• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28 
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 	if (!end_io)
33 		f2fs_flush_merged_writes(sbi);
34 }
35 
36 /*
37  * We guarantee no failure on the returned page.
38  */
grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)39 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
40 {
41 	struct address_space *mapping = META_MAPPING(sbi);
42 	struct page *page = NULL;
43 repeat:
44 	page = f2fs_grab_cache_page(mapping, index, false);
45 	if (!page) {
46 		cond_resched();
47 		goto repeat;
48 	}
49 	f2fs_wait_on_page_writeback(page, META, true);
50 	if (!PageUptodate(page))
51 		SetPageUptodate(page);
52 	return page;
53 }
54 
55 /*
56  * We guarantee no failure on the returned page.
57  */
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)58 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
59 							bool is_meta)
60 {
61 	struct address_space *mapping = META_MAPPING(sbi);
62 	struct page *page;
63 	struct f2fs_io_info fio = {
64 		.sbi = sbi,
65 		.type = META,
66 		.op = REQ_OP_READ,
67 		.op_flags = REQ_META | REQ_PRIO,
68 		.old_blkaddr = index,
69 		.new_blkaddr = index,
70 		.encrypted_page = NULL,
71 		.is_meta = is_meta,
72 	};
73 
74 	if (unlikely(!is_meta))
75 		fio.op_flags &= ~REQ_META;
76 repeat:
77 	page = f2fs_grab_cache_page(mapping, index, false);
78 	if (!page) {
79 		cond_resched();
80 		goto repeat;
81 	}
82 	if (PageUptodate(page))
83 		goto out;
84 
85 	fio.page = page;
86 
87 	if (f2fs_submit_page_bio(&fio)) {
88 		f2fs_put_page(page, 1);
89 		goto repeat;
90 	}
91 
92 	lock_page(page);
93 	if (unlikely(page->mapping != mapping)) {
94 		f2fs_put_page(page, 1);
95 		goto repeat;
96 	}
97 
98 	/*
99 	 * if there is any IO error when accessing device, make our filesystem
100 	 * readonly and make sure do not write checkpoint with non-uptodate
101 	 * meta page.
102 	 */
103 	if (unlikely(!PageUptodate(page)))
104 		f2fs_stop_checkpoint(sbi, false);
105 out:
106 	return page;
107 }
108 
get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111 	return __get_meta_page(sbi, index, true);
112 }
113 
114 /* for POR only */
get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
116 {
117 	return __get_meta_page(sbi, index, false);
118 }
119 
is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
121 {
122 	switch (type) {
123 	case META_NAT:
124 		break;
125 	case META_SIT:
126 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 			return false;
128 		break;
129 	case META_SSA:
130 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 			blkaddr < SM_I(sbi)->ssa_blkaddr))
132 			return false;
133 		break;
134 	case META_CP:
135 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 			blkaddr < __start_cp_addr(sbi)))
137 			return false;
138 		break;
139 	case META_POR:
140 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 			blkaddr < MAIN_BLKADDR(sbi)))
142 			return false;
143 		break;
144 	default:
145 		BUG();
146 	}
147 
148 	return true;
149 }
150 
151 /*
152  * Readahead CP/NAT/SIT/SSA pages
153  */
ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 							int type, bool sync)
156 {
157 	struct page *page;
158 	block_t blkno = start;
159 	struct f2fs_io_info fio = {
160 		.sbi = sbi,
161 		.type = META,
162 		.op = REQ_OP_READ,
163 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 		.encrypted_page = NULL,
165 		.in_list = false,
166 		.is_meta = (type != META_POR),
167 	};
168 	struct blk_plug plug;
169 
170 	if (unlikely(type == META_POR))
171 		fio.op_flags &= ~REQ_META;
172 
173 	blk_start_plug(&plug);
174 	for (; nrpages-- > 0; blkno++) {
175 
176 		if (!is_valid_blkaddr(sbi, blkno, type))
177 			goto out;
178 
179 		switch (type) {
180 		case META_NAT:
181 			if (unlikely(blkno >=
182 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
183 				blkno = 0;
184 			/* get nat block addr */
185 			fio.new_blkaddr = current_nat_addr(sbi,
186 					blkno * NAT_ENTRY_PER_BLOCK);
187 			break;
188 		case META_SIT:
189 			/* get sit block addr */
190 			fio.new_blkaddr = current_sit_addr(sbi,
191 					blkno * SIT_ENTRY_PER_BLOCK);
192 			break;
193 		case META_SSA:
194 		case META_CP:
195 		case META_POR:
196 			fio.new_blkaddr = blkno;
197 			break;
198 		default:
199 			BUG();
200 		}
201 
202 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
203 						fio.new_blkaddr, false);
204 		if (!page)
205 			continue;
206 		if (PageUptodate(page)) {
207 			f2fs_put_page(page, 1);
208 			continue;
209 		}
210 
211 		fio.page = page;
212 		f2fs_submit_page_bio(&fio);
213 		f2fs_put_page(page, 0);
214 	}
215 out:
216 	blk_finish_plug(&plug);
217 	return blkno - start;
218 }
219 
ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index)220 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 {
222 	struct page *page;
223 	bool readahead = false;
224 
225 	page = find_get_page(META_MAPPING(sbi), index);
226 	if (!page || !PageUptodate(page))
227 		readahead = true;
228 	f2fs_put_page(page, 0);
229 
230 	if (readahead)
231 		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
232 }
233 
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)234 static int __f2fs_write_meta_page(struct page *page,
235 				struct writeback_control *wbc,
