• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/export.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
14 #include <linux/fs.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44 #include <linux/mm.h>
45 #include <linux/mempolicy.h>
46 
47 #include <linux/compat.h>
48 #include <linux/syscalls.h>
49 #include <linux/kprobes.h>
50 #include <linux/user_namespace.h>
51 #include <linux/binfmts.h>
52 
53 #include <linux/sched.h>
54 #include <linux/rcupdate.h>
55 #include <linux/uidgid.h>
56 #include <linux/cred.h>
57 
58 #include <linux/kmsg_dump.h>
59 /* Move somewhere else to avoid recompiling? */
60 #include <generated/utsrelease.h>
61 
62 #include <asm/uaccess.h>
63 #include <asm/io.h>
64 #include <asm/unistd.h>
65 
66 #ifndef SET_UNALIGN_CTL
67 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
68 #endif
69 #ifndef GET_UNALIGN_CTL
70 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
71 #endif
72 #ifndef SET_FPEMU_CTL
73 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
74 #endif
75 #ifndef GET_FPEMU_CTL
76 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
77 #endif
78 #ifndef SET_FPEXC_CTL
79 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
80 #endif
81 #ifndef GET_FPEXC_CTL
82 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
83 #endif
84 #ifndef GET_ENDIAN
85 # define GET_ENDIAN(a, b)	(-EINVAL)
86 #endif
87 #ifndef SET_ENDIAN
88 # define SET_ENDIAN(a, b)	(-EINVAL)
89 #endif
90 #ifndef GET_TSC_CTL
91 # define GET_TSC_CTL(a)		(-EINVAL)
92 #endif
93 #ifndef SET_TSC_CTL
94 # define SET_TSC_CTL(a)		(-EINVAL)
95 #endif
96 #ifndef MPX_ENABLE_MANAGEMENT
97 # define MPX_ENABLE_MANAGEMENT()	(-EINVAL)
98 #endif
99 #ifndef MPX_DISABLE_MANAGEMENT
100 # define MPX_DISABLE_MANAGEMENT()	(-EINVAL)
101 #endif
102 #ifndef GET_FP_MODE
103 # define GET_FP_MODE(a)		(-EINVAL)
104 #endif
105 #ifndef SET_FP_MODE
106 # define SET_FP_MODE(a,b)	(-EINVAL)
107 #endif
108 
109 /*
110  * this is where the system-wide overflow UID and GID are defined, for
111  * architectures that now have 32-bit UID/GID but didn't in the past
112  */
113 
114 int overflowuid = DEFAULT_OVERFLOWUID;
115 int overflowgid = DEFAULT_OVERFLOWGID;
116 
117 EXPORT_SYMBOL(overflowuid);
118 EXPORT_SYMBOL(overflowgid);
119 
120 /*
121  * the same as above, but for filesystems which can only store a 16-bit
122  * UID and GID. as such, this is needed on all architectures
123  */
124 
125 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
126 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
127 
128 EXPORT_SYMBOL(fs_overflowuid);
129 EXPORT_SYMBOL(fs_overflowgid);
130 
131 /*
132  * Returns true if current's euid is same as p's uid or euid,
133  * or has CAP_SYS_NICE to p's user_ns.
134  *
135  * Called with rcu_read_lock, creds are safe
136  */
set_one_prio_perm(struct task_struct * p)137 static bool set_one_prio_perm(struct task_struct *p)
138 {
139 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
140 
141 	if (uid_eq(pcred->uid,  cred->euid) ||
142 	    uid_eq(pcred->euid, cred->euid))
143 		return true;
144 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
145 		return true;
146 	return false;
147 }
148 
149 /*
150  * set the priority of a task
151  * - the caller must hold the RCU read lock
152  */
set_one_prio(struct task_struct * p,int niceval,int error)153 static int set_one_prio(struct task_struct *p, int niceval, int error)
154 {
155 	int no_nice;
156 
157 	if (!set_one_prio_perm(p)) {
158 		error = -EPERM;
159 		goto out;
160 	}
161 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
162 		error = -EACCES;
163 		goto out;
164 	}
165 	no_nice = security_task_setnice(p, niceval);
166 	if (no_nice) {
167 		error = no_nice;
168 		goto out;
169 	}
170 	if (error == -ESRCH)
171 		error = 0;
172 	set_user_nice(p, niceval);
173 out:
174 	return error;
175 }
176 
SYSCALL_DEFINE3(setpriority,int,which,int,who,int,niceval)177 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
178 {
179 	struct task_struct *g, *p;
180 	struct user_struct *user;
181 	const struct cred *cred = current_cred();
182 	int error = -EINVAL;
183 	struct pid *pgrp;
184 	kuid_t uid;
185 
186 	if (which > PRIO_USER || which < PRIO_PROCESS)
187 		goto out;
188 
189 	/* normalize: avoid signed division (rounding problems) */
190 	error = -ESRCH;
191 	if (niceval < MIN_NICE)
192 		niceval = MIN_NICE;
193 	if (niceval > MAX_NICE)
194 		niceval = MAX_NICE;
195 
196 	rcu_read_lock();
197 	read_lock(&tasklist_lock);
198 	switch (which) {
199 	case PRIO_PROCESS:
200 		if (who)
201 			p = find_task_by_vpid(who);
202 		else
203 			p = current;
204 		if (p)
205 			error = set_one_prio(p, niceval, error);
206 		break;
207 	case PRIO_PGRP:
208 		if (who)
209 			pgrp = find_vpid(who);
210 		else
211 			pgrp = task_pgrp(current);
212 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
213 			error = set_one_prio(p, niceval, error);
214 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
215 		break;
216 	case PRIO_USER:
217 		uid = make_kuid(cred->user_ns, who);
218 		user = cred->user;
219 		if (!who)
220 			uid = cred->uid;
221 		else if (!uid_eq(uid, cred->uid)) {
222 			user = find_user(uid);
223 			if (!user)
224 				goto out_unlock;	/* No processes for this user */
225 		}
226 		do_each_thread(g, p) {
227 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
228 				error = set_one_prio(p, niceval, error);
229 		} while_each_thread(g, p);
230 		if (!uid_eq(uid, cred->uid))
231 			free_uid(user);		/* For find_user() */
232 		break;
233 	}
234 out_unlock:
235 	read_unlock(&tasklist_lock);
236 	rcu_read_unlock();
237 out:
238 	return error;
239 }
240 
241 /*
242  * Ugh. To avoid negative return values, "getpriority()" will
243  * not return the normal nice-value, but a negated value that
244  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
245  * to stay compatible.
246  */
SYSCALL_DEFINE2(getpriority,int,which,int,who)247 SYSCALL_DEFINE2(getpriority, int, which, int, who)
248 {
249 	struct task_struct *g, *p;
250 	struct user_struct *user;
251 	const struct cred *cred = current_cred();
252 	long niceval, retval = -ESRCH;
253 	struct pid *pgrp;
254 	kuid_t uid;
255 
256 	if (which > PRIO_USER || which < PRIO_PROCESS)
257 		return -EINVAL;
258 
259 	rcu_read_lock();
260 	read_lock(&tasklist_lock);
261 	switch (which) {
262 	case PRIO_PROCESS:
263 		if (who)
264 			p = find_task_by_vpid(who);
265 		else
266 			p = current;
267 		if (p) {
268 			niceval = nice_to_rlimit(task_nice(p));
269 			if (niceval > retval)
270 				retval = niceval;
271 		}
272 		break;
273 	case PRIO_PGRP:
274 		if (who)
275 			pgrp = find_vpid(who);
276 		else
277 			pgrp = task_pgrp(current);
278 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
279 			niceval = nice_to_rlimit(task_nice(p));
280 			if (niceval > retval)
281 				retval = niceval;
282 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
283 		break;
284 	case PRIO_USER:
285 		uid = make_kuid(cred->user_ns, who);
286 		user = cred->user;
287 		if (!who)
288 			uid = cred->uid;
289 		else if (!uid_eq(uid, cred->uid)) {
290 			user = find_user(uid);
291 			if (!user)
292 				goto out_unlock;	/* No processes for this user */
293 		}
294 		do_each_thread(g, p) {
295 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
296 				niceval = nice_to_rlimit(task_nice(p));
297 				if (niceval > retval)
298 					retval = niceval;
299 			}
300 		} while_each_thread(g, p);
301 		if (!uid_eq(uid, cred->uid))
302 			free_uid(user);		/* for find_user() */
303 		break;
304 	}
305 out_unlock:
306 	read_unlock(&tasklist_lock);
307 	rcu_read_unlock();
308 
309 	return retval;
310 }
311 
312 /*
313  * Unprivileged users may change the real gid to the effective gid
314  * or vice versa.  (BSD-style)
315  *
316  * If you set the real gid at all, or set the effective gid to a value not
317  * equal to the real gid, then the saved gid is set to the new effective gid.
318  *
319  * This makes it possible for a setgid program to completely drop its
320  * privileges, which is often a useful assertion to make when you are doing
321  * a security audit over a program.
322  *
323  * The general idea is that a program which uses just setregid() will be
324  * 100% compatible with BSD.  A program which uses just setgid() will be
325  * 100% compatible with POSIX with saved IDs.
326  *
327  * SMP: There are not races, the GIDs are checked only by filesystem
328  *      operations (as far as semantic preservation is concerned).
329  */
330 #ifdef CONFIG_MULTIUSER
SYSCALL_DEFINE2(setregid,gid_t,rgid,gid_t,egid)331 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
332 {
333 	struct user_namespace *ns = current_user_ns();
334 	const struct cred *old;
335 	struct cred *new;
336 	int retval;
337 	kgid_t krgid, kegid;
338 
339 	krgid = make_kgid(ns, rgid);
340 	kegid = make_kgid(ns, egid);
341 
342 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
343 		return -EINVAL;
344 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
345 		return -EINVAL;
346 
347 	new = prepare_creds();
348 	if (!new)
349 		return -ENOMEM;
350 	old = current_cred();
351 
352 	retval = -EPERM;
353 	if (rgid != (gid_t) -1) {
354 		if (gid_eq(old->gid, krgid) ||
355 		    gid_eq(old->egid, krgid) ||
356 		    ns_capable(old->user_ns, CAP_SETGID))
357 			new->gid = krgid;
358 		else
359 			goto error;
360 	}
361 	if (egid != (gid_t) -1) {
362 		if (gid_eq(old->gid, kegid) ||
363 		    gid_eq(old->egid, kegid) ||
364 		    gid_eq(old->sgid, kegid) ||
365 		    ns_capable(old->user_ns, CAP_SETGID))
366 			new->egid = kegid;
367 		else
368 			goto error;
369 	}
370 
371 	if (rgid != (gid_t) -1 ||
372 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
373 		new->sgid = new->egid;
374 	new->fsgid = new->egid;
375 
376 	return commit_creds(new);
377 
378 error:
379 	abort_creds(new);
380 	return retval;
381 }
382 
383 /*
384  * setgid() is implemented like SysV w/ SAVED_IDS
385  *
386  * SMP: Same implicit races as above.
