• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
do_memsw_account(void)96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_node {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree {
141 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143 
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145 
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 	struct list_head list;
149 	struct eventfd_ctx *eventfd;
150 };
151 
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156 	/*
157 	 * memcg which the event belongs to.
158 	 */
159 	struct mem_cgroup *memcg;
160 	/*
161 	 * eventfd to signal userspace about the event.
162 	 */
163 	struct eventfd_ctx *eventfd;
164 	/*
165 	 * Each of these stored in a list by the cgroup.
166 	 */
167 	struct list_head list;
168 	/*
169 	 * register_event() callback will be used to add new userspace
170 	 * waiter for changes related to this event.  Use eventfd_signal()
171 	 * on eventfd to send notification to userspace.
172 	 */
173 	int (*register_event)(struct mem_cgroup *memcg,
174 			      struct eventfd_ctx *eventfd, const char *args);
175 	/*
176 	 * unregister_event() callback will be called when userspace closes
177 	 * the eventfd or on cgroup removing.  This callback must be set,
178 	 * if you want provide notification functionality.
179 	 */
180 	void (*unregister_event)(struct mem_cgroup *memcg,
181 				 struct eventfd_ctx *eventfd);
182 	/*
183 	 * All fields below needed to unregister event when
184 	 * userspace closes eventfd.
185 	 */
186 	poll_table pt;
187 	wait_queue_head_t *wqh;
188 	wait_queue_t wait;
189 	struct work_struct remove;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194 
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON	0x1U
200 #define MOVE_FILE	0x2U
201 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202 
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 	spinlock_t	  lock; /* for from, to */
206 	struct mm_struct  *mm;
207 	struct mem_cgroup *from;
208 	struct mem_cgroup *to;
209 	unsigned long flags;
210 	unsigned long precharge;
211 	unsigned long moved_charge;
212 	unsigned long moved_swap;
213 	struct task_struct *moving_task;	/* a task moving charges */
214 	wait_queue_head_t waitq;		/* a waitq for other context */
215 } mc = {
216 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219 
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226 
227 enum charge_type {
228 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 	MEM_CGROUP_CHARGE_TYPE_ANON,
230 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
231 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 	NR_CHARGE_TYPE,
233 };
234 
235 /* for encoding cft->private value on file */
236 enum res_type {
237 	_MEM,
238 	_MEMSWAP,
239 	_OOM_TYPE,
240 	_KMEM,
241 	_TCP,
242 };
243 
244 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)	((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL		(0)
249 
250 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
vmpressure_to_css(struct vmpressure * vmpr)258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
mem_cgroup_is_root(struct mem_cgroup * memcg)263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 	return (memcg == root_mem_cgroup);
266 }
267 
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
memcg_get_cache_ids(void)286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
memcg_put_cache_ids(void)291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 #endif /* !CONFIG_SLOB */
321 
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
mem_cgroup_css_from_page(struct page * page)333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 	struct mem_cgroup *memcg;
336 
337 	memcg = page->mem_cgroup;
338 
339 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 		memcg = root_mem_cgroup;
341 
342 	return &memcg->css;
343 }
344 
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
page_cgroup_ino(struct page * page)358 ino_t page_cgroup_ino(struct page *page)
359 {
360 	struct mem_cgroup *memcg;
361 	unsigned long ino = 0;
362 
363 	rcu_read_lock();
364 	memcg = READ_ONCE(page->mem_cgroup);
365 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 		memcg = parent_mem_cgroup(memcg);
367 	if (memcg)
368 		ino = cgroup_ino(memcg->css.cgroup);
369 	rcu_read_unlock();
370 	return ino;
371 }
372 
373 static struct mem_cgroup_per_node *
mem_cgroup_page_nodeinfo(struct mem_cgroup * memcg,struct page * page)374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 	int nid = page_to_nid(page);
377 
378 	return memcg->nodeinfo[nid];
379 }
380 
381 static struct mem_cgroup_tree_per_node *
soft_limit_tree_node(int nid)382 soft_limit_tree_node(int nid)
383 {
384 	return soft_limit_tree.rb_tree_per_node[nid];
385 }
386 
387 static struct mem_cgroup_tree_per_node *
soft_limit_tree_from_page(struct page * page)388 soft_limit_tree_from_page(struct page *page)
389 {
390 	int nid = page_to_nid(page);
391 
392 	return soft_limit_tree.rb_tree_per_node[nid];
393 }
394 
__mem_cgroup_insert_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz,unsigned long new_usage_in_excess)395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 					 struct mem_cgroup_tree_per_node *mctz,
397 					 unsigned long new_usage_in_excess)
398 {
399 	struct rb_node **p = &mctz->rb_root.rb_node;
400 	struct rb_node *parent = NULL;
401 	struct mem_cgroup_per_node *mz_node;
402 
403 	if (mz->on_tree)
404 		return;
405 
406 	mz->usage_in_excess = new_usage_in_excess;
407 	if (!mz->usage_in_excess)
408 		return;
409 	while (*p) {
410 		parent = *p;
411 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 					tree_node);
413 		if (mz->usage_in_excess < mz_node->usage_in_excess)
414 			p = &(*p)->rb_left;
415 		/*
416 		 * We can't avoid mem cgroups that are over their soft
417 		 * limit by the same amount
418 		 */
419 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 			p = &(*p)->rb_right;
421 	}
422 	rb_link_node(&mz->tree_node, parent, p);
423 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 	mz->on_tree = true;
425 }
426 
__mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 					 struct mem_cgroup_tree_per_node *mctz)
429 {
430 	if (!mz->on_tree)
431 		return;
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
mem_cgroup_remove_exceeded(struct mem_cgroup_per_node * mz,struct mem_cgroup_tree_per_node * mctz)436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
soft_limit_excess(struct mem_cgroup * memcg)446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
mem_cgroup_update_tree(struct mem_cgroup * memcg,struct page * page)458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	if (!mctz)
466 		return;
467 	/*
468 	 * Necessary to update all ancestors when hierarchy is used.
469 	 * because their event counter is not touched.
470 	 */
471 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 		mz = mem_cgroup_page_nodeinfo(memcg, page);
473 		excess = soft_limit_excess(memcg);
474 		/*
475 		 * We have to update the tree if mz is on RB-tree or
476 		 * mem is over its softlimit.
477 		 */
478 		if (excess || mz->on_tree) {
479 			unsigned long flags;
480 
481 			spin_lock_irqsave(&mctz->lock, flags);
482 			/* if on-tree, remove it */
483 			if (mz->on_tree)
484 				__mem_cgroup_remove_exceeded(mz, mctz);
485 			/*
486 			 * Insert again. mz->usage_in_excess will be updated.
487 			 * If excess is 0, no tree ops.
488 			 */
489 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
490 			spin_unlock_irqrestore(&mctz->lock, flags);
491 		}
492 	}
493 }
494 
mem_cgroup_remove_from_trees(struct mem_cgroup * memcg)495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496 {
497 	struct mem_cgroup_tree_per_node *mctz;
498 	struct mem_cgroup_per_node *mz;
499 	int nid;
500 
501 	for_each_node(nid) {
502 		mz = mem_cgroup_nodeinfo(memcg, nid);
503 		mctz = soft_limit_tree_node(nid);
504 		if (mctz)
505 			mem_cgroup_remove_exceeded(mz, mctz);
506 	}
507 }
508 
509 static struct mem_cgroup_per_node *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511 {
512 	struct rb_node *rightmost = NULL;
513 	struct mem_cgroup_per_node *mz;
514 
515 retry:
516 	mz = NULL;
517 	rightmost = rb_last(&mctz->rb_root);
518 	if (!rightmost)
519 		goto done;		/* Nothing to reclaim from */
520 
521 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
522 	/*
523 	 * Remove the node now but someone else can add it back,
524 	 * we will to add it back at the end of reclaim to its correct
525 	 * position in the tree.
526 	 */
527 	__mem_cgroup_remove_exceeded(mz, mctz);
528 	if (!soft_limit_excess(mz->memcg) ||
529 	    !css_tryget_online(&mz->memcg->css))
530 		goto retry;
531 done:
532 	return mz;
533 }
534 
535 static struct mem_cgroup_per_node *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node * mctz)536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537 {
538 	struct mem_cgroup_per_node *mz;
539 
540 	spin_lock_irq(&mctz->lock);
541 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
542 	spin_unlock_irq(&mctz->lock);
543 	return mz;
544 }
545 
546 /*
547  * Return page count for single (non recursive) @memcg.
548  *
549  * Implementation Note: reading percpu statistics for memcg.
550  *
551  * Both of vmstat[] and percpu_counter has threshold and do periodic
552  * synchronization to implement "quick" read. There are trade-off between
553  * reading cost and precision of value. Then, we may have a chance to implement
554  * a periodic synchronization of counter in memcg's counter.
555  *
556  * But this _read() function is used for user interface now. The user accounts
557  * memory usage by memory cgroup and he _always_ requires exact value because
558  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559  * have to visit all online cpus and make sum. So, for now, unnecessary
560  * synchronization is not implemented. (just implemented for cpu hotplug)
561  *
562  * If there are kernel internal actions which can make use of some not-exact
563  * value, and reading all cpu value can be performance bottleneck in some
564  * common workload, threshold and synchronization as vmstat[] should be
565  * implemented.
566  */
567 static unsigned long
mem_cgroup_read_stat(struct mem_cgroup * memcg,enum mem_cgroup_stat_index idx)568 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
569 {
570 	long val = 0;
571 	int cpu;
572 
573 	/* Per-cpu values can be negative, use a signed accumulator */
574 	for_each_possible_cpu(cpu)
575 		val += per_cpu(memcg->stat->count[idx], cpu);
576 	/*
577 	 * Summing races with updates, so val may be negative.  Avoid exposing
578 	 * transient negative values.
579 	 */
580 	if (val < 0)
581 		val = 0;
582 	return val;
583 }
584 
mem_cgroup_read_events(struct mem_cgroup * memcg,enum mem_cgroup_events_index idx)585 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
586 					    enum mem_cgroup_events_index idx)
587 {
588 	unsigned long val = 0;
589 	int cpu;
590 
591 	for_each_possible_cpu(cpu)
592 		val += per_cpu(memcg->stat->events[idx], cpu);
593 	return val;
594 }
595 
mem_cgroup_charge_statistics(struct mem_cgroup * memcg,struct page * page,bool compound,int nr_pages)596 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
597 					 struct page *page,
598 					 bool compound, int nr_pages)
599 {
600 	/*
601 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
602 	 * counted as CACHE even if it's on ANON LRU.
603 	 */
604 	if (PageAnon(page))
605 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
606 				nr_pages);
607 	else
608 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
609 				nr_pages);
610 
611 	if (compound) {
612 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
613 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
614 				nr_pages);
615 	}
616 
617 	/* pagein of a big page is an event. So, ignore page size */
618 	if (nr_pages > 0)
619 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
620 	else {
621 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
622 		nr_pages = -nr_pages; /* for event */
623 	}
624 
625 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
626 }
627 
mem_cgroup_node_nr_lru_pages(struct mem_cgroup * memcg,int nid,unsigned int lru_mask)628 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
629 					   int nid, unsigned int lru_mask)
630 {
631 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
632 	unsigned long nr = 0;
633 	enum lru_list lru;
634 
635 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
636 
637 	for_each_lru(lru) {
638 		if (!(BIT(lru) & lru_mask))
639 			continue;
640 		nr += mem_cgroup_get_lru_size(lruvec, lru);
641 	}
642 	return nr;
643 }
644 
mem_cgroup_nr_lru_pages(struct mem_cgroup * memcg,unsigned int lru_mask)645 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
646 			unsigned int lru_mask)
647 {
648 	unsigned long nr = 0;
649 	int nid;
650 
651 	for_each_node_state(nid, N_MEMORY)
652 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
653 	return nr;
654 }
655 
mem_cgroup_event_ratelimit(struct mem_cgroup * memcg,enum mem_cgroup_events_target target)656 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
657 				       enum mem_cgroup_events_target target)
658 {
659 	unsigned long val, next;
660 
661 	val = __this_cpu_read(memcg->stat->nr_page_events);
662 	next = __this_cpu_read(memcg->stat->targets[target]);
663 	/* from time_after() in jiffies.h */
664 	if ((long)next - (long)val < 0) {
665 		switch (target) {
666 		case MEM_CGROUP_TARGET_THRESH:
667 			next = val + THRESHOLDS_EVENTS_TARGET;
668 			break;
669 		case MEM_CGROUP_TARGET_SOFTLIMIT:
670 			next = val + SOFTLIMIT_EVENTS_TARGET;
671 			break;
672 		case MEM_CGROUP_TARGET_NUMAINFO:
673 			next = val + NUMAINFO_EVENTS_TARGET;
674 			break;
675 		default:
676 			break;
677 		}
678 		__this_cpu_write(memcg->stat->targets[target], next);
679 		return true;
680 	}
681 	return false;
682 }
683 
684 /*
685  * Check events in order.
686  *
687  */
memcg_check_events(struct mem_cgroup * memcg,struct page * page)688 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
689 {
690 	/* threshold event is triggered in finer grain than soft limit */
691 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
692 						MEM_CGROUP_TARGET_THRESH))) {
693 		bool do_softlimit;
694 		bool do_numainfo __maybe_unused;
695 
696 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
697 						MEM_CGROUP_TARGET_SOFTLIMIT);
698 #if MAX_NUMNODES > 1
699 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
700 						MEM_CGROUP_TARGET_NUMAINFO);
701 #endif
702 		mem_cgroup_threshold(memcg);
703 		if (unlikely(do_softlimit))
704 			mem_cgroup_update_tree(memcg, page);
705 #if MAX_NUMNODES > 1
706 		if (unlikely(do_numainfo))
707 			atomic_inc(&memcg->numainfo_events);
708 #endif
709 	}
710 }
711 
mem_cgroup_from_task(struct task_struct * p)712 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
713 {
714 	/*
715 	 * mm_update_next_owner() may clear mm->owner to NULL
716 	 * if it races with swapoff, page migration, etc.
717 	 * So this can be called with p == NULL.
718 	 */
719 	if (unlikely(!p))
720 		return NULL;
721 
722 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
723 }
724 EXPORT_SYMBOL(mem_cgroup_from_task);
725 
get_mem_cgroup_from_mm(struct mm_struct * mm)726 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
727 {
728 	struct mem_cgroup *memcg = NULL;
729 
730 	rcu_read_lock();
731 	do {
732 		/*
733 		 * Page cache insertions can happen withou an
734 		 * actual mm context, e.g. during disk probing
735 		 * on boot, loopback IO, acct() writes etc.
736 		 */
737 		if (unlikely(!mm))
738 			memcg = root_mem_cgroup;
739 		else {
740 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
741 			if (unlikely(!memcg))
742 				memcg = root_mem_cgroup;
743 		}
744 	} while (!css_tryget_online(&memcg->css));
745 	rcu_read_unlock();
746 	return memcg;
747 }
748 
749 /**
750  * mem_cgroup_iter - iterate over memory cgroup hierarchy
751  * @root: hierarchy root
752  * @prev: previously returned memcg, NULL on first invocation
753  * @reclaim: cookie for shared reclaim walks, NULL for full walks
754  *
755  * Returns references to children of the hierarchy below @root, or
756  * @root itself, or %NULL after a full round-trip.
757  *
758  * Caller must pass the return value in @prev on subsequent
759  * invocations for reference counting, or use mem_cgroup_iter_break()
760  * to cancel a hierarchy walk before the round-trip is complete.
761  *
762  * Reclaimers can specify a zone and a priority level in @reclaim to
763  * divide up the memcgs in the hierarchy among all concurrent
764  * reclaimers operating on the same zone and priority.
765  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)766 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
767 				   struct mem_cgroup *prev,
768 				   struct mem_cgroup_reclaim_cookie *reclaim)
769 {
770 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
771 	struct cgroup_subsys_state *css = NULL;
772 	struct mem_cgroup *memcg = NULL;
773 	struct mem_cgroup *pos = NULL;
774 
775 	if (mem_cgroup_disabled())
776 		return NULL;
777 
778 	if (!root)
779 		root = root_mem_cgroup;
780 
781 	if (prev && !reclaim)
782 		pos = prev;
783 
784 	if (!root->use_hierarchy && root != root_mem_cgroup) {
785 		if (prev)
786 			goto out;
787 		return root;
788 	}
789 
790 	rcu_read_lock();
791 
792 	if (reclaim) {
793 		struct mem_cgroup_per_node *mz;
794 
795 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
796 		iter = &mz->iter[reclaim->priority];
797 
798 		if (prev && reclaim->generation != iter->generation)
799 			goto out_unlock;
800 
801 		while (1) {
802 			pos = READ_ONCE(iter->position);
803 			if (!pos || css_tryget(&pos->css))
804 				break;
805 			/*
806 			 * css reference reached zero, so iter->position will
807 			 * be cleared by ->css_released. However, we should not
808 			 * rely on this happening soon, because ->css_released
809 			 * is called from a work queue, and by busy-waiting we
810 			 * might block it. So we clear iter->position right
811 			 * away.
812 			 */
813 			(void)cmpxchg(&iter->position, pos, NULL);
814 		}
815 	}
816 
817 	if (pos)
818 		css = &pos->css;
819 
820 	for (;;) {
821 		css = css_next_descendant_pre(css, &root->css);
822 		if (!css) {
823 			/*
824 			 * Reclaimers share the hierarchy walk, and a
825 			 * new one might jump in right at the end of
826 			 * the hierarchy - make sure they see at least
827 			 * one group and restart from the beginning.
828 			 */
829 			if (!prev)
830 				continue;
831 			break;
832 		}
833 
834 		/*
835 		 * Verify the css and acquire a reference.  The root
836 		 * is provided by the caller, so we know it's alive
837 		 * and kicking, and don't take an extra reference.
838 		 */
839 		memcg = mem_cgroup_from_css(css);
840 
841 		if (css == &root->css)
842 			break;
843 
844 		if (css_tryget(css))
845 			break;
846 
847 		memcg = NULL;
848 	}
849 
850 	if (reclaim) {
851 		/*
852 		 * The position could have already been updated by a competing
853 		 * thread, so check that the value hasn't changed since we read
854 		 * it to avoid reclaiming from the same cgroup twice.
855 		 */
856 		(void)cmpxchg(&iter->position, pos, memcg);
857 
858 		if (pos)
859 			css_put(&pos->css);
860 
861 		if (!memcg)
862 			iter->generation++;
863 		else if (!prev)
864 			reclaim->generation = iter->generation;
865 	}
866 
867 out_unlock:
868 	rcu_read_unlock();
869 out:
870 	if (prev && prev != root)
871 		css_put(&prev->css);
872 
873 	return memcg;
874 }
875 
876 /**
877  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
878  * @root: hierarchy root
879  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
880  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)881 void mem_cgroup_iter_break(struct mem_cgroup *root,
882 			   struct mem_cgroup *prev)
883 {
884 	if (!root)
885 		root = root_mem_cgroup;
886 	if (prev && prev != root)
887 		css_put(&prev->css);
888 }
889 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)890 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
891 {
892 	struct mem_cgroup *memcg = dead_memcg;
893 	struct mem_cgroup_reclaim_iter *iter;
894 	struct mem_cgroup_per_node *mz;
895 	int nid;
896 	int i;
897 
898 	while ((memcg = parent_mem_cgroup(memcg))) {
899 		for_each_node(nid) {
900 			mz = mem_cgroup_nodeinfo(memcg, nid);
901 			for (i = 0; i <= DEF_PRIORITY; i++) {
902 				iter = &mz->iter[i];
903 				cmpxchg(&iter->position,
904 					dead_memcg, NULL);
905 			}
906 		}
907 	}
908 }
909 
910 /*
911  * Iteration constructs for visiting all cgroups (under a tree).  If
912  * loops are exited prematurely (break), mem_cgroup_iter_break() must
913  * be used for reference counting.
914  */
915 #define for_each_mem_cgroup_tree(iter, root)		\
916 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
917 	     iter != NULL;				\
918 	     iter = mem_cgroup_iter(root, iter, NULL))
919 
920 #define for_each_mem_cgroup(iter)			\
921 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
922 	     iter != NULL;				\
923 	     iter = mem_cgroup_iter(NULL, iter, NULL))
924 
925 /**
926  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
927  * @memcg: hierarchy root
928  * @fn: function to call for each task
929  * @arg: argument passed to @fn
930  *
931  * This function iterates over tasks attached to @memcg or to any of its
932  * descendants and calls @fn for each task. If @fn returns a non-zero
933  * value, the function breaks the iteration loop and returns the value.
934  * Otherwise, it will iterate over all tasks and return 0.
935  *
936  * This function must not be called for the root memory cgroup.
937  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)938 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
939 			  int (*fn)(struct task_struct *, void *), void *arg)
940 {
941 	struct mem_cgroup *iter;
942 	int ret = 0;
943 
944 	BUG_ON(memcg == root_mem_cgroup);
945 
946 	for_each_mem_cgroup_tree(iter, memcg) {
947 		struct css_task_iter it;
948 		struct task_struct *task;
949 
950 		css_task_iter_start(&iter->css, &it);
951 		while (!ret && (task = css_task_iter_next(&it)))
952 			ret = fn(task, arg);
953 		css_task_iter_end(&it);
954 		if (ret) {
955 			mem_cgroup_iter_break(memcg, iter);
956 			break;
957 		}
958 	}
959 	return ret;
960 }
961 
962 /**
963  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
964  * @page: the page
965  * @zone: zone of the page
966  *
967  * This function is only safe when following the LRU page isolation
968  * and putback protocol: the LRU lock must be held, and the page must
969  * either be PageLRU() or the caller must have isolated/allocated it.
970  */
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)971 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
972 {
973 	struct mem_cgroup_per_node *mz;
974 	struct mem_cgroup *memcg;
975 	struct lruvec *lruvec;
976 
977 	if (mem_cgroup_disabled()) {
978 		lruvec = &pgdat->lruvec;
979 		goto out;
980 	}
981 
982 	memcg = page->mem_cgroup;
983 	/*
984 	 * Swapcache readahead pages are added to the LRU - and
985 	 * possibly migrated - before they are charged.
986 	 */
987 	if (!memcg)
988 		memcg = root_mem_cgroup;
989 
990 	mz = mem_cgroup_page_nodeinfo(memcg, page);
991 	lruvec = &mz->lruvec;
992 out:
993 	/*
994 	 * Since a node can be onlined after the mem_cgroup was created,
995 	 * we have to be prepared to initialize lruvec->zone here;
996 	 * and if offlined then reonlined, we need to reinitialize it.
