• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Read-Copy Update mechanism for mutual exclusion
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, you can access it online at
16  * http://www.gnu.org/licenses/gpl-2.0.html.
17  *
18  * Copyright IBM Corporation, 2008
19  *
20  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21  *	    Manfred Spraul <manfred@colorfullife.com>
22  *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23  *
24  * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26  *
27  * For detailed explanation of Read-Copy Update mechanism see -
28  *	Documentation/RCU
29  */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
58 
59 #include "tree.h"
60 #include "rcu.h"
61 
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
64 #endif
65 #define MODULE_PARAM_PREFIX "rcutree."
66 
67 /* Data structures. */
68 
69 /*
70  * In order to export the rcu_state name to the tracing tools, it
71  * needs to be added in the __tracepoint_string section.
72  * This requires defining a separate variable tp_<sname>_varname
73  * that points to the string being used, and this will allow
74  * the tracing userspace tools to be able to decipher the string
75  * address to the matching string.
76  */
77 #ifdef CONFIG_TRACING
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
82 #else
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
85 #endif
86 
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 	.level = { &sname##_state.node[0] }, \
92 	.rda = &sname##_data, \
93 	.call = cr, \
94 	.gp_state = RCU_GP_IDLE, \
95 	.gpnum = 0UL - 300UL, \
96 	.completed = 0UL - 300UL, \
97 	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 	.orphan_donetail = &sname##_state.orphan_donelist, \
100 	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 	.name = RCU_STATE_NAME(sname), \
102 	.abbr = sabbr, \
103 	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106 
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109 
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112 
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128 
129 /*
130  * The rcu_scheduler_active variable is initialized to the value
131  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
133  * RCU can assume that there is but one task, allowing RCU to (for example)
134  * optimize synchronize_rcu() to a simple barrier().  When this variable
135  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136  * to detect real grace periods.  This variable is also used to suppress
137  * boot-time false positives from lockdep-RCU error checking.  Finally, it
138  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139  * is fully initialized, including all of its kthreads having been spawned.
140  */
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
143 
144 /*
145  * The rcu_scheduler_fully_active variable transitions from zero to one
146  * during the early_initcall() processing, which is after the scheduler
147  * is capable of creating new tasks.  So RCU processing (for example,
148  * creating tasks for RCU priority boosting) must be delayed until after
149  * rcu_scheduler_fully_active transitions from zero to one.  We also
150  * currently delay invocation of any RCU callbacks until after this point.
151  *
152  * It might later prove better for people registering RCU callbacks during
153  * early boot to take responsibility for these callbacks, but one step at
154  * a time.
155  */
156 static int rcu_scheduler_fully_active __read_mostly;
157 
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 			       struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
166 
167 /* rcuc/rcub kthread realtime priority */
168 #ifdef CONFIG_RCU_KTHREAD_PRIO
169 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
170 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
171 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
172 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
173 module_param(kthread_prio, int, 0644);
174 
175 /* Delay in jiffies for grace-period initialization delays, debug only. */
176 
177 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
178 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
179 module_param(gp_preinit_delay, int, 0644);
180 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
181 static const int gp_preinit_delay;
182 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
183 
184 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
185 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
186 module_param(gp_init_delay, int, 0644);
187 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
188 static const int gp_init_delay;
189 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
190 
191 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
192 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
193 module_param(gp_cleanup_delay, int, 0644);
194 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
195 static const int gp_cleanup_delay;
196 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
197 
198 /*
199  * Number of grace periods between delays, normalized by the duration of
200  * the delay.  The longer the the delay, the more the grace periods between
201  * each delay.  The reason for this normalization is that it means that,
202  * for non-zero delays, the overall slowdown of grace periods is constant
203  * regardless of the duration of the delay.  This arrangement balances
204  * the need for long delays to increase some race probabilities with the
205  * need for fast grace periods to increase other race probabilities.
206  */
207 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
208 
209 /*
210  * Track the rcutorture test sequence number and the update version
211  * number within a given test.  The rcutorture_testseq is incremented
212  * on every rcutorture module load and unload, so has an odd value
213  * when a test is running.  The rcutorture_vernum is set to zero
214  * when rcutorture starts and is incremented on each rcutorture update.
215  * These variables enable correlating rcutorture output with the
216  * RCU tracing information.
217  */
218 unsigned long rcutorture_testseq;
219 unsigned long rcutorture_vernum;
220 
221 /*
222  * Compute the mask of online CPUs for the specified rcu_node structure.
223  * This will not be stable unless the rcu_node structure's ->lock is
224  * held, but the bit corresponding to the current CPU will be stable
225  * in most contexts.
226  */
rcu_rnp_online_cpus(struct rcu_node * rnp)227 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
228 {
229 	return READ_ONCE(rnp->qsmaskinitnext);
230 }
231 
232 /*
233  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
234  * permit this function to be invoked without holding the root rcu_node
235  * structure's ->lock, but of course results can be subject to change.
236  */
rcu_gp_in_progress(struct rcu_state * rsp)237 static int rcu_gp_in_progress(struct rcu_state *rsp)
238 {
239 	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
240 }
241 
242 /*
243  * Note a quiescent state.  Because we do not need to know
244  * how many quiescent states passed, just if there was at least
245  * one since the start of the grace period, this just sets a flag.
246  * The caller must have disabled preemption.
247  */
rcu_sched_qs(void)248 void rcu_sched_qs(void)
249 {
250 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
251 		return;
252 	trace_rcu_grace_period(TPS("rcu_sched"),
253 			       __this_cpu_read(rcu_sched_data.gpnum),
254 			       TPS("cpuqs"));
255 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
256 	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
257 		return;
258 	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
259 	rcu_report_exp_rdp(&rcu_sched_state,
260 			   this_cpu_ptr(&rcu_sched_data), true);
261 }
262 
rcu_bh_qs(void)263 void rcu_bh_qs(void)
264 {
265 	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
266 		trace_rcu_grace_period(TPS("rcu_bh"),
267 				       __this_cpu_read(rcu_bh_data.gpnum),
268 				       TPS("cpuqs"));
269 		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
270 	}
271 }
272 
273 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
274 
275 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
276 	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
277 	.dynticks = ATOMIC_INIT(1),
278 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
279 	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
280 	.dynticks_idle = ATOMIC_INIT(1),
281 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
282 };
283 
284 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
285 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
286 
287 /*
288  * Let the RCU core know that this CPU has gone through the scheduler,
289  * which is a quiescent state.  This is called when the need for a
290  * quiescent state is urgent, so we burn an atomic operation and full
291  * memory barriers to let the RCU core know about it, regardless of what
292  * this CPU might (or might not) do in the near future.
293  *
294  * We inform the RCU core by emulating a zero-duration dyntick-idle
295  * period, which we in turn do by incrementing the ->dynticks counter
296  * by two.
297  *
298  * The caller must have disabled interrupts.
299  */
rcu_momentary_dyntick_idle(void)300 static void rcu_momentary_dyntick_idle(void)
301 {
302 	struct rcu_data *rdp;
303 	struct rcu_dynticks *rdtp;
304 	int resched_mask;
305 	struct rcu_state *rsp;
306 
307 	/*
308 	 * Yes, we can lose flag-setting operations.  This is OK, because
309 	 * the flag will be set again after some delay.
310 	 */
311 	resched_mask = raw_cpu_read(rcu_sched_qs_mask);
312 	raw_cpu_write(rcu_sched_qs_mask, 0);
313 
314 	/* Find the flavor that needs a quiescent state. */
315 	for_each_rcu_flavor(rsp) {
316 		rdp = raw_cpu_ptr(rsp->rda);
317 		if (!(resched_mask & rsp->flavor_mask))
318 			continue;
319 		smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
320 		if (READ_ONCE(rdp->mynode->completed) !=
321 		    READ_ONCE(rdp->cond_resched_completed))
322 			continue;
323 
324 		/*
325 		 * Pretend to be momentarily idle for the quiescent state.
326 		 * This allows the grace-period kthread to record the
327 		 * quiescent state, with no need for this CPU to do anything
328 		 * further.
329 		 */
330 		rdtp = this_cpu_ptr(&rcu_dynticks);
331 		smp_mb__before_atomic(); /* Earlier stuff before QS. */
332 		atomic_add(2, &rdtp->dynticks);  /* QS. */
333 		smp_mb__after_atomic(); /* Later stuff after QS. */
334 		break;
335 	}
336 }
337 
338 /*
339  * Note a context switch.  This is a quiescent state for RCU-sched,
340  * and requires special handling for preemptible RCU.
341  * The caller must have disabled interrupts.
342  */
rcu_note_context_switch(void)343 void rcu_note_context_switch(void)
344 {
345 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
346 	trace_rcu_utilization(TPS("Start context switch"));
347 	rcu_sched_qs();
348 	rcu_preempt_note_context_switch();
349 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
350 		rcu_momentary_dyntick_idle();
351 	trace_rcu_utilization(TPS("End context switch"));
352 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
353 }
354 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
355 
356 /*
357  * Register a quiescent state for all RCU flavors.  If there is an
358  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
359  * dyntick-idle quiescent state visible to other CPUs (but only for those
360  * RCU flavors in desperate need of a quiescent state, which will normally
361  * be none of them).  Either way, do a lightweight quiescent state for
362  * all RCU flavors.
363  *
364  * The barrier() calls are redundant in the common case when this is
365  * called externally, but just in case this is called from within this
366  * file.
367  *
368  */
rcu_all_qs(void)369 void rcu_all_qs(void)
370 {
371 	unsigned long flags;
372 
373 	barrier(); /* Avoid RCU read-side critical sections leaking down. */
374 	if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
375 		local_irq_save(flags);
376 		rcu_momentary_dyntick_idle();
377 		local_irq_restore(flags);
378 	}
379 	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
380 		/*
381 		 * Yes, we just checked a per-CPU variable with preemption
382 		 * enabled, so we might be migrated to some other CPU at
383 		 * this point.  That is OK because in that case, the
384 		 * migration will supply the needed quiescent state.
385 		 * We might end up needlessly disabling preemption and
386 		 * invoking rcu_sched_qs() on the destination CPU, but
387 		 * the probability and cost are both quite low, so this
388 		 * should not be a problem in practice.
389 		 */
390 		preempt_disable();
391 		rcu_sched_qs();
392 		preempt_enable();
393 	}
394 	this_cpu_inc(rcu_qs_ctr);
395 	barrier(); /* Avoid RCU read-side critical sections leaking up. */
396 }
397 EXPORT_SYMBOL_GPL(rcu_all_qs);
398 
399 static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
400 static long qhimark = 10000;	/* If this many pending, ignore blimit. */
401 static long qlowmark = 100;	/* Once only this many pending, use blimit. */
402 
403 module_param(blimit, long, 0444);
404 module_param(qhimark, long, 0444);
405 module_param(qlowmark, long, 0444);
406 
407 static ulong jiffies_till_first_fqs = ULONG_MAX;
408 static ulong jiffies_till_next_fqs = ULONG_MAX;
409 static bool rcu_kick_kthreads;
410 
411 module_param(jiffies_till_first_fqs, ulong, 0644);
412 module_param(jiffies_till_next_fqs, ulong, 0644);
413 module_param(rcu_kick_kthreads, bool, 0644);
414 
415 /*
416  * How long the grace period must be before we start recruiting
417  * quiescent-state help from rcu_note_context_switch().
418  */
419 static ulong jiffies_till_sched_qs = HZ / 20;
420 module_param(jiffies_till_sched_qs, ulong, 0644);
421 
422 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
423 				  struct rcu_data *rdp);
424 static void force_qs_rnp(struct rcu_state *rsp,
425 			 int (*f)(struct rcu_data *rsp, bool *isidle,
426 				  unsigned long *maxj),
427 			 bool *isidle, unsigned long *maxj);
428 static void force_quiescent_state(struct rcu_state *rsp);
429 static int rcu_pending(void);
430 
431 /*
432  * Return the number of RCU batches started thus far for debug & stats.
433  */
rcu_batches_started(void)434 unsigned long rcu_batches_started(void)
435 {
436 	return rcu_state_p->gpnum;
437 }
438 EXPORT_SYMBOL_GPL(rcu_batches_started);
439 
440 /*
441  * Return the number of RCU-sched batches started thus far for debug & stats.
442  */
rcu_batches_started_sched(void)443 unsigned long rcu_batches_started_sched(void)
444 {
445 	return rcu_sched_state.gpnum;
446 }
447 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
448 
449 /*
450  * Return the number of RCU BH batches started thus far for debug & stats.
451  */
rcu_batches_started_bh(void)452 unsigned long rcu_batches_started_bh(void)
453 {
454 	return rcu_bh_state.gpnum;
455 }
456 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
457 
458 /*
459  * Return the number of RCU batches completed thus far for debug & stats.
460  */
rcu_batches_completed(void)461 unsigned long rcu_batches_completed(void)
462 {
463 	return rcu_state_p->completed;
464 }
465 EXPORT_SYMBOL_GPL(rcu_batches_completed);
466 
467 /*
468  * Return the number of RCU-sched batches completed thus far for debug & stats.
469  */
rcu_batches_completed_sched(void)470 unsigned long rcu_batches_completed_sched(void)
471 {
472 	return rcu_sched_state.completed;
473 }
474 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
475 
476 /*
477  * Return the number of RCU BH batches completed thus far for debug & stats.
478  */
rcu_batches_completed_bh(void)479 unsigned long rcu_batches_completed_bh(void)
480 {
481 	return rcu_bh_state.completed;
482 }
483 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
484 
485 /*
486  * Return the number of RCU expedited batches completed thus far for
487  * debug & stats.  Odd numbers mean that a batch is in progress, even
488  * numbers mean idle.  The value returned will thus be roughly double
489  * the cumulative batches since boot.
490  */
rcu_exp_batches_completed(void)491 unsigned long rcu_exp_batches_completed(void)
492 {
493 	return rcu_state_p->expedited_sequence;
494 }
495 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
496 
497 /*
498  * Return the number of RCU-sched expedited batches completed thus far
499  * for debug & stats.  Similar to rcu_exp_batches_completed().
500  */
rcu_exp_batches_completed_sched(void)501 unsigned long rcu_exp_batches_completed_sched(void)
502 {
503 	return rcu_sched_state.expedited_sequence;
504 }
505 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
506 
507 /*
508  * Force a quiescent state.
509  */
rcu_force_quiescent_state(void)510 void rcu_force_quiescent_state(void)
511 {
512 	force_quiescent_state(rcu_state_p);
513 }
514 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
515 
516 /*
517  * Force a quiescent state for RCU BH.
518  */
rcu_bh_force_quiescent_state(void)519 void rcu_bh_force_quiescent_state(void)
520 {
521 	force_quiescent_state(&rcu_bh_state);
522 }
523 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
524 
525 /*
526  * Force a quiescent state for RCU-sched.
527  */
rcu_sched_force_quiescent_state(void)528 void rcu_sched_force_quiescent_state(void)
529 {
530 	force_quiescent_state(&rcu_sched_state);
531 }
532 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
533 
534 /*
535  * Show the state of the grace-period kthreads.
536  */
show_rcu_gp_kthreads(void)537 void show_rcu_gp_kthreads(void)
538 {
539 	struct rcu_state *rsp;
540 
541 	for_each_rcu_flavor(rsp) {
542 		pr_info("%s: wait state: %d ->state: %#lx\n",
543 			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
544 		/* sched_show_task(rsp->gp_kthread); */
545 	}
546 }
547 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
548 
549 /*
550  * Record the number of times rcutorture tests have been initiated and
551  * terminated.  This information allows the debugfs tracing stats to be
552  * correlated to the rcutorture messages, even when the rcutorture module
553  * is being repeatedly loaded and unloaded.  In other words, we cannot
554  * store this state in rcutorture itself.
555  */
rcutorture_record_test_transition(void)556 void rcutorture_record_test_transition(void)
557 {
558 	rcutorture_testseq++;
559 	rcutorture_vernum = 0;
560 }
561 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
562 
563 /*
564  * Send along grace-period-related data for rcutorture diagnostics.
565  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gpnum,unsigned long * completed)566 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
567 			    unsigned long *gpnum, unsigned long *completed)
568 {
569 	struct rcu_state *rsp = NULL;
570 
571 	switch (test_type) {
572 	case RCU_FLAVOR:
573 		rsp = rcu_state_p;
574 		break;
575 	case RCU_BH_FLAVOR:
576 		rsp = &rcu_bh_state;
577 		break;
578 	case RCU_SCHED_FLAVOR:
579 		rsp = &rcu_sched_state;
580 		break;
581 	default:
582 		break;
583 	}
584 	if (rsp != NULL) {
585 		*flags = READ_ONCE(rsp->gp_flags);
586 		*gpnum = READ_ONCE(rsp->gpnum);
587 		*completed = READ_ONCE(rsp->completed);
588 		return;
589 	}
590 	*flags = 0;
591 	*gpnum = 0;
592 	*completed = 0;
593 }
594 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
595 
596 /*
597  * Record the number of writer passes through the current rcutorture test.
598  * This is also used to correlate debugfs tracing stats with the rcutorture
599  * messages.
600  */
rcutorture_record_progress(unsigned long vernum)601 void rcutorture_record_progress(unsigned long vernum)
602 {
603 	rcutorture_vernum++;
604 }
605 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
606 
607 /*
608  * Does the CPU have callbacks ready to be invoked?
609  */
610 static int
cpu_has_callbacks_ready_to_invoke(struct rcu_data * rdp)611 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
612 {
613 	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
614 	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
615 }
616 
617 /*
618  * Return the root node of the specified rcu_state structure.
619  */
rcu_get_root(struct rcu_state * rsp)620 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
621 {
622 	return &rsp->node[0];
623 }
624 
625 /*
626  * Is there any need for future grace periods?
627  * Interrupts must be disabled.  If the caller does not hold the root
628  * rnp_node structure's ->lock, the results are advisory only.
629  */
rcu_future_needs_gp(struct rcu_state * rsp)630 static int rcu_future_needs_gp(struct rcu_state *rsp)
631 {
632 	struct rcu_node *rnp = rcu_get_root(rsp);
633 	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
634 	int *fp = &rnp->need_future_gp[idx];
635 
636 	return READ_ONCE(*fp);
637 }
638 
639 /*
640  * Does the current CPU require a not-yet-started grace period?