387  */
SYSCALL_DEFINE1(setgid,gid_t,gid)388 SYSCALL_DEFINE1(setgid, gid_t, gid)
389 {
390 	struct user_namespace *ns = current_user_ns();
391 	const struct cred *old;
392 	struct cred *new;
393 	int retval;
394 	kgid_t kgid;
395 
396 	kgid = make_kgid(ns, gid);
397 	if (!gid_valid(kgid))
398 		return -EINVAL;
399 
400 	new = prepare_creds();
401 	if (!new)
402 		return -ENOMEM;
403 	old = current_cred();
404 
405 	retval = -EPERM;
406 	if (ns_capable(old->user_ns, CAP_SETGID))
407 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
408 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
409 		new->egid = new->fsgid = kgid;
410 	else
411 		goto error;
412 
413 	return commit_creds(new);
414 
415 error:
416 	abort_creds(new);
417 	return retval;
418 }
419 
420 /*
421  * change the user struct in a credentials set to match the new UID
422  */
set_user(struct cred * new)423 static int set_user(struct cred *new)
424 {
425 	struct user_struct *new_user;
426 
427 	new_user = alloc_uid(new->uid);
428 	if (!new_user)
429 		return -EAGAIN;
430 
431 	/*
432 	 * We don't fail in case of NPROC limit excess here because too many
433 	 * poorly written programs don't check set*uid() return code, assuming
434 	 * it never fails if called by root.  We may still enforce NPROC limit
435 	 * for programs doing set*uid()+execve() by harmlessly deferring the
436 	 * failure to the execve() stage.
437 	 */
438 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
439 			new_user != INIT_USER)
440 		current->flags |= PF_NPROC_EXCEEDED;
441 	else
442 		current->flags &= ~PF_NPROC_EXCEEDED;
443 
444 	free_uid(new->user);
445 	new->user = new_user;
446 	return 0;
447 }
448 
449 /*
450  * Unprivileged users may change the real uid to the effective uid
451  * or vice versa.  (BSD-style)
452  *
453  * If you set the real uid at all, or set the effective uid to a value not
454  * equal to the real uid, then the saved uid is set to the new effective uid.
455  *
456  * This makes it possible for a setuid program to completely drop its
457  * privileges, which is often a useful assertion to make when you are doing
458  * a security audit over a program.
459  *
460  * The general idea is that a program which uses just setreuid() will be
461  * 100% compatible with BSD.  A program which uses just setuid() will be
462  * 100% compatible with POSIX with saved IDs.
463  */
SYSCALL_DEFINE2(setreuid,uid_t,ruid,uid_t,euid)464 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
465 {
466 	struct user_namespace *ns = current_user_ns();
467 	const struct cred *old;
468 	struct cred *new;
469 	int retval;
470 	kuid_t kruid, keuid;
471 
472 	kruid = make_kuid(ns, ruid);
473 	keuid = make_kuid(ns, euid);
474 
475 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
476 		return -EINVAL;
477 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
478 		return -EINVAL;
479 
480 	new = prepare_creds();
481 	if (!new)
482 		return -ENOMEM;
483 	old = current_cred();
484 
485 	retval = -EPERM;
486 	if (ruid != (uid_t) -1) {
487 		new->uid = kruid;
488 		if (!uid_eq(old->uid, kruid) &&
489 		    !uid_eq(old->euid, kruid) &&
490 		    !ns_capable(old->user_ns, CAP_SETUID))
491 			goto error;
492 	}
493 
494 	if (euid != (uid_t) -1) {
495 		new->euid = keuid;
496 		if (!uid_eq(old->uid, keuid) &&
497 		    !uid_eq(old->euid, keuid) &&
498 		    !uid_eq(old->suid, keuid) &&
499 		    !ns_capable(old->user_ns, CAP_SETUID))
500 			goto error;
501 	}
502 
503 	if (!uid_eq(new->uid, old->uid)) {
504 		retval = set_user(new);
505 		if (retval < 0)
506 			goto error;
507 	}
508 	if (ruid != (uid_t) -1 ||
509 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
510 		new->suid = new->euid;
511 	new->fsuid = new->euid;
512 
513 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
514 	if (retval < 0)
515 		goto error;
516 
517 	return commit_creds(new);
518 
519 error:
520 	abort_creds(new);
521 	return retval;
522 }
523 
524 /*
525  * setuid() is implemented like SysV with SAVED_IDS
526  *
527  * Note that SAVED_ID's is deficient in that a setuid root program
528  * like sendmail, for example, cannot set its uid to be a normal
529  * user and then switch back, because if you're root, setuid() sets
530  * the saved uid too.  If you don't like this, blame the bright people
531  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
532  * will allow a root program to temporarily drop privileges and be able to
533  * regain them by swapping the real and effective uid.
534  */
SYSCALL_DEFINE1(setuid,uid_t,uid)535 SYSCALL_DEFINE1(setuid, uid_t, uid)
536 {
537 	struct user_namespace *ns = current_user_ns();
538 	const struct cred *old;
539 	struct cred *new;
540 	int retval;
541 	kuid_t kuid;
542 
543 	kuid = make_kuid(ns, uid);
544 	if (!uid_valid(kuid))
545 		return -EINVAL;
546 
547 	new = prepare_creds();
548 	if (!new)
549 		return -ENOMEM;
550 	old = current_cred();
551 
552 	retval = -EPERM;
553 	if (ns_capable(old->user_ns, CAP_SETUID)) {
554 		new->suid = new->uid = kuid;
555 		if (!uid_eq(kuid, old->uid)) {
556 			retval = set_user(new);
557 			if (retval < 0)
558 				goto error;
559 		}
560 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
561 		goto error;
562 	}
563 
564 	new->fsuid = new->euid = kuid;
565 
566 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
567 	if (retval < 0)
568 		goto error;
569 
570 	return commit_creds(new);
571 
572 error:
573 	abort_creds(new);
574 	return retval;
575 }
576 
577 
578 /*
579  * This function implements a generic ability to update ruid, euid,
580  * and suid.  This allows you to implement the 4.4 compatible seteuid().
581  */
SYSCALL_DEFINE3(setresuid,uid_t,ruid,uid_t,euid,uid_t,suid)582 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
583 {
584 	struct user_namespace *ns = current_user_ns();
585 	const struct cred *old;
586 	struct cred *new;
587 	int retval;
588 	kuid_t kruid, keuid, ksuid;
589 
590 	kruid = make_kuid(ns, ruid);
591 	keuid = make_kuid(ns, euid);
592 	ksuid = make_kuid(ns, suid);
593 
594 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
595 		return -EINVAL;
596 
597 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
598 		return -EINVAL;
599 
600 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
601 		return -EINVAL;
602 
603 	new = prepare_creds();
604 	if (!new)
605 		return -ENOMEM;
606 
607 	old = current_cred();
608 
609 	retval = -EPERM;
610 	if (!ns_capable(old->user_ns, CAP_SETUID)) {
611 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
612 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
613 			goto error;
614 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
615 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
616 			goto error;
617 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
618 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
619 			goto error;
620 	}
621 
622 	if (ruid != (uid_t) -1) {
623 		new->uid = kruid;
624 		if (!uid_eq(kruid, old->uid)) {
625 			retval = set_user(new);
626 			if (retval < 0)
627 				goto error;
628 		}
629 	}
630 	if (euid != (uid_t) -1)
631 		new->euid = keuid;
632 	if (suid != (uid_t) -1)
633 		new->suid = ksuid;
634 	new->fsuid = new->euid;
635 
636 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
637 	if (retval < 0)
638 		goto error;
639 
640 	return commit_creds(new);
641 
642 error:
643 	abort_creds(new);
644 	return retval;
645 }
646 
SYSCALL_DEFINE3(getresuid,uid_t __user *,ruidp,uid_t __user *,euidp,uid_t __user *,suidp)647 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
648 {
649 	const struct cred *cred = current_cred();
650 	int retval;
651 	uid_t ruid, euid, suid;
652 
653 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
654 	euid = from_kuid_munged(cred->user_ns, cred->euid);
655 	suid = from_kuid_munged(cred->user_ns, cred->suid);
656 
657 	retval = put_user(ruid, ruidp);
658 	if (!retval) {
659 		retval = put_user(euid, euidp);
660 		if (!retval)
661 			return put_user(suid, suidp);
662 	}
663 	return retval;
664 }
665 
666 /*
667  * Same as above, but for rgid, egid, sgid.
668  */
SYSCALL_DEFINE3(setresgid,gid_t,rgid,gid_t,egid,gid_t,sgid)669 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
670 {
671 	struct user_namespace *ns = current_user_ns();
672 	const struct cred *old;
673 	struct cred *new;
674 	int retval;
675 	kgid_t krgid, kegid, ksgid;
676 
677 	krgid = make_kgid(ns, rgid);
678 	kegid = make_kgid(ns, egid);
679 	ksgid = make_kgid(ns, sgid);
680 
681 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
682 		return -EINVAL;
683 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
684 		return -EINVAL;
685 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
686 		return -EINVAL;
687 
688 	new = prepare_creds();
689 	if (!new)
690 		return -ENOMEM;
691 	old = current_cred();
692 
693 	retval = -EPERM;
694 	if (!ns_capable(old->user_ns, CAP_SETGID)) {
695 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
696 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
697 			goto error;
698 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
699 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
700 			goto error;
701 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
702 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
703 			goto error;
704 	}
705 
706 	if (rgid != (gid_t) -1)
707 		new->gid = krgid;
708 	if (egid != (gid_t) -1)
709 		new->egid = kegid;
710 	if (sgid != (gid_t) -1)
711 		new->sgid = ksgid;
712 	new->fsgid = new->egid;
713 
714 	return commit_creds(new);
715 
716 error:
717 	abort_creds(new);
718 	return retval;
719 }
720 
SYSCALL_DEFINE3(getresgid,gid_t __user *,rgidp,gid_t __user *,egidp,gid_t __user *,sgidp)721 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
722 {
723 	const struct cred *cred = current_cred();
724 	int retval;
725 	gid_t rgid, egid, sgid;
726 
727 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
728 	egid = from_kgid_munged(cred->user_ns, cred->egid);
729 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
730 
731 	retval = put_user(rgid, rgidp);
732 	if (!retval) {
733 		retval = put_user(egid, egidp);
734 		if (!retval)
735 			retval = put_user(sgid, sgidp);
736 	}
737 
738 	return retval;
739 }
740 
741 
742 /*
743  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
744  * is used for "access()" and for the NFS daemon (letting nfsd stay at
745  * whatever uid it wants to). It normally shadows "euid", except when
746  * explicitly set by setfsuid() or for access..