997 	 */
998 	if (unlikely(lruvec->pgdat != pgdat))
999 		lruvec->pgdat = pgdat;
1000 	return lruvec;
1001 }
1002 
1003 /**
1004  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1005  * @lruvec: mem_cgroup per zone lru vector
1006  * @lru: index of lru list the page is sitting on
1007  * @zid: zone id of the accounted pages
1008  * @nr_pages: positive when adding or negative when removing
1009  *
1010  * This function must be called under lru_lock, just before a page is added
1011  * to or just after a page is removed from an lru list (that ordering being
1012  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1013  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1014 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1015 				int zid, int nr_pages)
1016 {
1017 	struct mem_cgroup_per_node *mz;
1018 	unsigned long *lru_size;
1019 	long size;
1020 
1021 	if (mem_cgroup_disabled())
1022 		return;
1023 
1024 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1025 	lru_size = &mz->lru_zone_size[zid][lru];
1026 
1027 	if (nr_pages < 0)
1028 		*lru_size += nr_pages;
1029 
1030 	size = *lru_size;
1031 	if (WARN_ONCE(size < 0,
1032 		"%s(%p, %d, %d): lru_size %ld\n",
1033 		__func__, lruvec, lru, nr_pages, size)) {
1034 		VM_BUG_ON(1);
1035 		*lru_size = 0;
1036 	}
1037 
1038 	if (nr_pages > 0)
1039 		*lru_size += nr_pages;
1040 }
1041 
task_in_mem_cgroup(struct task_struct * task,struct mem_cgroup * memcg)1042 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1043 {
1044 	struct mem_cgroup *task_memcg;
1045 	struct task_struct *p;
1046 	bool ret;
1047 
1048 	p = find_lock_task_mm(task);
1049 	if (p) {
1050 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1051 		task_unlock(p);
1052 	} else {
1053 		/*
1054 		 * All threads may have already detached their mm's, but the oom
1055 		 * killer still needs to detect if they have already been oom
1056 		 * killed to prevent needlessly killing additional tasks.
1057 		 */
1058 		rcu_read_lock();
1059 		task_memcg = mem_cgroup_from_task(task);
1060 		css_get(&task_memcg->css);
1061 		rcu_read_unlock();
1062 	}
1063 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1064 	css_put(&task_memcg->css);
1065 	return ret;
1066 }
1067 
1068 /**
1069  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1070  * @memcg: the memory cgroup
1071  *
1072  * Returns the maximum amount of memory @mem can be charged with, in
1073  * pages.
1074  */
mem_cgroup_margin(struct mem_cgroup * memcg)1075 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1076 {
1077 	unsigned long margin = 0;
1078 	unsigned long count;
1079 	unsigned long limit;
1080 
1081 	count = page_counter_read(&memcg->memory);
1082 	limit = READ_ONCE(memcg->memory.limit);
1083 	if (count < limit)
1084 		margin = limit - count;
1085 
1086 	if (do_memsw_account()) {
1087 		count = page_counter_read(&memcg->memsw);
1088 		limit = READ_ONCE(memcg->memsw.limit);
1089 		if (count <= limit)
1090 			margin = min(margin, limit - count);
1091 		else
1092 			margin = 0;
1093 	}
1094 
1095 	return margin;
1096 }
1097 
1098 /*
1099  * A routine for checking "mem" is under move_account() or not.
1100  *
1101  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102  * moving cgroups. This is for waiting at high-memory pressure
1103  * caused by "move".
1104  */
mem_cgroup_under_move(struct mem_cgroup * memcg)1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 	struct mem_cgroup *from;
1108 	struct mem_cgroup *to;
1109 	bool ret = false;
1110 	/*
1111 	 * Unlike task_move routines, we access mc.to, mc.from not under
1112 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 	 */
1114 	spin_lock(&mc.lock);
1115 	from = mc.from;
1116 	to = mc.to;
1117 	if (!from)
1118 		goto unlock;
1119 
1120 	ret = mem_cgroup_is_descendant(from, memcg) ||
1121 		mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 	spin_unlock(&mc.lock);
1124 	return ret;
1125 }
1126 
mem_cgroup_wait_acct_move(struct mem_cgroup * memcg)1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 	if (mc.moving_task && current != mc.moving_task) {
1130 		if (mem_cgroup_under_move(memcg)) {
1131 			DEFINE_WAIT(wait);
1132 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 			/* moving charge context might have finished. */
1134 			if (mc.moving_task)
1135 				schedule();
1136 			finish_wait(&mc.waitq, &wait);
1137 			return true;
1138 		}
1139 	}
1140 	return false;
1141 }
1142 
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146  * @memcg: The memory cgroup that went over limit
1147  * @p: Task that is going to be killed
1148  *
1149  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150  * enabled
1151  */
mem_cgroup_print_oom_info(struct mem_cgroup * memcg,struct task_struct * p)1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 	struct mem_cgroup *iter;
1155 	unsigned int i;
1156 
1157 	rcu_read_lock();
1158 
1159 	if (p) {
1160 		pr_info("Task in ");
1161 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 		pr_cont(" killed as a result of limit of ");
1163 	} else {
1164 		pr_info("Memory limit reached of cgroup ");
1165 	}
1166 
1167 	pr_cont_cgroup_path(memcg->css.cgroup);
1168 	pr_cont("\n");
1169 
1170 	rcu_read_unlock();
1171 
1172 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 		K((u64)page_counter_read(&memcg->memory)),
1174 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 		K((u64)page_counter_read(&memcg->memsw)),
1177 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 		K((u64)page_counter_read(&memcg->kmem)),
1180 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181 
1182 	for_each_mem_cgroup_tree(iter, memcg) {
1183 		pr_info("Memory cgroup stats for ");
1184 		pr_cont_cgroup_path(iter->css.cgroup);
1185 		pr_cont(":");
1186 
1187 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 				continue;
1190 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 				K(mem_cgroup_read_stat(iter, i)));
1192 		}
1193 
1194 		for (i = 0; i < NR_LRU_LISTS; i++)
1195 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197 
1198 		pr_cont("\n");
1199 	}
1200 }
1201 
1202 /*
1203  * This function returns the number of memcg under hierarchy tree. Returns
1204  * 1(self count) if no children.
1205  */
mem_cgroup_count_children(struct mem_cgroup * memcg)1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 {
1208 	int num = 0;
1209 	struct mem_cgroup *iter;
1210 
1211 	for_each_mem_cgroup_tree(iter, memcg)
1212 		num++;
1213 	return num;
1214 }
1215 
1216 /*
1217  * Return the memory (and swap, if configured) limit for a memcg.
1218  */
mem_cgroup_get_limit(struct mem_cgroup * memcg)1219 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220 {
1221 	unsigned long limit;
1222 
1223 	limit = memcg->memory.limit;
1224 	if (mem_cgroup_swappiness(memcg)) {
1225 		unsigned long memsw_limit;
1226 		unsigned long swap_limit;
1227 
1228 		memsw_limit = memcg->memsw.limit;
1229 		swap_limit = memcg->swap.limit;
1230 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 		limit = min(limit + swap_limit, memsw_limit);
1232 	}
1233 	return limit;
1234 }
1235 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 				     int order)
1238 {
1239 	struct oom_control oc = {
1240 		.zonelist = NULL,
1241 		.nodemask = NULL,
1242 		.memcg = memcg,
1243 		.gfp_mask = gfp_mask,
1244 		.order = order,
1245 	};
1246 	bool ret;
1247 
1248 	mutex_lock(&oom_lock);
1249 	ret = out_of_memory(&oc);
1250 	mutex_unlock(&oom_lock);
1251 	return ret;
1252 }
1253 
1254 #if MAX_NUMNODES > 1
1255 
1256 /**
1257  * test_mem_cgroup_node_reclaimable
1258  * @memcg: the target memcg
1259  * @nid: the node ID to be checked.
1260  * @noswap : specify true here if the user wants flle only information.
1261  *
1262  * This function returns whether the specified memcg contains any
1263  * reclaimable pages on a node. Returns true if there are any reclaimable
1264  * pages in the node.
1265  */
test_mem_cgroup_node_reclaimable(struct mem_cgroup * memcg,int nid,bool noswap)1266 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1267 		int nid, bool noswap)
1268 {
1269 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1270 		return true;
1271 	if (noswap || !total_swap_pages)
1272 		return false;
1273 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1274 		return true;
1275 	return false;
1276 
1277 }
1278 
1279 /*
1280  * Always updating the nodemask is not very good - even if we have an empty
1281  * list or the wrong list here, we can start from some node and traverse all
1282  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1283  *
1284  */
mem_cgroup_may_update_nodemask(struct mem_cgroup * memcg)1285 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1286 {
1287 	int nid;
1288 	/*
1289 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1290 	 * pagein/pageout changes since the last update.
1291 	 */
1292 	if (!atomic_read(&memcg->numainfo_events))
1293 		return;
1294 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1295 		return;
1296 
1297 	/* make a nodemask where this memcg uses memory from */
1298 	memcg->scan_nodes = node_states[N_MEMORY];
1299 
1300 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1301 
1302 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1303 			node_clear(nid, memcg->scan_nodes);
1304 	}
1305 
1306 	atomic_set(&memcg->numainfo_events, 0);
1307 	atomic_set(&memcg->numainfo_updating, 0);
1308 }
1309 
1310 /*
1311  * Selecting a node where we start reclaim from. Because what we need is just
1312  * reducing usage counter, start from anywhere is O,K. Considering
1313  * memory reclaim from current node, there are pros. and cons.
1314  *
1315  * Freeing memory from current node means freeing memory from a node which
1316  * we'll use or we've used. So, it may make LRU bad. And if several threads
1317  * hit limits, it will see a contention on a node. But freeing from remote
1318  * node means more costs for memory reclaim because of memory latency.
1319  *
1320  * Now, we use round-robin. Better algorithm is welcomed.
1321  */
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1322 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1323 {
1324 	int node;
1325 
1326 	mem_cgroup_may_update_nodemask(memcg);
1327 	node = memcg->last_scanned_node;
1328 
1329 	node = next_node_in(node, memcg->scan_nodes);
1330 	/*
1331 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1332 	 * last time it really checked all the LRUs due to rate limiting.
1333 	 * Fallback to the current node in that case for simplicity.
1334 	 */
1335 	if (unlikely(node == MAX_NUMNODES))
1336 		node = numa_node_id();
1337 
1338 	memcg->last_scanned_node = node;
1339 	return node;
1340 }
1341 #else
mem_cgroup_select_victim_node(struct mem_cgroup * memcg)1342 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1343 {
1344 	return 0;
1345 }
1346 #endif
1347 
mem_cgroup_soft_reclaim(struct mem_cgroup * root_memcg,pg_data_t * pgdat,gfp_t gfp_mask,unsigned long * total_scanned)1348 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1349 				   pg_data_t *pgdat,
1350 				   gfp_t gfp_mask,
1351 				   unsigned long *total_scanned)
1352 {
1353 	struct mem_cgroup *victim = NULL;
1354 	int total = 0;
1355 	int loop = 0;
1356 	unsigned long excess;
1357 	unsigned long nr_scanned;
1358 	struct mem_cgroup_reclaim_cookie reclaim = {
1359 		.pgdat = pgdat,
1360 		.priority = 0,
1361 	};
1362 
1363 	excess = soft_limit_excess(root_memcg);
1364 
1365 	while (1) {
1366 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1367 		if (!victim) {
1368 			loop++;
1369 			if (loop >= 2) {
1370 				/*
1371 				 * If we have not been able to reclaim
1372 				 * anything, it might because there are
1373 				 * no reclaimable pages under this hierarchy
1374 				 */
1375 				if (!total)
1376 					break;
1377 				/*
1378 				 * We want to do more targeted reclaim.
1379 				 * excess >> 2 is not to excessive so as to
1380 				 * reclaim too much, nor too less that we keep
1381 				 * coming back to reclaim from this cgroup
1382 				 */
1383 				if (total >= (excess >> 2) ||
1384 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1385 					break;
1386 			}
1387 			continue;
1388 		}
1389 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1390 					pgdat, &nr_scanned);
1391 		*total_scanned += nr_scanned;
1392 		if (!soft_limit_excess(root_memcg))
1393 			break;
1394 	}
1395 	mem_cgroup_iter_break(root_memcg, victim);
1396 	return total;
1397 }
1398 
1399 #ifdef CONFIG_LOCKDEP
1400 static struct lockdep_map memcg_oom_lock_dep_map = {
1401 	.name = "memcg_oom_lock",
1402 };
1403 #endif
1404 
1405 static DEFINE_SPINLOCK(memcg_oom_lock);
1406 
1407 /*
1408  * Check OOM-Killer is already running under our hierarchy.
1409  * If someone is running, return false.
1410  */
mem_cgroup_oom_trylock(struct mem_cgroup * memcg)1411 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1412 {
1413 	struct mem_cgroup *iter, *failed = NULL;
1414 
1415 	spin_lock(&memcg_oom_lock);
1416 
1417 	for_each_mem_cgroup_tree(iter, memcg) {
1418 		if (iter->oom_lock) {
1419 			/*
1420 			 * this subtree of our hierarchy is already locked
1421 			 * so we cannot give a lock.
1422 			 */
1423 			failed = iter;
1424 			mem_cgroup_iter_break(memcg, iter);
1425 			break;
1426 		} else
1427 			iter->oom_lock = true;
1428 	}
1429 
1430 	if (failed) {
1431 		/*
1432 		 * OK, we failed to lock the whole subtree so we have
1433 		 * to clean up what we set up to the failing subtree
1434 		 */
1435 		for_each_mem_cgroup_tree(iter, memcg) {
1436 			if (iter == failed) {
1437 				mem_cgroup_iter_break(memcg, iter);
1438 				break;
1439 			}
1440 			iter->oom_lock = false;
1441 		}
1442 	} else
1443 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1444 
1445 	spin_unlock(&memcg_oom_lock);
1446 
1447 	return !failed;
1448 }
1449 
mem_cgroup_oom_unlock(struct mem_cgroup * memcg)1450 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1451 {
1452 	struct mem_cgroup *iter;
1453 
1454 	spin_lock(&memcg_oom_lock);
1455 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1456 	for_each_mem_cgroup_tree(iter, memcg)
1457 		iter->oom_lock = false;
1458 	spin_unlock(&memcg_oom_lock);
1459 }
1460 
mem_cgroup_mark_under_oom(struct mem_cgroup * memcg)1461 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1462 {
1463 	struct mem_cgroup *iter;
1464 
1465 	spin_lock(&memcg_oom_lock);
1466 	for_each_mem_cgroup_tree(iter, memcg)
1467 		iter->under_oom++;
1468 	spin_unlock(&memcg_oom_lock);
1469 }
1470 
mem_cgroup_unmark_under_oom(struct mem_cgroup * memcg)1471 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1472 {
1473 	struct mem_cgroup *iter;
1474 
1475 	/*
1476 	 * When a new child is created while the hierarchy is under oom,
1477 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1478 	 */
1479 	spin_lock(&memcg_oom_lock);
1480 	for_each_mem_cgroup_tree(iter, memcg)
1481 		if (iter->under_oom > 0)
1482 			iter->under_oom--;
1483 	spin_unlock(&memcg_oom_lock);
1484 }
1485 
1486 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487 
1488 struct oom_wait_info {
1489 	struct mem_cgroup *memcg;
1490 	wait_queue_t	wait;
1491 };
1492 
memcg_oom_wake_function(wait_queue_t * wait,unsigned mode,int sync,void * arg)1493 static int memcg_oom_wake_function(wait_queue_t *wait,
1494 	unsigned mode, int sync, void *arg)
1495 {
1496 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1497 	struct mem_cgroup *oom_wait_memcg;
1498 	struct oom_wait_info *oom_wait_info;
1499 
1500 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501 	oom_wait_memcg = oom_wait_info->memcg;
1502 
1503 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1504 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1505 		return 0;
1506 	return autoremove_wake_function(wait, mode, sync, arg);
1507 }
1508 
memcg_oom_recover(struct mem_cgroup * memcg)1509 static void memcg_oom_recover(struct mem_cgroup *memcg)
1510 {
1511 	/*
1512 	 * For the following lockless ->under_oom test, the only required
1513 	 * guarantee is that it must see the state asserted by an OOM when
1514 	 * this function is called as a result of userland actions
1515 	 * triggered by the notification of the OOM.  This is trivially
1516 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1517 	 * triggering notification.
1518 	 */
1519 	if (memcg && memcg->under_oom)
1520 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1521 }
1522 
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1523 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1524 {
1525 	if (!current->memcg_may_oom)
1526 		return;
1527 	/*
1528 	 * We are in the middle of the charge context here, so we
1529 	 * don't want to block when potentially sitting on a callstack
1530 	 * that holds all kinds of filesystem and mm locks.
1531 	 *
1532 	 * Also, the caller may handle a failed allocation gracefully
1533 	 * (like optional page cache readahead) and so an OOM killer
1534 	 * invocation might not even be necessary.
1535 	 *
1536 	 * That's why we don't do anything here except remember the
1537 	 * OOM context and then deal with it at the end of the page
1538 	 * fault when the stack is unwound, the locks are released,
1539 	 * and when we know whether the fault was overall successful.
1540 	 */
1541 	css_get(&memcg->css);
1542 	current->memcg_in_oom = memcg;
1543 	current->memcg_oom_gfp_mask = mask;
1544 	current->memcg_oom_order = order;
1545 }
1546 
1547 /**
1548  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1549  * @handle: actually kill/wait or just clean up the OOM state
1550  *
1551  * This has to be called at the end of a page fault if the memcg OOM
1552  * handler was enabled.
1553  *
1554  * Memcg supports userspace OOM handling where failed allocations must
1555  * sleep on a waitqueue until the userspace task resolves the
1556  * situation.  Sleeping directly in the charge context with all kinds
1557  * of locks held is not a good idea, instead we remember an OOM state
1558  * in the task and mem_cgroup_oom_synchronize() has to be called at
1559  * the end of the page fault to complete the OOM handling.
1560  *
1561  * Returns %true if an ongoing memcg OOM situation was detected and
1562  * completed, %false otherwise.
1563  */
mem_cgroup_oom_synchronize(bool handle)1564 bool mem_cgroup_oom_synchronize(bool handle)
1565 {
1566 	struct mem_cgroup *memcg = current->memcg_in_oom;
1567 	struct oom_wait_info owait;
1568 	bool locked;
1569 
1570 	/* OOM is global, do not handle */
1571 	if (!memcg)
1572 		return false;
1573 
1574 	if (!handle)
1575 		goto cleanup;
1576 
1577 	owait.memcg = memcg;
1578 	owait.wait.flags = 0;
1579 	owait.wait.func = memcg_oom_wake_function;
1580 	owait.wait.private = current;
1581 	INIT_LIST_HEAD(&owait.wait.task_list);
1582 
1583 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1584 	mem_cgroup_mark_under_oom(memcg);
1585 
1586 	locked = mem_cgroup_oom_trylock(memcg);
1587 
1588 	if (locked)
1589 		mem_cgroup_oom_notify(memcg);
1590 
1591 	if (locked && !memcg->oom_kill_disable) {
1592 		mem_cgroup_unmark_under_oom(memcg);
1593 		finish_wait(&memcg_oom_waitq, &owait.wait);
1594 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1595 					 current->memcg_oom_order);
1596 	} else {
1597 		schedule();
1598 		mem_cgroup_unmark_under_oom(memcg);
1599 		finish_wait(&memcg_oom_waitq, &owait.wait);
1600 	}
1601 
1602 	if (locked) {
1603 		mem_cgroup_oom_unlock(memcg);
1604 		/*
1605 		 * There is no guarantee that an OOM-lock contender
1606 		 * sees the wakeups triggered by the OOM kill
1607 		 * uncharges.  Wake any sleepers explicitely.
1608 		 */
1609 		memcg_oom_recover(memcg);
1610 	}
1611 cleanup:
1612 	current->memcg_in_oom = NULL;
1613 	css_put(&memcg->css);
1614 	return true;
1615 }
1616 
1617 /**
1618  * lock_page_memcg - lock a page->mem_cgroup binding
1619  * @page: the page
1620  *
1621  * This function protects unlocked LRU pages from being moved to
1622  * another cgroup and stabilizes their page->mem_cgroup binding.
1623  */
lock_page_memcg(struct page * page)1624 void lock_page_memcg(struct page *page)
1625 {
1626 	struct mem_cgroup *memcg;
1627 	unsigned long flags;
1628 
1629 	/*
1630 	 * The RCU lock is held throughout the transaction.  The fast
1631 	 * path can get away without acquiring the memcg->move_lock
1632 	 * because page moving starts with an RCU grace period.
1633 	 */
1634 	rcu_read_lock();
1635 
1636 	if (mem_cgroup_disabled())
1637 		return;
1638 again:
1639 	memcg = page->mem_cgroup;
1640 	if (unlikely(!memcg))
1641 		return;
1642 
1643 	if (atomic_read(&memcg->moving_account) <= 0)
1644 		return;
1645 
1646 	spin_lock_irqsave(&memcg->move_lock, flags);
1647 	if (memcg != page->mem_cgroup) {
1648 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1649 		goto again;
1650 	}
1651 
1652 	/*
1653 	 * When charge migration first begins, we can have locked and
1654 	 * unlocked page stat updates happening concurrently.  Track
1655 	 * the task who has the lock for unlock_page_memcg().
1656 	 */
1657 	memcg->move_lock_task = current;
1658 	memcg->move_lock_flags = flags;
1659 
1660 	return;
1661 }
1662 EXPORT_SYMBOL(lock_page_memcg);
1663 
1664 /**
1665  * unlock_page_memcg - unlock a page->mem_cgroup binding
1666  * @page: the page
1667  */
unlock_page_memcg(struct page * page)1668 void unlock_page_memcg(struct page *page)
1669 {
1670 	struct mem_cgroup *memcg = page->mem_cgroup;
1671 
1672 	if (memcg && memcg->move_lock_task == current) {
1673 		unsigned long flags = memcg->move_lock_flags;
1674 
1675 		memcg->move_lock_task = NULL;
1676 		memcg->move_lock_flags = 0;
1677 
1678 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1679 	}
1680 
1681 	rcu_read_unlock();
1682 }
1683 EXPORT_SYMBOL(unlock_page_memcg);
1684 
1685 /*
1686  * size of first charge trial. "32" comes from vmscan.c's magic value.
1687  * TODO: maybe necessary to use big numbers in big irons.
1688  */
1689 #define CHARGE_BATCH	32U
1690 struct memcg_stock_pcp {
1691 	struct mem_cgroup *cached; /* this never be root cgroup */
1692 	unsigned int nr_pages;
1693 	struct work_struct work;
1694 	unsigned long flags;
1695 #define FLUSHING_CACHED_CHARGE	0
1696 };
1697 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1698 static DEFINE_MUTEX(percpu_charge_mutex);
1699 
1700 /**
1701  * consume_stock: Try to consume stocked charge on this cpu.
1702  * @memcg: memcg to consume from.
1703  * @nr_pages: how many pages to charge.
1704  *
1705  * The charges will only happen if @memcg matches the current cpu's memcg
1706  * stock, and at least @nr_pages are available in that stock.  Failure to
1707  * service an allocation will refill the stock.
1708  *
1709  * returns true if successful, false otherwise.
1710  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1711 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1712 {
1713 	struct memcg_stock_pcp *stock;
1714 	unsigned long flags;
1715 	bool ret = false;
1716 
1717 	if (nr_pages > CHARGE_BATCH)
1718 		return ret;
1719 
1720 	local_irq_save(flags);
1721 
1722 	stock = this_cpu_ptr(&memcg_stock);
1723 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1724 		stock->nr_pages -= nr_pages;
1725 		ret = true;
1726 	}
1727 
1728 	local_irq_restore(flags);
1729 
1730 	return ret;
1731 }
1732 
1733 /*
1734  * Returns stocks cached in percpu and reset cached information.
