• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Thunderbolt Cactus Ridge driver - NHI driver
3  *
4  * The NHI (native host interface) is the pci device that allows us to send and
5  * receive frames from the thunderbolt bus.
6  *
7  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
8  */
9 
10 #include <linux/pm_runtime.h>
11 #include <linux/slab.h>
12 #include <linux/errno.h>
13 #include <linux/pci.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/dmi.h>
17 
18 #include "nhi.h"
19 #include "nhi_regs.h"
20 #include "tb.h"
21 
22 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
23 
24 
ring_interrupt_index(struct tb_ring * ring)25 static int ring_interrupt_index(struct tb_ring *ring)
26 {
27 	int bit = ring->hop;
28 	if (!ring->is_tx)
29 		bit += ring->nhi->hop_count;
30 	return bit;
31 }
32 
33 /**
34  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
35  *
36  * ring->nhi->lock must be held.
37  */
ring_interrupt_active(struct tb_ring * ring,bool active)38 static void ring_interrupt_active(struct tb_ring *ring, bool active)
39 {
40 	int reg = REG_RING_INTERRUPT_BASE +
41 		  ring_interrupt_index(ring) / 32 * 4;
42 	int bit = ring_interrupt_index(ring) & 31;
43 	int mask = 1 << bit;
44 	u32 old, new;
45 	old = ioread32(ring->nhi->iobase + reg);
46 	if (active)
47 		new = old | mask;
48 	else
49 		new = old & ~mask;
50 
51 	dev_info(&ring->nhi->pdev->dev,
52 		 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
53 		 active ? "enabling" : "disabling", reg, bit, old, new);
54 
55 	if (new == old)
56 		dev_WARN(&ring->nhi->pdev->dev,
57 					 "interrupt for %s %d is already %s\n",
58 					 RING_TYPE(ring), ring->hop,
59 					 active ? "enabled" : "disabled");
60 	iowrite32(new, ring->nhi->iobase + reg);
61 }
62 
63 /**
64  * nhi_disable_interrupts() - disable interrupts for all rings
65  *
66  * Use only during init and shutdown.
67  */
nhi_disable_interrupts(struct tb_nhi * nhi)68 static void nhi_disable_interrupts(struct tb_nhi *nhi)
69 {
70 	int i = 0;
71 	/* disable interrupts */
72 	for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
73 		iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
74 
75 	/* clear interrupt status bits */
76 	for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
77 		ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
78 }
79 
80 /* ring helper methods */
81 
ring_desc_base(struct tb_ring * ring)82 static void __iomem *ring_desc_base(struct tb_ring *ring)
83 {
84 	void __iomem *io = ring->nhi->iobase;
85 	io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
86 	io += ring->hop * 16;
87 	return io;
88 }
89 
ring_options_base(struct tb_ring * ring)90 static void __iomem *ring_options_base(struct tb_ring *ring)
91 {
92 	void __iomem *io = ring->nhi->iobase;
93 	io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
94 	io += ring->hop * 32;
95 	return io;
96 }
97 
ring_iowrite16desc(struct tb_ring * ring,u32 value,u32 offset)98 static void ring_iowrite16desc(struct tb_ring *ring, u32 value, u32 offset)
99 {
100 	iowrite16(value, ring_desc_base(ring) + offset);
101 }
102 
ring_iowrite32desc(struct tb_ring * ring,u32 value,u32 offset)103 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
104 {
105 	iowrite32(value, ring_desc_base(ring) + offset);
106 }
107 
ring_iowrite64desc(struct tb_ring * ring,u64 value,u32 offset)108 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
109 {
110 	iowrite32(value, ring_desc_base(ring) + offset);
111 	iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
112 }
113 
ring_iowrite32options(struct tb_ring * ring,u32 value,u32 offset)114 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
115 {
116 	iowrite32(value, ring_options_base(ring) + offset);
117 }
118 
ring_full(struct tb_ring * ring)119 static bool ring_full(struct tb_ring *ring)
120 {
121 	return ((ring->head + 1) % ring->size) == ring->tail;
122 }
123 
ring_empty(struct tb_ring * ring)124 static bool ring_empty(struct tb_ring *ring)
125 {
126 	return ring->head == ring->tail;
127 }
128 
129 /**
130  * ring_write_descriptors() - post frames from ring->queue to the controller
131  *
132  * ring->lock is held.