747  */
SYSCALL_DEFINE1(setfsuid,uid_t,uid)748 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
749 {
750 	const struct cred *old;
751 	struct cred *new;
752 	uid_t old_fsuid;
753 	kuid_t kuid;
754 
755 	old = current_cred();
756 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
757 
758 	kuid = make_kuid(old->user_ns, uid);
759 	if (!uid_valid(kuid))
760 		return old_fsuid;
761 
762 	new = prepare_creds();
763 	if (!new)
764 		return old_fsuid;
765 
766 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
767 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
768 	    ns_capable(old->user_ns, CAP_SETUID)) {
769 		if (!uid_eq(kuid, old->fsuid)) {
770 			new->fsuid = kuid;
771 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
772 				goto change_okay;
773 		}
774 	}
775 
776 	abort_creds(new);
777 	return old_fsuid;
778 
779 change_okay:
780 	commit_creds(new);
781 	return old_fsuid;
782 }
783 
784 /*
785  * Samma på svenska..
786  */
SYSCALL_DEFINE1(setfsgid,gid_t,gid)787 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
788 {
789 	const struct cred *old;
790 	struct cred *new;
791 	gid_t old_fsgid;
792 	kgid_t kgid;
793 
794 	old = current_cred();
795 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
796 
797 	kgid = make_kgid(old->user_ns, gid);
798 	if (!gid_valid(kgid))
799 		return old_fsgid;
800 
801 	new = prepare_creds();
802 	if (!new)
803 		return old_fsgid;
804 
805 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
806 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
807 	    ns_capable(old->user_ns, CAP_SETGID)) {
808 		if (!gid_eq(kgid, old->fsgid)) {
809 			new->fsgid = kgid;
810 			goto change_okay;
811 		}
812 	}
813 
814 	abort_creds(new);
815 	return old_fsgid;
816 
817 change_okay:
818 	commit_creds(new);
819 	return old_fsgid;
820 }
821 #endif /* CONFIG_MULTIUSER */
822 
823 /**
824  * sys_getpid - return the thread group id of the current process
825  *
826  * Note, despite the name, this returns the tgid not the pid.  The tgid and
827  * the pid are identical unless CLONE_THREAD was specified on clone() in
828  * which case the tgid is the same in all threads of the same group.
829  *
830  * This is SMP safe as current->tgid does not change.
831  */
SYSCALL_DEFINE0(getpid)832 SYSCALL_DEFINE0(getpid)
833 {
834 	return task_tgid_vnr(current);
835 }
836 
837 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)838 SYSCALL_DEFINE0(gettid)
839 {
840 	return task_pid_vnr(current);
841 }
842 
843 /*
844  * Accessing ->real_parent is not SMP-safe, it could
845  * change from under us. However, we can use a stale
846  * value of ->real_parent under rcu_read_lock(), see
847  * release_task()->call_rcu(delayed_put_task_struct).
848  */
SYSCALL_DEFINE0(getppid)849 SYSCALL_DEFINE0(getppid)
850 {
851 	int pid;
852 
853 	rcu_read_lock();
854 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
855 	rcu_read_unlock();
856 
857 	return pid;
858 }
859 
SYSCALL_DEFINE0(getuid)860 SYSCALL_DEFINE0(getuid)
861 {
862 	/* Only we change this so SMP safe */
863 	return from_kuid_munged(current_user_ns(), current_uid());
864 }
865 
SYSCALL_DEFINE0(geteuid)866 SYSCALL_DEFINE0(geteuid)
867 {
868 	/* Only we change this so SMP safe */
869 	return from_kuid_munged(current_user_ns(), current_euid());
870 }
871 
SYSCALL_DEFINE0(getgid)872 SYSCALL_DEFINE0(getgid)
873 {
874 	/* Only we change this so SMP safe */
875 	return from_kgid_munged(current_user_ns(), current_gid());
876 }
877 
SYSCALL_DEFINE0(getegid)878 SYSCALL_DEFINE0(getegid)
879 {
880 	/* Only we change this so SMP safe */
881 	return from_kgid_munged(current_user_ns(), current_egid());
882 }
883 
do_sys_times(struct tms * tms)884 void do_sys_times(struct tms *tms)
885 {
886 	cputime_t tgutime, tgstime, cutime, cstime;
887 
888 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
889 	cutime = current->signal->cutime;
890 	cstime = current->signal->cstime;
891 	tms->tms_utime = cputime_to_clock_t(tgutime);
892 	tms->tms_stime = cputime_to_clock_t(tgstime);
893 	tms->tms_cutime = cputime_to_clock_t(cutime);
894 	tms->tms_cstime = cputime_to_clock_t(cstime);
895 }
896 
SYSCALL_DEFINE1(times,struct tms __user *,tbuf)897 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
898 {
899 	if (tbuf) {
900 		struct tms tmp;
901 
902 		do_sys_times(&tmp);
903 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
904 			return -EFAULT;
905 	}
906 	force_successful_syscall_return();
907 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
908 }
909 
910 /*
911  * This needs some heavy checking ...
912  * I just haven't the stomach for it. I also don't fully
913  * understand sessions/pgrp etc. Let somebody who does explain it.
914  *
915  * OK, I think I have the protection semantics right.... this is really
916  * only important on a multi-user system anyway, to make sure one user
917  * can't send a signal to a process owned by another.  -TYT, 12/12/91
918  *
919  * !PF_FORKNOEXEC check to conform completely to POSIX.
920  */
SYSCALL_DEFINE2(setpgid,pid_t,pid,pid_t,pgid)921 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
922 {
923 	struct task_struct *p;
924 	struct task_struct *group_leader = current->group_leader;
925 	struct pid *pgrp;
926 	int err;
927 
928 	if (!pid)
929 		pid = task_pid_vnr(group_leader);
930 	if (!pgid)
931 		pgid = pid;
932 	if (pgid < 0)
933 		return -EINVAL;
934 	rcu_read_lock();
935 
936 	/* From this point forward we keep holding onto the tasklist lock
937 	 * so that our parent does not change from under us. -DaveM
938 	 */
939 	write_lock_irq(&tasklist_lock);
940 
941 	err = -ESRCH;
942 	p = find_task_by_vpid(pid);
943 	if (!p)
944 		goto out;
945 
946 	err = -EINVAL;
947 	if (!thread_group_leader(p))
948 		goto out;
949 
950 	if (same_thread_group(p->real_parent, group_leader)) {
951 		err = -EPERM;
952 		if (task_session(p) != task_session(group_leader))
953 			goto out;
954 		err = -EACCES;
955 		if (!(p->flags & PF_FORKNOEXEC))
956 			goto out;
957 	} else {
958 		err = -ESRCH;
959 		if (p != group_leader)
960 			goto out;
961 	}
962 
963 	err = -EPERM;
964 	if (p->signal->leader)
965 		goto out;
966 
967 	pgrp = task_pid(p);
968 	if (pgid != pid) {
969 		struct task_struct *g;
970 
971 		pgrp = find_vpid(pgid);
972 		g = pid_task(pgrp, PIDTYPE_PGID);
973 		if (!g || task_session(g) != task_session(group_leader))
974 			goto out;
975 	}
976 
977 	err = security_task_setpgid(p, pgid);
978 	if (err)
979 		goto out;
980 
981 	if (task_pgrp(p) != pgrp)
982 		change_pid(p, PIDTYPE_PGID, pgrp);
983 
984 	err = 0;
985 out:
986 	/* All paths lead to here, thus we are safe. -DaveM */
987 	write_unlock_irq(&tasklist_lock);
988 	rcu_read_unlock();
989 	return err;
990 }
991 
SYSCALL_DEFINE1(getpgid,pid_t,pid)992 SYSCALL_DEFINE1(getpgid, pid_t, pid)
993 {
994 	struct task_struct *p;
995 	struct pid *grp;
996 	int retval;
997 
998 	rcu_read_lock();
999 	if (!pid)
1000 		grp = task_pgrp(current);
1001 	else {
1002 		retval = -ESRCH;
1003 		p = find_task_by_vpid(pid);
1004 		if (!p)
1005 			goto out;
1006 		grp = task_pgrp(p);
1007 		if (!grp)
1008 			goto out;
1009 
1010 		retval = security_task_getpgid(p);
1011 		if (retval)
1012 			goto out;
1013 	}
1014 	retval = pid_vnr(grp);
1015 out:
1016 	rcu_read_unlock();
1017 	return retval;
1018 }
1019 
1020 #ifdef __ARCH_WANT_SYS_GETPGRP
1021 
SYSCALL_DEFINE0(getpgrp)1022 SYSCALL_DEFINE0(getpgrp)
1023 {
1024 	return sys_getpgid(0);
1025 }
1026 
1027 #endif
1028 
SYSCALL_DEFINE1(getsid,pid_t,pid)1029 SYSCALL_DEFINE1(getsid, pid_t, pid)
1030 {
1031 	struct task_struct *p;
1032 	struct pid *sid;
1033 	int retval;
1034 
1035 	rcu_read_lock();
1036 	if (!pid)
1037 		sid = task_session(current);
1038 	else {
1039 		retval = -ESRCH;
1040 		p = find_task_by_vpid(pid);
1041 		if (!p)
1042 			goto out;
1043 		sid = task_session(p);
1044 		if (!sid)
1045 			goto out;
1046 
1047 		retval = security_task_getsid(p);
1048 		if (retval)
1049 			goto out;
1050 	}
1051 	retval = pid_vnr(sid);
1052 out:
1053 	rcu_read_unlock();
1054 	return retval;
1055 }
1056 
set_special_pids(struct pid * pid)1057 static void set_special_pids(struct pid *pid)
1058 {
1059 	struct task_struct *curr = current->group_leader;
1060 
1061 	if (task_session(curr) != pid)
1062 		change_pid(curr, PIDTYPE_SID, pid);
1063 
1064 	if (task_pgrp(curr) != pid)
1065 		change_pid(curr, PIDTYPE_PGID, pid);
1066 }
1067 
SYSCALL_DEFINE0(setsid)1068 SYSCALL_DEFINE0(setsid)
1069 {
1070 	struct task_struct *group_leader = current->group_leader;
1071 	struct pid *sid = task_pid(group_leader);
1072 	pid_t session = pid_vnr(sid);
1073 	int err = -EPERM;
1074 
1075 	write_lock_irq(&tasklist_lock);
1076 	/* Fail if I am already a session leader */
1077 	if (group_leader->signal->leader)
1078 		goto out;
1079 
1080 	/* Fail if a process group id already exists that equals the
1081 	 * proposed session id.
