1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <drm/drmP.h>
29 #include <drm/radeon_drm.h>
30 #include "radeon.h"
31 #include "radeon_trace.h"
32
33 /*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time. The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID. When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer. VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53 /**
54 * radeon_vm_num_pde - return the number of page directory entries
55 *
56 * @rdev: radeon_device pointer
57 *
58 * Calculate the number of page directory entries (cayman+).
59 */
radeon_vm_num_pdes(struct radeon_device * rdev)60 static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
61 {
62 return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
63 }
64
65 /**
66 * radeon_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @rdev: radeon_device pointer
69 *
70 * Calculate the size of the page directory in bytes (cayman+).
71 */
radeon_vm_directory_size(struct radeon_device * rdev)72 static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
73 {
74 return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
75 }
76
77 /**
78 * radeon_vm_manager_init - init the vm manager
79 *
80 * @rdev: radeon_device pointer
81 *
82 * Init the vm manager (cayman+).
83 * Returns 0 for success, error for failure.
84 */
radeon_vm_manager_init(struct radeon_device * rdev)85 int radeon_vm_manager_init(struct radeon_device *rdev)
86 {
87 int r;
88
89 if (!rdev->vm_manager.enabled) {
90 r = radeon_asic_vm_init(rdev);
91 if (r)
92 return r;
93
94 rdev->vm_manager.enabled = true;
95 }
96 return 0;
97 }
98
99 /**
100 * radeon_vm_manager_fini - tear down the vm manager
101 *
102 * @rdev: radeon_device pointer
103 *
104 * Tear down the VM manager (cayman+).
105 */
radeon_vm_manager_fini(struct radeon_device * rdev)106 void radeon_vm_manager_fini(struct radeon_device *rdev)
107 {
108 int i;
109
110 if (!rdev->vm_manager.enabled)
111 return;
112
113 for (i = 0; i < RADEON_NUM_VM; ++i)
114 radeon_fence_unref(&rdev->vm_manager.active[i]);
115 radeon_asic_vm_fini(rdev);
116 rdev->vm_manager.enabled = false;
117 }
118
119 /**
120 * radeon_vm_get_bos - add the vm BOs to a validation list
121 *
122 * @vm: vm providing the BOs
123 * @head: head of validation list
124 *
125 * Add the page directory to the list of BOs to
126 * validate for command submission (cayman+).
127 */
radeon_vm_get_bos(struct radeon_device * rdev,struct radeon_vm * vm,struct list_head * head)128 struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev,
129 struct radeon_vm *vm,
130 struct list_head *head)
131 {
132 struct radeon_bo_list *list;
133 unsigned i, idx;
134
135 list = drm_malloc_ab(vm->max_pde_used + 2,
136 sizeof(struct radeon_bo_list));
137 if (!list)
138 return NULL;
139
140 /* add the vm page table to the list */
141 list[0].robj = vm->page_directory;
142 list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
143 list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
144 list[0].tv.bo = &vm->page_directory->tbo;
145 list[0].tv.shared = true;
146 list[0].tiling_flags = 0;
147 list_add(&list[0].tv.head, head);
148
149 for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
150 if (!vm->page_tables[i].bo)
151 continue;
152
153 list[idx].robj = vm->page_tables[i].bo;
154 list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
155 list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
156 list[idx].tv.bo = &list[idx].robj->tbo;
157 list[idx].tv.shared = true;
158 list[idx].tiling_flags = 0;
159 list_add(&list[idx++].tv.head, head);
160 }
161
162 return list;
163 }
164
165 /**
166 * radeon_vm_grab_id - allocate the next free VMID
167 *
168 * @rdev: radeon_device pointer
169 * @vm: vm to allocate id for
170 * @ring: ring we want to submit job to
171 *
172 * Allocate an id for the vm (cayman+).
173 * Returns the fence we need to sync to (if any).
174 *
175 * Global and local mutex must be locked!
176 */
radeon_vm_grab_id(struct radeon_device * rdev,struct radeon_vm * vm,int ring)177 struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
178 struct radeon_vm *vm, int ring)
179 {
180 struct radeon_fence *best[RADEON_NUM_RINGS] = {};
181 struct radeon_vm_id *vm_id = &vm->ids[ring];
182
183 unsigned choices[2] = {};
184 unsigned i;
185
186 /* check if the id is still valid */
187 if (vm_id->id && vm_id->last_id_use &&
188 vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
189 return NULL;
190
191 /* we definately need to flush */
192 vm_id->pd_gpu_addr = ~0ll;
193
194 /* skip over VMID 0, since it is the system VM */
195 for (i = 1; i < rdev->vm_manager.nvm; ++i) {
196 struct radeon_fence *fence = rdev->vm_manager.active[i];
197
198 if (fence == NULL) {
199 /* found a free one */
200 vm_id->id = i;
201 trace_radeon_vm_grab_id(i, ring);
202 return NULL;
203 }
204
205 if (radeon_fence_is_earlier(fence, best[fence->ring])) {
206 best[fence->ring] = fence;
207 choices[fence->ring == ring ? 0 : 1] = i;
208 }
209 }
210
211 for (i = 0; i < 2; ++i) {
212 if (choices[i]) {
213 vm_id->id = choices[i];
214 trace_radeon_vm_grab_id(choices[i], ring);
215 return rdev->vm_manager.active[choices[i]];
216 }
217 }
218
219 /* should never happen */
220 BUG();
221 return NULL;
222 }
223
224 /**
225 * radeon_vm_flush - hardware flush the vm
226 *
227 * @rdev: radeon_device pointer
228 * @vm: vm we want to flush
229 * @ring: ring to use for flush
230 * @updates: last vm update that is waited for
231 *
232 * Flush the vm (cayman+).