641  * The caller must have disabled interrupts to prevent races with
642  * normal callback registry.
643  */
644 static bool
cpu_needs_another_gp(struct rcu_state * rsp,struct rcu_data * rdp)645 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
646 {
647 	int i;
648 
649 	if (rcu_gp_in_progress(rsp))
650 		return false;  /* No, a grace period is already in progress. */
651 	if (rcu_future_needs_gp(rsp))
652 		return true;  /* Yes, a no-CBs CPU needs one. */
653 	if (!rdp->nxttail[RCU_NEXT_TAIL])
654 		return false;  /* No, this is a no-CBs (or offline) CPU. */
655 	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
656 		return true;  /* Yes, CPU has newly registered callbacks. */
657 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
658 		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
659 		    ULONG_CMP_LT(READ_ONCE(rsp->completed),
660 				 rdp->nxtcompleted[i]))
661 			return true;  /* Yes, CBs for future grace period. */
662 	return false; /* No grace period needed. */
663 }
664 
665 /*
666  * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
667  *
668  * If the new value of the ->dynticks_nesting counter now is zero,
669  * we really have entered idle, and must do the appropriate accounting.
670  * The caller must have disabled interrupts.
671  */
rcu_eqs_enter_common(long long oldval,bool user)672 static void rcu_eqs_enter_common(long long oldval, bool user)
673 {
674 	struct rcu_state *rsp;
675 	struct rcu_data *rdp;
676 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
677 
678 	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
679 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
680 	    !user && !is_idle_task(current)) {
681 		struct task_struct *idle __maybe_unused =
682 			idle_task(smp_processor_id());
683 
684 		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
685 		rcu_ftrace_dump(DUMP_ORIG);
686 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
687 			  current->pid, current->comm,
688 			  idle->pid, idle->comm); /* must be idle task! */
689 	}
690 	for_each_rcu_flavor(rsp) {
691 		rdp = this_cpu_ptr(rsp->rda);
692 		do_nocb_deferred_wakeup(rdp);
693 	}
694 	rcu_prepare_for_idle();
695 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
696 	smp_mb__before_atomic();  /* See above. */
697 	atomic_inc(&rdtp->dynticks);
698 	smp_mb__after_atomic();  /* Force ordering with next sojourn. */
699 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
700 		     atomic_read(&rdtp->dynticks) & 0x1);
701 	rcu_dynticks_task_enter();
702 
703 	/*
704 	 * It is illegal to enter an extended quiescent state while
705 	 * in an RCU read-side critical section.
706 	 */
707 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
708 			 "Illegal idle entry in RCU read-side critical section.");
709 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
710 			 "Illegal idle entry in RCU-bh read-side critical section.");
711 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
712 			 "Illegal idle entry in RCU-sched read-side critical section.");
713 }
714 
715 /*
716  * Enter an RCU extended quiescent state, which can be either the
717  * idle loop or adaptive-tickless usermode execution.
718  */
rcu_eqs_enter(bool user)719 static void rcu_eqs_enter(bool user)
720 {
721 	long long oldval;
722 	struct rcu_dynticks *rdtp;
723 
724 	rdtp = this_cpu_ptr(&rcu_dynticks);
725 	oldval = rdtp->dynticks_nesting;
726 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
727 		     (oldval & DYNTICK_TASK_NEST_MASK) == 0);
728 	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
729 		rdtp->dynticks_nesting = 0;
730 		rcu_eqs_enter_common(oldval, user);
731 	} else {
732 		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
733 	}
734 }
735 
736 /**
737  * rcu_idle_enter - inform RCU that current CPU is entering idle
738  *
739  * Enter idle mode, in other words, -leave- the mode in which RCU
740  * read-side critical sections can occur.  (Though RCU read-side
741  * critical sections can occur in irq handlers in idle, a possibility
742  * handled by irq_enter() and irq_exit().)
743  *
744  * We crowbar the ->dynticks_nesting field to zero to allow for
745  * the possibility of usermode upcalls having messed up our count
746  * of interrupt nesting level during the prior busy period.
747  */
rcu_idle_enter(void)748 void rcu_idle_enter(void)
749 {
750 	unsigned long flags;
751 
752 	local_irq_save(flags);
753 	rcu_eqs_enter(false);
754 	rcu_sysidle_enter(0);
755 	local_irq_restore(flags);
756 }
757 EXPORT_SYMBOL_GPL(rcu_idle_enter);
758 
759 #ifdef CONFIG_NO_HZ_FULL
760 /**
761  * rcu_user_enter - inform RCU that we are resuming userspace.
762  *
763  * Enter RCU idle mode right before resuming userspace.  No use of RCU
764  * is permitted between this call and rcu_user_exit(). This way the
765  * CPU doesn't need to maintain the tick for RCU maintenance purposes
766  * when the CPU runs in userspace.
767  */
rcu_user_enter(void)768 void rcu_user_enter(void)
769 {
770 	rcu_eqs_enter(1);
771 }
772 #endif /* CONFIG_NO_HZ_FULL */
773 
774 /**
775  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
776  *
777  * Exit from an interrupt handler, which might possibly result in entering
778  * idle mode, in other words, leaving the mode in which read-side critical
779  * sections can occur.  The caller must have disabled interrupts.
780  *
781  * This code assumes that the idle loop never does anything that might
782  * result in unbalanced calls to irq_enter() and irq_exit().  If your
783  * architecture violates this assumption, RCU will give you what you
784  * deserve, good and hard.  But very infrequently and irreproducibly.
785  *
786  * Use things like work queues to work around this limitation.
787  *
788  * You have been warned.
789  */
rcu_irq_exit(void)790 void rcu_irq_exit(void)
791 {
792 	long long oldval;
793 	struct rcu_dynticks *rdtp;
794 
795 	rdtp = this_cpu_ptr(&rcu_dynticks);
796 
797 	/* Page faults can happen in NMI handlers, so check... */
798 	if (READ_ONCE(rdtp->dynticks_nmi_nesting))
799 		return;
800 
801 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
802 	oldval = rdtp->dynticks_nesting;
803 	rdtp->dynticks_nesting--;
804 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
805 		     rdtp->dynticks_nesting < 0);
806 	if (rdtp->dynticks_nesting)
807 		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
808 	else
809 		rcu_eqs_enter_common(oldval, true);
810 	rcu_sysidle_enter(1);
811 }
812 
813 /*
814  * Wrapper for rcu_irq_exit() where interrupts are enabled.
815  */
rcu_irq_exit_irqson(void)816 void rcu_irq_exit_irqson(void)
817 {
818 	unsigned long flags;
819 
820 	local_irq_save(flags);
821 	rcu_irq_exit();
822 	local_irq_restore(flags);
823 }
824 
825 /*
826  * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
827  *
828  * If the new value of the ->dynticks_nesting counter was previously zero,
829  * we really have exited idle, and must do the appropriate accounting.
830  * The caller must have disabled interrupts.
831  */
rcu_eqs_exit_common(long long oldval,int user)832 static void rcu_eqs_exit_common(long long oldval, int user)
833 {
834 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
835 
836 	rcu_dynticks_task_exit();
837 	smp_mb__before_atomic();  /* Force ordering w/previous sojourn. */
838 	atomic_inc(&rdtp->dynticks);
839 	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
840 	smp_mb__after_atomic();  /* See above. */
841 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
842 		     !(atomic_read(&rdtp->dynticks) & 0x1));
843 	rcu_cleanup_after_idle();
844 	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
845 	if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
846 	    !user && !is_idle_task(current)) {
847 		struct task_struct *idle __maybe_unused =
848 			idle_task(smp_processor_id());
849 
850 		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
851 				  oldval, rdtp->dynticks_nesting);
852 		rcu_ftrace_dump(DUMP_ORIG);
853 		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
854 			  current->pid, current->comm,
855 			  idle->pid, idle->comm); /* must be idle task! */
856 	}
857 }
858 
859 /*
860  * Exit an RCU extended quiescent state, which can be either the
861  * idle loop or adaptive-tickless usermode execution.
862  */
rcu_eqs_exit(bool user)863 static void rcu_eqs_exit(bool user)
864 {
865 	struct rcu_dynticks *rdtp;
866 	long long oldval;
867 
868 	rdtp = this_cpu_ptr(&rcu_dynticks);
869 	oldval = rdtp->dynticks_nesting;
870 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
871 	if (oldval & DYNTICK_TASK_NEST_MASK) {
872 		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
873 	} else {
874 		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
875 		rcu_eqs_exit_common(oldval, user);
876 	}
877 }
878 
879 /**
880  * rcu_idle_exit - inform RCU that current CPU is leaving idle
881  *
882  * Exit idle mode, in other words, -enter- the mode in which RCU
883  * read-side critical sections can occur.
884  *
885  * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
886  * allow for the possibility of usermode upcalls messing up our count
887  * of interrupt nesting level during the busy period that is just
888  * now starting.
889  */
rcu_idle_exit(void)890 void rcu_idle_exit(void)
891 {
892 	unsigned long flags;
893 
894 	local_irq_save(flags);
895 	rcu_eqs_exit(false);
896 	rcu_sysidle_exit(0);
897 	local_irq_restore(flags);
898 }
899 EXPORT_SYMBOL_GPL(rcu_idle_exit);
900 
901 #ifdef CONFIG_NO_HZ_FULL
902 /**
903  * rcu_user_exit - inform RCU that we are exiting userspace.
904  *
905  * Exit RCU idle mode while entering the kernel because it can
906  * run a RCU read side critical section anytime.
907  */
rcu_user_exit(void)908 void rcu_user_exit(void)
909 {
910 	rcu_eqs_exit(1);
911 }
912 #endif /* CONFIG_NO_HZ_FULL */
913 
914 /**
915  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
916  *
917  * Enter an interrupt handler, which might possibly result in exiting
918  * idle mode, in other words, entering the mode in which read-side critical
919  * sections can occur.  The caller must have disabled interrupts.
920  *
921  * Note that the Linux kernel is fully capable of entering an interrupt
922  * handler that it never exits, for example when doing upcalls to
923  * user mode!  This code assumes that the idle loop never does upcalls to
924  * user mode.  If your architecture does do upcalls from the idle loop (or
925  * does anything else that results in unbalanced calls to the irq_enter()
926  * and irq_exit() functions), RCU will give you what you deserve, good
927  * and hard.  But very infrequently and irreproducibly.
928  *
929  * Use things like work queues to work around this limitation.
930  *
931  * You have been warned.
932  */
rcu_irq_enter(void)933 void rcu_irq_enter(void)
934 {
935 	struct rcu_dynticks *rdtp;
936 	long long oldval;
937 
938 	rdtp = this_cpu_ptr(&rcu_dynticks);
939 
940 	/* Page faults can happen in NMI handlers, so check... */
941 	if (READ_ONCE(rdtp->dynticks_nmi_nesting))
942 		return;
943 
944 	RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
945 	oldval = rdtp->dynticks_nesting;
946 	rdtp->dynticks_nesting++;
947 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
948 		     rdtp->dynticks_nesting == 0);
949 	if (oldval)
950 		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
951 	else
952 		rcu_eqs_exit_common(oldval, true);
953 	rcu_sysidle_exit(1);
954 }
955 
956 /*
957  * Wrapper for rcu_irq_enter() where interrupts are enabled.
958  */
rcu_irq_enter_irqson(void)959 void rcu_irq_enter_irqson(void)
960 {
961 	unsigned long flags;
962 
963 	local_irq_save(flags);
964 	rcu_irq_enter();
965 	local_irq_restore(flags);
966 }
967 
968 /**
969  * rcu_nmi_enter - inform RCU of entry to NMI context
970  *
971  * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
972  * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
973  * that the CPU is active.  This implementation permits nested NMIs, as
974  * long as the nesting level does not overflow an int.  (You will probably
975  * run out of stack space first.)
976  */
rcu_nmi_enter(void)977 void rcu_nmi_enter(void)
978 {
979 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
980 	int incby = 2;
981 
982 	/* Complain about underflow. */
983 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
984 
985 	/*
986 	 * If idle from RCU viewpoint, atomically increment ->dynticks
987 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
988 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
989 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
990 	 * to be in the outermost NMI handler that interrupted an RCU-idle
991 	 * period (observation due to Andy Lutomirski).
992 	 */
993 	if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
994 		smp_mb__before_atomic();  /* Force delay from prior write. */
995 		atomic_inc(&rdtp->dynticks);
996 		/* atomic_inc() before later RCU read-side crit sects */
997 		smp_mb__after_atomic();  /* See above. */
998 		WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
999 		incby = 1;
1000 	}
1001 	rdtp->dynticks_nmi_nesting += incby;
1002 	barrier();
1003 }
1004 
1005 /**
1006  * rcu_nmi_exit - inform RCU of exit from NMI context
1007  *
1008  * If we are returning from the outermost NMI handler that interrupted an
1009  * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
1010  * to let the RCU grace-period handling know that the CPU is back to
1011  * being RCU-idle.
1012  */
rcu_nmi_exit(void)1013 void rcu_nmi_exit(void)
1014 {
1015 	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1016 
1017 	/*
1018 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1019 	 * (We are exiting an NMI handler, so RCU better be paying attention
1020 	 * to us!)
1021 	 */
1022 	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1023 	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1024 
1025 	/*
1026 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1027 	 * leave it in non-RCU-idle state.
1028 	 */
1029 	if (rdtp->dynticks_nmi_nesting != 1) {
1030 		rdtp->dynticks_nmi_nesting -= 2;
1031 		return;
1032 	}
1033 
1034 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1035 	rdtp->dynticks_nmi_nesting = 0;
1036 	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1037 	smp_mb__before_atomic();  /* See above. */
1038 	atomic_inc(&rdtp->dynticks);
1039 	smp_mb__after_atomic();  /* Force delay to next write. */
1040 	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1041 }
1042 
1043 /**
1044  * __rcu_is_watching - are RCU read-side critical sections safe?
1045  *
1046  * Return true if RCU is watching the running CPU, which means that
1047  * this CPU can safely enter RCU read-side critical sections.  Unlike
1048  * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1049  * least disabled preemption.
1050  */
__rcu_is_watching(void)1051 bool notrace __rcu_is_watching(void)
1052 {
1053 	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1054 }
1055 
1056 /**
1057  * rcu_is_watching - see if RCU thinks that the current CPU is idle
1058  *
1059  * If the current CPU is in its idle loop and is neither in an interrupt
1060  * or NMI handler, return true.
1061  */
rcu_is_watching(void)1062 bool notrace rcu_is_watching(void)
1063 {
1064 	bool ret;
1065 
1066 	preempt_disable_notrace();
1067 	ret = __rcu_is_watching();
1068 	preempt_enable_notrace();
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL_GPL(rcu_is_watching);
1072 
1073 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1074 
1075 /*
1076  * Is the current CPU online?  Disable preemption to avoid false positives
1077  * that could otherwise happen due to the current CPU number being sampled,
1078  * this task being preempted, its old CPU being taken offline, resuming
1079  * on some other CPU, then determining that its old CPU is now offline.
1080  * It is OK to use RCU on an offline processor during initial boot, hence
1081  * the check for rcu_scheduler_fully_active.  Note also that it is OK
1082  * for a CPU coming online to use RCU for one jiffy prior to marking itself
1083  * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1084  * offline to continue to use RCU for one jiffy after marking itself
1085  * offline in the cpu_online_mask.  This leniency is necessary given the
1086  * non-atomic nature of the online and offline processing, for example,
1087  * the fact that a CPU enters the scheduler after completing the teardown
1088  * of the CPU.
1089  *
1090  * This is also why RCU internally marks CPUs online during in the
1091  * preparation phase and offline after the CPU has been taken down.
1092  *
1093  * Disable checking if in an NMI handler because we cannot safely report
1094  * errors from NMI handlers anyway.
1095  */
rcu_lockdep_current_cpu_online(void)1096 bool rcu_lockdep_current_cpu_online(void)
1097 {
1098 	struct rcu_data *rdp;
1099 	struct rcu_node *rnp;
1100 	bool ret;
1101 
1102 	if (in_nmi())
1103 		return true;
1104 	preempt_disable();
1105 	rdp = this_cpu_ptr(&rcu_sched_data);
1106 	rnp = rdp->mynode;
1107 	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1108 	      !rcu_scheduler_fully_active;
1109 	preempt_enable();
1110 	return ret;
1111 }
1112 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1113 
1114 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1115 
1116 /**
1117  * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1118  *
1119  * If the current CPU is idle or running at a first-level (not nested)
1120  * interrupt from idle, return true.  The caller must have at least
1121  * disabled preemption.
1122  */
rcu_is_cpu_rrupt_from_idle(void)1123 static int rcu_is_cpu_rrupt_from_idle(void)
1124 {
1125 	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1126 }
1127 
1128 /*
1129  * Snapshot the specified CPU's dynticks counter so that we can later
1130  * credit them with an implicit quiescent state.  Return 1 if this CPU
1131  * is in dynticks idle mode, which is an extended quiescent state.
1132  */
dyntick_save_progress_counter(struct rcu_data * rdp,bool * isidle,unsigned long * maxj)1133 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1134 					 bool *isidle, unsigned long *maxj)
1135 {
1136 	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1137 	rcu_sysidle_check_cpu(rdp, isidle, maxj);
1138 	if ((rdp->dynticks_snap & 0x1) == 0) {
1139 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1140 		if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1141 				 rdp->mynode->gpnum))
1142 			WRITE_ONCE(rdp->gpwrap, true);
1143 		return 1;
1144 	}
1145 	return 0;
1146 }
1147 
1148 /*
1149  * Return true if the specified CPU has passed through a quiescent
1150  * state by virtue of being in or having passed through an dynticks
1151  * idle state since the last call to dyntick_save_progress_counter()
1152  * for this same CPU, or by virtue of having been offline.
1153  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp,bool * isidle,unsigned long * maxj)1154 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1155 				    bool *isidle, unsigned long *maxj)
1156 {
1157 	unsigned int curr;
1158 	int *rcrmp;
1159 	unsigned int snap;
1160 
1161 	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1162 	snap = (unsigned int)rdp->dynticks_snap;
1163 
1164 	/*
1165 	 * If the CPU passed through or entered a dynticks idle phase with
1166 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1167 	 * already acknowledged the request to pass through a quiescent
1168 	 * state.  Either way, that CPU cannot possibly be in an RCU
1169 	 * read-side critical section that started before the beginning
1170 	 * of the current RCU grace period.
