• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Serial Attached SCSI (SAS) Expander discovery and configuration
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
22  *
23  */
24 
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 
29 #include "sas_internal.h"
30 
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35 
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 			     u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
41 
42 /* ---------- SMP task management ---------- */
43 
smp_task_timedout(unsigned long _task)44 static void smp_task_timedout(unsigned long _task)
45 {
46 	struct sas_task *task = (void *) _task;
47 	unsigned long flags;
48 
49 	spin_lock_irqsave(&task->task_state_lock, flags);
50 	if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 	spin_unlock_irqrestore(&task->task_state_lock, flags);
53 
54 	complete(&task->slow_task->completion);
55 }
56 
smp_task_done(struct sas_task * task)57 static void smp_task_done(struct sas_task *task)
58 {
59 	if (!del_timer(&task->slow_task->timer))
60 		return;
61 	complete(&task->slow_task->completion);
62 }
63 
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66 
smp_execute_task(struct domain_device * dev,void * req,int req_size,void * resp,int resp_size)67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 			    void *resp, int resp_size)
69 {
70 	int res, retry;
71 	struct sas_task *task = NULL;
72 	struct sas_internal *i =
73 		to_sas_internal(dev->port->ha->core.shost->transportt);
74 
75 	mutex_lock(&dev->ex_dev.cmd_mutex);
76 	for (retry = 0; retry < 3; retry++) {
77 		if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 			res = -ECOMM;
79 			break;
80 		}
81 
82 		task = sas_alloc_slow_task(GFP_KERNEL);
83 		if (!task) {
84 			res = -ENOMEM;
85 			break;
86 		}
87 		task->dev = dev;
88 		task->task_proto = dev->tproto;
89 		sg_init_one(&task->smp_task.smp_req, req, req_size);
90 		sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91 
92 		task->task_done = smp_task_done;
93 
94 		task->slow_task->timer.data = (unsigned long) task;
95 		task->slow_task->timer.function = smp_task_timedout;
96 		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 		add_timer(&task->slow_task->timer);
98 
99 		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
100 
101 		if (res) {
102 			del_timer(&task->slow_task->timer);
103 			SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 			break;
105 		}
106 
107 		wait_for_completion(&task->slow_task->completion);
108 		res = -ECOMM;
109 		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 			SAS_DPRINTK("smp task timed out or aborted\n");
111 			i->dft->lldd_abort_task(task);
112 			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 				SAS_DPRINTK("SMP task aborted and not done\n");
114 				break;
115 			}
116 		}
117 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 		    task->task_status.stat == SAM_STAT_GOOD) {
119 			res = 0;
120 			break;
121 		}
122 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 		    task->task_status.stat == SAS_DATA_UNDERRUN) {
124 			/* no error, but return the number of bytes of
125 			 * underrun */
126 			res = task->task_status.residual;
127 			break;
128 		}
129 		if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 		    task->task_status.stat == SAS_DATA_OVERRUN) {
131 			res = -EMSGSIZE;
132 			break;
133 		}
134 		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 			break;
137 		else {
138 			SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 				    "status 0x%x\n", __func__,
140 				    SAS_ADDR(dev->sas_addr),
141 				    task->task_status.resp,
142 				    task->task_status.stat);
143 			sas_free_task(task);
144 			task = NULL;
145 		}
146 	}
147 	mutex_unlock(&dev->ex_dev.cmd_mutex);
148 
149 	BUG_ON(retry == 3 && task != NULL);
150 	sas_free_task(task);
151 	return res;
152 }
153 
154 /* ---------- Allocations ---------- */
155 
alloc_smp_req(int size)156 static inline void *alloc_smp_req(int size)
157 {
158 	u8 *p = kzalloc(size, GFP_KERNEL);
159 	if (p)
160 		p[0] = SMP_REQUEST;
161 	return p;
162 }
163 
alloc_smp_resp(int size)164 static inline void *alloc_smp_resp(int size)
165 {
166 	return kzalloc(size, GFP_KERNEL);
167 }
168 
sas_route_char(struct domain_device * dev,struct ex_phy * phy)169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171 	switch (phy->routing_attr) {
172 	case TABLE_ROUTING:
173 		if (dev->ex_dev.t2t_supp)
174 			return 'U';
175 		else
176 			return 'T';
177 	case DIRECT_ROUTING:
178 		return 'D';
179 	case SUBTRACTIVE_ROUTING:
180 		return 'S';
181 	default:
182 		return '?';
183 	}
184 }
185 
to_dev_type(struct discover_resp * dr)186 static enum sas_device_type to_dev_type(struct discover_resp *dr)
187 {
188 	/* This is detecting a failure to transmit initial dev to host
189 	 * FIS as described in section J.5 of sas-2 r16
190 	 */
191 	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
192 	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 		return SAS_SATA_PENDING;
194 	else
195 		return dr->attached_dev_type;
196 }
197 
sas_set_ex_phy(struct domain_device * dev,int phy_id,void * rsp)198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200 	enum sas_device_type dev_type;
201 	enum sas_linkrate linkrate;
202 	u8 sas_addr[SAS_ADDR_SIZE];
203 	struct smp_resp *resp = rsp;
204 	struct discover_resp *dr = &resp->disc;
205 	struct sas_ha_struct *ha = dev->port->ha;
206 	struct expander_device *ex = &dev->ex_dev;
207 	struct ex_phy *phy = &ex->ex_phy[phy_id];
208 	struct sas_rphy *rphy = dev->rphy;
209 	bool new_phy = !phy->phy;
210 	char *type;
211 
212 	if (new_phy) {
213 		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 			return;
215 		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216 
217 		/* FIXME: error_handling */
218 		BUG_ON(!phy->phy);
219 	}
220 
221 	switch (resp->result) {
222 	case SMP_RESP_PHY_VACANT:
223 		phy->phy_state = PHY_VACANT;
224 		break;
225 	default:
226 		phy->phy_state = PHY_NOT_PRESENT;
227 		break;
228 	case SMP_RESP_FUNC_ACC:
229 		phy->phy_state = PHY_EMPTY; /* do not know yet */
230 		break;
231 	}
232 
233 	/* check if anything important changed to squelch debug */
234 	dev_type = phy->attached_dev_type;
235 	linkrate  = phy->linkrate;
236 	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237 
238 	/* Handle vacant phy - rest of dr data is not valid so skip it */
239 	if (phy->phy_state == PHY_VACANT) {
240 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
241 		phy->attached_dev_type = SAS_PHY_UNUSED;
242 		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
243 			phy->phy_id = phy_id;
244 			goto skip;
245 		} else
246 			goto out;
247 	}
248 
249 	phy->attached_dev_type = to_dev_type(dr);
250 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
251 		goto out;
252 	phy->phy_id = phy_id;
253 	phy->linkrate = dr->linkrate;
254 	phy->attached_sata_host = dr->attached_sata_host;
