1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h> /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h> /* try_to_free_swap */
34 #include <linux/ptrace.h> /* user_enable_single_step */
35 #include <linux/kdebug.h> /* notifier mechanism */
36 #include "../../mm/internal.h" /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48 * allows us to skip the uprobe_mmap if there are no uprobe events active
49 * at this time. Probably a fine grained per inode count is better?
50 */
51 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN 0
64
65 struct uprobe {
66 struct rb_node rb_node; /* node in the rb tree */
67 atomic_t ref;
68 struct rw_semaphore register_rwsem;
69 struct rw_semaphore consumer_rwsem;
70 struct list_head pending_list;
71 struct uprobe_consumer *consumers;
72 struct inode *inode; /* Also hold a ref to inode */
73 loff_t offset;
74 unsigned long flags;
75
76 /*
77 * The generic code assumes that it has two members of unknown type
78 * owned by the arch-specific code:
79 *
80 * insn - copy_insn() saves the original instruction here for
81 * arch_uprobe_analyze_insn().
82 *
83 * ixol - potentially modified instruction to execute out of
84 * line, copied to xol_area by xol_get_insn_slot().
85 */
86 struct arch_uprobe arch;
87 };
88
89 /*
90 * Execute out of line area: anonymous executable mapping installed
91 * by the probed task to execute the copy of the original instruction
92 * mangled by set_swbp().
93 *
94 * On a breakpoint hit, thread contests for a slot. It frees the
95 * slot after singlestep. Currently a fixed number of slots are
96 * allocated.
97 */
98 struct xol_area {
99 wait_queue_head_t wq; /* if all slots are busy */
100 atomic_t slot_count; /* number of in-use slots */
101 unsigned long *bitmap; /* 0 = free slot */
102
103 struct vm_special_mapping xol_mapping;
104 struct page *pages[2];
105 /*
106 * We keep the vma's vm_start rather than a pointer to the vma
107 * itself. The probed process or a naughty kernel module could make
108 * the vma go away, and we must handle that reasonably gracefully.
109 */
110 unsigned long vaddr; /* Page(s) of instruction slots */
111 };
112
113 /*
114 * valid_vma: Verify if the specified vma is an executable vma
115 * Relax restrictions while unregistering: vm_flags might have
116 * changed after breakpoint was inserted.
117 * - is_register: indicates if we are in register context.
118 * - Return 1 if the specified virtual address is in an
119 * executable vma.
120 */
valid_vma(struct vm_area_struct * vma,bool is_register)121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125 if (is_register)
126 flags |= VM_WRITE;
127
128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142 * __replace_page - replace page in vma by new page.
143 * based on replace_page in mm/ksm.c
144 *
145 * @vma: vma that holds the pte pointing to page
146 * @addr: address the old @page is mapped at
147 * @page: the cowed page we are replacing by kpage
148 * @kpage: the modified page we replace page by
149 *
150 * Returns 0 on success, -EFAULT on failure.
151 */
__replace_page(struct vm_area_struct * vma,unsigned long addr,struct page * old_page,struct page * new_page)152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153 struct page *old_page, struct page *new_page)
154 {
155 struct mm_struct *mm = vma->vm_mm;
156 spinlock_t *ptl;
157 pte_t *ptep;
158 int err;
159 /* For mmu_notifiers */
160 const unsigned long mmun_start = addr;
161 const unsigned long mmun_end = addr + PAGE_SIZE;
162 struct mem_cgroup *memcg;
163
164 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
165 false);
166 if (err)
167 return err;
168
169 /* For try_to_free_swap() and munlock_vma_page() below */
170 lock_page(old_page);
171
172 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
173 err = -EAGAIN;
174 ptep = page_check_address(old_page, mm, addr, &ptl, 0);
175 if (!ptep) {
176 mem_cgroup_cancel_charge(new_page, memcg, false);
177 goto unlock;
178 }
179
180 get_page(new_page);
181 page_add_new_anon_rmap(new_page, vma, addr, false);
182 mem_cgroup_commit_charge(new_page, memcg, false, false);
183 lru_cache_add_active_or_unevictable(new_page, vma);
184
185 if (!PageAnon(old_page)) {
186 dec_mm_counter(mm, mm_counter_file(old_page));
187 inc_mm_counter(mm, MM_ANONPAGES);
188 }
189
190 flush_cache_page(vma, addr, pte_pfn(*ptep));
191 ptep_clear_flush_notify(vma, addr, ptep);
192 set_pte_at_notify(mm, addr, ptep, mk_pte(new_page, vma->vm_page_prot));
193
194 page_remove_rmap(old_page, false);
195 if (!page_mapped(old_page))
196 try_to_free_swap(old_page);
197 pte_unmap_unlock(ptep, ptl);
198
199 if (vma->vm_flags & VM_LOCKED)
200 munlock_vma_page(old_page);
201 put_page(old_page);
202
203 err = 0;
204 unlock:
205 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
206 unlock_page(old_page);
207 return err;
208 }
209
210 /**
211 * is_swbp_insn - check if instruction is breakpoint instruction.
212 * @insn: instruction to be checked.
213 * Default implementation of is_swbp_insn
214 * Returns true if @insn is a breakpoint instruction.
215 */
is_swbp_insn(uprobe_opcode_t * insn)216 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
217 {
218 return *insn == UPROBE_SWBP_INSN;
219 }
220
221 /**
222 * is_trap_insn - check if instruction is breakpoint instruction.
223 * @insn: instruction to be checked.
224 * Default implementation of is_trap_insn
225 * Returns true if @insn is a breakpoint instruction.
226 *
227 * This function is needed for the case where an architecture has multiple
228 * trap instructions (like powerpc).
229 */
is_trap_insn(uprobe_opcode_t * insn)230 bool __weak is_trap_insn(uprobe_opcode_t *insn)
231 {
232 return is_swbp_insn(insn);
233 }
234
copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)235 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
236 {
237 void *kaddr = kmap_atomic(page);
238 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
239 kunmap_atomic(kaddr);
240 }
241
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)242 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
243 {
244 void *kaddr = kmap_atomic(page);
245 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
246 kunmap_atomic(kaddr);
247 }
248
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * new_opcode)249 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
250 {
251 uprobe_opcode_t old_opcode;
252 bool is_swbp;
253
254 /*
255 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
256 * We do not check if it is any other 'trap variant' which could
257 * be conditional trap instruction such as the one powerpc supports.
258 *
259 * The logic is that we do not care if the underlying instruction
260 * is a trap variant; uprobes always wins over any other (gdb)
261 * breakpoint.
262 */
263 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
264 is_swbp = is_swbp_insn(&old_opcode);
265
266 if (is_swbp_insn(new_opcode)) {
267 if (is_swbp) /* register: already installed? */
268 return 0;
269 } else {
270 if (!is_swbp) /* unregister: was it changed by us? */
271 return 0;
272 }
273
274 return 1;
275 }
276
277 /*
278 * NOTE:
279 * Expect the breakpoint instruction to be the smallest size instruction for
280 * the architecture. If an arch has variable length instruction and the
281 * breakpoint instruction is not of the smallest length instruction
282 * supported by that architecture then we need to modify is_trap_at_addr and
283 * uprobe_write_opcode accordingly. This would never be a problem for archs
284 * that have fixed length instructions.
285 *
286 * uprobe_write_opcode - write the opcode at a given virtual address.