236 				enum iostat_type io_type)
237 {
238 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
239 
240 	trace_f2fs_writepage(page, META);
241 
242 	if (unlikely(f2fs_cp_error(sbi))) {
243 		dec_page_count(sbi, F2FS_DIRTY_META);
244 		unlock_page(page);
245 		return 0;
246 	}
247 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
248 		goto redirty_out;
249 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
250 		goto redirty_out;
251 
252 	write_meta_page(sbi, page, io_type);
253 	dec_page_count(sbi, F2FS_DIRTY_META);
254 
255 	if (wbc->for_reclaim)
256 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
257 						0, page->index, META);
258 
259 	unlock_page(page);
260 
261 	if (unlikely(f2fs_cp_error(sbi)))
262 		f2fs_submit_merged_write(sbi, META);
263 
264 	return 0;
265 
266 redirty_out:
267 	redirty_page_for_writepage(wbc, page);
268 	return AOP_WRITEPAGE_ACTIVATE;
269 }
270 
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)271 static int f2fs_write_meta_page(struct page *page,
272 				struct writeback_control *wbc)
273 {
274 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
275 }
276 
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)277 static int f2fs_write_meta_pages(struct address_space *mapping,
278 				struct writeback_control *wbc)
279 {
280 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
281 	long diff, written;
282 
283 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
284 		goto skip_write;
285 
286 	/* collect a number of dirty meta pages and write together */
287 	if (wbc->for_kupdate ||
288 		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
289 		goto skip_write;
290 
291 	/* if locked failed, cp will flush dirty pages instead */
292 	if (!mutex_trylock(&sbi->cp_mutex))
293 		goto skip_write;
294 
295 	trace_f2fs_writepages(mapping->host, wbc, META);
296 	diff = nr_pages_to_write(sbi, META, wbc);
297 	written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
298 	mutex_unlock(&sbi->cp_mutex);
299 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
300 	return 0;
301 
302 skip_write:
303 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
304 	trace_f2fs_writepages(mapping->host, wbc, META);
305 	return 0;
306 }
307 
sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)308 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
309 				long nr_to_write, enum iostat_type io_type)
310 {
311 	struct address_space *mapping = META_MAPPING(sbi);
312 	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
313 	struct pagevec pvec;
314 	long nwritten = 0;
315 	struct writeback_control wbc = {
316 		.for_reclaim = 0,
317 	};
318 	struct blk_plug plug;
319 
320 	pagevec_init(&pvec, 0);
321 
322 	blk_start_plug(&plug);
323 
324 	while (index <= end) {
325 		int i, nr_pages;
326 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
327 				PAGECACHE_TAG_DIRTY,
328 				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
329 		if (unlikely(nr_pages == 0))
330 			break;
331 
332 		for (i = 0; i < nr_pages; i++) {
333 			struct page *page = pvec.pages[i];
334 
335 			if (prev == ULONG_MAX)
336 				prev = page->index - 1;
337 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
338 				pagevec_release(&pvec);
339 				goto stop;
340 			}
341 
342 			lock_page(page);
343 
344 			if (unlikely(page->mapping != mapping)) {
345 continue_unlock:
346 				unlock_page(page);
347 				continue;
348 			}
349 			if (!PageDirty(page)) {
350 				/* someone wrote it for us */
351 				goto continue_unlock;
352 			}
353 
354 			f2fs_wait_on_page_writeback(page, META, true);
355 
356 			BUG_ON(PageWriteback(page));
357 			if (!clear_page_dirty_for_io(page))
358 				goto continue_unlock;
359 
360 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
361 				unlock_page(page);
362 				break;
363 			}
364 			nwritten++;
365 			prev = page->index;
366 			if (unlikely(nwritten >= nr_to_write))
367 				break;
368 		}
369 		pagevec_release(&pvec);
370 		cond_resched();
371 	}
372 stop:
373 	if (nwritten)
374 		f2fs_submit_merged_write(sbi, type);
375 
376 	blk_finish_plug(&plug);
377 
378 	return nwritten;
379 }
380 
f2fs_set_meta_page_dirty(struct page * page)381 static int f2fs_set_meta_page_dirty(struct page *page)
382 {
383 	trace_f2fs_set_page_dirty(page, META);
384 
385 	if (!PageUptodate(page))
386 		SetPageUptodate(page);
387 	if (!PageDirty(page)) {
388 		__set_page_dirty_nobuffers(page);
389 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
390 		SetPagePrivate(page);
391 		f2fs_trace_pid(page);
392 		return 1;
393 	}
394 	return 0;
395 }
396 
397 const struct address_space_operations f2fs_meta_aops = {
398 	.writepage	= f2fs_write_meta_page,
399 	.writepages	= f2fs_write_meta_pages,
400 	.set_page_dirty	= f2fs_set_meta_page_dirty,
401 	.invalidatepage = f2fs_invalidate_page,
402 	.releasepage	= f2fs_release_page,
403 #ifdef CONFIG_MIGRATION
404 	.migratepage    = f2fs_migrate_page,
405 #endif
406 };
407 
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)408 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
409 						unsigned int devidx, int type)
410 {
411 	struct inode_management *im = &sbi->im[type];
412 	struct ino_entry *e, *tmp;
413 
414 	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