233 *
234 * Global and local mutex must be locked!
235 */
radeon_vm_flush(struct radeon_device * rdev,struct radeon_vm * vm,int ring,struct radeon_fence * updates)236 void radeon_vm_flush(struct radeon_device *rdev,
237 struct radeon_vm *vm,
238 int ring, struct radeon_fence *updates)
239 {
240 uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
241 struct radeon_vm_id *vm_id = &vm->ids[ring];
242
243 if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
244 radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
245
246 trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
247 radeon_fence_unref(&vm_id->flushed_updates);
248 vm_id->flushed_updates = radeon_fence_ref(updates);
249 vm_id->pd_gpu_addr = pd_addr;
250 radeon_ring_vm_flush(rdev, &rdev->ring[ring],
251 vm_id->id, vm_id->pd_gpu_addr);
252
253 }
254 }
255
256 /**
257 * radeon_vm_fence - remember fence for vm
258 *
259 * @rdev: radeon_device pointer
260 * @vm: vm we want to fence
261 * @fence: fence to remember
262 *
263 * Fence the vm (cayman+).
264 * Set the fence used to protect page table and id.
265 *
266 * Global and local mutex must be locked!
267 */
radeon_vm_fence(struct radeon_device * rdev,struct radeon_vm * vm,struct radeon_fence * fence)268 void radeon_vm_fence(struct radeon_device *rdev,
269 struct radeon_vm *vm,
270 struct radeon_fence *fence)
271 {
272 unsigned vm_id = vm->ids[fence->ring].id;
273
274 radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
275 rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
276
277 radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
278 vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
279 }
280
281 /**
282 * radeon_vm_bo_find - find the bo_va for a specific vm & bo
283 *
284 * @vm: requested vm
285 * @bo: requested buffer object
286 *
287 * Find @bo inside the requested vm (cayman+).
288 * Search inside the @bos vm list for the requested vm
289 * Returns the found bo_va or NULL if none is found
290 *
291 * Object has to be reserved!
292 */
radeon_vm_bo_find(struct radeon_vm * vm,struct radeon_bo * bo)293 struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
294 struct radeon_bo *bo)
295 {
296 struct radeon_bo_va *bo_va;
297
298 list_for_each_entry(bo_va, &bo->va, bo_list) {
299 if (bo_va->vm == vm) {
300 return bo_va;
301 }
302 }
303 return NULL;
304 }
305
306 /**
307 * radeon_vm_bo_add - add a bo to a specific vm
308 *
309 * @rdev: radeon_device pointer
310 * @vm: requested vm
311 * @bo: radeon buffer object
312 *
313 * Add @bo into the requested vm (cayman+).
314 * Add @bo to the list of bos associated with the vm
315 * Returns newly added bo_va or NULL for failure
316 *
317 * Object has to be reserved!
318 */
radeon_vm_bo_add(struct radeon_device * rdev,struct radeon_vm * vm,struct radeon_bo * bo)319 struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
320 struct radeon_vm *vm,
321 struct radeon_bo *bo)
322 {
323 struct radeon_bo_va *bo_va;
324
325 bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
326 if (bo_va == NULL) {
327 return NULL;
328 }
329 bo_va->vm = vm;
330 bo_va->bo = bo;
331 bo_va->it.start = 0;
332 bo_va->it.last = 0;
333 bo_va->flags = 0;
334 bo_va->ref_count = 1;
335 INIT_LIST_HEAD(&bo_va->bo_list);
336 INIT_LIST_HEAD(&bo_va->vm_status);
337
338 mutex_lock(&vm->mutex);
339 list_add_tail(&bo_va->bo_list, &bo->va);
340 mutex_unlock(&vm->mutex);
341
342 return bo_va;
343 }
344
345 /**
346 * radeon_vm_set_pages - helper to call the right asic function
347 *
348 * @rdev: radeon_device pointer
349 * @ib: indirect buffer to fill with commands
350 * @pe: addr of the page entry
351 * @addr: dst addr to write into pe
352 * @count: number of page entries to update
353 * @incr: increase next addr by incr bytes
354 * @flags: hw access flags
355 *
356 * Traces the parameters and calls the right asic functions
357 * to setup the page table using the DMA.