1735  */
drain_stock(struct memcg_stock_pcp * stock)1736 static void drain_stock(struct memcg_stock_pcp *stock)
1737 {
1738 	struct mem_cgroup *old = stock->cached;
1739 
1740 	if (stock->nr_pages) {
1741 		page_counter_uncharge(&old->memory, stock->nr_pages);
1742 		if (do_memsw_account())
1743 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1744 		css_put_many(&old->css, stock->nr_pages);
1745 		stock->nr_pages = 0;
1746 	}
1747 	stock->cached = NULL;
1748 }
1749 
drain_local_stock(struct work_struct * dummy)1750 static void drain_local_stock(struct work_struct *dummy)
1751 {
1752 	struct memcg_stock_pcp *stock;
1753 	unsigned long flags;
1754 
1755 	local_irq_save(flags);
1756 
1757 	stock = this_cpu_ptr(&memcg_stock);
1758 	drain_stock(stock);
1759 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1760 
1761 	local_irq_restore(flags);
1762 }
1763 
1764 /*
1765  * Cache charges(val) to local per_cpu area.
1766  * This will be consumed by consume_stock() function, later.
1767  */
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1768 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1769 {
1770 	struct memcg_stock_pcp *stock;
1771 	unsigned long flags;
1772 
1773 	local_irq_save(flags);
1774 
1775 	stock = this_cpu_ptr(&memcg_stock);
1776 	if (stock->cached != memcg) { /* reset if necessary */
1777 		drain_stock(stock);
1778 		stock->cached = memcg;
1779 	}
1780 	stock->nr_pages += nr_pages;
1781 
1782 	local_irq_restore(flags);
1783 }
1784 
1785 /*
1786  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1787  * of the hierarchy under it.
1788  */
drain_all_stock(struct mem_cgroup * root_memcg)1789 static void drain_all_stock(struct mem_cgroup *root_memcg)
1790 {
1791 	int cpu, curcpu;
1792 
1793 	/* If someone's already draining, avoid adding running more workers. */
1794 	if (!mutex_trylock(&percpu_charge_mutex))
1795 		return;
1796 	/* Notify other cpus that system-wide "drain" is running */
1797 	get_online_cpus();
1798 	curcpu = get_cpu();
1799 	for_each_online_cpu(cpu) {
1800 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1801 		struct mem_cgroup *memcg;
1802 
1803 		memcg = stock->cached;
1804 		if (!memcg || !stock->nr_pages)
1805 			continue;
1806 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1807 			continue;
1808 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1809 			if (cpu == curcpu)
1810 				drain_local_stock(&stock->work);
1811 			else
1812 				schedule_work_on(cpu, &stock->work);
1813 		}
1814 	}
1815 	put_cpu();
1816 	put_online_cpus();
1817 	mutex_unlock(&percpu_charge_mutex);
1818 }
1819 
memcg_cpu_hotplug_callback(struct notifier_block * nb,unsigned long action,void * hcpu)1820 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1821 					unsigned long action,
1822 					void *hcpu)
1823 {
1824 	int cpu = (unsigned long)hcpu;
1825 	struct memcg_stock_pcp *stock;
1826 
1827 	if (action == CPU_ONLINE)
1828 		return NOTIFY_OK;
1829 
1830 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1831 		return NOTIFY_OK;
1832 
1833 	stock = &per_cpu(memcg_stock, cpu);
1834 	drain_stock(stock);
1835 	return NOTIFY_OK;
1836 }
1837 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)1838 static void reclaim_high(struct mem_cgroup *memcg,
1839 			 unsigned int nr_pages,
1840 			 gfp_t gfp_mask)
1841 {
1842 	do {
1843 		if (page_counter_read(&memcg->memory) <= memcg->high)
1844 			continue;
1845 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1846 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1847 	} while ((memcg = parent_mem_cgroup(memcg)));
1848 }
1849 
high_work_func(struct work_struct * work)1850 static void high_work_func(struct work_struct *work)
1851 {
1852 	struct mem_cgroup *memcg;
1853 
1854 	memcg = container_of(work, struct mem_cgroup, high_work);
1855 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1856 }
1857 
1858 /*
1859  * Scheduled by try_charge() to be executed from the userland return path
1860  * and reclaims memory over the high limit.
1861  */
mem_cgroup_handle_over_high(void)1862 void mem_cgroup_handle_over_high(void)
1863 {
1864 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1865 	struct mem_cgroup *memcg;
1866 
1867 	if (likely(!nr_pages))
1868 		return;
1869 
1870 	memcg = get_mem_cgroup_from_mm(current->mm);
1871 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1872 	css_put(&memcg->css);
1873 	current->memcg_nr_pages_over_high = 0;
1874 }
1875 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)1876 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1877 		      unsigned int nr_pages)
1878 {
1879 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1880 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1881 	struct mem_cgroup *mem_over_limit;
1882 	struct page_counter *counter;
1883 	unsigned long nr_reclaimed;
1884 	bool may_swap = true;
1885 	bool drained = false;
1886 
1887 	if (mem_cgroup_is_root(memcg))
1888 		return 0;
1889 retry:
1890 	if (consume_stock(memcg, nr_pages))
1891 		return 0;
1892 
1893 	if (!do_memsw_account() ||
1894 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1895 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1896 			goto done_restock;
1897 		if (do_memsw_account())
1898 			page_counter_uncharge(&memcg->memsw, batch);
1899 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1900 	} else {
1901 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1902 		may_swap = false;
1903 	}
1904 
1905 	if (batch > nr_pages) {
1906 		batch = nr_pages;
1907 		goto retry;
1908 	}
1909 
1910 	/*
1911 	 * Unlike in global OOM situations, memcg is not in a physical
1912 	 * memory shortage.  Allow dying and OOM-killed tasks to
1913 	 * bypass the last charges so that they can exit quickly and
1914 	 * free their memory.
1915 	 */
1916 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1917 		     fatal_signal_pending(current) ||
1918 		     current->flags & PF_EXITING))
1919 		goto force;
1920 
1921 	/*
1922 	 * Prevent unbounded recursion when reclaim operations need to
1923 	 * allocate memory. This might exceed the limits temporarily,
1924 	 * but we prefer facilitating memory reclaim and getting back
1925 	 * under the limit over triggering OOM kills in these cases.
1926 	 */
1927 	if (unlikely(current->flags & PF_MEMALLOC))
1928 		goto force;
1929 
1930 	if (unlikely(task_in_memcg_oom(current)))
1931 		goto nomem;
1932 
1933 	if (!gfpflags_allow_blocking(gfp_mask))
1934 		goto nomem;
1935 
1936 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1937 
1938 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1939 						    gfp_mask, may_swap);
1940 
1941 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1942 		goto retry;
1943 
1944 	if (!drained) {
1945 		drain_all_stock(mem_over_limit);
1946 		drained = true;
1947 		goto retry;
1948 	}
1949 
1950 	if (gfp_mask & __GFP_NORETRY)
1951 		goto nomem;
1952 	/*
1953 	 * Even though the limit is exceeded at this point, reclaim
1954 	 * may have been able to free some pages.  Retry the charge
1955 	 * before killing the task.
1956 	 *
1957 	 * Only for regular pages, though: huge pages are rather
1958 	 * unlikely to succeed so close to the limit, and we fall back
1959 	 * to regular pages anyway in case of failure.
1960 	 */
1961 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1962 		goto retry;
1963 	/*
1964 	 * At task move, charge accounts can be doubly counted. So, it's
1965 	 * better to wait until the end of task_move if something is going on.
1966 	 */
1967 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1968 		goto retry;
1969 
1970 	if (nr_retries--)
1971 		goto retry;
1972 
1973 	if (gfp_mask & __GFP_NOFAIL)
1974 		goto force;
1975 
1976 	if (fatal_signal_pending(current))
1977 		goto force;
1978 
1979 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1980 
1981 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1982 		       get_order(nr_pages * PAGE_SIZE));
1983 nomem:
1984 	if (!(gfp_mask & __GFP_NOFAIL))
1985 		return -ENOMEM;
1986 force:
1987 	/*
1988 	 * The allocation either can't fail or will lead to more memory
1989 	 * being freed very soon.  Allow memory usage go over the limit
1990 	 * temporarily by force charging it.
1991 	 */
1992 	page_counter_charge(&memcg->memory, nr_pages);
1993 	if (do_memsw_account())
1994 		page_counter_charge(&memcg->memsw, nr_pages);
1995 	css_get_many(&memcg->css, nr_pages);
1996 
1997 	return 0;
1998 
1999 done_restock:
2000 	css_get_many(&memcg->css, batch);
2001 	if (batch > nr_pages)
2002 		refill_stock(memcg, batch - nr_pages);
2003 
2004 	/*
2005 	 * If the hierarchy is above the normal consumption range, schedule
2006 	 * reclaim on returning to userland.  We can perform reclaim here
2007 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2008 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2009 	 * not recorded as it most likely matches current's and won't
2010 	 * change in the meantime.  As high limit is checked again before
2011 	 * reclaim, the cost of mismatch is negligible.
2012 	 */
2013 	do {
2014 		if (page_counter_read(&memcg->memory) > memcg->high) {
2015 			/* Don't bother a random interrupted task */
2016 			if (in_interrupt()) {
2017 				schedule_work(&memcg->high_work);
2018 				break;
2019 			}
2020 			current->memcg_nr_pages_over_high += batch;
2021 			set_notify_resume(current);
2022 			break;
2023 		}
2024 	} while ((memcg = parent_mem_cgroup(memcg)));
2025 
2026 	return 0;
2027 }
2028 
cancel_charge(struct mem_cgroup * memcg,unsigned int nr_pages)2029 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2030 {
2031 	if (mem_cgroup_is_root(memcg))
2032 		return;
2033 
2034 	page_counter_uncharge(&memcg->memory, nr_pages);
2035 	if (do_memsw_account())
2036 		page_counter_uncharge(&memcg->memsw, nr_pages);
2037 
2038 	css_put_many(&memcg->css, nr_pages);
2039 }
2040 
lock_page_lru(struct page * page,int * isolated)2041 static void lock_page_lru(struct page *page, int *isolated)
2042 {
2043 	struct zone *zone = page_zone(page);
2044 
2045 	spin_lock_irq(zone_lru_lock(zone));
2046 	if (PageLRU(page)) {
2047 		struct lruvec *lruvec;
2048 
2049 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2050 		ClearPageLRU(page);
2051 		del_page_from_lru_list(page, lruvec, page_lru(page));
2052 		*isolated = 1;
2053 	} else
2054 		*isolated = 0;
2055 }
2056 
unlock_page_lru(struct page * page,int isolated)2057 static void unlock_page_lru(struct page *page, int isolated)
2058 {
2059 	struct zone *zone = page_zone(page);
2060 
2061 	if (isolated) {
2062 		struct lruvec *lruvec;
2063 
2064 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2065 		VM_BUG_ON_PAGE(PageLRU(page), page);
2066 		SetPageLRU(page);
2067 		add_page_to_lru_list(page, lruvec, page_lru(page));
2068 	}
2069 	spin_unlock_irq(zone_lru_lock(zone));
2070 }
2071 
commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare)2072 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2073 			  bool lrucare)
2074 {
2075 	int isolated;
2076 
2077 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2078 
2079 	/*
2080 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2081 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2082 	 */
2083 	if (lrucare)
2084 		lock_page_lru(page, &isolated);
2085 
2086 	/*
2087 	 * Nobody should be changing or seriously looking at
2088 	 * page->mem_cgroup at this point:
2089 	 *
2090 	 * - the page is uncharged
2091 	 *
2092 	 * - the page is off-LRU
2093 	 *
2094 	 * - an anonymous fault has exclusive page access, except for
2095 	 *   a locked page table
2096 	 *
2097 	 * - a page cache insertion, a swapin fault, or a migration
2098 	 *   have the page locked
2099 	 */
2100 	page->mem_cgroup = memcg;
2101 
2102 	if (lrucare)
2103 		unlock_page_lru(page, isolated);
2104 }
2105 
2106 #ifndef CONFIG_SLOB
memcg_alloc_cache_id(void)2107 static int memcg_alloc_cache_id(void)
2108 {
2109 	int id, size;
2110 	int err;
2111 
2112 	id = ida_simple_get(&memcg_cache_ida,
2113 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2114 	if (id < 0)
2115 		return id;
2116 
2117 	if (id < memcg_nr_cache_ids)
2118 		return id;
2119 
2120 	/*
2121 	 * There's no space for the new id in memcg_caches arrays,
2122 	 * so we have to grow them.
2123 	 */
2124 	down_write(&memcg_cache_ids_sem);
2125 
2126 	size = 2 * (id + 1);
2127 	if (size < MEMCG_CACHES_MIN_SIZE)
2128 		size = MEMCG_CACHES_MIN_SIZE;
2129 	else if (size > MEMCG_CACHES_MAX_SIZE)
2130 		size = MEMCG_CACHES_MAX_SIZE;
2131 
2132 	err = memcg_update_all_caches(size);
2133 	if (!err)
2134 		err = memcg_update_all_list_lrus(size);
2135 	if (!err)
2136 		memcg_nr_cache_ids = size;
2137 
2138 	up_write(&memcg_cache_ids_sem);
2139 
2140 	if (err) {
2141 		ida_simple_remove(&memcg_cache_ida, id);
2142 		return err;
2143 	}
2144 	return id;
2145 }
2146 
memcg_free_cache_id(int id)2147 static void memcg_free_cache_id(int id)
2148 {
2149 	ida_simple_remove(&memcg_cache_ida, id);
2150 }
2151 
2152 struct memcg_kmem_cache_create_work {
2153 	struct mem_cgroup *memcg;
2154 	struct kmem_cache *cachep;
2155 	struct work_struct work;
2156 };
2157 
2158 static struct workqueue_struct *memcg_kmem_cache_create_wq;
2159 
memcg_kmem_cache_create_func(struct work_struct * w)2160 static void memcg_kmem_cache_create_func(struct work_struct *w)
2161 {
2162 	struct memcg_kmem_cache_create_work *cw =
2163 		container_of(w, struct memcg_kmem_cache_create_work, work);
2164 	struct mem_cgroup *memcg = cw->memcg;
2165 	struct kmem_cache *cachep = cw->cachep;
2166 
2167 	memcg_create_kmem_cache(memcg, cachep);
2168 
2169 	css_put(&memcg->css);
2170 	kfree(cw);
2171 }
2172 
2173 /*
2174  * Enqueue the creation of a per-memcg kmem_cache.
2175  */
__memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2176 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2177 					       struct kmem_cache *cachep)
2178 {
2179 	struct memcg_kmem_cache_create_work *cw;
2180 
2181 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2182 	if (!cw)
2183 		return;
2184 
2185 	css_get(&memcg->css);
2186 
2187 	cw->memcg = memcg;
2188 	cw->cachep = cachep;
2189 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2190 
2191 	queue_work(memcg_kmem_cache_create_wq, &cw->work);
2192 }
2193 
memcg_schedule_kmem_cache_create(struct mem_cgroup * memcg,struct kmem_cache * cachep)2194 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2195 					     struct kmem_cache *cachep)
2196 {
2197 	/*
2198 	 * We need to stop accounting when we kmalloc, because if the
2199 	 * corresponding kmalloc cache is not yet created, the first allocation
2200 	 * in __memcg_schedule_kmem_cache_create will recurse.
2201 	 *
2202 	 * However, it is better to enclose the whole function. Depending on
2203 	 * the debugging options enabled, INIT_WORK(), for instance, can
2204 	 * trigger an allocation. This too, will make us recurse. Because at
2205 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2206 	 * the safest choice is to do it like this, wrapping the whole function.
2207 	 */
2208 	current->memcg_kmem_skip_account = 1;
2209 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2210 	current->memcg_kmem_skip_account = 0;
2211 }
2212 
memcg_kmem_bypass(void)2213 static inline bool memcg_kmem_bypass(void)
2214 {
2215 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2216 		return true;
2217 	return false;
2218 }
2219 
2220 /**
2221  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2222  * @cachep: the original global kmem cache
2223  *
2224  * Return the kmem_cache we're supposed to use for a slab allocation.
2225  * We try to use the current memcg's version of the cache.
2226  *
2227  * If the cache does not exist yet, if we are the first user of it, we
2228  * create it asynchronously in a workqueue and let the current allocation
2229  * go through with the original cache.
2230  *
2231  * This function takes a reference to the cache it returns to assure it
2232  * won't get destroyed while we are working with it. Once the caller is
2233  * done with it, memcg_kmem_put_cache() must be called to release the
2234  * reference.
2235  */
memcg_kmem_get_cache(struct kmem_cache * cachep)2236 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2237 {
2238 	struct mem_cgroup *memcg;
2239 	struct kmem_cache *memcg_cachep;
2240 	int kmemcg_id;
2241 
2242 	VM_BUG_ON(!is_root_cache(cachep));
2243 
2244 	if (memcg_kmem_bypass())
2245 		return cachep;
2246 
2247 	if (current->memcg_kmem_skip_account)
2248 		return cachep;
2249 
2250 	memcg = get_mem_cgroup_from_mm(current->mm);
2251 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2252 	if (kmemcg_id < 0)
2253 		goto out;
2254 
2255 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2256 	if (likely(memcg_cachep))
2257 		return memcg_cachep;
2258 
2259 	/*
2260 	 * If we are in a safe context (can wait, and not in interrupt
2261 	 * context), we could be be predictable and return right away.
2262 	 * This would guarantee that the allocation being performed
2263 	 * already belongs in the new cache.
2264 	 *
2265 	 * However, there are some clashes that can arrive from locking.
2266 	 * For instance, because we acquire the slab_mutex while doing
2267 	 * memcg_create_kmem_cache, this means no further allocation
2268 	 * could happen with the slab_mutex held. So it's better to
2269 	 * defer everything.
2270 	 */
2271 	memcg_schedule_kmem_cache_create(memcg, cachep);
2272 out:
2273 	css_put(&memcg->css);
2274 	return cachep;
2275 }
2276 
2277 /**
2278  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2279  * @cachep: the cache returned by memcg_kmem_get_cache
2280  */
memcg_kmem_put_cache(struct kmem_cache * cachep)2281 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2282 {
2283 	if (!is_root_cache(cachep))
2284 		css_put(&cachep->memcg_params.memcg->css);
2285 }
2286 
2287 /**
2288  * memcg_kmem_charge: charge a kmem page
2289  * @page: page to charge
2290  * @gfp: reclaim mode
2291  * @order: allocation order
2292  * @memcg: memory cgroup to charge
2293  *
2294  * Returns 0 on success, an error code on failure.
2295  */
memcg_kmem_charge_memcg(struct page * page,gfp_t gfp,int order,struct mem_cgroup * memcg)2296 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2297 			    struct mem_cgroup *memcg)
2298 {
2299 	unsigned int nr_pages = 1 << order;
2300 	struct page_counter *counter;
2301 	int ret;
2302 
2303 	ret = try_charge(memcg, gfp, nr_pages);
2304 	if (ret)
2305 		return ret;
2306 
2307 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2308 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2309 		cancel_charge(memcg, nr_pages);
2310 		return -ENOMEM;
2311 	}
2312 
2313 	page->mem_cgroup = memcg;
2314 
2315 	return 0;
2316 }
2317 
2318 /**
2319  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2320  * @page: page to charge
2321  * @gfp: reclaim mode
2322  * @order: allocation order
2323  *
2324  * Returns 0 on success, an error code on failure.
2325  */
memcg_kmem_charge(struct page * page,gfp_t gfp,int order)2326 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2327 {
2328 	struct mem_cgroup *memcg;
2329 	int ret = 0;
2330 
2331 	if (memcg_kmem_bypass())
2332 		return 0;
2333 
2334 	memcg = get_mem_cgroup_from_mm(current->mm);
2335 	if (!mem_cgroup_is_root(memcg)) {
2336 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2337 		if (!ret)
2338 			__SetPageKmemcg(page);
2339 	}
2340 	css_put(&memcg->css);
2341 	return ret;
2342 }
2343 /**
2344  * memcg_kmem_uncharge: uncharge a kmem page
2345  * @page: page to uncharge
2346  * @order: allocation order
2347  */
memcg_kmem_uncharge(struct page * page,int order)2348 void memcg_kmem_uncharge(struct page *page, int order)
2349 {
2350 	struct mem_cgroup *memcg = page->mem_cgroup;
2351 	unsigned int nr_pages = 1 << order;
2352 
2353 	if (!memcg)
2354 		return;
2355 
2356 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2357 
2358 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2359 		page_counter_uncharge(&memcg->kmem, nr_pages);
2360 
2361 	page_counter_uncharge(&memcg->memory, nr_pages);
2362 	if (do_memsw_account())
2363 		page_counter_uncharge(&memcg->memsw, nr_pages);
2364 
2365 	page->mem_cgroup = NULL;
2366 
2367 	/* slab pages do not have PageKmemcg flag set */
2368 	if (PageKmemcg(page))
2369 		__ClearPageKmemcg(page);
2370 
2371 	css_put_many(&memcg->css, nr_pages);
2372 }
2373 #endif /* !CONFIG_SLOB */
2374 
2375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2376 
2377 /*
2378  * Because tail pages are not marked as "used", set it. We're under
2379  * zone_lru_lock and migration entries setup in all page mappings.
2380  */
mem_cgroup_split_huge_fixup(struct page * head)2381 void mem_cgroup_split_huge_fixup(struct page *head)
2382 {
2383 	int i;
2384 
2385 	if (mem_cgroup_disabled())
2386 		return;
2387 
2388 	for (i = 1; i < HPAGE_PMD_NR; i++)
2389 		head[i].mem_cgroup = head->mem_cgroup;
2390 
2391 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2392 		       HPAGE_PMD_NR);
2393 }
2394 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2395 
2396 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_swap_statistics(struct mem_cgroup * memcg,bool charge)2397 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2398 					 bool charge)
2399 {
2400 	int val = (charge) ? 1 : -1;
2401 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2402 }
2403 
2404 /**
2405  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2406  * @entry: swap entry to be moved
2407  * @from:  mem_cgroup which the entry is moved from
2408  * @to:  mem_cgroup which the entry is moved to
2409  *
2410  * It succeeds only when the swap_cgroup's record for this entry is the same
2411  * as the mem_cgroup's id of @from.
2412  *
2413  * Returns 0 on success, -EINVAL on failure.
2414  *
2415  * The caller must have charged to @to, IOW, called page_counter_charge() about
2416  * both res and memsw, and called css_get().
2417  */
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2418 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2419 				struct mem_cgroup *from, struct mem_cgroup *to)
2420 {
2421 	unsigned short old_id, new_id;
2422 
2423 	old_id = mem_cgroup_id(from);
2424 	new_id = mem_cgroup_id(to);
2425 
2426 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2427 		mem_cgroup_swap_statistics(from, false);
2428 		mem_cgroup_swap_statistics(to, true);
2429 		return 0;
2430 	}
2431 	return -EINVAL;
2432 }
2433 #else
mem_cgroup_move_swap_account(swp_entry_t entry,struct mem_cgroup * from,struct mem_cgroup * to)2434 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2435 				struct mem_cgroup *from, struct mem_cgroup *to)
2436 {
2437 	return -EINVAL;
2438 }
2439 #endif
2440 
2441 static DEFINE_MUTEX(memcg_limit_mutex);
2442 
mem_cgroup_resize_limit(struct mem_cgroup * memcg,unsigned long limit)2443 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2444 				   unsigned long limit)
2445 {
2446 	unsigned long curusage;
2447 	unsigned long oldusage;
2448 	bool enlarge = false;
2449 	int retry_count;
2450 	int ret;
2451 
2452 	/*
2453 	 * For keeping hierarchical_reclaim simple, how long we should retry
2454 	 * is depends on callers. We set our retry-count to be function
2455 	 * of # of children which we should visit in this loop.
