1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
smp_task_timedout(unsigned long _task)44 static void smp_task_timedout(unsigned long _task)
45 {
46 struct sas_task *task = (void *) _task;
47 unsigned long flags;
48
49 spin_lock_irqsave(&task->task_state_lock, flags);
50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54 complete(&task->slow_task->completion);
55 }
56
smp_task_done(struct sas_task * task)57 static void smp_task_done(struct sas_task *task)
58 {
59 if (!del_timer(&task->slow_task->timer))
60 return;
61 complete(&task->slow_task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 void *resp, int resp_size)
69 {
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
80 }
81
82 task = sas_alloc_slow_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
86 }
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 sg_init_one(&task->smp_task.smp_req, req, req_size);
90 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92 task->task_done = smp_task_done;
93
94 task->slow_task->timer.data = (unsigned long) task;
95 task->slow_task->timer.function = smp_task_timedout;
96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->slow_task->timer);
98
99 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100
101 if (res) {
102 del_timer(&task->slow_task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
105 }
106
107 wait_for_completion(&task->slow_task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
115 }
116 }
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
121 }
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
128 }
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
133 }
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
145 }
146 }
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
152 }
153
154 /* ---------- Allocations ---------- */
155
alloc_smp_req(int size)156 static inline void *alloc_smp_req(int size)
157 {
158 u8 *p = kzalloc(size, GFP_KERNEL);
159 if (p)
160 p[0] = SMP_REQUEST;
161 return p;
162 }
163
alloc_smp_resp(int size)164 static inline void *alloc_smp_resp(int size)
165 {
166 return kzalloc(size, GFP_KERNEL);
167 }
168
sas_route_char(struct domain_device * dev,struct ex_phy * phy)169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171 switch (phy->routing_attr) {
172 case TABLE_ROUTING:
173 if (dev->ex_dev.t2t_supp)
174 return 'U';
175 else
176 return 'T';
177 case DIRECT_ROUTING:
178 return 'D';
179 case SUBTRACTIVE_ROUTING:
180 return 'S';
181 default:
182 return '?';
183 }
184 }
185
to_dev_type(struct discover_resp * dr)186 static enum sas_device_type to_dev_type(struct discover_resp *dr)
187 {
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
190 */
191 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 return SAS_SATA_PENDING;
194 else
195 return dr->attached_dev_type;
196 }
197
sas_set_ex_phy(struct domain_device * dev,int phy_id,void * rsp)198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200 enum sas_device_type dev_type;
201 enum sas_linkrate linkrate;
202 u8 sas_addr[SAS_ADDR_SIZE];
203 struct smp_resp *resp = rsp;
204 struct discover_resp *dr = &resp->disc;
205 struct sas_ha_struct *ha = dev->port->ha;
206 struct expander_device *ex = &dev->ex_dev;
207 struct ex_phy *phy = &ex->ex_phy[phy_id];
208 struct sas_rphy *rphy = dev->rphy;
209 bool new_phy = !phy->phy;
210 char *type;
211
212 if (new_phy) {
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 return;
215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217 /* FIXME: error_handling */
218 BUG_ON(!phy->phy);
219 }
220
221 switch (resp->result) {
222 case SMP_RESP_PHY_VACANT:
223 phy->phy_state = PHY_VACANT;
224 break;
225 default:
226 phy->phy_state = PHY_NOT_PRESENT;
227 break;
228 case SMP_RESP_FUNC_ACC:
229 phy->phy_state = PHY_EMPTY; /* do not know yet */
230 break;
231 }
232
233 /* check if anything important changed to squelch debug */
234 dev_type = phy->attached_dev_type;
235 linkrate = phy->linkrate;
236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238 /* Handle vacant phy - rest of dr data is not valid so skip it */
239 if (phy->phy_state == PHY_VACANT) {
240 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241 phy->attached_dev_type = SAS_PHY_UNUSED;
242 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243 phy->phy_id = phy_id;
244 goto skip;
245 } else
246 goto out;
247 }
248
249 phy->attached_dev_type = to_dev_type(dr);
250 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
251 goto out;
252 phy->phy_id = phy_id;
253 phy->linkrate = dr->linkrate;
254 phy->attached_sata_host = dr->attached_sata_host;
255 phy->attached_sata_dev = dr->attached_sata_dev;
256 phy->attached_sata_ps = dr->attached_sata_ps;
257 phy->attached_iproto = dr->iproto << 1;
258 phy->attached_tproto = dr->tproto << 1;
259 /* help some expanders that fail to zero sas_address in the 'no
260 * device' case
261 */
262 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
265 else
266 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267 phy->attached_phy_id = dr->attached_phy_id;
268 phy->phy_change_count = dr->change_count;
269 phy->routing_attr = dr->routing_attr;
270 phy->virtual = dr->virtual;
271 phy->last_da_index = -1;
272
273 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274 phy->phy->identify.device_type = dr->attached_dev_type;
275 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276 phy->phy->identify.target_port_protocols = phy->attached_tproto;
277 if (!phy->attached_tproto && dr->attached_sata_dev)
278 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279 phy->phy->identify.phy_identifier = phy_id;
280 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282 phy->phy->minimum_linkrate = dr->pmin_linkrate;
283 phy->phy->maximum_linkrate = dr->pmax_linkrate;
284 phy->phy->negotiated_linkrate = phy->linkrate;
285 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
286
287 skip:
288 if (new_phy)
289 if (sas_phy_add(phy->phy)) {
290 sas_phy_free(phy->phy);
291 return;
292 }
293
294 out:
295 switch (phy->attached_dev_type) {
296 case SAS_SATA_PENDING:
297 type = "stp pending";
298 break;
299 case SAS_PHY_UNUSED:
300 type = "no device";
301 break;
302 case SAS_END_DEVICE:
303 if (phy->attached_iproto) {
304 if (phy->attached_tproto)
305 type = "host+target";
306 else
307 type = "host";
308 } else {
309 if (dr->attached_sata_dev)
310 type = "stp";
311 else
312 type = "ssp";
313 }
314 break;
315 case SAS_EDGE_EXPANDER_DEVICE:
316 case SAS_FANOUT_EXPANDER_DEVICE:
317 type = "smp";
318 break;
319 default:
320 type = "unknown";
321 }
322
323 /* this routine is polled by libata error recovery so filter
324 * unimportant messages
325 */
326 if (new_phy || phy->attached_dev_type != dev_type ||
327 phy->linkrate != linkrate ||
328 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
329 /* pass */;
330 else
331 return;
332
333 /* if the attached device type changed and ata_eh is active,
334 * make sure we run revalidation when eh completes (see:
335 * sas_enable_revalidation)
336 */
337 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
338 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
339
340 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
341 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
342 SAS_ADDR(dev->sas_addr), phy->phy_id,
343 sas_route_char(dev, phy), phy->linkrate,
344 SAS_ADDR(phy->attached_sas_addr), type);
345 }
346
347 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)348 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
349 {
350 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
351 struct domain_device *dev;
352 struct sas_rphy *rphy;
353
354 if (!ex_phy->port)
355 return NULL;
356
357 rphy = ex_phy->port->rphy;
358 if (!rphy)
359 return NULL;
360
361 dev = sas_find_dev_by_rphy(rphy);
362
363 if (dev && dev_is_sata(dev))
364 return dev;
365
366 return NULL;
367 }
368
369 #define DISCOVER_REQ_SIZE 16
370 #define DISCOVER_RESP_SIZE 56
371
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,u8 * disc_resp,int single)372 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
373 u8 *disc_resp, int single)
374 {
375 struct discover_resp *dr;
376 int res;
377
378 disc_req[9] = single;
379
380 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
381 disc_resp, DISCOVER_RESP_SIZE);
382 if (res)
383 return res;
384 dr = &((struct smp_resp *)disc_resp)->disc;
385 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
386 sas_printk("Found loopback topology, just ignore it!\n");
387 return 0;
388 }
389 sas_set_ex_phy(dev, single, disc_resp);
390 return 0;
391 }
392
sas_ex_phy_discover(struct domain_device * dev,int single)393 int sas_ex_phy_discover(struct domain_device *dev, int single)