358 */
radeon_vm_set_pages(struct radeon_device * rdev,struct radeon_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint32_t flags)359 static void radeon_vm_set_pages(struct radeon_device *rdev,
360 struct radeon_ib *ib,
361 uint64_t pe,
362 uint64_t addr, unsigned count,
363 uint32_t incr, uint32_t flags)
364 {
365 trace_radeon_vm_set_page(pe, addr, count, incr, flags);
366
367 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
368 uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
369 radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);
370
371 } else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
372 radeon_asic_vm_write_pages(rdev, ib, pe, addr,
373 count, incr, flags);
374
375 } else {
376 radeon_asic_vm_set_pages(rdev, ib, pe, addr,
377 count, incr, flags);
378 }
379 }
380
381 /**
382 * radeon_vm_clear_bo - initially clear the page dir/table
383 *
384 * @rdev: radeon_device pointer
385 * @bo: bo to clear
386 */
radeon_vm_clear_bo(struct radeon_device * rdev,struct radeon_bo * bo)387 static int radeon_vm_clear_bo(struct radeon_device *rdev,
388 struct radeon_bo *bo)
389 {
390 struct radeon_ib ib;
391 unsigned entries;
392 uint64_t addr;
393 int r;
394
395 r = radeon_bo_reserve(bo, false);
396 if (r)
397 return r;
398
399 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
400 if (r)
401 goto error_unreserve;
402
403 addr = radeon_bo_gpu_offset(bo);
404 entries = radeon_bo_size(bo) / 8;
405
406 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
407 if (r)
408 goto error_unreserve;
409
410 ib.length_dw = 0;
411
412 radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
413 radeon_asic_vm_pad_ib(rdev, &ib);
414 WARN_ON(ib.length_dw > 64);
415
416 r = radeon_ib_schedule(rdev, &ib, NULL, false);
417 if (r)
418 goto error_free;
419
420 ib.fence->is_vm_update = true;
421 radeon_bo_fence(bo, ib.fence, false);
422
423 error_free:
424 radeon_ib_free(rdev, &ib);
425
426 error_unreserve:
427 radeon_bo_unreserve(bo);
428 return r;
429 }
430
431 /**
432 * radeon_vm_bo_set_addr - set bos virtual address inside a vm
433 *
434 * @rdev: radeon_device pointer
435 * @bo_va: bo_va to store the address
436 * @soffset: requested offset of the buffer in the VM address space
437 * @flags: attributes of pages (read/write/valid/etc.)
438 *
439 * Set offset of @bo_va (cayman+).
440 * Validate and set the offset requested within the vm address space.
441 * Returns 0 for success, error for failure.
442 *
443 * Object has to be reserved and gets unreserved by this function!
444 */
radeon_vm_bo_set_addr(struct radeon_device * rdev,struct radeon_bo_va * bo_va,uint64_t soffset,uint32_t flags)445 int radeon_vm_bo_set_addr(struct radeon_device *rdev,
446 struct radeon_bo_va *bo_va,
447 uint64_t soffset,
448 uint32_t flags)
449 {
450 uint64_t size = radeon_bo_size(bo_va->bo);
451 struct radeon_vm *vm = bo_va->vm;
452 unsigned last_pfn, pt_idx;
453 uint64_t eoffset;
454 int r;
455
456 if (soffset) {
457 /* make sure object fit at this offset */
458 eoffset = soffset + size - 1;
459 if (soffset >= eoffset) {
460 r = -EINVAL;
461 goto error_unreserve;
462 }
463
464 last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
465 if (last_pfn >= rdev->vm_manager.max_pfn) {
466 dev_err(rdev->dev, "va above limit (0x%08X >= 0x%08X)\n",
467 last_pfn, rdev->vm_manager.max_pfn);
468 r = -EINVAL;
469 goto error_unreserve;
470 }
471
472 } else {
473 eoffset = last_pfn = 0;
474 }
475
476 mutex_lock(&vm->mutex);
477 soffset /= RADEON_GPU_PAGE_SIZE;
478 eoffset /= RADEON_GPU_PAGE_SIZE;
479 if (soffset || eoffset) {
480 struct interval_tree_node *it;
481 it = interval_tree_iter_first(&vm->va, soffset, eoffset);
482 if (it && it != &bo_va->it) {
483 struct radeon_bo_va *tmp;
484 tmp = container_of(it, struct radeon_bo_va, it);
485 /* bo and tmp overlap, invalid offset */
486 dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
487 "(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
488 soffset, tmp->bo, tmp->it.start, tmp->it.last);
489 mutex_unlock(&vm->mutex);
490 r = -EINVAL;
