590 */
2591 if (enabled_nat_bits(sbi, cpc) ||
2592 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2593 remove_nats_in_journal(sbi);
2594
2595 while ((found = __gang_lookup_nat_set(nm_i,
2596 set_idx, SETVEC_SIZE, setvec))) {
2597 unsigned idx;
2598 set_idx = setvec[found - 1]->set + 1;
2599 for (idx = 0; idx < found; idx++)
2600 __adjust_nat_entry_set(setvec[idx], &sets,
2601 MAX_NAT_JENTRIES(journal));
2602 }
2603
2604 /* flush dirty nats in nat entry set */
2605 list_for_each_entry_safe(set, tmp, &sets, set_list)
2606 __flush_nat_entry_set(sbi, set, cpc);
2607
2608 up_write(&nm_i->nat_tree_lock);
2609 /* Allow dirty nats by node block allocation in write_begin */
2610 }
2611
__get_nat_bitmaps(struct f2fs_sb_info * sbi)2612 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2613 {
2614 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2615 struct f2fs_nm_info *nm_i = NM_I(sbi);
2616 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2617 unsigned int i;
2618 __u64 cp_ver = cur_cp_version(ckpt);
2619 block_t nat_bits_addr;
2620
2621 if (!enabled_nat_bits(sbi, NULL))
2622 return 0;
2623
2624 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2625 nm_i->nat_bits = f2fs_kzalloc(sbi,
2626 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2627 if (!nm_i->nat_bits)
2628 return -ENOMEM;
2629
2630 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2631 nm_i->nat_bits_blocks;
2632 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2633 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2634
2635 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2636 page_address(page), F2FS_BLKSIZE);
2637 f2fs_put_page(page, 1);
2638 }
2639
2640 cp_ver |= (cur_cp_crc(ckpt) << 32);
2641 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2642 disable_nat_bits(sbi, true);
2643 return 0;
2644 }
2645
2646 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2647 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2648
2649 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2650 return 0;
2651 }
2652
load_free_nid_bitmap(struct f2fs_sb_info * sbi)2653 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2654 {
2655 struct f2fs_nm_info *nm_i = NM_I(sbi);
2656 unsigned int i = 0;
2657 nid_t nid, last_nid;
2658
2659 if (!enabled_nat_bits(sbi, NULL))
2660 return;
2661
2662 for (i = 0; i < nm_i->nat_blocks; i++) {
2663 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2664 if (i >= nm_i->nat_blocks)
2665 break;
2666
2667 __set_bit_le(i, nm_i->nat_block_bitmap);
2668
2669 nid = i * NAT_ENTRY_PER_BLOCK;
2670 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2671
2672 spin_lock(&NM_I(sbi)->nid_list_lock);
2673 for (; nid < last_nid; nid++)
2674 update_free_nid_bitmap(sbi, nid, true, true);
2675 spin_unlock(&NM_I(sbi)->nid_list_lock);
2676 }
2677
2678 for (i = 0; i < nm_i->nat_blocks; i++) {
2679 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2680 if (i >= nm_i->nat_blocks)
2681 break;
2682
2683 __set_bit_le(i, nm_i->nat_block_bitmap);
2684 }
2685 }
2686
init_node_manager(struct f2fs_sb_info * sbi)2687 static int init_node_manager(struct f2fs_sb_info *sbi)
2688 {
2689 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2690 struct f2fs_nm_info *nm_i = NM_I(sbi);
2691 unsigned char *version_bitmap;
2692 unsigned int nat_segs;
2693 int err;
2694
2695 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2696
2697 /* segment_count_nat includes pair segment so divide to 2. */
2698 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2699 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2700 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2701
2702 /* not used nids: 0, node, meta, (and root counted as valid node) */
2703 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2704 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2705 nm_i->nid_cnt[FREE_NID] = 0;
2706 nm_i->nid_cnt[PREALLOC_NID] = 0;
2707 nm_i->nat_cnt = 0;
2708 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2709 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2710 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2711
2712 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2713 INIT_LIST_HEAD(&nm_i->free_nid_list);
2714 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2715 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2716 INIT_LIST_HEAD(&nm_i->nat_entries);
2717
2718 mutex_init(&nm_i->build_lock);
2719 spin_lock_init(&nm_i->nid_list_lock);
2720 init_rwsem(&nm_i->nat_tree_lock);
2721
2722 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2723 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2724 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2725 if (!version_bitmap)
2726 return -EFAULT;
2727
2728 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2729 GFP_KERNEL);
2730 if (!nm_i->nat_bitmap)
2731 return -ENOMEM;
2732
2733 err = __get_nat_bitmaps(sbi);