394 {
395 struct expander_device *ex = &dev->ex_dev;
396 int res = 0;
397 u8 *disc_req;
398 u8 *disc_resp;
399
400 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
401 if (!disc_req)
402 return -ENOMEM;
403
404 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
405 if (!disc_resp) {
406 kfree(disc_req);
407 return -ENOMEM;
408 }
409
410 disc_req[1] = SMP_DISCOVER;
411
412 if (0 <= single && single < ex->num_phys) {
413 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
414 } else {
415 int i;
416
417 for (i = 0; i < ex->num_phys; i++) {
418 res = sas_ex_phy_discover_helper(dev, disc_req,
419 disc_resp, i);
420 if (res)
421 goto out_err;
422 }
423 }
424 out_err:
425 kfree(disc_resp);
426 kfree(disc_req);
427 return res;
428 }
429
sas_expander_discover(struct domain_device * dev)430 static int sas_expander_discover(struct domain_device *dev)
431 {
432 struct expander_device *ex = &dev->ex_dev;
433 int res = -ENOMEM;
434
435 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
436 if (!ex->ex_phy)
437 return -ENOMEM;
438
439 res = sas_ex_phy_discover(dev, -1);
440 if (res)
441 goto out_err;
442
443 return 0;
444 out_err:
445 kfree(ex->ex_phy);
446 ex->ex_phy = NULL;
447 return res;
448 }
449
450 #define MAX_EXPANDER_PHYS 128
451
ex_assign_report_general(struct domain_device * dev,struct smp_resp * resp)452 static void ex_assign_report_general(struct domain_device *dev,
453 struct smp_resp *resp)
454 {
455 struct report_general_resp *rg = &resp->rg;
456
457 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
458 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
459 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
460 dev->ex_dev.t2t_supp = rg->t2t_supp;
461 dev->ex_dev.conf_route_table = rg->conf_route_table;
462 dev->ex_dev.configuring = rg->configuring;
463 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
464 }
465
466 #define RG_REQ_SIZE 8
467 #define RG_RESP_SIZE 32
468
sas_ex_general(struct domain_device * dev)469 static int sas_ex_general(struct domain_device *dev)
470 {
471 u8 *rg_req;
472 struct smp_resp *rg_resp;
473 int res;
474 int i;
475
476 rg_req = alloc_smp_req(RG_REQ_SIZE);
477 if (!rg_req)
478 return -ENOMEM;
479
480 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
481 if (!rg_resp) {
482 kfree(rg_req);
483 return -ENOMEM;
484 }
485
486 rg_req[1] = SMP_REPORT_GENERAL;
487
488 for (i = 0; i < 5; i++) {
489 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
490 RG_RESP_SIZE);
491
492 if (res) {
493 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
494 SAS_ADDR(dev->sas_addr), res);
495 goto out;
496 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
497 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
498 SAS_ADDR(dev->sas_addr), rg_resp->result);
499 res = rg_resp->result;
500 goto out;
501 }
502
503 ex_assign_report_general(dev, rg_resp);
504
505 if (dev->ex_dev.configuring) {
506 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
507 SAS_ADDR(dev->sas_addr));
508 schedule_timeout_interruptible(5*HZ);
509 } else
510 break;
511 }
512 out:
513 kfree(rg_req);
514 kfree(rg_resp);
515 return res;
516 }
517
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)518 static void ex_assign_manuf_info(struct domain_device *dev, void
519 *_mi_resp)
520 {
521 u8 *mi_resp = _mi_resp;
522 struct sas_rphy *rphy = dev->rphy;
523 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
524
525 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
526 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
527 memcpy(edev->product_rev, mi_resp + 36,
528 SAS_EXPANDER_PRODUCT_REV_LEN);
529
530 if (mi_resp[8] & 1) {
531 memcpy(edev->component_vendor_id, mi_resp + 40,
532 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
533 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
534 edev->component_revision_id = mi_resp[50];
535 }
536 }
537
538 #define MI_REQ_SIZE 8
539 #define MI_RESP_SIZE 64
540
sas_ex_manuf_info(struct domain_device * dev)541 static int sas_ex_manuf_info(struct domain_device *dev)
542 {
543 u8 *mi_req;
544 u8 *mi_resp;
545 int res;
546
547 mi_req = alloc_smp_req(MI_REQ_SIZE);
548 if (!mi_req)
549 return -ENOMEM;
550
551 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
552 if (!mi_resp) {
553 kfree(mi_req);
554 return -ENOMEM;
555 }
556
557 mi_req[1] = SMP_REPORT_MANUF_INFO;
558
559 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
560 if (res) {
561 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
562 SAS_ADDR(dev->sas_addr), res);
563 goto out;
564 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
565 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
566 SAS_ADDR(dev->sas_addr), mi_resp[2]);
567 goto out;
568 }
569
570 ex_assign_manuf_info(dev, mi_resp);
571 out:
572 kfree(mi_req);
573 kfree(mi_resp);
574 return res;
575 }
576
577 #define PC_REQ_SIZE 44
578 #define PC_RESP_SIZE 8
579
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)580 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
581 enum phy_func phy_func,
582 struct sas_phy_linkrates *rates)
583 {
584 u8 *pc_req;
585 u8 *pc_resp;
586 int res;
587
588 pc_req = alloc_smp_req(PC_REQ_SIZE);
589 if (!pc_req)
590 return -ENOMEM;
591
592 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
593 if (!pc_resp) {
594 kfree(pc_req);
595 return -ENOMEM;
596 }
597
598 pc_req[1] = SMP_PHY_CONTROL;
599 pc_req[9] = phy_id;
600 pc_req[10]= phy_func;
601 if (rates) {
602 pc_req[32] = rates->minimum_linkrate << 4;
603 pc_req[33] = rates->maximum_linkrate << 4;
604 }
605
606 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
607
608 kfree(pc_resp);
609 kfree(pc_req);
610 return res;
611 }
612
sas_ex_disable_phy(struct domain_device * dev,int phy_id)613 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
614 {
615 struct expander_device *ex = &dev->ex_dev;
616 struct ex_phy *phy = &ex->ex_phy[phy_id];
617
618 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
619 phy->linkrate = SAS_PHY_DISABLED;
620 }
621
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)622 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
623 {
624 struct expander_device *ex = &dev->ex_dev;
625 int i;
626
627 for (i = 0; i < ex->num_phys; i++) {
628 struct ex_phy *phy = &ex->ex_phy[i];
629
630 if (phy->phy_state == PHY_VACANT ||
631 phy->phy_state == PHY_NOT_PRESENT)
632 continue;
633
634 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
635 sas_ex_disable_phy(dev, i);
636 }
637 }
638
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)639 static int sas_dev_present_in_domain(struct asd_sas_port *port,
640 u8 *sas_addr)
641 {
642 struct domain_device *dev;
643
644 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
645 return 1;
646 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
647 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
648 return 1;
649 }
650 return 0;
651 }
652
653 #define RPEL_REQ_SIZE 16
654 #define RPEL_RESP_SIZE 32
sas_smp_get_phy_events(struct sas_phy * phy)655 int sas_smp_get_phy_events(struct sas_phy *phy)
656 {
657 int res;
658 u8 *req;
659 u8 *resp;
660 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
661 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
662
663 req = alloc_smp_req(RPEL_REQ_SIZE);
664 if (!req)
665 return -ENOMEM;
666
667 resp = alloc_smp_resp(RPEL_RESP_SIZE);
668 if (!resp) {
669 kfree(req);
670 return -ENOMEM;
671 }
672
673 req[1] = SMP_REPORT_PHY_ERR_LOG;
674 req[9] = phy->number;
675
676 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
677 resp, RPEL_RESP_SIZE);
678
679 if (res)
680 goto out;
681
682 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
683 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
684 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
685 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
686
687 out:
688 kfree(req);
689 kfree(resp);
690 return res;
691
692 }
693
694 #ifdef CONFIG_SCSI_SAS_ATA
695
696 #define RPS_REQ_SIZE 16
697 #define RPS_RESP_SIZE 60
698
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_resp * rps_resp)699 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
700 struct smp_resp *rps_resp)
701 {
702 int res;
703 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
704 u8 *resp = (u8 *)rps_resp;
705
706 if (!rps_req)
707 return -ENOMEM;
708
709 rps_req[1] = SMP_REPORT_PHY_SATA;
710 rps_req[9] = phy_id;
711
712 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
713 rps_resp, RPS_RESP_SIZE);
714
715 /* 0x34 is the FIS type for the D2H fis. There's a potential
716 * standards cockup here. sas-2 explicitly specifies the FIS
717 * should be encoded so that FIS type is in resp[24].