491 goto error_unreserve;
492 }
493 }
494
495 if (bo_va->it.start || bo_va->it.last) {
496 /* add a clone of the bo_va to clear the old address */
497 struct radeon_bo_va *tmp;
498 tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
499 if (!tmp) {
500 mutex_unlock(&vm->mutex);
501 r = -ENOMEM;
502 goto error_unreserve;
503 }
504 tmp->it.start = bo_va->it.start;
505 tmp->it.last = bo_va->it.last;
506 tmp->vm = vm;
507 tmp->bo = radeon_bo_ref(bo_va->bo);
508
509 interval_tree_remove(&bo_va->it, &vm->va);
510 spin_lock(&vm->status_lock);
511 bo_va->it.start = 0;
512 bo_va->it.last = 0;
513 list_del_init(&bo_va->vm_status);
514 list_add(&tmp->vm_status, &vm->freed);
515 spin_unlock(&vm->status_lock);
516 }
517
518 if (soffset || eoffset) {
519 spin_lock(&vm->status_lock);
520 bo_va->it.start = soffset;
521 bo_va->it.last = eoffset;
522 list_add(&bo_va->vm_status, &vm->cleared);
523 spin_unlock(&vm->status_lock);
524 interval_tree_insert(&bo_va->it, &vm->va);
525 }
526
527 bo_va->flags = flags;
528
529 soffset >>= radeon_vm_block_size;
530 eoffset >>= radeon_vm_block_size;
531
532 BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
533
534 if (eoffset > vm->max_pde_used)
535 vm->max_pde_used = eoffset;
536
537 radeon_bo_unreserve(bo_va->bo);
538
539 /* walk over the address space and allocate the page tables */
540 for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
541 struct radeon_bo *pt;
542
543 if (vm->page_tables[pt_idx].bo)
544 continue;
545
546 /* drop mutex to allocate and clear page table */
547 mutex_unlock(&vm->mutex);
548
549 r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
550 RADEON_GPU_PAGE_SIZE, true,
551 RADEON_GEM_DOMAIN_VRAM, 0,
552 NULL, NULL, &pt);
553 if (r)
554 return r;
555
556 r = radeon_vm_clear_bo(rdev, pt);
557 if (r) {
558 radeon_bo_unref(&pt);
559 return r;
560 }
561
562 /* aquire mutex again */
563 mutex_lock(&vm->mutex);
564 if (vm->page_tables[pt_idx].bo) {
565 /* someone else allocated the pt in the meantime */
566 mutex_unlock(&vm->mutex);
567 radeon_bo_unref(&pt);
568 mutex_lock(&vm->mutex);
569 continue;
570 }
571
572 vm->page_tables[pt_idx].addr = 0;
573 vm->page_tables[pt_idx].bo = pt;
574 }
575
576 mutex_unlock(&vm->mutex);
577 return 0;
578
579 error_unreserve:
580 radeon_bo_unreserve(bo_va->bo);
581 return r;
582 }
583
584 /**
585 * radeon_vm_map_gart - get the physical address of a gart page
586 *
587 * @rdev: radeon_device pointer
588 * @addr: the unmapped addr
589 *
590 * Look up the physical address of the page that the pte resolves
591 * to (cayman+).
592 * Returns the physical address of the page.
593 */
radeon_vm_map_gart(struct radeon_device * rdev,uint64_t addr)594 uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
595 {
596 uint64_t result;
597
598 /* page table offset */
599 result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT];
600 result &= ~RADEON_GPU_PAGE_MASK;
601
602 return result;
603 }
604
605 /**
606 * radeon_vm_page_flags - translate page flags to what the hw uses
607 *
608 * @flags: flags comming from userspace
609 *
610 * Translate the flags the userspace ABI uses to hw flags.
611 */
radeon_vm_page_flags(uint32_t flags)612 static uint32_t radeon_vm_page_flags(uint32_t flags)
613 {
614 uint32_t hw_flags = 0;
615
616 hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
617 hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
618 hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
619 if (flags & RADEON_VM_PAGE_SYSTEM) {
620 hw_flags |= R600_PTE_SYSTEM;
621 hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
622 }
623 return hw_flags;
624 }
625
626 /**
627 * radeon_vm_update_pdes - make sure that page directory is valid
628 *
629 * @rdev: radeon_device pointer
630 * @vm: requested vm
631 * @start: start of GPU address range
632 * @end: end of GPU address range
633 *
634 * Allocates new page tables if necessary
635 * and updates the page directory (cayman+).
636 * Returns 0 for success, error for failure.
637 *
638 * Global and local mutex must be locked!