255 	phy->attached_sata_dev  = dr->attached_sata_dev;
256 	phy->attached_sata_ps   = dr->attached_sata_ps;
257 	phy->attached_iproto = dr->iproto << 1;
258 	phy->attached_tproto = dr->tproto << 1;
259 	/* help some expanders that fail to zero sas_address in the 'no
260 	 * device' case
261 	 */
262 	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
263 	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
264 		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
265 	else
266 		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
267 	phy->attached_phy_id = dr->attached_phy_id;
268 	phy->phy_change_count = dr->change_count;
269 	phy->routing_attr = dr->routing_attr;
270 	phy->virtual = dr->virtual;
271 	phy->last_da_index = -1;
272 
273 	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
274 	phy->phy->identify.device_type = dr->attached_dev_type;
275 	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
276 	phy->phy->identify.target_port_protocols = phy->attached_tproto;
277 	if (!phy->attached_tproto && dr->attached_sata_dev)
278 		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
279 	phy->phy->identify.phy_identifier = phy_id;
280 	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
281 	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
282 	phy->phy->minimum_linkrate = dr->pmin_linkrate;
283 	phy->phy->maximum_linkrate = dr->pmax_linkrate;
284 	phy->phy->negotiated_linkrate = phy->linkrate;
285 	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
286 
287  skip:
288 	if (new_phy)
289 		if (sas_phy_add(phy->phy)) {
290 			sas_phy_free(phy->phy);
291 			return;
292 		}
293 
294  out:
295 	switch (phy->attached_dev_type) {
296 	case SAS_SATA_PENDING:
297 		type = "stp pending";
298 		break;
299 	case SAS_PHY_UNUSED:
300 		type = "no device";
301 		break;
302 	case SAS_END_DEVICE:
303 		if (phy->attached_iproto) {
304 			if (phy->attached_tproto)
305 				type = "host+target";
306 			else
307 				type = "host";
308 		} else {
309 			if (dr->attached_sata_dev)
310 				type = "stp";
311 			else
312 				type = "ssp";
313 		}
314 		break;
315 	case SAS_EDGE_EXPANDER_DEVICE:
316 	case SAS_FANOUT_EXPANDER_DEVICE:
317 		type = "smp";
318 		break;
319 	default:
320 		type = "unknown";
321 	}
322 
323 	/* this routine is polled by libata error recovery so filter
324 	 * unimportant messages
325 	 */
326 	if (new_phy || phy->attached_dev_type != dev_type ||
327 	    phy->linkrate != linkrate ||
328 	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
329 		/* pass */;
330 	else
331 		return;
332 
333 	/* if the attached device type changed and ata_eh is active,
334 	 * make sure we run revalidation when eh completes (see:
335 	 * sas_enable_revalidation)
336 	 */
337 	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
338 		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
339 
340 	SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
341 		    test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
342 		    SAS_ADDR(dev->sas_addr), phy->phy_id,
343 		    sas_route_char(dev, phy), phy->linkrate,
344 		    SAS_ADDR(phy->attached_sas_addr), type);
345 }
346 
347 /* check if we have an existing attached ata device on this expander phy */
sas_ex_to_ata(struct domain_device * ex_dev,int phy_id)348 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
349 {
350 	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
351 	struct domain_device *dev;
352 	struct sas_rphy *rphy;
353 
354 	if (!ex_phy->port)
355 		return NULL;
356 
357 	rphy = ex_phy->port->rphy;
358 	if (!rphy)
359 		return NULL;
360 
361 	dev = sas_find_dev_by_rphy(rphy);
362 
363 	if (dev && dev_is_sata(dev))
364 		return dev;
365 
366 	return NULL;
367 }
368 
369 #define DISCOVER_REQ_SIZE  16
370 #define DISCOVER_RESP_SIZE 56
371 
sas_ex_phy_discover_helper(struct domain_device * dev,u8 * disc_req,u8 * disc_resp,int single)372 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
373 				      u8 *disc_resp, int single)
374 {
375 	struct discover_resp *dr;
376 	int res;
377 
378 	disc_req[9] = single;
379 
380 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
381 			       disc_resp, DISCOVER_RESP_SIZE);
382 	if (res)
383 		return res;
384 	dr = &((struct smp_resp *)disc_resp)->disc;
385 	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
386 		sas_printk("Found loopback topology, just ignore it!\n");
387 		return 0;
388 	}
389 	sas_set_ex_phy(dev, single, disc_resp);
390 	return 0;
391 }
392 
sas_ex_phy_discover(struct domain_device * dev,int single)393 int sas_ex_phy_discover(struct domain_device *dev, int single)
394 {
395 	struct expander_device *ex = &dev->ex_dev;
396 	int  res = 0;
397 	u8   *disc_req;
398 	u8   *disc_resp;
399 
400 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
401 	if (!disc_req)
402 		return -ENOMEM;
403 
404 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
405 	if (!disc_resp) {
406 		kfree(disc_req);
407 		return -ENOMEM;
408 	}
409 
410 	disc_req[1] = SMP_DISCOVER;
411 
412 	if (0 <= single && single < ex->num_phys) {
413 		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
414 	} else {
415 		int i;
416 
417 		for (i = 0; i < ex->num_phys; i++) {
418 			res = sas_ex_phy_discover_helper(dev, disc_req,
419 							 disc_resp, i);
420 			if (res)
421 				goto out_err;
422 		}
423 	}
424 out_err:
425 	kfree(disc_resp);
426 	kfree(disc_req);
427 	return res;
428 }
429 
sas_expander_discover(struct domain_device * dev)430 static int sas_expander_discover(struct domain_device *dev)
431 {
432 	struct expander_device *ex = &dev->ex_dev;
433 	int res = -ENOMEM;
434 
435 	ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
436 	if (!ex->ex_phy)
437 		return -ENOMEM;
438 
439 	res = sas_ex_phy_discover(dev, -1);
440 	if (res)
441 		goto out_err;
442 
443 	return 0;
444  out_err:
445 	kfree(ex->ex_phy);
446 	ex->ex_phy = NULL;
447 	return res;
448 }
449 
450 #define MAX_EXPANDER_PHYS 128
451 
ex_assign_report_general(struct domain_device * dev,struct smp_resp * resp)452 static void ex_assign_report_general(struct domain_device *dev,
453 					    struct smp_resp *resp)
454 {
455 	struct report_general_resp *rg = &resp->rg;
456 
457 	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
458 	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
459 	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
460 	dev->ex_dev.t2t_supp = rg->t2t_supp;
461 	dev->ex_dev.conf_route_table = rg->conf_route_table;
462 	dev->ex_dev.configuring = rg->configuring;
463 	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
464 }
465 
466 #define RG_REQ_SIZE   8
467 #define RG_RESP_SIZE 32
468 
sas_ex_general(struct domain_device * dev)469 static int sas_ex_general(struct domain_device *dev)
470 {
471 	u8 *rg_req;
472 	struct smp_resp *rg_resp;
473 	int res;
474 	int i;
475 
476 	rg_req = alloc_smp_req(RG_REQ_SIZE);
477 	if (!rg_req)