1171 	 */
1172 	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1173 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1174 		rdp->dynticks_fqs++;
1175 		return 1;
1176 	}
1177 
1178 	/*
1179 	 * Check for the CPU being offline, but only if the grace period
1180 	 * is old enough.  We don't need to worry about the CPU changing
1181 	 * state: If we see it offline even once, it has been through a
1182 	 * quiescent state.
1183 	 *
1184 	 * The reason for insisting that the grace period be at least
1185 	 * one jiffy old is that CPUs that are not quite online and that
1186 	 * have just gone offline can still execute RCU read-side critical
1187 	 * sections.
1188 	 */
1189 	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1190 		return 0;  /* Grace period is not old enough. */
1191 	barrier();
1192 	if (cpu_is_offline(rdp->cpu)) {
1193 		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1194 		rdp->offline_fqs++;
1195 		return 1;
1196 	}
1197 
1198 	/*
1199 	 * A CPU running for an extended time within the kernel can
1200 	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1201 	 * even context-switching back and forth between a pair of
1202 	 * in-kernel CPU-bound tasks cannot advance grace periods.
1203 	 * So if the grace period is old enough, make the CPU pay attention.
1204 	 * Note that the unsynchronized assignments to the per-CPU
1205 	 * rcu_sched_qs_mask variable are safe.  Yes, setting of
1206 	 * bits can be lost, but they will be set again on the next
1207 	 * force-quiescent-state pass.  So lost bit sets do not result
1208 	 * in incorrect behavior, merely in a grace period lasting
1209 	 * a few jiffies longer than it might otherwise.  Because
1210 	 * there are at most four threads involved, and because the
1211 	 * updates are only once every few jiffies, the probability of
1212 	 * lossage (and thus of slight grace-period extension) is
1213 	 * quite low.
1214 	 *
1215 	 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1216 	 * is set too high, we override with half of the RCU CPU stall
1217 	 * warning delay.
1218 	 */
1219 	rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1220 	if (ULONG_CMP_GE(jiffies,
1221 			 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1222 	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1223 		if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1224 			WRITE_ONCE(rdp->cond_resched_completed,
1225 				   READ_ONCE(rdp->mynode->completed));
1226 			smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1227 			WRITE_ONCE(*rcrmp,
1228 				   READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1229 		}
1230 		rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1231 	}
1232 
1233 	/* And if it has been a really long time, kick the CPU as well. */
1234 	if (ULONG_CMP_GE(jiffies,
1235 			 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1236 	    ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1237 		resched_cpu(rdp->cpu);  /* Force CPU into scheduler. */
1238 
1239 	return 0;
1240 }
1241 
record_gp_stall_check_time(struct rcu_state * rsp)1242 static void record_gp_stall_check_time(struct rcu_state *rsp)
1243 {
1244 	unsigned long j = jiffies;
1245 	unsigned long j1;
1246 
1247 	rsp->gp_start = j;
1248 	smp_wmb(); /* Record start time before stall time. */
1249 	j1 = rcu_jiffies_till_stall_check();
1250 	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1251 	rsp->jiffies_resched = j + j1 / 2;
1252 	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1253 }
1254 
1255 /*
1256  * Convert a ->gp_state value to a character string.
1257  */
gp_state_getname(short gs)1258 static const char *gp_state_getname(short gs)
1259 {
1260 	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1261 		return "???";
1262 	return gp_state_names[gs];
1263 }
1264 
1265 /*
1266  * Complain about starvation of grace-period kthread.
1267  */
rcu_check_gp_kthread_starvation(struct rcu_state * rsp)1268 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1269 {
1270 	unsigned long gpa;
1271 	unsigned long j;
1272 
1273 	j = jiffies;
1274 	gpa = READ_ONCE(rsp->gp_activity);
1275 	if (j - gpa > 2 * HZ) {
1276 		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1277 		       rsp->name, j - gpa,
1278 		       rsp->gpnum, rsp->completed,
1279 		       rsp->gp_flags,
1280 		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1281 		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1282 		if (rsp->gp_kthread) {
1283 			sched_show_task(rsp->gp_kthread);
1284 			wake_up_process(rsp->gp_kthread);
1285 		}
1286 	}
1287 }
1288 
1289 /*
1290  * Dump stacks of all tasks running on stalled CPUs.
1291  */
rcu_dump_cpu_stacks(struct rcu_state * rsp)1292 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1293 {
1294 	int cpu;
1295 	unsigned long flags;
1296 	struct rcu_node *rnp;
1297 
1298 	rcu_for_each_leaf_node(rsp, rnp) {
1299 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1300 		if (rnp->qsmask != 0) {
1301 			for_each_leaf_node_possible_cpu(rnp, cpu)
1302 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1303 					dump_cpu_task(cpu);
1304 		}
1305 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1306 	}
1307 }
1308 
1309 /*
1310  * If too much time has passed in the current grace period, and if
1311  * so configured, go kick the relevant kthreads.
1312  */
rcu_stall_kick_kthreads(struct rcu_state * rsp)1313 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1314 {
1315 	unsigned long j;
1316 
1317 	if (!rcu_kick_kthreads)
1318 		return;
1319 	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1320 	if (time_after(jiffies, j) && rsp->gp_kthread) {
1321 		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1322 		rcu_ftrace_dump(DUMP_ALL);
1323 		wake_up_process(rsp->gp_kthread);
1324 		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1325 	}
1326 }
1327 
panic_on_rcu_stall(void)1328 static inline void panic_on_rcu_stall(void)
1329 {
1330 	if (sysctl_panic_on_rcu_stall)
1331 		panic("RCU Stall\n");
1332 }
1333 
print_other_cpu_stall(struct rcu_state * rsp,unsigned long gpnum)1334 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1335 {
1336 	int cpu;
1337 	long delta;
1338 	unsigned long flags;
1339 	unsigned long gpa;
1340 	unsigned long j;
1341 	int ndetected = 0;
1342 	struct rcu_node *rnp = rcu_get_root(rsp);
1343 	long totqlen = 0;
1344 
1345 	/* Kick and suppress, if so configured. */
1346 	rcu_stall_kick_kthreads(rsp);
1347 	if (rcu_cpu_stall_suppress)
1348 		return;
1349 
1350 	/* Only let one CPU complain about others per time interval. */
1351 
1352 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1353 	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1354 	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1355 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1356 		return;
1357 	}
1358 	WRITE_ONCE(rsp->jiffies_stall,
1359 		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1360 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1361 
1362 	/*
1363 	 * OK, time to rat on our buddy...
1364 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1365 	 * RCU CPU stall warnings.
1366 	 */
1367 	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1368 	       rsp->name);
1369 	print_cpu_stall_info_begin();
1370 	rcu_for_each_leaf_node(rsp, rnp) {
1371 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1372 		ndetected += rcu_print_task_stall(rnp);
1373 		if (rnp->qsmask != 0) {
1374 			for_each_leaf_node_possible_cpu(rnp, cpu)
1375 				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1376 					print_cpu_stall_info(rsp, cpu);
1377 					ndetected++;
1378 				}
1379 		}
1380 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1381 	}
1382 
1383 	print_cpu_stall_info_end();
1384 	for_each_possible_cpu(cpu)
1385 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1386 	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1387 	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1388 	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1389 	if (ndetected) {
1390 		rcu_dump_cpu_stacks(rsp);
1391 	} else {
1392 		if (READ_ONCE(rsp->gpnum) != gpnum ||
1393 		    READ_ONCE(rsp->completed) == gpnum) {
1394 			pr_err("INFO: Stall ended before state dump start\n");
1395 		} else {
1396 			j = jiffies;
1397 			gpa = READ_ONCE(rsp->gp_activity);
1398 			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1399 			       rsp->name, j - gpa, j, gpa,
1400 			       jiffies_till_next_fqs,
1401 			       rcu_get_root(rsp)->qsmask);
1402 			/* In this case, the current CPU might be at fault. */
1403 			sched_show_task(current);
1404 		}
1405 	}
1406 
1407 	/* Complain about tasks blocking the grace period. */
1408 	rcu_print_detail_task_stall(rsp);
1409 
1410 	rcu_check_gp_kthread_starvation(rsp);
1411 
1412 	panic_on_rcu_stall();
1413 
1414 	force_quiescent_state(rsp);  /* Kick them all. */
1415 }
1416 
print_cpu_stall(struct rcu_state * rsp)1417 static void print_cpu_stall(struct rcu_state *rsp)
1418 {
1419 	int cpu;
1420 	unsigned long flags;
1421 	struct rcu_node *rnp = rcu_get_root(rsp);
1422 	long totqlen = 0;
1423 
1424 	/* Kick and suppress, if so configured. */
1425 	rcu_stall_kick_kthreads(rsp);
1426 	if (rcu_cpu_stall_suppress)
1427 		return;
1428 
1429 	/*
1430 	 * OK, time to rat on ourselves...
1431 	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1432 	 * RCU CPU stall warnings.
1433 	 */
1434 	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1435 	print_cpu_stall_info_begin();
1436 	print_cpu_stall_info(rsp, smp_processor_id());
1437 	print_cpu_stall_info_end();
1438 	for_each_possible_cpu(cpu)
1439 		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1440 	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1441 		jiffies - rsp->gp_start,
1442 		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1443 
1444 	rcu_check_gp_kthread_starvation(rsp);
1445 
1446 	rcu_dump_cpu_stacks(rsp);
1447 
1448 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1449 	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1450 		WRITE_ONCE(rsp->jiffies_stall,
1451 			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1452 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1453 
1454 	panic_on_rcu_stall();
1455 
1456 	/*
1457 	 * Attempt to revive the RCU machinery by forcing a context switch.
1458 	 *
1459 	 * A context switch would normally allow the RCU state machine to make
1460 	 * progress and it could be we're stuck in kernel space without context
1461 	 * switches for an entirely unreasonable amount of time.
1462 	 */
1463 	resched_cpu(smp_processor_id());
1464 }
1465 
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)1466 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1467 {
1468 	unsigned long completed;
1469 	unsigned long gpnum;
1470 	unsigned long gps;
1471 	unsigned long j;
1472 	unsigned long js;
1473 	struct rcu_node *rnp;
1474 
1475 	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1476 	    !rcu_gp_in_progress(rsp))
1477 		return;
1478 	rcu_stall_kick_kthreads(rsp);
1479 	j = jiffies;
1480 
1481 	/*
1482 	 * Lots of memory barriers to reject false positives.
1483 	 *
1484 	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1485 	 * then rsp->gp_start, and finally rsp->completed.  These values
1486 	 * are updated in the opposite order with memory barriers (or
1487 	 * equivalent) during grace-period initialization and cleanup.
1488 	 * Now, a false positive can occur if we get an new value of
1489 	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1490 	 * the memory barriers, the only way that this can happen is if one
1491 	 * grace period ends and another starts between these two fetches.
1492 	 * Detect this by comparing rsp->completed with the previous fetch
1493 	 * from rsp->gpnum.
1494 	 *
1495 	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1496 	 * and rsp->gp_start suffice to forestall false positives.
1497 	 */
1498 	gpnum = READ_ONCE(rsp->gpnum);
1499 	smp_rmb(); /* Pick up ->gpnum first... */
1500 	js = READ_ONCE(rsp->jiffies_stall);
1501 	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1502 	gps = READ_ONCE(rsp->gp_start);
1503 	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1504 	completed = READ_ONCE(rsp->completed);
1505 	if (ULONG_CMP_GE(completed, gpnum) ||
1506 	    ULONG_CMP_LT(j, js) ||
1507 	    ULONG_CMP_GE(gps, js))
1508 		return; /* No stall or GP completed since entering function. */
1509 	rnp = rdp->mynode;
1510 	if (rcu_gp_in_progress(rsp) &&
1511 	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1512 
1513 		/* We haven't checked in, so go dump stack. */
1514 		print_cpu_stall(rsp);
1515 
1516 	} else if (rcu_gp_in_progress(rsp) &&
1517 		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1518 
1519 		/* They had a few time units to dump stack, so complain. */
1520 		print_other_cpu_stall(rsp, gpnum);
1521 	}
1522 }
1523 
1524 /**
1525  * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1526  *
1527  * Set the stall-warning timeout way off into the future, thus preventing
1528  * any RCU CPU stall-warning messages from appearing in the current set of
1529  * RCU grace periods.
1530  *
1531  * The caller must disable hard irqs.
1532  */
rcu_cpu_stall_reset(void)1533 void rcu_cpu_stall_reset(void)
1534 {
1535 	struct rcu_state *rsp;
1536 
1537 	for_each_rcu_flavor(rsp)
1538 		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1539 }
1540 
1541 /*
1542  * Initialize the specified rcu_data structure's default callback list
1543  * to empty.  The default callback list is the one that is not used by
1544  * no-callbacks CPUs.
1545  */
init_default_callback_list(struct rcu_data * rdp)1546 static void init_default_callback_list(struct rcu_data *rdp)
1547 {
1548 	int i;
1549 
1550 	rdp->nxtlist = NULL;
1551 	for (i = 0; i < RCU_NEXT_SIZE; i++)
1552 		rdp->nxttail[i] = &rdp->nxtlist;
1553 }
1554 
1555 /*
1556  * Initialize the specified rcu_data structure's callback list to empty.
1557  */
init_callback_list(struct rcu_data * rdp)1558 static void init_callback_list(struct rcu_data *rdp)
1559 {
1560 	if (init_nocb_callback_list(rdp))
1561 		return;
1562 	init_default_callback_list(rdp);
1563 }
1564 
1565 /*
1566  * Determine the value that ->completed will have at the end of the
1567  * next subsequent grace period.  This is used to tag callbacks so that
1568  * a CPU can invoke callbacks in a timely fashion even if that CPU has
1569  * been dyntick-idle for an extended period with callbacks under the
1570  * influence of RCU_FAST_NO_HZ.
1571  *
1572  * The caller must hold rnp->lock with interrupts disabled.
1573  */
rcu_cbs_completed(struct rcu_state * rsp,struct rcu_node * rnp)1574 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1575 				       struct rcu_node *rnp)
1576 {
1577 	/*
1578 	 * If RCU is idle, we just wait for the next grace period.
1579 	 * But we can only be sure that RCU is idle if we are looking
1580 	 * at the root rcu_node structure -- otherwise, a new grace
1581 	 * period might have started, but just not yet gotten around
1582 	 * to initializing the current non-root rcu_node structure.
1583 	 */
1584 	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1585 		return rnp->completed + 1;
1586 
1587 	/*
1588 	 * Otherwise, wait for a possible partial grace period and
1589 	 * then the subsequent full grace period.
1590 	 */
1591 	return rnp->completed + 2;
1592 }
1593 
1594 /*
1595  * Trace-event helper function for rcu_start_future_gp() and
1596  * rcu_nocb_wait_gp().
1597  */
trace_rcu_future_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long c,const char * s)1598 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1599 				unsigned long c, const char *s)
1600 {
1601 	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1602 				      rnp->completed, c, rnp->level,
1603 				      rnp->grplo, rnp->grphi, s);
1604 }
1605 
1606 /*
1607  * Start some future grace period, as needed to handle newly arrived
1608  * callbacks.  The required future grace periods are recorded in each
1609  * rcu_node structure's ->need_future_gp field.  Returns true if there
1610  * is reason to awaken the grace-period kthread.
1611  *
1612  * The caller must hold the specified rcu_node structure's ->lock.
1613  */
1614 static bool __maybe_unused
rcu_start_future_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long * c_out)1615 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1616 		    unsigned long *c_out)
1617 {
1618 	unsigned long c;
1619 	int i;
1620 	bool ret = false;
1621 	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1622 
1623 	/*
1624 	 * Pick up grace-period number for new callbacks.  If this
1625 	 * grace period is already marked as needed, return to the caller.
1626 	 */
1627 	c = rcu_cbs_completed(rdp->rsp, rnp);
1628 	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1629 	if (rnp->need_future_gp[c & 0x1]) {
1630 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1631 		goto out;
1632 	}
1633 
1634 	/*
1635 	 * If either this rcu_node structure or the root rcu_node structure
1636 	 * believe that a grace period is in progress, then we must wait
1637 	 * for the one following, which is in "c".  Because our request
1638 	 * will be noticed at the end of the current grace period, we don't
1639 	 * need to explicitly start one.  We only do the lockless check
1640 	 * of rnp_root's fields if the current rcu_node structure thinks
1641 	 * there is no grace period in flight, and because we hold rnp->lock,
1642 	 * the only possible change is when rnp_root's two fields are
1643 	 * equal, in which case rnp_root->gpnum might be concurrently
1644 	 * incremented.  But that is OK, as it will just result in our
1645 	 * doing some extra useless work.
1646 	 */
1647 	if (rnp->gpnum != rnp->completed ||
1648 	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1649 		rnp->need_future_gp[c & 0x1]++;
1650 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1651 		goto out;
1652 	}
1653 
1654 	/*
1655 	 * There might be no grace period in progress.  If we don't already
1656 	 * hold it, acquire the root rcu_node structure's lock in order to
1657 	 * start one (if needed).
1658 	 */
1659 	if (rnp != rnp_root)
1660 		raw_spin_lock_rcu_node(rnp_root);
1661 
1662 	/*
1663 	 * Get a new grace-period number.  If there really is no grace
1664 	 * period in progress, it will be smaller than the one we obtained
1665 	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1666 	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1667 	 */
1668 	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1669 	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1670 		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1671 			rdp->nxtcompleted[i] = c;
1672 
1673 	/*
1674 	 * If the needed for the required grace period is already
1675 	 * recorded, trace and leave.