2734 if (err)
2735 return err;
2736
2737 #ifdef CONFIG_F2FS_CHECK_FS
2738 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2739 GFP_KERNEL);
2740 if (!nm_i->nat_bitmap_mir)
2741 return -ENOMEM;
2742 #endif
2743
2744 return 0;
2745 }
2746
init_free_nid_cache(struct f2fs_sb_info * sbi)2747 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2748 {
2749 struct f2fs_nm_info *nm_i = NM_I(sbi);
2750 int i;
2751
2752 nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks *
2753 sizeof(unsigned char *), GFP_KERNEL);
2754 if (!nm_i->free_nid_bitmap)
2755 return -ENOMEM;
2756
2757 for (i = 0; i < nm_i->nat_blocks; i++) {
2758 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2759 NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2760 if (!nm_i->free_nid_bitmap)
2761 return -ENOMEM;
2762 }
2763
2764 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2765 GFP_KERNEL);
2766 if (!nm_i->nat_block_bitmap)
2767 return -ENOMEM;
2768
2769 nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2770 sizeof(unsigned short), GFP_KERNEL);
2771 if (!nm_i->free_nid_count)
2772 return -ENOMEM;
2773 return 0;
2774 }
2775
build_node_manager(struct f2fs_sb_info * sbi)2776 int build_node_manager(struct f2fs_sb_info *sbi)
2777 {
2778 int err;
2779
2780 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2781 GFP_KERNEL);
2782 if (!sbi->nm_info)
2783 return -ENOMEM;
2784
2785 err = init_node_manager(sbi);
2786 if (err)
2787 return err;
2788
2789 err = init_free_nid_cache(sbi);
2790 if (err)
2791 return err;
2792
2793 /* load free nid status from nat_bits table */
2794 load_free_nid_bitmap(sbi);
2795
2796 build_free_nids(sbi, true, true);
2797 return 0;
2798 }
2799
destroy_node_manager(struct f2fs_sb_info * sbi)2800 void destroy_node_manager(struct f2fs_sb_info *sbi)
2801 {
2802 struct f2fs_nm_info *nm_i = NM_I(sbi);
2803 struct free_nid *i, *next_i;
2804 struct nat_entry *natvec[NATVEC_SIZE];
2805 struct nat_entry_set *setvec[SETVEC_SIZE];
2806 nid_t nid = 0;
2807 unsigned int found;
2808
2809 if (!nm_i)
2810 return;
2811
2812 /* destroy free nid list */
2813 spin_lock(&nm_i->nid_list_lock);
2814 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2815 __remove_free_nid(sbi, i, FREE_NID);
2816 spin_unlock(&nm_i->nid_list_lock);
2817 kmem_cache_free(free_nid_slab, i);
2818 spin_lock(&nm_i->nid_list_lock);
2819 }
2820 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2821 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2822 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2823 spin_unlock(&nm_i->nid_list_lock);
2824
2825 /* destroy nat cache */
2826 down_write(&nm_i->nat_tree_lock);
2827 while ((found = __gang_lookup_nat_cache(nm_i,
2828 nid, NATVEC_SIZE, natvec))) {
2829 unsigned idx;
2830
2831 nid = nat_get_nid(natvec[found - 1]) + 1;
2832 for (idx = 0; idx < found; idx++)
2833 __del_from_nat_cache(nm_i, natvec[idx]);
2834 }
2835 f2fs_bug_on(sbi, nm_i->nat_cnt);
2836
2837 /* destroy nat set cache */
2838 nid = 0;
2839 while ((found = __gang_lookup_nat_set(nm_i,
2840 nid, SETVEC_SIZE, setvec))) {
2841 unsigned idx;
2842
2843 nid = setvec[found - 1]->set + 1;
2844 for (idx = 0; idx < found; idx++) {
2845 /* entry_cnt is not zero, when cp_error was occurred */
2846 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2847 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2848 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2849 }
2850 }
2851 up_write(&nm_i->nat_tree_lock);
2852
2853 kvfree(nm_i->nat_block_bitmap);
2854 if (nm_i->free_nid_bitmap) {
2855 int i;
2856
2857 for (i = 0; i < nm_i->nat_blocks; i++)
2858 kvfree(nm_i->free_nid_bitmap[i]);
2859 kfree(nm_i->free_nid_bitmap);
2860 }
2861 kvfree(nm_i->free_nid_count);
2862
2863 kfree(nm_i->nat_bitmap);
2864 kfree(nm_i->nat_bits);
2865 #ifdef CONFIG_F2FS_CHECK_FS
2866 kfree(nm_i->nat_bitmap_mir);
2867 #endif
2868 sbi->nm_info = NULL;
2869 kfree(nm_i);
2870 }
2871
create_node_manager_caches(void)2872 int __init create_node_manager_caches(void)
2873 {
2874 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2875 sizeof(struct nat_entry));
2876 if (!nat_entry_slab)
2877 goto fail;
2878
2879 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2880 sizeof(struct free_nid));
2881 if (!free_nid_slab)
2882 goto destroy_nat_entry;
2883
2884 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2885 sizeof(struct nat_entry_set));
2886 if (!nat_entry_set_slab)
2887 goto destroy_free_nid;
2888 return 0;
2889
2890 destroy_free_nid:
2891 kmem_cache_destroy(free_nid_slab);
2892 destroy_nat_entry:
2893 kmem_cache_destroy(nat_entry_slab);
2894 fail:
2895 return -ENOMEM;
2896 }
2897
destroy_node_manager_caches(void)2898 void destroy_node_manager_caches(void)
2899 {
2900 kmem_cache_destroy(nat_entry_set_slab);
2901 kmem_cache_destroy(free_nid_slab);
2902 kmem_cache_destroy(nat_entry_slab);
2903 }
2904