133  */
ring_write_descriptors(struct tb_ring * ring)134 static void ring_write_descriptors(struct tb_ring *ring)
135 {
136 	struct ring_frame *frame, *n;
137 	struct ring_desc *descriptor;
138 	list_for_each_entry_safe(frame, n, &ring->queue, list) {
139 		if (ring_full(ring))
140 			break;
141 		list_move_tail(&frame->list, &ring->in_flight);
142 		descriptor = &ring->descriptors[ring->head];
143 		descriptor->phys = frame->buffer_phy;
144 		descriptor->time = 0;
145 		descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
146 		if (ring->is_tx) {
147 			descriptor->length = frame->size;
148 			descriptor->eof = frame->eof;
149 			descriptor->sof = frame->sof;
150 		}
151 		ring->head = (ring->head + 1) % ring->size;
152 		ring_iowrite16desc(ring, ring->head, ring->is_tx ? 10 : 8);
153 	}
154 }
155 
156 /**
157  * ring_work() - progress completed frames
158  *
159  * If the ring is shutting down then all frames are marked as canceled and
160  * their callbacks are invoked.
161  *
162  * Otherwise we collect all completed frame from the ring buffer, write new
163  * frame to the ring buffer and invoke the callbacks for the completed frames.
164  */
ring_work(struct work_struct * work)165 static void ring_work(struct work_struct *work)
166 {
167 	struct tb_ring *ring = container_of(work, typeof(*ring), work);
168 	struct ring_frame *frame;
169 	bool canceled = false;
170 	LIST_HEAD(done);
171 	mutex_lock(&ring->lock);
172 
173 	if (!ring->running) {
174 		/*  Move all frames to done and mark them as canceled. */
175 		list_splice_tail_init(&ring->in_flight, &done);
176 		list_splice_tail_init(&ring->queue, &done);
177 		canceled = true;
178 		goto invoke_callback;
179 	}
180 
181 	while (!ring_empty(ring)) {
182 		if (!(ring->descriptors[ring->tail].flags
183 				& RING_DESC_COMPLETED))
184 			break;
185 		frame = list_first_entry(&ring->in_flight, typeof(*frame),
186 					 list);
187 		list_move_tail(&frame->list, &done);
188 		if (!ring->is_tx) {
189 			frame->size = ring->descriptors[ring->tail].length;
190 			frame->eof = ring->descriptors[ring->tail].eof;
191 			frame->sof = ring->descriptors[ring->tail].sof;
192 			frame->flags = ring->descriptors[ring->tail].flags;
193 			if (frame->sof != 0)
194 				dev_WARN(&ring->nhi->pdev->dev,
195 					 "%s %d got unexpected SOF: %#x\n",
196 					 RING_TYPE(ring), ring->hop,
197 					 frame->sof);
198 			/*
199 			 * known flags:
200 			 * raw not enabled, interupt not set: 0x2=0010
201 			 * raw enabled: 0xa=1010
202 			 * raw not enabled: 0xb=1011
203 			 * partial frame (>MAX_FRAME_SIZE): 0xe=1110
204 			 */
205 			if (frame->flags != 0xa)
206 				dev_WARN(&ring->nhi->pdev->dev,
207 					 "%s %d got unexpected flags: %#x\n",
208 					 RING_TYPE(ring), ring->hop,
209 					 frame->flags);
210 		}
211 		ring->tail = (ring->tail + 1) % ring->size;
212 	}
213 	ring_write_descriptors(ring);
214 
215 invoke_callback:
216 	mutex_unlock(&ring->lock); /* allow callbacks to schedule new work */
217 	while (!list_empty(&done)) {
218 		frame = list_first_entry(&done, typeof(*frame), list);
219 		/*
220 		 * The callback may reenqueue or delete frame.
221 		 * Do not hold on to it.