718 * However, some expanders endian reverse this. Undo the
719 * reversal here */
720 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
721 int i;
722
723 for (i = 0; i < 5; i++) {
724 int j = 24 + (i*4);
725 u8 a, b;
726 a = resp[j + 0];
727 b = resp[j + 1];
728 resp[j + 0] = resp[j + 3];
729 resp[j + 1] = resp[j + 2];
730 resp[j + 2] = b;
731 resp[j + 3] = a;
732 }
733 }
734
735 kfree(rps_req);
736 return res;
737 }
738 #endif
739
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)740 static void sas_ex_get_linkrate(struct domain_device *parent,
741 struct domain_device *child,
742 struct ex_phy *parent_phy)
743 {
744 struct expander_device *parent_ex = &parent->ex_dev;
745 struct sas_port *port;
746 int i;
747
748 child->pathways = 0;
749
750 port = parent_phy->port;
751
752 for (i = 0; i < parent_ex->num_phys; i++) {
753 struct ex_phy *phy = &parent_ex->ex_phy[i];
754
755 if (phy->phy_state == PHY_VACANT ||
756 phy->phy_state == PHY_NOT_PRESENT)
757 continue;
758
759 if (SAS_ADDR(phy->attached_sas_addr) ==
760 SAS_ADDR(child->sas_addr)) {
761
762 child->min_linkrate = min(parent->min_linkrate,
763 phy->linkrate);
764 child->max_linkrate = max(parent->max_linkrate,
765 phy->linkrate);
766 child->pathways++;
767 sas_port_add_phy(port, phy->phy);
768 }
769 }
770 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
771 child->pathways = min(child->pathways, parent->pathways);
772 }
773
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)774 static struct domain_device *sas_ex_discover_end_dev(
775 struct domain_device *parent, int phy_id)
776 {
777 struct expander_device *parent_ex = &parent->ex_dev;
778 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
779 struct domain_device *child = NULL;
780 struct sas_rphy *rphy;
781 int res;
782
783 if (phy->attached_sata_host || phy->attached_sata_ps)
784 return NULL;
785
786 child = sas_alloc_device();
787 if (!child)
788 return NULL;
789
790 kref_get(&parent->kref);
791 child->parent = parent;
792 child->port = parent->port;
793 child->iproto = phy->attached_iproto;
794 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
795 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
796 if (!phy->port) {
797 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
798 if (unlikely(!phy->port))
799 goto out_err;
800 if (unlikely(sas_port_add(phy->port) != 0)) {
801 sas_port_free(phy->port);
802 goto out_err;
803 }
804 }
805 sas_ex_get_linkrate(parent, child, phy);
806 sas_device_set_phy(child, phy->port);
807
808 #ifdef CONFIG_SCSI_SAS_ATA
809 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
810 res = sas_get_ata_info(child, phy);
811 if (res)
812 goto out_free;
813
814 sas_init_dev(child);
815 res = sas_ata_init(child);
816 if (res)
817 goto out_free;
818 rphy = sas_end_device_alloc(phy->port);
819 if (!rphy)
820 goto out_free;
821
822 child->rphy = rphy;
823 get_device(&rphy->dev);
824
825 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
826
827 res = sas_discover_sata(child);
828 if (res) {
829 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
830 "%016llx:0x%x returned 0x%x\n",
831 SAS_ADDR(child->sas_addr),
832 SAS_ADDR(parent->sas_addr), phy_id, res);
833 goto out_list_del;
834 }
835 } else
836 #endif
837 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
838 child->dev_type = SAS_END_DEVICE;
839 rphy = sas_end_device_alloc(phy->port);
840 /* FIXME: error handling */
841 if (unlikely(!rphy))
842 goto out_free;
843 child->tproto = phy->attached_tproto;
844 sas_init_dev(child);
845
846 child->rphy = rphy;
847 get_device(&rphy->dev);
848 sas_fill_in_rphy(child, rphy);
849
850 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
851
852 res = sas_discover_end_dev(child);
853 if (res) {
854 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
855 "at %016llx:0x%x returned 0x%x\n",
856 SAS_ADDR(child->sas_addr),
857 SAS_ADDR(parent->sas_addr), phy_id, res);
858 goto out_list_del;
859 }
860 } else {
861 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
862 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
863 phy_id);
864 goto out_free;
865 }
866
867 list_add_tail(&child->siblings, &parent_ex->children);
868 return child;
869
870 out_list_del:
871 sas_rphy_free(child->rphy);
872 list_del(&child->disco_list_node);
873 spin_lock_irq(&parent->port->dev_list_lock);
874 list_del(&child->dev_list_node);
875 spin_unlock_irq(&parent->port->dev_list_lock);
876 out_free:
877 sas_port_delete(phy->port);
878 out_err:
879 phy->port = NULL;
880 sas_put_device(child);
881 return NULL;
882 }
883
884 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)885 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
886 {
887 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
888 int i;
889
890 for (i = 0; i < parent->ex_dev.num_phys; i++) {
891 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
892
893 if (ephy == phy)
894 continue;
895
896 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
897 SAS_ADDR_SIZE) && ephy->port) {
898 sas_port_add_phy(ephy->port, phy->phy);
899 phy->port = ephy->port;
900 phy->phy_state = PHY_DEVICE_DISCOVERED;
901 return true;
902 }
903 }
904
905 return false;
906 }
907
sas_ex_discover_expander(struct domain_device * parent,int phy_id)908 static struct domain_device *sas_ex_discover_expander(
909 struct domain_device *parent, int phy_id)
910 {
911 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
912 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
913 struct domain_device *child = NULL;
914 struct sas_rphy *rphy;
915 struct sas_expander_device *edev;
916 struct asd_sas_port *port;
917 int res;
918
919 if (phy->routing_attr == DIRECT_ROUTING) {
920 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
921 "allowed\n",
922 SAS_ADDR(parent->sas_addr), phy_id,
923 SAS_ADDR(phy->attached_sas_addr),
924 phy->attached_phy_id);
925 return NULL;
926 }
927 child = sas_alloc_device();
928 if (!child)
929 return NULL;
930
931 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
932 /* FIXME: better error handling */
933 BUG_ON(sas_port_add(phy->port) != 0);
934
935
936 switch (phy->attached_dev_type) {
937 case SAS_EDGE_EXPANDER_DEVICE:
938 rphy = sas_expander_alloc(phy->port,
939 SAS_EDGE_EXPANDER_DEVICE);
940 break;
941 case SAS_FANOUT_EXPANDER_DEVICE:
942 rphy = sas_expander_alloc(phy->port,
943 SAS_FANOUT_EXPANDER_DEVICE);
944 break;
945 default:
946 rphy = NULL; /* shut gcc up */
947 BUG();
948 }
949 port = parent->port;
950 child->rphy = rphy;
951 get_device(&rphy->dev);
952 edev = rphy_to_expander_device(rphy);
953 child->dev_type = phy->attached_dev_type;
954 kref_get(&parent->kref);
955 child->parent = parent;
956 child->port = port;
957 child->iproto = phy->attached_iproto;