1676 	 */
1677 	if (rnp_root->need_future_gp[c & 0x1]) {
1678 		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1679 		goto unlock_out;
1680 	}
1681 
1682 	/* Record the need for the future grace period. */
1683 	rnp_root->need_future_gp[c & 0x1]++;
1684 
1685 	/* If a grace period is not already in progress, start one. */
1686 	if (rnp_root->gpnum != rnp_root->completed) {
1687 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1688 	} else {
1689 		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1690 		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1691 	}
1692 unlock_out:
1693 	if (rnp != rnp_root)
1694 		raw_spin_unlock_rcu_node(rnp_root);
1695 out:
1696 	if (c_out != NULL)
1697 		*c_out = c;
1698 	return ret;
1699 }
1700 
1701 /*
1702  * Clean up any old requests for the just-ended grace period.  Also return
1703  * whether any additional grace periods have been requested.  Also invoke
1704  * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1705  * waiting for this grace period to complete.
1706  */
rcu_future_gp_cleanup(struct rcu_state * rsp,struct rcu_node * rnp)1707 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1708 {
1709 	int c = rnp->completed;
1710 	int needmore;
1711 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1712 
1713 	rnp->need_future_gp[c & 0x1] = 0;
1714 	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1715 	trace_rcu_future_gp(rnp, rdp, c,
1716 			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1717 	return needmore;
1718 }
1719 
1720 /*
1721  * Awaken the grace-period kthread for the specified flavor of RCU.
1722  * Don't do a self-awaken, and don't bother awakening when there is
1723  * nothing for the grace-period kthread to do (as in several CPUs
1724  * raced to awaken, and we lost), and finally don't try to awaken
1725  * a kthread that has not yet been created.
1726  */
rcu_gp_kthread_wake(struct rcu_state * rsp)1727 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1728 {
1729 	if (current == rsp->gp_kthread ||
1730 	    !READ_ONCE(rsp->gp_flags) ||
1731 	    !rsp->gp_kthread)
1732 		return;
1733 	swake_up(&rsp->gp_wq);
1734 }
1735 
1736 /*
1737  * If there is room, assign a ->completed number to any callbacks on
1738  * this CPU that have not already been assigned.  Also accelerate any
1739  * callbacks that were previously assigned a ->completed number that has
1740  * since proven to be too conservative, which can happen if callbacks get
1741  * assigned a ->completed number while RCU is idle, but with reference to
1742  * a non-root rcu_node structure.  This function is idempotent, so it does
1743  * not hurt to call it repeatedly.  Returns an flag saying that we should
1744  * awaken the RCU grace-period kthread.
1745  *
1746  * The caller must hold rnp->lock with interrupts disabled.
1747  */
rcu_accelerate_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1748 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1749 			       struct rcu_data *rdp)
1750 {
1751 	unsigned long c;
1752 	int i;
1753 	bool ret;
1754 
1755 	/* If the CPU has no callbacks, nothing to do. */
1756 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1757 		return false;
1758 
1759 	/*
1760 	 * Starting from the sublist containing the callbacks most
1761 	 * recently assigned a ->completed number and working down, find the
1762 	 * first sublist that is not assignable to an upcoming grace period.
1763 	 * Such a sublist has something in it (first two tests) and has
1764 	 * a ->completed number assigned that will complete sooner than
1765 	 * the ->completed number for newly arrived callbacks (last test).
1766 	 *
1767 	 * The key point is that any later sublist can be assigned the
1768 	 * same ->completed number as the newly arrived callbacks, which
1769 	 * means that the callbacks in any of these later sublist can be
1770 	 * grouped into a single sublist, whether or not they have already
1771 	 * been assigned a ->completed number.
1772 	 */
1773 	c = rcu_cbs_completed(rsp, rnp);
1774 	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1775 		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1776 		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1777 			break;
1778 
1779 	/*
1780 	 * If there are no sublist for unassigned callbacks, leave.
1781 	 * At the same time, advance "i" one sublist, so that "i" will
1782 	 * index into the sublist where all the remaining callbacks should
1783 	 * be grouped into.
1784 	 */
1785 	if (++i >= RCU_NEXT_TAIL)
1786 		return false;
1787 
1788 	/*
1789 	 * Assign all subsequent callbacks' ->completed number to the next
1790 	 * full grace period and group them all in the sublist initially
1791 	 * indexed by "i".
1792 	 */
1793 	for (; i <= RCU_NEXT_TAIL; i++) {
1794 		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1795 		rdp->nxtcompleted[i] = c;
1796 	}
1797 	/* Record any needed additional grace periods. */
1798 	ret = rcu_start_future_gp(rnp, rdp, NULL);
1799 
1800 	/* Trace depending on how much we were able to accelerate. */
1801 	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1802 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1803 	else
1804 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1805 	return ret;
1806 }
1807 
1808 /*
1809  * Move any callbacks whose grace period has completed to the
1810  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1811  * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1812  * sublist.  This function is idempotent, so it does not hurt to
1813  * invoke it repeatedly.  As long as it is not invoked -too- often...
1814  * Returns true if the RCU grace-period kthread needs to be awakened.
1815  *
1816  * The caller must hold rnp->lock with interrupts disabled.
1817  */
rcu_advance_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1818 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1819 			    struct rcu_data *rdp)
1820 {
1821 	int i, j;
1822 
1823 	/* If the CPU has no callbacks, nothing to do. */
1824 	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1825 		return false;
1826 
1827 	/*
1828 	 * Find all callbacks whose ->completed numbers indicate that they
1829 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1830 	 */
1831 	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1832 		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1833 			break;
1834 		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1835 	}
1836 	/* Clean up any sublist tail pointers that were misordered above. */
1837 	for (j = RCU_WAIT_TAIL; j < i; j++)
1838 		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1839 
1840 	/* Copy down callbacks to fill in empty sublists. */
1841 	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1842 		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1843 			break;
1844 		rdp->nxttail[j] = rdp->nxttail[i];
1845 		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1846 	}
1847 
1848 	/* Classify any remaining callbacks. */
1849 	return rcu_accelerate_cbs(rsp, rnp, rdp);
1850 }
1851 
1852 /*
1853  * Update CPU-local rcu_data state to record the beginnings and ends of
1854  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1855  * structure corresponding to the current CPU, and must have irqs disabled.
1856  * Returns true if the grace-period kthread needs to be awakened.
1857  */
__note_gp_changes(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1858 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1859 			      struct rcu_data *rdp)
1860 {
1861 	bool ret;
1862 	bool need_gp;
1863 
1864 	/* Handle the ends of any preceding grace periods first. */
1865 	if (rdp->completed == rnp->completed &&
1866 	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1867 
1868 		/* No grace period end, so just accelerate recent callbacks. */
1869 		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1870 
1871 	} else {
1872 
1873 		/* Advance callbacks. */
1874 		ret = rcu_advance_cbs(rsp, rnp, rdp);
1875 
1876 		/* Remember that we saw this grace-period completion. */
1877 		rdp->completed = rnp->completed;
1878 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1879 	}
1880 
1881 	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1882 		/*
1883 		 * If the current grace period is waiting for this CPU,
1884 		 * set up to detect a quiescent state, otherwise don't
1885 		 * go looking for one.
1886 		 */
1887 		rdp->gpnum = rnp->gpnum;
1888 		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1889 		need_gp = !!(rnp->qsmask & rdp->grpmask);
1890 		rdp->cpu_no_qs.b.norm = need_gp;
1891 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1892 		rdp->core_needs_qs = need_gp;
1893 		zero_cpu_stall_ticks(rdp);
1894 		WRITE_ONCE(rdp->gpwrap, false);
1895 	}
1896 	return ret;
1897 }
1898 
note_gp_changes(struct rcu_state * rsp,struct rcu_data * rdp)1899 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1900 {
1901 	unsigned long flags;
1902 	bool needwake;
1903 	struct rcu_node *rnp;
1904 
1905 	local_irq_save(flags);
1906 	rnp = rdp->mynode;
1907 	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1908 	     rdp->completed == READ_ONCE(rnp->completed) &&
1909 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1910 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1911 		local_irq_restore(flags);
1912 		return;
1913 	}
1914 	needwake = __note_gp_changes(rsp, rnp, rdp);
1915 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916 	if (needwake)
1917 		rcu_gp_kthread_wake(rsp);
1918 }
1919 
rcu_gp_slow(struct rcu_state * rsp,int delay)1920 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1921 {
1922 	if (delay > 0 &&
1923 	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1924 		schedule_timeout_uninterruptible(delay);
1925 }
1926 
1927 /*
1928  * Initialize a new grace period.  Return false if no grace period required.
1929  */
rcu_gp_init(struct rcu_state * rsp)1930 static bool rcu_gp_init(struct rcu_state *rsp)
1931 {
1932 	unsigned long oldmask;
1933 	struct rcu_data *rdp;
1934 	struct rcu_node *rnp = rcu_get_root(rsp);
1935 
1936 	WRITE_ONCE(rsp->gp_activity, jiffies);
1937 	raw_spin_lock_irq_rcu_node(rnp);
1938 	if (!READ_ONCE(rsp->gp_flags)) {
1939 		/* Spurious wakeup, tell caller to go back to sleep.  */
1940 		raw_spin_unlock_irq_rcu_node(rnp);
1941 		return false;
1942 	}
1943 	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1944 
1945 	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1946 		/*
1947 		 * Grace period already in progress, don't start another.
1948 		 * Not supposed to be able to happen.
1949 		 */
1950 		raw_spin_unlock_irq_rcu_node(rnp);
1951 		return false;
1952 	}
1953 
1954 	/* Advance to a new grace period and initialize state. */
1955 	record_gp_stall_check_time(rsp);
1956 	/* Record GP times before starting GP, hence smp_store_release(). */
1957 	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1958 	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1959 	raw_spin_unlock_irq_rcu_node(rnp);
1960 
1961 	/*
1962 	 * Apply per-leaf buffered online and offline operations to the
1963 	 * rcu_node tree.  Note that this new grace period need not wait
1964 	 * for subsequent online CPUs, and that quiescent-state forcing
1965 	 * will handle subsequent offline CPUs.
1966 	 */
1967 	rcu_for_each_leaf_node(rsp, rnp) {
1968 		rcu_gp_slow(rsp, gp_preinit_delay);
1969 		raw_spin_lock_irq_rcu_node(rnp);
1970 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1971 		    !rnp->wait_blkd_tasks) {
1972 			/* Nothing to do on this leaf rcu_node structure. */
1973 			raw_spin_unlock_irq_rcu_node(rnp);
1974 			continue;
1975 		}
1976 
1977 		/* Record old state, apply changes to ->qsmaskinit field. */
1978 		oldmask = rnp->qsmaskinit;
1979 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1980 
1981 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1982 		if (!oldmask != !rnp->qsmaskinit) {
1983 			if (!oldmask) /* First online CPU for this rcu_node. */
1984 				rcu_init_new_rnp(rnp);
1985 			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1986 				rnp->wait_blkd_tasks = true;
1987 			else /* Last offline CPU and can propagate. */
1988 				rcu_cleanup_dead_rnp(rnp);
1989 		}
1990 
1991 		/*
1992 		 * If all waited-on tasks from prior grace period are
1993 		 * done, and if all this rcu_node structure's CPUs are
1994 		 * still offline, propagate up the rcu_node tree and
1995 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1996 		 * rcu_node structure's CPUs has since come back online,
1997 		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1998 		 * checks for this, so just call it unconditionally).
1999 		 */
2000 		if (rnp->wait_blkd_tasks &&
2001 		    (!rcu_preempt_has_tasks(rnp) ||
2002 		     rnp->qsmaskinit)) {
2003 			rnp->wait_blkd_tasks = false;
2004 			rcu_cleanup_dead_rnp(rnp);
2005 		}
2006 
2007 		raw_spin_unlock_irq_rcu_node(rnp);
2008 	}
2009 
2010 	/*
2011 	 * Set the quiescent-state-needed bits in all the rcu_node
2012 	 * structures for all currently online CPUs in breadth-first order,
2013 	 * starting from the root rcu_node structure, relying on the layout
2014 	 * of the tree within the rsp->node[] array.  Note that other CPUs
2015 	 * will access only the leaves of the hierarchy, thus seeing that no
2016 	 * grace period is in progress, at least until the corresponding
2017 	 * leaf node has been initialized.
2018 	 *
2019 	 * The grace period cannot complete until the initialization
2020 	 * process finishes, because this kthread handles both.
2021 	 */
2022 	rcu_for_each_node_breadth_first(rsp, rnp) {
2023 		rcu_gp_slow(rsp, gp_init_delay);
2024 		raw_spin_lock_irq_rcu_node(rnp);
2025 		rdp = this_cpu_ptr(rsp->rda);
2026 		rcu_preempt_check_blocked_tasks(rnp);
2027 		rnp->qsmask = rnp->qsmaskinit;
2028 		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2029 		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2030 			WRITE_ONCE(rnp->completed, rsp->completed);
2031 		if (rnp == rdp->mynode)
2032 			(void)__note_gp_changes(rsp, rnp, rdp);
2033 		rcu_preempt_boost_start_gp(rnp);
2034 		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2035 					    rnp->level, rnp->grplo,
2036 					    rnp->grphi, rnp->qsmask);
2037 		raw_spin_unlock_irq_rcu_node(rnp);
2038 		cond_resched_rcu_qs();
2039 		WRITE_ONCE(rsp->gp_activity, jiffies);
2040 	}
2041 
2042 	return true;
2043 }
2044 
2045 /*
2046  * Helper function for wait_event_interruptible_timeout() wakeup
2047  * at force-quiescent-state time.
2048  */
rcu_gp_fqs_check_wake(struct rcu_state * rsp,int * gfp)2049 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2050 {
2051 	struct rcu_node *rnp = rcu_get_root(rsp);
2052 
2053 	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2054 	*gfp = READ_ONCE(rsp->gp_flags);
2055 	if (*gfp & RCU_GP_FLAG_FQS)
2056 		return true;
2057 
2058 	/* The current grace period has completed. */
2059 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2060 		return true;
2061 
2062 	return false;
2063 }
2064 
2065 /*
2066  * Do one round of quiescent-state forcing.
2067  */
rcu_gp_fqs(struct rcu_state * rsp,bool first_time)2068 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2069 {
2070 	bool isidle = false;
2071 	unsigned long maxj;
2072 	struct rcu_node *rnp = rcu_get_root(rsp);
2073 
2074 	WRITE_ONCE(rsp->gp_activity, jiffies);
2075 	rsp->n_force_qs++;
2076 	if (first_time) {
2077 		/* Collect dyntick-idle snapshots. */
2078 		if (is_sysidle_rcu_state(rsp)) {
2079 			isidle = true;
2080 			maxj = jiffies - ULONG_MAX / 4;
2081 		}
2082 		force_qs_rnp(rsp, dyntick_save_progress_counter,
2083 			     &isidle, &maxj);
2084 		rcu_sysidle_report_gp(rsp, isidle, maxj);
2085 	} else {
2086 		/* Handle dyntick-idle and offline CPUs. */
2087 		isidle = true;
2088 		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2089 	}
2090 	/* Clear flag to prevent immediate re-entry. */
2091 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2092 		raw_spin_lock_irq_rcu_node(rnp);
2093 		WRITE_ONCE(rsp->gp_flags,
2094 			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2095 		raw_spin_unlock_irq_rcu_node(rnp);
2096 	}
2097 }
2098 
2099 /*
2100  * Clean up after the old grace period.
2101  */
rcu_gp_cleanup(struct rcu_state * rsp)2102 static void rcu_gp_cleanup(struct rcu_state *rsp)
2103 {
2104 	unsigned long gp_duration;
2105 	bool needgp = false;
2106 	int nocb = 0;
2107 	struct rcu_data *rdp;
2108 	struct rcu_node *rnp = rcu_get_root(rsp);
2109 	struct swait_queue_head *sq;
2110 
2111 	WRITE_ONCE(rsp->gp_activity, jiffies);
2112 	raw_spin_lock_irq_rcu_node(rnp);
2113 	gp_duration = jiffies - rsp->gp_start;
2114 	if (gp_duration > rsp->gp_max)
2115 		rsp->gp_max = gp_duration;
2116 
2117 	/*
2118 	 * We know the grace period is complete, but to everyone else
2119 	 * it appears to still be ongoing.  But it is also the case
2120 	 * that to everyone else it looks like there is nothing that
2121 	 * they can do to advance the grace period.  It is therefore
2122 	 * safe for us to drop the lock in order to mark the grace
2123 	 * period as completed in all of the rcu_node structures.
2124 	 */
2125 	raw_spin_unlock_irq_rcu_node(rnp);
2126 
2127 	/*
2128 	 * Propagate new ->completed value to rcu_node structures so
2129 	 * that other CPUs don't have to wait until the start of the next
2130 	 * grace period to process their callbacks.  This also avoids
2131 	 * some nasty RCU grace-period initialization races by forcing
2132 	 * the end of the current grace period to be completely recorded in
2133 	 * all of the rcu_node structures before the beginning of the next
2134 	 * grace period is recorded in any of the rcu_node structures.
2135 	 */
2136 	rcu_for_each_node_breadth_first(rsp, rnp) {
2137 		raw_spin_lock_irq_rcu_node(rnp);
2138 		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2139 		WARN_ON_ONCE(rnp->qsmask);
2140 		WRITE_ONCE(rnp->completed, rsp->gpnum);
2141 		rdp = this_cpu_ptr(rsp->rda);
2142 		if (rnp == rdp->mynode)
2143 			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2144 		/* smp_mb() provided by prior unlock-lock pair. */
2145 		nocb += rcu_future_gp_cleanup(rsp, rnp);
2146 		sq = rcu_nocb_gp_get(rnp);
2147 		raw_spin_unlock_irq_rcu_node(rnp);
2148 		rcu_nocb_gp_cleanup(sq);
2149 		cond_resched_rcu_qs();
2150 		WRITE_ONCE(rsp->gp_activity, jiffies);
2151 		rcu_gp_slow(rsp, gp_cleanup_delay);
2152 	}
2153 	rnp = rcu_get_root(rsp);
2154 	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2155 	rcu_nocb_gp_set(rnp, nocb);
2156 
2157 	/* Declare grace period done. */
2158 	WRITE_ONCE(rsp->completed, rsp->gpnum);
2159 	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2160 	rsp->gp_state = RCU_GP_IDLE;
2161 	rdp = this_cpu_ptr(rsp->rda);
2162 	/* Advance CBs to reduce false positives below. */
2163 	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2164 	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2165 		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2166 		trace_rcu_grace_period(rsp->name,
2167 				       READ_ONCE(rsp->gpnum),
2168 				       TPS("newreq"));
2169 	}
2170 	raw_spin_unlock_irq_rcu_node(rnp);
2171 }
2172 
2173 /*
2174  * Body of kthread that handles grace periods.