222 		 */
223 		list_del_init(&frame->list);
224 		frame->callback(ring, frame, canceled);
225 	}
226 }
227 
__ring_enqueue(struct tb_ring * ring,struct ring_frame * frame)228 int __ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
229 {
230 	int ret = 0;
231 	mutex_lock(&ring->lock);
232 	if (ring->running) {
233 		list_add_tail(&frame->list, &ring->queue);
234 		ring_write_descriptors(ring);
235 	} else {
236 		ret = -ESHUTDOWN;
237 	}
238 	mutex_unlock(&ring->lock);
239 	return ret;
240 }
241 
ring_alloc(struct tb_nhi * nhi,u32 hop,int size,bool transmit)242 static struct tb_ring *ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
243 				  bool transmit)
244 {
245 	struct tb_ring *ring = NULL;
246 	dev_info(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
247 		 transmit ? "TX" : "RX", hop, size);
248 
249 	mutex_lock(&nhi->lock);
250 	if (hop >= nhi->hop_count) {
251 		dev_WARN(&nhi->pdev->dev, "invalid hop: %d\n", hop);
252 		goto err;
253 	}
254 	if (transmit && nhi->tx_rings[hop]) {
255 		dev_WARN(&nhi->pdev->dev, "TX hop %d already allocated\n", hop);
256 		goto err;
257 	} else if (!transmit && nhi->rx_rings[hop]) {
258 		dev_WARN(&nhi->pdev->dev, "RX hop %d already allocated\n", hop);
259 		goto err;
260 	}
261 	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
262 	if (!ring)
263 		goto err;
264 
265 	mutex_init(&ring->lock);
266 	INIT_LIST_HEAD(&ring->queue);
267 	INIT_LIST_HEAD(&ring->in_flight);
268 	INIT_WORK(&ring->work, ring_work);
269 
270 	ring->nhi = nhi;
271 	ring->hop = hop;
272 	ring->is_tx = transmit;
273 	ring->size = size;
274 	ring->head = 0;
275 	ring->tail = 0;
276 	ring->running = false;
277 	ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
278 			size * sizeof(*ring->descriptors),
279 			&ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
280 	if (!ring->descriptors)
281 		goto err;
282 
283 	if (transmit)
284 		nhi->tx_rings[hop] = ring;
285 	else
286 		nhi->rx_rings[hop] = ring;
287 	mutex_unlock(&nhi->lock);
288 	return ring;
289 
290 err:
291 	if (ring)
292 		mutex_destroy(&ring->lock);
293 	kfree(ring);
294 	mutex_unlock(&nhi->lock);
295 	return NULL;
296 }
297 
ring_alloc_tx(struct tb_nhi * nhi,int hop,int size)298 struct tb_ring *ring_alloc_tx(struct tb_nhi *nhi, int hop, int size)
299 {
300 	return ring_alloc(nhi, hop, size, true);
301 }
302 
ring_alloc_rx(struct tb_nhi * nhi,int hop,int size)303 struct tb_ring *ring_alloc_rx(struct tb_nhi *nhi, int hop, int size)
304 {
305 	return ring_alloc(nhi, hop, size, false);
306 }
307 
308 /**
309  * ring_start() - enable a ring
310  *
311  * Must not be invoked in parallel with ring_stop().
312  */
ring_start(struct tb_ring * ring)313 void ring_start(struct tb_ring *ring)
314 {
315 	mutex_lock(&ring->nhi->lock);
316 	mutex_lock(&ring->lock);
317 	if (ring->running) {
318 		dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
319 		goto err;
320 	}
321 	dev_info(&ring->nhi->pdev->dev, "starting %s %d\n",
322 		 RING_TYPE(ring), ring->hop);
323 
324 	ring_iowrite64desc(ring, ring->descriptors_dma, 0);
325 	if (ring->is_tx) {
326 		ring_iowrite32desc(ring, ring->size, 12);
327 		ring_iowrite32options(ring, 0, 4); /* time releated ? */
328 		ring_iowrite32options(ring,
329 				      RING_FLAG_ENABLE | RING_FLAG_RAW, 0);
330 	} else {
331 		ring_iowrite32desc(ring,
332 				   (TB_FRAME_SIZE << 16) | ring->size, 12);
333 		ring_iowrite32options(ring, 0xffffffff, 4); /* SOF EOF mask */
334 		ring_iowrite32options(ring,
335 				      RING_FLAG_ENABLE | RING_FLAG_RAW, 0);
336 	}
337 	ring_interrupt_active(ring, true);
338 	ring->running = true;
339 err:
340 	mutex_unlock(&ring->lock);
341 	mutex_unlock(&ring->nhi->lock);
342 }
343 
344 
345 /**
346  * ring_stop() - shutdown a ring
347  *
348  * Must not be invoked from a callback.