415 
416 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
417 
418 	spin_lock(&im->ino_lock);
419 	e = radix_tree_lookup(&im->ino_root, ino);
420 	if (!e) {
421 		e = tmp;
422 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
423 			f2fs_bug_on(sbi, 1);
424 
425 		memset(e, 0, sizeof(struct ino_entry));
426 		e->ino = ino;
427 
428 		list_add_tail(&e->list, &im->ino_list);
429 		if (type != ORPHAN_INO)
430 			im->ino_num++;
431 	}
432 
433 	if (type == FLUSH_INO)
434 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
435 
436 	spin_unlock(&im->ino_lock);
437 	radix_tree_preload_end();
438 
439 	if (e != tmp)
440 		kmem_cache_free(ino_entry_slab, tmp);
441 }
442 
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)443 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
444 {
445 	struct inode_management *im = &sbi->im[type];
446 	struct ino_entry *e;
447 
448 	spin_lock(&im->ino_lock);
449 	e = radix_tree_lookup(&im->ino_root, ino);
450 	if (e) {
451 		list_del(&e->list);
452 		radix_tree_delete(&im->ino_root, ino);
453 		im->ino_num--;
454 		spin_unlock(&im->ino_lock);
455 		kmem_cache_free(ino_entry_slab, e);
456 		return;
457 	}
458 	spin_unlock(&im->ino_lock);
459 }
460 
add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)461 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
462 {
463 	/* add new dirty ino entry into list */
464 	__add_ino_entry(sbi, ino, 0, type);
465 }
466 
remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)467 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
468 {
469 	/* remove dirty ino entry from list */
470 	__remove_ino_entry(sbi, ino, type);
471 }
472 
473 /* mode should be APPEND_INO or UPDATE_INO */
exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)474 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
475 {
476 	struct inode_management *im = &sbi->im[mode];
477 	struct ino_entry *e;
478 
479 	spin_lock(&im->ino_lock);
480 	e = radix_tree_lookup(&im->ino_root, ino);
481 	spin_unlock(&im->ino_lock);
482 	return e ? true : false;
483 }
484 
release_ino_entry(struct f2fs_sb_info * sbi,bool all)485 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
486 {
487 	struct ino_entry *e, *tmp;
488 	int i;
489 
490 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
491 		struct inode_management *im = &sbi->im[i];
492 
493 		spin_lock(&im->ino_lock);
494 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
495 			list_del(&e->list);
496 			radix_tree_delete(&im->ino_root, e->ino);
497 			kmem_cache_free(ino_entry_slab, e);
498 			im->ino_num--;
499 		}
500 		spin_unlock(&im->ino_lock);
501 	}
502 }
503 
set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)504 void set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
505 					unsigned int devidx, int type)
506 {
507 	__add_ino_entry(sbi, ino, devidx, type);
508 }
509 
is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)510 bool is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
511 					unsigned int devidx, int type)
512 {
513 	struct inode_management *im = &sbi->im[type];
514 	struct ino_entry *e;
515 	bool is_dirty = false;
516 
517 	spin_lock(&im->ino_lock);
518 	e = radix_tree_lookup(&im->ino_root, ino);
519 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
520 		is_dirty = true;
521 	spin_unlock(&im->ino_lock);
522 	return is_dirty;
523 }
524 
acquire_orphan_inode(struct f2fs_sb_info * sbi)525 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
526 {
527 	struct inode_management *im = &sbi->im[ORPHAN_INO];
528 	int err = 0;
529 
530 	spin_lock(&im->ino_lock);
531 
532 #ifdef CONFIG_F2FS_FAULT_INJECTION
533 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
534 		spin_unlock(&im->ino_lock);
535 		f2fs_show_injection_info(FAULT_ORPHAN);
536 		return -ENOSPC;
537 	}
538 #endif
539 	if (unlikely(im->ino_num >= sbi->max_orphans))
540 		err = -ENOSPC;
541 	else
542 		im->ino_num++;
543 	spin_unlock(&im->ino_lock);
544 
545 	return err;
546 }
547 
release_orphan_inode(struct f2fs_sb_info * sbi)548 void release_orphan_inode(struct f2fs_sb_info *sbi)
549 {
550 	struct inode_management *im = &sbi->im[ORPHAN_INO];
551 
552 	spin_lock(&im->ino_lock);
553 	f2fs_bug_on(sbi, im->ino_num == 0);
554 	im->ino_num--;
555 	spin_unlock(&im->ino_lock);
556 }
557 
add_orphan_inode(struct inode * inode)558 void add_orphan_inode(struct inode *inode)
559 {
560 	/* add new orphan ino entry into list */
561 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
562 	update_inode_page(inode);
563 }
564 
remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)565 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
566 {
567 	/* remove orphan entry from orphan list */
568 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
569 }
570 
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)571 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
572 {
573 	struct inode *inode;
574 	struct node_info ni;
575 	int err = acquire_orphan_inode(sbi);
576 
577 	if (err)
578 		goto err_out;
579 
580 	__add_ino_entry(sbi, ino, 0, ORPHAN_INO);
581 
582 	inode = f2fs_iget_retry(sbi->sb, ino);
583 	if (IS_ERR(inode)) {
584 		/*
585 		 * there should be a bug that we can't find the entry
586 		 * to orphan inode.