639 */
radeon_vm_update_page_directory(struct radeon_device * rdev,struct radeon_vm * vm)640 int radeon_vm_update_page_directory(struct radeon_device *rdev,
641 struct radeon_vm *vm)
642 {
643 struct radeon_bo *pd = vm->page_directory;
644 uint64_t pd_addr = radeon_bo_gpu_offset(pd);
645 uint32_t incr = RADEON_VM_PTE_COUNT * 8;
646 uint64_t last_pde = ~0, last_pt = ~0;
647 unsigned count = 0, pt_idx, ndw;
648 struct radeon_ib ib;
649 int r;
650
651 /* padding, etc. */
652 ndw = 64;
653
654 /* assume the worst case */
655 ndw += vm->max_pde_used * 6;
656
657 /* update too big for an IB */
658 if (ndw > 0xfffff)
659 return -ENOMEM;
660
661 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
662 if (r)
663 return r;
664 ib.length_dw = 0;
665
666 /* walk over the address space and update the page directory */
667 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
668 struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
669 uint64_t pde, pt;
670
671 if (bo == NULL)
672 continue;
673
674 pt = radeon_bo_gpu_offset(bo);
675 if (vm->page_tables[pt_idx].addr == pt)
676 continue;
677 vm->page_tables[pt_idx].addr = pt;
678
679 pde = pd_addr + pt_idx * 8;
680 if (((last_pde + 8 * count) != pde) ||
681 ((last_pt + incr * count) != pt)) {
682
683 if (count) {
684 radeon_vm_set_pages(rdev, &ib, last_pde,
685 last_pt, count, incr,
686 R600_PTE_VALID);
687 }
688
689 count = 1;
690 last_pde = pde;
691 last_pt = pt;
692 } else {
693 ++count;
694 }
695 }
696
697 if (count)
698 radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
699 incr, R600_PTE_VALID);
700
701 if (ib.length_dw != 0) {
702 radeon_asic_vm_pad_ib(rdev, &ib);
703
704 radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true);
705 WARN_ON(ib.length_dw > ndw);
706 r = radeon_ib_schedule(rdev, &ib, NULL, false);
707 if (r) {
708 radeon_ib_free(rdev, &ib);
709 return r;
710 }
711 ib.fence->is_vm_update = true;
712 radeon_bo_fence(pd, ib.fence, false);
713 }
714 radeon_ib_free(rdev, &ib);
715
716 return 0;
717 }
718
719 /**
720 * radeon_vm_frag_ptes - add fragment information to PTEs
721 *
722 * @rdev: radeon_device pointer
723 * @ib: IB for the update
724 * @pe_start: first PTE to handle
725 * @pe_end: last PTE to handle
726 * @addr: addr those PTEs should point to
727 * @flags: hw mapping flags
728 *
729 * Global and local mutex must be locked!
730 */
radeon_vm_frag_ptes(struct radeon_device * rdev,struct radeon_ib * ib,uint64_t pe_start,uint64_t pe_end,uint64_t addr,uint32_t flags)731 static void radeon_vm_frag_ptes(struct radeon_device *rdev,
732 struct radeon_ib *ib,
733 uint64_t pe_start, uint64_t pe_end,
734 uint64_t addr, uint32_t flags)
735 {
736 /**
737 * The MC L1 TLB supports variable sized pages, based on a fragment
738 * field in the PTE. When this field is set to a non-zero value, page
739 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
740 * flags are considered valid for all PTEs within the fragment range
741 * and corresponding mappings are assumed to be physically contiguous.
742 *
743 * The L1 TLB can store a single PTE for the whole fragment,
744 * significantly increasing the space available for translation
745 * caching. This leads to large improvements in throughput when the
746 * TLB is under pressure.
747 *
748 * The L2 TLB distributes small and large fragments into two
749 * asymmetric partitions. The large fragment cache is significantly
750 * larger. Thus, we try to use large fragments wherever possible.
751 * Userspace can support this by aligning virtual base address and
752 * allocation size to the fragment size.
753 */
754
755 /* NI is optimized for 256KB fragments, SI and newer for 64KB */
756 uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) ||
757 (rdev->family == CHIP_ARUBA)) ?
758 R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
759 uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) ||
760 (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80;
761
762 uint64_t frag_start = ALIGN(pe_start, frag_align);
763 uint64_t frag_end = pe_end & ~(frag_align - 1);
764
765 unsigned count;
766
767 /* system pages are non continuously */
768 if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
769 (frag_start >= frag_end)) {
770
771 count = (pe_end - pe_start) / 8;
772 radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
773 RADEON_GPU_PAGE_SIZE, flags);
774 return;
775 }
776
777 /* handle the 4K area at the beginning */
778 if (pe_start != frag_start) {
779 count = (frag_start - pe_start) / 8;
780 radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
781 RADEON_GPU_PAGE_SIZE, flags);
782 addr += RADEON_GPU_PAGE_SIZE * count;
783 }
784
785 /* handle the area in the middle */
786 count = (frag_end - frag_start) / 8;
787 radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
788 RADEON_GPU_PAGE_SIZE, flags | frag_flags);
789
790 /* handle the 4K area at the end */
791 if (frag_end != pe_end) {
792 addr += RADEON_GPU_PAGE_SIZE * count;
793 count = (pe_end - frag_end) / 8;
794 radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
795 RADEON_GPU_PAGE_SIZE, flags);
796 }
797 }
798
799 /**
800 * radeon_vm_update_ptes - make sure that page tables are valid
801 *
802 * @rdev: radeon_device pointer
803 * @vm: requested vm
804 * @start: start of GPU address range
805 * @end: end of GPU address range
806 * @dst: destination address to map to
807 * @flags: mapping flags
808 *
809 * Update the page tables in the range @start - @end (cayman+).
810 *
811 * Global and local mutex must be locked!