349  *
350  * This method will disable the ring. Further calls to ring_tx/ring_rx will
351  * return -ESHUTDOWN until ring_stop has been called.
352  *
353  * All enqueued frames will be canceled and their callbacks will be executed
354  * with frame->canceled set to true (on the callback thread). This method
355  * returns only after all callback invocations have finished.
356  */
ring_stop(struct tb_ring * ring)357 void ring_stop(struct tb_ring *ring)
358 {
359 	mutex_lock(&ring->nhi->lock);
360 	mutex_lock(&ring->lock);
361 	dev_info(&ring->nhi->pdev->dev, "stopping %s %d\n",
362 		 RING_TYPE(ring), ring->hop);
363 	if (!ring->running) {
364 		dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
365 			 RING_TYPE(ring), ring->hop);
366 		goto err;
367 	}
368 	ring_interrupt_active(ring, false);
369 
370 	ring_iowrite32options(ring, 0, 0);
371 	ring_iowrite64desc(ring, 0, 0);
372 	ring_iowrite16desc(ring, 0, ring->is_tx ? 10 : 8);
373 	ring_iowrite32desc(ring, 0, 12);
374 	ring->head = 0;
375 	ring->tail = 0;
376 	ring->running = false;
377 
378 err:
379 	mutex_unlock(&ring->lock);
380 	mutex_unlock(&ring->nhi->lock);
381 
382 	/*
383 	 * schedule ring->work to invoke callbacks on all remaining frames.
384 	 */
385 	schedule_work(&ring->work);
386 	flush_work(&ring->work);
387 }
388 
389 /*
390  * ring_free() - free ring
391  *
392  * When this method returns all invocations of ring->callback will have
393  * finished.
394  *
395  * Ring must be stopped.
396  *
397  * Must NOT be called from ring_frame->callback!
398  */
ring_free(struct tb_ring * ring)399 void ring_free(struct tb_ring *ring)
400 {
401 	mutex_lock(&ring->nhi->lock);
402 	/*
403 	 * Dissociate the ring from the NHI. This also ensures that
404 	 * nhi_interrupt_work cannot reschedule ring->work.
405 	 */
406 	if (ring->is_tx)
407 		ring->nhi->tx_rings[ring->hop] = NULL;
408 	else
409 		ring->nhi->rx_rings[ring->hop] = NULL;
410 
411 	if (ring->running) {
412 		dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
413 			 RING_TYPE(ring), ring->hop);
414 	}
415 
416 	dma_free_coherent(&ring->nhi->pdev->dev,
417 			  ring->size * sizeof(*ring->descriptors),
418 			  ring->descriptors, ring->descriptors_dma);
419 
420 	ring->descriptors = NULL;
421 	ring->descriptors_dma = 0;
422 
423 
424 	dev_info(&ring->nhi->pdev->dev,
425 		 "freeing %s %d\n",
426 		 RING_TYPE(ring),
427 		 ring->hop);
428 
429 	mutex_unlock(&ring->nhi->lock);
430 	/**
431 	 * ring->work can no longer be scheduled (it is scheduled only by
432 	 * nhi_interrupt_work and ring_stop). Wait for it to finish before
433 	 * freeing the ring.
434 	 */
435 	flush_work(&ring->work);
436 	mutex_destroy(&ring->lock);
437 	kfree(ring);
438 }
439 
nhi_interrupt_work(struct work_struct * work)440 static void nhi_interrupt_work(struct work_struct *work)
441 {
442 	struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
443 	int value = 0; /* Suppress uninitialized usage warning. */
444 	int bit;
445 	int hop = -1;
446 	int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
447 	struct tb_ring *ring;
448 
449 	mutex_lock(&nhi->lock);
450 
451 	/*
452 	 * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
453 	 * (TX, RX, RX overflow). We iterate over the bits and read a new
454 	 * dwords as required. The registers are cleared on read.