2175  */
rcu_gp_kthread(void * arg)2176 static int __noreturn rcu_gp_kthread(void *arg)
2177 {
2178 	bool first_gp_fqs;
2179 	int gf;
2180 	unsigned long j;
2181 	int ret;
2182 	struct rcu_state *rsp = arg;
2183 	struct rcu_node *rnp = rcu_get_root(rsp);
2184 
2185 	rcu_bind_gp_kthread();
2186 	for (;;) {
2187 
2188 		/* Handle grace-period start. */
2189 		for (;;) {
2190 			trace_rcu_grace_period(rsp->name,
2191 					       READ_ONCE(rsp->gpnum),
2192 					       TPS("reqwait"));
2193 			rsp->gp_state = RCU_GP_WAIT_GPS;
2194 			swait_event_interruptible(rsp->gp_wq,
2195 						 READ_ONCE(rsp->gp_flags) &
2196 						 RCU_GP_FLAG_INIT);
2197 			rsp->gp_state = RCU_GP_DONE_GPS;
2198 			/* Locking provides needed memory barrier. */
2199 			if (rcu_gp_init(rsp))
2200 				break;
2201 			cond_resched_rcu_qs();
2202 			WRITE_ONCE(rsp->gp_activity, jiffies);
2203 			WARN_ON(signal_pending(current));
2204 			trace_rcu_grace_period(rsp->name,
2205 					       READ_ONCE(rsp->gpnum),
2206 					       TPS("reqwaitsig"));
2207 		}
2208 
2209 		/* Handle quiescent-state forcing. */
2210 		first_gp_fqs = true;
2211 		j = jiffies_till_first_fqs;
2212 		if (j > HZ) {
2213 			j = HZ;
2214 			jiffies_till_first_fqs = HZ;
2215 		}
2216 		ret = 0;
2217 		for (;;) {
2218 			if (!ret) {
2219 				rsp->jiffies_force_qs = jiffies + j;
2220 				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2221 					   jiffies + 3 * j);
2222 			}
2223 			trace_rcu_grace_period(rsp->name,
2224 					       READ_ONCE(rsp->gpnum),
2225 					       TPS("fqswait"));
2226 			rsp->gp_state = RCU_GP_WAIT_FQS;
2227 			ret = swait_event_interruptible_timeout(rsp->gp_wq,
2228 					rcu_gp_fqs_check_wake(rsp, &gf), j);
2229 			rsp->gp_state = RCU_GP_DOING_FQS;
2230 			/* Locking provides needed memory barriers. */
2231 			/* If grace period done, leave loop. */
2232 			if (!READ_ONCE(rnp->qsmask) &&
2233 			    !rcu_preempt_blocked_readers_cgp(rnp))
2234 				break;
2235 			/* If time for quiescent-state forcing, do it. */
2236 			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2237 			    (gf & RCU_GP_FLAG_FQS)) {
2238 				trace_rcu_grace_period(rsp->name,
2239 						       READ_ONCE(rsp->gpnum),
2240 						       TPS("fqsstart"));
2241 				rcu_gp_fqs(rsp, first_gp_fqs);
2242 				first_gp_fqs = false;
2243 				trace_rcu_grace_period(rsp->name,
2244 						       READ_ONCE(rsp->gpnum),
2245 						       TPS("fqsend"));
2246 				cond_resched_rcu_qs();
2247 				WRITE_ONCE(rsp->gp_activity, jiffies);
2248 				ret = 0; /* Force full wait till next FQS. */
2249 				j = jiffies_till_next_fqs;
2250 				if (j > HZ) {
2251 					j = HZ;
2252 					jiffies_till_next_fqs = HZ;
2253 				} else if (j < 1) {
2254 					j = 1;
2255 					jiffies_till_next_fqs = 1;
2256 				}
2257 			} else {
2258 				/* Deal with stray signal. */
2259 				cond_resched_rcu_qs();
2260 				WRITE_ONCE(rsp->gp_activity, jiffies);
2261 				WARN_ON(signal_pending(current));
2262 				trace_rcu_grace_period(rsp->name,
2263 						       READ_ONCE(rsp->gpnum),
2264 						       TPS("fqswaitsig"));
2265 				ret = 1; /* Keep old FQS timing. */
2266 				j = jiffies;
2267 				if (time_after(jiffies, rsp->jiffies_force_qs))
2268 					j = 1;
2269 				else
2270 					j = rsp->jiffies_force_qs - j;
2271 			}
2272 		}
2273 
2274 		/* Handle grace-period end. */
2275 		rsp->gp_state = RCU_GP_CLEANUP;
2276 		rcu_gp_cleanup(rsp);
2277 		rsp->gp_state = RCU_GP_CLEANED;
2278 	}
2279 }
2280 
2281 /*
2282  * Start a new RCU grace period if warranted, re-initializing the hierarchy
2283  * in preparation for detecting the next grace period.  The caller must hold
2284  * the root node's ->lock and hard irqs must be disabled.
2285  *
2286  * Note that it is legal for a dying CPU (which is marked as offline) to
2287  * invoke this function.  This can happen when the dying CPU reports its
2288  * quiescent state.
2289  *
2290  * Returns true if the grace-period kthread must be awakened.
2291  */
2292 static bool
rcu_start_gp_advanced(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)2293 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2294 		      struct rcu_data *rdp)
2295 {
2296 	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2297 		/*
2298 		 * Either we have not yet spawned the grace-period
2299 		 * task, this CPU does not need another grace period,
2300 		 * or a grace period is already in progress.
2301 		 * Either way, don't start a new grace period.
2302 		 */
2303 		return false;
2304 	}
2305 	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2306 	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2307 			       TPS("newreq"));
2308 
2309 	/*
2310 	 * We can't do wakeups while holding the rnp->lock, as that
2311 	 * could cause possible deadlocks with the rq->lock. Defer
2312 	 * the wakeup to our caller.
2313 	 */
2314 	return true;
2315 }
2316 
2317 /*
2318  * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2319  * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2320  * is invoked indirectly from rcu_advance_cbs(), which would result in
2321  * endless recursion -- or would do so if it wasn't for the self-deadlock
2322  * that is encountered beforehand.
2323  *
2324  * Returns true if the grace-period kthread needs to be awakened.
2325  */
rcu_start_gp(struct rcu_state * rsp)2326 static bool rcu_start_gp(struct rcu_state *rsp)
2327 {
2328 	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2329 	struct rcu_node *rnp = rcu_get_root(rsp);
2330 	bool ret = false;
2331 
2332 	/*
2333 	 * If there is no grace period in progress right now, any
2334 	 * callbacks we have up to this point will be satisfied by the
2335 	 * next grace period.  Also, advancing the callbacks reduces the
2336 	 * probability of false positives from cpu_needs_another_gp()
2337 	 * resulting in pointless grace periods.  So, advance callbacks
2338 	 * then start the grace period!
2339 	 */
2340 	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2341 	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Report a full set of quiescent states to the specified rcu_state data
2347  * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2348  * kthread if another grace period is required.  Whether we wake
2349  * the grace-period kthread or it awakens itself for the next round
2350  * of quiescent-state forcing, that kthread will clean up after the
2351  * just-completed grace period.  Note that the caller must hold rnp->lock,
2352  * which is released before return.
2353  */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)2354 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2355 	__releases(rcu_get_root(rsp)->lock)
2356 {
2357 	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2358 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2359 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2360 	rcu_gp_kthread_wake(rsp);
2361 }
2362 
2363 /*
2364  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2365  * Allows quiescent states for a group of CPUs to be reported at one go
2366  * to the specified rcu_node structure, though all the CPUs in the group
2367  * must be represented by the same rcu_node structure (which need not be a
2368  * leaf rcu_node structure, though it often will be).  The gps parameter
2369  * is the grace-period snapshot, which means that the quiescent states
2370  * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2371  * must be held upon entry, and it is released before return.
2372  */
2373 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2374 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2375 		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2376 	__releases(rnp->lock)
2377 {
2378 	unsigned long oldmask = 0;
2379 	struct rcu_node *rnp_c;
2380 
2381 	/* Walk up the rcu_node hierarchy. */
2382 	for (;;) {
2383 		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2384 
2385 			/*
2386 			 * Our bit has already been cleared, or the
2387 			 * relevant grace period is already over, so done.
2388 			 */
2389 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2390 			return;
2391 		}
2392 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2393 		rnp->qsmask &= ~mask;
2394 		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2395 						 mask, rnp->qsmask, rnp->level,
2396 						 rnp->grplo, rnp->grphi,
2397 						 !!rnp->gp_tasks);
2398 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2399 
2400 			/* Other bits still set at this level, so done. */
2401 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2402 			return;
2403 		}
2404 		mask = rnp->grpmask;
2405 		if (rnp->parent == NULL) {
2406 
2407 			/* No more levels.  Exit loop holding root lock. */
2408 
2409 			break;
2410 		}
2411 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2412 		rnp_c = rnp;
2413 		rnp = rnp->parent;
2414 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2415 		oldmask = rnp_c->qsmask;
2416 	}
2417 
2418 	/*
2419 	 * Get here if we are the last CPU to pass through a quiescent
2420 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2421 	 * to clean up and start the next grace period if one is needed.
2422 	 */
2423 	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2424 }
2425 
2426 /*
2427  * Record a quiescent state for all tasks that were previously queued
2428  * on the specified rcu_node structure and that were blocking the current
2429  * RCU grace period.  The caller must hold the specified rnp->lock with
2430  * irqs disabled, and this lock is released upon return, but irqs remain
2431  * disabled.
2432  */
rcu_report_unblock_qs_rnp(struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)2433 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2434 				      struct rcu_node *rnp, unsigned long flags)
2435 	__releases(rnp->lock)
2436 {
2437 	unsigned long gps;
2438 	unsigned long mask;
2439 	struct rcu_node *rnp_p;
2440 
2441 	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2442 	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2443 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2444 		return;  /* Still need more quiescent states! */
2445 	}
2446 
2447 	rnp_p = rnp->parent;
2448 	if (rnp_p == NULL) {
2449 		/*
2450 		 * Only one rcu_node structure in the tree, so don't
2451 		 * try to report up to its nonexistent parent!
2452 		 */
2453 		rcu_report_qs_rsp(rsp, flags);
2454 		return;
2455 	}
2456 
2457 	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2458 	gps = rnp->gpnum;
2459 	mask = rnp->grpmask;
2460 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2461 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2462 	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2463 }
2464 
2465 /*
2466  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2467  * structure.  This must be called from the specified CPU.
2468  */
2469 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp)2470 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2471 {
2472 	unsigned long flags;
2473 	unsigned long mask;
2474 	bool needwake;
2475 	struct rcu_node *rnp;
2476 
2477 	rnp = rdp->mynode;
2478 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2479 	if ((rdp->cpu_no_qs.b.norm &&
2480 	     rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2481 	    rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2482 	    rdp->gpwrap) {
2483 
2484 		/*
2485 		 * The grace period in which this quiescent state was
2486 		 * recorded has ended, so don't report it upwards.
2487 		 * We will instead need a new quiescent state that lies
2488 		 * within the current grace period.
2489 		 */
2490 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2491 		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2492 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2493 		return;
2494 	}
2495 	mask = rdp->grpmask;
2496 	if ((rnp->qsmask & mask) == 0) {
2497 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2498 	} else {
2499 		rdp->core_needs_qs = false;
2500 
2501 		/*
2502 		 * This GP can't end until cpu checks in, so all of our
2503 		 * callbacks can be processed during the next GP.
2504 		 */
2505 		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2506 
2507 		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2508 		/* ^^^ Released rnp->lock */
2509 		if (needwake)
2510 			rcu_gp_kthread_wake(rsp);
2511 	}
2512 }
2513 
2514 /*
2515  * Check to see if there is a new grace period of which this CPU
2516  * is not yet aware, and if so, set up local rcu_data state for it.
2517  * Otherwise, see if this CPU has just passed through its first
2518  * quiescent state for this grace period, and record that fact if so.
2519  */
2520 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)2521 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2522 {
2523 	/* Check for grace-period ends and beginnings. */
2524 	note_gp_changes(rsp, rdp);
2525 
2526 	/*
2527 	 * Does this CPU still need to do its part for current grace period?
2528 	 * If no, return and let the other CPUs do their part as well.
2529 	 */
2530 	if (!rdp->core_needs_qs)
2531 		return;
2532 
2533 	/*
2534 	 * Was there a quiescent state since the beginning of the grace
2535 	 * period? If no, then exit and wait for the next call.
2536 	 */
2537 	if (rdp->cpu_no_qs.b.norm &&
2538 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2539 		return;
2540 
2541 	/*
2542 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2543 	 * judge of that).
2544 	 */
2545 	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2546 }
2547 
2548 /*
2549  * Send the specified CPU's RCU callbacks to the orphanage.  The
2550  * specified CPU must be offline, and the caller must hold the
2551  * ->orphan_lock.
2552  */
2553 static void
rcu_send_cbs_to_orphanage(int cpu,struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)2554 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2555 			  struct rcu_node *rnp, struct rcu_data *rdp)
2556 {
2557 	/* No-CBs CPUs do not have orphanable callbacks. */
2558 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2559 		return;
2560 
2561 	/*
2562 	 * Orphan the callbacks.  First adjust the counts.  This is safe
2563 	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2564 	 * cannot be running now.  Thus no memory barrier is required.
2565 	 */
2566 	if (rdp->nxtlist != NULL) {
2567 		rsp->qlen_lazy += rdp->qlen_lazy;
2568 		rsp->qlen += rdp->qlen;
2569 		rdp->n_cbs_orphaned += rdp->qlen;
2570 		rdp->qlen_lazy = 0;
2571 		WRITE_ONCE(rdp->qlen, 0);
2572 	}
2573 
2574 	/*
2575 	 * Next, move those callbacks still needing a grace period to
2576 	 * the orphanage, where some other CPU will pick them up.
2577 	 * Some of the callbacks might have gone partway through a grace
2578 	 * period, but that is too bad.  They get to start over because we
2579 	 * cannot assume that grace periods are synchronized across CPUs.
2580 	 * We don't bother updating the ->nxttail[] array yet, instead
2581 	 * we just reset the whole thing later on.
2582 	 */
2583 	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2584 		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2585 		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2586 		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2587 	}
2588 
2589 	/*
2590 	 * Then move the ready-to-invoke callbacks to the orphanage,
2591 	 * where some other CPU will pick them up.  These will not be
2592 	 * required to pass though another grace period: They are done.
2593 	 */
2594 	if (rdp->nxtlist != NULL) {
2595 		*rsp->orphan_donetail = rdp->nxtlist;
2596 		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2597 	}
2598 
2599 	/*
2600 	 * Finally, initialize the rcu_data structure's list to empty and
2601 	 * disallow further callbacks on this CPU.
2602 	 */
2603 	init_callback_list(rdp);
2604 	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2605 }
2606 
2607 /*
2608  * Adopt the RCU callbacks from the specified rcu_state structure's
2609  * orphanage.  The caller must hold the ->orphan_lock.
2610  */
rcu_adopt_orphan_cbs(struct rcu_state * rsp,unsigned long flags)2611 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2612 {
2613 	int i;
2614 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2615 
2616 	/* No-CBs CPUs are handled specially. */
2617 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2618 	    rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2619 		return;
2620 
2621 	/* Do the accounting first. */
2622 	rdp->qlen_lazy += rsp->qlen_lazy;
2623 	rdp->qlen += rsp->qlen;
2624 	rdp->n_cbs_adopted += rsp->qlen;
2625 	if (rsp->qlen_lazy != rsp->qlen)
2626 		rcu_idle_count_callbacks_posted();
2627 	rsp->qlen_lazy = 0;
2628 	rsp->qlen = 0;
2629 
2630 	/*
2631 	 * We do not need a memory barrier here because the only way we
2632 	 * can get here if there is an rcu_barrier() in flight is if
2633 	 * we are the task doing the rcu_barrier().
2634 	 */
2635 
2636 	/* First adopt the ready-to-invoke callbacks. */
2637 	if (rsp->orphan_donelist != NULL) {
2638 		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2639 		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2640 		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2641 			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2642 				rdp->nxttail[i] = rsp->orphan_donetail;
2643 		rsp->orphan_donelist = NULL;
2644 		rsp->orphan_donetail = &rsp->orphan_donelist;
2645 	}
2646 
2647 	/* And then adopt the callbacks that still need a grace period. */
2648 	if (rsp->orphan_nxtlist != NULL) {
2649 		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2650 		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2651 		rsp->orphan_nxtlist = NULL;
2652 		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2653 	}
2654 }
2655 
2656 /*
2657  * Trace the fact that this CPU is going offline.
2658  */
rcu_cleanup_dying_cpu(struct rcu_state * rsp)2659 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2660 {
2661 	RCU_TRACE(unsigned long mask);
2662 	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2663 	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2664 
2665 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2666 		return;
2667 
2668 	RCU_TRACE(mask = rdp->grpmask);
2669 	trace_rcu_grace_period(rsp->name,
2670 			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2671 			       TPS("cpuofl"));
2672 }
2673 
2674 /*
2675  * All CPUs for the specified rcu_node structure have gone offline,
2676  * and all tasks that were preempted within an RCU read-side critical
2677  * section while running on one of those CPUs have since exited their RCU
2678  * read-side critical section.  Some other CPU is reporting this fact with
2679  * the specified rcu_node structure's ->lock held and interrupts disabled.
2680  * This function therefore goes up the tree of rcu_node structures,
2681  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2682  * the leaf rcu_node structure's ->qsmaskinit field has already been
2683  * updated
2684  *
2685  * This function does check that the specified rcu_node structure has
2686  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2687  * prematurely.  That said, invoking it after the fact will cost you
2688  * a needless lock acquisition.  So once it has done its work, don't
2689  * invoke it again.