1082 	 */
1083 	if (pid_task(sid, PIDTYPE_PGID))
1084 		goto out;
1085 
1086 	group_leader->signal->leader = 1;
1087 	set_special_pids(sid);
1088 
1089 	proc_clear_tty(group_leader);
1090 
1091 	err = session;
1092 out:
1093 	write_unlock_irq(&tasklist_lock);
1094 	if (err > 0) {
1095 		proc_sid_connector(group_leader);
1096 		sched_autogroup_create_attach(group_leader);
1097 	}
1098 	return err;
1099 }
1100 
1101 DECLARE_RWSEM(uts_sem);
1102 
1103 #ifdef COMPAT_UTS_MACHINE
1104 #define override_architecture(name) \
1105 	(personality(current->personality) == PER_LINUX32 && \
1106 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1107 		      sizeof(COMPAT_UTS_MACHINE)))
1108 #else
1109 #define override_architecture(name)	0
1110 #endif
1111 
1112 /*
1113  * Work around broken programs that cannot handle "Linux 3.0".
1114  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1115  * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1116  */
override_release(char __user * release,size_t len)1117 static int override_release(char __user *release, size_t len)
1118 {
1119 	int ret = 0;
1120 
1121 	if (current->personality & UNAME26) {
1122 		const char *rest = UTS_RELEASE;
1123 		char buf[65] = { 0 };
1124 		int ndots = 0;
1125 		unsigned v;
1126 		size_t copy;
1127 
1128 		while (*rest) {
1129 			if (*rest == '.' && ++ndots >= 3)
1130 				break;
1131 			if (!isdigit(*rest) && *rest != '.')
1132 				break;
1133 			rest++;
1134 		}
1135 		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1136 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1137 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1138 		ret = copy_to_user(release, buf, copy + 1);
1139 	}
1140 	return ret;
1141 }
1142 
SYSCALL_DEFINE1(newuname,struct new_utsname __user *,name)1143 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1144 {
1145 	int errno = 0;
1146 
1147 	down_read(&uts_sem);
1148 	if (copy_to_user(name, utsname(), sizeof *name))
1149 		errno = -EFAULT;
1150 	up_read(&uts_sem);
1151 
1152 	if (!errno && override_release(name->release, sizeof(name->release)))
1153 		errno = -EFAULT;
1154 	if (!errno && override_architecture(name))
1155 		errno = -EFAULT;
1156 	return errno;
1157 }
1158 
1159 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1160 /*
1161  * Old cruft
1162  */
SYSCALL_DEFINE1(uname,struct old_utsname __user *,name)1163 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1164 {
1165 	int error = 0;
1166 
1167 	if (!name)
1168 		return -EFAULT;
1169 
1170 	down_read(&uts_sem);
1171 	if (copy_to_user(name, utsname(), sizeof(*name)))
1172 		error = -EFAULT;
1173 	up_read(&uts_sem);
1174 
1175 	if (!error && override_release(name->release, sizeof(name->release)))
1176 		error = -EFAULT;
1177 	if (!error && override_architecture(name))
1178 		error = -EFAULT;
1179 	return error;
1180 }
1181 
SYSCALL_DEFINE1(olduname,struct oldold_utsname __user *,name)1182 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1183 {
1184 	int error;
1185 
1186 	if (!name)
1187 		return -EFAULT;
1188 	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1189 		return -EFAULT;
1190 
1191 	down_read(&uts_sem);
1192 	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1193 			       __OLD_UTS_LEN);
1194 	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1195 	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1196 				__OLD_UTS_LEN);
1197 	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1198 	error |= __copy_to_user(&name->release, &utsname()->release,
1199 				__OLD_UTS_LEN);
1200 	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1201 	error |= __copy_to_user(&name->version, &utsname()->version,
1202 				__OLD_UTS_LEN);
1203 	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1204 	error |= __copy_to_user(&name->machine, &utsname()->machine,
1205 				__OLD_UTS_LEN);
1206 	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1207 	up_read(&uts_sem);
1208 
1209 	if (!error && override_architecture(name))
1210 		error = -EFAULT;
1211 	if (!error && override_release(name->release, sizeof(name->release)))
1212 		error = -EFAULT;
1213 	return error ? -EFAULT : 0;
1214 }
1215 #endif
1216 
SYSCALL_DEFINE2(sethostname,char __user *,name,int,len)1217 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1218 {
1219 	int errno;
1220 	char tmp[__NEW_UTS_LEN];
1221 
1222 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1223 		return -EPERM;
1224 
1225 	if (len < 0 || len > __NEW_UTS_LEN)
1226 		return -EINVAL;
1227 	down_write(&uts_sem);
1228 	errno = -EFAULT;
1229 	if (!copy_from_user(tmp, name, len)) {
1230 		struct new_utsname *u = utsname();
1231 
1232 		memcpy(u->nodename, tmp, len);
1233 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1234 		errno = 0;
1235 		uts_proc_notify(UTS_PROC_HOSTNAME);
1236 	}
1237 	up_write(&uts_sem);
1238 	return errno;
1239 }
1240 
1241 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1242 
SYSCALL_DEFINE2(gethostname,char __user *,name,int,len)1243 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1244 {
1245 	int i, errno;
1246 	struct new_utsname *u;
1247 
1248 	if (len < 0)
1249 		return -EINVAL;
1250 	down_read(&uts_sem);
1251 	u = utsname();
1252 	i = 1 + strlen(u->nodename);
1253 	if (i > len)
1254 		i = len;
1255 	errno = 0;
1256 	if (copy_to_user(name, u->nodename, i))
1257 		errno = -EFAULT;
1258 	up_read(&uts_sem);
1259 	return errno;
1260 }
1261 
1262 #endif
1263 
1264 /*
1265  * Only setdomainname; getdomainname can be implemented by calling
1266  * uname()
1267  */
SYSCALL_DEFINE2(setdomainname,char __user *,name,int,len)1268 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1269 {
1270 	int errno;
1271 	char tmp[__NEW_UTS_LEN];
1272 
1273 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1274 		return -EPERM;
1275 	if (len < 0 || len > __NEW_UTS_LEN)
1276 		return -EINVAL;
1277 
1278 	down_write(&uts_sem);
1279 	errno = -EFAULT;
1280 	if (!copy_from_user(tmp, name, len)) {
1281 		struct new_utsname *u = utsname();
1282 
1283 		memcpy(u->domainname, tmp, len);
1284 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1285 		errno = 0;
1286 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1287 	}
1288 	up_write(&uts_sem);
1289 	return errno;
1290 }
1291 
SYSCALL_DEFINE2(getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1292 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1293 {
1294 	struct rlimit value;
1295 	int ret;
1296 
1297 	ret = do_prlimit(current, resource, NULL, &value);
1298 	if (!ret)
1299 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1300 
1301 	return ret;
1302 }
1303 
1304 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1305 
1306 /*
1307  *	Back compatibility for getrlimit. Needed for some apps.
1308  */
SYSCALL_DEFINE2(old_getrlimit,unsigned int,resource,struct rlimit __user *,rlim)1309 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1310 		struct rlimit __user *, rlim)
1311 {
1312 	struct rlimit x;
1313 	if (resource >= RLIM_NLIMITS)
1314 		return -EINVAL;
1315 
1316 	task_lock(current->group_leader);
1317 	x = current->signal->rlim[resource];
1318 	task_unlock(current->group_leader);
1319 	if (x.rlim_cur > 0x7FFFFFFF)
1320 		x.rlim_cur = 0x7FFFFFFF;
1321 	if (x.rlim_max > 0x7FFFFFFF)
1322 		x.rlim_max = 0x7FFFFFFF;
1323 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1324 }
1325 
1326 #endif
1327 
rlim64_is_infinity(__u64 rlim64)1328 static inline bool rlim64_is_infinity(__u64 rlim64)
1329 {
1330 #if BITS_PER_LONG < 64
1331 	return rlim64 >= ULONG_MAX;
1332 #else
1333 	return rlim64 == RLIM64_INFINITY;
1334 #endif
1335 }
1336 
rlim_to_rlim64(const struct rlimit * rlim,struct rlimit64 * rlim64)1337 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1338 {
1339 	if (rlim->rlim_cur == RLIM_INFINITY)
1340 		rlim64->rlim_cur = RLIM64_INFINITY;
1341 	else
1342 		rlim64->rlim_cur = rlim->rlim_cur;
1343 	if (rlim->rlim_max == RLIM_INFINITY)
1344 		rlim64->rlim_max = RLIM64_INFINITY;
1345 	else
1346 		rlim64->rlim_max = rlim->rlim_max;
1347 }
1348 
rlim64_to_rlim(const struct rlimit64 * rlim64,struct rlimit * rlim)1349 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1350 {
1351 	if (rlim64_is_infinity(rlim64->rlim_cur))
1352 		rlim->rlim_cur = RLIM_INFINITY;
1353 	else
1354 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1355 	if (rlim64_is_infinity(rlim64->rlim_max))
1356 		rlim->rlim_max = RLIM_INFINITY;
1357 	else
1358 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1359 }
1360 
1361 /* make sure you are allowed to change @tsk limits before calling this */
do_prlimit(struct task_struct * tsk,unsigned int resource,struct rlimit * new_rlim,struct rlimit * old_rlim)1362 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1363 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1364 {
1365 	struct rlimit *rlim;
1366 	int retval = 0;
1367 
1368 	if (resource >= RLIM_NLIMITS)
1369 		return -EINVAL;
1370 	if (new_rlim) {
1371 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1372 			return -EINVAL;
1373 		if (resource == RLIMIT_NOFILE &&
1374 				new_rlim->rlim_max > sysctl_nr_open)
1375 			return -EPERM;
1376 	}
1377 
1378 	/* protect tsk->signal and tsk->sighand from disappearing */
1379 	read_lock(&tasklist_lock);
1380 	if (!tsk->sighand) {
1381 		retval = -ESRCH;
1382 		goto out;
1383 	}
1384 
1385 	rlim = tsk->signal->rlim + resource;
1386 	task_lock(tsk->group_leader);
1387 	if (new_rlim) {
1388 		/* Keep the capable check against init_user_ns until
1389 		   cgroups can contain all limits */
1390 		if (new_rlim->rlim_max > rlim->rlim_max &&
1391 				!capable(CAP_SYS_RESOURCE))
1392 			retval = -EPERM;
1393 		if (!retval)
1394 			retval = security_task_setrlimit(tsk->group_leader,
1395 					resource, new_rlim);
1396 		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1397 			/*
1398 			 * The caller is asking for an immediate RLIMIT_CPU
1399 			 * expiry.  But we use the zero value to mean "it was
1400 			 * never set".  So let's cheat and make it one second
1401 			 * instead
1402 			 */
1403 			new_rlim->rlim_cur = 1;