587 		 */
588 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
589 		return PTR_ERR(inode);
590 	}
591 
592 	err = dquot_initialize(inode);
593 	if (err)
594 		goto err_out;
595 
596 	dquot_initialize(inode);
597 	clear_nlink(inode);
598 
599 	/* truncate all the data during iput */
600 	iput(inode);
601 
602 	get_node_info(sbi, ino, &ni);
603 
604 	/* ENOMEM was fully retried in f2fs_evict_inode. */
605 	if (ni.blk_addr != NULL_ADDR) {
606 		err = -EIO;
607 		goto err_out;
608 	}
609 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
610 	return 0;
611 
612 err_out:
613 	set_sbi_flag(sbi, SBI_NEED_FSCK);
614 	f2fs_msg(sbi->sb, KERN_WARNING,
615 			"%s: orphan failed (ino=%x), run fsck to fix.",
616 			__func__, ino);
617 	return err;
618 }
619 
recover_orphan_inodes(struct f2fs_sb_info * sbi)620 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
621 {
622 	block_t start_blk, orphan_blocks, i, j;
623 	unsigned int s_flags = sbi->sb->s_flags;
624 	int err = 0;
625 #ifdef CONFIG_QUOTA
626 	int quota_enabled;
627 #endif
628 
629 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
630 		return 0;
631 
632 	if (s_flags & MS_RDONLY) {
633 		f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
634 		sbi->sb->s_flags &= ~MS_RDONLY;
635 	}
636 
637 #ifdef CONFIG_QUOTA
638 	/* Needed for iput() to work correctly and not trash data */
639 	sbi->sb->s_flags |= MS_ACTIVE;
640 
641 	/* Turn on quotas so that they are updated correctly */
642 	quota_enabled = f2fs_enable_quota_files(sbi, s_flags & MS_RDONLY);
643 #endif
644 
645 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
646 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
647 
648 	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
649 
650 	for (i = 0; i < orphan_blocks; i++) {
651 		struct page *page = get_meta_page(sbi, start_blk + i);
652 		struct f2fs_orphan_block *orphan_blk;
653 
654 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
655 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
656 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
657 			err = recover_orphan_inode(sbi, ino);
658 			if (err) {
659 				f2fs_put_page(page, 1);
660 				goto out;
661 			}
662 		}
663 		f2fs_put_page(page, 1);
664 	}
665 	/* clear Orphan Flag */
666 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
667 out:
668 #ifdef CONFIG_QUOTA
669 	/* Turn quotas off */
670 	if (quota_enabled)
671 		f2fs_quota_off_umount(sbi->sb);
672 #endif
673 	sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */
674 
675 	return err;
676 }
677 
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)678 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
679 {
680 	struct list_head *head;
681 	struct f2fs_orphan_block *orphan_blk = NULL;
682 	unsigned int nentries = 0;
683 	unsigned short index = 1;
684 	unsigned short orphan_blocks;
685 	struct page *page = NULL;
686 	struct ino_entry *orphan = NULL;
687 	struct inode_management *im = &sbi->im[ORPHAN_INO];
688 
689 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
690 
691 	/*
692 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
693 	 * orphan inode operations are covered under f2fs_lock_op().
694 	 * And, spin_lock should be avoided due to page operations below.
695 	 */
696 	head = &im->ino_list;
697 
698 	/* loop for each orphan inode entry and write them in Jornal block */
699 	list_for_each_entry(orphan, head, list) {
700 		if (!page) {
701 			page = grab_meta_page(sbi, start_blk++);
702 			orphan_blk =
703 				(struct f2fs_orphan_block *)page_address(page);
704 			memset(orphan_blk, 0, sizeof(*orphan_blk));
705 		}
706 
707 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
708 
709 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
710 			/*
711 			 * an orphan block is full of 1020 entries,
712 			 * then we need to flush current orphan blocks
713 			 * and bring another one in memory
714 			 */
715 			orphan_blk->blk_addr = cpu_to_le16(index);
716 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
717 			orphan_blk->entry_count = cpu_to_le32(nentries);
718 			set_page_dirty(page);
719 			f2fs_put_page(page, 1);
720 			index++;
721 			nentries = 0;
722 			page = NULL;
723 		}
724 	}
725 
726 	if (page) {
727 		orphan_blk->blk_addr = cpu_to_le16(index);
728 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
729 		orphan_blk->entry_count = cpu_to_le32(nentries);
730 		set_page_dirty(page);
731 		f2fs_put_page(page, 1);
732 	}
733 }
734 
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)735 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
736 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
737 		unsigned long long *version)
738 {
739 	unsigned long blk_size = sbi->blocksize;
740 	size_t crc_offset = 0;
741 	__u32 crc = 0;
742 
743 	*cp_page = get_meta_page(sbi, cp_addr);
744 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
745 
746 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
747 	if (crc_offset > (blk_size - sizeof(__le32))) {
748 		f2fs_msg(sbi->sb, KERN_WARNING,
749 			"invalid crc_offset: %zu", crc_offset);
750 		return -EINVAL;
751 	}
752 
753 	crc = cur_cp_crc(*cp_block);
754 	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
755 		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
756 		return -EINVAL;
757 	}
758 
759 	*version = cur_cp_version(*cp_block);
760 	return 0;
761 }
762 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)763 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
764 				block_t cp_addr, unsigned long long *version)
765 {
766 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
767 	struct f2fs_checkpoint *cp_block = NULL;
768 	unsigned long long cur_version = 0, pre_version = 0;
769 	int err;
770 
771 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
772 					&cp_page_1, version);