287 * @mm: the probed process address space.
288 * @vaddr: the virtual address to store the opcode.
289 * @opcode: opcode to be written at @vaddr.
290 *
291 * Called with mm->mmap_sem held for write.
292 * Return 0 (success) or a negative errno.
293 */
uprobe_write_opcode(struct mm_struct * mm,unsigned long vaddr,uprobe_opcode_t opcode)294 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
295 uprobe_opcode_t opcode)
296 {
297 struct page *old_page, *new_page;
298 struct vm_area_struct *vma;
299 int ret;
300
301 retry:
302 /* Read the page with vaddr into memory */
303 ret = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &old_page,
304 &vma);
305 if (ret <= 0)
306 return ret;
307
308 ret = verify_opcode(old_page, vaddr, &opcode);
309 if (ret <= 0)
310 goto put_old;
311
312 ret = anon_vma_prepare(vma);
313 if (ret)
314 goto put_old;
315
316 ret = -ENOMEM;
317 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
318 if (!new_page)
319 goto put_old;
320
321 __SetPageUptodate(new_page);
322 copy_highpage(new_page, old_page);
323 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
324
325 ret = __replace_page(vma, vaddr, old_page, new_page);
326 put_page(new_page);
327 put_old:
328 put_page(old_page);
329
330 if (unlikely(ret == -EAGAIN))
331 goto retry;
332 return ret;
333 }
334
335 /**
336 * set_swbp - store breakpoint at a given address.
337 * @auprobe: arch specific probepoint information.
338 * @mm: the probed process address space.
339 * @vaddr: the virtual address to insert the opcode.
340 *
341 * For mm @mm, store the breakpoint instruction at @vaddr.
342 * Return 0 (success) or a negative errno.
343 */
set_swbp(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)344 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
345 {
346 return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
347 }
348
349 /**
350 * set_orig_insn - Restore the original instruction.
351 * @mm: the probed process address space.
352 * @auprobe: arch specific probepoint information.
353 * @vaddr: the virtual address to insert the opcode.
354 *
355 * For mm @mm, restore the original opcode (opcode) at @vaddr.
356 * Return 0 (success) or a negative errno.
357 */
358 int __weak
set_orig_insn(struct arch_uprobe * auprobe,struct mm_struct * mm,unsigned long vaddr)359 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
360 {
361 return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
362 }
363
get_uprobe(struct uprobe * uprobe)364 static struct uprobe *get_uprobe(struct uprobe *uprobe)
365 {
366 atomic_inc(&uprobe->ref);
367 return uprobe;
368 }
369
put_uprobe(struct uprobe * uprobe)370 static void put_uprobe(struct uprobe *uprobe)
371 {
372 if (atomic_dec_and_test(&uprobe->ref))
373 kfree(uprobe);
374 }
375
match_uprobe(struct uprobe * l,struct uprobe * r)376 static int match_uprobe(struct uprobe *l, struct uprobe *r)
377 {
378 if (l->inode < r->inode)
379 return -1;
380
381 if (l->inode > r->inode)
382 return 1;
383
384 if (l->offset < r->offset)
385 return -1;
386
387 if (l->offset > r->offset)
388 return 1;
389
390 return 0;
391 }
392
__find_uprobe(struct inode * inode,loff_t offset)393 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
394 {
395 struct uprobe u = { .inode = inode, .offset = offset };
396 struct rb_node *n = uprobes_tree.rb_node;
397 struct uprobe *uprobe;
398 int match;
399
400 while (n) {
401 uprobe = rb_entry(n, struct uprobe, rb_node);
402 match = match_uprobe(&u, uprobe);
403 if (!match)
404 return get_uprobe(uprobe);
405
406 if (match < 0)
407 n = n->rb_left;
408 else
409 n = n->rb_right;
410 }
411 return NULL;
412 }
413
414 /*
415 * Find a uprobe corresponding to a given inode:offset
416 * Acquires uprobes_treelock
417 */
find_uprobe(struct inode * inode,loff_t offset)418 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
419 {
420 struct uprobe *uprobe;
421
422 spin_lock(&uprobes_treelock);
423 uprobe = __find_uprobe(inode, offset);
424 spin_unlock(&uprobes_treelock);
425
426 return uprobe;
427 }
428
__insert_uprobe(struct uprobe * uprobe)429 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
430 {
431 struct rb_node **p = &uprobes_tree.rb_node;
432 struct rb_node *parent = NULL;
433 struct uprobe *u;
434 int match;
435
436 while (*p) {
437 parent = *p;
438 u = rb_entry(parent, struct uprobe, rb_node);
439 match = match_uprobe(uprobe, u);
440 if (!match)
441 return get_uprobe(u);
442
443 if (match < 0)
444 p = &parent->rb_left;
445 else
446 p = &parent->rb_right;
447
448 }
449
450 u = NULL;
451 rb_link_node(&uprobe->rb_node, parent, p);
452 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
453 /* get access + creation ref */
454 atomic_set(&uprobe->ref, 2);
455
456 return u;
457 }
458
459 /*
460 * Acquire uprobes_treelock.
461 * Matching uprobe already exists in rbtree;
462 * increment (access refcount) and return the matching uprobe.
463 *
464 * No matching uprobe; insert the uprobe in rb_tree;
465 * get a double refcount (access + creation) and return NULL.
466 */
insert_uprobe(struct uprobe * uprobe)467 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
468 {
469 struct uprobe *u;
470
471 spin_lock(&uprobes_treelock);
472 u = __insert_uprobe(uprobe);
473 spin_unlock(&uprobes_treelock);
474
475 return u;
476 }
477
alloc_uprobe(struct inode * inode,loff_t offset)478 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
479 {
480 struct uprobe *uprobe, *cur_uprobe;
481
482 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
483 if (!uprobe)
484 return NULL;
485
486 uprobe->inode = igrab(inode);
487 uprobe->offset = offset;
488 init_rwsem(&uprobe->register_rwsem);
489 init_rwsem(&uprobe->consumer_rwsem);
490
491 /* add to uprobes_tree, sorted on inode:offset */
492 cur_uprobe = insert_uprobe(uprobe);
493 /* a uprobe exists for this inode:offset combination */
494 if (cur_uprobe) {
495 kfree(uprobe);
496 uprobe = cur_uprobe;
497 iput(inode);
498 }
499
500 return uprobe;
501 }
502
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)503 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
504 {
505 down_write(&uprobe->consumer_rwsem);
506 uc->next = uprobe->consumers;
507 uprobe->consumers = uc;
508 up_write(&uprobe->consumer_rwsem);
509 }
510
511 /*
512 * For uprobe @uprobe, delete the consumer @uc.
513 * Return true if the @uc is deleted successfully
514 * or return false.
515 */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)516 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
517 {
518 struct uprobe_consumer **con;
519 bool ret = false;
520
521 down_write(&uprobe->consumer_rwsem);
522 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
523 if (*con == uc) {
524 *con = uc->next;
525 ret = true;
526 break;
527 }
528 }
529 up_write(&uprobe->consumer_rwsem);
530
531 return ret;
532 }
533
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)534 static int __copy_insn(struct address_space *mapping, struct file *filp,
535 void *insn, int nbytes, loff_t offset)
536 {
537 struct page *page;
538 /*
539 * Ensure that the page that has the original instruction is populated
540 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
541 * see uprobe_register().