958 child->tproto = phy->attached_tproto;
959 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
960 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
961 sas_ex_get_linkrate(parent, child, phy);
962 edev->level = parent_ex->level + 1;
963 parent->port->disc.max_level = max(parent->port->disc.max_level,
964 edev->level);
965 sas_init_dev(child);
966 sas_fill_in_rphy(child, rphy);
967 sas_rphy_add(rphy);
968
969 spin_lock_irq(&parent->port->dev_list_lock);
970 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
971 spin_unlock_irq(&parent->port->dev_list_lock);
972
973 res = sas_discover_expander(child);
974 if (res) {
975 sas_rphy_delete(rphy);
976 spin_lock_irq(&parent->port->dev_list_lock);
977 list_del(&child->dev_list_node);
978 spin_unlock_irq(&parent->port->dev_list_lock);
979 sas_put_device(child);
980 return NULL;
981 }
982 list_add_tail(&child->siblings, &parent->ex_dev.children);
983 return child;
984 }
985
sas_ex_discover_dev(struct domain_device * dev,int phy_id)986 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
987 {
988 struct expander_device *ex = &dev->ex_dev;
989 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
990 struct domain_device *child = NULL;
991 int res = 0;
992
993 /* Phy state */
994 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
995 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
996 res = sas_ex_phy_discover(dev, phy_id);
997 if (res)
998 return res;
999 }
1000
1001 /* Parent and domain coherency */
1002 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1003 SAS_ADDR(dev->port->sas_addr))) {
1004 sas_add_parent_port(dev, phy_id);
1005 return 0;
1006 }
1007 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1008 SAS_ADDR(dev->parent->sas_addr))) {
1009 sas_add_parent_port(dev, phy_id);
1010 if (ex_phy->routing_attr == TABLE_ROUTING)
1011 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1012 return 0;
1013 }
1014
1015 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1016 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1017
1018 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1019 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1020 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1021 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1022 }
1023 return 0;
1024 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1025 return 0;
1026
1027 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1028 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1029 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1030 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1031 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1032 "phy 0x%x\n", ex_phy->attached_dev_type,
1033 SAS_ADDR(dev->sas_addr),
1034 phy_id);
1035 return 0;
1036 }
1037
1038 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1039 if (res) {
1040 SAS_DPRINTK("configure routing for dev %016llx "
1041 "reported 0x%x. Forgotten\n",
1042 SAS_ADDR(ex_phy->attached_sas_addr), res);
1043 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1044 return res;
1045 }
1046
1047 if (sas_ex_join_wide_port(dev, phy_id)) {
1048 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1049 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1050 return res;
1051 }
1052
1053 switch (ex_phy->attached_dev_type) {
1054 case SAS_END_DEVICE:
1055 case SAS_SATA_PENDING:
1056 child = sas_ex_discover_end_dev(dev, phy_id);
1057 break;
1058 case SAS_FANOUT_EXPANDER_DEVICE:
1059 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1060 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1061 "attached to ex %016llx phy 0x%x\n",
1062 SAS_ADDR(ex_phy->attached_sas_addr),
1063 ex_phy->attached_phy_id,
1064 SAS_ADDR(dev->sas_addr),
1065 phy_id);
1066 sas_ex_disable_phy(dev, phy_id);
1067 break;
1068 } else
1069 memcpy(dev->port->disc.fanout_sas_addr,
1070 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1071 /* fallthrough */
1072 case SAS_EDGE_EXPANDER_DEVICE:
1073 child = sas_ex_discover_expander(dev, phy_id);
1074 break;
1075 default:
1076 break;
1077 }
1078
1079 if (child) {
1080 int i;
1081
1082 for (i = 0; i < ex->num_phys; i++) {
1083 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1084 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1085 continue;
1086 /*
1087 * Due to races, the phy might not get added to the
1088 * wide port, so we add the phy to the wide port here.
1089 */
1090 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1091 SAS_ADDR(child->sas_addr)) {
1092 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1093 if (sas_ex_join_wide_port(dev, i))
1094 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1095 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1096
1097 }
1098 }
1099 }
1100
1101 return res;
1102 }
1103
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1104 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1105 {
1106 struct expander_device *ex = &dev->ex_dev;
1107 int i;
1108
1109 for (i = 0; i < ex->num_phys; i++) {
1110 struct ex_phy *phy = &ex->ex_phy[i];
1111
1112 if (phy->phy_state == PHY_VACANT ||
1113 phy->phy_state == PHY_NOT_PRESENT)
1114 continue;
1115
1116 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1117 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1118 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1119
1120 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1121
1122 return 1;
1123 }
1124 }
1125 return 0;
1126 }
1127
sas_check_level_subtractive_boundary(struct domain_device * dev)1128 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1129 {
1130 struct expander_device *ex = &dev->ex_dev;
1131 struct domain_device *child;
1132 u8 sub_addr[8] = {0, };
1133
1134 list_for_each_entry(child, &ex->children, siblings) {
1135 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1136 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1137 continue;
1138 if (sub_addr[0] == 0) {
1139 sas_find_sub_addr(child, sub_addr);
1140 continue;
1141 } else {
1142 u8 s2[8];
1143
1144 if (sas_find_sub_addr(child, s2) &&
1145 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1146
1147 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1148 "diverges from subtractive "
1149 "boundary %016llx\n",
1150 SAS_ADDR(dev->sas_addr),
1151 SAS_ADDR(child->sas_addr),
1152 SAS_ADDR(s2),
1153 SAS_ADDR(sub_addr));
1154
1155 sas_ex_disable_port(child, s2);
1156 }
1157 }
1158 }
1159 return 0;
1160 }
1161 /**
1162 * sas_ex_discover_devices -- discover devices attached to this expander
1163 * dev: pointer to the expander domain device
1164 * single: if you want to do a single phy, else set to -1;
1165 *
1166 * Configure this expander for use with its devices and register the
1167 * devices of this expander.