478 		return -ENOMEM;
479 
480 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
481 	if (!rg_resp) {
482 		kfree(rg_req);
483 		return -ENOMEM;
484 	}
485 
486 	rg_req[1] = SMP_REPORT_GENERAL;
487 
488 	for (i = 0; i < 5; i++) {
489 		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
490 				       RG_RESP_SIZE);
491 
492 		if (res) {
493 			SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
494 				    SAS_ADDR(dev->sas_addr), res);
495 			goto out;
496 		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
497 			SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
498 				    SAS_ADDR(dev->sas_addr), rg_resp->result);
499 			res = rg_resp->result;
500 			goto out;
501 		}
502 
503 		ex_assign_report_general(dev, rg_resp);
504 
505 		if (dev->ex_dev.configuring) {
506 			SAS_DPRINTK("RG: ex %llx self-configuring...\n",
507 				    SAS_ADDR(dev->sas_addr));
508 			schedule_timeout_interruptible(5*HZ);
509 		} else
510 			break;
511 	}
512 out:
513 	kfree(rg_req);
514 	kfree(rg_resp);
515 	return res;
516 }
517 
ex_assign_manuf_info(struct domain_device * dev,void * _mi_resp)518 static void ex_assign_manuf_info(struct domain_device *dev, void
519 					*_mi_resp)
520 {
521 	u8 *mi_resp = _mi_resp;
522 	struct sas_rphy *rphy = dev->rphy;
523 	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
524 
525 	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
526 	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
527 	memcpy(edev->product_rev, mi_resp + 36,
528 	       SAS_EXPANDER_PRODUCT_REV_LEN);
529 
530 	if (mi_resp[8] & 1) {
531 		memcpy(edev->component_vendor_id, mi_resp + 40,
532 		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
533 		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
534 		edev->component_revision_id = mi_resp[50];
535 	}
536 }
537 
538 #define MI_REQ_SIZE   8
539 #define MI_RESP_SIZE 64
540 
sas_ex_manuf_info(struct domain_device * dev)541 static int sas_ex_manuf_info(struct domain_device *dev)
542 {
543 	u8 *mi_req;
544 	u8 *mi_resp;
545 	int res;
546 
547 	mi_req = alloc_smp_req(MI_REQ_SIZE);
548 	if (!mi_req)
549 		return -ENOMEM;
550 
551 	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
552 	if (!mi_resp) {
553 		kfree(mi_req);
554 		return -ENOMEM;
555 	}
556 
557 	mi_req[1] = SMP_REPORT_MANUF_INFO;
558 
559 	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
560 	if (res) {
561 		SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
562 			    SAS_ADDR(dev->sas_addr), res);
563 		goto out;
564 	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
565 		SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
566 			    SAS_ADDR(dev->sas_addr), mi_resp[2]);
567 		goto out;
568 	}
569 
570 	ex_assign_manuf_info(dev, mi_resp);
571 out:
572 	kfree(mi_req);
573 	kfree(mi_resp);
574 	return res;
575 }
576 
577 #define PC_REQ_SIZE  44
578 #define PC_RESP_SIZE 8
579 
sas_smp_phy_control(struct domain_device * dev,int phy_id,enum phy_func phy_func,struct sas_phy_linkrates * rates)580 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
581 			enum phy_func phy_func,
582 			struct sas_phy_linkrates *rates)
583 {
584 	u8 *pc_req;
585 	u8 *pc_resp;
586 	int res;
587 
588 	pc_req = alloc_smp_req(PC_REQ_SIZE);
589 	if (!pc_req)
590 		return -ENOMEM;
591 
592 	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
593 	if (!pc_resp) {
594 		kfree(pc_req);
595 		return -ENOMEM;
596 	}
597 
598 	pc_req[1] = SMP_PHY_CONTROL;
599 	pc_req[9] = phy_id;
600 	pc_req[10]= phy_func;
601 	if (rates) {
602 		pc_req[32] = rates->minimum_linkrate << 4;
603 		pc_req[33] = rates->maximum_linkrate << 4;
604 	}
605 
606 	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
607 
608 	kfree(pc_resp);
609 	kfree(pc_req);
610 	return res;
611 }
612 
sas_ex_disable_phy(struct domain_device * dev,int phy_id)613 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
614 {
615 	struct expander_device *ex = &dev->ex_dev;
616 	struct ex_phy *phy = &ex->ex_phy[phy_id];
617 
618 	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
619 	phy->linkrate = SAS_PHY_DISABLED;
620 }
621 
sas_ex_disable_port(struct domain_device * dev,u8 * sas_addr)622 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
623 {
624 	struct expander_device *ex = &dev->ex_dev;
625 	int i;
626 
627 	for (i = 0; i < ex->num_phys; i++) {
628 		struct ex_phy *phy = &ex->ex_phy[i];
629 
630 		if (phy->phy_state == PHY_VACANT ||
631 		    phy->phy_state == PHY_NOT_PRESENT)
632 			continue;
633 
634 		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
635 			sas_ex_disable_phy(dev, i);
636 	}
637 }
638 
sas_dev_present_in_domain(struct asd_sas_port * port,u8 * sas_addr)639 static int sas_dev_present_in_domain(struct asd_sas_port *port,
640 					    u8 *sas_addr)
641 {
642 	struct domain_device *dev;
643 
644 	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
645 		return 1;
646 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
647 		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
648 			return 1;
649 	}
650 	return 0;
651 }
652 
653 #define RPEL_REQ_SIZE	16
654 #define RPEL_RESP_SIZE	32
sas_smp_get_phy_events(struct sas_phy * phy)655 int sas_smp_get_phy_events(struct sas_phy *phy)
656 {
657 	int res;
658 	u8 *req;
659 	u8 *resp;
660 	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
661 	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
662 
663 	req = alloc_smp_req(RPEL_REQ_SIZE);
664 	if (!req)
665 		return -ENOMEM;
666 
667 	resp = alloc_smp_resp(RPEL_RESP_SIZE);
668 	if (!resp) {
669 		kfree(req);
670 		return -ENOMEM;
671 	}
672 
673 	req[1] = SMP_REPORT_PHY_ERR_LOG;
674 	req[9] = phy->number;
675 
676 	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
677 			            resp, RPEL_RESP_SIZE);
678 
679 	if (res)
680 		goto out;
681 
682 	phy->invalid_dword_count = scsi_to_u32(&resp[12]);
683 	phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
684 	phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
685 	phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
686 
687  out:
688 	kfree(req);
689 	kfree(resp);
690 	return res;
691 
692 }
693 
694 #ifdef CONFIG_SCSI_SAS_ATA
695 
696 #define RPS_REQ_SIZE  16
697 #define RPS_RESP_SIZE 60
698 
sas_get_report_phy_sata(struct domain_device * dev,int phy_id,struct smp_resp * rps_resp)699 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
700 			    struct smp_resp *rps_resp)
701 {
702 	int res;
703 	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
704 	u8 *resp = (u8 *)rps_resp;
705 
706 	if (!rps_req)
707 		return -ENOMEM;
708 
709 	rps_req[1] = SMP_REPORT_PHY_SATA;
710 	rps_req[9] = phy_id;
711 
712 	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
713 			            rps_resp, RPS_RESP_SIZE);
714 
715 	/* 0x34 is the FIS type for the D2H fis.  There's a potential
716 	 * standards cockup here.  sas-2 explicitly specifies the FIS
717 	 * should be encoded so that FIS type is in resp[24].