542 */
543 if (mapping->a_ops->readpage)
544 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
545 else
546 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
547 if (IS_ERR(page))
548 return PTR_ERR(page);
549
550 copy_from_page(page, offset, insn, nbytes);
551 put_page(page);
552
553 return 0;
554 }
555
copy_insn(struct uprobe * uprobe,struct file * filp)556 static int copy_insn(struct uprobe *uprobe, struct file *filp)
557 {
558 struct address_space *mapping = uprobe->inode->i_mapping;
559 loff_t offs = uprobe->offset;
560 void *insn = &uprobe->arch.insn;
561 int size = sizeof(uprobe->arch.insn);
562 int len, err = -EIO;
563
564 /* Copy only available bytes, -EIO if nothing was read */
565 do {
566 if (offs >= i_size_read(uprobe->inode))
567 break;
568
569 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
570 err = __copy_insn(mapping, filp, insn, len, offs);
571 if (err)
572 break;
573
574 insn += len;
575 offs += len;
576 size -= len;
577 } while (size);
578
579 return err;
580 }
581
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)582 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
583 struct mm_struct *mm, unsigned long vaddr)
584 {
585 int ret = 0;
586
587 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
588 return ret;
589
590 /* TODO: move this into _register, until then we abuse this sem. */
591 down_write(&uprobe->consumer_rwsem);
592 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
593 goto out;
594
595 ret = copy_insn(uprobe, file);
596 if (ret)
597 goto out;
598
599 ret = -ENOTSUPP;
600 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
601 goto out;
602
603 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
604 if (ret)
605 goto out;
606
607 /* uprobe_write_opcode() assumes we don't cross page boundary */
608 BUG_ON((uprobe->offset & ~PAGE_MASK) +
609 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
610
611 smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
612 set_bit(UPROBE_COPY_INSN, &uprobe->flags);
613
614 out:
615 up_write(&uprobe->consumer_rwsem);
616
617 return ret;
618 }
619
consumer_filter(struct uprobe_consumer * uc,enum uprobe_filter_ctx ctx,struct mm_struct * mm)620 static inline bool consumer_filter(struct uprobe_consumer *uc,
621 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
622 {
623 return !uc->filter || uc->filter(uc, ctx, mm);
624 }
625
filter_chain(struct uprobe * uprobe,enum uprobe_filter_ctx ctx,struct mm_struct * mm)626 static bool filter_chain(struct uprobe *uprobe,
627 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
628 {
629 struct uprobe_consumer *uc;
630 bool ret = false;
631
632 down_read(&uprobe->consumer_rwsem);
633 for (uc = uprobe->consumers; uc; uc = uc->next) {
634 ret = consumer_filter(uc, ctx, mm);
635 if (ret)
636 break;
637 }
638 up_read(&uprobe->consumer_rwsem);
639
640 return ret;
641 }
642
643 static int
install_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long vaddr)644 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
645 struct vm_area_struct *vma, unsigned long vaddr)
646 {
647 bool first_uprobe;
648 int ret;
649
650 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
651 if (ret)
652 return ret;
653
654 /*
655 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
656 * the task can hit this breakpoint right after __replace_page().
657 */
658 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
659 if (first_uprobe)
660 set_bit(MMF_HAS_UPROBES, &mm->flags);
661
662 ret = set_swbp(&uprobe->arch, mm, vaddr);
663 if (!ret)
664 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
665 else if (first_uprobe)
666 clear_bit(MMF_HAS_UPROBES, &mm->flags);
667
668 return ret;
669 }
670
671 static int
remove_breakpoint(struct uprobe * uprobe,struct mm_struct * mm,unsigned long vaddr)672 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
673 {
674 set_bit(MMF_RECALC_UPROBES, &mm->flags);
675 return set_orig_insn(&uprobe->arch, mm, vaddr);
676 }
677
uprobe_is_active(struct uprobe * uprobe)678 static inline bool uprobe_is_active(struct uprobe *uprobe)
679 {
680 return !RB_EMPTY_NODE(&uprobe->rb_node);
681 }
682 /*
683 * There could be threads that have already hit the breakpoint. They
684 * will recheck the current insn and restart if find_uprobe() fails.
685 * See find_active_uprobe().
686 */
delete_uprobe(struct uprobe * uprobe)687 static void delete_uprobe(struct uprobe *uprobe)
688 {
689 if (WARN_ON(!uprobe_is_active(uprobe)))
690 return;
691
692 spin_lock(&uprobes_treelock);
693 rb_erase(&uprobe->rb_node, &uprobes_tree);
694 spin_unlock(&uprobes_treelock);
695 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
696 iput(uprobe->inode);
697 put_uprobe(uprobe);
698 }
699
700 struct map_info {
701 struct map_info *next;
702 struct mm_struct *mm;
703 unsigned long vaddr;
704 };
705
free_map_info(struct map_info * info)706 static inline struct map_info *free_map_info(struct map_info *info)
707 {
708 struct map_info *next = info->next;
709 kfree(info);
710 return next;
711 }
712
713 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)714 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
715 {
716 unsigned long pgoff = offset >> PAGE_SHIFT;
717 struct vm_area_struct *vma;
718 struct map_info *curr = NULL;
719 struct map_info *prev = NULL;
720 struct map_info *info;
721 int more = 0;
722
723 again:
724 i_mmap_lock_read(mapping);
725 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
726 if (!valid_vma(vma, is_register))
727 continue;
728
729 if (!prev && !more) {
730 /*
731 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
732 * reclaim. This is optimistic, no harm done if it fails.
733 */
734 prev = kmalloc(sizeof(struct map_info),
735 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
736 if (prev)
737 prev->next = NULL;
738 }
739 if (!prev) {
740 more++;
741 continue;
742 }
743
744 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
745 continue;
746
747 info = prev;
748 prev = prev->next;
749 info->next = curr;
750 curr = info;
751
752 info->mm = vma->vm_mm;
753 info->vaddr = offset_to_vaddr(vma, offset);
754 }
755 i_mmap_unlock_read(mapping);
756
757 if (!more)
758 goto out;
759
760 prev = curr;
761 while (curr) {
762 mmput(curr->mm);
763 curr = curr->next;
764 }
765
766 do {
767 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
768 if (!info) {
769 curr = ERR_PTR(-ENOMEM);
770 goto out;
771 }
772 info->next = prev;
773 prev = info;
774 } while (--more);
775
776 goto again;
777 out:
778 while (prev)
779 prev = free_map_info(prev);
780 return curr;
781 }
782
783 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)784 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
785 {
786 bool is_register = !!new;
787 struct map_info *info;
788 int err = 0;
789
790 percpu_down_write(&dup_mmap_sem);
791 info = build_map_info(uprobe->inode->i_mapping,
792 uprobe->offset, is_register);
793 if (IS_ERR(info)) {
794 err = PTR_ERR(info);
795 goto out;
796 }
797
798 while (info) {
799 struct mm_struct *mm = info->mm;
800 struct vm_area_struct *vma;
801
802 if (err && is_register)
803 goto free;
804
805 down_write(&mm->mmap_sem);
806 vma = find_vma(mm, info->vaddr);
807 if (!vma || !valid_vma(vma, is_register) ||
808 file_inode(vma->vm_file) != uprobe->inode)
809 goto unlock;
810
811 if (vma->vm_start > info->vaddr ||
812 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
813 goto unlock;
814
815 if (is_register) {
816 /* consult only the "caller", new consumer. */
817 if (consumer_filter(new,
818 UPROBE_FILTER_REGISTER, mm))
819 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
820 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
821 if (!filter_chain(uprobe,
822 UPROBE_FILTER_UNREGISTER, mm))
823 err |= remove_breakpoint(uprobe, mm, info->vaddr);
824 }
825
826 unlock:
827 up_write(&mm->mmap_sem);
828 free:
829 mmput(mm);
830 info = free_map_info(info);
831 }
832 out:
833 percpu_up_write(&dup_mmap_sem);
834 return err;
835 }
836
__uprobe_register(struct uprobe * uprobe,struct uprobe_consumer * uc)837 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
838 {
839 consumer_add(uprobe, uc);
840 return register_for_each_vma(uprobe, uc);
841 }
842
__uprobe_unregister(struct uprobe * uprobe,struct uprobe_consumer * uc)843 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
844 {
845 int err;
846
847 if (WARN_ON(!consumer_del(uprobe, uc)))
848 return;
849
850 err = register_for_each_vma(uprobe, NULL);
851 /* TODO : cant unregister? schedule a worker thread */
852 if (!uprobe->consumers && !err)
853 delete_uprobe(uprobe);
854 }
855
856 /*
857 * uprobe_register - register a probe
858 * @inode: the file in which the probe has to be placed.