1404 		}
1405 	}
1406 	if (!retval) {
1407 		if (old_rlim)
1408 			*old_rlim = *rlim;
1409 		if (new_rlim)
1410 			*rlim = *new_rlim;
1411 	}
1412 	task_unlock(tsk->group_leader);
1413 
1414 	/*
1415 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1416 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1417 	 * very long-standing error, and fixing it now risks breakage of
1418 	 * applications, so we live with it
1419 	 */
1420 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1421 			 new_rlim->rlim_cur != RLIM_INFINITY)
1422 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1423 out:
1424 	read_unlock(&tasklist_lock);
1425 	return retval;
1426 }
1427 
1428 /* rcu lock must be held */
check_prlimit_permission(struct task_struct * task)1429 static int check_prlimit_permission(struct task_struct *task)
1430 {
1431 	const struct cred *cred = current_cred(), *tcred;
1432 
1433 	if (current == task)
1434 		return 0;
1435 
1436 	tcred = __task_cred(task);
1437 	if (uid_eq(cred->uid, tcred->euid) &&
1438 	    uid_eq(cred->uid, tcred->suid) &&
1439 	    uid_eq(cred->uid, tcred->uid)  &&
1440 	    gid_eq(cred->gid, tcred->egid) &&
1441 	    gid_eq(cred->gid, tcred->sgid) &&
1442 	    gid_eq(cred->gid, tcred->gid))
1443 		return 0;
1444 	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1445 		return 0;
1446 
1447 	return -EPERM;
1448 }
1449 
SYSCALL_DEFINE4(prlimit64,pid_t,pid,unsigned int,resource,const struct rlimit64 __user *,new_rlim,struct rlimit64 __user *,old_rlim)1450 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1451 		const struct rlimit64 __user *, new_rlim,
1452 		struct rlimit64 __user *, old_rlim)
1453 {
1454 	struct rlimit64 old64, new64;
1455 	struct rlimit old, new;
1456 	struct task_struct *tsk;
1457 	int ret;
1458 
1459 	if (new_rlim) {
1460 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1461 			return -EFAULT;
1462 		rlim64_to_rlim(&new64, &new);
1463 	}
1464 
1465 	rcu_read_lock();
1466 	tsk = pid ? find_task_by_vpid(pid) : current;
1467 	if (!tsk) {
1468 		rcu_read_unlock();
1469 		return -ESRCH;
1470 	}
1471 	ret = check_prlimit_permission(tsk);
1472 	if (ret) {
1473 		rcu_read_unlock();
1474 		return ret;
1475 	}
1476 	get_task_struct(tsk);
1477 	rcu_read_unlock();
1478 
1479 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1480 			old_rlim ? &old : NULL);
1481 
1482 	if (!ret && old_rlim) {
1483 		rlim_to_rlim64(&old, &old64);
1484 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1485 			ret = -EFAULT;
1486 	}
1487 
1488 	put_task_struct(tsk);
1489 	return ret;
1490 }
1491 
SYSCALL_DEFINE2(setrlimit,unsigned int,resource,struct rlimit __user *,rlim)1492 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1493 {
1494 	struct rlimit new_rlim;
1495 
1496 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1497 		return -EFAULT;
1498 	return do_prlimit(current, resource, &new_rlim, NULL);
1499 }
1500 
1501 /*
1502  * It would make sense to put struct rusage in the task_struct,
1503  * except that would make the task_struct be *really big*.  After
1504  * task_struct gets moved into malloc'ed memory, it would
1505  * make sense to do this.  It will make moving the rest of the information
1506  * a lot simpler!  (Which we're not doing right now because we're not
1507  * measuring them yet).
1508  *
1509  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1510  * races with threads incrementing their own counters.  But since word
1511  * reads are atomic, we either get new values or old values and we don't
1512  * care which for the sums.  We always take the siglock to protect reading
1513  * the c* fields from p->signal from races with exit.c updating those
1514  * fields when reaping, so a sample either gets all the additions of a
1515  * given child after it's reaped, or none so this sample is before reaping.
1516  *
1517  * Locking:
1518  * We need to take the siglock for CHILDEREN, SELF and BOTH
1519  * for  the cases current multithreaded, non-current single threaded
1520  * non-current multithreaded.  Thread traversal is now safe with
1521  * the siglock held.
1522  * Strictly speaking, we donot need to take the siglock if we are current and
1523  * single threaded,  as no one else can take our signal_struct away, no one
1524  * else can  reap the  children to update signal->c* counters, and no one else
1525  * can race with the signal-> fields. If we do not take any lock, the
1526  * signal-> fields could be read out of order while another thread was just
1527  * exiting. So we should  place a read memory barrier when we avoid the lock.
1528  * On the writer side,  write memory barrier is implied in  __exit_signal
1529  * as __exit_signal releases  the siglock spinlock after updating the signal->
1530  * fields. But we don't do this yet to keep things simple.
1531  *
1532  */
1533 
accumulate_thread_rusage(struct task_struct * t,struct rusage * r)1534 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1535 {
1536 	r->ru_nvcsw += t->nvcsw;
1537 	r->ru_nivcsw += t->nivcsw;
1538 	r->ru_minflt += t->min_flt;
1539 	r->ru_majflt += t->maj_flt;
1540 	r->ru_inblock += task_io_get_inblock(t);
1541 	r->ru_oublock += task_io_get_oublock(t);
1542 }
1543 
k_getrusage(struct task_struct * p,int who,struct rusage * r)1544 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1545 {
1546 	struct task_struct *t;
1547 	unsigned long flags;
1548 	cputime_t tgutime, tgstime, utime, stime;
1549 	unsigned long maxrss = 0;
1550 
1551 	memset((char *)r, 0, sizeof (*r));
1552 	utime = stime = 0;
1553 
1554 	if (who == RUSAGE_THREAD) {
1555 		task_cputime_adjusted(current, &utime, &stime);
1556 		accumulate_thread_rusage(p, r);
1557 		maxrss = p->signal->maxrss;
1558 		goto out;
1559 	}
1560 
1561 	if (!lock_task_sighand(p, &flags))
1562 		return;
1563 
1564 	switch (who) {
1565 	case RUSAGE_BOTH:
1566 	case RUSAGE_CHILDREN:
1567 		utime = p->signal->cutime;
1568 		stime = p->signal->cstime;
1569 		r->ru_nvcsw = p->signal->cnvcsw;
1570 		r->ru_nivcsw = p->signal->cnivcsw;
1571 		r->ru_minflt = p->signal->cmin_flt;
1572 		r->ru_majflt = p->signal->cmaj_flt;
1573 		r->ru_inblock = p->signal->cinblock;
1574 		r->ru_oublock = p->signal->coublock;
1575 		maxrss = p->signal->cmaxrss;
1576 
1577 		if (who == RUSAGE_CHILDREN)
1578 			break;
1579 
1580 	case RUSAGE_SELF:
1581 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1582 		utime += tgutime;
1583 		stime += tgstime;
1584 		r->ru_nvcsw += p->signal->nvcsw;
1585 		r->ru_nivcsw += p->signal->nivcsw;
1586 		r->ru_minflt += p->signal->min_flt;
1587 		r->ru_majflt += p->signal->maj_flt;
1588 		r->ru_inblock += p->signal->inblock;
1589 		r->ru_oublock += p->signal->oublock;
1590 		if (maxrss < p->signal->maxrss)
1591 			maxrss = p->signal->maxrss;
1592 		t = p;
1593 		do {
1594 			accumulate_thread_rusage(t, r);
1595 		} while_each_thread(p, t);
1596 		break;
1597 
1598 	default:
1599 		BUG();
1600 	}
1601 	unlock_task_sighand(p, &flags);
1602 
1603 out:
1604 	cputime_to_timeval(utime, &r->ru_utime);
1605 	cputime_to_timeval(stime, &r->ru_stime);
1606 
1607 	if (who != RUSAGE_CHILDREN) {
1608 		struct mm_struct *mm = get_task_mm(p);
1609 
1610 		if (mm) {
1611 			setmax_mm_hiwater_rss(&maxrss, mm);
1612 			mmput(mm);
1613 		}
1614 	}
1615 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1616 }
1617 
getrusage(struct task_struct * p,int who,struct rusage __user * ru)1618 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1619 {
1620 	struct rusage r;
1621 
1622 	k_getrusage(p, who, &r);
1623 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1624 }
1625 
SYSCALL_DEFINE2(getrusage,int,who,struct rusage __user *,ru)1626 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1627 {
1628 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1629 	    who != RUSAGE_THREAD)
1630 		return -EINVAL;
1631 	return getrusage(current, who, ru);
1632 }
1633 
1634 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(getrusage,int,who,struct compat_rusage __user *,ru)1635 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1636 {
1637 	struct rusage r;
1638 
1639 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1640 	    who != RUSAGE_THREAD)
1641 		return -EINVAL;
1642 
1643 	k_getrusage(current, who, &r);
1644 	return put_compat_rusage(&r, ru);
1645 }
1646 #endif
1647 
SYSCALL_DEFINE1(umask,int,mask)1648 SYSCALL_DEFINE1(umask, int, mask)
1649 {
1650 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1651 	return mask;
1652 }
1653 
prctl_set_mm_exe_file(struct mm_struct * mm,unsigned int fd)1654 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1655 {
1656 	struct fd exe;
1657 	struct file *old_exe, *exe_file;
1658 	struct inode *inode;
1659 	int err;
1660 
1661 	exe = fdget(fd);
1662 	if (!exe.file)
1663 		return -EBADF;
1664 
1665 	inode = file_inode(exe.file);
1666 
1667 	/*
1668 	 * Because the original mm->exe_file points to executable file, make
1669 	 * sure that this one is executable as well, to avoid breaking an
1670 	 * overall picture.
1671 	 */
1672 	err = -EACCES;
1673 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1674 		goto exit;
1675 
1676 	err = inode_permission(inode, MAY_EXEC);
1677 	if (err)
1678 		goto exit;
1679 
1680 	/*
1681 	 * Forbid mm->exe_file change if old file still mapped.
1682 	 */
1683 	exe_file = get_mm_exe_file(mm);
1684 	err = -EBUSY;
1685 	if (exe_file) {
1686 		struct vm_area_struct *vma;
1687 
1688 		down_read(&mm->mmap_sem);
1689 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1690 			if (!vma->vm_file)
1691 				continue;
1692 			if (path_equal(&vma->vm_file->f_path,
1693 				       &exe_file->f_path))
1694 				goto exit_err;
1695 		}
1696 
1697 		up_read(&mm->mmap_sem);
1698 		fput(exe_file);
1699 	}
1700 
1701 	/*
1702 	 * The symlink can be changed only once, just to disallow arbitrary
1703 	 * transitions malicious software might bring in. This means one
1704 	 * could make a snapshot over all processes running and monitor
1705 	 * /proc/pid/exe changes to notice unusual activity if needed.