718 	 * However, some expanders endian reverse this.  Undo the
719 	 * reversal here */
720 	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
721 		int i;
722 
723 		for (i = 0; i < 5; i++) {
724 			int j = 24 + (i*4);
725 			u8 a, b;
726 			a = resp[j + 0];
727 			b = resp[j + 1];
728 			resp[j + 0] = resp[j + 3];
729 			resp[j + 1] = resp[j + 2];
730 			resp[j + 2] = b;
731 			resp[j + 3] = a;
732 		}
733 	}
734 
735 	kfree(rps_req);
736 	return res;
737 }
738 #endif
739 
sas_ex_get_linkrate(struct domain_device * parent,struct domain_device * child,struct ex_phy * parent_phy)740 static void sas_ex_get_linkrate(struct domain_device *parent,
741 				       struct domain_device *child,
742 				       struct ex_phy *parent_phy)
743 {
744 	struct expander_device *parent_ex = &parent->ex_dev;
745 	struct sas_port *port;
746 	int i;
747 
748 	child->pathways = 0;
749 
750 	port = parent_phy->port;
751 
752 	for (i = 0; i < parent_ex->num_phys; i++) {
753 		struct ex_phy *phy = &parent_ex->ex_phy[i];
754 
755 		if (phy->phy_state == PHY_VACANT ||
756 		    phy->phy_state == PHY_NOT_PRESENT)
757 			continue;
758 
759 		if (SAS_ADDR(phy->attached_sas_addr) ==
760 		    SAS_ADDR(child->sas_addr)) {
761 
762 			child->min_linkrate = min(parent->min_linkrate,
763 						  phy->linkrate);
764 			child->max_linkrate = max(parent->max_linkrate,
765 						  phy->linkrate);
766 			child->pathways++;
767 			sas_port_add_phy(port, phy->phy);
768 		}
769 	}
770 	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
771 	child->pathways = min(child->pathways, parent->pathways);
772 }
773 
sas_ex_discover_end_dev(struct domain_device * parent,int phy_id)774 static struct domain_device *sas_ex_discover_end_dev(
775 	struct domain_device *parent, int phy_id)
776 {
777 	struct expander_device *parent_ex = &parent->ex_dev;
778 	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
779 	struct domain_device *child = NULL;
780 	struct sas_rphy *rphy;
781 	int res;
782 
783 	if (phy->attached_sata_host || phy->attached_sata_ps)
784 		return NULL;
785 
786 	child = sas_alloc_device();
787 	if (!child)
788 		return NULL;
789 
790 	kref_get(&parent->kref);
791 	child->parent = parent;
792 	child->port   = parent->port;
793 	child->iproto = phy->attached_iproto;
794 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
795 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
796 	if (!phy->port) {
797 		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
798 		if (unlikely(!phy->port))
799 			goto out_err;
800 		if (unlikely(sas_port_add(phy->port) != 0)) {
801 			sas_port_free(phy->port);
802 			goto out_err;
803 		}
804 	}
805 	sas_ex_get_linkrate(parent, child, phy);
806 	sas_device_set_phy(child, phy->port);
807 
808 #ifdef CONFIG_SCSI_SAS_ATA
809 	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
810 		res = sas_get_ata_info(child, phy);
811 		if (res)
812 			goto out_free;
813 
814 		sas_init_dev(child);
815 		res = sas_ata_init(child);
816 		if (res)
817 			goto out_free;
818 		rphy = sas_end_device_alloc(phy->port);
819 		if (!rphy)
820 			goto out_free;
821 
822 		child->rphy = rphy;
823 		get_device(&rphy->dev);
824 
825 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
826 
827 		res = sas_discover_sata(child);
828 		if (res) {
829 			SAS_DPRINTK("sas_discover_sata() for device %16llx at "
830 				    "%016llx:0x%x returned 0x%x\n",
831 				    SAS_ADDR(child->sas_addr),
832 				    SAS_ADDR(parent->sas_addr), phy_id, res);
833 			goto out_list_del;
834 		}
835 	} else
836 #endif
837 	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
838 		child->dev_type = SAS_END_DEVICE;
839 		rphy = sas_end_device_alloc(phy->port);
840 		/* FIXME: error handling */
841 		if (unlikely(!rphy))
842 			goto out_free;
843 		child->tproto = phy->attached_tproto;
844 		sas_init_dev(child);
845 
846 		child->rphy = rphy;
847 		get_device(&rphy->dev);
848 		sas_fill_in_rphy(child, rphy);
849 
850 		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
851 
852 		res = sas_discover_end_dev(child);
853 		if (res) {
854 			SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
855 				    "at %016llx:0x%x returned 0x%x\n",
856 				    SAS_ADDR(child->sas_addr),
857 				    SAS_ADDR(parent->sas_addr), phy_id, res);
858 			goto out_list_del;
859 		}
860 	} else {
861 		SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
862 			    phy->attached_tproto, SAS_ADDR(parent->sas_addr),
863 			    phy_id);
864 		goto out_free;
865 	}
866 
867 	list_add_tail(&child->siblings, &parent_ex->children);
868 	return child;
869 
870  out_list_del:
871 	sas_rphy_free(child->rphy);
872 	list_del(&child->disco_list_node);
873 	spin_lock_irq(&parent->port->dev_list_lock);
874 	list_del(&child->dev_list_node);
875 	spin_unlock_irq(&parent->port->dev_list_lock);
876  out_free:
877 	sas_port_delete(phy->port);
878  out_err:
879 	phy->port = NULL;
880 	sas_put_device(child);
881 	return NULL;
882 }
883 
884 /* See if this phy is part of a wide port */
sas_ex_join_wide_port(struct domain_device * parent,int phy_id)885 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
886 {
887 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
888 	int i;
889 
890 	for (i = 0; i < parent->ex_dev.num_phys; i++) {
891 		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
892 
893 		if (ephy == phy)
894 			continue;
895 
896 		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
897 			    SAS_ADDR_SIZE) && ephy->port) {
898 			sas_port_add_phy(ephy->port, phy->phy);
899 			phy->port = ephy->port;
900 			phy->phy_state = PHY_DEVICE_DISCOVERED;
901 			return true;
902 		}
903 	}
904 
905 	return false;
906 }
907 
sas_ex_discover_expander(struct domain_device * parent,int phy_id)908 static struct domain_device *sas_ex_discover_expander(
909 	struct domain_device *parent, int phy_id)
910 {
911 	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
912 	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
913 	struct domain_device *child = NULL;
914 	struct sas_rphy *rphy;
915 	struct sas_expander_device *edev;
916 	struct asd_sas_port *port;
917 	int res;
918 
919 	if (phy->routing_attr == DIRECT_ROUTING) {
920 		SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
921 			    "allowed\n",
922 			    SAS_ADDR(parent->sas_addr), phy_id,
923 			    SAS_ADDR(phy->attached_sas_addr),
924 			    phy->attached_phy_id);
925 		return NULL;
926 	}
927 	child = sas_alloc_device();
928 	if (!child)
929 		return NULL;
930 
931 	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
932 	/* FIXME: better error handling */
933 	BUG_ON(sas_port_add(phy->port) != 0);
934 
935 
936 	switch (phy->attached_dev_type) {
937 	case SAS_EDGE_EXPANDER_DEVICE:
938 		rphy = sas_expander_alloc(phy->port,
939 					  SAS_EDGE_EXPANDER_DEVICE);
940 		break;
941 	case SAS_FANOUT_EXPANDER_DEVICE:
942 		rphy = sas_expander_alloc(phy->port,
943 					  SAS_FANOUT_EXPANDER_DEVICE);
944 		break;
945 	default:
946 		rphy = NULL;	/* shut gcc up */
947 		BUG();
948 	}
949 	port = parent->port;
950 	child->rphy = rphy;
951 	get_device(&rphy->dev);
952 	edev = rphy_to_expander_device(rphy);
953 	child->dev_type = phy->attached_dev_type;
954 	kref_get(&parent->kref);
955 	child->parent = parent;
956 	child->port = port;