859 * @offset: offset from the start of the file.
860 * @uc: information on howto handle the probe..
861 *
862 * Apart from the access refcount, uprobe_register() takes a creation
863 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
864 * inserted into the rbtree (i.e first consumer for a @inode:@offset
865 * tuple). Creation refcount stops uprobe_unregister from freeing the
866 * @uprobe even before the register operation is complete. Creation
867 * refcount is released when the last @uc for the @uprobe
868 * unregisters.
869 *
870 * Return errno if it cannot successully install probes
871 * else return 0 (success)
872 */
uprobe_register(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)873 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
874 {
875 struct uprobe *uprobe;
876 int ret;
877
878 /* Uprobe must have at least one set consumer */
879 if (!uc->handler && !uc->ret_handler)
880 return -EINVAL;
881
882 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
883 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
884 return -EIO;
885 /* Racy, just to catch the obvious mistakes */
886 if (offset > i_size_read(inode))
887 return -EINVAL;
888
889 retry:
890 uprobe = alloc_uprobe(inode, offset);
891 if (!uprobe)
892 return -ENOMEM;
893 /*
894 * We can race with uprobe_unregister()->delete_uprobe().
895 * Check uprobe_is_active() and retry if it is false.
896 */
897 down_write(&uprobe->register_rwsem);
898 ret = -EAGAIN;
899 if (likely(uprobe_is_active(uprobe))) {
900 ret = __uprobe_register(uprobe, uc);
901 if (ret)
902 __uprobe_unregister(uprobe, uc);
903 }
904 up_write(&uprobe->register_rwsem);
905 put_uprobe(uprobe);
906
907 if (unlikely(ret == -EAGAIN))
908 goto retry;
909 return ret;
910 }
911 EXPORT_SYMBOL_GPL(uprobe_register);
912
913 /*
914 * uprobe_apply - unregister a already registered probe.
915 * @inode: the file in which the probe has to be removed.
916 * @offset: offset from the start of the file.
917 * @uc: consumer which wants to add more or remove some breakpoints
918 * @add: add or remove the breakpoints
919 */
uprobe_apply(struct inode * inode,loff_t offset,struct uprobe_consumer * uc,bool add)920 int uprobe_apply(struct inode *inode, loff_t offset,
921 struct uprobe_consumer *uc, bool add)
922 {
923 struct uprobe *uprobe;
924 struct uprobe_consumer *con;
925 int ret = -ENOENT;
926
927 uprobe = find_uprobe(inode, offset);
928 if (WARN_ON(!uprobe))
929 return ret;
930
931 down_write(&uprobe->register_rwsem);
932 for (con = uprobe->consumers; con && con != uc ; con = con->next)
933 ;
934 if (con)
935 ret = register_for_each_vma(uprobe, add ? uc : NULL);
936 up_write(&uprobe->register_rwsem);
937 put_uprobe(uprobe);
938
939 return ret;
940 }
941
942 /*
943 * uprobe_unregister - unregister a already registered probe.
944 * @inode: the file in which the probe has to be removed.
945 * @offset: offset from the start of the file.
946 * @uc: identify which probe if multiple probes are colocated.
947 */
uprobe_unregister(struct inode * inode,loff_t offset,struct uprobe_consumer * uc)948 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
949 {
950 struct uprobe *uprobe;
951
952 uprobe = find_uprobe(inode, offset);
953 if (WARN_ON(!uprobe))
954 return;
955
956 down_write(&uprobe->register_rwsem);
957 __uprobe_unregister(uprobe, uc);
958 up_write(&uprobe->register_rwsem);
959 put_uprobe(uprobe);
960 }
961 EXPORT_SYMBOL_GPL(uprobe_unregister);
962
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)963 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
964 {
965 struct vm_area_struct *vma;
966 int err = 0;
967
968 down_read(&mm->mmap_sem);
969 for (vma = mm->mmap; vma; vma = vma->vm_next) {
970 unsigned long vaddr;
971 loff_t offset;
972
973 if (!valid_vma(vma, false) ||
974 file_inode(vma->vm_file) != uprobe->inode)
975 continue;
976
977 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
978 if (uprobe->offset < offset ||
979 uprobe->offset >= offset + vma->vm_end - vma->vm_start)
980 continue;
981
982 vaddr = offset_to_vaddr(vma, uprobe->offset);
983 err |= remove_breakpoint(uprobe, mm, vaddr);
984 }
985 up_read(&mm->mmap_sem);
986
987 return err;
988 }
989
990 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)991 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
992 {
993 struct rb_node *n = uprobes_tree.rb_node;
994
995 while (n) {
996 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
997
998 if (inode < u->inode) {
999 n = n->rb_left;
1000 } else if (inode > u->inode) {
1001 n = n->rb_right;
1002 } else {
1003 if (max < u->offset)
1004 n = n->rb_left;
1005 else if (min > u->offset)
1006 n = n->rb_right;
1007 else
1008 break;
1009 }
1010 }
1011
1012 return n;
1013 }
1014
1015 /*
1016 * For a given range in vma, build a list of probes that need to be inserted.
1017 */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1018 static void build_probe_list(struct inode *inode,
1019 struct vm_area_struct *vma,
1020 unsigned long start, unsigned long end,
1021 struct list_head *head)
1022 {
1023 loff_t min, max;
1024 struct rb_node *n, *t;
1025 struct uprobe *u;
1026
1027 INIT_LIST_HEAD(head);
1028 min = vaddr_to_offset(vma, start);
1029 max = min + (end - start) - 1;
1030
1031 spin_lock(&uprobes_treelock);
1032 n = find_node_in_range(inode, min, max);
1033 if (n) {
1034 for (t = n; t; t = rb_prev(t)) {
1035 u = rb_entry(t, struct uprobe, rb_node);
1036 if (u->inode != inode || u->offset < min)
1037 break;
1038 list_add(&u->pending_list, head);
1039 get_uprobe(u);
1040 }
1041 for (t = n; (t = rb_next(t)); ) {
1042 u = rb_entry(t, struct uprobe, rb_node);
1043 if (u->inode != inode || u->offset > max)
1044 break;
1045 list_add(&u->pending_list, head);
1046 get_uprobe(u);
1047 }
1048 }
1049 spin_unlock(&uprobes_treelock);
1050 }
1051
1052 /*
1053 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1054 *
1055 * Currently we ignore all errors and always return 0, the callers
1056 * can't handle the failure anyway.