1706 	 */
1707 	err = -EPERM;
1708 	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1709 		goto exit;
1710 
1711 	err = 0;
1712 	/* set the new file, lockless */
1713 	get_file(exe.file);
1714 	old_exe = xchg(&mm->exe_file, exe.file);
1715 	if (old_exe)
1716 		fput(old_exe);
1717 exit:
1718 	fdput(exe);
1719 	return err;
1720 exit_err:
1721 	up_read(&mm->mmap_sem);
1722 	fput(exe_file);
1723 	goto exit;
1724 }
1725 
1726 /*
1727  * WARNING: we don't require any capability here so be very careful
1728  * in what is allowed for modification from userspace.
1729  */
validate_prctl_map(struct prctl_mm_map * prctl_map)1730 static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1731 {
1732 	unsigned long mmap_max_addr = TASK_SIZE;
1733 	struct mm_struct *mm = current->mm;
1734 	int error = -EINVAL, i;
1735 
1736 	static const unsigned char offsets[] = {
1737 		offsetof(struct prctl_mm_map, start_code),
1738 		offsetof(struct prctl_mm_map, end_code),
1739 		offsetof(struct prctl_mm_map, start_data),
1740 		offsetof(struct prctl_mm_map, end_data),
1741 		offsetof(struct prctl_mm_map, start_brk),
1742 		offsetof(struct prctl_mm_map, brk),
1743 		offsetof(struct prctl_mm_map, start_stack),
1744 		offsetof(struct prctl_mm_map, arg_start),
1745 		offsetof(struct prctl_mm_map, arg_end),
1746 		offsetof(struct prctl_mm_map, env_start),
1747 		offsetof(struct prctl_mm_map, env_end),
1748 	};
1749 
1750 	/*
1751 	 * Make sure the members are not somewhere outside
1752 	 * of allowed address space.
1753 	 */
1754 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1755 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1756 
1757 		if ((unsigned long)val >= mmap_max_addr ||
1758 		    (unsigned long)val < mmap_min_addr)
1759 			goto out;
1760 	}
1761 
1762 	/*
1763 	 * Make sure the pairs are ordered.
1764 	 */
1765 #define __prctl_check_order(__m1, __op, __m2)				\
1766 	((unsigned long)prctl_map->__m1 __op				\
1767 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1768 	error  = __prctl_check_order(start_code, <, end_code);
1769 	error |= __prctl_check_order(start_data, <, end_data);
1770 	error |= __prctl_check_order(start_brk, <=, brk);
1771 	error |= __prctl_check_order(arg_start, <=, arg_end);
1772 	error |= __prctl_check_order(env_start, <=, env_end);
1773 	if (error)
1774 		goto out;
1775 #undef __prctl_check_order
1776 
1777 	error = -EINVAL;
1778 
1779 	/*
1780 	 * @brk should be after @end_data in traditional maps.
1781 	 */
1782 	if (prctl_map->start_brk <= prctl_map->end_data ||
1783 	    prctl_map->brk <= prctl_map->end_data)
1784 		goto out;
1785 
1786 	/*
1787 	 * Neither we should allow to override limits if they set.
1788 	 */
1789 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1790 			      prctl_map->start_brk, prctl_map->end_data,
1791 			      prctl_map->start_data))
1792 			goto out;
1793 
1794 	/*
1795 	 * Someone is trying to cheat the auxv vector.
1796 	 */
1797 	if (prctl_map->auxv_size) {
1798 		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1799 			goto out;
1800 	}
1801 
1802 	/*
1803 	 * Finally, make sure the caller has the rights to
1804 	 * change /proc/pid/exe link: only local root should
1805 	 * be allowed to.
1806 	 */
1807 	if (prctl_map->exe_fd != (u32)-1) {
1808 		struct user_namespace *ns = current_user_ns();
1809 		const struct cred *cred = current_cred();
1810 
1811 		if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1812 		    !gid_eq(cred->gid, make_kgid(ns, 0)))
1813 			goto out;
1814 	}
1815 
1816 	error = 0;
1817 out:
1818 	return error;
1819 }
1820 
1821 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_set_mm_map(int opt,const void __user * addr,unsigned long data_size)1822 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1823 {
1824 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1825 	unsigned long user_auxv[AT_VECTOR_SIZE];
1826 	struct mm_struct *mm = current->mm;
1827 	int error;
1828 
1829 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1830 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1831 
1832 	if (opt == PR_SET_MM_MAP_SIZE)
1833 		return put_user((unsigned int)sizeof(prctl_map),
1834 				(unsigned int __user *)addr);
1835 
1836 	if (data_size != sizeof(prctl_map))
1837 		return -EINVAL;
1838 
1839 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1840 		return -EFAULT;
1841 
1842 	error = validate_prctl_map(&prctl_map);
1843 	if (error)
1844 		return error;
1845 
1846 	if (prctl_map.auxv_size) {
1847 		memset(user_auxv, 0, sizeof(user_auxv));
1848 		if (copy_from_user(user_auxv,
1849 				   (const void __user *)prctl_map.auxv,
1850 				   prctl_map.auxv_size))
1851 			return -EFAULT;
1852 
1853 		/* Last entry must be AT_NULL as specification requires */
1854 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1855 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1856 	}
1857 
1858 	if (prctl_map.exe_fd != (u32)-1) {
1859 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1860 		if (error)
1861 			return error;
1862 	}
1863 
1864 	down_write(&mm->mmap_sem);
1865 
1866 	/*
1867 	 * We don't validate if these members are pointing to
1868 	 * real present VMAs because application may have correspond
1869 	 * VMAs already unmapped and kernel uses these members for statistics
1870 	 * output in procfs mostly, except
1871 	 *
1872 	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
1873 	 *    for VMAs when updating these memvers so anything wrong written
1874 	 *    here cause kernel to swear at userspace program but won't lead
1875 	 *    to any problem in kernel itself
1876 	 */
1877 
1878 	mm->start_code	= prctl_map.start_code;
1879 	mm->end_code	= prctl_map.end_code;
1880 	mm->start_data	= prctl_map.start_data;
1881 	mm->end_data	= prctl_map.end_data;
1882 	mm->start_brk	= prctl_map.start_brk;
1883 	mm->brk		= prctl_map.brk;
1884 	mm->start_stack	= prctl_map.start_stack;
1885 	mm->arg_start	= prctl_map.arg_start;
1886 	mm->arg_end	= prctl_map.arg_end;
1887 	mm->env_start	= prctl_map.env_start;
1888 	mm->env_end	= prctl_map.env_end;
1889 
1890 	/*
1891 	 * Note this update of @saved_auxv is lockless thus
1892 	 * if someone reads this member in procfs while we're
1893 	 * updating -- it may get partly updated results. It's
1894 	 * known and acceptable trade off: we leave it as is to
1895 	 * not introduce additional locks here making the kernel
1896 	 * more complex.
1897 	 */
1898 	if (prctl_map.auxv_size)
1899 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1900 
1901 	up_write(&mm->mmap_sem);
1902 	return 0;
1903 }
1904 #endif /* CONFIG_CHECKPOINT_RESTORE */
1905 
prctl_set_auxv(struct mm_struct * mm,unsigned long addr,unsigned long len)1906 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1907 			  unsigned long len)
1908 {
1909 	/*
1910 	 * This doesn't move the auxiliary vector itself since it's pinned to
1911 	 * mm_struct, but it permits filling the vector with new values.  It's
1912 	 * up to the caller to provide sane values here, otherwise userspace
1913 	 * tools which use this vector might be unhappy.
1914 	 */
1915 	unsigned long user_auxv[AT_VECTOR_SIZE];
1916 
1917 	if (len > sizeof(user_auxv))
1918 		return -EINVAL;
1919 
1920 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
1921 		return -EFAULT;
1922 
1923 	/* Make sure the last entry is always AT_NULL */
1924 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
1925 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
1926 
1927 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1928 
1929 	task_lock(current);
1930 	memcpy(mm->saved_auxv, user_auxv, len);
1931 	task_unlock(current);
1932 
1933 	return 0;
1934 }
1935 
prctl_set_mm(int opt,unsigned long addr,unsigned long arg4,unsigned long arg5)1936 static int prctl_set_mm(int opt, unsigned long addr,
1937 			unsigned long arg4, unsigned long arg5)
1938 {
1939 	struct mm_struct *mm = current->mm;
1940 	struct prctl_mm_map prctl_map;
1941 	struct vm_area_struct *vma;
1942 	int error;
1943 
1944 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1945 			      opt != PR_SET_MM_MAP &&
1946 			      opt != PR_SET_MM_MAP_SIZE)))
1947 		return -EINVAL;
1948 
1949 #ifdef CONFIG_CHECKPOINT_RESTORE
1950 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1951 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1952 #endif
1953 
1954 	if (!capable(CAP_SYS_RESOURCE))
1955 		return -EPERM;
1956 
1957 	if (opt == PR_SET_MM_EXE_FILE)
1958 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1959 
1960 	if (opt == PR_SET_MM_AUXV)
1961 		return prctl_set_auxv(mm, addr, arg4);
1962 
1963 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1964 		return -EINVAL;
1965 
1966 	error = -EINVAL;
1967 
1968 	down_write(&mm->mmap_sem);
1969 	vma = find_vma(mm, addr);
1970 
1971 	prctl_map.start_code	= mm->start_code;
1972 	prctl_map.end_code	= mm->end_code;
1973 	prctl_map.start_data	= mm->start_data;
1974 	prctl_map.end_data	= mm->end_data;
1975 	prctl_map.start_brk	= mm->start_brk;
1976 	prctl_map.brk		= mm->brk;
1977 	prctl_map.start_stack	= mm->start_stack;
1978 	prctl_map.arg_start	= mm->arg_start;
1979 	prctl_map.arg_end	= mm->arg_end;
1980 	prctl_map.env_start	= mm->env_start;
1981 	prctl_map.env_end	= mm->env_end;
1982 	prctl_map.auxv		= NULL;
1983 	prctl_map.auxv_size	= 0;
1984 	prctl_map.exe_fd	= -1;
1985 
1986 	switch (opt) {
1987 	case PR_SET_MM_START_CODE:
1988 		prctl_map.start_code = addr;
1989 		break;
1990 	case PR_SET_MM_END_CODE:
1991 		prctl_map.end_code = addr;
1992 		break;
1993 	case PR_SET_MM_START_DATA:
1994 		prctl_map.start_data = addr;
1995 		break;
1996 	case PR_SET_MM_END_DATA:
1997 		prctl_map.end_data = addr;
1998 		break;
1999 	case PR_SET_MM_START_STACK:
2000 		prctl_map.start_stack = addr;
2001 		break;
2002 	case PR_SET_MM_START_BRK:
2003 		prctl_map.start_brk = addr;
2004 		break;
2005 	case PR_SET_MM_BRK:
2006 		prctl_map.brk = addr;
2007 		break;
2008 	case PR_SET_MM_ARG_START:
2009 		prctl_map.arg_start = addr;
2010 		break;
2011 	case PR_SET_MM_ARG_END:
2012 		prctl_map.arg_end = addr;
2013 		break;
2014 	case PR_SET_MM_ENV_START:
2015 		prctl_map.env_start = addr;
2016 		break;
2017 	case PR_SET_MM_ENV_END:
2018 		prctl_map.env_end = addr;
2019 		break;
2020 	default:
2021 		goto out;
2022 	}
2023 
2024 	error = validate_prctl_map(&prctl_map);
2025 	if (error)
2026 		goto out;
2027 
2028 	switch (opt) {
2029 	/*
2030 	 * If command line arguments and environment
2031 	 * are placed somewhere else on stack, we can
2032 	 * set them up here, ARG_START/END to setup
2033 	 * command line argumets and ENV_START/END
2034 	 * for environment.