2690  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2691 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2692 {
2693 	long mask;
2694 	struct rcu_node *rnp = rnp_leaf;
2695 
2696 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2697 	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2698 		return;
2699 	for (;;) {
2700 		mask = rnp->grpmask;
2701 		rnp = rnp->parent;
2702 		if (!rnp)
2703 			break;
2704 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2705 		rnp->qsmaskinit &= ~mask;
2706 		rnp->qsmask &= ~mask;
2707 		if (rnp->qsmaskinit) {
2708 			raw_spin_unlock_rcu_node(rnp);
2709 			/* irqs remain disabled. */
2710 			return;
2711 		}
2712 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2713 	}
2714 }
2715 
2716 /*
2717  * The CPU has been completely removed, and some other CPU is reporting
2718  * this fact from process context.  Do the remainder of the cleanup,
2719  * including orphaning the outgoing CPU's RCU callbacks, and also
2720  * adopting them.  There can only be one CPU hotplug operation at a time,
2721  * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2722  */
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)2723 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2724 {
2725 	unsigned long flags;
2726 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2727 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2728 
2729 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2730 		return;
2731 
2732 	/* Adjust any no-longer-needed kthreads. */
2733 	rcu_boost_kthread_setaffinity(rnp, -1);
2734 
2735 	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2736 	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2737 	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2738 	rcu_adopt_orphan_cbs(rsp, flags);
2739 	raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2740 
2741 	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2742 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2743 		  cpu, rdp->qlen, rdp->nxtlist);
2744 }
2745 
2746 /*
2747  * Invoke any RCU callbacks that have made it to the end of their grace
2748  * period.  Thottle as specified by rdp->blimit.
2749  */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)2750 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2751 {
2752 	unsigned long flags;
2753 	struct rcu_head *next, *list, **tail;
2754 	long bl, count, count_lazy;
2755 	int i;
2756 
2757 	/* If no callbacks are ready, just return. */
2758 	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2759 		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2760 		trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2761 				    need_resched(), is_idle_task(current),
2762 				    rcu_is_callbacks_kthread());
2763 		return;
2764 	}
2765 
2766 	/*
2767 	 * Extract the list of ready callbacks, disabling to prevent
2768 	 * races with call_rcu() from interrupt handlers.
2769 	 */
2770 	local_irq_save(flags);
2771 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2772 	bl = rdp->blimit;
2773 	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2774 	list = rdp->nxtlist;
2775 	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2776 	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2777 	tail = rdp->nxttail[RCU_DONE_TAIL];
2778 	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2779 		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2780 			rdp->nxttail[i] = &rdp->nxtlist;
2781 	local_irq_restore(flags);
2782 
2783 	/* Invoke callbacks. */
2784 	count = count_lazy = 0;
2785 	while (list) {
2786 		next = list->next;
2787 		prefetch(next);
2788 		debug_rcu_head_unqueue(list);
2789 		if (__rcu_reclaim(rsp->name, list))
2790 			count_lazy++;
2791 		list = next;
2792 		/* Stop only if limit reached and CPU has something to do. */
2793 		if (++count >= bl &&
2794 		    (need_resched() ||
2795 		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2796 			break;
2797 	}
2798 
2799 	local_irq_save(flags);
2800 	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2801 			    is_idle_task(current),
2802 			    rcu_is_callbacks_kthread());
2803 
2804 	/* Update count, and requeue any remaining callbacks. */
2805 	if (list != NULL) {
2806 		*tail = rdp->nxtlist;
2807 		rdp->nxtlist = list;
2808 		for (i = 0; i < RCU_NEXT_SIZE; i++)
2809 			if (&rdp->nxtlist == rdp->nxttail[i])
2810 				rdp->nxttail[i] = tail;
2811 			else
2812 				break;
2813 	}
2814 	smp_mb(); /* List handling before counting for rcu_barrier(). */
2815 	rdp->qlen_lazy -= count_lazy;
2816 	WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2817 	rdp->n_cbs_invoked += count;
2818 
2819 	/* Reinstate batch limit if we have worked down the excess. */
2820 	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2821 		rdp->blimit = blimit;
2822 
2823 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2824 	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2825 		rdp->qlen_last_fqs_check = 0;
2826 		rdp->n_force_qs_snap = rsp->n_force_qs;
2827 	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2828 		rdp->qlen_last_fqs_check = rdp->qlen;
2829 	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2830 
2831 	local_irq_restore(flags);
2832 
2833 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2834 	if (cpu_has_callbacks_ready_to_invoke(rdp))
2835 		invoke_rcu_core();
2836 }
2837 
2838 /*
2839  * Check to see if this CPU is in a non-context-switch quiescent state
2840  * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2841  * Also schedule RCU core processing.
2842  *
2843  * This function must be called from hardirq context.  It is normally
2844  * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2845  * false, there is no point in invoking rcu_check_callbacks().
2846  */
rcu_check_callbacks(int user)2847 void rcu_check_callbacks(int user)
2848 {
2849 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2850 	increment_cpu_stall_ticks();
2851 	if (user || rcu_is_cpu_rrupt_from_idle()) {
2852 
2853 		/*
2854 		 * Get here if this CPU took its interrupt from user
2855 		 * mode or from the idle loop, and if this is not a
2856 		 * nested interrupt.  In this case, the CPU is in
2857 		 * a quiescent state, so note it.
2858 		 *
2859 		 * No memory barrier is required here because both
2860 		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2861 		 * variables that other CPUs neither access nor modify,
2862 		 * at least not while the corresponding CPU is online.
2863 		 */
2864 
2865 		rcu_sched_qs();
2866 		rcu_bh_qs();
2867 
2868 	} else if (!in_softirq()) {
2869 
2870 		/*
2871 		 * Get here if this CPU did not take its interrupt from
2872 		 * softirq, in other words, if it is not interrupting
2873 		 * a rcu_bh read-side critical section.  This is an _bh
2874 		 * critical section, so note it.
2875 		 */
2876 
2877 		rcu_bh_qs();
2878 	}
2879 	rcu_preempt_check_callbacks();
2880 	if (rcu_pending())
2881 		invoke_rcu_core();
2882 	if (user)
2883 		rcu_note_voluntary_context_switch(current);
2884 	trace_rcu_utilization(TPS("End scheduler-tick"));
2885 }
2886 
2887 /*
2888  * Scan the leaf rcu_node structures, processing dyntick state for any that
2889  * have not yet encountered a quiescent state, using the function specified.
2890  * Also initiate boosting for any threads blocked on the root rcu_node.
2891  *
2892  * The caller must have suppressed start of new grace periods.
2893  */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data * rsp,bool * isidle,unsigned long * maxj),bool * isidle,unsigned long * maxj)2894 static void force_qs_rnp(struct rcu_state *rsp,
2895 			 int (*f)(struct rcu_data *rsp, bool *isidle,
2896 				  unsigned long *maxj),
2897 			 bool *isidle, unsigned long *maxj)
2898 {
2899 	int cpu;
2900 	unsigned long flags;
2901 	unsigned long mask;
2902 	struct rcu_node *rnp;
2903 
2904 	rcu_for_each_leaf_node(rsp, rnp) {
2905 		cond_resched_rcu_qs();
2906 		mask = 0;
2907 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2908 		if (rnp->qsmask == 0) {
2909 			if (rcu_state_p == &rcu_sched_state ||
2910 			    rsp != rcu_state_p ||
2911 			    rcu_preempt_blocked_readers_cgp(rnp)) {
2912 				/*
2913 				 * No point in scanning bits because they
2914 				 * are all zero.  But we might need to
2915 				 * priority-boost blocked readers.
2916 				 */
2917 				rcu_initiate_boost(rnp, flags);
2918 				/* rcu_initiate_boost() releases rnp->lock */
2919 				continue;
2920 			}
2921 			if (rnp->parent &&
2922 			    (rnp->parent->qsmask & rnp->grpmask)) {
2923 				/*
2924 				 * Race between grace-period
2925 				 * initialization and task exiting RCU
2926 				 * read-side critical section: Report.
2927 				 */
2928 				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2929 				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2930 				continue;
2931 			}
2932 		}
2933 		for_each_leaf_node_possible_cpu(rnp, cpu) {
2934 			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2935 			if ((rnp->qsmask & bit) != 0) {
2936 				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2937 					mask |= bit;
2938 			}
2939 		}
2940 		if (mask != 0) {
2941 			/* Idle/offline CPUs, report (releases rnp->lock. */
2942 			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2943 		} else {
2944 			/* Nothing to do here, so just drop the lock. */
2945 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2946 		}
2947 	}
2948 }
2949 
2950 /*
2951  * Force quiescent states on reluctant CPUs, and also detect which
2952  * CPUs are in dyntick-idle mode.
2953  */
force_quiescent_state(struct rcu_state * rsp)2954 static void force_quiescent_state(struct rcu_state *rsp)
2955 {
2956 	unsigned long flags;
2957 	bool ret;
2958 	struct rcu_node *rnp;
2959 	struct rcu_node *rnp_old = NULL;
2960 
2961 	/* Funnel through hierarchy to reduce memory contention. */
2962 	rnp = __this_cpu_read(rsp->rda->mynode);
2963 	for (; rnp != NULL; rnp = rnp->parent) {
2964 		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2965 		      !raw_spin_trylock(&rnp->fqslock);
2966 		if (rnp_old != NULL)
2967 			raw_spin_unlock(&rnp_old->fqslock);
2968 		if (ret) {
2969 			rsp->n_force_qs_lh++;
2970 			return;
2971 		}
2972 		rnp_old = rnp;
2973 	}
2974 	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2975 
2976 	/* Reached the root of the rcu_node tree, acquire lock. */
2977 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2978 	raw_spin_unlock(&rnp_old->fqslock);
2979 	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2980 		rsp->n_force_qs_lh++;
2981 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2982 		return;  /* Someone beat us to it. */
2983 	}
2984 	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2985 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2986 	rcu_gp_kthread_wake(rsp);
2987 }
2988 
2989 /*
2990  * This does the RCU core processing work for the specified rcu_state
2991  * and rcu_data structures.  This may be called only from the CPU to
2992  * whom the rdp belongs.
2993  */
2994 static void
__rcu_process_callbacks(struct rcu_state * rsp)2995 __rcu_process_callbacks(struct rcu_state *rsp)
2996 {
2997 	unsigned long flags;
2998 	bool needwake;
2999 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3000 
3001 	WARN_ON_ONCE(rdp->beenonline == 0);
3002 
3003 	/* Update RCU state based on any recent quiescent states. */
3004 	rcu_check_quiescent_state(rsp, rdp);
3005 
3006 	/* Does this CPU require a not-yet-started grace period? */
3007 	local_irq_save(flags);
3008 	if (cpu_needs_another_gp(rsp, rdp)) {
3009 		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
3010 		needwake = rcu_start_gp(rsp);
3011 		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
3012 		if (needwake)
3013 			rcu_gp_kthread_wake(rsp);
3014 	} else {
3015 		local_irq_restore(flags);
3016 	}
3017 
3018 	/* If there are callbacks ready, invoke them. */
3019 	if (cpu_has_callbacks_ready_to_invoke(rdp))
3020 		invoke_rcu_callbacks(rsp, rdp);
3021 
3022 	/* Do any needed deferred wakeups of rcuo kthreads. */
3023 	do_nocb_deferred_wakeup(rdp);
3024 }
3025 
3026 /*
3027  * Do RCU core processing for the current CPU.
3028  */
rcu_process_callbacks(struct softirq_action * unused)3029 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3030 {
3031 	struct rcu_state *rsp;
3032 
3033 	if (cpu_is_offline(smp_processor_id()))
3034 		return;
3035 	trace_rcu_utilization(TPS("Start RCU core"));
3036 	for_each_rcu_flavor(rsp)
3037 		__rcu_process_callbacks(rsp);
3038 	trace_rcu_utilization(TPS("End RCU core"));
3039 }
3040 
3041 /*
3042  * Schedule RCU callback invocation.  If the specified type of RCU
3043  * does not support RCU priority boosting, just do a direct call,
3044  * otherwise wake up the per-CPU kernel kthread.  Note that because we
3045  * are running on the current CPU with softirqs disabled, the
3046  * rcu_cpu_kthread_task cannot disappear out from under us.
3047  */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)3048 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3049 {
3050 	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3051 		return;
3052 	if (likely(!rsp->boost)) {
3053 		rcu_do_batch(rsp, rdp);
3054 		return;
3055 	}
3056 	invoke_rcu_callbacks_kthread();
3057 }
3058 
invoke_rcu_core(void)3059 static void invoke_rcu_core(void)
3060 {
3061 	if (cpu_online(smp_processor_id()))
3062 		raise_softirq(RCU_SOFTIRQ);
3063 }
3064 
3065 /*
3066  * Handle any core-RCU processing required by a call_rcu() invocation.
3067  */
__call_rcu_core(struct rcu_state * rsp,struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)3068 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3069 			    struct rcu_head *head, unsigned long flags)
3070 {
3071 	bool needwake;
3072 
3073 	/*
3074 	 * If called from an extended quiescent state, invoke the RCU
3075 	 * core in order to force a re-evaluation of RCU's idleness.
3076 	 */
3077 	if (!rcu_is_watching())
3078 		invoke_rcu_core();
3079 
3080 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3081 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3082 		return;
3083 
3084 	/*
3085 	 * Force the grace period if too many callbacks or too long waiting.
3086 	 * Enforce hysteresis, and don't invoke force_quiescent_state()
3087 	 * if some other CPU has recently done so.  Also, don't bother
3088 	 * invoking force_quiescent_state() if the newly enqueued callback
3089 	 * is the only one waiting for a grace period to complete.
3090 	 */
3091 	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3092 
3093 		/* Are we ignoring a completed grace period? */
3094 		note_gp_changes(rsp, rdp);
3095 
3096 		/* Start a new grace period if one not already started. */
3097 		if (!rcu_gp_in_progress(rsp)) {
3098 			struct rcu_node *rnp_root = rcu_get_root(rsp);
3099 
3100 			raw_spin_lock_rcu_node(rnp_root);
3101 			needwake = rcu_start_gp(rsp);
3102 			raw_spin_unlock_rcu_node(rnp_root);
3103 			if (needwake)
3104 				rcu_gp_kthread_wake(rsp);
3105 		} else {
3106 			/* Give the grace period a kick. */
3107 			rdp->blimit = LONG_MAX;
3108 			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3109 			    *rdp->nxttail[RCU_DONE_TAIL] != head)
3110 				force_quiescent_state(rsp);
3111 			rdp->n_force_qs_snap = rsp->n_force_qs;
3112 			rdp->qlen_last_fqs_check = rdp->qlen;
3113 		}
3114 	}
3115 }
3116 
3117 /*
3118  * RCU callback function to leak a callback.
3119  */
rcu_leak_callback(struct rcu_head * rhp)3120 static void rcu_leak_callback(struct rcu_head *rhp)
3121 {
3122 }
3123 
3124 /*
3125  * Helper function for call_rcu() and friends.  The cpu argument will
3126  * normally be -1, indicating "currently running CPU".  It may specify
3127  * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3128  * is expected to specify a CPU.
3129  */
3130 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func,struct rcu_state * rsp,int cpu,bool lazy)3131 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3132 	   struct rcu_state *rsp, int cpu, bool lazy)
3133 {
3134 	unsigned long flags;
3135 	struct rcu_data *rdp;
3136 
3137 	WARN_ON_ONCE((unsigned long)head & 0x1); /* Misaligned rcu_head! */
3138 	if (debug_rcu_head_queue(head)) {
3139 		/* Probable double call_rcu(), so leak the callback. */
3140 		WRITE_ONCE(head->func, rcu_leak_callback);
3141 		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3142 		return;
3143 	}
3144 	head->func = func;
3145 	head->next = NULL;
3146 
3147 	/*
3148 	 * Opportunistically note grace-period endings and beginnings.
3149 	 * Note that we might see a beginning right after we see an
3150 	 * end, but never vice versa, since this CPU has to pass through
3151 	 * a quiescent state betweentimes.
3152 	 */
3153 	local_irq_save(flags);
3154 	rdp = this_cpu_ptr(rsp->rda);
3155 
3156 	/* Add the callback to our list. */
3157 	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3158 		int offline;
3159 
3160 		if (cpu != -1)
3161 			rdp = per_cpu_ptr(rsp->rda, cpu);
3162 		if (likely(rdp->mynode)) {
3163 			/* Post-boot, so this should be for a no-CBs CPU. */
3164 			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3165 			WARN_ON_ONCE(offline);
3166 			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3167 			local_irq_restore(flags);
3168 			return;
3169 		}
3170 		/*
3171 		 * Very early boot, before rcu_init().  Initialize if needed
3172 		 * and then drop through to queue the callback.
3173 		 */
3174 		BUG_ON(cpu != -1);
3175 		WARN_ON_ONCE(!rcu_is_watching());
3176 		if (!likely(rdp->nxtlist))
3177 			init_default_callback_list(rdp);
3178 	}
3179 	WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3180 	if (lazy)
3181 		rdp->qlen_lazy++;
3182 	else
3183 		rcu_idle_count_callbacks_posted();
3184 	smp_mb();  /* Count before adding callback for rcu_barrier(). */
3185 	*rdp->nxttail[RCU_NEXT_TAIL] = head;
3186 	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3187 
3188 	if (__is_kfree_rcu_offset((unsigned long)func))
3189 		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3190 					 rdp->qlen_lazy, rdp->qlen);
3191 	else
3192 		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3193 
3194 	/* Go handle any RCU core processing required. */
3195 	__call_rcu_core(rsp, rdp, head, flags);
3196 	local_irq_restore(flags);
3197 }
3198 
3199 /*
3200  * Queue an RCU-sched callback for invocation after a grace period.
3201  */
call_rcu_sched(struct rcu_head * head,rcu_callback_t func)3202 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3203 {
3204 	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3205 }
3206 EXPORT_SYMBOL_GPL(call_rcu_sched);
3207 
3208 /*
3209  * Queue an RCU callback for invocation after a quicker grace period.
3210  */
call_rcu_bh(struct rcu_head * head,rcu_callback_t func)3211 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3212 {
3213 	__call_rcu(head, func, &rcu_bh_state, -1, 0);
3214 }
3215 EXPORT_SYMBOL_GPL(call_rcu_bh);
3216 
3217 /*
3218  * Queue an RCU callback for lazy invocation after a grace period.
3219  * This will likely be later named something like "call_rcu_lazy()",
3220  * but this change will require some way of tagging the lazy RCU
3221  * callbacks in the list of pending callbacks. Until then, this
3222  * function may only be called from __kfree_rcu().