957 	child->iproto = phy->attached_iproto;
958 	child->tproto = phy->attached_tproto;
959 	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
960 	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
961 	sas_ex_get_linkrate(parent, child, phy);
962 	edev->level = parent_ex->level + 1;
963 	parent->port->disc.max_level = max(parent->port->disc.max_level,
964 					   edev->level);
965 	sas_init_dev(child);
966 	sas_fill_in_rphy(child, rphy);
967 	sas_rphy_add(rphy);
968 
969 	spin_lock_irq(&parent->port->dev_list_lock);
970 	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
971 	spin_unlock_irq(&parent->port->dev_list_lock);
972 
973 	res = sas_discover_expander(child);
974 	if (res) {
975 		sas_rphy_delete(rphy);
976 		spin_lock_irq(&parent->port->dev_list_lock);
977 		list_del(&child->dev_list_node);
978 		spin_unlock_irq(&parent->port->dev_list_lock);
979 		sas_put_device(child);
980 		return NULL;
981 	}
982 	list_add_tail(&child->siblings, &parent->ex_dev.children);
983 	return child;
984 }
985 
sas_ex_discover_dev(struct domain_device * dev,int phy_id)986 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
987 {
988 	struct expander_device *ex = &dev->ex_dev;
989 	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
990 	struct domain_device *child = NULL;
991 	int res = 0;
992 
993 	/* Phy state */
994 	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
995 		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
996 			res = sas_ex_phy_discover(dev, phy_id);
997 		if (res)
998 			return res;
999 	}
1000 
1001 	/* Parent and domain coherency */
1002 	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1003 			     SAS_ADDR(dev->port->sas_addr))) {
1004 		sas_add_parent_port(dev, phy_id);
1005 		return 0;
1006 	}
1007 	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1008 			    SAS_ADDR(dev->parent->sas_addr))) {
1009 		sas_add_parent_port(dev, phy_id);
1010 		if (ex_phy->routing_attr == TABLE_ROUTING)
1011 			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1012 		return 0;
1013 	}
1014 
1015 	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1016 		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1017 
1018 	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1019 		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1020 			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1021 			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1022 		}
1023 		return 0;
1024 	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1025 		return 0;
1026 
1027 	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1028 	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1029 	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1030 	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1031 		SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1032 			    "phy 0x%x\n", ex_phy->attached_dev_type,
1033 			    SAS_ADDR(dev->sas_addr),
1034 			    phy_id);
1035 		return 0;
1036 	}
1037 
1038 	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1039 	if (res) {
1040 		SAS_DPRINTK("configure routing for dev %016llx "
1041 			    "reported 0x%x. Forgotten\n",
1042 			    SAS_ADDR(ex_phy->attached_sas_addr), res);
1043 		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1044 		return res;
1045 	}
1046 
1047 	if (sas_ex_join_wide_port(dev, phy_id)) {
1048 		SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1049 			    phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1050 		return res;
1051 	}
1052 
1053 	switch (ex_phy->attached_dev_type) {
1054 	case SAS_END_DEVICE:
1055 	case SAS_SATA_PENDING:
1056 		child = sas_ex_discover_end_dev(dev, phy_id);
1057 		break;
1058 	case SAS_FANOUT_EXPANDER_DEVICE:
1059 		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1060 			SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1061 				    "attached to ex %016llx phy 0x%x\n",
1062 				    SAS_ADDR(ex_phy->attached_sas_addr),
1063 				    ex_phy->attached_phy_id,
1064 				    SAS_ADDR(dev->sas_addr),
1065 				    phy_id);
1066 			sas_ex_disable_phy(dev, phy_id);
1067 			break;
1068 		} else
1069 			memcpy(dev->port->disc.fanout_sas_addr,
1070 			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1071 		/* fallthrough */
1072 	case SAS_EDGE_EXPANDER_DEVICE:
1073 		child = sas_ex_discover_expander(dev, phy_id);
1074 		break;
1075 	default:
1076 		break;
1077 	}
1078 
1079 	if (child) {
1080 		int i;
1081 
1082 		for (i = 0; i < ex->num_phys; i++) {
1083 			if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1084 			    ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1085 				continue;
1086 			/*
1087 			 * Due to races, the phy might not get added to the
1088 			 * wide port, so we add the phy to the wide port here.
1089 			 */
1090 			if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1091 			    SAS_ADDR(child->sas_addr)) {
1092 				ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1093 				if (sas_ex_join_wide_port(dev, i))
1094 					SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1095 						    i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1096 
1097 			}
1098 		}
1099 	}
1100 
1101 	return res;
1102 }
1103 
sas_find_sub_addr(struct domain_device * dev,u8 * sub_addr)1104 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1105 {
1106 	struct expander_device *ex = &dev->ex_dev;
1107 	int i;
1108 
1109 	for (i = 0; i < ex->num_phys; i++) {
1110 		struct ex_phy *phy = &ex->ex_phy[i];
1111 
1112 		if (phy->phy_state == PHY_VACANT ||
1113 		    phy->phy_state == PHY_NOT_PRESENT)
1114 			continue;
1115 
1116 		if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1117 		     phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1118 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1119 
1120 			memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1121 
1122 			return 1;
1123 		}
1124 	}
1125 	return 0;
1126 }
1127 
sas_check_level_subtractive_boundary(struct domain_device * dev)1128 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1129 {
1130 	struct expander_device *ex = &dev->ex_dev;
1131 	struct domain_device *child;
1132 	u8 sub_addr[8] = {0, };
1133 
1134 	list_for_each_entry(child, &ex->children, siblings) {
1135 		if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1136 		    child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1137 			continue;
1138 		if (sub_addr[0] == 0) {
1139 			sas_find_sub_addr(child, sub_addr);
1140 			continue;
1141 		} else {
1142 			u8 s2[8];
1143 
1144 			if (sas_find_sub_addr(child, s2) &&
1145 			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1146 
1147 				SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1148 					    "diverges from subtractive "
1149 					    "boundary %016llx\n",
1150 					    SAS_ADDR(dev->sas_addr),
1151 					    SAS_ADDR(child->sas_addr),
1152 					    SAS_ADDR(s2),
1153 					    SAS_ADDR(sub_addr));
1154 
1155 				sas_ex_disable_port(child, s2);
1156 			}
1157 		}
1158 	}
1159 	return 0;
1160 }
1161 /**
1162  * sas_ex_discover_devices -- discover devices attached to this expander
1163  * dev: pointer to the expander domain device
1164  * single: if you want to do a single phy, else set to -1;
1165  *
1166  * Configure this expander for use with its devices and register the
1167  * devices of this expander.