1168 */
sas_ex_discover_devices(struct domain_device * dev,int single)1169 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1170 {
1171 struct expander_device *ex = &dev->ex_dev;
1172 int i = 0, end = ex->num_phys;
1173 int res = 0;
1174
1175 if (0 <= single && single < end) {
1176 i = single;
1177 end = i+1;
1178 }
1179
1180 for ( ; i < end; i++) {
1181 struct ex_phy *ex_phy = &ex->ex_phy[i];
1182
1183 if (ex_phy->phy_state == PHY_VACANT ||
1184 ex_phy->phy_state == PHY_NOT_PRESENT ||
1185 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1186 continue;
1187
1188 switch (ex_phy->linkrate) {
1189 case SAS_PHY_DISABLED:
1190 case SAS_PHY_RESET_PROBLEM:
1191 case SAS_SATA_PORT_SELECTOR:
1192 continue;
1193 default:
1194 res = sas_ex_discover_dev(dev, i);
1195 if (res)
1196 break;
1197 continue;
1198 }
1199 }
1200
1201 if (!res)
1202 sas_check_level_subtractive_boundary(dev);
1203
1204 return res;
1205 }
1206
sas_check_ex_subtractive_boundary(struct domain_device * dev)1207 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1208 {
1209 struct expander_device *ex = &dev->ex_dev;
1210 int i;
1211 u8 *sub_sas_addr = NULL;
1212
1213 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1214 return 0;
1215
1216 for (i = 0; i < ex->num_phys; i++) {
1217 struct ex_phy *phy = &ex->ex_phy[i];
1218
1219 if (phy->phy_state == PHY_VACANT ||
1220 phy->phy_state == PHY_NOT_PRESENT)
1221 continue;
1222
1223 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1224 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1225 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1226
1227 if (!sub_sas_addr)
1228 sub_sas_addr = &phy->attached_sas_addr[0];
1229 else if (SAS_ADDR(sub_sas_addr) !=
1230 SAS_ADDR(phy->attached_sas_addr)) {
1231
1232 SAS_DPRINTK("ex %016llx phy 0x%x "
1233 "diverges(%016llx) on subtractive "
1234 "boundary(%016llx). Disabled\n",
1235 SAS_ADDR(dev->sas_addr), i,
1236 SAS_ADDR(phy->attached_sas_addr),
1237 SAS_ADDR(sub_sas_addr));
1238 sas_ex_disable_phy(dev, i);
1239 }
1240 }
1241 }
1242 return 0;
1243 }
1244
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1245 static void sas_print_parent_topology_bug(struct domain_device *child,
1246 struct ex_phy *parent_phy,
1247 struct ex_phy *child_phy)
1248 {
1249 static const char *ex_type[] = {
1250 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1251 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1252 };
1253 struct domain_device *parent = child->parent;
1254
1255 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1256 "phy 0x%x has %c:%c routing link!\n",
1257
1258 ex_type[parent->dev_type],
1259 SAS_ADDR(parent->sas_addr),
1260 parent_phy->phy_id,
1261
1262 ex_type[child->dev_type],
1263 SAS_ADDR(child->sas_addr),
1264 child_phy->phy_id,
1265
1266 sas_route_char(parent, parent_phy),
1267 sas_route_char(child, child_phy));
1268 }
1269
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1270 static int sas_check_eeds(struct domain_device *child,
1271 struct ex_phy *parent_phy,
1272 struct ex_phy *child_phy)
1273 {
1274 int res = 0;
1275 struct domain_device *parent = child->parent;
1276
1277 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278 res = -ENODEV;
1279 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1280 "phy S:0x%x, while there is a fanout ex %016llx\n",
1281 SAS_ADDR(parent->sas_addr),
1282 parent_phy->phy_id,
1283 SAS_ADDR(child->sas_addr),
1284 child_phy->phy_id,
1285 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1286 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1287 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1288 SAS_ADDR_SIZE);
1289 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1290 SAS_ADDR_SIZE);
1291 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1292 SAS_ADDR(parent->sas_addr)) ||
1293 (SAS_ADDR(parent->port->disc.eeds_a) ==
1294 SAS_ADDR(child->sas_addr)))
1295 &&
1296 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1297 SAS_ADDR(parent->sas_addr)) ||
1298 (SAS_ADDR(parent->port->disc.eeds_b) ==
1299 SAS_ADDR(child->sas_addr))))
1300 ;
1301 else {
1302 res = -ENODEV;
1303 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1304 "phy 0x%x link forms a third EEDS!\n",
1305 SAS_ADDR(parent->sas_addr),
1306 parent_phy->phy_id,
1307 SAS_ADDR(child->sas_addr),
1308 child_phy->phy_id);
1309 }
1310
1311 return res;
1312 }
1313
1314 /* Here we spill over 80 columns. It is intentional.
1315 */
sas_check_parent_topology(struct domain_device * child)1316 static int sas_check_parent_topology(struct domain_device *child)
1317 {
1318 struct expander_device *child_ex = &child->ex_dev;
1319 struct expander_device *parent_ex;
1320 int i;
1321 int res = 0;
1322
1323 if (!child->parent)
1324 return 0;
1325
1326 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1327 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1328 return 0;
1329
1330 parent_ex = &child->parent->ex_dev;
1331
1332 for (i = 0; i < parent_ex->num_phys; i++) {
1333 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1334 struct ex_phy *child_phy;
1335
1336 if (parent_phy->phy_state == PHY_VACANT ||
1337 parent_phy->phy_state == PHY_NOT_PRESENT)
1338 continue;
1339
1340 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1341 continue;
1342
1343 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1344
1345 switch (child->parent->dev_type) {
1346 case SAS_EDGE_EXPANDER_DEVICE:
1347 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1348 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1349 child_phy->routing_attr != TABLE_ROUTING) {
1350 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1351 res = -ENODEV;
1352 }
1353 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1354 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1355 res = sas_check_eeds(child, parent_phy, child_phy);
1356 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1357 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1358 res = -ENODEV;
1359 }
1360 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1361 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1362 (child_phy->routing_attr == TABLE_ROUTING &&
1363 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1364 /* All good */;
1365 } else {
1366 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1367 res = -ENODEV;
1368 }
1369 }
1370 break;
1371 case SAS_FANOUT_EXPANDER_DEVICE:
1372 if (parent_phy->routing_attr != TABLE_ROUTING ||
1373 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1374 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1375 res = -ENODEV;
1376 }
1377 break;
1378 default:
1379 break;
1380 }
1381 }
1382
1383 return res;
1384 }
1385
1386 #define RRI_REQ_SIZE 16
1387 #define RRI_RESP_SIZE 44
1388
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1389 static int sas_configure_present(struct domain_device *dev, int phy_id,
1390 u8 *sas_addr, int *index, int *present)
1391 {
1392 int i, res = 0;
1393 struct expander_device *ex = &dev->ex_dev;
1394 struct ex_phy *phy = &ex->ex_phy[phy_id];
1395 u8 *rri_req;
1396 u8 *rri_resp;
1397
1398 *present = 0;
1399 *index = 0;
1400
1401 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1402 if (!rri_req)
1403 return -ENOMEM;
1404
1405 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1406 if (!rri_resp) {
1407 kfree(rri_req);
1408 return -ENOMEM;
1409 }
1410
1411 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1412 rri_req[9] = phy_id;
1413
1414 for (i = 0; i < ex->max_route_indexes ; i++) {
1415 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1416 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1417 RRI_RESP_SIZE);