773 	if (err)
774 		goto invalid_cp1;
775 	pre_version = *version;
776 
777 	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
778 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
779 					&cp_page_2, version);
780 	if (err)
781 		goto invalid_cp2;
782 	cur_version = *version;
783 
784 	if (cur_version == pre_version) {
785 		*version = cur_version;
786 		f2fs_put_page(cp_page_2, 1);
787 		return cp_page_1;
788 	}
789 invalid_cp2:
790 	f2fs_put_page(cp_page_2, 1);
791 invalid_cp1:
792 	f2fs_put_page(cp_page_1, 1);
793 	return NULL;
794 }
795 
get_valid_checkpoint(struct f2fs_sb_info * sbi)796 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
797 {
798 	struct f2fs_checkpoint *cp_block;
799 	struct f2fs_super_block *fsb = sbi->raw_super;
800 	struct page *cp1, *cp2, *cur_page;
801 	unsigned long blk_size = sbi->blocksize;
802 	unsigned long long cp1_version = 0, cp2_version = 0;
803 	unsigned long long cp_start_blk_no;
804 	unsigned int cp_blks = 1 + __cp_payload(sbi);
805 	block_t cp_blk_no;
806 	int i;
807 
808 	sbi->ckpt = f2fs_kzalloc(sbi, cp_blks * blk_size, GFP_KERNEL);
809 	if (!sbi->ckpt)
810 		return -ENOMEM;
811 	/*
812 	 * Finding out valid cp block involves read both
813 	 * sets( cp pack1 and cp pack 2)
814 	 */
815 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
816 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
817 
818 	/* The second checkpoint pack should start at the next segment */
819 	cp_start_blk_no += ((unsigned long long)1) <<
820 				le32_to_cpu(fsb->log_blocks_per_seg);
821 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
822 
823 	if (cp1 && cp2) {
824 		if (ver_after(cp2_version, cp1_version))
825 			cur_page = cp2;
826 		else
827 			cur_page = cp1;
828 	} else if (cp1) {
829 		cur_page = cp1;
830 	} else if (cp2) {
831 		cur_page = cp2;
832 	} else {
833 		goto fail_no_cp;
834 	}
835 
836 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
837 	memcpy(sbi->ckpt, cp_block, blk_size);
838 
839 	/* Sanity checking of checkpoint */
840 	if (sanity_check_ckpt(sbi))
841 		goto free_fail_no_cp;
842 
843 	if (cur_page == cp1)
844 		sbi->cur_cp_pack = 1;
845 	else
846 		sbi->cur_cp_pack = 2;
847 
848 	if (cp_blks <= 1)
849 		goto done;
850 
851 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
852 	if (cur_page == cp2)
853 		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
854 
855 	for (i = 1; i < cp_blks; i++) {
856 		void *sit_bitmap_ptr;
857 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
858 
859 		cur_page = get_meta_page(sbi, cp_blk_no + i);
860 		sit_bitmap_ptr = page_address(cur_page);
861 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
862 		f2fs_put_page(cur_page, 1);
863 	}
864 done:
865 	f2fs_put_page(cp1, 1);
866 	f2fs_put_page(cp2, 1);
867 	return 0;
868 
869 free_fail_no_cp:
870 	f2fs_put_page(cp1, 1);
871 	f2fs_put_page(cp2, 1);
872 fail_no_cp:
873 	kfree(sbi->ckpt);
874 	return -EINVAL;
875 }
876 
__add_dirty_inode(struct inode * inode,enum inode_type type)877 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
878 {
879 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
880 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
881 
882 	if (is_inode_flag_set(inode, flag))
883 		return;
884 
885 	set_inode_flag(inode, flag);
886 	if (!f2fs_is_volatile_file(inode))
887 		list_add_tail(&F2FS_I(inode)->dirty_list,
888 						&sbi->inode_list[type]);
889 	stat_inc_dirty_inode(sbi, type);
890 }
891 
__remove_dirty_inode(struct inode * inode,enum inode_type type)892 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
893 {
894 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
895 
896 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
897 		return;
898 
899 	list_del_init(&F2FS_I(inode)->dirty_list);
900 	clear_inode_flag(inode, flag);
901 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
902 }
903 
update_dirty_page(struct inode * inode,struct page * page)904 void update_dirty_page(struct inode *inode, struct page *page)
905 {
906 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
907 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
908 
909 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
910 			!S_ISLNK(inode->i_mode))
911 		return;
912 
913 	spin_lock(&sbi->inode_lock[type]);
914 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
915 		__add_dirty_inode(inode, type);
916 	inode_inc_dirty_pages(inode);
917 	spin_unlock(&sbi->inode_lock[type]);
918 
919 	SetPagePrivate(page);
920 	f2fs_trace_pid(page);
921 }
922 
remove_dirty_inode(struct inode * inode)923 void remove_dirty_inode(struct inode *inode)
924 {
925 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
926 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
927 
928 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
929 			!S_ISLNK(inode->i_mode))
930 		return;
931 
932 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
933 		return;
934 
935 	spin_lock(&sbi->inode_lock[type]);
936 	__remove_dirty_inode(inode, type);
937 	spin_unlock(&sbi->inode_lock[type]);
938 }
939 
sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type)940 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
941 {
942 	struct list_head *head;
943 	struct inode *inode;
944 	struct f2fs_inode_info *fi;
945 	bool is_dir = (type == DIR_INODE);
946 	unsigned long ino = 0;
947 
948 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
949 				get_pages(sbi, is_dir ?
950 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
951 retry:
952 	if (unlikely(f2fs_cp_error(sbi)))
953 		return -EIO;
954 
955 	spin_lock(&sbi->inode_lock[type]);
956 
957 	head = &sbi->inode_list[type];
958 	if (list_empty(head)) {
959 		spin_unlock(&sbi->inode_lock[type]);
960 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
961 				get_pages(sbi, is_dir ?