2035 	 */
2036 	case PR_SET_MM_START_STACK:
2037 	case PR_SET_MM_ARG_START:
2038 	case PR_SET_MM_ARG_END:
2039 	case PR_SET_MM_ENV_START:
2040 	case PR_SET_MM_ENV_END:
2041 		if (!vma) {
2042 			error = -EFAULT;
2043 			goto out;
2044 		}
2045 	}
2046 
2047 	mm->start_code	= prctl_map.start_code;
2048 	mm->end_code	= prctl_map.end_code;
2049 	mm->start_data	= prctl_map.start_data;
2050 	mm->end_data	= prctl_map.end_data;
2051 	mm->start_brk	= prctl_map.start_brk;
2052 	mm->brk		= prctl_map.brk;
2053 	mm->start_stack	= prctl_map.start_stack;
2054 	mm->arg_start	= prctl_map.arg_start;
2055 	mm->arg_end	= prctl_map.arg_end;
2056 	mm->env_start	= prctl_map.env_start;
2057 	mm->env_end	= prctl_map.env_end;
2058 
2059 	error = 0;
2060 out:
2061 	up_write(&mm->mmap_sem);
2062 	return error;
2063 }
2064 
2065 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_get_tid_address(struct task_struct * me,int __user ** tid_addr)2066 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2067 {
2068 	return put_user(me->clear_child_tid, tid_addr);
2069 }
2070 #else
prctl_get_tid_address(struct task_struct * me,int __user ** tid_addr)2071 static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2072 {
2073 	return -EINVAL;
2074 }
2075 #endif
2076 
2077 #ifdef CONFIG_MMU
prctl_update_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,const char __user * name_addr)2078 static int prctl_update_vma_anon_name(struct vm_area_struct *vma,
2079 		struct vm_area_struct **prev,
2080 		unsigned long start, unsigned long end,
2081 		const char __user *name_addr)
2082 {
2083 	struct mm_struct *mm = vma->vm_mm;
2084 	int error = 0;
2085 	pgoff_t pgoff;
2086 
2087 	if (name_addr == vma_get_anon_name(vma)) {
2088 		*prev = vma;
2089 		goto out;
2090 	}
2091 
2092 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
2093 	*prev = vma_merge(mm, *prev, start, end, vma->vm_flags, vma->anon_vma,
2094 				vma->vm_file, pgoff, vma_policy(vma),
2095 				vma->vm_userfaultfd_ctx, name_addr);
2096 	if (*prev) {
2097 		vma = *prev;
2098 		goto success;
2099 	}
2100 
2101 	*prev = vma;
2102 
2103 	if (start != vma->vm_start) {
2104 		error = split_vma(mm, vma, start, 1);
2105 		if (error)
2106 			goto out;
2107 	}
2108 
2109 	if (end != vma->vm_end) {
2110 		error = split_vma(mm, vma, end, 0);
2111 		if (error)
2112 			goto out;
2113 	}
2114 
2115 success:
2116 	if (!vma->vm_file)
2117 		vma->anon_name = name_addr;
2118 
2119 out:
2120 	if (error == -ENOMEM)
2121 		error = -EAGAIN;
2122 	return error;
2123 }
2124 
prctl_set_vma_anon_name(unsigned long start,unsigned long end,unsigned long arg)2125 static int prctl_set_vma_anon_name(unsigned long start, unsigned long end,
2126 			unsigned long arg)
2127 {
2128 	unsigned long tmp;
2129 	struct vm_area_struct *vma, *prev;
2130 	int unmapped_error = 0;
2131 	int error = -EINVAL;
2132 
2133 	/*
2134 	 * If the interval [start,end) covers some unmapped address
2135 	 * ranges, just ignore them, but return -ENOMEM at the end.
2136 	 * - this matches the handling in madvise.
2137 	 */
2138 	vma = find_vma_prev(current->mm, start, &prev);
2139 	if (vma && start > vma->vm_start)
2140 		prev = vma;
2141 
2142 	for (;;) {
2143 		/* Still start < end. */
2144 		error = -ENOMEM;
2145 		if (!vma)
2146 			return error;
2147 
2148 		/* Here start < (end|vma->vm_end). */
2149 		if (start < vma->vm_start) {
2150 			unmapped_error = -ENOMEM;
2151 			start = vma->vm_start;
2152 			if (start >= end)
2153 				return error;
2154 		}
2155 
2156 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
2157 		tmp = vma->vm_end;
2158 		if (end < tmp)
2159 			tmp = end;
2160 
2161 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
2162 		error = prctl_update_vma_anon_name(vma, &prev, start, tmp,
2163 				(const char __user *)arg);
2164 		if (error)
2165 			return error;
2166 		start = tmp;
2167 		if (prev && start < prev->vm_end)
2168 			start = prev->vm_end;
2169 		error = unmapped_error;
2170 		if (start >= end)
2171 			return error;
2172 		if (prev)
2173 			vma = prev->vm_next;
2174 		else	/* madvise_remove dropped mmap_sem */
2175 			vma = find_vma(current->mm, start);
2176 	}
2177 }
2178 
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2179 static int prctl_set_vma(unsigned long opt, unsigned long start,
2180 		unsigned long len_in, unsigned long arg)
2181 {
2182 	struct mm_struct *mm = current->mm;
2183 	int error;
2184 	unsigned long len;
2185 	unsigned long end;
2186 
2187 	if (start & ~PAGE_MASK)
2188 		return -EINVAL;
2189 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
2190 
2191 	/* Check to see whether len was rounded up from small -ve to zero */
2192 	if (len_in && !len)
2193 		return -EINVAL;
2194 
2195 	end = start + len;
2196 	if (end < start)
2197 		return -EINVAL;
2198 
2199 	if (end == start)
2200 		return 0;
2201 
2202 	down_write(&mm->mmap_sem);
2203 
2204 	switch (opt) {
2205 	case PR_SET_VMA_ANON_NAME:
2206 		error = prctl_set_vma_anon_name(start, end, arg);
2207 		break;
2208 	default:
2209 		error = -EINVAL;
2210 	}
2211 
2212 	up_write(&mm->mmap_sem);
2213 
2214 	return error;
2215 }
2216 #else /* CONFIG_MMU */
prctl_set_vma(unsigned long opt,unsigned long start,unsigned long len_in,unsigned long arg)2217 static int prctl_set_vma(unsigned long opt, unsigned long start,
2218 		unsigned long len_in, unsigned long arg)
2219 {
2220 	return -EINVAL;
2221 }
2222 #endif
2223 
SYSCALL_DEFINE5(prctl,int,option,unsigned long,arg2,unsigned long,arg3,unsigned long,arg4,unsigned long,arg5)2224 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2225 		unsigned long, arg4, unsigned long, arg5)
2226 {
2227 	struct task_struct *me = current;
2228 	unsigned char comm[sizeof(me->comm)];
2229 	long error;
2230 
2231 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2232 	if (error != -ENOSYS)
2233 		return error;
2234 
2235 	error = 0;
2236 	switch (option) {
2237 	case PR_SET_PDEATHSIG:
2238 		if (!valid_signal(arg2)) {
2239 			error = -EINVAL;
2240 			break;
2241 		}
2242 		me->pdeath_signal = arg2;
2243 		break;
2244 	case PR_GET_PDEATHSIG:
2245 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2246 		break;
2247 	case PR_GET_DUMPABLE:
2248 		error = get_dumpable(me->mm);
2249 		break;
2250 	case PR_SET_DUMPABLE:
2251 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2252 			error = -EINVAL;
2253 			break;
2254 		}
2255 		set_dumpable(me->mm, arg2);
2256 		break;
2257 
2258 	case PR_SET_UNALIGN:
2259 		error = SET_UNALIGN_CTL(me, arg2);
2260 		break;
2261 	case PR_GET_UNALIGN:
2262 		error = GET_UNALIGN_CTL(me, arg2);
2263 		break;
2264 	case PR_SET_FPEMU:
2265 		error = SET_FPEMU_CTL(me, arg2);
2266 		break;
2267 	case PR_GET_FPEMU:
2268 		error = GET_FPEMU_CTL(me, arg2);
2269 		break;
2270 	case PR_SET_FPEXC:
2271 		error = SET_FPEXC_CTL(me, arg2);
2272 		break;
2273 	case PR_GET_FPEXC:
2274 		error = GET_FPEXC_CTL(me, arg2);
2275 		break;
2276 	case PR_GET_TIMING:
2277 		error = PR_TIMING_STATISTICAL;
2278 		break;
2279 	case PR_SET_TIMING:
2280 		if (arg2 != PR_TIMING_STATISTICAL)
2281 			error = -EINVAL;
2282 		break;
2283 	case PR_SET_NAME:
2284 		comm[sizeof(me->comm) - 1] = 0;
2285 		if (strncpy_from_user(comm, (char __user *)arg2,
2286 				      sizeof(me->comm) - 1) < 0)
2287 			return -EFAULT;
2288 		set_task_comm(me, comm);
2289 		proc_comm_connector(me);
2290 		break;
2291 	case PR_GET_NAME:
2292 		get_task_comm(comm, me);
2293 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2294 			return -EFAULT;
2295 		break;
2296 	case PR_GET_ENDIAN:
2297 		error = GET_ENDIAN(me, arg2);
2298 		break;
2299 	case PR_SET_ENDIAN:
2300 		error = SET_ENDIAN(me, arg2);
2301 		break;
2302 	case PR_GET_SECCOMP:
2303 		error = prctl_get_seccomp();
2304 		break;
2305 	case PR_SET_SECCOMP:
2306 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2307 		break;
2308 	case PR_GET_TSC:
2309 		error = GET_TSC_CTL(arg2);
2310 		break;
2311 	case PR_SET_TSC:
2312 		error = SET_TSC_CTL(arg2);
2313 		break;
2314 	case PR_TASK_PERF_EVENTS_DISABLE:
2315 		error = perf_event_task_disable();
2316 		break;
2317 	case PR_TASK_PERF_EVENTS_ENABLE:
2318 		error = perf_event_task_enable();
2319 		break;
2320 	case PR_GET_TIMERSLACK:
2321 		if (current->timer_slack_ns > ULONG_MAX)
2322 			error = ULONG_MAX;
2323 		else
2324 			error = current->timer_slack_ns;
2325 		break;
2326 	case PR_SET_TIMERSLACK:
2327 		if (arg2 <= 0)
2328 			current->timer_slack_ns =
2329 					current->default_timer_slack_ns;
2330 		else
2331 			current->timer_slack_ns = arg2;
2332 		break;
2333 	case PR_MCE_KILL:
2334 		if (arg4 | arg5)
2335 			return -EINVAL;
2336 		switch (arg2) {
2337 		case PR_MCE_KILL_CLEAR:
2338 			if (arg3 != 0)
2339 				return -EINVAL;
2340 			current->flags &= ~PF_MCE_PROCESS;
2341 			break;
2342 		case PR_MCE_KILL_SET:
2343 			current->flags |= PF_MCE_PROCESS;
2344 			if (arg3 == PR_MCE_KILL_EARLY)
2345 				current->flags |= PF_MCE_EARLY;
2346 			else if (arg3 == PR_MCE_KILL_LATE)
2347 				current->flags &= ~PF_MCE_EARLY;
2348 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2349 				current->flags &=
2350 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2351 			else
2352 				return -EINVAL;
2353 			break;
2354 		default:
2355 			return -EINVAL;
2356 		}
2357 		break;
2358 	case PR_MCE_KILL_GET:
2359 		if (arg2 | arg3 | arg4 | arg5)
2360 			return -EINVAL;
2361 		if (current->flags & PF_MCE_PROCESS)
2362 			error = (current->flags & PF_MCE_EARLY) ?