1057 */
uprobe_mmap(struct vm_area_struct * vma)1058 int uprobe_mmap(struct vm_area_struct *vma)
1059 {
1060 struct list_head tmp_list;
1061 struct uprobe *uprobe, *u;
1062 struct inode *inode;
1063
1064 if (no_uprobe_events() || !valid_vma(vma, true))
1065 return 0;
1066
1067 inode = file_inode(vma->vm_file);
1068 if (!inode)
1069 return 0;
1070
1071 mutex_lock(uprobes_mmap_hash(inode));
1072 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1073 /*
1074 * We can race with uprobe_unregister(), this uprobe can be already
1075 * removed. But in this case filter_chain() must return false, all
1076 * consumers have gone away.
1077 */
1078 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1079 if (!fatal_signal_pending(current) &&
1080 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1081 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1082 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1083 }
1084 put_uprobe(uprobe);
1085 }
1086 mutex_unlock(uprobes_mmap_hash(inode));
1087
1088 return 0;
1089 }
1090
1091 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1092 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1093 {
1094 loff_t min, max;
1095 struct inode *inode;
1096 struct rb_node *n;
1097
1098 inode = file_inode(vma->vm_file);
1099
1100 min = vaddr_to_offset(vma, start);
1101 max = min + (end - start) - 1;
1102
1103 spin_lock(&uprobes_treelock);
1104 n = find_node_in_range(inode, min, max);
1105 spin_unlock(&uprobes_treelock);
1106
1107 return !!n;
1108 }
1109
1110 /*
1111 * Called in context of a munmap of a vma.
1112 */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1113 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1114 {
1115 if (no_uprobe_events() || !valid_vma(vma, false))
1116 return;
1117
1118 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1119 return;
1120
1121 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1122 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1123 return;
1124
1125 if (vma_has_uprobes(vma, start, end))
1126 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1127 }
1128
1129 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1130 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1131 {
1132 struct vm_area_struct *vma;
1133 int ret;
1134
1135 if (down_write_killable(&mm->mmap_sem))
1136 return -EINTR;
1137
1138 if (mm->uprobes_state.xol_area) {
1139 ret = -EALREADY;
1140 goto fail;
1141 }
1142
1143 if (!area->vaddr) {
1144 /* Try to map as high as possible, this is only a hint. */
1145 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1146 PAGE_SIZE, 0, 0);
1147 if (area->vaddr & ~PAGE_MASK) {
1148 ret = area->vaddr;
1149 goto fail;
1150 }
1151 }
1152
1153 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1154 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1155 &area->xol_mapping);
1156 if (IS_ERR(vma)) {
1157 ret = PTR_ERR(vma);
1158 goto fail;
1159 }
1160
1161 ret = 0;
1162 smp_wmb(); /* pairs with get_xol_area() */
1163 mm->uprobes_state.xol_area = area;
1164 fail:
1165 up_write(&mm->mmap_sem);
1166
1167 return ret;
1168 }
1169
__create_xol_area(unsigned long vaddr)1170 static struct xol_area *__create_xol_area(unsigned long vaddr)
1171 {
1172 struct mm_struct *mm = current->mm;
1173 uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1174 struct xol_area *area;
1175
1176 area = kmalloc(sizeof(*area), GFP_KERNEL);
1177 if (unlikely(!area))
1178 goto out;
1179
1180 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1181 if (!area->bitmap)
1182 goto free_area;
1183
1184 area->xol_mapping.name = "[uprobes]";
1185 area->xol_mapping.fault = NULL;
1186 area->xol_mapping.pages = area->pages;
1187 area->pages[0] = alloc_page(GFP_HIGHUSER);
1188 if (!area->pages[0])
1189 goto free_bitmap;
1190 area->pages[1] = NULL;
1191
1192 area->vaddr = vaddr;
1193 init_waitqueue_head(&area->wq);
1194 /* Reserve the 1st slot for get_trampoline_vaddr() */
1195 set_bit(0, area->bitmap);
1196 atomic_set(&area->slot_count, 1);
1197 copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1198
1199 if (!xol_add_vma(mm, area))
1200 return area;
1201
1202 __free_page(area->pages[0]);
1203 free_bitmap:
1204 kfree(area->bitmap);
1205 free_area:
1206 kfree(area);
1207 out:
1208 return NULL;
1209 }
1210
1211 /*
1212 * get_xol_area - Allocate process's xol_area if necessary.
1213 * This area will be used for storing instructions for execution out of line.
1214 *
1215 * Returns the allocated area or NULL.
1216 */
get_xol_area(void)1217 static struct xol_area *get_xol_area(void)
1218 {
1219 struct mm_struct *mm = current->mm;
1220 struct xol_area *area;
1221
1222 if (!mm->uprobes_state.xol_area)
1223 __create_xol_area(0);
1224
1225 area = mm->uprobes_state.xol_area;
1226 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1227 return area;
1228 }
1229
1230 /*
1231 * uprobe_clear_state - Free the area allocated for slots.
1232 */
uprobe_clear_state(struct mm_struct * mm)1233 void uprobe_clear_state(struct mm_struct *mm)
1234 {
1235 struct xol_area *area = mm->uprobes_state.xol_area;
1236
1237 if (!area)
1238 return;
1239
1240 put_page(area->pages[0]);
1241 kfree(area->bitmap);
1242 kfree(area);
1243 }
1244
uprobe_start_dup_mmap(void)1245 void uprobe_start_dup_mmap(void)
1246 {
1247 percpu_down_read(&dup_mmap_sem);
1248 }
1249
uprobe_end_dup_mmap(void)1250 void uprobe_end_dup_mmap(void)
1251 {
1252 percpu_up_read(&dup_mmap_sem);
1253 }
1254
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1255 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1256 {
1257 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1258 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1259 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1260 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1261 }
1262 }
1263
1264 /*
1265 * - search for a free slot.
1266 */
xol_take_insn_slot(struct xol_area * area)1267 static unsigned long xol_take_insn_slot(struct xol_area *area)
1268 {
1269 unsigned long slot_addr;
1270 int slot_nr;
1271
1272 do {
1273 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1274 if (slot_nr < UINSNS_PER_PAGE) {
1275 if (!test_and_set_bit(slot_nr, area->bitmap))
1276 break;
1277
1278 slot_nr = UINSNS_PER_PAGE;
1279 continue;
1280 }
1281 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1282 } while (slot_nr >= UINSNS_PER_PAGE);
1283
1284 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1285 atomic_inc(&area->slot_count);
1286
1287 return slot_addr;
1288 }
1289
1290 /*
1291 * xol_get_insn_slot - allocate a slot for xol.
1292 * Returns the allocated slot address or 0.