962 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
963 		return 0;
964 	}
965 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
966 	inode = igrab(&fi->vfs_inode);
967 	spin_unlock(&sbi->inode_lock[type]);
968 	if (inode) {
969 		unsigned long cur_ino = inode->i_ino;
970 
971 		if (is_dir)
972 			F2FS_I(inode)->cp_task = current;
973 
974 		filemap_fdatawrite(inode->i_mapping);
975 
976 		if (is_dir)
977 			F2FS_I(inode)->cp_task = NULL;
978 
979 		iput(inode);
980 		/* We need to give cpu to another writers. */
981 		if (ino == cur_ino) {
982 			congestion_wait(BLK_RW_ASYNC, HZ/50);
983 			cond_resched();
984 		} else {
985 			ino = cur_ino;
986 		}
987 	} else {
988 		/*
989 		 * We should submit bio, since it exists several
990 		 * wribacking dentry pages in the freeing inode.
991 		 */
992 		f2fs_submit_merged_write(sbi, DATA);
993 		cond_resched();
994 	}
995 	goto retry;
996 }
997 
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)998 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
999 {
1000 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1001 	struct inode *inode;
1002 	struct f2fs_inode_info *fi;
1003 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1004 
1005 	while (total--) {
1006 		if (unlikely(f2fs_cp_error(sbi)))
1007 			return -EIO;
1008 
1009 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1010 		if (list_empty(head)) {
1011 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1012 			return 0;
1013 		}
1014 		fi = list_first_entry(head, struct f2fs_inode_info,
1015 							gdirty_list);
1016 		inode = igrab(&fi->vfs_inode);
1017 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1018 		if (inode) {
1019 			sync_inode_metadata(inode, 0);
1020 
1021 			/* it's on eviction */
1022 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1023 				update_inode_page(inode);
1024 			iput(inode);
1025 		}
1026 	}
1027 	return 0;
1028 }
1029 
__prepare_cp_block(struct f2fs_sb_info * sbi)1030 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1031 {
1032 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1033 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1034 	nid_t last_nid = nm_i->next_scan_nid;
1035 
1036 	next_free_nid(sbi, &last_nid);
1037 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1038 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1039 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1040 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1041 }
1042 
1043 /*
1044  * Freeze all the FS-operations for checkpoint.
1045  */
block_operations(struct f2fs_sb_info * sbi)1046 static int block_operations(struct f2fs_sb_info *sbi)
1047 {
1048 	struct writeback_control wbc = {
1049 		.sync_mode = WB_SYNC_ALL,
1050 		.nr_to_write = LONG_MAX,
1051 		.for_reclaim = 0,
1052 	};
1053 	struct blk_plug plug;
1054 	int err = 0;
1055 
1056 	blk_start_plug(&plug);
1057 
1058 retry_flush_dents:
1059 	f2fs_lock_all(sbi);
1060 	/* write all the dirty dentry pages */
1061 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1062 		f2fs_unlock_all(sbi);
1063 		err = sync_dirty_inodes(sbi, DIR_INODE);
1064 		if (err)
1065 			goto out;
1066 		cond_resched();
1067 		goto retry_flush_dents;
1068 	}
1069 
1070 	/*
1071 	 * POR: we should ensure that there are no dirty node pages
1072 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1073 	 */
1074 	down_write(&sbi->node_change);
1075 
1076 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1077 		up_write(&sbi->node_change);
1078 		f2fs_unlock_all(sbi);
1079 		err = f2fs_sync_inode_meta(sbi);
1080 		if (err)
1081 			goto out;
1082 		cond_resched();
1083 		goto retry_flush_dents;
1084 	}
1085 
1086 retry_flush_nodes:
1087 	down_write(&sbi->node_write);
1088 
1089 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1090 		up_write(&sbi->node_write);
1091 		err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1092 		if (err) {
1093 			up_write(&sbi->node_change);
1094 			f2fs_unlock_all(sbi);
1095 			goto out;
1096 		}
1097 		cond_resched();
1098 		goto retry_flush_nodes;
1099 	}
1100 
1101 	/*
1102 	 * sbi->node_change is used only for AIO write_begin path which produces
1103 	 * dirty node blocks and some checkpoint values by block allocation.
1104 	 */
1105 	__prepare_cp_block(sbi);
1106 	up_write(&sbi->node_change);
1107 out:
1108 	blk_finish_plug(&plug);
1109 	return err;
1110 }
1111 
unblock_operations(struct f2fs_sb_info * sbi)1112 static void unblock_operations(struct f2fs_sb_info *sbi)
1113 {
1114 	up_write(&sbi->node_write);
1115 	f2fs_unlock_all(sbi);
1116 }
1117 
wait_on_all_pages_writeback(struct f2fs_sb_info * sbi)1118 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1119 {
1120 	DEFINE_WAIT(wait);
1121 
1122 	for (;;) {
1123 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1124 
1125 		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1126 			break;
1127 
1128 		io_schedule_timeout(5*HZ);
1129 	}
1130 	finish_wait(&sbi->cp_wait, &wait);
1131 }
1132 
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1133 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1134 {
1135 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1136 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1137 	unsigned long flags;
1138 
1139 	spin_lock_irqsave(&sbi->cp_lock, flags);
1140 
1141 	if ((cpc->reason & CP_UMOUNT) &&
1142 			le32_to_cpu(ckpt->cp_pack_total_block_count) >
1143 			sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1144 		disable_nat_bits(sbi, false);
1145 
1146 	if (cpc->reason & CP_TRIMMED)
1147 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1148 	else
1149 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1150 
1151 	if (cpc->reason & CP_UMOUNT)
1152 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1153 	else
1154 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1155 
1156 	if (cpc->reason & CP_FASTBOOT)
1157 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1158 	else
1159 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1160 
1161 	if (orphan_num)
1162 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1163 	else
1164 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1165 
1166 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1167 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1168 
1169 	/* set this flag to activate crc|cp_ver for recovery */
1170 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1171 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1172 
1173 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1174 }
1175 
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1176 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1177 	void *src, block_t blk_addr)
1178 {
1179 	struct writeback_control wbc = {
1180 		.for_reclaim = 0,
1181 	};
1182 
1183 	/*
1184 	 * pagevec_lookup_tag and lock_page again will take
1185 	 * some extra time. Therefore, update_meta_pages and
1186 	 * sync_meta_pages are combined in this function.