1168  */
sas_ex_discover_devices(struct domain_device * dev,int single)1169 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1170 {
1171 	struct expander_device *ex = &dev->ex_dev;
1172 	int i = 0, end = ex->num_phys;
1173 	int res = 0;
1174 
1175 	if (0 <= single && single < end) {
1176 		i = single;
1177 		end = i+1;
1178 	}
1179 
1180 	for ( ; i < end; i++) {
1181 		struct ex_phy *ex_phy = &ex->ex_phy[i];
1182 
1183 		if (ex_phy->phy_state == PHY_VACANT ||
1184 		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1185 		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1186 			continue;
1187 
1188 		switch (ex_phy->linkrate) {
1189 		case SAS_PHY_DISABLED:
1190 		case SAS_PHY_RESET_PROBLEM:
1191 		case SAS_SATA_PORT_SELECTOR:
1192 			continue;
1193 		default:
1194 			res = sas_ex_discover_dev(dev, i);
1195 			if (res)
1196 				break;
1197 			continue;
1198 		}
1199 	}
1200 
1201 	if (!res)
1202 		sas_check_level_subtractive_boundary(dev);
1203 
1204 	return res;
1205 }
1206 
sas_check_ex_subtractive_boundary(struct domain_device * dev)1207 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1208 {
1209 	struct expander_device *ex = &dev->ex_dev;
1210 	int i;
1211 	u8  *sub_sas_addr = NULL;
1212 
1213 	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1214 		return 0;
1215 
1216 	for (i = 0; i < ex->num_phys; i++) {
1217 		struct ex_phy *phy = &ex->ex_phy[i];
1218 
1219 		if (phy->phy_state == PHY_VACANT ||
1220 		    phy->phy_state == PHY_NOT_PRESENT)
1221 			continue;
1222 
1223 		if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1224 		     phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1225 		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1226 
1227 			if (!sub_sas_addr)
1228 				sub_sas_addr = &phy->attached_sas_addr[0];
1229 			else if (SAS_ADDR(sub_sas_addr) !=
1230 				 SAS_ADDR(phy->attached_sas_addr)) {
1231 
1232 				SAS_DPRINTK("ex %016llx phy 0x%x "
1233 					    "diverges(%016llx) on subtractive "
1234 					    "boundary(%016llx). Disabled\n",
1235 					    SAS_ADDR(dev->sas_addr), i,
1236 					    SAS_ADDR(phy->attached_sas_addr),
1237 					    SAS_ADDR(sub_sas_addr));
1238 				sas_ex_disable_phy(dev, i);
1239 			}
1240 		}
1241 	}
1242 	return 0;
1243 }
1244 
sas_print_parent_topology_bug(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1245 static void sas_print_parent_topology_bug(struct domain_device *child,
1246 						 struct ex_phy *parent_phy,
1247 						 struct ex_phy *child_phy)
1248 {
1249 	static const char *ex_type[] = {
1250 		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1251 		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1252 	};
1253 	struct domain_device *parent = child->parent;
1254 
1255 	sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1256 		   "phy 0x%x has %c:%c routing link!\n",
1257 
1258 		   ex_type[parent->dev_type],
1259 		   SAS_ADDR(parent->sas_addr),
1260 		   parent_phy->phy_id,
1261 
1262 		   ex_type[child->dev_type],
1263 		   SAS_ADDR(child->sas_addr),
1264 		   child_phy->phy_id,
1265 
1266 		   sas_route_char(parent, parent_phy),
1267 		   sas_route_char(child, child_phy));
1268 }
1269 
sas_check_eeds(struct domain_device * child,struct ex_phy * parent_phy,struct ex_phy * child_phy)1270 static int sas_check_eeds(struct domain_device *child,
1271 				 struct ex_phy *parent_phy,
1272 				 struct ex_phy *child_phy)
1273 {
1274 	int res = 0;
1275 	struct domain_device *parent = child->parent;
1276 
1277 	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278 		res = -ENODEV;
1279 		SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1280 			    "phy S:0x%x, while there is a fanout ex %016llx\n",
1281 			    SAS_ADDR(parent->sas_addr),
1282 			    parent_phy->phy_id,
1283 			    SAS_ADDR(child->sas_addr),
1284 			    child_phy->phy_id,
1285 			    SAS_ADDR(parent->port->disc.fanout_sas_addr));
1286 	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1287 		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1288 		       SAS_ADDR_SIZE);
1289 		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1290 		       SAS_ADDR_SIZE);
1291 	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1292 		    SAS_ADDR(parent->sas_addr)) ||
1293 		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1294 		    SAS_ADDR(child->sas_addr)))
1295 		   &&
1296 		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1297 		     SAS_ADDR(parent->sas_addr)) ||
1298 		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1299 		     SAS_ADDR(child->sas_addr))))
1300 		;
1301 	else {
1302 		res = -ENODEV;
1303 		SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1304 			    "phy 0x%x link forms a third EEDS!\n",
1305 			    SAS_ADDR(parent->sas_addr),
1306 			    parent_phy->phy_id,
1307 			    SAS_ADDR(child->sas_addr),
1308 			    child_phy->phy_id);
1309 	}
1310 
1311 	return res;
1312 }
1313 
1314 /* Here we spill over 80 columns.  It is intentional.
1315  */
sas_check_parent_topology(struct domain_device * child)1316 static int sas_check_parent_topology(struct domain_device *child)
1317 {
1318 	struct expander_device *child_ex = &child->ex_dev;
1319 	struct expander_device *parent_ex;
1320 	int i;
1321 	int res = 0;
1322 
1323 	if (!child->parent)
1324 		return 0;
1325 
1326 	if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1327 	    child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1328 		return 0;
1329 
1330 	parent_ex = &child->parent->ex_dev;
1331 
1332 	for (i = 0; i < parent_ex->num_phys; i++) {
1333 		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1334 		struct ex_phy *child_phy;
1335 
1336 		if (parent_phy->phy_state == PHY_VACANT ||
1337 		    parent_phy->phy_state == PHY_NOT_PRESENT)
1338 			continue;
1339 
1340 		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1341 			continue;
1342 
1343 		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1344 
1345 		switch (child->parent->dev_type) {
1346 		case SAS_EDGE_EXPANDER_DEVICE:
1347 			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1348 				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1349 				    child_phy->routing_attr != TABLE_ROUTING) {
1350 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1351 					res = -ENODEV;
1352 				}
1353 			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1354 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1355 					res = sas_check_eeds(child, parent_phy, child_phy);
1356 				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1357 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1358 					res = -ENODEV;
1359 				}
1360 			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1361 				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1362 				    (child_phy->routing_attr == TABLE_ROUTING &&
1363 				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1364 					/* All good */;
1365 				} else {
1366 					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1367 					res = -ENODEV;
1368 				}
1369 			}
1370 			break;
1371 		case SAS_FANOUT_EXPANDER_DEVICE:
1372 			if (parent_phy->routing_attr != TABLE_ROUTING ||
1373 			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1374 				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1375 				res = -ENODEV;
1376 			}
1377 			break;
1378 		default:
1379 			break;
1380 		}
1381 	}
1382 
1383 	return res;
1384 }
1385 
1386 #define RRI_REQ_SIZE  16
1387 #define RRI_RESP_SIZE 44
1388 
sas_configure_present(struct domain_device * dev,int phy_id,u8 * sas_addr,int * index,int * present)1389 static int sas_configure_present(struct domain_device *dev, int phy_id,
1390 				 u8 *sas_addr, int *index, int *present)
1391 {
1392 	int i, res = 0;
1393 	struct expander_device *ex = &dev->ex_dev;