1293 */
xol_get_insn_slot(struct uprobe * uprobe)1294 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1295 {
1296 struct xol_area *area;
1297 unsigned long xol_vaddr;
1298
1299 area = get_xol_area();
1300 if (!area)
1301 return 0;
1302
1303 xol_vaddr = xol_take_insn_slot(area);
1304 if (unlikely(!xol_vaddr))
1305 return 0;
1306
1307 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1308 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1309
1310 return xol_vaddr;
1311 }
1312
1313 /*
1314 * xol_free_insn_slot - If slot was earlier allocated by
1315 * @xol_get_insn_slot(), make the slot available for
1316 * subsequent requests.
1317 */
xol_free_insn_slot(struct task_struct * tsk)1318 static void xol_free_insn_slot(struct task_struct *tsk)
1319 {
1320 struct xol_area *area;
1321 unsigned long vma_end;
1322 unsigned long slot_addr;
1323
1324 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1325 return;
1326
1327 slot_addr = tsk->utask->xol_vaddr;
1328 if (unlikely(!slot_addr))
1329 return;
1330
1331 area = tsk->mm->uprobes_state.xol_area;
1332 vma_end = area->vaddr + PAGE_SIZE;
1333 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1334 unsigned long offset;
1335 int slot_nr;
1336
1337 offset = slot_addr - area->vaddr;
1338 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1339 if (slot_nr >= UINSNS_PER_PAGE)
1340 return;
1341
1342 clear_bit(slot_nr, area->bitmap);
1343 atomic_dec(&area->slot_count);
1344 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1345 if (waitqueue_active(&area->wq))
1346 wake_up(&area->wq);
1347
1348 tsk->utask->xol_vaddr = 0;
1349 }
1350 }
1351
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1352 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1353 void *src, unsigned long len)
1354 {
1355 /* Initialize the slot */
1356 copy_to_page(page, vaddr, src, len);
1357
1358 /*
1359 * We probably need flush_icache_user_range() but it needs vma.
1360 * This should work on most of architectures by default. If
1361 * architecture needs to do something different it can define
1362 * its own version of the function.
1363 */
1364 flush_dcache_page(page);
1365 }
1366
1367 /**
1368 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1369 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1370 * instruction.
1371 * Return the address of the breakpoint instruction.
1372 */
uprobe_get_swbp_addr(struct pt_regs * regs)1373 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1374 {
1375 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1376 }
1377
uprobe_get_trap_addr(struct pt_regs * regs)1378 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1379 {
1380 struct uprobe_task *utask = current->utask;
1381
1382 if (unlikely(utask && utask->active_uprobe))
1383 return utask->vaddr;
1384
1385 return instruction_pointer(regs);
1386 }
1387
free_ret_instance(struct return_instance * ri)1388 static struct return_instance *free_ret_instance(struct return_instance *ri)
1389 {
1390 struct return_instance *next = ri->next;
1391 put_uprobe(ri->uprobe);
1392 kfree(ri);
1393 return next;
1394 }
1395
1396 /*
1397 * Called with no locks held.
1398 * Called in context of a exiting or a exec-ing thread.
1399 */
uprobe_free_utask(struct task_struct * t)1400 void uprobe_free_utask(struct task_struct *t)
1401 {
1402 struct uprobe_task *utask = t->utask;
1403 struct return_instance *ri;
1404
1405 if (!utask)
1406 return;
1407
1408 if (utask->active_uprobe)
1409 put_uprobe(utask->active_uprobe);
1410
1411 ri = utask->return_instances;
1412 while (ri)
1413 ri = free_ret_instance(ri);
1414
1415 xol_free_insn_slot(t);
1416 kfree(utask);
1417 t->utask = NULL;
1418 }
1419
1420 /*
1421 * Allocate a uprobe_task object for the task if if necessary.
1422 * Called when the thread hits a breakpoint.
1423 *
1424 * Returns:
1425 * - pointer to new uprobe_task on success
1426 * - NULL otherwise
1427 */
get_utask(void)1428 static struct uprobe_task *get_utask(void)
1429 {
1430 if (!current->utask)
1431 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1432 return current->utask;
1433 }
1434
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)1435 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1436 {
1437 struct uprobe_task *n_utask;
1438 struct return_instance **p, *o, *n;
1439
1440 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1441 if (!n_utask)
1442 return -ENOMEM;
1443 t->utask = n_utask;
1444
1445 p = &n_utask->return_instances;
1446 for (o = o_utask->return_instances; o; o = o->next) {
1447 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1448 if (!n)
1449 return -ENOMEM;
1450
1451 *n = *o;
1452 get_uprobe(n->uprobe);
1453 n->next = NULL;
1454
1455 *p = n;
1456 p = &n->next;
1457 n_utask->depth++;
1458 }
1459
1460 return 0;
1461 }
1462
uprobe_warn(struct task_struct * t,const char * msg)1463 static void uprobe_warn(struct task_struct *t, const char *msg)
1464 {
1465 pr_warn("uprobe: %s:%d failed to %s\n",
1466 current->comm, current->pid, msg);
1467 }
1468
dup_xol_work(struct callback_head * work)1469 static void dup_xol_work(struct callback_head *work)
1470 {
1471 if (current->flags & PF_EXITING)
1472 return;
1473
1474 if (!__create_xol_area(current->utask->dup_xol_addr) &&
1475 !fatal_signal_pending(current))
1476 uprobe_warn(current, "dup xol area");
1477 }
1478
1479 /*
1480 * Called in context of a new clone/fork from copy_process.
1481 */
uprobe_copy_process(struct task_struct * t,unsigned long flags)1482 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1483 {
1484 struct uprobe_task *utask = current->utask;
1485 struct mm_struct *mm = current->mm;
1486 struct xol_area *area;
1487
1488 t->utask = NULL;
1489
1490 if (!utask || !utask->return_instances)
1491 return;
1492
1493 if (mm == t->mm && !(flags & CLONE_VFORK))
1494 return;
1495
1496 if (dup_utask(t, utask))
1497 return uprobe_warn(t, "dup ret instances");
1498
1499 /* The task can fork() after dup_xol_work() fails */
1500 area = mm->uprobes_state.xol_area;
1501 if (!area)
1502 return uprobe_warn(t, "dup xol area");
1503
1504 if (mm == t->mm)
1505 return;
1506
1507 t->utask->dup_xol_addr = area->vaddr;
1508 init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1509 task_work_add(t, &t->utask->dup_xol_work, true);
1510 }
1511
1512 /*
1513 * Current area->vaddr notion assume the trampoline address is always
1514 * equal area->vaddr.
1515 *
1516 * Returns -1 in case the xol_area is not allocated.