1418 if (res)
1419 goto out;
1420 res = rri_resp[2];
1421 if (res == SMP_RESP_NO_INDEX) {
1422 SAS_DPRINTK("overflow of indexes: dev %016llx "
1423 "phy 0x%x index 0x%x\n",
1424 SAS_ADDR(dev->sas_addr), phy_id, i);
1425 goto out;
1426 } else if (res != SMP_RESP_FUNC_ACC) {
1427 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1428 "result 0x%x\n", __func__,
1429 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1430 goto out;
1431 }
1432 if (SAS_ADDR(sas_addr) != 0) {
1433 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1434 *index = i;
1435 if ((rri_resp[12] & 0x80) == 0x80)
1436 *present = 0;
1437 else
1438 *present = 1;
1439 goto out;
1440 } else if (SAS_ADDR(rri_resp+16) == 0) {
1441 *index = i;
1442 *present = 0;
1443 goto out;
1444 }
1445 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1446 phy->last_da_index < i) {
1447 phy->last_da_index = i;
1448 *index = i;
1449 *present = 0;
1450 goto out;
1451 }
1452 }
1453 res = -1;
1454 out:
1455 kfree(rri_req);
1456 kfree(rri_resp);
1457 return res;
1458 }
1459
1460 #define CRI_REQ_SIZE 44
1461 #define CRI_RESP_SIZE 8
1462
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1463 static int sas_configure_set(struct domain_device *dev, int phy_id,
1464 u8 *sas_addr, int index, int include)
1465 {
1466 int res;
1467 u8 *cri_req;
1468 u8 *cri_resp;
1469
1470 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1471 if (!cri_req)
1472 return -ENOMEM;
1473
1474 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1475 if (!cri_resp) {
1476 kfree(cri_req);
1477 return -ENOMEM;
1478 }
1479
1480 cri_req[1] = SMP_CONF_ROUTE_INFO;
1481 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1482 cri_req[9] = phy_id;
1483 if (SAS_ADDR(sas_addr) == 0 || !include)
1484 cri_req[12] |= 0x80;
1485 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1486
1487 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1488 CRI_RESP_SIZE);
1489 if (res)
1490 goto out;
1491 res = cri_resp[2];
1492 if (res == SMP_RESP_NO_INDEX) {
1493 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1494 "index 0x%x\n",
1495 SAS_ADDR(dev->sas_addr), phy_id, index);
1496 }
1497 out:
1498 kfree(cri_req);
1499 kfree(cri_resp);
1500 return res;
1501 }
1502
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1503 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1504 u8 *sas_addr, int include)
1505 {
1506 int index;
1507 int present;
1508 int res;
1509
1510 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1511 if (res)
1512 return res;
1513 if (include ^ present)
1514 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1515
1516 return res;
1517 }
1518
1519 /**
1520 * sas_configure_parent -- configure routing table of parent
1521 * parent: parent expander
1522 * child: child expander
1523 * sas_addr: SAS port identifier of device directly attached to child
1524 */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1525 static int sas_configure_parent(struct domain_device *parent,
1526 struct domain_device *child,
1527 u8 *sas_addr, int include)
1528 {
1529 struct expander_device *ex_parent = &parent->ex_dev;
1530 int res = 0;
1531 int i;
1532
1533 if (parent->parent) {
1534 res = sas_configure_parent(parent->parent, parent, sas_addr,
1535 include);
1536 if (res)
1537 return res;
1538 }
1539
1540 if (ex_parent->conf_route_table == 0) {
1541 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1542 SAS_ADDR(parent->sas_addr));
1543 return 0;
1544 }
1545
1546 for (i = 0; i < ex_parent->num_phys; i++) {
1547 struct ex_phy *phy = &ex_parent->ex_phy[i];
1548
1549 if ((phy->routing_attr == TABLE_ROUTING) &&
1550 (SAS_ADDR(phy->attached_sas_addr) ==
1551 SAS_ADDR(child->sas_addr))) {
1552 res = sas_configure_phy(parent, i, sas_addr, include);
1553 if (res)
1554 return res;
1555 }
1556 }
1557
1558 return res;
1559 }
1560
1561 /**
1562 * sas_configure_routing -- configure routing
1563 * dev: expander device
1564 * sas_addr: port identifier of device directly attached to the expander device
1565 */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1566 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1567 {
1568 if (dev->parent)
1569 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1570 return 0;
1571 }
1572
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1573 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1574 {
1575 if (dev->parent)
1576 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1577 return 0;
1578 }
1579
1580 /**
1581 * sas_discover_expander -- expander discovery
1582 * @ex: pointer to expander domain device
1583 *
1584 * See comment in sas_discover_sata().
1585 */
sas_discover_expander(struct domain_device * dev)1586 static int sas_discover_expander(struct domain_device *dev)
1587 {
1588 int res;
1589
1590 res = sas_notify_lldd_dev_found(dev);
1591 if (res)
1592 return res;
1593
1594 res = sas_ex_general(dev);
1595 if (res)
1596 goto out_err;
1597 res = sas_ex_manuf_info(dev);
1598 if (res)
1599 goto out_err;
1600
1601 res = sas_expander_discover(dev);
1602 if (res) {
1603 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1604 SAS_ADDR(dev->sas_addr), res);
1605 goto out_err;
1606 }
1607
1608 sas_check_ex_subtractive_boundary(dev);
1609 res = sas_check_parent_topology(dev);
1610 if (res)
1611 goto out_err;
1612 return 0;
1613 out_err:
1614 sas_notify_lldd_dev_gone(dev);
1615 return res;
1616 }
1617
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1618 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1619 {
1620 int res = 0;
1621 struct domain_device *dev;
1622
1623 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1624 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1625 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1626 struct sas_expander_device *ex =
1627 rphy_to_expander_device(dev->rphy);
1628
1629 if (level == ex->level)
1630 res = sas_ex_discover_devices(dev, -1);
1631 else if (level > 0)
1632 res = sas_ex_discover_devices(port->port_dev, -1);
1633
1634 }
1635 }
1636
1637 return res;
1638 }
1639
sas_ex_bfs_disc(struct asd_sas_port * port)1640 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1641 {
1642 int res;
1643 int level;
1644
1645 do {
1646 level = port->disc.max_level;
1647 res = sas_ex_level_discovery(port, level);
1648 mb();
1649 } while (level < port->disc.max_level);
1650
1651 return res;
1652 }
1653
sas_discover_root_expander(struct domain_device * dev)1654 int sas_discover_root_expander(struct domain_device *dev)
1655 {
1656 int res;
1657 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1658
1659 res = sas_rphy_add(dev->rphy);
1660 if (res)
1661 goto out_err;
1662
1663 ex->level = dev->port->disc.max_level; /* 0 */
1664 res = sas_discover_expander(dev);
1665 if (res)
1666 goto out_err2;
1667
1668 sas_ex_bfs_disc(dev->port);
1669
1670 return res;
1671
1672 out_err2:
1673 sas_rphy_remove(dev->rphy);
1674 out_err:
1675 return res;
1676 }
1677
1678 /* ---------- Domain revalidation ---------- */
1679
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_resp * disc_resp)1680 static int sas_get_phy_discover(struct domain_device *dev,
1681 int phy_id, struct smp_resp *disc_resp)
1682 {
1683 int res;
1684 u8 *disc_req;
1685
1686 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1687 if (!disc_req)
1688 return -ENOMEM;
1689
1690 disc_req[1] = SMP_DISCOVER;
1691 disc_req[9] = phy_id;
1692
1693 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1694 disc_resp, DISCOVER_RESP_SIZE);
1695 if (res)
1696 goto out;
1697 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1698 res = disc_resp->result;