2456 	 */
2457 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2458 		      mem_cgroup_count_children(memcg);
2459 
2460 	oldusage = page_counter_read(&memcg->memory);
2461 
2462 	do {
2463 		if (signal_pending(current)) {
2464 			ret = -EINTR;
2465 			break;
2466 		}
2467 
2468 		mutex_lock(&memcg_limit_mutex);
2469 		if (limit > memcg->memsw.limit) {
2470 			mutex_unlock(&memcg_limit_mutex);
2471 			ret = -EINVAL;
2472 			break;
2473 		}
2474 		if (limit > memcg->memory.limit)
2475 			enlarge = true;
2476 		ret = page_counter_limit(&memcg->memory, limit);
2477 		mutex_unlock(&memcg_limit_mutex);
2478 
2479 		if (!ret)
2480 			break;
2481 
2482 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2483 
2484 		curusage = page_counter_read(&memcg->memory);
2485 		/* Usage is reduced ? */
2486 		if (curusage >= oldusage)
2487 			retry_count--;
2488 		else
2489 			oldusage = curusage;
2490 	} while (retry_count);
2491 
2492 	if (!ret && enlarge)
2493 		memcg_oom_recover(memcg);
2494 
2495 	return ret;
2496 }
2497 
mem_cgroup_resize_memsw_limit(struct mem_cgroup * memcg,unsigned long limit)2498 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2499 					 unsigned long limit)
2500 {
2501 	unsigned long curusage;
2502 	unsigned long oldusage;
2503 	bool enlarge = false;
2504 	int retry_count;
2505 	int ret;
2506 
2507 	/* see mem_cgroup_resize_res_limit */
2508 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2509 		      mem_cgroup_count_children(memcg);
2510 
2511 	oldusage = page_counter_read(&memcg->memsw);
2512 
2513 	do {
2514 		if (signal_pending(current)) {
2515 			ret = -EINTR;
2516 			break;
2517 		}
2518 
2519 		mutex_lock(&memcg_limit_mutex);
2520 		if (limit < memcg->memory.limit) {
2521 			mutex_unlock(&memcg_limit_mutex);
2522 			ret = -EINVAL;
2523 			break;
2524 		}
2525 		if (limit > memcg->memsw.limit)
2526 			enlarge = true;
2527 		ret = page_counter_limit(&memcg->memsw, limit);
2528 		mutex_unlock(&memcg_limit_mutex);
2529 
2530 		if (!ret)
2531 			break;
2532 
2533 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2534 
2535 		curusage = page_counter_read(&memcg->memsw);
2536 		/* Usage is reduced ? */
2537 		if (curusage >= oldusage)
2538 			retry_count--;
2539 		else
2540 			oldusage = curusage;
2541 	} while (retry_count);
2542 
2543 	if (!ret && enlarge)
2544 		memcg_oom_recover(memcg);
2545 
2546 	return ret;
2547 }
2548 
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)2549 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2550 					    gfp_t gfp_mask,
2551 					    unsigned long *total_scanned)
2552 {
2553 	unsigned long nr_reclaimed = 0;
2554 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2555 	unsigned long reclaimed;
2556 	int loop = 0;
2557 	struct mem_cgroup_tree_per_node *mctz;
2558 	unsigned long excess;
2559 	unsigned long nr_scanned;
2560 
2561 	if (order > 0)
2562 		return 0;
2563 
2564 	mctz = soft_limit_tree_node(pgdat->node_id);
2565 
2566 	/*
2567 	 * Do not even bother to check the largest node if the root
2568 	 * is empty. Do it lockless to prevent lock bouncing. Races
2569 	 * are acceptable as soft limit is best effort anyway.
2570 	 */
2571 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2572 		return 0;
2573 
2574 	/*
2575 	 * This loop can run a while, specially if mem_cgroup's continuously
2576 	 * keep exceeding their soft limit and putting the system under
2577 	 * pressure
2578 	 */
2579 	do {
2580 		if (next_mz)
2581 			mz = next_mz;
2582 		else
2583 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2584 		if (!mz)
2585 			break;
2586 
2587 		nr_scanned = 0;
2588 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2589 						    gfp_mask, &nr_scanned);
2590 		nr_reclaimed += reclaimed;
2591 		*total_scanned += nr_scanned;
2592 		spin_lock_irq(&mctz->lock);
2593 		__mem_cgroup_remove_exceeded(mz, mctz);
2594 
2595 		/*
2596 		 * If we failed to reclaim anything from this memory cgroup
2597 		 * it is time to move on to the next cgroup
2598 		 */
2599 		next_mz = NULL;
2600 		if (!reclaimed)
2601 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2602 
2603 		excess = soft_limit_excess(mz->memcg);
2604 		/*
2605 		 * One school of thought says that we should not add
2606 		 * back the node to the tree if reclaim returns 0.
2607 		 * But our reclaim could return 0, simply because due
2608 		 * to priority we are exposing a smaller subset of
2609 		 * memory to reclaim from. Consider this as a longer
2610 		 * term TODO.
2611 		 */
2612 		/* If excess == 0, no tree ops */
2613 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2614 		spin_unlock_irq(&mctz->lock);
2615 		css_put(&mz->memcg->css);
2616 		loop++;
2617 		/*
2618 		 * Could not reclaim anything and there are no more
2619 		 * mem cgroups to try or we seem to be looping without
2620 		 * reclaiming anything.
2621 		 */
2622 		if (!nr_reclaimed &&
2623 			(next_mz == NULL ||
2624 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2625 			break;
2626 	} while (!nr_reclaimed);
2627 	if (next_mz)
2628 		css_put(&next_mz->memcg->css);
2629 	return nr_reclaimed;
2630 }
2631 
2632 /*
2633  * Test whether @memcg has children, dead or alive.  Note that this
2634  * function doesn't care whether @memcg has use_hierarchy enabled and
2635  * returns %true if there are child csses according to the cgroup
2636  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2637  */
memcg_has_children(struct mem_cgroup * memcg)2638 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2639 {
2640 	bool ret;
2641 
2642 	rcu_read_lock();
2643 	ret = css_next_child(NULL, &memcg->css);
2644 	rcu_read_unlock();
2645 	return ret;
2646 }
2647 
2648 /*
2649  * Reclaims as many pages from the given memcg as possible.
2650  *
2651  * Caller is responsible for holding css reference for memcg.
2652  */
mem_cgroup_force_empty(struct mem_cgroup * memcg)2653 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2654 {
2655 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2656 
2657 	/* we call try-to-free pages for make this cgroup empty */
2658 	lru_add_drain_all();
2659 	/* try to free all pages in this cgroup */
2660 	while (nr_retries && page_counter_read(&memcg->memory)) {
2661 		int progress;
2662 
2663 		if (signal_pending(current))
2664 			return -EINTR;
2665 
2666 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2667 							GFP_KERNEL, true);
2668 		if (!progress) {
2669 			nr_retries--;
2670 			/* maybe some writeback is necessary */
2671 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2672 		}
2673 
2674 	}
2675 
2676 	return 0;
2677 }
2678 
mem_cgroup_force_empty_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2679 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2680 					    char *buf, size_t nbytes,
2681 					    loff_t off)
2682 {
2683 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2684 
2685 	if (mem_cgroup_is_root(memcg))
2686 		return -EINVAL;
2687 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2688 }
2689 
mem_cgroup_hierarchy_read(struct cgroup_subsys_state * css,struct cftype * cft)2690 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2691 				     struct cftype *cft)
2692 {
2693 	return mem_cgroup_from_css(css)->use_hierarchy;
2694 }
2695 
mem_cgroup_hierarchy_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2696 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2697 				      struct cftype *cft, u64 val)
2698 {
2699 	int retval = 0;
2700 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2701 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2702 
2703 	if (memcg->use_hierarchy == val)
2704 		return 0;
2705 
2706 	/*
2707 	 * If parent's use_hierarchy is set, we can't make any modifications
2708 	 * in the child subtrees. If it is unset, then the change can
2709 	 * occur, provided the current cgroup has no children.
2710 	 *
2711 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2712 	 * set if there are no children.
2713 	 */
2714 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2715 				(val == 1 || val == 0)) {
2716 		if (!memcg_has_children(memcg))
2717 			memcg->use_hierarchy = val;
2718 		else
2719 			retval = -EBUSY;
2720 	} else
2721 		retval = -EINVAL;
2722 
2723 	return retval;
2724 }
2725 
tree_stat(struct mem_cgroup * memcg,unsigned long * stat)2726 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2727 {
2728 	struct mem_cgroup *iter;
2729 	int i;
2730 
2731 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2732 
2733 	for_each_mem_cgroup_tree(iter, memcg) {
2734 		for (i = 0; i < MEMCG_NR_STAT; i++)
2735 			stat[i] += mem_cgroup_read_stat(iter, i);
2736 	}
2737 }
2738 
tree_events(struct mem_cgroup * memcg,unsigned long * events)2739 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2740 {
2741 	struct mem_cgroup *iter;
2742 	int i;
2743 
2744 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2745 
2746 	for_each_mem_cgroup_tree(iter, memcg) {
2747 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2748 			events[i] += mem_cgroup_read_events(iter, i);
2749 	}
2750 }
2751 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)2752 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2753 {
2754 	unsigned long val = 0;
2755 
2756 	if (mem_cgroup_is_root(memcg)) {
2757 		struct mem_cgroup *iter;
2758 
2759 		for_each_mem_cgroup_tree(iter, memcg) {
2760 			val += mem_cgroup_read_stat(iter,
2761 					MEM_CGROUP_STAT_CACHE);
2762 			val += mem_cgroup_read_stat(iter,
2763 					MEM_CGROUP_STAT_RSS);
2764 			if (swap)
2765 				val += mem_cgroup_read_stat(iter,
2766 						MEM_CGROUP_STAT_SWAP);
2767 		}
2768 	} else {
2769 		if (!swap)
2770 			val = page_counter_read(&memcg->memory);
2771 		else
2772 			val = page_counter_read(&memcg->memsw);
2773 	}
2774 	return val;
2775 }
2776 
2777 enum {
2778 	RES_USAGE,
2779 	RES_LIMIT,
2780 	RES_MAX_USAGE,
2781 	RES_FAILCNT,
2782 	RES_SOFT_LIMIT,
2783 };
2784 
mem_cgroup_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2785 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2786 			       struct cftype *cft)
2787 {
2788 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2789 	struct page_counter *counter;
2790 
2791 	switch (MEMFILE_TYPE(cft->private)) {
2792 	case _MEM:
2793 		counter = &memcg->memory;
2794 		break;
2795 	case _MEMSWAP:
2796 		counter = &memcg->memsw;
2797 		break;
2798 	case _KMEM:
2799 		counter = &memcg->kmem;
2800 		break;
2801 	case _TCP:
2802 		counter = &memcg->tcpmem;
2803 		break;
2804 	default:
2805 		BUG();
2806 	}
2807 
2808 	switch (MEMFILE_ATTR(cft->private)) {
2809 	case RES_USAGE:
2810 		if (counter == &memcg->memory)
2811 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2812 		if (counter == &memcg->memsw)
2813 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2814 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2815 	case RES_LIMIT:
2816 		return (u64)counter->limit * PAGE_SIZE;
2817 	case RES_MAX_USAGE:
2818 		return (u64)counter->watermark * PAGE_SIZE;
2819 	case RES_FAILCNT:
2820 		return counter->failcnt;
2821 	case RES_SOFT_LIMIT:
2822 		return (u64)memcg->soft_limit * PAGE_SIZE;
2823 	default:
2824 		BUG();
2825 	}
2826 }
2827 
2828 #ifndef CONFIG_SLOB
memcg_online_kmem(struct mem_cgroup * memcg)2829 static int memcg_online_kmem(struct mem_cgroup *memcg)
2830 {
2831 	int memcg_id;
2832 
2833 	if (cgroup_memory_nokmem)
2834 		return 0;
2835 
2836 	BUG_ON(memcg->kmemcg_id >= 0);
2837 	BUG_ON(memcg->kmem_state);
2838 
2839 	memcg_id = memcg_alloc_cache_id();
2840 	if (memcg_id < 0)
2841 		return memcg_id;
2842 
2843 	static_branch_inc(&memcg_kmem_enabled_key);
2844 	/*
2845 	 * A memory cgroup is considered kmem-online as soon as it gets
2846 	 * kmemcg_id. Setting the id after enabling static branching will
2847 	 * guarantee no one starts accounting before all call sites are
2848 	 * patched.
2849 	 */
2850 	memcg->kmemcg_id = memcg_id;
2851 	memcg->kmem_state = KMEM_ONLINE;
2852 
2853 	return 0;
2854 }
2855 
memcg_offline_kmem(struct mem_cgroup * memcg)2856 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2857 {
2858 	struct cgroup_subsys_state *css;
2859 	struct mem_cgroup *parent, *child;
2860 	int kmemcg_id;
2861 
2862 	if (memcg->kmem_state != KMEM_ONLINE)
2863 		return;
2864 	/*
2865 	 * Clear the online state before clearing memcg_caches array
2866 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2867 	 * guarantees that no cache will be created for this cgroup
2868 	 * after we are done (see memcg_create_kmem_cache()).
2869 	 */
2870 	memcg->kmem_state = KMEM_ALLOCATED;
2871 
2872 	memcg_deactivate_kmem_caches(memcg);
2873 
2874 	kmemcg_id = memcg->kmemcg_id;
2875 	BUG_ON(kmemcg_id < 0);
2876 
2877 	parent = parent_mem_cgroup(memcg);
2878 	if (!parent)
2879 		parent = root_mem_cgroup;
2880 
2881 	/*
2882 	 * Change kmemcg_id of this cgroup and all its descendants to the
2883 	 * parent's id, and then move all entries from this cgroup's list_lrus
2884 	 * to ones of the parent. After we have finished, all list_lrus
2885 	 * corresponding to this cgroup are guaranteed to remain empty. The
2886 	 * ordering is imposed by list_lru_node->lock taken by
2887 	 * memcg_drain_all_list_lrus().
2888 	 */
2889 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2890 	css_for_each_descendant_pre(css, &memcg->css) {
2891 		child = mem_cgroup_from_css(css);
2892 		BUG_ON(child->kmemcg_id != kmemcg_id);
2893 		child->kmemcg_id = parent->kmemcg_id;
2894 		if (!memcg->use_hierarchy)
2895 			break;
2896 	}
2897 	rcu_read_unlock();
2898 
2899 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2900 
2901 	memcg_free_cache_id(kmemcg_id);
2902 }
2903 
memcg_free_kmem(struct mem_cgroup * memcg)2904 static void memcg_free_kmem(struct mem_cgroup *memcg)
2905 {
2906 	/* css_alloc() failed, offlining didn't happen */
2907 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2908 		memcg_offline_kmem(memcg);
2909 
2910 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2911 		memcg_destroy_kmem_caches(memcg);
2912 		static_branch_dec(&memcg_kmem_enabled_key);
2913 		WARN_ON(page_counter_read(&memcg->kmem));
2914 	}
2915 }
2916 #else
memcg_online_kmem(struct mem_cgroup * memcg)2917 static int memcg_online_kmem(struct mem_cgroup *memcg)
2918 {
2919 	return 0;
2920 }
memcg_offline_kmem(struct mem_cgroup * memcg)2921 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2922 {
2923 }
memcg_free_kmem(struct mem_cgroup * memcg)2924 static void memcg_free_kmem(struct mem_cgroup *memcg)
2925 {
2926 }
2927 #endif /* !CONFIG_SLOB */
2928 
memcg_update_kmem_limit(struct mem_cgroup * memcg,unsigned long limit)2929 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2930 				   unsigned long limit)
2931 {
2932 	int ret;
2933 
2934 	mutex_lock(&memcg_limit_mutex);
2935 	ret = page_counter_limit(&memcg->kmem, limit);
2936 	mutex_unlock(&memcg_limit_mutex);
2937 	return ret;
2938 }
2939 
memcg_update_tcp_limit(struct mem_cgroup * memcg,unsigned long limit)2940 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2941 {
2942 	int ret;
2943 
2944 	mutex_lock(&memcg_limit_mutex);
2945 
2946 	ret = page_counter_limit(&memcg->tcpmem, limit);
2947 	if (ret)
2948 		goto out;
2949 
2950 	if (!memcg->tcpmem_active) {
2951 		/*
2952 		 * The active flag needs to be written after the static_key
2953 		 * update. This is what guarantees that the socket activation
2954 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2955 		 * for details, and note that we don't mark any socket as
2956 		 * belonging to this memcg until that flag is up.
2957 		 *
2958 		 * We need to do this, because static_keys will span multiple
2959 		 * sites, but we can't control their order. If we mark a socket
2960 		 * as accounted, but the accounting functions are not patched in
2961 		 * yet, we'll lose accounting.
2962 		 *
2963 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2964 		 * because when this value change, the code to process it is not
2965 		 * patched in yet.
2966 		 */
2967 		static_branch_inc(&memcg_sockets_enabled_key);
2968 		memcg->tcpmem_active = true;
2969 	}
2970 out:
2971 	mutex_unlock(&memcg_limit_mutex);
2972 	return ret;
2973 }
2974 
2975 /*
2976  * The user of this function is...
2977  * RES_LIMIT.
2978  */
mem_cgroup_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2979 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2980 				char *buf, size_t nbytes, loff_t off)
2981 {
2982 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2983 	unsigned long nr_pages;
2984 	int ret;
2985 
2986 	buf = strstrip(buf);
2987 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2988 	if (ret)
2989 		return ret;
2990 
2991 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2992 	case RES_LIMIT:
2993 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2994 			ret = -EINVAL;
2995 			break;
2996 		}
2997 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2998 		case _MEM:
2999 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3000 			break;
3001 		case _MEMSWAP:
3002 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3003 			break;
3004 		case _KMEM:
3005 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3006 			break;
3007 		case _TCP:
3008 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3009 			break;
3010 		}
3011 		break;
3012 	case RES_SOFT_LIMIT:
3013 		memcg->soft_limit = nr_pages;
3014 		ret = 0;
3015 		break;
3016 	}
3017 	return ret ?: nbytes;
3018 }
3019 
mem_cgroup_reset(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3020 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3021 				size_t nbytes, loff_t off)
3022 {
3023 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3024 	struct page_counter *counter;
3025 
3026 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3027 	case _MEM:
3028 		counter = &memcg->memory;
3029 		break;
3030 	case _MEMSWAP:
3031 		counter = &memcg->memsw;
3032 		break;
3033 	case _KMEM:
3034 		counter = &memcg->kmem;
3035 		break;
3036 	case _TCP:
3037 		counter = &memcg->tcpmem;
3038 		break;
3039 	default:
3040 		BUG();
3041 	}
3042 
3043 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3044 	case RES_MAX_USAGE:
3045 		page_counter_reset_watermark(counter);
3046 		break;
3047 	case RES_FAILCNT:
3048 		counter->failcnt = 0;
3049 		break;
3050 	default:
3051 		BUG();
3052 	}
3053 
3054 	return nbytes;
3055 }
3056 
mem_cgroup_move_charge_read(struct cgroup_subsys_state * css,struct cftype * cft)3057 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3058 					struct cftype *cft)
3059 {
3060 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3061 }
3062 
3063 #ifdef CONFIG_MMU
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3064 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3065 					struct cftype *cft, u64 val)
3066 {
3067 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3068 
3069 	if (val & ~MOVE_MASK)
3070 		return -EINVAL;
3071 
3072 	/*
3073 	 * No kind of locking is needed in here, because ->can_attach() will
3074 	 * check this value once in the beginning of the process, and then carry
3075 	 * on with stale data. This means that changes to this value will only
3076 	 * affect task migrations starting after the change.
3077 	 */
3078 	memcg->move_charge_at_immigrate = val;
3079 	return 0;
3080 }
3081 #else
mem_cgroup_move_charge_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3082 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3083 					struct cftype *cft, u64 val)
3084 {
3085 	return -ENOSYS;
3086 }
3087 #endif
3088 
3089 #ifdef CONFIG_NUMA
memcg_numa_stat_show(struct seq_file * m,void * v)3090 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3091 {
3092 	struct numa_stat {
3093 		const char *name;
3094 		unsigned int lru_mask;
3095 	};
3096 
3097 	static const struct numa_stat stats[] = {
3098 		{ "total", LRU_ALL },
3099 		{ "file", LRU_ALL_FILE },
3100 		{ "anon", LRU_ALL_ANON },
3101 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3102 	};
3103 	const struct numa_stat *stat;
3104 	int nid;
3105 	unsigned long nr;
3106 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3107 
3108 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3109 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3110 		seq_printf(m, "%s=%lu", stat->name, nr);
3111 		for_each_node_state(nid, N_MEMORY) {
3112 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3113 							  stat->lru_mask);
3114 			seq_printf(m, " N%d=%lu", nid, nr);
3115 		}
3116 		seq_putc(m, '\n');
3117 	}
3118 
3119 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3120 		struct mem_cgroup *iter;
3121 
3122 		nr = 0;
3123 		for_each_mem_cgroup_tree(iter, memcg)
3124 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3125 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3126 		for_each_node_state(nid, N_MEMORY) {
3127 			nr = 0;
3128 			for_each_mem_cgroup_tree(iter, memcg)
3129 				nr += mem_cgroup_node_nr_lru_pages(
3130 					iter, nid, stat->lru_mask);
3131 			seq_printf(m, " N%d=%lu", nid, nr);
3132 		}
3133 		seq_putc(m, '\n');
3134 	}
3135 
3136 	return 0;
3137 }
3138 #endif /* CONFIG_NUMA */
3139 
memcg_stat_show(struct seq_file * m,void * v)3140 static int memcg_stat_show(struct seq_file *m, void *v)
3141 {
3142 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3143 	unsigned long memory, memsw;
3144 	struct mem_cgroup *mi;
3145 	unsigned int i;
3146 
3147 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3148 		     MEM_CGROUP_STAT_NSTATS);
3149 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3150 		     MEM_CGROUP_EVENTS_NSTATS);
3151 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3152 
3153 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3154 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3155 			continue;
3156 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3157 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3158 	}
3159 
3160 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3161 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3162 			   mem_cgroup_read_events(memcg, i));
3163 
3164 	for (i = 0; i < NR_LRU_LISTS; i++)
3165 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3166 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3167 
3168 	/* Hierarchical information */
3169 	memory = memsw = PAGE_COUNTER_MAX;
3170 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3171 		memory = min(memory, mi->memory.limit);
3172 		memsw = min(memsw, mi->memsw.limit);
3173 	}
3174 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3175 		   (u64)memory * PAGE_SIZE);
3176 	if (do_memsw_account())
3177 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3178 			   (u64)memsw * PAGE_SIZE);
3179 
3180 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3181 		unsigned long long val = 0;
3182 
3183 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3184 			continue;
3185 		for_each_mem_cgroup_tree(mi, memcg)
3186 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3187 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3188 	}
3189 
3190 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3191 		unsigned long long val = 0;
3192 
3193 		for_each_mem_cgroup_tree(mi, memcg)
3194 			val += mem_cgroup_read_events(mi, i);
3195 		seq_printf(m, "total_%s %llu\n",
3196 			   mem_cgroup_events_names[i], val);
3197 	}
3198 
3199 	for (i = 0; i < NR_LRU_LISTS; i++) {
3200 		unsigned long long val = 0;
3201 
3202 		for_each_mem_cgroup_tree(mi, memcg)
3203 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3204 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3205 	}
3206 
3207 #ifdef CONFIG_DEBUG_VM
3208 	{
3209 		pg_data_t *pgdat;
3210 		struct mem_cgroup_per_node *mz;
3211 		struct zone_reclaim_stat *rstat;
3212 		unsigned long recent_rotated[2] = {0, 0};
3213 		unsigned long recent_scanned[2] = {0, 0};
3214 
3215 		for_each_online_pgdat(pgdat) {
3216 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3217 			rstat = &mz->lruvec.reclaim_stat;
3218 
3219 			recent_rotated[0] += rstat->recent_rotated[0];
3220 			recent_rotated[1] += rstat->recent_rotated[1];
3221 			recent_scanned[0] += rstat->recent_scanned[0];
3222 			recent_scanned[1] += rstat->recent_scanned[1];
3223 		}
3224 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3225 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3226 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3227 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3228 	}
3229 #endif
3230 
3231 	return 0;
3232 }
3233 
mem_cgroup_swappiness_read(struct cgroup_subsys_state * css,struct cftype * cft)3234 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3235 				      struct cftype *cft)
3236 {
3237 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3238 
3239 	return mem_cgroup_swappiness(memcg);
3240 }
3241 
mem_cgroup_swappiness_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3242 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3243 				       struct cftype *cft, u64 val)
3244 {
3245 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3246 
3247 	if (val > 100)
3248 		return -EINVAL;
3249 
3250 	if (css->parent)
3251 		memcg->swappiness = val;
3252 	else
3253 		vm_swappiness = val;
3254 
3255 	return 0;
3256 }
3257 
__mem_cgroup_threshold(struct mem_cgroup * memcg,bool swap)3258 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3259 {
3260 	struct mem_cgroup_threshold_ary *t;
3261 	unsigned long usage;
3262 	int i;
3263 
3264 	rcu_read_lock();
3265 	if (!swap)
3266 		t = rcu_dereference(memcg->thresholds.primary);
3267 	else
3268 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3269 
3270 	if (!t)
3271 		goto unlock;
3272 
3273 	usage = mem_cgroup_usage(memcg, swap);
3274 
3275 	/*
3276 	 * current_threshold points to threshold just below or equal to usage.