455 	 */
456 	for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
457 		if (bit % 32 == 0)
458 			value = ioread32(nhi->iobase
459 					 + REG_RING_NOTIFY_BASE
460 					 + 4 * (bit / 32));
461 		if (++hop == nhi->hop_count) {
462 			hop = 0;
463 			type++;
464 		}
465 		if ((value & (1 << (bit % 32))) == 0)
466 			continue;
467 		if (type == 2) {
468 			dev_warn(&nhi->pdev->dev,
469 				 "RX overflow for ring %d\n",
470 				 hop);
471 			continue;
472 		}
473 		if (type == 0)
474 			ring = nhi->tx_rings[hop];
475 		else
476 			ring = nhi->rx_rings[hop];
477 		if (ring == NULL) {
478 			dev_warn(&nhi->pdev->dev,
479 				 "got interrupt for inactive %s ring %d\n",
480 				 type ? "RX" : "TX",
481 				 hop);
482 			continue;
483 		}
484 		/* we do not check ring->running, this is done in ring->work */
485 		schedule_work(&ring->work);
486 	}
487 	mutex_unlock(&nhi->lock);
488 }
489 
nhi_msi(int irq,void * data)490 static irqreturn_t nhi_msi(int irq, void *data)
491 {
492 	struct tb_nhi *nhi = data;
493 	schedule_work(&nhi->interrupt_work);
494 	return IRQ_HANDLED;
495 }
496 
nhi_suspend_noirq(struct device * dev)497 static int nhi_suspend_noirq(struct device *dev)
498 {
499 	struct pci_dev *pdev = to_pci_dev(dev);
500 	struct tb *tb = pci_get_drvdata(pdev);
501 	thunderbolt_suspend(tb);
502 	return 0;
503 }
504 
nhi_resume_noirq(struct device * dev)505 static int nhi_resume_noirq(struct device *dev)
506 {
507 	struct pci_dev *pdev = to_pci_dev(dev);
508 	struct tb *tb = pci_get_drvdata(pdev);
509 	thunderbolt_resume(tb);
510 	return 0;
511 }
512 
nhi_shutdown(struct tb_nhi * nhi)513 static void nhi_shutdown(struct tb_nhi *nhi)
514 {
515 	int i;
516 	dev_info(&nhi->pdev->dev, "shutdown\n");
517 
518 	for (i = 0; i < nhi->hop_count; i++) {
519 		if (nhi->tx_rings[i])
520 			dev_WARN(&nhi->pdev->dev,
521 				 "TX ring %d is still active\n", i);
522 		if (nhi->rx_rings[i])
523 			dev_WARN(&nhi->pdev->dev,
524 				 "RX ring %d is still active\n", i);
525 	}
526 	nhi_disable_interrupts(nhi);
527 	/*
528 	 * We have to release the irq before calling flush_work. Otherwise an
529 	 * already executing IRQ handler could call schedule_work again.