1517 */
get_trampoline_vaddr(void)1518 static unsigned long get_trampoline_vaddr(void)
1519 {
1520 struct xol_area *area;
1521 unsigned long trampoline_vaddr = -1;
1522
1523 area = current->mm->uprobes_state.xol_area;
1524 smp_read_barrier_depends();
1525 if (area)
1526 trampoline_vaddr = area->vaddr;
1527
1528 return trampoline_vaddr;
1529 }
1530
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)1531 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1532 struct pt_regs *regs)
1533 {
1534 struct return_instance *ri = utask->return_instances;
1535 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1536
1537 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1538 ri = free_ret_instance(ri);
1539 utask->depth--;
1540 }
1541 utask->return_instances = ri;
1542 }
1543
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs)1544 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1545 {
1546 struct return_instance *ri;
1547 struct uprobe_task *utask;
1548 unsigned long orig_ret_vaddr, trampoline_vaddr;
1549 bool chained;
1550
1551 if (!get_xol_area())
1552 return;
1553
1554 utask = get_utask();
1555 if (!utask)
1556 return;
1557
1558 if (utask->depth >= MAX_URETPROBE_DEPTH) {
1559 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1560 " nestedness limit pid/tgid=%d/%d\n",
1561 current->pid, current->tgid);
1562 return;
1563 }
1564
1565 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1566 if (!ri)
1567 return;
1568
1569 trampoline_vaddr = get_trampoline_vaddr();
1570 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1571 if (orig_ret_vaddr == -1)
1572 goto fail;
1573
1574 /* drop the entries invalidated by longjmp() */
1575 chained = (orig_ret_vaddr == trampoline_vaddr);
1576 cleanup_return_instances(utask, chained, regs);
1577
1578 /*
1579 * We don't want to keep trampoline address in stack, rather keep the
1580 * original return address of first caller thru all the consequent
1581 * instances. This also makes breakpoint unwrapping easier.
1582 */
1583 if (chained) {
1584 if (!utask->return_instances) {
1585 /*
1586 * This situation is not possible. Likely we have an
1587 * attack from user-space.
1588 */
1589 uprobe_warn(current, "handle tail call");
1590 goto fail;
1591 }
1592 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1593 }
1594
1595 ri->uprobe = get_uprobe(uprobe);
1596 ri->func = instruction_pointer(regs);
1597 ri->stack = user_stack_pointer(regs);
1598 ri->orig_ret_vaddr = orig_ret_vaddr;
1599 ri->chained = chained;
1600
1601 utask->depth++;
1602 ri->next = utask->return_instances;
1603 utask->return_instances = ri;
1604
1605 return;
1606 fail:
1607 kfree(ri);
1608 }
1609
1610 /* Prepare to single-step probed instruction out of line. */
1611 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)1612 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1613 {
1614 struct uprobe_task *utask;
1615 unsigned long xol_vaddr;
1616 int err;
1617
1618 utask = get_utask();
1619 if (!utask)
1620 return -ENOMEM;
1621
1622 xol_vaddr = xol_get_insn_slot(uprobe);
1623 if (!xol_vaddr)
1624 return -ENOMEM;
1625
1626 utask->xol_vaddr = xol_vaddr;
1627 utask->vaddr = bp_vaddr;
1628
1629 err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1630 if (unlikely(err)) {
1631 xol_free_insn_slot(current);
1632 return err;
1633 }
1634
1635 utask->active_uprobe = uprobe;
1636 utask->state = UTASK_SSTEP;
1637 return 0;
1638 }
1639
1640 /*
1641 * If we are singlestepping, then ensure this thread is not connected to
1642 * non-fatal signals until completion of singlestep. When xol insn itself
1643 * triggers the signal, restart the original insn even if the task is
1644 * already SIGKILL'ed (since coredump should report the correct ip). This
1645 * is even more important if the task has a handler for SIGSEGV/etc, The
1646 * _same_ instruction should be repeated again after return from the signal
1647 * handler, and SSTEP can never finish in this case.
1648 */
uprobe_deny_signal(void)1649 bool uprobe_deny_signal(void)
1650 {
1651 struct task_struct *t = current;
1652 struct uprobe_task *utask = t->utask;
1653
1654 if (likely(!utask || !utask->active_uprobe))
1655 return false;
1656
1657 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1658
1659 if (signal_pending(t)) {
1660 spin_lock_irq(&t->sighand->siglock);
1661 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1662 spin_unlock_irq(&t->sighand->siglock);
1663
1664 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1665 utask->state = UTASK_SSTEP_TRAPPED;
1666 set_tsk_thread_flag(t, TIF_UPROBE);
1667 }
1668 }
1669
1670 return true;
1671 }
1672
mmf_recalc_uprobes(struct mm_struct * mm)1673 static void mmf_recalc_uprobes(struct mm_struct *mm)
1674 {
1675 struct vm_area_struct *vma;
1676
1677 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1678 if (!valid_vma(vma, false))
1679 continue;
1680 /*
1681 * This is not strictly accurate, we can race with
1682 * uprobe_unregister() and see the already removed
1683 * uprobe if delete_uprobe() was not yet called.
1684 * Or this uprobe can be filtered out.
1685 */
1686 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1687 return;
1688 }
1689
1690 clear_bit(MMF_HAS_UPROBES, &mm->flags);
1691 }
1692
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)1693 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1694 {
1695 struct page *page;
1696 uprobe_opcode_t opcode;
1697 int result;
1698
1699 pagefault_disable();
1700 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1701 pagefault_enable();
1702
1703 if (likely(result == 0))
1704 goto out;
1705
1706 /*
1707 * The NULL 'tsk' here ensures that any faults that occur here
1708 * will not be accounted to the task. 'mm' *is* current->mm,
1709 * but we treat this as a 'remote' access since it is
1710 * essentially a kernel access to the memory.
1711 */
1712 result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1713 NULL);
1714 if (result < 0)
1715 return result;
1716
1717 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1718 put_page(page);
1719 out:
1720 /* This needs to return true for any variant of the trap insn */
1721 return is_trap_insn(&opcode);
1722 }
1723
find_active_uprobe(unsigned long bp_vaddr,int * is_swbp)1724 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1725 {
1726 struct mm_struct *mm = current->mm;
1727 struct uprobe *uprobe = NULL;
1728 struct vm_area_struct *vma;
1729
1730 down_read(&mm->mmap_sem);
1731 vma = find_vma(mm, bp_vaddr);
1732 if (vma && vma->vm_start <= bp_vaddr) {
1733 if (valid_vma(vma, false)) {
1734 struct inode *inode = file_inode(vma->vm_file);
1735 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1736
1737 uprobe = find_uprobe(inode, offset);
1738 }
1739
1740 if (!uprobe)
1741 *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1742 } else {
1743 *is_swbp = -EFAULT;
1744 }
1745
1746 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1747 mmf_recalc_uprobes(mm);
1748 up_read(&mm->mmap_sem);
1749
1750 return uprobe;
1751 }
1752
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)1753 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1754 {
1755 struct uprobe_consumer *uc;
1756 int remove = UPROBE_HANDLER_REMOVE;
1757 bool need_prep = false; /* prepare return uprobe, when needed */
1758
1759 down_read(&uprobe->register_rwsem);
1760 for (uc = uprobe->consumers; uc; uc = uc->next) {
1761 int rc = 0;
1762
1763 if (uc->handler) {
1764 rc = uc->handler(uc, regs);
1765 WARN(rc & ~UPROBE_HANDLER_MASK,
1766 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1767 }
1768
1769 if (uc->ret_handler)
1770 need_prep = true;
1771
1772 remove &= rc;
1773 }
1774
1775 if (need_prep && !remove)
1776 prepare_uretprobe(uprobe, regs); /* put bp at return */
1777
1778 if (remove && uprobe->consumers) {
1779 WARN_ON(!uprobe_is_active(uprobe));
1780 unapply_uprobe(uprobe, current->mm);
1781 }
1782 up_read(&uprobe->register_rwsem);
1783 }
1784
1785 static void
handle_uretprobe_chain(struct return_instance * ri,struct pt_regs * regs)1786 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1787 {
1788 struct uprobe *uprobe = ri->uprobe;
1789 struct uprobe_consumer *uc;
1790
1791 down_read(&uprobe->register_rwsem);
1792 for (uc = uprobe->consumers; uc; uc = uc->next) {
1793 if (uc->ret_handler)
1794 uc->ret_handler(uc, ri->func, regs);
1795 }
1796 up_read(&uprobe->register_rwsem);
1797 }
1798
find_next_ret_chain(struct return_instance * ri)1799 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1800 {
1801 bool chained;
1802
1803 do {
1804 chained = ri->chained;
1805 ri = ri->next; /* can't be NULL if chained */
1806 } while (chained);
1807
1808 return ri;
1809 }
1810
handle_trampoline(struct pt_regs * regs)1811 static void handle_trampoline(struct pt_regs *regs)
1812 {
1813 struct uprobe_task *utask;
1814 struct return_instance *ri, *next;
1815 bool valid;
1816
1817 utask = current->utask;
1818 if (!utask)
1819 goto sigill;
1820
1821 ri = utask->return_instances;
1822 if (!ri)
1823 goto sigill;
1824
1825 do {
1826 /*
1827 * We should throw out the frames invalidated by longjmp().