3277 	 * If it's not true, a threshold was crossed after last
3278 	 * call of __mem_cgroup_threshold().
3279 	 */
3280 	i = t->current_threshold;
3281 
3282 	/*
3283 	 * Iterate backward over array of thresholds starting from
3284 	 * current_threshold and check if a threshold is crossed.
3285 	 * If none of thresholds below usage is crossed, we read
3286 	 * only one element of the array here.
3287 	 */
3288 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3289 		eventfd_signal(t->entries[i].eventfd, 1);
3290 
3291 	/* i = current_threshold + 1 */
3292 	i++;
3293 
3294 	/*
3295 	 * Iterate forward over array of thresholds starting from
3296 	 * current_threshold+1 and check if a threshold is crossed.
3297 	 * If none of thresholds above usage is crossed, we read
3298 	 * only one element of the array here.
3299 	 */
3300 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3301 		eventfd_signal(t->entries[i].eventfd, 1);
3302 
3303 	/* Update current_threshold */
3304 	t->current_threshold = i - 1;
3305 unlock:
3306 	rcu_read_unlock();
3307 }
3308 
mem_cgroup_threshold(struct mem_cgroup * memcg)3309 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3310 {
3311 	while (memcg) {
3312 		__mem_cgroup_threshold(memcg, false);
3313 		if (do_memsw_account())
3314 			__mem_cgroup_threshold(memcg, true);
3315 
3316 		memcg = parent_mem_cgroup(memcg);
3317 	}
3318 }
3319 
compare_thresholds(const void * a,const void * b)3320 static int compare_thresholds(const void *a, const void *b)
3321 {
3322 	const struct mem_cgroup_threshold *_a = a;
3323 	const struct mem_cgroup_threshold *_b = b;
3324 
3325 	if (_a->threshold > _b->threshold)
3326 		return 1;
3327 
3328 	if (_a->threshold < _b->threshold)
3329 		return -1;
3330 
3331 	return 0;
3332 }
3333 
mem_cgroup_oom_notify_cb(struct mem_cgroup * memcg)3334 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3335 {
3336 	struct mem_cgroup_eventfd_list *ev;
3337 
3338 	spin_lock(&memcg_oom_lock);
3339 
3340 	list_for_each_entry(ev, &memcg->oom_notify, list)
3341 		eventfd_signal(ev->eventfd, 1);
3342 
3343 	spin_unlock(&memcg_oom_lock);
3344 	return 0;
3345 }
3346 
mem_cgroup_oom_notify(struct mem_cgroup * memcg)3347 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3348 {
3349 	struct mem_cgroup *iter;
3350 
3351 	for_each_mem_cgroup_tree(iter, memcg)
3352 		mem_cgroup_oom_notify_cb(iter);
3353 }
3354 
__mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args,enum res_type type)3355 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3356 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3357 {
3358 	struct mem_cgroup_thresholds *thresholds;
3359 	struct mem_cgroup_threshold_ary *new;
3360 	unsigned long threshold;
3361 	unsigned long usage;
3362 	int i, size, ret;
3363 
3364 	ret = page_counter_memparse(args, "-1", &threshold);
3365 	if (ret)
3366 		return ret;
3367 
3368 	mutex_lock(&memcg->thresholds_lock);
3369 
3370 	if (type == _MEM) {
3371 		thresholds = &memcg->thresholds;
3372 		usage = mem_cgroup_usage(memcg, false);
3373 	} else if (type == _MEMSWAP) {
3374 		thresholds = &memcg->memsw_thresholds;
3375 		usage = mem_cgroup_usage(memcg, true);
3376 	} else
3377 		BUG();
3378 
3379 	/* Check if a threshold crossed before adding a new one */
3380 	if (thresholds->primary)
3381 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3382 
3383 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3384 
3385 	/* Allocate memory for new array of thresholds */
3386 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3387 			GFP_KERNEL);
3388 	if (!new) {
3389 		ret = -ENOMEM;
3390 		goto unlock;
3391 	}
3392 	new->size = size;
3393 
3394 	/* Copy thresholds (if any) to new array */
3395 	if (thresholds->primary) {
3396 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3397 				sizeof(struct mem_cgroup_threshold));
3398 	}
3399 
3400 	/* Add new threshold */
3401 	new->entries[size - 1].eventfd = eventfd;
3402 	new->entries[size - 1].threshold = threshold;
3403 
3404 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3405 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3406 			compare_thresholds, NULL);
3407 
3408 	/* Find current threshold */
3409 	new->current_threshold = -1;
3410 	for (i = 0; i < size; i++) {
3411 		if (new->entries[i].threshold <= usage) {
3412 			/*
3413 			 * new->current_threshold will not be used until
3414 			 * rcu_assign_pointer(), so it's safe to increment
3415 			 * it here.
3416 			 */
3417 			++new->current_threshold;
3418 		} else
3419 			break;
3420 	}
3421 
3422 	/* Free old spare buffer and save old primary buffer as spare */
3423 	kfree(thresholds->spare);
3424 	thresholds->spare = thresholds->primary;
3425 
3426 	rcu_assign_pointer(thresholds->primary, new);
3427 
3428 	/* To be sure that nobody uses thresholds */
3429 	synchronize_rcu();
3430 
3431 unlock:
3432 	mutex_unlock(&memcg->thresholds_lock);
3433 
3434 	return ret;
3435 }
3436 
mem_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3437 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3438 	struct eventfd_ctx *eventfd, const char *args)
3439 {
3440 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3441 }
3442 
memsw_cgroup_usage_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3443 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3444 	struct eventfd_ctx *eventfd, const char *args)
3445 {
3446 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3447 }
3448 
__mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,enum res_type type)3449 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3450 	struct eventfd_ctx *eventfd, enum res_type type)
3451 {
3452 	struct mem_cgroup_thresholds *thresholds;
3453 	struct mem_cgroup_threshold_ary *new;
3454 	unsigned long usage;
3455 	int i, j, size;
3456 
3457 	mutex_lock(&memcg->thresholds_lock);
3458 
3459 	if (type == _MEM) {
3460 		thresholds = &memcg->thresholds;
3461 		usage = mem_cgroup_usage(memcg, false);
3462 	} else if (type == _MEMSWAP) {
3463 		thresholds = &memcg->memsw_thresholds;
3464 		usage = mem_cgroup_usage(memcg, true);
3465 	} else
3466 		BUG();
3467 
3468 	if (!thresholds->primary)
3469 		goto unlock;
3470 
3471 	/* Check if a threshold crossed before removing */
3472 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3473 
3474 	/* Calculate new number of threshold */
3475 	size = 0;
3476 	for (i = 0; i < thresholds->primary->size; i++) {
3477 		if (thresholds->primary->entries[i].eventfd != eventfd)
3478 			size++;
3479 	}
3480 
3481 	new = thresholds->spare;
3482 
3483 	/* Set thresholds array to NULL if we don't have thresholds */
3484 	if (!size) {
3485 		kfree(new);
3486 		new = NULL;
3487 		goto swap_buffers;
3488 	}
3489 
3490 	new->size = size;
3491 
3492 	/* Copy thresholds and find current threshold */
3493 	new->current_threshold = -1;
3494 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3495 		if (thresholds->primary->entries[i].eventfd == eventfd)
3496 			continue;
3497 
3498 		new->entries[j] = thresholds->primary->entries[i];
3499 		if (new->entries[j].threshold <= usage) {
3500 			/*
3501 			 * new->current_threshold will not be used
3502 			 * until rcu_assign_pointer(), so it's safe to increment
3503 			 * it here.
3504 			 */
3505 			++new->current_threshold;
3506 		}
3507 		j++;
3508 	}
3509 
3510 swap_buffers:
3511 	/* Swap primary and spare array */
3512 	thresholds->spare = thresholds->primary;
3513 
3514 	rcu_assign_pointer(thresholds->primary, new);
3515 
3516 	/* To be sure that nobody uses thresholds */
3517 	synchronize_rcu();
3518 
3519 	/* If all events are unregistered, free the spare array */
3520 	if (!new) {
3521 		kfree(thresholds->spare);
3522 		thresholds->spare = NULL;
3523 	}
3524 unlock:
3525 	mutex_unlock(&memcg->thresholds_lock);
3526 }
3527 
mem_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3528 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3529 	struct eventfd_ctx *eventfd)
3530 {
3531 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3532 }
3533 
memsw_cgroup_usage_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3534 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3535 	struct eventfd_ctx *eventfd)
3536 {
3537 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3538 }
3539 
mem_cgroup_oom_register_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd,const char * args)3540 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3541 	struct eventfd_ctx *eventfd, const char *args)
3542 {
3543 	struct mem_cgroup_eventfd_list *event;
3544 
3545 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3546 	if (!event)
3547 		return -ENOMEM;
3548 
3549 	spin_lock(&memcg_oom_lock);
3550 
3551 	event->eventfd = eventfd;
3552 	list_add(&event->list, &memcg->oom_notify);
3553 
3554 	/* already in OOM ? */
3555 	if (memcg->under_oom)
3556 		eventfd_signal(eventfd, 1);
3557 	spin_unlock(&memcg_oom_lock);
3558 
3559 	return 0;
3560 }
3561 
mem_cgroup_oom_unregister_event(struct mem_cgroup * memcg,struct eventfd_ctx * eventfd)3562 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3563 	struct eventfd_ctx *eventfd)
3564 {
3565 	struct mem_cgroup_eventfd_list *ev, *tmp;
3566 
3567 	spin_lock(&memcg_oom_lock);
3568 
3569 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3570 		if (ev->eventfd == eventfd) {
3571 			list_del(&ev->list);
3572 			kfree(ev);
3573 		}
3574 	}
3575 
3576 	spin_unlock(&memcg_oom_lock);
3577 }
3578 
mem_cgroup_oom_control_read(struct seq_file * sf,void * v)3579 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3580 {
3581 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3582 
3583 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3584 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3585 	return 0;
3586 }
3587 
mem_cgroup_oom_control_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)3588 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3589 	struct cftype *cft, u64 val)
3590 {
3591 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3592 
3593 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3594 	if (!css->parent || !((val == 0) || (val == 1)))
3595 		return -EINVAL;
3596 
3597 	memcg->oom_kill_disable = val;
3598 	if (!val)
3599 		memcg_oom_recover(memcg);
3600 
3601 	return 0;
3602 }
3603 
3604 #ifdef CONFIG_CGROUP_WRITEBACK
3605 
mem_cgroup_cgwb_list(struct mem_cgroup * memcg)3606 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3607 {
3608 	return &memcg->cgwb_list;
3609 }
3610 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3611 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3612 {
3613 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3614 }
3615 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3616 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3617 {
3618 	wb_domain_exit(&memcg->cgwb_domain);
3619 }
3620 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3621 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3622 {
3623 	wb_domain_size_changed(&memcg->cgwb_domain);
3624 }
3625 
mem_cgroup_wb_domain(struct bdi_writeback * wb)3626 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3627 {
3628 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3629 
3630 	if (!memcg->css.parent)
3631 		return NULL;
3632 
3633 	return &memcg->cgwb_domain;
3634 }
3635 
3636 /**
3637  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3638  * @wb: bdi_writeback in question
3639  * @pfilepages: out parameter for number of file pages
3640  * @pheadroom: out parameter for number of allocatable pages according to memcg
3641  * @pdirty: out parameter for number of dirty pages
3642  * @pwriteback: out parameter for number of pages under writeback
3643  *
3644  * Determine the numbers of file, headroom, dirty, and writeback pages in
3645  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3646  * is a bit more involved.
3647  *
3648  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3649  * headroom is calculated as the lowest headroom of itself and the
3650  * ancestors.  Note that this doesn't consider the actual amount of
3651  * available memory in the system.  The caller should further cap
3652  * *@pheadroom accordingly.
3653  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3654 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3655 			 unsigned long *pheadroom, unsigned long *pdirty,
3656 			 unsigned long *pwriteback)
3657 {
3658 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3659 	struct mem_cgroup *parent;
3660 
3661 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3662 
3663 	/* this should eventually include NR_UNSTABLE_NFS */
3664 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3665 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3666 						     (1 << LRU_ACTIVE_FILE));
3667 	*pheadroom = PAGE_COUNTER_MAX;
3668 
3669 	while ((parent = parent_mem_cgroup(memcg))) {
3670 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3671 		unsigned long used = page_counter_read(&memcg->memory);
3672 
3673 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3674 		memcg = parent;
3675 	}
3676 }
3677 
3678 #else	/* CONFIG_CGROUP_WRITEBACK */
3679 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3680 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3681 {
3682 	return 0;
3683 }
3684 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3685 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3686 {
3687 }
3688 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3689 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3690 {
3691 }
3692 
3693 #endif	/* CONFIG_CGROUP_WRITEBACK */
3694 
3695 /*
3696  * DO NOT USE IN NEW FILES.
3697  *
3698  * "cgroup.event_control" implementation.
3699  *
3700  * This is way over-engineered.  It tries to support fully configurable
3701  * events for each user.  Such level of flexibility is completely
3702  * unnecessary especially in the light of the planned unified hierarchy.
3703  *
3704  * Please deprecate this and replace with something simpler if at all
3705  * possible.
3706  */
3707 
3708 /*
3709  * Unregister event and free resources.
3710  *
3711  * Gets called from workqueue.
3712  */
memcg_event_remove(struct work_struct * work)3713 static void memcg_event_remove(struct work_struct *work)
3714 {
3715 	struct mem_cgroup_event *event =
3716 		container_of(work, struct mem_cgroup_event, remove);
3717 	struct mem_cgroup *memcg = event->memcg;
3718 
3719 	remove_wait_queue(event->wqh, &event->wait);
3720 
3721 	event->unregister_event(memcg, event->eventfd);
3722 
3723 	/* Notify userspace the event is going away. */
3724 	eventfd_signal(event->eventfd, 1);
3725 
3726 	eventfd_ctx_put(event->eventfd);
3727 	kfree(event);
3728 	css_put(&memcg->css);
3729 }
3730 
3731 /*
3732  * Gets called on POLLHUP on eventfd when user closes it.
3733  *
3734  * Called with wqh->lock held and interrupts disabled.
3735  */
memcg_event_wake(wait_queue_t * wait,unsigned mode,int sync,void * key)3736 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3737 			    int sync, void *key)
3738 {
3739 	struct mem_cgroup_event *event =
3740 		container_of(wait, struct mem_cgroup_event, wait);
3741 	struct mem_cgroup *memcg = event->memcg;
3742 	unsigned long flags = (unsigned long)key;
3743 
3744 	if (flags & POLLHUP) {
3745 		/*
3746 		 * If the event has been detached at cgroup removal, we
3747 		 * can simply return knowing the other side will cleanup
3748 		 * for us.
3749 		 *
3750 		 * We can't race against event freeing since the other
3751 		 * side will require wqh->lock via remove_wait_queue(),
3752 		 * which we hold.
3753 		 */
3754 		spin_lock(&memcg->event_list_lock);
3755 		if (!list_empty(&event->list)) {
3756 			list_del_init(&event->list);
3757 			/*
3758 			 * We are in atomic context, but cgroup_event_remove()
3759 			 * may sleep, so we have to call it in workqueue.
3760 			 */
3761 			schedule_work(&event->remove);
3762 		}
3763 		spin_unlock(&memcg->event_list_lock);
3764 	}
3765 
3766 	return 0;
3767 }
3768 
memcg_event_ptable_queue_proc(struct file * file,wait_queue_head_t * wqh,poll_table * pt)3769 static void memcg_event_ptable_queue_proc(struct file *file,
3770 		wait_queue_head_t *wqh, poll_table *pt)
3771 {
3772 	struct mem_cgroup_event *event =
3773 		container_of(pt, struct mem_cgroup_event, pt);
3774 
3775 	event->wqh = wqh;
3776 	add_wait_queue(wqh, &event->wait);
3777 }
3778 
3779 /*
3780  * DO NOT USE IN NEW FILES.
3781  *
3782  * Parse input and register new cgroup event handler.
3783  *
3784  * Input must be in format '<event_fd> <control_fd> <args>'.
3785  * Interpretation of args is defined by control file implementation.
3786  */
memcg_write_event_control(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3787 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3788 					 char *buf, size_t nbytes, loff_t off)
3789 {
3790 	struct cgroup_subsys_state *css = of_css(of);
3791 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3792 	struct mem_cgroup_event *event;
3793 	struct cgroup_subsys_state *cfile_css;
3794 	unsigned int efd, cfd;
3795 	struct fd efile;
3796 	struct fd cfile;
3797 	const char *name;
3798 	char *endp;
3799 	int ret;
3800 
3801 	buf = strstrip(buf);
3802 
3803 	efd = simple_strtoul(buf, &endp, 10);
3804 	if (*endp != ' ')
3805 		return -EINVAL;
3806 	buf = endp + 1;
3807 
3808 	cfd = simple_strtoul(buf, &endp, 10);
3809 	if ((*endp != ' ') && (*endp != '\0'))
3810 		return -EINVAL;
3811 	buf = endp + 1;
3812 
3813 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3814 	if (!event)
3815 		return -ENOMEM;
3816 
3817 	event->memcg = memcg;
3818 	INIT_LIST_HEAD(&event->list);
3819 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3820 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3821 	INIT_WORK(&event->remove, memcg_event_remove);
3822 
3823 	efile = fdget(efd);
3824 	if (!efile.file) {
3825 		ret = -EBADF;
3826 		goto out_kfree;
3827 	}
3828 
3829 	event->eventfd = eventfd_ctx_fileget(efile.file);
3830 	if (IS_ERR(event->eventfd)) {
3831 		ret = PTR_ERR(event->eventfd);
3832 		goto out_put_efile;
3833 	}
3834 
3835 	cfile = fdget(cfd);
3836 	if (!cfile.file) {
3837 		ret = -EBADF;
3838 		goto out_put_eventfd;
3839 	}
3840 
3841 	/* the process need read permission on control file */
3842 	/* AV: shouldn't we check that it's been opened for read instead? */
3843 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3844 	if (ret < 0)
3845 		goto out_put_cfile;
3846 
3847 	/*
3848 	 * Determine the event callbacks and set them in @event.  This used
3849 	 * to be done via struct cftype but cgroup core no longer knows
3850 	 * about these events.  The following is crude but the whole thing
3851 	 * is for compatibility anyway.
3852 	 *
3853 	 * DO NOT ADD NEW FILES.
3854 	 */
3855 	name = cfile.file->f_path.dentry->d_name.name;
3856 
3857 	if (!strcmp(name, "memory.usage_in_bytes")) {
3858 		event->register_event = mem_cgroup_usage_register_event;
3859 		event->unregister_event = mem_cgroup_usage_unregister_event;
3860 	} else if (!strcmp(name, "memory.oom_control")) {
3861 		event->register_event = mem_cgroup_oom_register_event;
3862 		event->unregister_event = mem_cgroup_oom_unregister_event;
3863 	} else if (!strcmp(name, "memory.pressure_level")) {
3864 		event->register_event = vmpressure_register_event;
3865 		event->unregister_event = vmpressure_unregister_event;
3866 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3867 		event->register_event = memsw_cgroup_usage_register_event;
3868 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3869 	} else {
3870 		ret = -EINVAL;
3871 		goto out_put_cfile;
3872 	}
3873 
3874 	/*
3875 	 * Verify @cfile should belong to @css.  Also, remaining events are
3876 	 * automatically removed on cgroup destruction but the removal is
3877 	 * asynchronous, so take an extra ref on @css.