1394 	struct ex_phy *phy = &ex->ex_phy[phy_id];
1395 	u8 *rri_req;
1396 	u8 *rri_resp;
1397 
1398 	*present = 0;
1399 	*index = 0;
1400 
1401 	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1402 	if (!rri_req)
1403 		return -ENOMEM;
1404 
1405 	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1406 	if (!rri_resp) {
1407 		kfree(rri_req);
1408 		return -ENOMEM;
1409 	}
1410 
1411 	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1412 	rri_req[9] = phy_id;
1413 
1414 	for (i = 0; i < ex->max_route_indexes ; i++) {
1415 		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1416 		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1417 				       RRI_RESP_SIZE);
1418 		if (res)
1419 			goto out;
1420 		res = rri_resp[2];
1421 		if (res == SMP_RESP_NO_INDEX) {
1422 			SAS_DPRINTK("overflow of indexes: dev %016llx "
1423 				    "phy 0x%x index 0x%x\n",
1424 				    SAS_ADDR(dev->sas_addr), phy_id, i);
1425 			goto out;
1426 		} else if (res != SMP_RESP_FUNC_ACC) {
1427 			SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1428 				    "result 0x%x\n", __func__,
1429 				    SAS_ADDR(dev->sas_addr), phy_id, i, res);
1430 			goto out;
1431 		}
1432 		if (SAS_ADDR(sas_addr) != 0) {
1433 			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1434 				*index = i;
1435 				if ((rri_resp[12] & 0x80) == 0x80)
1436 					*present = 0;
1437 				else
1438 					*present = 1;
1439 				goto out;
1440 			} else if (SAS_ADDR(rri_resp+16) == 0) {
1441 				*index = i;
1442 				*present = 0;
1443 				goto out;
1444 			}
1445 		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1446 			   phy->last_da_index < i) {
1447 			phy->last_da_index = i;
1448 			*index = i;
1449 			*present = 0;
1450 			goto out;
1451 		}
1452 	}
1453 	res = -1;
1454 out:
1455 	kfree(rri_req);
1456 	kfree(rri_resp);
1457 	return res;
1458 }
1459 
1460 #define CRI_REQ_SIZE  44
1461 #define CRI_RESP_SIZE  8
1462 
sas_configure_set(struct domain_device * dev,int phy_id,u8 * sas_addr,int index,int include)1463 static int sas_configure_set(struct domain_device *dev, int phy_id,
1464 			     u8 *sas_addr, int index, int include)
1465 {
1466 	int res;
1467 	u8 *cri_req;
1468 	u8 *cri_resp;
1469 
1470 	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1471 	if (!cri_req)
1472 		return -ENOMEM;
1473 
1474 	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1475 	if (!cri_resp) {
1476 		kfree(cri_req);
1477 		return -ENOMEM;
1478 	}
1479 
1480 	cri_req[1] = SMP_CONF_ROUTE_INFO;
1481 	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1482 	cri_req[9] = phy_id;
1483 	if (SAS_ADDR(sas_addr) == 0 || !include)
1484 		cri_req[12] |= 0x80;
1485 	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1486 
1487 	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1488 			       CRI_RESP_SIZE);
1489 	if (res)
1490 		goto out;
1491 	res = cri_resp[2];
1492 	if (res == SMP_RESP_NO_INDEX) {
1493 		SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1494 			    "index 0x%x\n",
1495 			    SAS_ADDR(dev->sas_addr), phy_id, index);
1496 	}
1497 out:
1498 	kfree(cri_req);
1499 	kfree(cri_resp);
1500 	return res;
1501 }
1502 
sas_configure_phy(struct domain_device * dev,int phy_id,u8 * sas_addr,int include)1503 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1504 				    u8 *sas_addr, int include)
1505 {
1506 	int index;
1507 	int present;
1508 	int res;
1509 
1510 	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1511 	if (res)
1512 		return res;
1513 	if (include ^ present)
1514 		return sas_configure_set(dev, phy_id, sas_addr, index,include);
1515 
1516 	return res;
1517 }
1518 
1519 /**
1520  * sas_configure_parent -- configure routing table of parent
1521  * parent: parent expander
1522  * child: child expander
1523  * sas_addr: SAS port identifier of device directly attached to child
1524  */
sas_configure_parent(struct domain_device * parent,struct domain_device * child,u8 * sas_addr,int include)1525 static int sas_configure_parent(struct domain_device *parent,
1526 				struct domain_device *child,
1527 				u8 *sas_addr, int include)
1528 {
1529 	struct expander_device *ex_parent = &parent->ex_dev;
1530 	int res = 0;
1531 	int i;
1532 
1533 	if (parent->parent) {
1534 		res = sas_configure_parent(parent->parent, parent, sas_addr,
1535 					   include);
1536 		if (res)
1537 			return res;
1538 	}
1539 
1540 	if (ex_parent->conf_route_table == 0) {
1541 		SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1542 			    SAS_ADDR(parent->sas_addr));
1543 		return 0;
1544 	}
1545 
1546 	for (i = 0; i < ex_parent->num_phys; i++) {
1547 		struct ex_phy *phy = &ex_parent->ex_phy[i];
1548 
1549 		if ((phy->routing_attr == TABLE_ROUTING) &&
1550 		    (SAS_ADDR(phy->attached_sas_addr) ==
1551 		     SAS_ADDR(child->sas_addr))) {
1552 			res = sas_configure_phy(parent, i, sas_addr, include);
1553 			if (res)
1554 				return res;
1555 		}
1556 	}
1557 
1558 	return res;
1559 }
1560 
1561 /**
1562  * sas_configure_routing -- configure routing
1563  * dev: expander device
1564  * sas_addr: port identifier of device directly attached to the expander device
1565  */
sas_configure_routing(struct domain_device * dev,u8 * sas_addr)1566 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1567 {
1568 	if (dev->parent)
1569 		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1570 	return 0;
1571 }
1572 
sas_disable_routing(struct domain_device * dev,u8 * sas_addr)1573 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1574 {
1575 	if (dev->parent)
1576 		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1577 	return 0;
1578 }
1579 
1580 /**
1581  * sas_discover_expander -- expander discovery
1582  * @ex: pointer to expander domain device
1583  *
1584  * See comment in sas_discover_sata().
1585  */
sas_discover_expander(struct domain_device * dev)1586 static int sas_discover_expander(struct domain_device *dev)
1587 {
1588 	int res;
1589 
1590 	res = sas_notify_lldd_dev_found(dev);
1591 	if (res)
1592 		return res;
1593 
1594 	res = sas_ex_general(dev);
1595 	if (res)
1596 		goto out_err;
1597 	res = sas_ex_manuf_info(dev);
1598 	if (res)
1599 		goto out_err;
1600 
1601 	res = sas_expander_discover(dev);
1602 	if (res) {
1603 		SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1604 			    SAS_ADDR(dev->sas_addr), res);
1605 		goto out_err;
1606 	}
1607 
1608 	sas_check_ex_subtractive_boundary(dev);
1609 	res = sas_check_parent_topology(dev);
1610 	if (res)
1611 		goto out_err;
1612 	return 0;
1613 out_err:
1614 	sas_notify_lldd_dev_gone(dev);
1615 	return res;
1616 }
1617 
sas_ex_level_discovery(struct asd_sas_port * port,const int level)1618 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1619 {
1620 	int res = 0;
1621 	struct domain_device *dev;
1622 
1623 	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1624 		if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1625 		    dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1626 			struct sas_expander_device *ex =
1627 				rphy_to_expander_device(dev->rphy);
1628 
1629 			if (level == ex->level)
1630 				res = sas_ex_discover_devices(dev, -1);
1631 			else if (level > 0)
1632 				res = sas_ex_discover_devices(port->port_dev, -1);
1633 
1634 		}
1635 	}
1636 
1637 	return res;
1638 }
1639 
sas_ex_bfs_disc(struct asd_sas_port * port)1640 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1641 {
1642 	int res;
1643 	int level;
1644 
1645 	do {
1646 		level = port->disc.max_level;
1647 		res = sas_ex_level_discovery(port, level);
1648 		mb();
1649 	} while (level < port->disc.max_level);
1650 
1651 	return res;
1652 }
1653 
sas_discover_root_expander(struct domain_device * dev)1654 int sas_discover_root_expander(struct domain_device *dev)
1655 {
1656 	int res;