2363 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2364 		else
2365 			error = PR_MCE_KILL_DEFAULT;
2366 		break;
2367 	case PR_SET_MM:
2368 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2369 		break;
2370 	case PR_GET_TID_ADDRESS:
2371 		error = prctl_get_tid_address(me, (int __user **)arg2);
2372 		break;
2373 	case PR_SET_CHILD_SUBREAPER:
2374 		me->signal->is_child_subreaper = !!arg2;
2375 		break;
2376 	case PR_GET_CHILD_SUBREAPER:
2377 		error = put_user(me->signal->is_child_subreaper,
2378 				 (int __user *)arg2);
2379 		break;
2380 	case PR_SET_NO_NEW_PRIVS:
2381 		if (arg2 != 1 || arg3 || arg4 || arg5)
2382 			return -EINVAL;
2383 
2384 		task_set_no_new_privs(current);
2385 		break;
2386 	case PR_GET_NO_NEW_PRIVS:
2387 		if (arg2 || arg3 || arg4 || arg5)
2388 			return -EINVAL;
2389 		return task_no_new_privs(current) ? 1 : 0;
2390 	case PR_GET_THP_DISABLE:
2391 		if (arg2 || arg3 || arg4 || arg5)
2392 			return -EINVAL;
2393 		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2394 		break;
2395 	case PR_SET_THP_DISABLE:
2396 		if (arg3 || arg4 || arg5)
2397 			return -EINVAL;
2398 		if (down_write_killable(&me->mm->mmap_sem))
2399 			return -EINTR;
2400 		if (arg2)
2401 			me->mm->def_flags |= VM_NOHUGEPAGE;
2402 		else
2403 			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2404 		up_write(&me->mm->mmap_sem);
2405 		break;
2406 	case PR_MPX_ENABLE_MANAGEMENT:
2407 		if (arg2 || arg3 || arg4 || arg5)
2408 			return -EINVAL;
2409 		error = MPX_ENABLE_MANAGEMENT();
2410 		break;
2411 	case PR_MPX_DISABLE_MANAGEMENT:
2412 		if (arg2 || arg3 || arg4 || arg5)
2413 			return -EINVAL;
2414 		error = MPX_DISABLE_MANAGEMENT();
2415 		break;
2416 	case PR_SET_FP_MODE:
2417 		error = SET_FP_MODE(me, arg2);
2418 		break;
2419 	case PR_GET_FP_MODE:
2420 		error = GET_FP_MODE(me);
2421 		break;
2422 	case PR_SET_VMA:
2423 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2424 		break;
2425 	default:
2426 		error = -EINVAL;
2427 		break;
2428 	}
2429 	return error;
2430 }
2431 
SYSCALL_DEFINE3(getcpu,unsigned __user *,cpup,unsigned __user *,nodep,struct getcpu_cache __user *,unused)2432 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2433 		struct getcpu_cache __user *, unused)
2434 {
2435 	int err = 0;
2436 	int cpu = raw_smp_processor_id();
2437 
2438 	if (cpup)
2439 		err |= put_user(cpu, cpup);
2440 	if (nodep)
2441 		err |= put_user(cpu_to_node(cpu), nodep);
2442 	return err ? -EFAULT : 0;
2443 }
2444 
2445 /**
2446  * do_sysinfo - fill in sysinfo struct
2447  * @info: pointer to buffer to fill
2448  */
do_sysinfo(struct sysinfo * info)2449 static int do_sysinfo(struct sysinfo *info)
2450 {
2451 	unsigned long mem_total, sav_total;
2452 	unsigned int mem_unit, bitcount;
2453 	struct timespec tp;
2454 
2455 	memset(info, 0, sizeof(struct sysinfo));
2456 
2457 	get_monotonic_boottime(&tp);
2458 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2459 
2460 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2461 
2462 	info->procs = nr_threads;
2463 
2464 	si_meminfo(info);
2465 	si_swapinfo(info);
2466 
2467 	/*
2468 	 * If the sum of all the available memory (i.e. ram + swap)
2469 	 * is less than can be stored in a 32 bit unsigned long then
2470 	 * we can be binary compatible with 2.2.x kernels.  If not,
2471 	 * well, in that case 2.2.x was broken anyways...
2472 	 *
2473 	 *  -Erik Andersen <andersee@debian.org>
2474 	 */
2475 
2476 	mem_total = info->totalram + info->totalswap;
2477 	if (mem_total < info->totalram || mem_total < info->totalswap)
2478 		goto out;
2479 	bitcount = 0;
2480 	mem_unit = info->mem_unit;
2481 	while (mem_unit > 1) {
2482 		bitcount++;
2483 		mem_unit >>= 1;
2484 		sav_total = mem_total;
2485 		mem_total <<= 1;
2486 		if (mem_total < sav_total)
2487 			goto out;
2488 	}
2489 
2490 	/*
2491 	 * If mem_total did not overflow, multiply all memory values by
2492 	 * info->mem_unit and set it to 1.  This leaves things compatible
2493 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2494 	 * kernels...
2495 	 */
2496 
2497 	info->mem_unit = 1;
2498 	info->totalram <<= bitcount;
2499 	info->freeram <<= bitcount;
2500 	info->sharedram <<= bitcount;
2501 	info->bufferram <<= bitcount;
2502 	info->totalswap <<= bitcount;
2503 	info->freeswap <<= bitcount;
2504 	info->totalhigh <<= bitcount;
2505 	info->freehigh <<= bitcount;
2506 
2507 out:
2508 	return 0;
2509 }
2510 
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)2511 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2512 {
2513 	struct sysinfo val;
2514 
2515 	do_sysinfo(&val);
2516 
2517 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2518 		return -EFAULT;
2519 
2520 	return 0;
2521 }
2522 
2523 #ifdef CONFIG_COMPAT
2524 struct compat_sysinfo {
2525 	s32 uptime;
2526 	u32 loads[3];
2527 	u32 totalram;
2528 	u32 freeram;
2529 	u32 sharedram;
2530 	u32 bufferram;
2531 	u32 totalswap;
2532 	u32 freeswap;
2533 	u16 procs;
2534 	u16 pad;
2535 	u32 totalhigh;
2536 	u32 freehigh;
2537 	u32 mem_unit;
2538 	char _f[20-2*sizeof(u32)-sizeof(int)];
2539 };
2540 
COMPAT_SYSCALL_DEFINE1(sysinfo,struct compat_sysinfo __user *,info)2541 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2542 {
2543 	struct sysinfo s;
2544 
2545 	do_sysinfo(&s);
2546 
2547 	/* Check to see if any memory value is too large for 32-bit and scale
2548 	 *  down if needed
2549 	 */
2550 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2551 		int bitcount = 0;
2552 
2553 		while (s.mem_unit < PAGE_SIZE) {
2554 			s.mem_unit <<= 1;
2555 			bitcount++;
2556 		}
2557 
2558 		s.totalram >>= bitcount;
2559 		s.freeram >>= bitcount;
2560 		s.sharedram >>= bitcount;
2561 		s.bufferram >>= bitcount;
2562 		s.totalswap >>= bitcount;
2563 		s.freeswap >>= bitcount;
2564 		s.totalhigh >>= bitcount;
2565 		s.freehigh >>= bitcount;
2566 	}
2567 
2568 	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2569 	    __put_user(s.uptime, &info->uptime) ||
2570 	    __put_user(s.loads[0], &info->loads[0]) ||
2571 	    __put_user(s.loads[1], &info->loads[1]) ||
2572 	    __put_user(s.loads[2], &info->loads[2]) ||
2573 	    __put_user(s.totalram, &info->totalram) ||
2574 	    __put_user(s.freeram, &info->freeram) ||
2575 	    __put_user(s.sharedram, &info->sharedram) ||
2576 	    __put_user(s.bufferram, &info->bufferram) ||
2577 	    __put_user(s.totalswap, &info->totalswap) ||
2578 	    __put_user(s.freeswap, &info->freeswap) ||
2579 	    __put_user(s.procs, &info->procs) ||
2580 	    __put_user(s.totalhigh, &info->totalhigh) ||
2581 	    __put_user(s.freehigh, &info->freehigh) ||
2582 	    __put_user(s.mem_unit, &info->mem_unit))
2583 		return -EFAULT;
2584 
2585 	return 0;
2586 }
2587 #endif /* CONFIG_COMPAT */
2588