530 	 */
531 	devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
532 	flush_work(&nhi->interrupt_work);
533 	mutex_destroy(&nhi->lock);
534 }
535 
nhi_probe(struct pci_dev * pdev,const struct pci_device_id * id)536 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
537 {
538 	struct tb_nhi *nhi;
539 	struct tb *tb;
540 	int res;
541 
542 	res = pcim_enable_device(pdev);
543 	if (res) {
544 		dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
545 		return res;
546 	}
547 
548 	res = pci_enable_msi(pdev);
549 	if (res) {
550 		dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
551 		return res;
552 	}
553 
554 	res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
555 	if (res) {
556 		dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
557 		return res;
558 	}
559 
560 	nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
561 	if (!nhi)
562 		return -ENOMEM;
563 
564 	nhi->pdev = pdev;
565 	/* cannot fail - table is allocated bin pcim_iomap_regions */
566 	nhi->iobase = pcim_iomap_table(pdev)[0];
567 	nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
568 	if (nhi->hop_count != 12 && nhi->hop_count != 32)
569 		dev_warn(&pdev->dev, "unexpected hop count: %d\n",
570 			 nhi->hop_count);
571 	INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
572 
573 	nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
574 				     sizeof(*nhi->tx_rings), GFP_KERNEL);
575 	nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
576 				     sizeof(*nhi->rx_rings), GFP_KERNEL);
577 	if (!nhi->tx_rings || !nhi->rx_rings)
578 		return -ENOMEM;
579 
580 	nhi_disable_interrupts(nhi); /* In case someone left them on. */
581 	res = devm_request_irq(&pdev->dev, pdev->irq, nhi_msi,
582 			       IRQF_NO_SUSPEND, /* must work during _noirq */
583 			       "thunderbolt", nhi);
584 	if (res) {
585 		dev_err(&pdev->dev, "request_irq failed, aborting\n");
586 		return res;
587 	}
588 
589 	mutex_init(&nhi->lock);
590 
591 	pci_set_master(pdev);
592 
593 	/* magic value - clock related? */
594 	iowrite32(3906250 / 10000, nhi->iobase + 0x38c00);
595 
596 	dev_info(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
597 	tb = thunderbolt_alloc_and_start(nhi);
598 	if (!tb) {
599 		/*
600 		 * At this point the RX/TX rings might already have been
601 		 * activated. Do a proper shutdown.
602 		 */
603 		nhi_shutdown(nhi);
604 		return -EIO;
605 	}
606 	pci_set_drvdata(pdev, tb);
607 
608 	return 0;
609 }
610 
nhi_remove(struct pci_dev * pdev)611 static void nhi_remove(struct pci_dev *pdev)
612 {
613 	struct tb *tb = pci_get_drvdata(pdev);
614 	struct tb_nhi *nhi = tb->nhi;
615 	thunderbolt_shutdown_and_free(tb);
616 	nhi_shutdown(nhi);
617 }
618 
619 /*
620  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
621  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
622  * resume_noirq until we are done.
623  */
624 static const struct dev_pm_ops nhi_pm_ops = {
625 	.suspend_noirq = nhi_suspend_noirq,
626 	.resume_noirq = nhi_resume_noirq,
627 	.freeze_noirq = nhi_suspend_noirq, /*
628 					    * we just disable hotplug, the
629 					    * pci-tunnels stay alive.
630 					    */
631 	.thaw_noirq = nhi_resume_noirq,
632 	.restore_noirq = nhi_resume_noirq,
633 };
634 
635 static struct pci_device_id nhi_ids[] = {
636 	/*
637 	 * We have to specify class, the TB bridges use the same device and
638 	 * vendor (sub)id on gen 1 and gen 2 controllers.
639 	 */
640 	{
641 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
642 		.vendor = PCI_VENDOR_ID_INTEL,
643 		.device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
644 		.subvendor = 0x2222, .subdevice = 0x1111,
645 	},
646 	{
647 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
648 		.vendor = PCI_VENDOR_ID_INTEL,
649 		.device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
650 		.subvendor = 0x2222, .subdevice = 0x1111,
651 	},
652 	{
653 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
654 		.vendor = PCI_VENDOR_ID_INTEL,
655 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
656 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
657 	},
658 	{
659 		.class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
660 		.vendor = PCI_VENDOR_ID_INTEL,
661 		.device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
662 		.subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
663 	},
664 	{ 0,}
665 };
666 
667 MODULE_DEVICE_TABLE(pci, nhi_ids);
668 MODULE_LICENSE("GPL");
669 
670 static struct pci_driver nhi_driver = {
671 	.name = "thunderbolt",
672 	.id_table = nhi_ids,
673 	.probe = nhi_probe,
674 	.remove = nhi_remove,
675 	.driver.pm = &nhi_pm_ops,
676 };
677 
nhi_init(void)678 static int __init nhi_init(void)
679 {
680 	if (!dmi_match(DMI_BOARD_VENDOR, "Apple Inc."))
681 		return -ENOSYS;
682 	return pci_register_driver(&nhi_driver);
683 }
684 
nhi_unload(void)685 static void __exit nhi_unload(void)
686 {
687 	pci_unregister_driver(&nhi_driver);
688 }
689 
690 module_init(nhi_init);
691 module_exit(nhi_unload);
692