1699 goto out;
1700 }
1701 out:
1702 kfree(disc_req);
1703 return res;
1704 }
1705
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1706 static int sas_get_phy_change_count(struct domain_device *dev,
1707 int phy_id, int *pcc)
1708 {
1709 int res;
1710 struct smp_resp *disc_resp;
1711
1712 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1713 if (!disc_resp)
1714 return -ENOMEM;
1715
1716 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1717 if (!res)
1718 *pcc = disc_resp->disc.change_count;
1719
1720 kfree(disc_resp);
1721 return res;
1722 }
1723
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1724 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1725 u8 *sas_addr, enum sas_device_type *type)
1726 {
1727 int res;
1728 struct smp_resp *disc_resp;
1729 struct discover_resp *dr;
1730
1731 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1732 if (!disc_resp)
1733 return -ENOMEM;
1734 dr = &disc_resp->disc;
1735
1736 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1737 if (res == 0) {
1738 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1739 *type = to_dev_type(dr);
1740 if (*type == 0)
1741 memset(sas_addr, 0, 8);
1742 }
1743 kfree(disc_resp);
1744 return res;
1745 }
1746
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1747 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1748 int from_phy, bool update)
1749 {
1750 struct expander_device *ex = &dev->ex_dev;
1751 int res = 0;
1752 int i;
1753
1754 for (i = from_phy; i < ex->num_phys; i++) {
1755 int phy_change_count = 0;
1756
1757 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1758 switch (res) {
1759 case SMP_RESP_PHY_VACANT:
1760 case SMP_RESP_NO_PHY:
1761 continue;
1762 case SMP_RESP_FUNC_ACC:
1763 break;
1764 default:
1765 return res;
1766 }
1767
1768 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1769 if (update)
1770 ex->ex_phy[i].phy_change_count =
1771 phy_change_count;
1772 *phy_id = i;
1773 return 0;
1774 }
1775 }
1776 return 0;
1777 }
1778
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1779 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1780 {
1781 int res;
1782 u8 *rg_req;
1783 struct smp_resp *rg_resp;
1784
1785 rg_req = alloc_smp_req(RG_REQ_SIZE);
1786 if (!rg_req)
1787 return -ENOMEM;
1788
1789 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1790 if (!rg_resp) {
1791 kfree(rg_req);
1792 return -ENOMEM;
1793 }
1794
1795 rg_req[1] = SMP_REPORT_GENERAL;
1796
1797 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1798 RG_RESP_SIZE);
1799 if (res)
1800 goto out;
1801 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1802 res = rg_resp->result;
1803 goto out;
1804 }
1805
1806 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1807 out:
1808 kfree(rg_resp);
1809 kfree(rg_req);
1810 return res;
1811 }
1812 /**
1813 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1814 * @dev:domain device to be detect.
1815 * @src_dev: the device which originated BROADCAST(CHANGE).
1816 *
1817 * Add self-configuration expander support. Suppose two expander cascading,
1818 * when the first level expander is self-configuring, hotplug the disks in
1819 * second level expander, BROADCAST(CHANGE) will not only be originated
1820 * in the second level expander, but also be originated in the first level
1821 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1822 * expander changed count in two level expanders will all increment at least
1823 * once, but the phy which chang count has changed is the source device which
1824 * we concerned.
1825 */
1826
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1827 static int sas_find_bcast_dev(struct domain_device *dev,
1828 struct domain_device **src_dev)
1829 {
1830 struct expander_device *ex = &dev->ex_dev;
1831 int ex_change_count = -1;
1832 int phy_id = -1;
1833 int res;
1834 struct domain_device *ch;
1835
1836 res = sas_get_ex_change_count(dev, &ex_change_count);
1837 if (res)
1838 goto out;
1839 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1840 /* Just detect if this expander phys phy change count changed,
1841 * in order to determine if this expander originate BROADCAST,
1842 * and do not update phy change count field in our structure.
1843 */
1844 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1845 if (phy_id != -1) {
1846 *src_dev = dev;
1847 ex->ex_change_count = ex_change_count;
1848 SAS_DPRINTK("Expander phy change count has changed\n");
1849 return res;
1850 } else
1851 SAS_DPRINTK("Expander phys DID NOT change\n");
1852 }
1853 list_for_each_entry(ch, &ex->children, siblings) {
1854 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1855 res = sas_find_bcast_dev(ch, src_dev);
1856 if (*src_dev)
1857 return res;
1858 }
1859 }
1860 out:
1861 return res;
1862 }
1863
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1864 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1865 {
1866 struct expander_device *ex = &dev->ex_dev;
1867 struct domain_device *child, *n;
1868
1869 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1870 set_bit(SAS_DEV_GONE, &child->state);
1871 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1872 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1873 sas_unregister_ex_tree(port, child);
1874 else
1875 sas_unregister_dev(port, child);
1876 }
1877 sas_unregister_dev(port, dev);
1878 }
1879
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1880 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1881 int phy_id, bool last)
1882 {
1883 struct expander_device *ex_dev = &parent->ex_dev;
1884 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1885 struct domain_device *child, *n, *found = NULL;
1886 if (last) {
1887 list_for_each_entry_safe(child, n,
1888 &ex_dev->children, siblings) {
1889 if (SAS_ADDR(child->sas_addr) ==
1890 SAS_ADDR(phy->attached_sas_addr)) {
1891 set_bit(SAS_DEV_GONE, &child->state);
1892 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1893 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1894 sas_unregister_ex_tree(parent->port, child);
1895 else
1896 sas_unregister_dev(parent->port, child);
1897 found = child;
1898 break;
1899 }
1900 }
1901 sas_disable_routing(parent, phy->attached_sas_addr);
1902 }
1903 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1904 if (phy->port) {
1905 sas_port_delete_phy(phy->port, phy->phy);
1906 sas_device_set_phy(found, phy->port);
1907 if (phy->port->num_phys == 0)
1908 sas_port_delete(phy->port);
1909 phy->port = NULL;
1910 }
1911 }
1912
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1913 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1914 const int level)
1915 {
1916 struct expander_device *ex_root = &root->ex_dev;
1917 struct domain_device *child;
1918 int res = 0;
1919
1920 list_for_each_entry(child, &ex_root->children, siblings) {
1921 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1922 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1923 struct sas_expander_device *ex =
1924 rphy_to_expander_device(child->rphy);
1925
1926 if (level > ex->level)
1927 res = sas_discover_bfs_by_root_level(child,
1928 level);
1929 else if (level == ex->level)
1930 res = sas_ex_discover_devices(child, -1);
1931 }
1932 }
1933 return res;
1934 }
1935
sas_discover_bfs_by_root(struct domain_device * dev)1936 static int sas_discover_bfs_by_root(struct domain_device *dev)
1937 {
1938 int res;
1939 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1940 int level = ex->level+1;
1941
1942 res = sas_ex_discover_devices(dev, -1);
1943 if (res)
1944 goto out;
1945 do {
1946 res = sas_discover_bfs_by_root_level(dev, level);
1947 mb();