812 */
radeon_vm_update_ptes(struct radeon_device * rdev,struct radeon_vm * vm,struct radeon_ib * ib,uint64_t start,uint64_t end,uint64_t dst,uint32_t flags)813 static int radeon_vm_update_ptes(struct radeon_device *rdev,
814 struct radeon_vm *vm,
815 struct radeon_ib *ib,
816 uint64_t start, uint64_t end,
817 uint64_t dst, uint32_t flags)
818 {
819 uint64_t mask = RADEON_VM_PTE_COUNT - 1;
820 uint64_t last_pte = ~0, last_dst = ~0;
821 unsigned count = 0;
822 uint64_t addr;
823
824 /* walk over the address space and update the page tables */
825 for (addr = start; addr < end; ) {
826 uint64_t pt_idx = addr >> radeon_vm_block_size;
827 struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
828 unsigned nptes;
829 uint64_t pte;
830 int r;
831
832 radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true);
833 r = reservation_object_reserve_shared(pt->tbo.resv);
834 if (r)
835 return r;
836
837 if ((addr & ~mask) == (end & ~mask))
838 nptes = end - addr;
839 else
840 nptes = RADEON_VM_PTE_COUNT - (addr & mask);
841
842 pte = radeon_bo_gpu_offset(pt);
843 pte += (addr & mask) * 8;
844
845 if ((last_pte + 8 * count) != pte) {
846
847 if (count) {
848 radeon_vm_frag_ptes(rdev, ib, last_pte,
849 last_pte + 8 * count,
850 last_dst, flags);
851 }
852
853 count = nptes;
854 last_pte = pte;
855 last_dst = dst;
856 } else {
857 count += nptes;
858 }
859
860 addr += nptes;
861 dst += nptes * RADEON_GPU_PAGE_SIZE;
862 }
863
864 if (count) {
865 radeon_vm_frag_ptes(rdev, ib, last_pte,
866 last_pte + 8 * count,
867 last_dst, flags);
868 }
869
870 return 0;
871 }
872
873 /**
874 * radeon_vm_fence_pts - fence page tables after an update
875 *
876 * @vm: requested vm
877 * @start: start of GPU address range
878 * @end: end of GPU address range
879 * @fence: fence to use
880 *
881 * Fence the page tables in the range @start - @end (cayman+).
882 *
883 * Global and local mutex must be locked!
884 */
radeon_vm_fence_pts(struct radeon_vm * vm,uint64_t start,uint64_t end,struct radeon_fence * fence)885 static void radeon_vm_fence_pts(struct radeon_vm *vm,
886 uint64_t start, uint64_t end,
887 struct radeon_fence *fence)
888 {
889 unsigned i;
890
891 start >>= radeon_vm_block_size;
892 end = (end - 1) >> radeon_vm_block_size;
893
894 for (i = start; i <= end; ++i)
895 radeon_bo_fence(vm->page_tables[i].bo, fence, true);
896 }
897
898 /**
899 * radeon_vm_bo_update - map a bo into the vm page table
900 *
901 * @rdev: radeon_device pointer
902 * @vm: requested vm
903 * @bo: radeon buffer object
904 * @mem: ttm mem
905 *
906 * Fill in the page table entries for @bo (cayman+).
907 * Returns 0 for success, -EINVAL for failure.
908 *
909 * Object have to be reserved and mutex must be locked!
910 */
radeon_vm_bo_update(struct radeon_device * rdev,struct radeon_bo_va * bo_va,struct ttm_mem_reg * mem)911 int radeon_vm_bo_update(struct radeon_device *rdev,
912 struct radeon_bo_va *bo_va,
913 struct ttm_mem_reg *mem)
914 {
915 struct radeon_vm *vm = bo_va->vm;
916 struct radeon_ib ib;
917 unsigned nptes, ncmds, ndw;
918 uint64_t addr;
919 uint32_t flags;
920 int r;
921
922 if (!bo_va->it.start) {
923 dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
924 bo_va->bo, vm);
925 return -EINVAL;
926 }
927
928 spin_lock(&vm->status_lock);
929 if (mem) {
930 if (list_empty(&bo_va->vm_status)) {
931 spin_unlock(&vm->status_lock);
932 return 0;
933 }
934 list_del_init(&bo_va->vm_status);
935 } else {
936 list_del(&bo_va->vm_status);
937 list_add(&bo_va->vm_status, &vm->cleared);
938 }
939 spin_unlock(&vm->status_lock);
940
941 bo_va->flags &= ~RADEON_VM_PAGE_VALID;
942 bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
943 bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
944 if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm))
945 bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;
946
947 if (mem) {
948 addr = mem->start << PAGE_SHIFT;
949 if (mem->mem_type != TTM_PL_SYSTEM) {
950 bo_va->flags |= RADEON_VM_PAGE_VALID;
951 }
952 if (mem->mem_type == TTM_PL_TT) {
953 bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
954 if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
955 bo_va->flags |= RADEON_VM_PAGE_SNOOPED;
956
957 } else {