1828 * If this chain is valid, then the next one should be alive
1829 * or NULL; the latter case means that nobody but ri->func
1830 * could hit this trampoline on return. TODO: sigaltstack().
1831 */
1832 next = find_next_ret_chain(ri);
1833 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1834
1835 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1836 do {
1837 if (valid)
1838 handle_uretprobe_chain(ri, regs);
1839 ri = free_ret_instance(ri);
1840 utask->depth--;
1841 } while (ri != next);
1842 } while (!valid);
1843
1844 utask->return_instances = ri;
1845 return;
1846
1847 sigill:
1848 uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1849 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1850
1851 }
1852
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)1853 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1854 {
1855 return false;
1856 }
1857
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)1858 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1859 struct pt_regs *regs)
1860 {
1861 return true;
1862 }
1863
1864 /*
1865 * Run handler and ask thread to singlestep.
1866 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1867 */
handle_swbp(struct pt_regs * regs)1868 static void handle_swbp(struct pt_regs *regs)
1869 {
1870 struct uprobe *uprobe;
1871 unsigned long bp_vaddr;
1872 int uninitialized_var(is_swbp);
1873
1874 bp_vaddr = uprobe_get_swbp_addr(regs);
1875 if (bp_vaddr == get_trampoline_vaddr())
1876 return handle_trampoline(regs);
1877
1878 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1879 if (!uprobe) {
1880 if (is_swbp > 0) {
1881 /* No matching uprobe; signal SIGTRAP. */
1882 send_sig(SIGTRAP, current, 0);
1883 } else {
1884 /*
1885 * Either we raced with uprobe_unregister() or we can't
1886 * access this memory. The latter is only possible if
1887 * another thread plays with our ->mm. In both cases
1888 * we can simply restart. If this vma was unmapped we
1889 * can pretend this insn was not executed yet and get
1890 * the (correct) SIGSEGV after restart.
1891 */
1892 instruction_pointer_set(regs, bp_vaddr);
1893 }
1894 return;
1895 }
1896
1897 /* change it in advance for ->handler() and restart */
1898 instruction_pointer_set(regs, bp_vaddr);
1899
1900 /*
1901 * TODO: move copy_insn/etc into _register and remove this hack.
1902 * After we hit the bp, _unregister + _register can install the
1903 * new and not-yet-analyzed uprobe at the same address, restart.
1904 */
1905 smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1906 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1907 goto out;
1908
1909 /* Tracing handlers use ->utask to communicate with fetch methods */
1910 if (!get_utask())
1911 goto out;
1912
1913 if (arch_uprobe_ignore(&uprobe->arch, regs))
1914 goto out;
1915
1916 handler_chain(uprobe, regs);
1917
1918 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1919 goto out;
1920
1921 if (!pre_ssout(uprobe, regs, bp_vaddr))
1922 return;
1923
1924 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1925 out:
1926 put_uprobe(uprobe);
1927 }
1928
1929 /*
1930 * Perform required fix-ups and disable singlestep.
1931 * Allow pending signals to take effect.
1932 */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)1933 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1934 {
1935 struct uprobe *uprobe;
1936 int err = 0;
1937
1938 uprobe = utask->active_uprobe;
1939 if (utask->state == UTASK_SSTEP_ACK)
1940 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1941 else if (utask->state == UTASK_SSTEP_TRAPPED)
1942 arch_uprobe_abort_xol(&uprobe->arch, regs);
1943 else
1944 WARN_ON_ONCE(1);
1945
1946 put_uprobe(uprobe);
1947 utask->active_uprobe = NULL;
1948 utask->state = UTASK_RUNNING;
1949 xol_free_insn_slot(current);
1950
1951 spin_lock_irq(¤t->sighand->siglock);
1952 recalc_sigpending(); /* see uprobe_deny_signal() */
1953 spin_unlock_irq(¤t->sighand->siglock);
1954
1955 if (unlikely(err)) {
1956 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1957 force_sig_info(SIGILL, SEND_SIG_FORCED, current);
1958 }
1959 }
1960
1961 /*
1962 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1963 * allows the thread to return from interrupt. After that handle_swbp()
1964 * sets utask->active_uprobe.
1965 *
1966 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1967 * and allows the thread to return from interrupt.
1968 *
1969 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1970 * uprobe_notify_resume().
1971 */
uprobe_notify_resume(struct pt_regs * regs)1972 void uprobe_notify_resume(struct pt_regs *regs)
1973 {
1974 struct uprobe_task *utask;
1975
1976 clear_thread_flag(TIF_UPROBE);
1977
1978 utask = current->utask;
1979 if (utask && utask->active_uprobe)
1980 handle_singlestep(utask, regs);
1981 else
1982 handle_swbp(regs);
1983 }
1984
1985 /*
1986 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1987 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1988 */
uprobe_pre_sstep_notifier(struct pt_regs * regs)1989 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1990 {
1991 if (!current->mm)
1992 return 0;
1993
1994 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) &&
1995 (!current->utask || !current->utask->return_instances))
1996 return 0;
1997
1998 set_thread_flag(TIF_UPROBE);
1999 return 1;
2000 }
2001
2002 /*
2003 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2004 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2005 */
uprobe_post_sstep_notifier(struct pt_regs * regs)2006 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2007 {
2008 struct uprobe_task *utask = current->utask;
2009
2010 if (!current->mm || !utask || !utask->active_uprobe)
2011 /* task is currently not uprobed */
2012 return 0;
2013
2014 utask->state = UTASK_SSTEP_ACK;
2015 set_thread_flag(TIF_UPROBE);
2016 return 1;
2017 }
2018
2019 static struct notifier_block uprobe_exception_nb = {
2020 .notifier_call = arch_uprobe_exception_notify,
2021 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
2022 };
2023
init_uprobes(void)2024 static int __init init_uprobes(void)
2025 {
2026 int i;
2027
2028 for (i = 0; i < UPROBES_HASH_SZ; i++)
2029 mutex_init(&uprobes_mmap_mutex[i]);
2030
2031 if (percpu_init_rwsem(&dup_mmap_sem))
2032 return -ENOMEM;
2033
2034 return register_die_notifier(&uprobe_exception_nb);
2035 }
2036 __initcall(init_uprobes);
2037