3878 	 */
3879 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3880 					       &memory_cgrp_subsys);
3881 	ret = -EINVAL;
3882 	if (IS_ERR(cfile_css))
3883 		goto out_put_cfile;
3884 	if (cfile_css != css) {
3885 		css_put(cfile_css);
3886 		goto out_put_cfile;
3887 	}
3888 
3889 	ret = event->register_event(memcg, event->eventfd, buf);
3890 	if (ret)
3891 		goto out_put_css;
3892 
3893 	efile.file->f_op->poll(efile.file, &event->pt);
3894 
3895 	spin_lock(&memcg->event_list_lock);
3896 	list_add(&event->list, &memcg->event_list);
3897 	spin_unlock(&memcg->event_list_lock);
3898 
3899 	fdput(cfile);
3900 	fdput(efile);
3901 
3902 	return nbytes;
3903 
3904 out_put_css:
3905 	css_put(css);
3906 out_put_cfile:
3907 	fdput(cfile);
3908 out_put_eventfd:
3909 	eventfd_ctx_put(event->eventfd);
3910 out_put_efile:
3911 	fdput(efile);
3912 out_kfree:
3913 	kfree(event);
3914 
3915 	return ret;
3916 }
3917 
3918 static struct cftype mem_cgroup_legacy_files[] = {
3919 	{
3920 		.name = "usage_in_bytes",
3921 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3922 		.read_u64 = mem_cgroup_read_u64,
3923 	},
3924 	{
3925 		.name = "max_usage_in_bytes",
3926 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3927 		.write = mem_cgroup_reset,
3928 		.read_u64 = mem_cgroup_read_u64,
3929 	},
3930 	{
3931 		.name = "limit_in_bytes",
3932 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3933 		.write = mem_cgroup_write,
3934 		.read_u64 = mem_cgroup_read_u64,
3935 	},
3936 	{
3937 		.name = "soft_limit_in_bytes",
3938 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3939 		.write = mem_cgroup_write,
3940 		.read_u64 = mem_cgroup_read_u64,
3941 	},
3942 	{
3943 		.name = "failcnt",
3944 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3945 		.write = mem_cgroup_reset,
3946 		.read_u64 = mem_cgroup_read_u64,
3947 	},
3948 	{
3949 		.name = "stat",
3950 		.seq_show = memcg_stat_show,
3951 	},
3952 	{
3953 		.name = "force_empty",
3954 		.write = mem_cgroup_force_empty_write,
3955 	},
3956 	{
3957 		.name = "use_hierarchy",
3958 		.write_u64 = mem_cgroup_hierarchy_write,
3959 		.read_u64 = mem_cgroup_hierarchy_read,
3960 	},
3961 	{
3962 		.name = "cgroup.event_control",		/* XXX: for compat */
3963 		.write = memcg_write_event_control,
3964 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3965 	},
3966 	{
3967 		.name = "swappiness",
3968 		.read_u64 = mem_cgroup_swappiness_read,
3969 		.write_u64 = mem_cgroup_swappiness_write,
3970 	},
3971 	{
3972 		.name = "move_charge_at_immigrate",
3973 		.read_u64 = mem_cgroup_move_charge_read,
3974 		.write_u64 = mem_cgroup_move_charge_write,
3975 	},
3976 	{
3977 		.name = "oom_control",
3978 		.seq_show = mem_cgroup_oom_control_read,
3979 		.write_u64 = mem_cgroup_oom_control_write,
3980 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3981 	},
3982 	{
3983 		.name = "pressure_level",
3984 	},
3985 #ifdef CONFIG_NUMA
3986 	{
3987 		.name = "numa_stat",
3988 		.seq_show = memcg_numa_stat_show,
3989 	},
3990 #endif
3991 	{
3992 		.name = "kmem.limit_in_bytes",
3993 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3994 		.write = mem_cgroup_write,
3995 		.read_u64 = mem_cgroup_read_u64,
3996 	},
3997 	{
3998 		.name = "kmem.usage_in_bytes",
3999 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4000 		.read_u64 = mem_cgroup_read_u64,
4001 	},
4002 	{
4003 		.name = "kmem.failcnt",
4004 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4005 		.write = mem_cgroup_reset,
4006 		.read_u64 = mem_cgroup_read_u64,
4007 	},
4008 	{
4009 		.name = "kmem.max_usage_in_bytes",
4010 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4011 		.write = mem_cgroup_reset,
4012 		.read_u64 = mem_cgroup_read_u64,
4013 	},
4014 #ifdef CONFIG_SLABINFO
4015 	{
4016 		.name = "kmem.slabinfo",
4017 		.seq_start = slab_start,
4018 		.seq_next = slab_next,
4019 		.seq_stop = slab_stop,
4020 		.seq_show = memcg_slab_show,
4021 	},
4022 #endif
4023 	{
4024 		.name = "kmem.tcp.limit_in_bytes",
4025 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4026 		.write = mem_cgroup_write,
4027 		.read_u64 = mem_cgroup_read_u64,
4028 	},
4029 	{
4030 		.name = "kmem.tcp.usage_in_bytes",
4031 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4032 		.read_u64 = mem_cgroup_read_u64,
4033 	},
4034 	{
4035 		.name = "kmem.tcp.failcnt",
4036 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4037 		.write = mem_cgroup_reset,
4038 		.read_u64 = mem_cgroup_read_u64,
4039 	},
4040 	{
4041 		.name = "kmem.tcp.max_usage_in_bytes",
4042 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4043 		.write = mem_cgroup_reset,
4044 		.read_u64 = mem_cgroup_read_u64,
4045 	},
4046 	{ },	/* terminate */
4047 };
4048 
4049 /*
4050  * Private memory cgroup IDR
4051  *
4052  * Swap-out records and page cache shadow entries need to store memcg
4053  * references in constrained space, so we maintain an ID space that is
4054  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4055  * memory-controlled cgroups to 64k.
4056  *
4057  * However, there usually are many references to the oflline CSS after
4058  * the cgroup has been destroyed, such as page cache or reclaimable
4059  * slab objects, that don't need to hang on to the ID. We want to keep
4060  * those dead CSS from occupying IDs, or we might quickly exhaust the
4061  * relatively small ID space and prevent the creation of new cgroups
4062  * even when there are much fewer than 64k cgroups - possibly none.
4063  *
4064  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4065  * be freed and recycled when it's no longer needed, which is usually
4066  * when the CSS is offlined.
4067  *
4068  * The only exception to that are records of swapped out tmpfs/shmem
4069  * pages that need to be attributed to live ancestors on swapin. But
4070  * those references are manageable from userspace.
4071  */
4072 
4073 static DEFINE_IDR(mem_cgroup_idr);
4074 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)4075 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4076 {
4077 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4078 	atomic_add(n, &memcg->id.ref);
4079 }
4080 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)4081 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4082 {
4083 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4084 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4085 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4086 		memcg->id.id = 0;
4087 
4088 		/* Memcg ID pins CSS */
4089 		css_put(&memcg->css);
4090 	}
4091 }
4092 
mem_cgroup_id_get(struct mem_cgroup * memcg)4093 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4094 {
4095 	mem_cgroup_id_get_many(memcg, 1);
4096 }
4097 
mem_cgroup_id_put(struct mem_cgroup * memcg)4098 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4099 {
4100 	mem_cgroup_id_put_many(memcg, 1);
4101 }
4102 
4103 /**
4104  * mem_cgroup_from_id - look up a memcg from a memcg id
4105  * @id: the memcg id to look up
4106  *
4107  * Caller must hold rcu_read_lock().
4108  */
mem_cgroup_from_id(unsigned short id)4109 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4110 {
4111 	WARN_ON_ONCE(!rcu_read_lock_held());
4112 	return idr_find(&mem_cgroup_idr, id);
4113 }
4114 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)4115 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4116 {
4117 	struct mem_cgroup_per_node *pn;
4118 	int tmp = node;
4119 	/*
4120 	 * This routine is called against possible nodes.
4121 	 * But it's BUG to call kmalloc() against offline node.
4122 	 *
4123 	 * TODO: this routine can waste much memory for nodes which will
4124 	 *       never be onlined. It's better to use memory hotplug callback
4125 	 *       function.
4126 	 */
4127 	if (!node_state(node, N_NORMAL_MEMORY))
4128 		tmp = -1;
4129 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4130 	if (!pn)
4131 		return 1;
4132 
4133 	lruvec_init(&pn->lruvec);
4134 	pn->usage_in_excess = 0;
4135 	pn->on_tree = false;
4136 	pn->memcg = memcg;
4137 
4138 	memcg->nodeinfo[node] = pn;
4139 	return 0;
4140 }
4141 
free_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)4142 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4143 {
4144 	kfree(memcg->nodeinfo[node]);
4145 }
4146 
__mem_cgroup_free(struct mem_cgroup * memcg)4147 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4148 {
4149 	int node;
4150 
4151 	for_each_node(node)
4152 		free_mem_cgroup_per_node_info(memcg, node);
4153 	free_percpu(memcg->stat);
4154 	kfree(memcg);
4155 }
4156 
mem_cgroup_free(struct mem_cgroup * memcg)4157 static void mem_cgroup_free(struct mem_cgroup *memcg)
4158 {
4159 	memcg_wb_domain_exit(memcg);
4160 	__mem_cgroup_free(memcg);
4161 }
4162 
mem_cgroup_alloc(void)4163 static struct mem_cgroup *mem_cgroup_alloc(void)
4164 {
4165 	struct mem_cgroup *memcg;
4166 	size_t size;
4167 	int node;
4168 
4169 	size = sizeof(struct mem_cgroup);
4170 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4171 
4172 	memcg = kzalloc(size, GFP_KERNEL);
4173 	if (!memcg)
4174 		return NULL;
4175 
4176 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4177 				 1, MEM_CGROUP_ID_MAX,
4178 				 GFP_KERNEL);
4179 	if (memcg->id.id < 0)
4180 		goto fail;
4181 
4182 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4183 	if (!memcg->stat)
4184 		goto fail;
4185 
4186 	for_each_node(node)
4187 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4188 			goto fail;
4189 
4190 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4191 		goto fail;
4192 
4193 	INIT_WORK(&memcg->high_work, high_work_func);
4194 	memcg->last_scanned_node = MAX_NUMNODES;
4195 	INIT_LIST_HEAD(&memcg->oom_notify);
4196 	mutex_init(&memcg->thresholds_lock);
4197 	spin_lock_init(&memcg->move_lock);
4198 	vmpressure_init(&memcg->vmpressure);
4199 	INIT_LIST_HEAD(&memcg->event_list);
4200 	spin_lock_init(&memcg->event_list_lock);
4201 	memcg->socket_pressure = jiffies;
4202 #ifndef CONFIG_SLOB
4203 	memcg->kmemcg_id = -1;
4204 #endif
4205 #ifdef CONFIG_CGROUP_WRITEBACK
4206 	INIT_LIST_HEAD(&memcg->cgwb_list);
4207 #endif
4208 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4209 	return memcg;
4210 fail:
4211 	if (memcg->id.id > 0)
4212 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4213 	__mem_cgroup_free(memcg);
4214 	return NULL;
4215 }
4216 
4217 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)4218 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4219 {
4220 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4221 	struct mem_cgroup *memcg;
4222 	long error = -ENOMEM;
4223 
4224 	memcg = mem_cgroup_alloc();
4225 	if (!memcg)
4226 		return ERR_PTR(error);
4227 
4228 	memcg->high = PAGE_COUNTER_MAX;
4229 	memcg->soft_limit = PAGE_COUNTER_MAX;
4230 	if (parent) {
4231 		memcg->swappiness = mem_cgroup_swappiness(parent);
4232 		memcg->oom_kill_disable = parent->oom_kill_disable;
4233 	}
4234 	if (parent && parent->use_hierarchy) {
4235 		memcg->use_hierarchy = true;
4236 		page_counter_init(&memcg->memory, &parent->memory);
4237 		page_counter_init(&memcg->swap, &parent->swap);
4238 		page_counter_init(&memcg->memsw, &parent->memsw);
4239 		page_counter_init(&memcg->kmem, &parent->kmem);
4240 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4241 	} else {
4242 		page_counter_init(&memcg->memory, NULL);
4243 		page_counter_init(&memcg->swap, NULL);
4244 		page_counter_init(&memcg->memsw, NULL);
4245 		page_counter_init(&memcg->kmem, NULL);
4246 		page_counter_init(&memcg->tcpmem, NULL);
4247 		/*
4248 		 * Deeper hierachy with use_hierarchy == false doesn't make
4249 		 * much sense so let cgroup subsystem know about this
4250 		 * unfortunate state in our controller.
4251 		 */
4252 		if (parent != root_mem_cgroup)
4253 			memory_cgrp_subsys.broken_hierarchy = true;
4254 	}
4255 
4256 	/* The following stuff does not apply to the root */
4257 	if (!parent) {
4258 		root_mem_cgroup = memcg;
4259 		return &memcg->css;
4260 	}
4261 
4262 	error = memcg_online_kmem(memcg);
4263 	if (error)
4264 		goto fail;
4265 
4266 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4267 		static_branch_inc(&memcg_sockets_enabled_key);
4268 
4269 	return &memcg->css;
4270 fail:
4271 	mem_cgroup_free(memcg);
4272 	return ERR_PTR(-ENOMEM);
4273 }
4274 
mem_cgroup_css_online(struct cgroup_subsys_state * css)4275 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4276 {
4277 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4278 
4279 	/* Online state pins memcg ID, memcg ID pins CSS */
4280 	atomic_set(&memcg->id.ref, 1);
4281 	css_get(css);
4282 	return 0;
4283 }
4284 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)4285 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4286 {
4287 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4288 	struct mem_cgroup_event *event, *tmp;
4289 
4290 	/*
4291 	 * Unregister events and notify userspace.
4292 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4293 	 * directory to avoid race between userspace and kernelspace.
4294 	 */
4295 	spin_lock(&memcg->event_list_lock);
4296 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4297 		list_del_init(&event->list);
4298 		schedule_work(&event->remove);
4299 	}
4300 	spin_unlock(&memcg->event_list_lock);
4301 
4302 	memcg_offline_kmem(memcg);
4303 	wb_memcg_offline(memcg);
4304 
4305 	mem_cgroup_id_put(memcg);
4306 }
4307 
mem_cgroup_css_released(struct cgroup_subsys_state * css)4308 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4309 {
4310 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4311 
4312 	invalidate_reclaim_iterators(memcg);
4313 }
4314 
mem_cgroup_css_free(struct cgroup_subsys_state * css)4315 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4316 {
4317 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4318 
4319 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4320 		static_branch_dec(&memcg_sockets_enabled_key);
4321 
4322 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4323 		static_branch_dec(&memcg_sockets_enabled_key);
4324 
4325 	vmpressure_cleanup(&memcg->vmpressure);
4326 	cancel_work_sync(&memcg->high_work);
4327 	mem_cgroup_remove_from_trees(memcg);
4328 	memcg_free_kmem(memcg);
4329 	mem_cgroup_free(memcg);
4330 }
4331 
4332 /**
4333  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4334  * @css: the target css
4335  *
4336  * Reset the states of the mem_cgroup associated with @css.  This is
4337  * invoked when the userland requests disabling on the default hierarchy
4338  * but the memcg is pinned through dependency.  The memcg should stop
4339  * applying policies and should revert to the vanilla state as it may be
4340  * made visible again.
4341  *
4342  * The current implementation only resets the essential configurations.
4343  * This needs to be expanded to cover all the visible parts.
4344  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)4345 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4346 {
4347 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4348 
4349 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4350 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4351 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4352 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4353 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4354 	memcg->low = 0;
4355 	memcg->high = PAGE_COUNTER_MAX;
4356 	memcg->soft_limit = PAGE_COUNTER_MAX;
4357 	memcg_wb_domain_size_changed(memcg);
4358 }
4359 
4360 #ifdef CONFIG_MMU
4361 /* Handlers for move charge at task migration. */
mem_cgroup_do_precharge(unsigned long count)4362 static int mem_cgroup_do_precharge(unsigned long count)
4363 {
4364 	int ret;
4365 
4366 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4367 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4368 	if (!ret) {
4369 		mc.precharge += count;
4370 		return ret;
4371 	}
4372 
4373 	/* Try charges one by one with reclaim, but do not retry */
4374 	while (count--) {
4375 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4376 		if (ret)
4377 			return ret;
4378 		mc.precharge++;
4379 		cond_resched();
4380 	}
4381 	return 0;
4382 }
4383 
4384 union mc_target {
4385 	struct page	*page;
4386 	swp_entry_t	ent;
4387 };
4388 
4389 enum mc_target_type {
4390 	MC_TARGET_NONE = 0,
4391 	MC_TARGET_PAGE,
4392 	MC_TARGET_SWAP,
4393 };
4394 
mc_handle_present_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent)4395 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4396 						unsigned long addr, pte_t ptent)
4397 {
4398 	struct page *page = vm_normal_page(vma, addr, ptent);
4399 
4400 	if (!page || !page_mapped(page))
4401 		return NULL;
4402 	if (PageAnon(page)) {
4403 		if (!(mc.flags & MOVE_ANON))
4404 			return NULL;
4405 	} else {
4406 		if (!(mc.flags & MOVE_FILE))
4407 			return NULL;
4408 	}
4409 	if (!get_page_unless_zero(page))
4410 		return NULL;
4411 
4412 	return page;
4413 }
4414 
4415 #ifdef CONFIG_SWAP
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)4416 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4417 			pte_t ptent, swp_entry_t *entry)
4418 {
4419 	struct page *page = NULL;
4420 	swp_entry_t ent = pte_to_swp_entry(ptent);
4421 
4422 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4423 		return NULL;
4424 	/*
4425 	 * Because lookup_swap_cache() updates some statistics counter,
4426 	 * we call find_get_page() with swapper_space directly.
4427 	 */
4428 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4429 	if (do_memsw_account())
4430 		entry->val = ent.val;
4431 
4432 	return page;
4433 }
4434 #else
mc_handle_swap_pte(struct vm_area_struct * vma,pte_t ptent,swp_entry_t * entry)4435 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4436 			pte_t ptent, swp_entry_t *entry)
4437 {
4438 	return NULL;
4439 }
4440 #endif
4441 
mc_handle_file_pte(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,swp_entry_t * entry)4442 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4443 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4444 {
4445 	struct page *page = NULL;
4446 	struct address_space *mapping;
4447 	pgoff_t pgoff;
4448 
4449 	if (!vma->vm_file) /* anonymous vma */
4450 		return NULL;
4451 	if (!(mc.flags & MOVE_FILE))
4452 		return NULL;
4453 
4454 	mapping = vma->vm_file->f_mapping;
4455 	pgoff = linear_page_index(vma, addr);
4456 
4457 	/* page is moved even if it's not RSS of this task(page-faulted). */
4458 #ifdef CONFIG_SWAP
4459 	/* shmem/tmpfs may report page out on swap: account for that too. */
4460 	if (shmem_mapping(mapping)) {
4461 		page = find_get_entry(mapping, pgoff);
4462 		if (radix_tree_exceptional_entry(page)) {
4463 			swp_entry_t swp = radix_to_swp_entry(page);
4464 			if (do_memsw_account())
4465 				*entry = swp;
4466 			page = find_get_page(swap_address_space(swp),
4467 					     swp_offset(swp));
4468 		}
4469 	} else
4470 		page = find_get_page(mapping, pgoff);
4471 #else
4472 	page = find_get_page(mapping, pgoff);
4473 #endif
4474 	return page;
4475 }
4476 
4477 /**
4478  * mem_cgroup_move_account - move account of the page
4479  * @page: the page
4480  * @compound: charge the page as compound or small page
4481  * @from: mem_cgroup which the page is moved from.
4482  * @to:	mem_cgroup which the page is moved to. @from != @to.
4483  *
4484  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4485  *
4486  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4487  * from old cgroup.
4488  */
mem_cgroup_move_account(struct page * page,bool compound,struct mem_cgroup * from,struct mem_cgroup * to)4489 static int mem_cgroup_move_account(struct page *page,
4490 				   bool compound,
4491 				   struct mem_cgroup *from,
4492 				   struct mem_cgroup *to)
4493 {
4494 	unsigned long flags;
4495 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4496 	int ret;
4497 	bool anon;
4498 
4499 	VM_BUG_ON(from == to);
4500 	VM_BUG_ON_PAGE(PageLRU(page), page);
4501 	VM_BUG_ON(compound && !PageTransHuge(page));
4502 
4503 	/*
4504 	 * Prevent mem_cgroup_migrate() from looking at
4505 	 * page->mem_cgroup of its source page while we change it.
4506 	 */
4507 	ret = -EBUSY;
4508 	if (!trylock_page(page))
4509 		goto out;
4510 
4511 	ret = -EINVAL;
4512 	if (page->mem_cgroup != from)
4513 		goto out_unlock;
4514 
4515 	anon = PageAnon(page);
4516 
4517 	spin_lock_irqsave(&from->move_lock, flags);
4518 
4519 	if (!anon && page_mapped(page)) {
4520 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4521 			       nr_pages);
4522 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4523 			       nr_pages);
4524 	}
4525 
4526 	/*
4527 	 * move_lock grabbed above and caller set from->moving_account, so
4528 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4529 	 * So mapping should be stable for dirty pages.
4530 	 */
4531 	if (!anon && PageDirty(page)) {
4532 		struct address_space *mapping = page_mapping(page);
4533 
4534 		if (mapping_cap_account_dirty(mapping)) {
4535 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4536 				       nr_pages);
4537 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4538 				       nr_pages);
4539 		}
4540 	}
4541 
4542 	if (PageWriteback(page)) {
4543 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4544 			       nr_pages);
4545 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4546 			       nr_pages);
4547 	}
4548 
4549 	/*
4550 	 * It is safe to change page->mem_cgroup here because the page
4551 	 * is referenced, charged, and isolated - we can't race with
4552 	 * uncharging, charging, migration, or LRU putback.
4553 	 */
4554 
4555 	/* caller should have done css_get */
4556 	page->mem_cgroup = to;
4557 	spin_unlock_irqrestore(&from->move_lock, flags);
4558 
4559 	ret = 0;
4560 
4561 	local_irq_disable();
4562 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4563 	memcg_check_events(to, page);
4564 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4565 	memcg_check_events(from, page);
4566 	local_irq_enable();
4567 out_unlock:
4568 	unlock_page(page);
4569 out:
4570 	return ret;
4571 }
4572 
4573 /**
4574  * get_mctgt_type - get target type of moving charge
4575  * @vma: the vma the pte to be checked belongs
4576  * @addr: the address corresponding to the pte to be checked
4577  * @ptent: the pte to be checked
4578  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4579  *
4580  * Returns
4581  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4582  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4583  *     move charge. if @target is not NULL, the page is stored in target->page
4584  *     with extra refcnt got(Callers should handle it).
4585  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4586  *     target for charge migration. if @target is not NULL, the entry is stored
4587  *     in target->ent.
4588  *
4589  * Called with pte lock held.
4590  */
4591 
get_mctgt_type(struct vm_area_struct * vma,unsigned long addr,pte_t ptent,union mc_target * target)4592 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4593 		unsigned long addr, pte_t ptent, union mc_target *target)
4594 {
4595 	struct page *page = NULL;
4596 	enum mc_target_type ret = MC_TARGET_NONE;
4597 	swp_entry_t ent = { .val = 0 };
4598 
4599 	if (pte_present(ptent))
4600 		page = mc_handle_present_pte(vma, addr, ptent);
4601 	else if (is_swap_pte(ptent))
4602 		page = mc_handle_swap_pte(vma, ptent, &ent);
4603 	else if (pte_none(ptent))
4604 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4605 
4606 	if (!page && !ent.val)
4607 		return ret;
4608 	if (page) {
4609 		/*
4610 		 * Do only loose check w/o serialization.
4611 		 * mem_cgroup_move_account() checks the page is valid or
4612 		 * not under LRU exclusion.
4613 		 */
4614 		if (page->mem_cgroup == mc.from) {
4615 			ret = MC_TARGET_PAGE;
4616 			if (target)
4617 				target->page = page;
4618 		}
4619 		if (!ret || !target)
4620 			put_page(page);
4621 	}
4622 	/* There is a swap entry and a page doesn't exist or isn't charged */
4623 	if (ent.val && !ret &&
4624 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4625 		ret = MC_TARGET_SWAP;
4626 		if (target)
4627 			target->ent = ent;
4628 	}
4629 	return ret;
4630 }
4631 
4632 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4633 /*
4634  * We don't consider swapping or file mapped pages because THP does not
4635  * support them for now.
4636  * Caller should make sure that pmd_trans_huge(pmd) is true.