958 addr += rdev->vm_manager.vram_base_offset;
959 }
960 } else {
961 addr = 0;
962 }
963
964 trace_radeon_vm_bo_update(bo_va);
965
966 nptes = bo_va->it.last - bo_va->it.start + 1;
967
968 /* reserve space for one command every (1 << BLOCK_SIZE) entries
969 or 2k dwords (whatever is smaller) */
970 ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;
971
972 /* padding, etc. */
973 ndw = 64;
974
975 flags = radeon_vm_page_flags(bo_va->flags);
976 if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
977 /* only copy commands needed */
978 ndw += ncmds * 7;
979
980 } else if (flags & R600_PTE_SYSTEM) {
981 /* header for write data commands */
982 ndw += ncmds * 4;
983
984 /* body of write data command */
985 ndw += nptes * 2;
986
987 } else {
988 /* set page commands needed */
989 ndw += ncmds * 10;
990
991 /* two extra commands for begin/end of fragment */
992 ndw += 2 * 10;
993 }
994
995 /* update too big for an IB */
996 if (ndw > 0xfffff)
997 return -ENOMEM;
998
999 r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
1000 if (r)
1001 return r;
1002 ib.length_dw = 0;
1003
1004 if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) {
1005 unsigned i;
1006
1007 for (i = 0; i < RADEON_NUM_RINGS; ++i)
1008 radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use);
1009 }
1010
1011 r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
1012 bo_va->it.last + 1, addr,
1013 radeon_vm_page_flags(bo_va->flags));
1014 if (r) {
1015 radeon_ib_free(rdev, &ib);
1016 return r;
1017 }
1018
1019 radeon_asic_vm_pad_ib(rdev, &ib);
1020 WARN_ON(ib.length_dw > ndw);
1021
1022 r = radeon_ib_schedule(rdev, &ib, NULL, false);
1023 if (r) {
1024 radeon_ib_free(rdev, &ib);
1025 return r;
1026 }
1027 ib.fence->is_vm_update = true;
1028 radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
1029 radeon_fence_unref(&bo_va->last_pt_update);
1030 bo_va->last_pt_update = radeon_fence_ref(ib.fence);
1031 radeon_ib_free(rdev, &ib);
1032
1033 return 0;
1034 }
1035
1036 /**
1037 * radeon_vm_clear_freed - clear freed BOs in the PT
1038 *
1039 * @rdev: radeon_device pointer
1040 * @vm: requested vm
1041 *
1042 * Make sure all freed BOs are cleared in the PT.
1043 * Returns 0 for success.
1044 *
1045 * PTs have to be reserved and mutex must be locked!
1046 */
radeon_vm_clear_freed(struct radeon_device * rdev,struct radeon_vm * vm)1047 int radeon_vm_clear_freed(struct radeon_device *rdev,
1048 struct radeon_vm *vm)
1049 {
1050 struct radeon_bo_va *bo_va;
1051 int r = 0;
1052
1053 spin_lock(&vm->status_lock);
1054 while (!list_empty(&vm->freed)) {
1055 bo_va = list_first_entry(&vm->freed,
1056 struct radeon_bo_va, vm_status);
1057 spin_unlock(&vm->status_lock);
1058
1059 r = radeon_vm_bo_update(rdev, bo_va, NULL);
1060 radeon_bo_unref(&bo_va->bo);
1061 radeon_fence_unref(&bo_va->last_pt_update);
1062 spin_lock(&vm->status_lock);
1063 list_del(&bo_va->vm_status);
1064 kfree(bo_va);
1065 if (r)
1066 break;
1067
1068 }
1069 spin_unlock(&vm->status_lock);
1070 return r;
1071
1072 }
1073
1074 /**
1075 * radeon_vm_clear_invalids - clear invalidated BOs in the PT
1076 *
1077 * @rdev: radeon_device pointer
1078 * @vm: requested vm
1079 *
1080 * Make sure all invalidated BOs are cleared in the PT.
1081 * Returns 0 for success.
1082 *
1083 * PTs have to be reserved and mutex must be locked!
1084 */
radeon_vm_clear_invalids(struct radeon_device * rdev,struct radeon_vm * vm)1085 int radeon_vm_clear_invalids(struct radeon_device *rdev,
1086 struct radeon_vm *vm)
1087 {
1088 struct radeon_bo_va *bo_va;
1089 int r;
1090
1091 spin_lock(&vm->status_lock);
1092 while (!list_empty(&vm->invalidated)) {
1093 bo_va = list_first_entry(&vm->invalidated,
1094 struct radeon_bo_va, vm_status);
1095 spin_unlock(&vm->status_lock);
1096
1097 r = radeon_vm_bo_update(rdev, bo_va, NULL);
1098 if (r)
1099 return r;
1100
1101 spin_lock(&vm->status_lock);
1102 }
1103 spin_unlock(&vm->status_lock);
1104
1105 return 0;
1106 }
1107
1108 /**
1109 * radeon_vm_bo_rmv - remove a bo to a specific vm
1110 *
1111 * @rdev: radeon_device pointer
1112 * @bo_va: requested bo_va
1113 *
1114 * Remove @bo_va->bo from the requested vm (cayman+).
1115 *
1116 * Object have to be reserved!