1187 	 */
1188 	struct page *page = grab_meta_page(sbi, blk_addr);
1189 	int err;
1190 
1191 	memcpy(page_address(page), src, PAGE_SIZE);
1192 	set_page_dirty(page);
1193 
1194 	f2fs_wait_on_page_writeback(page, META, true);
1195 	f2fs_bug_on(sbi, PageWriteback(page));
1196 	if (unlikely(!clear_page_dirty_for_io(page)))
1197 		f2fs_bug_on(sbi, 1);
1198 
1199 	/* writeout cp pack 2 page */
1200 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1201 	f2fs_bug_on(sbi, err);
1202 
1203 	f2fs_put_page(page, 0);
1204 
1205 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1206 	f2fs_submit_merged_write(sbi, META_FLUSH);
1207 }
1208 
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1209 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1210 {
1211 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1212 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1213 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1214 	block_t start_blk;
1215 	unsigned int data_sum_blocks, orphan_blocks;
1216 	__u32 crc32 = 0;
1217 	int i;
1218 	int cp_payload_blks = __cp_payload(sbi);
1219 	struct super_block *sb = sbi->sb;
1220 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1221 	u64 kbytes_written;
1222 	int err;
1223 
1224 	/* Flush all the NAT/SIT pages */
1225 	while (get_pages(sbi, F2FS_DIRTY_META)) {
1226 		sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1227 		if (unlikely(f2fs_cp_error(sbi)))
1228 			return -EIO;
1229 	}
1230 
1231 	/*
1232 	 * modify checkpoint
1233 	 * version number is already updated
1234 	 */
1235 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1236 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1237 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1238 		ckpt->cur_node_segno[i] =
1239 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1240 		ckpt->cur_node_blkoff[i] =
1241 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1242 		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1243 				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1244 	}
1245 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1246 		ckpt->cur_data_segno[i] =
1247 			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1248 		ckpt->cur_data_blkoff[i] =
1249 			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1250 		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1251 				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1252 	}
1253 
1254 	/* 2 cp  + n data seg summary + orphan inode blocks */
1255 	data_sum_blocks = npages_for_summary_flush(sbi, false);
1256 	spin_lock_irqsave(&sbi->cp_lock, flags);
1257 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1258 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1259 	else
1260 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1261 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1262 
1263 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1264 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1265 			orphan_blocks);
1266 
1267 	if (__remain_node_summaries(cpc->reason))
1268 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1269 				cp_payload_blks + data_sum_blocks +
1270 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1271 	else
1272 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1273 				cp_payload_blks + data_sum_blocks +
1274 				orphan_blocks);
1275 
1276 	/* update ckpt flag for checkpoint */
1277 	update_ckpt_flags(sbi, cpc);
1278 
1279 	/* update SIT/NAT bitmap */
1280 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1281 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1282 
1283 	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1284 	*((__le32 *)((unsigned char *)ckpt +
1285 				le32_to_cpu(ckpt->checksum_offset)))
1286 				= cpu_to_le32(crc32);
1287 
1288 	start_blk = __start_cp_next_addr(sbi);
1289 
1290 	/* write nat bits */
1291 	if (enabled_nat_bits(sbi, cpc)) {
1292 		__u64 cp_ver = cur_cp_version(ckpt);
1293 		block_t blk;
1294 
1295 		cp_ver |= ((__u64)crc32 << 32);
1296 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1297 
1298 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1299 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1300 			update_meta_page(sbi, nm_i->nat_bits +
1301 					(i << F2FS_BLKSIZE_BITS), blk + i);
1302 
1303 		/* Flush all the NAT BITS pages */
1304 		while (get_pages(sbi, F2FS_DIRTY_META)) {
1305 			sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1306 			if (unlikely(f2fs_cp_error(sbi)))
1307 				return -EIO;
1308 		}
1309 	}
1310 
1311 	/* write out checkpoint buffer at block 0 */
1312 	update_meta_page(sbi, ckpt, start_blk++);
1313 
1314 	for (i = 1; i < 1 + cp_payload_blks; i++)
1315 		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1316 							start_blk++);
1317 
1318 	if (orphan_num) {
1319 		write_orphan_inodes(sbi, start_blk);
1320 		start_blk += orphan_blocks;
1321 	}
1322 
1323 	write_data_summaries(sbi, start_blk);
1324 	start_blk += data_sum_blocks;
1325 
1326 	/* Record write statistics in the hot node summary */
1327 	kbytes_written = sbi->kbytes_written;
1328 	if (sb->s_bdev->bd_part)
1329 		kbytes_written += BD_PART_WRITTEN(sbi);
1330 
1331 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1332 
1333 	if (__remain_node_summaries(cpc->reason)) {
1334 		write_node_summaries(sbi, start_blk);
1335 		start_blk += NR_CURSEG_NODE_TYPE;
1336 	}
1337 
1338 	/* update user_block_counts */
1339 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1340 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1341 
1342 	/* Here, we have one bio having CP pack except cp pack 2 page */
1343 	sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1344 
1345 	/* wait for previous submitted meta pages writeback */
1346 	wait_on_all_pages_writeback(sbi);
1347 
1348 	if (unlikely(f2fs_cp_error(sbi)))
1349 		return -EIO;
1350 
1351 	/* flush all device cache */
1352 	err = f2fs_flush_device_cache(sbi);
1353 	if (err)
1354 		return err;
1355 
1356 	/* barrier and flush checkpoint cp pack 2 page if it can */
1357 	commit_checkpoint(sbi, ckpt, start_blk);
1358 	wait_on_all_pages_writeback(sbi);
1359 
1360 	release_ino_entry(sbi, false);
1361 
1362 	if (unlikely(f2fs_cp_error(sbi)))
1363 		return -EIO;
1364 
1365 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1366 	clear_sbi_flag(sbi, SBI_NEED_CP);
1367 	__set_cp_next_pack(sbi);
1368 
1369 	/*
1370 	 * redirty superblock if metadata like node page or inode cache is
1371 	 * updated during writing checkpoint.