4637  */
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4638 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4639 		unsigned long addr, pmd_t pmd, union mc_target *target)
4640 {
4641 	struct page *page = NULL;
4642 	enum mc_target_type ret = MC_TARGET_NONE;
4643 
4644 	page = pmd_page(pmd);
4645 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4646 	if (!(mc.flags & MOVE_ANON))
4647 		return ret;
4648 	if (page->mem_cgroup == mc.from) {
4649 		ret = MC_TARGET_PAGE;
4650 		if (target) {
4651 			get_page(page);
4652 			target->page = page;
4653 		}
4654 	}
4655 	return ret;
4656 }
4657 #else
get_mctgt_type_thp(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd,union mc_target * target)4658 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4659 		unsigned long addr, pmd_t pmd, union mc_target *target)
4660 {
4661 	return MC_TARGET_NONE;
4662 }
4663 #endif
4664 
mem_cgroup_count_precharge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4665 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4666 					unsigned long addr, unsigned long end,
4667 					struct mm_walk *walk)
4668 {
4669 	struct vm_area_struct *vma = walk->vma;
4670 	pte_t *pte;
4671 	spinlock_t *ptl;
4672 
4673 	ptl = pmd_trans_huge_lock(pmd, vma);
4674 	if (ptl) {
4675 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4676 			mc.precharge += HPAGE_PMD_NR;
4677 		spin_unlock(ptl);
4678 		return 0;
4679 	}
4680 
4681 	if (pmd_trans_unstable(pmd))
4682 		return 0;
4683 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4684 	for (; addr != end; pte++, addr += PAGE_SIZE)
4685 		if (get_mctgt_type(vma, addr, *pte, NULL))
4686 			mc.precharge++;	/* increment precharge temporarily */
4687 	pte_unmap_unlock(pte - 1, ptl);
4688 	cond_resched();
4689 
4690 	return 0;
4691 }
4692 
mem_cgroup_count_precharge(struct mm_struct * mm)4693 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4694 {
4695 	unsigned long precharge;
4696 
4697 	struct mm_walk mem_cgroup_count_precharge_walk = {
4698 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4699 		.mm = mm,
4700 	};
4701 	down_read(&mm->mmap_sem);
4702 	walk_page_range(0, mm->highest_vm_end,
4703 			&mem_cgroup_count_precharge_walk);
4704 	up_read(&mm->mmap_sem);
4705 
4706 	precharge = mc.precharge;
4707 	mc.precharge = 0;
4708 
4709 	return precharge;
4710 }
4711 
mem_cgroup_precharge_mc(struct mm_struct * mm)4712 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4713 {
4714 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4715 
4716 	VM_BUG_ON(mc.moving_task);
4717 	mc.moving_task = current;
4718 	return mem_cgroup_do_precharge(precharge);
4719 }
4720 
4721 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
__mem_cgroup_clear_mc(void)4722 static void __mem_cgroup_clear_mc(void)
4723 {
4724 	struct mem_cgroup *from = mc.from;
4725 	struct mem_cgroup *to = mc.to;
4726 
4727 	/* we must uncharge all the leftover precharges from mc.to */
4728 	if (mc.precharge) {
4729 		cancel_charge(mc.to, mc.precharge);
4730 		mc.precharge = 0;
4731 	}
4732 	/*
4733 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4734 	 * we must uncharge here.
4735 	 */
4736 	if (mc.moved_charge) {
4737 		cancel_charge(mc.from, mc.moved_charge);
4738 		mc.moved_charge = 0;
4739 	}
4740 	/* we must fixup refcnts and charges */
4741 	if (mc.moved_swap) {
4742 		/* uncharge swap account from the old cgroup */
4743 		if (!mem_cgroup_is_root(mc.from))
4744 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4745 
4746 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4747 
4748 		/*
4749 		 * we charged both to->memory and to->memsw, so we
4750 		 * should uncharge to->memory.
4751 		 */
4752 		if (!mem_cgroup_is_root(mc.to))
4753 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4754 
4755 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4756 		css_put_many(&mc.to->css, mc.moved_swap);
4757 
4758 		mc.moved_swap = 0;
4759 	}
4760 	memcg_oom_recover(from);
4761 	memcg_oom_recover(to);
4762 	wake_up_all(&mc.waitq);
4763 }
4764 
mem_cgroup_clear_mc(void)4765 static void mem_cgroup_clear_mc(void)
4766 {
4767 	struct mm_struct *mm = mc.mm;
4768 
4769 	/*
4770 	 * we must clear moving_task before waking up waiters at the end of
4771 	 * task migration.
4772 	 */
4773 	mc.moving_task = NULL;
4774 	__mem_cgroup_clear_mc();
4775 	spin_lock(&mc.lock);
4776 	mc.from = NULL;
4777 	mc.to = NULL;
4778 	mc.mm = NULL;
4779 	spin_unlock(&mc.lock);
4780 
4781 	mmput(mm);
4782 }
4783 
mem_cgroup_can_attach(struct cgroup_taskset * tset)4784 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4785 {
4786 	struct cgroup_subsys_state *css;
4787 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4788 	struct mem_cgroup *from;
4789 	struct task_struct *leader, *p;
4790 	struct mm_struct *mm;
4791 	unsigned long move_flags;
4792 	int ret = 0;
4793 
4794 	/* charge immigration isn't supported on the default hierarchy */
4795 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4796 		return 0;
4797 
4798 	/*
4799 	 * Multi-process migrations only happen on the default hierarchy
4800 	 * where charge immigration is not used.  Perform charge
4801 	 * immigration if @tset contains a leader and whine if there are
4802 	 * multiple.
4803 	 */
4804 	p = NULL;
4805 	cgroup_taskset_for_each_leader(leader, css, tset) {
4806 		WARN_ON_ONCE(p);
4807 		p = leader;
4808 		memcg = mem_cgroup_from_css(css);
4809 	}
4810 	if (!p)
4811 		return 0;
4812 
4813 	/*
4814 	 * We are now commited to this value whatever it is. Changes in this
4815 	 * tunable will only affect upcoming migrations, not the current one.
4816 	 * So we need to save it, and keep it going.
4817 	 */
4818 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4819 	if (!move_flags)
4820 		return 0;
4821 
4822 	from = mem_cgroup_from_task(p);
4823 
4824 	VM_BUG_ON(from == memcg);
4825 
4826 	mm = get_task_mm(p);
4827 	if (!mm)
4828 		return 0;
4829 	/* We move charges only when we move a owner of the mm */
4830 	if (mm->owner == p) {
4831 		VM_BUG_ON(mc.from);
4832 		VM_BUG_ON(mc.to);
4833 		VM_BUG_ON(mc.precharge);
4834 		VM_BUG_ON(mc.moved_charge);
4835 		VM_BUG_ON(mc.moved_swap);
4836 
4837 		spin_lock(&mc.lock);
4838 		mc.mm = mm;
4839 		mc.from = from;
4840 		mc.to = memcg;
4841 		mc.flags = move_flags;
4842 		spin_unlock(&mc.lock);
4843 		/* We set mc.moving_task later */
4844 
4845 		ret = mem_cgroup_precharge_mc(mm);
4846 		if (ret)
4847 			mem_cgroup_clear_mc();
4848 	} else {
4849 		mmput(mm);
4850 	}
4851 	return ret;
4852 }
4853 
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)4854 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4855 {
4856 	if (mc.to)
4857 		mem_cgroup_clear_mc();
4858 }
4859 
mem_cgroup_move_charge_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)4860 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4861 				unsigned long addr, unsigned long end,
4862 				struct mm_walk *walk)
4863 {
4864 	int ret = 0;
4865 	struct vm_area_struct *vma = walk->vma;
4866 	pte_t *pte;
4867 	spinlock_t *ptl;
4868 	enum mc_target_type target_type;
4869 	union mc_target target;
4870 	struct page *page;
4871 
4872 	ptl = pmd_trans_huge_lock(pmd, vma);
4873 	if (ptl) {
4874 		if (mc.precharge < HPAGE_PMD_NR) {
4875 			spin_unlock(ptl);
4876 			return 0;
4877 		}
4878 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4879 		if (target_type == MC_TARGET_PAGE) {
4880 			page = target.page;
4881 			if (!isolate_lru_page(page)) {
4882 				if (!mem_cgroup_move_account(page, true,
4883 							     mc.from, mc.to)) {
4884 					mc.precharge -= HPAGE_PMD_NR;
4885 					mc.moved_charge += HPAGE_PMD_NR;
4886 				}
4887 				putback_lru_page(page);
4888 			}
4889 			put_page(page);
4890 		}
4891 		spin_unlock(ptl);
4892 		return 0;
4893 	}
4894 
4895 	if (pmd_trans_unstable(pmd))
4896 		return 0;
4897 retry:
4898 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4899 	for (; addr != end; addr += PAGE_SIZE) {
4900 		pte_t ptent = *(pte++);
4901 		swp_entry_t ent;
4902 
4903 		if (!mc.precharge)
4904 			break;
4905 
4906 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4907 		case MC_TARGET_PAGE:
4908 			page = target.page;
4909 			/*
4910 			 * We can have a part of the split pmd here. Moving it
4911 			 * can be done but it would be too convoluted so simply
4912 			 * ignore such a partial THP and keep it in original
4913 			 * memcg. There should be somebody mapping the head.
4914 			 */
4915 			if (PageTransCompound(page))
4916 				goto put;
4917 			if (isolate_lru_page(page))
4918 				goto put;
4919 			if (!mem_cgroup_move_account(page, false,
4920 						mc.from, mc.to)) {
4921 				mc.precharge--;
4922 				/* we uncharge from mc.from later. */
4923 				mc.moved_charge++;
4924 			}
4925 			putback_lru_page(page);
4926 put:			/* get_mctgt_type() gets the page */
4927 			put_page(page);
4928 			break;
4929 		case MC_TARGET_SWAP:
4930 			ent = target.ent;
4931 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4932 				mc.precharge--;
4933 				/* we fixup refcnts and charges later. */
4934 				mc.moved_swap++;
4935 			}
4936 			break;
4937 		default:
4938 			break;
4939 		}
4940 	}
4941 	pte_unmap_unlock(pte - 1, ptl);
4942 	cond_resched();
4943 
4944 	if (addr != end) {
4945 		/*
4946 		 * We have consumed all precharges we got in can_attach().
4947 		 * We try charge one by one, but don't do any additional
4948 		 * charges to mc.to if we have failed in charge once in attach()
4949 		 * phase.
4950 		 */
4951 		ret = mem_cgroup_do_precharge(1);
4952 		if (!ret)
4953 			goto retry;
4954 	}
4955 
4956 	return ret;
4957 }
4958 
mem_cgroup_move_charge(void)4959 static void mem_cgroup_move_charge(void)
4960 {
4961 	struct mm_walk mem_cgroup_move_charge_walk = {
4962 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4963 		.mm = mc.mm,
4964 	};
4965 
4966 	lru_add_drain_all();
4967 	/*
4968 	 * Signal lock_page_memcg() to take the memcg's move_lock
4969 	 * while we're moving its pages to another memcg. Then wait
4970 	 * for already started RCU-only updates to finish.
4971 	 */
4972 	atomic_inc(&mc.from->moving_account);
4973 	synchronize_rcu();
4974 retry:
4975 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4976 		/*
4977 		 * Someone who are holding the mmap_sem might be waiting in
4978 		 * waitq. So we cancel all extra charges, wake up all waiters,
4979 		 * and retry. Because we cancel precharges, we might not be able
4980 		 * to move enough charges, but moving charge is a best-effort
4981 		 * feature anyway, so it wouldn't be a big problem.
4982 		 */
4983 		__mem_cgroup_clear_mc();
4984 		cond_resched();
4985 		goto retry;
4986 	}
4987 	/*
4988 	 * When we have consumed all precharges and failed in doing
4989 	 * additional charge, the page walk just aborts.
4990 	 */
4991 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4992 
4993 	up_read(&mc.mm->mmap_sem);
4994 	atomic_dec(&mc.from->moving_account);
4995 }
4996 
mem_cgroup_move_task(void)4997 static void mem_cgroup_move_task(void)
4998 {
4999 	if (mc.to) {
5000 		mem_cgroup_move_charge();
5001 		mem_cgroup_clear_mc();
5002 	}
5003 }
5004 #else	/* !CONFIG_MMU */
mem_cgroup_can_attach(struct cgroup_taskset * tset)5005 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5006 {
5007 	return 0;
5008 }
mem_cgroup_cancel_attach(struct cgroup_taskset * tset)5009 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5010 {
5011 }
mem_cgroup_move_task(void)5012 static void mem_cgroup_move_task(void)
5013 {
5014 }
5015 #endif
5016 
5017 /*
5018  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5019  * to verify whether we're attached to the default hierarchy on each mount
5020  * attempt.
5021  */
mem_cgroup_bind(struct cgroup_subsys_state * root_css)5022 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5023 {
5024 	/*
5025 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5026 	 * guarantees that @root doesn't have any children, so turning it
5027 	 * on for the root memcg is enough.
5028 	 */
5029 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5030 		root_mem_cgroup->use_hierarchy = true;
5031 	else
5032 		root_mem_cgroup->use_hierarchy = false;
5033 }
5034 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5035 static u64 memory_current_read(struct cgroup_subsys_state *css,
5036 			       struct cftype *cft)
5037 {
5038 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5039 
5040 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5041 }
5042 
memory_low_show(struct seq_file * m,void * v)5043 static int memory_low_show(struct seq_file *m, void *v)
5044 {
5045 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5046 	unsigned long low = READ_ONCE(memcg->low);
5047 
5048 	if (low == PAGE_COUNTER_MAX)
5049 		seq_puts(m, "max\n");
5050 	else
5051 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5052 
5053 	return 0;
5054 }
5055 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5056 static ssize_t memory_low_write(struct kernfs_open_file *of,
5057 				char *buf, size_t nbytes, loff_t off)
5058 {
5059 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5060 	unsigned long low;
5061 	int err;
5062 
5063 	buf = strstrip(buf);
5064 	err = page_counter_memparse(buf, "max", &low);
5065 	if (err)
5066 		return err;
5067 
5068 	memcg->low = low;
5069 
5070 	return nbytes;
5071 }
5072 
memory_high_show(struct seq_file * m,void * v)5073 static int memory_high_show(struct seq_file *m, void *v)
5074 {
5075 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5076 	unsigned long high = READ_ONCE(memcg->high);
5077 
5078 	if (high == PAGE_COUNTER_MAX)
5079 		seq_puts(m, "max\n");
5080 	else
5081 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5082 
5083 	return 0;
5084 }
5085 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5086 static ssize_t memory_high_write(struct kernfs_open_file *of,
5087 				 char *buf, size_t nbytes, loff_t off)
5088 {
5089 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5090 	unsigned long nr_pages;
5091 	unsigned long high;
5092 	int err;
5093 
5094 	buf = strstrip(buf);
5095 	err = page_counter_memparse(buf, "max", &high);
5096 	if (err)
5097 		return err;
5098 
5099 	memcg->high = high;
5100 
5101 	nr_pages = page_counter_read(&memcg->memory);
5102 	if (nr_pages > high)
5103 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5104 					     GFP_KERNEL, true);
5105 
5106 	memcg_wb_domain_size_changed(memcg);
5107 	return nbytes;
5108 }
5109 
memory_max_show(struct seq_file * m,void * v)5110 static int memory_max_show(struct seq_file *m, void *v)
5111 {
5112 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5113 	unsigned long max = READ_ONCE(memcg->memory.limit);
5114 
5115 	if (max == PAGE_COUNTER_MAX)
5116 		seq_puts(m, "max\n");
5117 	else
5118 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5119 
5120 	return 0;
5121 }
5122 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5123 static ssize_t memory_max_write(struct kernfs_open_file *of,
5124 				char *buf, size_t nbytes, loff_t off)
5125 {
5126 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5127 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5128 	bool drained = false;
5129 	unsigned long max;
5130 	int err;
5131 
5132 	buf = strstrip(buf);
5133 	err = page_counter_memparse(buf, "max", &max);
5134 	if (err)
5135 		return err;
5136 
5137 	xchg(&memcg->memory.limit, max);
5138 
5139 	for (;;) {
5140 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5141 
5142 		if (nr_pages <= max)
5143 			break;
5144 
5145 		if (signal_pending(current)) {
5146 			err = -EINTR;
5147 			break;
5148 		}
5149 
5150 		if (!drained) {
5151 			drain_all_stock(memcg);
5152 			drained = true;
5153 			continue;
5154 		}
5155 
5156 		if (nr_reclaims) {
5157 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5158 							  GFP_KERNEL, true))
5159 				nr_reclaims--;
5160 			continue;
5161 		}
5162 
5163 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5164 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5165 			break;
5166 	}
5167 
5168 	memcg_wb_domain_size_changed(memcg);
5169 	return nbytes;
5170 }
5171 
memory_events_show(struct seq_file * m,void * v)5172 static int memory_events_show(struct seq_file *m, void *v)
5173 {
5174 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5175 
5176 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5177 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5178 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5179 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5180 
5181 	return 0;
5182 }
5183 
memory_stat_show(struct seq_file * m,void * v)5184 static int memory_stat_show(struct seq_file *m, void *v)
5185 {
5186 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5187 	unsigned long stat[MEMCG_NR_STAT];
5188 	unsigned long events[MEMCG_NR_EVENTS];
5189 	int i;
5190 
5191 	/*
5192 	 * Provide statistics on the state of the memory subsystem as
5193 	 * well as cumulative event counters that show past behavior.
5194 	 *
5195 	 * This list is ordered following a combination of these gradients:
5196 	 * 1) generic big picture -> specifics and details
5197 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5198 	 *
5199 	 * Current memory state:
5200 	 */
5201 
5202 	tree_stat(memcg, stat);
5203 	tree_events(memcg, events);
5204 
5205 	seq_printf(m, "anon %llu\n",
5206 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5207 	seq_printf(m, "file %llu\n",
5208 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5209 	seq_printf(m, "kernel_stack %llu\n",
5210 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5211 	seq_printf(m, "slab %llu\n",
5212 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5213 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5214 	seq_printf(m, "sock %llu\n",
5215 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5216 
5217 	seq_printf(m, "file_mapped %llu\n",
5218 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5219 	seq_printf(m, "file_dirty %llu\n",
5220 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5221 	seq_printf(m, "file_writeback %llu\n",
5222 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5223 
5224 	for (i = 0; i < NR_LRU_LISTS; i++) {
5225 		struct mem_cgroup *mi;
5226 		unsigned long val = 0;
5227 
5228 		for_each_mem_cgroup_tree(mi, memcg)
5229 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5230 		seq_printf(m, "%s %llu\n",
5231 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5232 	}
5233 
5234 	seq_printf(m, "slab_reclaimable %llu\n",
5235 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5236 	seq_printf(m, "slab_unreclaimable %llu\n",
5237 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5238 
5239 	/* Accumulated memory events */
5240 
5241 	seq_printf(m, "pgfault %lu\n",
5242 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5243 	seq_printf(m, "pgmajfault %lu\n",
5244 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5245 
5246 	return 0;
5247 }
5248 
5249 static struct cftype memory_files[] = {
5250 	{
5251 		.name = "current",
5252 		.flags = CFTYPE_NOT_ON_ROOT,
5253 		.read_u64 = memory_current_read,
5254 	},
5255 	{
5256 		.name = "low",
5257 		.flags = CFTYPE_NOT_ON_ROOT,
5258 		.seq_show = memory_low_show,
5259 		.write = memory_low_write,
5260 	},
5261 	{
5262 		.name = "high",
5263 		.flags = CFTYPE_NOT_ON_ROOT,
5264 		.seq_show = memory_high_show,
5265 		.write = memory_high_write,
5266 	},
5267 	{
5268 		.name = "max",
5269 		.flags = CFTYPE_NOT_ON_ROOT,
5270 		.seq_show = memory_max_show,
5271 		.write = memory_max_write,
5272 	},
5273 	{
5274 		.name = "events",
5275 		.flags = CFTYPE_NOT_ON_ROOT,
5276 		.file_offset = offsetof(struct mem_cgroup, events_file),
5277 		.seq_show = memory_events_show,
5278 	},
5279 	{
5280 		.name = "stat",
5281 		.flags = CFTYPE_NOT_ON_ROOT,
5282 		.seq_show = memory_stat_show,
5283 	},
5284 	{ }	/* terminate */
5285 };
5286 
5287 struct cgroup_subsys memory_cgrp_subsys = {
5288 	.css_alloc = mem_cgroup_css_alloc,
5289 	.css_online = mem_cgroup_css_online,
5290 	.css_offline = mem_cgroup_css_offline,
5291 	.css_released = mem_cgroup_css_released,
5292 	.css_free = mem_cgroup_css_free,
5293 	.css_reset = mem_cgroup_css_reset,
5294 	.can_attach = mem_cgroup_can_attach,
5295 	.cancel_attach = mem_cgroup_cancel_attach,
5296 	.post_attach = mem_cgroup_move_task,
5297 	.bind = mem_cgroup_bind,
5298 	.dfl_cftypes = memory_files,
5299 	.legacy_cftypes = mem_cgroup_legacy_files,
5300 	.early_init = 0,
5301 };
5302 
5303 /**
5304  * mem_cgroup_low - check if memory consumption is below the normal range
5305  * @root: the highest ancestor to consider
5306  * @memcg: the memory cgroup to check
5307  *
5308  * Returns %true if memory consumption of @memcg, and that of all
5309  * configurable ancestors up to @root, is below the normal range.
5310  */
mem_cgroup_low(struct mem_cgroup * root,struct mem_cgroup * memcg)5311 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5312 {
5313 	if (mem_cgroup_disabled())
5314 		return false;
5315 
5316 	/*
5317 	 * The toplevel group doesn't have a configurable range, so
5318 	 * it's never low when looked at directly, and it is not
5319 	 * considered an ancestor when assessing the hierarchy.
5320 	 */
5321 
5322 	if (memcg == root_mem_cgroup)
5323 		return false;
5324 
5325 	if (page_counter_read(&memcg->memory) >= memcg->low)
5326 		return false;
5327 
5328 	while (memcg != root) {
5329 		memcg = parent_mem_cgroup(memcg);
5330 
5331 		if (memcg == root_mem_cgroup)
5332 			break;
5333 
5334 		if (page_counter_read(&memcg->memory) >= memcg->low)
5335 			return false;
5336 	}
5337 	return true;
5338 }
5339 
5340 /**
5341  * mem_cgroup_try_charge - try charging a page
5342  * @page: page to charge
5343  * @mm: mm context of the victim
5344  * @gfp_mask: reclaim mode
5345  * @memcgp: charged memcg return
5346  * @compound: charge the page as compound or small page
5347  *
5348  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5349  * pages according to @gfp_mask if necessary.
5350  *
5351  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5352  * Otherwise, an error code is returned.
5353  *
5354  * After page->mapping has been set up, the caller must finalize the
5355  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5356  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5357  */
mem_cgroup_try_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask,struct mem_cgroup ** memcgp,bool compound)5358 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5359 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5360 			  bool compound)
5361 {
5362 	struct mem_cgroup *memcg = NULL;
5363 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5364 	int ret = 0;
5365 
5366 	if (mem_cgroup_disabled())
5367 		goto out;
5368 
5369 	if (PageSwapCache(page)) {
5370 		/*
5371 		 * Every swap fault against a single page tries to charge the
5372 		 * page, bail as early as possible.  shmem_unuse() encounters
5373 		 * already charged pages, too.  The USED bit is protected by
5374 		 * the page lock, which serializes swap cache removal, which
5375 		 * in turn serializes uncharging.