1117 */
radeon_vm_bo_rmv(struct radeon_device * rdev,struct radeon_bo_va * bo_va)1118 void radeon_vm_bo_rmv(struct radeon_device *rdev,
1119 struct radeon_bo_va *bo_va)
1120 {
1121 struct radeon_vm *vm = bo_va->vm;
1122
1123 list_del(&bo_va->bo_list);
1124
1125 mutex_lock(&vm->mutex);
1126 if (bo_va->it.start || bo_va->it.last)
1127 interval_tree_remove(&bo_va->it, &vm->va);
1128
1129 spin_lock(&vm->status_lock);
1130 list_del(&bo_va->vm_status);
1131 if (bo_va->it.start || bo_va->it.last) {
1132 bo_va->bo = radeon_bo_ref(bo_va->bo);
1133 list_add(&bo_va->vm_status, &vm->freed);
1134 } else {
1135 radeon_fence_unref(&bo_va->last_pt_update);
1136 kfree(bo_va);
1137 }
1138 spin_unlock(&vm->status_lock);
1139
1140 mutex_unlock(&vm->mutex);
1141 }
1142
1143 /**
1144 * radeon_vm_bo_invalidate - mark the bo as invalid
1145 *
1146 * @rdev: radeon_device pointer
1147 * @vm: requested vm
1148 * @bo: radeon buffer object
1149 *
1150 * Mark @bo as invalid (cayman+).
1151 */
radeon_vm_bo_invalidate(struct radeon_device * rdev,struct radeon_bo * bo)1152 void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1153 struct radeon_bo *bo)
1154 {
1155 struct radeon_bo_va *bo_va;
1156
1157 list_for_each_entry(bo_va, &bo->va, bo_list) {
1158 spin_lock(&bo_va->vm->status_lock);
1159 if (list_empty(&bo_va->vm_status) &&
1160 (bo_va->it.start || bo_va->it.last))
1161 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1162 spin_unlock(&bo_va->vm->status_lock);
1163 }
1164 }
1165
1166 /**
1167 * radeon_vm_init - initialize a vm instance
1168 *
1169 * @rdev: radeon_device pointer
1170 * @vm: requested vm
1171 *
1172 * Init @vm fields (cayman+).
1173 */
radeon_vm_init(struct radeon_device * rdev,struct radeon_vm * vm)1174 int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1175 {
1176 const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
1177 RADEON_VM_PTE_COUNT * 8);
1178 unsigned pd_size, pd_entries, pts_size;
1179 int i, r;
1180
1181 vm->ib_bo_va = NULL;
1182 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1183 vm->ids[i].id = 0;
1184 vm->ids[i].flushed_updates = NULL;
1185 vm->ids[i].last_id_use = NULL;
1186 }
1187 mutex_init(&vm->mutex);
1188 vm->va = RB_ROOT;
1189 spin_lock_init(&vm->status_lock);
1190 INIT_LIST_HEAD(&vm->invalidated);
1191 INIT_LIST_HEAD(&vm->freed);
1192 INIT_LIST_HEAD(&vm->cleared);
1193
1194 pd_size = radeon_vm_directory_size(rdev);
1195 pd_entries = radeon_vm_num_pdes(rdev);
1196
1197 /* allocate page table array */
1198 pts_size = pd_entries * sizeof(struct radeon_vm_pt);
1199 vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1200 if (vm->page_tables == NULL) {
1201 DRM_ERROR("Cannot allocate memory for page table array\n");
1202 return -ENOMEM;
1203 }
1204
1205 r = radeon_bo_create(rdev, pd_size, align, true,
1206 RADEON_GEM_DOMAIN_VRAM, 0, NULL,
1207 NULL, &vm->page_directory);
1208 if (r)
1209 return r;
1210
1211 r = radeon_vm_clear_bo(rdev, vm->page_directory);
1212 if (r) {
1213 radeon_bo_unref(&vm->page_directory);
1214 vm->page_directory = NULL;
1215 return r;
1216 }
1217
1218 return 0;
1219 }
1220
1221 /**
1222 * radeon_vm_fini - tear down a vm instance
1223 *
1224 * @rdev: radeon_device pointer
1225 * @vm: requested vm
1226 *
1227 * Tear down @vm (cayman+).
1228 * Unbind the VM and remove all bos from the vm bo list
1229 */
radeon_vm_fini(struct radeon_device * rdev,struct radeon_vm * vm)1230 void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1231 {
1232 struct radeon_bo_va *bo_va, *tmp;
1233 int i, r;
1234
1235 if (!RB_EMPTY_ROOT(&vm->va)) {
1236 dev_err(rdev->dev, "still active bo inside vm\n");
1237 }
1238 rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) {
1239 interval_tree_remove(&bo_va->it, &vm->va);
1240 r = radeon_bo_reserve(bo_va->bo, false);
1241 if (!r) {
1242 list_del_init(&bo_va->bo_list);
1243 radeon_bo_unreserve(bo_va->bo);
1244 radeon_fence_unref(&bo_va->last_pt_update);
1245 kfree(bo_va);
1246 }
1247 }
1248 list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
1249 radeon_bo_unref(&bo_va->bo);
1250 radeon_fence_unref(&bo_va->last_pt_update);
1251 kfree(bo_va);
1252 }
1253
1254 for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
1255 radeon_bo_unref(&vm->page_tables[i].bo);
1256 kfree(vm->page_tables);
1257
1258 radeon_bo_unref(&vm->page_directory);
1259
1260 for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1261 radeon_fence_unref(&vm->ids[i].flushed_updates);
1262 radeon_fence_unref(&vm->ids[i].last_id_use);
1263 }
1264
1265 mutex_destroy(&vm->mutex);
1266 }
1267