1948 level += 1;
1949 } while (level <= dev->port->disc.max_level);
1950 out:
1951 return res;
1952 }
1953
sas_discover_new(struct domain_device * dev,int phy_id)1954 static int sas_discover_new(struct domain_device *dev, int phy_id)
1955 {
1956 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1957 struct domain_device *child;
1958 int res;
1959
1960 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1961 SAS_ADDR(dev->sas_addr), phy_id);
1962 res = sas_ex_phy_discover(dev, phy_id);
1963 if (res)
1964 return res;
1965
1966 if (sas_ex_join_wide_port(dev, phy_id))
1967 return 0;
1968
1969 res = sas_ex_discover_devices(dev, phy_id);
1970 if (res)
1971 return res;
1972 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1973 if (SAS_ADDR(child->sas_addr) ==
1974 SAS_ADDR(ex_phy->attached_sas_addr)) {
1975 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1976 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1977 res = sas_discover_bfs_by_root(child);
1978 break;
1979 }
1980 }
1981 return res;
1982 }
1983
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)1984 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1985 {
1986 if (old == new)
1987 return true;
1988
1989 /* treat device directed resets as flutter, if we went
1990 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1991 */
1992 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1993 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1994 return true;
1995
1996 return false;
1997 }
1998
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last)1999 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2000 {
2001 struct expander_device *ex = &dev->ex_dev;
2002 struct ex_phy *phy = &ex->ex_phy[phy_id];
2003 enum sas_device_type type = SAS_PHY_UNUSED;
2004 u8 sas_addr[8];
2005 int res;
2006
2007 memset(sas_addr, 0, 8);
2008 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2009 switch (res) {
2010 case SMP_RESP_NO_PHY:
2011 phy->phy_state = PHY_NOT_PRESENT;
2012 sas_unregister_devs_sas_addr(dev, phy_id, last);
2013 return res;
2014 case SMP_RESP_PHY_VACANT:
2015 phy->phy_state = PHY_VACANT;
2016 sas_unregister_devs_sas_addr(dev, phy_id, last);
2017 return res;
2018 case SMP_RESP_FUNC_ACC:
2019 break;
2020 case -ECOMM:
2021 break;
2022 default:
2023 return res;
2024 }
2025
2026 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2027 phy->phy_state = PHY_EMPTY;
2028 sas_unregister_devs_sas_addr(dev, phy_id, last);
2029 return res;
2030 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2031 dev_type_flutter(type, phy->attached_dev_type)) {
2032 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2033 char *action = "";
2034
2035 sas_ex_phy_discover(dev, phy_id);
2036
2037 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2038 action = ", needs recovery";
2039 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2040 SAS_ADDR(dev->sas_addr), phy_id, action);
2041 return res;
2042 }
2043
2044 /* delete the old link */
2045 if (SAS_ADDR(phy->attached_sas_addr) &&
2046 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2047 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2048 SAS_ADDR(dev->sas_addr), phy_id,
2049 SAS_ADDR(phy->attached_sas_addr));
2050 sas_unregister_devs_sas_addr(dev, phy_id, last);
2051 }
2052
2053 return sas_discover_new(dev, phy_id);
2054 }
2055
2056 /**
2057 * sas_rediscover - revalidate the domain.
2058 * @dev:domain device to be detect.
2059 * @phy_id: the phy id will be detected.
2060 *
2061 * NOTE: this process _must_ quit (return) as soon as any connection
2062 * errors are encountered. Connection recovery is done elsewhere.
2063 * Discover process only interrogates devices in order to discover the
2064 * domain.For plugging out, we un-register the device only when it is
2065 * the last phy in the port, for other phys in this port, we just delete it
2066 * from the port.For inserting, we do discovery when it is the
2067 * first phy,for other phys in this port, we add it to the port to
2068 * forming the wide-port.
2069 */
sas_rediscover(struct domain_device * dev,const int phy_id)2070 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2071 {
2072 struct expander_device *ex = &dev->ex_dev;
2073 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2074 int res = 0;
2075 int i;
2076 bool last = true; /* is this the last phy of the port */
2077
2078 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2079 SAS_ADDR(dev->sas_addr), phy_id);
2080
2081 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2082 for (i = 0; i < ex->num_phys; i++) {
2083 struct ex_phy *phy = &ex->ex_phy[i];
2084
2085 if (i == phy_id)
2086 continue;
2087 if (SAS_ADDR(phy->attached_sas_addr) ==
2088 SAS_ADDR(changed_phy->attached_sas_addr)) {
2089 SAS_DPRINTK("phy%d part of wide port with "
2090 "phy%d\n", phy_id, i);
2091 last = false;
2092 break;
2093 }
2094 }
2095 res = sas_rediscover_dev(dev, phy_id, last);
2096 } else
2097 res = sas_discover_new(dev, phy_id);
2098 return res;
2099 }
2100
2101 /**
2102 * sas_revalidate_domain -- revalidate the domain
2103 * @port: port to the domain of interest
2104 *
2105 * NOTE: this process _must_ quit (return) as soon as any connection
2106 * errors are encountered. Connection recovery is done elsewhere.
2107 * Discover process only interrogates devices in order to discover the
2108 * domain.
2109 */
sas_ex_revalidate_domain(struct domain_device * port_dev)2110 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2111 {
2112 int res;
2113 struct domain_device *dev = NULL;
2114
2115 res = sas_find_bcast_dev(port_dev, &dev);
2116 while (res == 0 && dev) {
2117 struct expander_device *ex = &dev->ex_dev;
2118 int i = 0, phy_id;
2119
2120 do {
2121 phy_id = -1;
2122 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2123 if (phy_id == -1)
2124 break;
2125 res = sas_rediscover(dev, phy_id);
2126 i = phy_id + 1;
2127 } while (i < ex->num_phys);
2128
2129 dev = NULL;
2130 res = sas_find_bcast_dev(port_dev, &dev);
2131 }
2132 return res;
2133 }
2134
sas_smp_handler(struct Scsi_Host * shost,struct sas_rphy * rphy,struct request * req)2135 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2136 struct request *req)
2137 {
2138 struct domain_device *dev;
2139 int ret, type;
2140 struct request *rsp = req->next_rq;
2141
2142 if (!rsp) {
2143 printk("%s: space for a smp response is missing\n",
2144 __func__);
2145 return -EINVAL;
2146 }
2147
2148 /* no rphy means no smp target support (ie aic94xx host) */
2149 if (!rphy)
2150 return sas_smp_host_handler(shost, req, rsp);
2151
2152 type = rphy->identify.device_type;
2153
2154 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2155 type != SAS_FANOUT_EXPANDER_DEVICE) {
2156 printk("%s: can we send a smp request to a device?\n",
2157 __func__);
2158 return -EINVAL;
2159 }
2160
2161 dev = sas_find_dev_by_rphy(rphy);
2162 if (!dev) {
2163 printk("%s: fail to find a domain_device?\n", __func__);
2164 return -EINVAL;
2165 }
2166
2167 /* do we need to support multiple segments? */
2168 if (bio_multiple_segments(req->bio) ||
2169 bio_multiple_segments(rsp->bio)) {
2170 printk("%s: multiple segments req %u, rsp %u\n",
2171 __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2172 return -EINVAL;
2173 }
2174
2175 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2176 bio_data(rsp->bio), blk_rq_bytes(rsp));
2177 if (ret > 0) {
2178 /* positive number is the untransferred residual */
2179 rsp->resid_len = ret;
2180 req->resid_len = 0;
2181 ret = 0;
2182 } else if (ret == 0) {
2183 rsp->resid_len = 0;
2184 req->resid_len = 0;
2185 }
2186
2187 return ret;
2188 }
2189