5376 		 */
5377 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5378 		if (page->mem_cgroup)
5379 			goto out;
5380 
5381 		if (do_swap_account) {
5382 			swp_entry_t ent = { .val = page_private(page), };
5383 			unsigned short id = lookup_swap_cgroup_id(ent);
5384 
5385 			rcu_read_lock();
5386 			memcg = mem_cgroup_from_id(id);
5387 			if (memcg && !css_tryget_online(&memcg->css))
5388 				memcg = NULL;
5389 			rcu_read_unlock();
5390 		}
5391 	}
5392 
5393 	if (!memcg)
5394 		memcg = get_mem_cgroup_from_mm(mm);
5395 
5396 	ret = try_charge(memcg, gfp_mask, nr_pages);
5397 
5398 	css_put(&memcg->css);
5399 out:
5400 	*memcgp = memcg;
5401 	return ret;
5402 }
5403 
5404 /**
5405  * mem_cgroup_commit_charge - commit a page charge
5406  * @page: page to charge
5407  * @memcg: memcg to charge the page to
5408  * @lrucare: page might be on LRU already
5409  * @compound: charge the page as compound or small page
5410  *
5411  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5412  * after page->mapping has been set up.  This must happen atomically
5413  * as part of the page instantiation, i.e. under the page table lock
5414  * for anonymous pages, under the page lock for page and swap cache.
5415  *
5416  * In addition, the page must not be on the LRU during the commit, to
5417  * prevent racing with task migration.  If it might be, use @lrucare.
5418  *
5419  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5420  */
mem_cgroup_commit_charge(struct page * page,struct mem_cgroup * memcg,bool lrucare,bool compound)5421 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5422 			      bool lrucare, bool compound)
5423 {
5424 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5425 
5426 	VM_BUG_ON_PAGE(!page->mapping, page);
5427 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5428 
5429 	if (mem_cgroup_disabled())
5430 		return;
5431 	/*
5432 	 * Swap faults will attempt to charge the same page multiple
5433 	 * times.  But reuse_swap_page() might have removed the page
5434 	 * from swapcache already, so we can't check PageSwapCache().
5435 	 */
5436 	if (!memcg)
5437 		return;
5438 
5439 	commit_charge(page, memcg, lrucare);
5440 
5441 	local_irq_disable();
5442 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5443 	memcg_check_events(memcg, page);
5444 	local_irq_enable();
5445 
5446 	if (do_memsw_account() && PageSwapCache(page)) {
5447 		swp_entry_t entry = { .val = page_private(page) };
5448 		/*
5449 		 * The swap entry might not get freed for a long time,
5450 		 * let's not wait for it.  The page already received a
5451 		 * memory+swap charge, drop the swap entry duplicate.
5452 		 */
5453 		mem_cgroup_uncharge_swap(entry);
5454 	}
5455 }
5456 
5457 /**
5458  * mem_cgroup_cancel_charge - cancel a page charge
5459  * @page: page to charge
5460  * @memcg: memcg to charge the page to
5461  * @compound: charge the page as compound or small page
5462  *
5463  * Cancel a charge transaction started by mem_cgroup_try_charge().
5464  */
mem_cgroup_cancel_charge(struct page * page,struct mem_cgroup * memcg,bool compound)5465 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5466 		bool compound)
5467 {
5468 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5469 
5470 	if (mem_cgroup_disabled())
5471 		return;
5472 	/*
5473 	 * Swap faults will attempt to charge the same page multiple
5474 	 * times.  But reuse_swap_page() might have removed the page
5475 	 * from swapcache already, so we can't check PageSwapCache().
5476 	 */
5477 	if (!memcg)
5478 		return;
5479 
5480 	cancel_charge(memcg, nr_pages);
5481 }
5482 
uncharge_batch(struct mem_cgroup * memcg,unsigned long pgpgout,unsigned long nr_anon,unsigned long nr_file,unsigned long nr_huge,unsigned long nr_kmem,struct page * dummy_page)5483 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5484 			   unsigned long nr_anon, unsigned long nr_file,
5485 			   unsigned long nr_huge, unsigned long nr_kmem,
5486 			   struct page *dummy_page)
5487 {
5488 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5489 	unsigned long flags;
5490 
5491 	if (!mem_cgroup_is_root(memcg)) {
5492 		page_counter_uncharge(&memcg->memory, nr_pages);
5493 		if (do_memsw_account())
5494 			page_counter_uncharge(&memcg->memsw, nr_pages);
5495 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5496 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5497 		memcg_oom_recover(memcg);
5498 	}
5499 
5500 	local_irq_save(flags);
5501 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5502 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5503 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5504 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5505 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5506 	memcg_check_events(memcg, dummy_page);
5507 	local_irq_restore(flags);
5508 
5509 	if (!mem_cgroup_is_root(memcg))
5510 		css_put_many(&memcg->css, nr_pages);
5511 }
5512 
uncharge_list(struct list_head * page_list)5513 static void uncharge_list(struct list_head *page_list)
5514 {
5515 	struct mem_cgroup *memcg = NULL;
5516 	unsigned long nr_anon = 0;
5517 	unsigned long nr_file = 0;
5518 	unsigned long nr_huge = 0;
5519 	unsigned long nr_kmem = 0;
5520 	unsigned long pgpgout = 0;
5521 	struct list_head *next;
5522 	struct page *page;
5523 
5524 	/*
5525 	 * Note that the list can be a single page->lru; hence the
5526 	 * do-while loop instead of a simple list_for_each_entry().
5527 	 */
5528 	next = page_list->next;
5529 	do {
5530 		page = list_entry(next, struct page, lru);
5531 		next = page->lru.next;
5532 
5533 		VM_BUG_ON_PAGE(PageLRU(page), page);
5534 		VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5535 
5536 		if (!page->mem_cgroup)
5537 			continue;
5538 
5539 		/*
5540 		 * Nobody should be changing or seriously looking at
5541 		 * page->mem_cgroup at this point, we have fully
5542 		 * exclusive access to the page.
5543 		 */
5544 
5545 		if (memcg != page->mem_cgroup) {
5546 			if (memcg) {
5547 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5548 					       nr_huge, nr_kmem, page);
5549 				pgpgout = nr_anon = nr_file =
5550 					nr_huge = nr_kmem = 0;
5551 			}
5552 			memcg = page->mem_cgroup;
5553 		}
5554 
5555 		if (!PageKmemcg(page)) {
5556 			unsigned int nr_pages = 1;
5557 
5558 			if (PageTransHuge(page)) {
5559 				nr_pages <<= compound_order(page);
5560 				nr_huge += nr_pages;
5561 			}
5562 			if (PageAnon(page))
5563 				nr_anon += nr_pages;
5564 			else
5565 				nr_file += nr_pages;
5566 			pgpgout++;
5567 		} else {
5568 			nr_kmem += 1 << compound_order(page);
5569 			__ClearPageKmemcg(page);
5570 		}
5571 
5572 		page->mem_cgroup = NULL;
5573 	} while (next != page_list);
5574 
5575 	if (memcg)
5576 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5577 			       nr_huge, nr_kmem, page);
5578 }
5579 
5580 /**
5581  * mem_cgroup_uncharge - uncharge a page
5582  * @page: page to uncharge
5583  *
5584  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5585  * mem_cgroup_commit_charge().
5586  */
mem_cgroup_uncharge(struct page * page)5587 void mem_cgroup_uncharge(struct page *page)
5588 {
5589 	if (mem_cgroup_disabled())
5590 		return;
5591 
5592 	/* Don't touch page->lru of any random page, pre-check: */
5593 	if (!page->mem_cgroup)
5594 		return;
5595 
5596 	INIT_LIST_HEAD(&page->lru);
5597 	uncharge_list(&page->lru);
5598 }
5599 
5600 /**
5601  * mem_cgroup_uncharge_list - uncharge a list of page
5602  * @page_list: list of pages to uncharge
5603  *
5604  * Uncharge a list of pages previously charged with
5605  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5606  */
mem_cgroup_uncharge_list(struct list_head * page_list)5607 void mem_cgroup_uncharge_list(struct list_head *page_list)
5608 {
5609 	if (mem_cgroup_disabled())
5610 		return;
5611 
5612 	if (!list_empty(page_list))
5613 		uncharge_list(page_list);
5614 }
5615 
5616 /**
5617  * mem_cgroup_migrate - charge a page's replacement
5618  * @oldpage: currently circulating page
5619  * @newpage: replacement page
5620  *
5621  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5622  * be uncharged upon free.
5623  *
5624  * Both pages must be locked, @newpage->mapping must be set up.
5625  */
mem_cgroup_migrate(struct page * oldpage,struct page * newpage)5626 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5627 {
5628 	struct mem_cgroup *memcg;
5629 	unsigned int nr_pages;
5630 	bool compound;
5631 	unsigned long flags;
5632 
5633 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5634 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5635 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5636 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5637 		       newpage);
5638 
5639 	if (mem_cgroup_disabled())
5640 		return;
5641 
5642 	/* Page cache replacement: new page already charged? */
5643 	if (newpage->mem_cgroup)
5644 		return;
5645 
5646 	/* Swapcache readahead pages can get replaced before being charged */
5647 	memcg = oldpage->mem_cgroup;
5648 	if (!memcg)
5649 		return;
5650 
5651 	/* Force-charge the new page. The old one will be freed soon */
5652 	compound = PageTransHuge(newpage);
5653 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5654 
5655 	page_counter_charge(&memcg->memory, nr_pages);
5656 	if (do_memsw_account())
5657 		page_counter_charge(&memcg->memsw, nr_pages);
5658 	css_get_many(&memcg->css, nr_pages);
5659 
5660 	commit_charge(newpage, memcg, false);
5661 
5662 	local_irq_save(flags);
5663 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5664 	memcg_check_events(memcg, newpage);
5665 	local_irq_restore(flags);
5666 }
5667 
5668 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5669 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5670 
mem_cgroup_sk_alloc(struct sock * sk)5671 void mem_cgroup_sk_alloc(struct sock *sk)
5672 {
5673 	struct mem_cgroup *memcg;
5674 
5675 	if (!mem_cgroup_sockets_enabled)
5676 		return;
5677 
5678 	/*
5679 	 * Socket cloning can throw us here with sk_memcg already
5680 	 * filled. It won't however, necessarily happen from
5681 	 * process context. So the test for root memcg given
5682 	 * the current task's memcg won't help us in this case.
5683 	 *
5684 	 * Respecting the original socket's memcg is a better
5685 	 * decision in this case.
5686 	 */
5687 	if (sk->sk_memcg) {
5688 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5689 		css_get(&sk->sk_memcg->css);
5690 		return;
5691 	}
5692 
5693 	rcu_read_lock();
5694 	memcg = mem_cgroup_from_task(current);
5695 	if (memcg == root_mem_cgroup)
5696 		goto out;
5697 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5698 		goto out;
5699 	if (css_tryget_online(&memcg->css))
5700 		sk->sk_memcg = memcg;
5701 out:
5702 	rcu_read_unlock();
5703 }
5704 
mem_cgroup_sk_free(struct sock * sk)5705 void mem_cgroup_sk_free(struct sock *sk)
5706 {
5707 	if (sk->sk_memcg)
5708 		css_put(&sk->sk_memcg->css);
5709 }
5710 
5711 /**
5712  * mem_cgroup_charge_skmem - charge socket memory
5713  * @memcg: memcg to charge
5714  * @nr_pages: number of pages to charge
5715  *
5716  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5717  * @memcg's configured limit, %false if the charge had to be forced.
5718  */
mem_cgroup_charge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)5719 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5720 {
5721 	gfp_t gfp_mask = GFP_KERNEL;
5722 
5723 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5724 		struct page_counter *fail;
5725 
5726 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5727 			memcg->tcpmem_pressure = 0;
5728 			return true;
5729 		}
5730 		page_counter_charge(&memcg->tcpmem, nr_pages);
5731 		memcg->tcpmem_pressure = 1;
5732 		return false;
5733 	}
5734 
5735 	/* Don't block in the packet receive path */
5736 	if (in_softirq())
5737 		gfp_mask = GFP_NOWAIT;
5738 
5739 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5740 
5741 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5742 		return true;
5743 
5744 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5745 	return false;
5746 }
5747 
5748 /**
5749  * mem_cgroup_uncharge_skmem - uncharge socket memory
5750  * @memcg - memcg to uncharge
5751  * @nr_pages - number of pages to uncharge
5752  */
mem_cgroup_uncharge_skmem(struct mem_cgroup * memcg,unsigned int nr_pages)5753 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5754 {
5755 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5756 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5757 		return;
5758 	}
5759 
5760 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5761 
5762 	page_counter_uncharge(&memcg->memory, nr_pages);
5763 	css_put_many(&memcg->css, nr_pages);
5764 }
5765 
cgroup_memory(char * s)5766 static int __init cgroup_memory(char *s)
5767 {
5768 	char *token;
5769 
5770 	while ((token = strsep(&s, ",")) != NULL) {
5771 		if (!*token)
5772 			continue;
5773 		if (!strcmp(token, "nosocket"))
5774 			cgroup_memory_nosocket = true;
5775 		if (!strcmp(token, "nokmem"))
5776 			cgroup_memory_nokmem = true;
5777 	}
5778 	return 0;
5779 }
5780 __setup("cgroup.memory=", cgroup_memory);
5781 
5782 /*
5783  * subsys_initcall() for memory controller.
5784  *
5785  * Some parts like hotcpu_notifier() have to be initialized from this context
5786  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5787  * everything that doesn't depend on a specific mem_cgroup structure should
5788  * be initialized from here.
5789  */
mem_cgroup_init(void)5790 static int __init mem_cgroup_init(void)
5791 {
5792 	int cpu, node;
5793 
5794 #ifndef CONFIG_SLOB
5795 	/*
5796 	 * Kmem cache creation is mostly done with the slab_mutex held,
5797 	 * so use a special workqueue to avoid stalling all worker
5798 	 * threads in case lots of cgroups are created simultaneously.
5799 	 */
5800 	memcg_kmem_cache_create_wq =
5801 		alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5802 	BUG_ON(!memcg_kmem_cache_create_wq);
5803 #endif
5804 
5805 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5806 
5807 	for_each_possible_cpu(cpu)
5808 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5809 			  drain_local_stock);
5810 
5811 	for_each_node(node) {
5812 		struct mem_cgroup_tree_per_node *rtpn;
5813 
5814 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5815 				    node_online(node) ? node : NUMA_NO_NODE);
5816 
5817 		rtpn->rb_root = RB_ROOT;
5818 		spin_lock_init(&rtpn->lock);
5819 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5820 	}
5821 
5822 	return 0;
5823 }
5824 subsys_initcall(mem_cgroup_init);
5825 
5826 #ifdef CONFIG_MEMCG_SWAP
mem_cgroup_id_get_online(struct mem_cgroup * memcg)5827 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5828 {
5829 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5830 		/*
5831 		 * The root cgroup cannot be destroyed, so it's refcount must
5832 		 * always be >= 1.
5833 		 */
5834 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5835 			VM_BUG_ON(1);
5836 			break;
5837 		}
5838 		memcg = parent_mem_cgroup(memcg);
5839 		if (!memcg)
5840 			memcg = root_mem_cgroup;
5841 	}
5842 	return memcg;
5843 }
5844 
5845 /**
5846  * mem_cgroup_swapout - transfer a memsw charge to swap
5847  * @page: page whose memsw charge to transfer
5848  * @entry: swap entry to move the charge to
5849  *
5850  * Transfer the memsw charge of @page to @entry.
5851  */
mem_cgroup_swapout(struct page * page,swp_entry_t entry)5852 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5853 {
5854 	struct mem_cgroup *memcg, *swap_memcg;
5855 	unsigned short oldid;
5856 
5857 	VM_BUG_ON_PAGE(PageLRU(page), page);
5858 	VM_BUG_ON_PAGE(page_count(page), page);
5859 
5860 	if (!do_memsw_account())
5861 		return;
5862 
5863 	memcg = page->mem_cgroup;
5864 
5865 	/* Readahead page, never charged */
5866 	if (!memcg)
5867 		return;
5868 
5869 	/*
5870 	 * In case the memcg owning these pages has been offlined and doesn't
5871 	 * have an ID allocated to it anymore, charge the closest online
5872 	 * ancestor for the swap instead and transfer the memory+swap charge.
5873 	 */
5874 	swap_memcg = mem_cgroup_id_get_online(memcg);
5875 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5876 	VM_BUG_ON_PAGE(oldid, page);
5877 	mem_cgroup_swap_statistics(swap_memcg, true);
5878 
5879 	page->mem_cgroup = NULL;
5880 
5881 	if (!mem_cgroup_is_root(memcg))
5882 		page_counter_uncharge(&memcg->memory, 1);
5883 
5884 	if (memcg != swap_memcg) {
5885 		if (!mem_cgroup_is_root(swap_memcg))
5886 			page_counter_charge(&swap_memcg->memsw, 1);
5887 		page_counter_uncharge(&memcg->memsw, 1);
5888 	}
5889 
5890 	/*
5891 	 * Interrupts should be disabled here because the caller holds the
5892 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5893 	 * important here to have the interrupts disabled because it is the
5894 	 * only synchronisation we have for udpating the per-CPU variables.
5895 	 */
5896 	VM_BUG_ON(!irqs_disabled());
5897 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5898 	memcg_check_events(memcg, page);
5899 
5900 	if (!mem_cgroup_is_root(memcg))
5901 		css_put(&memcg->css);
5902 }
5903 
5904 /*
5905  * mem_cgroup_try_charge_swap - try charging a swap entry
5906  * @page: page being added to swap
5907  * @entry: swap entry to charge
5908  *
5909  * Try to charge @entry to the memcg that @page belongs to.
5910  *
5911  * Returns 0 on success, -ENOMEM on failure.
5912  */
mem_cgroup_try_charge_swap(struct page * page,swp_entry_t entry)5913 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5914 {
5915 	struct mem_cgroup *memcg;
5916 	struct page_counter *counter;
5917 	unsigned short oldid;
5918 
5919 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5920 		return 0;
5921 
5922 	memcg = page->mem_cgroup;
5923 
5924 	/* Readahead page, never charged */
5925 	if (!memcg)
5926 		return 0;
5927 
5928 	memcg = mem_cgroup_id_get_online(memcg);
5929 
5930 	if (!mem_cgroup_is_root(memcg) &&
5931 	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5932 		mem_cgroup_id_put(memcg);
5933 		return -ENOMEM;
5934 	}
5935 
5936 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5937 	VM_BUG_ON_PAGE(oldid, page);
5938 	mem_cgroup_swap_statistics(memcg, true);
5939 
5940 	return 0;
5941 }
5942 
5943 /**
5944  * mem_cgroup_uncharge_swap - uncharge a swap entry
5945  * @entry: swap entry to uncharge
5946  *
5947  * Drop the swap charge associated with @entry.
5948  */
mem_cgroup_uncharge_swap(swp_entry_t entry)5949 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5950 {
5951 	struct mem_cgroup *memcg;
5952 	unsigned short id;
5953 
5954 	if (!do_swap_account)
5955 		return;
5956 
5957 	id = swap_cgroup_record(entry, 0);
5958 	rcu_read_lock();
5959 	memcg = mem_cgroup_from_id(id);
5960 	if (memcg) {
5961 		if (!mem_cgroup_is_root(memcg)) {
5962 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5963 				page_counter_uncharge(&memcg->swap, 1);
5964 			else
5965 				page_counter_uncharge(&memcg->memsw, 1);
5966 		}
5967 		mem_cgroup_swap_statistics(memcg, false);
5968 		mem_cgroup_id_put(memcg);
5969 	}
5970 	rcu_read_unlock();
5971 }
5972 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5973 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5974 {
5975 	long nr_swap_pages = get_nr_swap_pages();
5976 
5977 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5978 		return nr_swap_pages;
5979 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5980 		nr_swap_pages = min_t(long, nr_swap_pages,
5981 				      READ_ONCE(memcg->swap.limit) -
5982 				      page_counter_read(&memcg->swap));
5983 	return nr_swap_pages;
5984 }
5985 
mem_cgroup_swap_full(struct page * page)5986 bool mem_cgroup_swap_full(struct page *page)
5987 {
5988 	struct mem_cgroup *memcg;
5989 
5990 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5991 
5992 	if (vm_swap_full())
5993 		return true;
5994 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5995 		return false;
5996 
5997 	memcg = page->mem_cgroup;
5998 	if (!memcg)
5999 		return false;
6000 
6001 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6002 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6003 			return true;
6004 
6005 	return false;
6006 }
6007 
6008 /* for remember boot option*/
6009 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6010 static int really_do_swap_account __initdata = 1;
6011 #else
6012 static int really_do_swap_account __initdata;
6013 #endif
6014 
enable_swap_account(char * s)6015 static int __init enable_swap_account(char *s)
6016 {
6017 	if (!strcmp(s, "1"))
6018 		really_do_swap_account = 1;
6019 	else if (!strcmp(s, "0"))
6020 		really_do_swap_account = 0;
6021 	return 1;
6022 }
6023 __setup("swapaccount=", enable_swap_account);
6024 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)6025 static u64 swap_current_read(struct cgroup_subsys_state *css,
6026 			     struct cftype *cft)
6027 {
6028 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6029 
6030 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6031 }
6032 
swap_max_show(struct seq_file * m,void * v)6033 static int swap_max_show(struct seq_file *m, void *v)
6034 {
6035 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6036 	unsigned long max = READ_ONCE(memcg->swap.limit);
6037 
6038 	if (max == PAGE_COUNTER_MAX)
6039 		seq_puts(m, "max\n");
6040 	else
6041 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6042 
6043 	return 0;
6044 }
6045 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)6046 static ssize_t swap_max_write(struct kernfs_open_file *of,
6047 			      char *buf, size_t nbytes, loff_t off)
6048 {
6049 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6050 	unsigned long max;
6051 	int err;
6052 
6053 	buf = strstrip(buf);
6054 	err = page_counter_memparse(buf, "max", &max);
6055 	if (err)
6056 		return err;
6057 
6058 	mutex_lock(&memcg_limit_mutex);
6059 	err = page_counter_limit(&memcg->swap, max);
6060 	mutex_unlock(&memcg_limit_mutex);
6061 	if (err)
6062 		return err;
6063 
6064 	return nbytes;
6065 }
6066 
6067 static struct cftype swap_files[] = {
6068 	{
6069 		.name = "swap.current",
6070 		.flags = CFTYPE_NOT_ON_ROOT,
6071 		.read_u64 = swap_current_read,
6072 	},
6073 	{
6074 		.name = "swap.max",
6075 		.flags = CFTYPE_NOT_ON_ROOT,
6076 		.seq_show = swap_max_show,
6077 		.write = swap_max_write,
6078 	},
6079 	{ }	/* terminate */
6080 };
6081 
6082 static struct cftype memsw_cgroup_files[] = {
6083 	{
6084 		.name = "memsw.usage_in_bytes",
6085 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6086 		.read_u64 = mem_cgroup_read_u64,
6087 	},
6088 	{
6089 		.name = "memsw.max_usage_in_bytes",
6090 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6091 		.write = mem_cgroup_reset,
6092 		.read_u64 = mem_cgroup_read_u64,
6093 	},
6094 	{
6095 		.name = "memsw.limit_in_bytes",
6096 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6097 		.write = mem_cgroup_write,
6098 		.read_u64 = mem_cgroup_read_u64,
6099 	},
6100 	{
6101 		.name = "memsw.failcnt",
6102 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6103 		.write = mem_cgroup_reset,
6104 		.read_u64 = mem_cgroup_read_u64,
6105 	},
6106 	{ },	/* terminate */
6107 };
6108 
mem_cgroup_swap_init(void)6109 static int __init mem_cgroup_swap_init(void)
6110 {
6111 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6112 		do_swap_account = 1;
6113 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6114 					       swap_files));
6115 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6116 						  memsw_cgroup_files));
6117 	}
6118 	return 0;
6119 }
6120 subsys_initcall(mem_cgroup_swap_init);
6121 
6122 #endif /* CONFIG_MEMCG_SWAP */
6123