3223  */
kfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3224 void kfree_call_rcu(struct rcu_head *head,
3225 		    rcu_callback_t func)
3226 {
3227 	__call_rcu(head, func, rcu_state_p, -1, 1);
3228 }
3229 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3230 
3231 /*
3232  * Because a context switch is a grace period for RCU-sched and RCU-bh,
3233  * any blocking grace-period wait automatically implies a grace period
3234  * if there is only one CPU online at any point time during execution
3235  * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3236  * occasionally incorrectly indicate that there are multiple CPUs online
3237  * when there was in fact only one the whole time, as this just adds
3238  * some overhead: RCU still operates correctly.
3239  */
rcu_blocking_is_gp(void)3240 static inline int rcu_blocking_is_gp(void)
3241 {
3242 	int ret;
3243 
3244 	might_sleep();  /* Check for RCU read-side critical section. */
3245 	preempt_disable();
3246 	ret = num_online_cpus() <= 1;
3247 	preempt_enable();
3248 	return ret;
3249 }
3250 
3251 /**
3252  * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3253  *
3254  * Control will return to the caller some time after a full rcu-sched
3255  * grace period has elapsed, in other words after all currently executing
3256  * rcu-sched read-side critical sections have completed.   These read-side
3257  * critical sections are delimited by rcu_read_lock_sched() and
3258  * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3259  * local_irq_disable(), and so on may be used in place of
3260  * rcu_read_lock_sched().
3261  *
3262  * This means that all preempt_disable code sequences, including NMI and
3263  * non-threaded hardware-interrupt handlers, in progress on entry will
3264  * have completed before this primitive returns.  However, this does not
3265  * guarantee that softirq handlers will have completed, since in some
3266  * kernels, these handlers can run in process context, and can block.
3267  *
3268  * Note that this guarantee implies further memory-ordering guarantees.
3269  * On systems with more than one CPU, when synchronize_sched() returns,
3270  * each CPU is guaranteed to have executed a full memory barrier since the
3271  * end of its last RCU-sched read-side critical section whose beginning
3272  * preceded the call to synchronize_sched().  In addition, each CPU having
3273  * an RCU read-side critical section that extends beyond the return from
3274  * synchronize_sched() is guaranteed to have executed a full memory barrier
3275  * after the beginning of synchronize_sched() and before the beginning of
3276  * that RCU read-side critical section.  Note that these guarantees include
3277  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3278  * that are executing in the kernel.
3279  *
3280  * Furthermore, if CPU A invoked synchronize_sched(), which returned
3281  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3282  * to have executed a full memory barrier during the execution of
3283  * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3284  * again only if the system has more than one CPU).
3285  *
3286  * This primitive provides the guarantees made by the (now removed)
3287  * synchronize_kernel() API.  In contrast, synchronize_rcu() only
3288  * guarantees that rcu_read_lock() sections will have completed.
3289  * In "classic RCU", these two guarantees happen to be one and
3290  * the same, but can differ in realtime RCU implementations.
3291  */
synchronize_sched(void)3292 void synchronize_sched(void)
3293 {
3294 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3295 			 lock_is_held(&rcu_lock_map) ||
3296 			 lock_is_held(&rcu_sched_lock_map),
3297 			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3298 	if (rcu_blocking_is_gp())
3299 		return;
3300 	if (rcu_gp_is_expedited())
3301 		synchronize_sched_expedited();
3302 	else
3303 		wait_rcu_gp(call_rcu_sched);
3304 }
3305 EXPORT_SYMBOL_GPL(synchronize_sched);
3306 
3307 /**
3308  * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3309  *
3310  * Control will return to the caller some time after a full rcu_bh grace
3311  * period has elapsed, in other words after all currently executing rcu_bh
3312  * read-side critical sections have completed.  RCU read-side critical
3313  * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3314  * and may be nested.
3315  *
3316  * See the description of synchronize_sched() for more detailed information
3317  * on memory ordering guarantees.
3318  */
synchronize_rcu_bh(void)3319 void synchronize_rcu_bh(void)
3320 {
3321 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3322 			 lock_is_held(&rcu_lock_map) ||
3323 			 lock_is_held(&rcu_sched_lock_map),
3324 			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3325 	if (rcu_blocking_is_gp())
3326 		return;
3327 	if (rcu_gp_is_expedited())
3328 		synchronize_rcu_bh_expedited();
3329 	else
3330 		wait_rcu_gp(call_rcu_bh);
3331 }
3332 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3333 
3334 /**
3335  * get_state_synchronize_rcu - Snapshot current RCU state
3336  *
3337  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3338  * to determine whether or not a full grace period has elapsed in the
3339  * meantime.
3340  */
get_state_synchronize_rcu(void)3341 unsigned long get_state_synchronize_rcu(void)
3342 {
3343 	/*
3344 	 * Any prior manipulation of RCU-protected data must happen
3345 	 * before the load from ->gpnum.
3346 	 */
3347 	smp_mb();  /* ^^^ */
3348 
3349 	/*
3350 	 * Make sure this load happens before the purportedly
3351 	 * time-consuming work between get_state_synchronize_rcu()
3352 	 * and cond_synchronize_rcu().
3353 	 */
3354 	return smp_load_acquire(&rcu_state_p->gpnum);
3355 }
3356 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3357 
3358 /**
3359  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3360  *
3361  * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3362  *
3363  * If a full RCU grace period has elapsed since the earlier call to
3364  * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3365  * synchronize_rcu() to wait for a full grace period.
3366  *
3367  * Yes, this function does not take counter wrap into account.  But
3368  * counter wrap is harmless.  If the counter wraps, we have waited for
3369  * more than 2 billion grace periods (and way more on a 64-bit system!),
3370  * so waiting for one additional grace period should be just fine.
3371  */
cond_synchronize_rcu(unsigned long oldstate)3372 void cond_synchronize_rcu(unsigned long oldstate)
3373 {
3374 	unsigned long newstate;
3375 
3376 	/*
3377 	 * Ensure that this load happens before any RCU-destructive
3378 	 * actions the caller might carry out after we return.
3379 	 */
3380 	newstate = smp_load_acquire(&rcu_state_p->completed);
3381 	if (ULONG_CMP_GE(oldstate, newstate))
3382 		synchronize_rcu();
3383 }
3384 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3385 
3386 /**
3387  * get_state_synchronize_sched - Snapshot current RCU-sched state
3388  *
3389  * Returns a cookie that is used by a later call to cond_synchronize_sched()
3390  * to determine whether or not a full grace period has elapsed in the
3391  * meantime.
3392  */
get_state_synchronize_sched(void)3393 unsigned long get_state_synchronize_sched(void)
3394 {
3395 	/*
3396 	 * Any prior manipulation of RCU-protected data must happen
3397 	 * before the load from ->gpnum.
3398 	 */
3399 	smp_mb();  /* ^^^ */
3400 
3401 	/*
3402 	 * Make sure this load happens before the purportedly
3403 	 * time-consuming work between get_state_synchronize_sched()
3404 	 * and cond_synchronize_sched().
3405 	 */
3406 	return smp_load_acquire(&rcu_sched_state.gpnum);
3407 }
3408 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3409 
3410 /**
3411  * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3412  *
3413  * @oldstate: return value from earlier call to get_state_synchronize_sched()
3414  *
3415  * If a full RCU-sched grace period has elapsed since the earlier call to
3416  * get_state_synchronize_sched(), just return.  Otherwise, invoke
3417  * synchronize_sched() to wait for a full grace period.
3418  *
3419  * Yes, this function does not take counter wrap into account.  But
3420  * counter wrap is harmless.  If the counter wraps, we have waited for
3421  * more than 2 billion grace periods (and way more on a 64-bit system!),
3422  * so waiting for one additional grace period should be just fine.
3423  */
cond_synchronize_sched(unsigned long oldstate)3424 void cond_synchronize_sched(unsigned long oldstate)
3425 {
3426 	unsigned long newstate;
3427 
3428 	/*
3429 	 * Ensure that this load happens before any RCU-destructive
3430 	 * actions the caller might carry out after we return.
3431 	 */
3432 	newstate = smp_load_acquire(&rcu_sched_state.completed);
3433 	if (ULONG_CMP_GE(oldstate, newstate))
3434 		synchronize_sched();
3435 }
3436 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3437 
3438 /* Adjust sequence number for start of update-side operation. */
rcu_seq_start(unsigned long * sp)3439 static void rcu_seq_start(unsigned long *sp)
3440 {
3441 	WRITE_ONCE(*sp, *sp + 1);
3442 	smp_mb(); /* Ensure update-side operation after counter increment. */
3443 	WARN_ON_ONCE(!(*sp & 0x1));
3444 }
3445 
3446 /* Adjust sequence number for end of update-side operation. */
rcu_seq_end(unsigned long * sp)3447 static void rcu_seq_end(unsigned long *sp)
3448 {
3449 	smp_mb(); /* Ensure update-side operation before counter increment. */
3450 	WRITE_ONCE(*sp, *sp + 1);
3451 	WARN_ON_ONCE(*sp & 0x1);
3452 }
3453 
3454 /* Take a snapshot of the update side's sequence number. */
rcu_seq_snap(unsigned long * sp)3455 static unsigned long rcu_seq_snap(unsigned long *sp)
3456 {
3457 	unsigned long s;
3458 
3459 	s = (READ_ONCE(*sp) + 3) & ~0x1;
3460 	smp_mb(); /* Above access must not bleed into critical section. */
3461 	return s;
3462 }
3463 
3464 /*
3465  * Given a snapshot from rcu_seq_snap(), determine whether or not a
3466  * full update-side operation has occurred.
3467  */
rcu_seq_done(unsigned long * sp,unsigned long s)3468 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3469 {
3470 	return ULONG_CMP_GE(READ_ONCE(*sp), s);
3471 }
3472 
3473 /*
3474  * Check to see if there is any immediate RCU-related work to be done
3475  * by the current CPU, for the specified type of RCU, returning 1 if so.
3476  * The checks are in order of increasing expense: checks that can be
3477  * carried out against CPU-local state are performed first.  However,
3478  * we must check for CPU stalls first, else we might not get a chance.
3479  */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)3480 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3481 {
3482 	struct rcu_node *rnp = rdp->mynode;
3483 
3484 	rdp->n_rcu_pending++;
3485 
3486 	/* Check for CPU stalls, if enabled. */
3487 	check_cpu_stall(rsp, rdp);
3488 
3489 	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3490 	if (rcu_nohz_full_cpu(rsp))
3491 		return 0;
3492 
3493 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3494 	if (rcu_scheduler_fully_active &&
3495 	    rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3496 	    rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3497 		rdp->n_rp_core_needs_qs++;
3498 	} else if (rdp->core_needs_qs &&
3499 		   (!rdp->cpu_no_qs.b.norm ||
3500 		    rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3501 		rdp->n_rp_report_qs++;
3502 		return 1;
3503 	}
3504 
3505 	/* Does this CPU have callbacks ready to invoke? */
3506 	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3507 		rdp->n_rp_cb_ready++;
3508 		return 1;
3509 	}
3510 
3511 	/* Has RCU gone idle with this CPU needing another grace period? */
3512 	if (cpu_needs_another_gp(rsp, rdp)) {
3513 		rdp->n_rp_cpu_needs_gp++;
3514 		return 1;
3515 	}
3516 
3517 	/* Has another RCU grace period completed?  */
3518 	if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3519 		rdp->n_rp_gp_completed++;
3520 		return 1;
3521 	}
3522 
3523 	/* Has a new RCU grace period started? */
3524 	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3525 	    unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3526 		rdp->n_rp_gp_started++;
3527 		return 1;
3528 	}
3529 
3530 	/* Does this CPU need a deferred NOCB wakeup? */
3531 	if (rcu_nocb_need_deferred_wakeup(rdp)) {
3532 		rdp->n_rp_nocb_defer_wakeup++;
3533 		return 1;
3534 	}
3535 
3536 	/* nothing to do */
3537 	rdp->n_rp_need_nothing++;
3538 	return 0;
3539 }
3540 
3541 /*
3542  * Check to see if there is any immediate RCU-related work to be done
3543  * by the current CPU, returning 1 if so.  This function is part of the
3544  * RCU implementation; it is -not- an exported member of the RCU API.
3545  */
rcu_pending(void)3546 static int rcu_pending(void)
3547 {
3548 	struct rcu_state *rsp;
3549 
3550 	for_each_rcu_flavor(rsp)
3551 		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3552 			return 1;
3553 	return 0;
3554 }
3555 
3556 /*
3557  * Return true if the specified CPU has any callback.  If all_lazy is
3558  * non-NULL, store an indication of whether all callbacks are lazy.
3559  * (If there are no callbacks, all of them are deemed to be lazy.)
3560  */
rcu_cpu_has_callbacks(bool * all_lazy)3561 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3562 {
3563 	bool al = true;
3564 	bool hc = false;
3565 	struct rcu_data *rdp;
3566 	struct rcu_state *rsp;
3567 
3568 	for_each_rcu_flavor(rsp) {
3569 		rdp = this_cpu_ptr(rsp->rda);
3570 		if (!rdp->nxtlist)
3571 			continue;
3572 		hc = true;
3573 		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3574 			al = false;
3575 			break;
3576 		}
3577 	}
3578 	if (all_lazy)
3579 		*all_lazy = al;
3580 	return hc;
3581 }
3582 
3583 /*
3584  * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3585  * the compiler is expected to optimize this away.
3586  */
_rcu_barrier_trace(struct rcu_state * rsp,const char * s,int cpu,unsigned long done)3587 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3588 			       int cpu, unsigned long done)
3589 {
3590 	trace_rcu_barrier(rsp->name, s, cpu,
3591 			  atomic_read(&rsp->barrier_cpu_count), done);
3592 }
3593 
3594 /*
3595  * RCU callback function for _rcu_barrier().  If we are last, wake
3596  * up the task executing _rcu_barrier().
3597  */
rcu_barrier_callback(struct rcu_head * rhp)3598 static void rcu_barrier_callback(struct rcu_head *rhp)
3599 {
3600 	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3601 	struct rcu_state *rsp = rdp->rsp;
3602 
3603 	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3604 		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3605 		complete(&rsp->barrier_completion);
3606 	} else {
3607 		_rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3608 	}
3609 }
3610 
3611 /*
3612  * Called with preemption disabled, and from cross-cpu IRQ context.
3613  */
rcu_barrier_func(void * type)3614 static void rcu_barrier_func(void *type)
3615 {
3616 	struct rcu_state *rsp = type;
3617 	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3618 
3619 	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3620 	atomic_inc(&rsp->barrier_cpu_count);
3621 	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3622 }
3623 
3624 /*
3625  * Orchestrate the specified type of RCU barrier, waiting for all
3626  * RCU callbacks of the specified type to complete.
3627  */
_rcu_barrier(struct rcu_state * rsp)3628 static void _rcu_barrier(struct rcu_state *rsp)
3629 {
3630 	int cpu;
3631 	struct rcu_data *rdp;
3632 	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3633 
3634 	_rcu_barrier_trace(rsp, "Begin", -1, s);
3635 
3636 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3637 	mutex_lock(&rsp->barrier_mutex);
3638 
3639 	/* Did someone else do our work for us? */
3640 	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3641 		_rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3642 		smp_mb(); /* caller's subsequent code after above check. */
3643 		mutex_unlock(&rsp->barrier_mutex);
3644 		return;
3645 	}
3646 
3647 	/* Mark the start of the barrier operation. */
3648 	rcu_seq_start(&rsp->barrier_sequence);
3649 	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3650 
3651 	/*
3652 	 * Initialize the count to one rather than to zero in order to
3653 	 * avoid a too-soon return to zero in case of a short grace period
3654 	 * (or preemption of this task).  Exclude CPU-hotplug operations
3655 	 * to ensure that no offline CPU has callbacks queued.
3656 	 */
3657 	init_completion(&rsp->barrier_completion);
3658 	atomic_set(&rsp->barrier_cpu_count, 1);
3659 	get_online_cpus();
3660 
3661 	/*
3662 	 * Force each CPU with callbacks to register a new callback.
3663 	 * When that callback is invoked, we will know that all of the
3664 	 * corresponding CPU's preceding callbacks have been invoked.
3665 	 */
3666 	for_each_possible_cpu(cpu) {
3667 		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3668 			continue;
3669 		rdp = per_cpu_ptr(rsp->rda, cpu);
3670 		if (rcu_is_nocb_cpu(cpu)) {
3671 			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3672 				_rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3673 						   rsp->barrier_sequence);
3674 			} else {
3675 				_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3676 						   rsp->barrier_sequence);
3677 				smp_mb__before_atomic();
3678 				atomic_inc(&rsp->barrier_cpu_count);
3679 				__call_rcu(&rdp->barrier_head,
3680 					   rcu_barrier_callback, rsp, cpu, 0);
3681 			}
3682 		} else if (READ_ONCE(rdp->qlen)) {
3683 			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3684 					   rsp->barrier_sequence);
3685 			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3686 		} else {
3687 			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3688 					   rsp->barrier_sequence);
3689 		}
3690 	}
3691 	put_online_cpus();
3692 
3693 	/*
3694 	 * Now that we have an rcu_barrier_callback() callback on each
3695 	 * CPU, and thus each counted, remove the initial count.
3696 	 */
3697 	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3698 		complete(&rsp->barrier_completion);
3699 
3700 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3701 	wait_for_completion(&rsp->barrier_completion);
3702 
3703 	/* Mark the end of the barrier operation. */
3704 	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3705 	rcu_seq_end(&rsp->barrier_sequence);
3706 
3707 	/* Other rcu_barrier() invocations can now safely proceed. */
3708 	mutex_unlock(&rsp->barrier_mutex);
3709 }
3710 
3711 /**
3712  * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3713  */
rcu_barrier_bh(void)3714 void rcu_barrier_bh(void)
3715 {
3716 	_rcu_barrier(&rcu_bh_state);
3717 }
3718 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3719 
3720 /**
3721  * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3722  */
rcu_barrier_sched(void)3723 void rcu_barrier_sched(void)
3724 {
3725 	_rcu_barrier(&rcu_sched_state);
3726 }
3727 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3728 
3729 /*
3730  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3731  * first CPU in a given leaf rcu_node structure coming online.  The caller
3732  * must hold the corresponding leaf rcu_node ->lock with interrrupts
3733  * disabled.