1372 	 */
1373 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1374 			get_pages(sbi, F2FS_DIRTY_IMETA))
1375 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1376 
1377 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1378 
1379 	return 0;
1380 }
1381 
1382 /*
1383  * We guarantee that this checkpoint procedure will not fail.
1384  */
write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1385 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1386 {
1387 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1388 	unsigned long long ckpt_ver;
1389 	int err = 0;
1390 
1391 	mutex_lock(&sbi->cp_mutex);
1392 
1393 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1394 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1395 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1396 		goto out;
1397 	if (unlikely(f2fs_cp_error(sbi))) {
1398 		err = -EIO;
1399 		goto out;
1400 	}
1401 	if (f2fs_readonly(sbi->sb)) {
1402 		err = -EROFS;
1403 		goto out;
1404 	}
1405 
1406 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1407 
1408 	err = block_operations(sbi);
1409 	if (err)
1410 		goto out;
1411 
1412 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1413 
1414 	f2fs_flush_merged_writes(sbi);
1415 
1416 	/* this is the case of multiple fstrims without any changes */
1417 	if (cpc->reason & CP_DISCARD) {
1418 		if (!exist_trim_candidates(sbi, cpc)) {
1419 			unblock_operations(sbi);
1420 			goto out;
1421 		}
1422 
1423 		if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1424 				SIT_I(sbi)->dirty_sentries == 0 &&
1425 				prefree_segments(sbi) == 0) {
1426 			flush_sit_entries(sbi, cpc);
1427 			clear_prefree_segments(sbi, cpc);
1428 			unblock_operations(sbi);
1429 			goto out;
1430 		}
1431 	}
1432 
1433 	/*
1434 	 * update checkpoint pack index
1435 	 * Increase the version number so that
1436 	 * SIT entries and seg summaries are written at correct place
1437 	 */
1438 	ckpt_ver = cur_cp_version(ckpt);
1439 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1440 
1441 	/* write cached NAT/SIT entries to NAT/SIT area */
1442 	flush_nat_entries(sbi, cpc);
1443 	flush_sit_entries(sbi, cpc);
1444 
1445 	/* unlock all the fs_lock[] in do_checkpoint() */
1446 	err = do_checkpoint(sbi, cpc);
1447 	if (err)
1448 		release_discard_addrs(sbi);
1449 	else
1450 		clear_prefree_segments(sbi, cpc);
1451 
1452 	unblock_operations(sbi);
1453 	stat_inc_cp_count(sbi->stat_info);
1454 
1455 	if (cpc->reason & CP_RECOVERY)
1456 		f2fs_msg(sbi->sb, KERN_NOTICE,
1457 			"checkpoint: version = %llx", ckpt_ver);
1458 
1459 	/* do checkpoint periodically */
1460 	f2fs_update_time(sbi, CP_TIME);
1461 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1462 out:
1463 	mutex_unlock(&sbi->cp_mutex);
1464 	return err;
1465 }
1466 
init_ino_entry_info(struct f2fs_sb_info * sbi)1467 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1468 {
1469 	int i;
1470 
1471 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1472 		struct inode_management *im = &sbi->im[i];
1473 
1474 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1475 		spin_lock_init(&im->ino_lock);
1476 		INIT_LIST_HEAD(&im->ino_list);
1477 		im->ino_num = 0;
1478 	}
1479 
1480 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1481 			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1482 				F2FS_ORPHANS_PER_BLOCK;
1483 }
1484 
create_checkpoint_caches(void)1485 int __init create_checkpoint_caches(void)
1486 {
1487 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1488 			sizeof(struct ino_entry));
1489 	if (!ino_entry_slab)
1490 		return -ENOMEM;
1491 	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1492 			sizeof(struct inode_entry));
1493 	if (!inode_entry_slab) {
1494 		kmem_cache_destroy(ino_entry_slab);
1495 		return -ENOMEM;
1496 	}
1497 	return 0;
1498 }
1499 
destroy_checkpoint_caches(void)1500 void destroy_checkpoint_caches(void)
1501 {
1502 	kmem_cache_destroy(ino_entry_slab);
1503 	kmem_cache_destroy(inode_entry_slab);
1504 }
1505