3734  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)3735 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3736 {
3737 	long mask;
3738 	struct rcu_node *rnp = rnp_leaf;
3739 
3740 	for (;;) {
3741 		mask = rnp->grpmask;
3742 		rnp = rnp->parent;
3743 		if (rnp == NULL)
3744 			return;
3745 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3746 		rnp->qsmaskinit |= mask;
3747 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3748 	}
3749 }
3750 
3751 /*
3752  * Do boot-time initialization of a CPU's per-CPU RCU data.
3753  */
3754 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)3755 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3756 {
3757 	unsigned long flags;
3758 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3759 	struct rcu_node *rnp = rcu_get_root(rsp);
3760 
3761 	/* Set up local state, ensuring consistent view of global state. */
3762 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3763 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3764 	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3765 	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3766 	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3767 	rdp->cpu = cpu;
3768 	rdp->rsp = rsp;
3769 	rcu_boot_init_nocb_percpu_data(rdp);
3770 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3771 }
3772 
3773 /*
3774  * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3775  * offline event can be happening at a given time.  Note also that we
3776  * can accept some slop in the rsp->completed access due to the fact
3777  * that this CPU cannot possibly have any RCU callbacks in flight yet.
3778  */
3779 static void
rcu_init_percpu_data(int cpu,struct rcu_state * rsp)3780 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3781 {
3782 	unsigned long flags;
3783 	unsigned long mask;
3784 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3785 	struct rcu_node *rnp = rcu_get_root(rsp);
3786 
3787 	/* Set up local state, ensuring consistent view of global state. */
3788 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3789 	rdp->qlen_last_fqs_check = 0;
3790 	rdp->n_force_qs_snap = rsp->n_force_qs;
3791 	rdp->blimit = blimit;
3792 	if (!rdp->nxtlist)
3793 		init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3794 	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3795 	rcu_sysidle_init_percpu_data(rdp->dynticks);
3796 	atomic_set(&rdp->dynticks->dynticks,
3797 		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3798 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3799 
3800 	/*
3801 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3802 	 * propagation up the rcu_node tree will happen at the beginning
3803 	 * of the next grace period.
3804 	 */
3805 	rnp = rdp->mynode;
3806 	mask = rdp->grpmask;
3807 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3808 	if (!rdp->beenonline)
3809 		WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3810 	rdp->beenonline = true;	 /* We have now been online. */
3811 	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3812 	rdp->completed = rnp->completed;
3813 	rdp->cpu_no_qs.b.norm = true;
3814 	rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3815 	rdp->core_needs_qs = false;
3816 	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3817 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3818 }
3819 
rcutree_prepare_cpu(unsigned int cpu)3820 int rcutree_prepare_cpu(unsigned int cpu)
3821 {
3822 	struct rcu_state *rsp;
3823 
3824 	for_each_rcu_flavor(rsp)
3825 		rcu_init_percpu_data(cpu, rsp);
3826 
3827 	rcu_prepare_kthreads(cpu);
3828 	rcu_spawn_all_nocb_kthreads(cpu);
3829 
3830 	return 0;
3831 }
3832 
rcutree_affinity_setting(unsigned int cpu,int outgoing)3833 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3834 {
3835 	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3836 
3837 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3838 }
3839 
rcutree_online_cpu(unsigned int cpu)3840 int rcutree_online_cpu(unsigned int cpu)
3841 {
3842 	sync_sched_exp_online_cleanup(cpu);
3843 	rcutree_affinity_setting(cpu, -1);
3844 	return 0;
3845 }
3846 
rcutree_offline_cpu(unsigned int cpu)3847 int rcutree_offline_cpu(unsigned int cpu)
3848 {
3849 	rcutree_affinity_setting(cpu, cpu);
3850 	return 0;
3851 }
3852 
3853 
rcutree_dying_cpu(unsigned int cpu)3854 int rcutree_dying_cpu(unsigned int cpu)
3855 {
3856 	struct rcu_state *rsp;
3857 
3858 	for_each_rcu_flavor(rsp)
3859 		rcu_cleanup_dying_cpu(rsp);
3860 	return 0;
3861 }
3862 
rcutree_dead_cpu(unsigned int cpu)3863 int rcutree_dead_cpu(unsigned int cpu)
3864 {
3865 	struct rcu_state *rsp;
3866 
3867 	for_each_rcu_flavor(rsp) {
3868 		rcu_cleanup_dead_cpu(cpu, rsp);
3869 		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3870 	}
3871 	return 0;
3872 }
3873 
3874 /*
3875  * Mark the specified CPU as being online so that subsequent grace periods
3876  * (both expedited and normal) will wait on it.  Note that this means that
3877  * incoming CPUs are not allowed to use RCU read-side critical sections
3878  * until this function is called.  Failing to observe this restriction
3879  * will result in lockdep splats.
3880  */
rcu_cpu_starting(unsigned int cpu)3881 void rcu_cpu_starting(unsigned int cpu)
3882 {
3883 	unsigned long flags;
3884 	unsigned long mask;
3885 	struct rcu_data *rdp;
3886 	struct rcu_node *rnp;
3887 	struct rcu_state *rsp;
3888 
3889 	for_each_rcu_flavor(rsp) {
3890 		rdp = this_cpu_ptr(rsp->rda);
3891 		rnp = rdp->mynode;
3892 		mask = rdp->grpmask;
3893 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3894 		rnp->qsmaskinitnext |= mask;
3895 		rnp->expmaskinitnext |= mask;
3896 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3897 	}
3898 }
3899 
3900 #ifdef CONFIG_HOTPLUG_CPU
3901 /*
3902  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3903  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3904  * bit masks.
3905  * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3906  * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3907  * bit masks.
3908  */
rcu_cleanup_dying_idle_cpu(int cpu,struct rcu_state * rsp)3909 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3910 {
3911 	unsigned long flags;
3912 	unsigned long mask;
3913 	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3914 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3915 
3916 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3917 	mask = rdp->grpmask;
3918 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3919 	rnp->qsmaskinitnext &= ~mask;
3920 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3921 }
3922 
rcu_report_dead(unsigned int cpu)3923 void rcu_report_dead(unsigned int cpu)
3924 {
3925 	struct rcu_state *rsp;
3926 
3927 	/* QS for any half-done expedited RCU-sched GP. */
3928 	preempt_disable();
3929 	rcu_report_exp_rdp(&rcu_sched_state,
3930 			   this_cpu_ptr(rcu_sched_state.rda), true);
3931 	preempt_enable();
3932 	for_each_rcu_flavor(rsp)
3933 		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3934 }
3935 #endif
3936 
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)3937 static int rcu_pm_notify(struct notifier_block *self,
3938 			 unsigned long action, void *hcpu)
3939 {
3940 	switch (action) {
3941 	case PM_HIBERNATION_PREPARE:
3942 	case PM_SUSPEND_PREPARE:
3943 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3944 			rcu_expedite_gp();
3945 		break;
3946 	case PM_POST_HIBERNATION:
3947 	case PM_POST_SUSPEND:
3948 		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3949 			rcu_unexpedite_gp();
3950 		break;
3951 	default:
3952 		break;
3953 	}
3954 	return NOTIFY_OK;
3955 }
3956 
3957 /*
3958  * Spawn the kthreads that handle each RCU flavor's grace periods.
3959  */
rcu_spawn_gp_kthread(void)3960 static int __init rcu_spawn_gp_kthread(void)
3961 {
3962 	unsigned long flags;
3963 	int kthread_prio_in = kthread_prio;
3964 	struct rcu_node *rnp;
3965 	struct rcu_state *rsp;
3966 	struct sched_param sp;
3967 	struct task_struct *t;
3968 
3969 	/* Force priority into range. */
3970 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3971 		kthread_prio = 1;
3972 	else if (kthread_prio < 0)
3973 		kthread_prio = 0;
3974 	else if (kthread_prio > 99)
3975 		kthread_prio = 99;
3976 	if (kthread_prio != kthread_prio_in)
3977 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3978 			 kthread_prio, kthread_prio_in);
3979 
3980 	rcu_scheduler_fully_active = 1;
3981 	for_each_rcu_flavor(rsp) {
3982 		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3983 		BUG_ON(IS_ERR(t));
3984 		rnp = rcu_get_root(rsp);
3985 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3986 		rsp->gp_kthread = t;
3987 		if (kthread_prio) {
3988 			sp.sched_priority = kthread_prio;
3989 			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3990 		}
3991 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3992 		wake_up_process(t);
3993 	}
3994 	rcu_spawn_nocb_kthreads();
3995 	rcu_spawn_boost_kthreads();
3996 	return 0;
3997 }
3998 early_initcall(rcu_spawn_gp_kthread);
3999 
4000 /*
4001  * This function is invoked towards the end of the scheduler's
4002  * initialization process.  Before this is called, the idle task might
4003  * contain synchronous grace-period primitives (during which time, this idle
4004  * task is booting the system, and such primitives are no-ops).  After this
4005  * function is called, any synchronous grace-period primitives are run as
4006  * expedited, with the requesting task driving the grace period forward.
4007  * A later core_initcall() rcu_exp_runtime_mode() will switch to full
4008  * runtime RCU functionality.
4009  */
rcu_scheduler_starting(void)4010 void rcu_scheduler_starting(void)
4011 {
4012 	WARN_ON(num_online_cpus() != 1);
4013 	WARN_ON(nr_context_switches() > 0);
4014 	rcu_test_sync_prims();
4015 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4016 	rcu_test_sync_prims();
4017 }
4018 
4019 /*
4020  * Compute the per-level fanout, either using the exact fanout specified
4021  * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4022  */
rcu_init_levelspread(int * levelspread,const int * levelcnt)4023 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4024 {
4025 	int i;
4026 
4027 	if (rcu_fanout_exact) {
4028 		levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4029 		for (i = rcu_num_lvls - 2; i >= 0; i--)
4030 			levelspread[i] = RCU_FANOUT;
4031 	} else {
4032 		int ccur;
4033 		int cprv;
4034 
4035 		cprv = nr_cpu_ids;
4036 		for (i = rcu_num_lvls - 1; i >= 0; i--) {
4037 			ccur = levelcnt[i];
4038 			levelspread[i] = (cprv + ccur - 1) / ccur;
4039 			cprv = ccur;
4040 		}
4041 	}
4042 }
4043 
4044 /*
4045  * Helper function for rcu_init() that initializes one rcu_state structure.
4046  */
rcu_init_one(struct rcu_state * rsp)4047 static void __init rcu_init_one(struct rcu_state *rsp)
4048 {
4049 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4050 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4051 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4052 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4053 	static u8 fl_mask = 0x1;
4054 
4055 	int levelcnt[RCU_NUM_LVLS];		/* # nodes in each level. */
4056 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4057 	int cpustride = 1;
4058 	int i;
4059 	int j;
4060 	struct rcu_node *rnp;
4061 
4062 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4063 
4064 	/* Silence gcc 4.8 false positive about array index out of range. */
4065 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4066 		panic("rcu_init_one: rcu_num_lvls out of range");
4067 
4068 	/* Initialize the level-tracking arrays. */
4069 
4070 	for (i = 0; i < rcu_num_lvls; i++)
4071 		levelcnt[i] = num_rcu_lvl[i];
4072 	for (i = 1; i < rcu_num_lvls; i++)
4073 		rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4074 	rcu_init_levelspread(levelspread, levelcnt);
4075 	rsp->flavor_mask = fl_mask;
4076 	fl_mask <<= 1;
4077 
4078 	/* Initialize the elements themselves, starting from the leaves. */
4079 
4080 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4081 		cpustride *= levelspread[i];
4082 		rnp = rsp->level[i];
4083 		for (j = 0; j < levelcnt[i]; j++, rnp++) {
4084 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4085 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4086 						   &rcu_node_class[i], buf[i]);
4087 			raw_spin_lock_init(&rnp->fqslock);
4088 			lockdep_set_class_and_name(&rnp->fqslock,
4089 						   &rcu_fqs_class[i], fqs[i]);
4090 			rnp->gpnum = rsp->gpnum;
4091 			rnp->completed = rsp->completed;
4092 			rnp->qsmask = 0;
4093 			rnp->qsmaskinit = 0;
4094 			rnp->grplo = j * cpustride;
4095 			rnp->grphi = (j + 1) * cpustride - 1;
4096 			if (rnp->grphi >= nr_cpu_ids)
4097 				rnp->grphi = nr_cpu_ids - 1;
4098 			if (i == 0) {
4099 				rnp->grpnum = 0;
4100 				rnp->grpmask = 0;
4101 				rnp->parent = NULL;
4102 			} else {
4103 				rnp->grpnum = j % levelspread[i - 1];
4104 				rnp->grpmask = 1UL << rnp->grpnum;
4105 				rnp->parent = rsp->level[i - 1] +
4106 					      j / levelspread[i - 1];
4107 			}
4108 			rnp->level = i;
4109 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4110 			rcu_init_one_nocb(rnp);
4111 			init_waitqueue_head(&rnp->exp_wq[0]);
4112 			init_waitqueue_head(&rnp->exp_wq[1]);
4113 			init_waitqueue_head(&rnp->exp_wq[2]);
4114 			init_waitqueue_head(&rnp->exp_wq[3]);
4115 			spin_lock_init(&rnp->exp_lock);
4116 		}
4117 	}
4118 
4119 	init_swait_queue_head(&rsp->gp_wq);
4120 	init_swait_queue_head(&rsp->expedited_wq);
4121 	rnp = rsp->level[rcu_num_lvls - 1];
4122 	for_each_possible_cpu(i) {
4123 		while (i > rnp->grphi)
4124 			rnp++;
4125 		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4126 		rcu_boot_init_percpu_data(i, rsp);
4127 	}
4128 	list_add(&rsp->flavors, &rcu_struct_flavors);
4129 }
4130 
4131 /*
4132  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4133  * replace the definitions in tree.h because those are needed to size
4134  * the ->node array in the rcu_state structure.
4135  */
rcu_init_geometry(void)4136 static void __init rcu_init_geometry(void)
4137 {
4138 	ulong d;
4139 	int i;
4140 	int rcu_capacity[RCU_NUM_LVLS];
4141 
4142 	/*
4143 	 * Initialize any unspecified boot parameters.
4144 	 * The default values of jiffies_till_first_fqs and
4145 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4146 	 * value, which is a function of HZ, then adding one for each
4147 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4148 	 */
4149 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4150 	if (jiffies_till_first_fqs == ULONG_MAX)
4151 		jiffies_till_first_fqs = d;
4152 	if (jiffies_till_next_fqs == ULONG_MAX)
4153 		jiffies_till_next_fqs = d;
4154 
4155 	/* If the compile-time values are accurate, just leave. */
4156 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4157 	    nr_cpu_ids == NR_CPUS)
4158 		return;
4159 	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4160 		rcu_fanout_leaf, nr_cpu_ids);
4161 
4162 	/*
4163 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4164 	 * and cannot exceed the number of bits in the rcu_node masks.
4165 	 * Complain and fall back to the compile-time values if this
4166 	 * limit is exceeded.
4167 	 */
4168 	if (rcu_fanout_leaf < 2 ||
4169 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4170 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4171 		WARN_ON(1);
4172 		return;
4173 	}
4174 
4175 	/*
4176 	 * Compute number of nodes that can be handled an rcu_node tree
4177 	 * with the given number of levels.
4178 	 */
4179 	rcu_capacity[0] = rcu_fanout_leaf;
4180 	for (i = 1; i < RCU_NUM_LVLS; i++)
4181 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4182 
4183 	/*
4184 	 * The tree must be able to accommodate the configured number of CPUs.
4185 	 * If this limit is exceeded, fall back to the compile-time values.
4186 	 */
4187 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4188 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4189 		WARN_ON(1);
4190 		return;
4191 	}
4192 
4193 	/* Calculate the number of levels in the tree. */
4194 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4195 	}
4196 	rcu_num_lvls = i + 1;
4197 
4198 	/* Calculate the number of rcu_nodes at each level of the tree. */
4199 	for (i = 0; i < rcu_num_lvls; i++) {
4200 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4201 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4202 	}
4203 
4204 	/* Calculate the total number of rcu_node structures. */
4205 	rcu_num_nodes = 0;
4206 	for (i = 0; i < rcu_num_lvls; i++)
4207 		rcu_num_nodes += num_rcu_lvl[i];
4208 }
4209 
4210 /*
4211  * Dump out the structure of the rcu_node combining tree associated
4212  * with the rcu_state structure referenced by rsp.
4213  */
rcu_dump_rcu_node_tree(struct rcu_state * rsp)4214 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4215 {
4216 	int level = 0;
4217 	struct rcu_node *rnp;
4218 
4219 	pr_info("rcu_node tree layout dump\n");
4220 	pr_info(" ");
4221 	rcu_for_each_node_breadth_first(rsp, rnp) {
4222 		if (rnp->level != level) {
4223 			pr_cont("\n");
4224 			pr_info(" ");
4225 			level = rnp->level;
4226 		}
4227 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4228 	}
4229 	pr_cont("\n");
4230 }
4231 
rcu_init(void)4232 void __init rcu_init(void)
4233 {
4234 	int cpu;
4235 
4236 	rcu_early_boot_tests();
4237 
4238 	rcu_bootup_announce();
4239 	rcu_init_geometry();
4240 	rcu_init_one(&rcu_bh_state);
4241 	rcu_init_one(&rcu_sched_state);
4242 	if (dump_tree)
4243 		rcu_dump_rcu_node_tree(&rcu_sched_state);
4244 	__rcu_init_preempt();
4245 	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4246 
4247 	/*
4248 	 * We don't need protection against CPU-hotplug here because
4249 	 * this is called early in boot, before either interrupts
4250 	 * or the scheduler are operational.
4251 	 */
4252 	pm_notifier(rcu_pm_notify, 0);
4253 	for_each_online_cpu(cpu) {
4254 		rcutree_prepare_cpu(cpu);
4255 		rcu_cpu_starting(cpu);
4256 	}
4257 }
4258 
4259 #include "tree_exp.h"
4260 #include "tree_plugin.h"
4261