1657 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1658 
1659 	res = sas_rphy_add(dev->rphy);
1660 	if (res)
1661 		goto out_err;
1662 
1663 	ex->level = dev->port->disc.max_level; /* 0 */
1664 	res = sas_discover_expander(dev);
1665 	if (res)
1666 		goto out_err2;
1667 
1668 	sas_ex_bfs_disc(dev->port);
1669 
1670 	return res;
1671 
1672 out_err2:
1673 	sas_rphy_remove(dev->rphy);
1674 out_err:
1675 	return res;
1676 }
1677 
1678 /* ---------- Domain revalidation ---------- */
1679 
sas_get_phy_discover(struct domain_device * dev,int phy_id,struct smp_resp * disc_resp)1680 static int sas_get_phy_discover(struct domain_device *dev,
1681 				int phy_id, struct smp_resp *disc_resp)
1682 {
1683 	int res;
1684 	u8 *disc_req;
1685 
1686 	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1687 	if (!disc_req)
1688 		return -ENOMEM;
1689 
1690 	disc_req[1] = SMP_DISCOVER;
1691 	disc_req[9] = phy_id;
1692 
1693 	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1694 			       disc_resp, DISCOVER_RESP_SIZE);
1695 	if (res)
1696 		goto out;
1697 	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1698 		res = disc_resp->result;
1699 		goto out;
1700 	}
1701 out:
1702 	kfree(disc_req);
1703 	return res;
1704 }
1705 
sas_get_phy_change_count(struct domain_device * dev,int phy_id,int * pcc)1706 static int sas_get_phy_change_count(struct domain_device *dev,
1707 				    int phy_id, int *pcc)
1708 {
1709 	int res;
1710 	struct smp_resp *disc_resp;
1711 
1712 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1713 	if (!disc_resp)
1714 		return -ENOMEM;
1715 
1716 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1717 	if (!res)
1718 		*pcc = disc_resp->disc.change_count;
1719 
1720 	kfree(disc_resp);
1721 	return res;
1722 }
1723 
sas_get_phy_attached_dev(struct domain_device * dev,int phy_id,u8 * sas_addr,enum sas_device_type * type)1724 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1725 				    u8 *sas_addr, enum sas_device_type *type)
1726 {
1727 	int res;
1728 	struct smp_resp *disc_resp;
1729 	struct discover_resp *dr;
1730 
1731 	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1732 	if (!disc_resp)
1733 		return -ENOMEM;
1734 	dr = &disc_resp->disc;
1735 
1736 	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1737 	if (res == 0) {
1738 		memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1739 		*type = to_dev_type(dr);
1740 		if (*type == 0)
1741 			memset(sas_addr, 0, 8);
1742 	}
1743 	kfree(disc_resp);
1744 	return res;
1745 }
1746 
sas_find_bcast_phy(struct domain_device * dev,int * phy_id,int from_phy,bool update)1747 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1748 			      int from_phy, bool update)
1749 {
1750 	struct expander_device *ex = &dev->ex_dev;
1751 	int res = 0;
1752 	int i;
1753 
1754 	for (i = from_phy; i < ex->num_phys; i++) {
1755 		int phy_change_count = 0;
1756 
1757 		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1758 		switch (res) {
1759 		case SMP_RESP_PHY_VACANT:
1760 		case SMP_RESP_NO_PHY:
1761 			continue;
1762 		case SMP_RESP_FUNC_ACC:
1763 			break;
1764 		default:
1765 			return res;
1766 		}
1767 
1768 		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1769 			if (update)
1770 				ex->ex_phy[i].phy_change_count =
1771 					phy_change_count;
1772 			*phy_id = i;
1773 			return 0;
1774 		}
1775 	}
1776 	return 0;
1777 }
1778 
sas_get_ex_change_count(struct domain_device * dev,int * ecc)1779 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1780 {
1781 	int res;
1782 	u8  *rg_req;
1783 	struct smp_resp  *rg_resp;
1784 
1785 	rg_req = alloc_smp_req(RG_REQ_SIZE);
1786 	if (!rg_req)
1787 		return -ENOMEM;
1788 
1789 	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1790 	if (!rg_resp) {
1791 		kfree(rg_req);
1792 		return -ENOMEM;
1793 	}
1794 
1795 	rg_req[1] = SMP_REPORT_GENERAL;
1796 
1797 	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1798 			       RG_RESP_SIZE);
1799 	if (res)
1800 		goto out;
1801 	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1802 		res = rg_resp->result;
1803 		goto out;
1804 	}
1805 
1806 	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1807 out:
1808 	kfree(rg_resp);
1809 	kfree(rg_req);
1810 	return res;
1811 }
1812 /**
1813  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1814  * @dev:domain device to be detect.
1815  * @src_dev: the device which originated BROADCAST(CHANGE).
1816  *
1817  * Add self-configuration expander support. Suppose two expander cascading,
1818  * when the first level expander is self-configuring, hotplug the disks in
1819  * second level expander, BROADCAST(CHANGE) will not only be originated
1820  * in the second level expander, but also be originated in the first level
1821  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1822  * expander changed count in two level expanders will all increment at least
1823  * once, but the phy which chang count has changed is the source device which
1824  * we concerned.
1825  */
1826 
sas_find_bcast_dev(struct domain_device * dev,struct domain_device ** src_dev)1827 static int sas_find_bcast_dev(struct domain_device *dev,
1828 			      struct domain_device **src_dev)
1829 {
1830 	struct expander_device *ex = &dev->ex_dev;
1831 	int ex_change_count = -1;
1832 	int phy_id = -1;
1833 	int res;
1834 	struct domain_device *ch;
1835 
1836 	res = sas_get_ex_change_count(dev, &ex_change_count);
1837 	if (res)
1838 		goto out;
1839 	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1840 		/* Just detect if this expander phys phy change count changed,
1841 		* in order to determine if this expander originate BROADCAST,
1842 		* and do not update phy change count field in our structure.
1843 		*/
1844 		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1845 		if (phy_id != -1) {
1846 			*src_dev = dev;
1847 			ex->ex_change_count = ex_change_count;
1848 			SAS_DPRINTK("Expander phy change count has changed\n");
1849 			return res;
1850 		} else
1851 			SAS_DPRINTK("Expander phys DID NOT change\n");
1852 	}
1853 	list_for_each_entry(ch, &ex->children, siblings) {
1854 		if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1855 			res = sas_find_bcast_dev(ch, src_dev);
1856 			if (*src_dev)
1857 				return res;
1858 		}
1859 	}
1860 out:
1861 	return res;
1862 }
1863 
sas_unregister_ex_tree(struct asd_sas_port * port,struct domain_device * dev)1864 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1865 {
1866 	struct expander_device *ex = &dev->ex_dev;
1867 	struct domain_device *child, *n;
1868 
1869 	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1870 		set_bit(SAS_DEV_GONE, &child->state);
1871 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1872 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1873 			sas_unregister_ex_tree(port, child);
1874 		else
1875 			sas_unregister_dev(port, child);
1876 	}
1877 	sas_unregister_dev(port, dev);
1878 }
1879 
sas_unregister_devs_sas_addr(struct domain_device * parent,int phy_id,bool last)1880 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1881 					 int phy_id, bool last)
1882 {
1883 	struct expander_device *ex_dev = &parent->ex_dev;
1884 	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1885 	struct domain_device *child, *n, *found = NULL;
1886 	if (last) {
1887 		list_for_each_entry_safe(child, n,
1888 			&ex_dev->children, siblings) {
1889 			if (SAS_ADDR(child->sas_addr) ==
1890 			    SAS_ADDR(phy->attached_sas_addr)) {
1891 				set_bit(SAS_DEV_GONE, &child->state);
1892 				if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1893 				    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1894 					sas_unregister_ex_tree(parent->port, child);
1895 				else
1896 					sas_unregister_dev(parent->port, child);
1897 				found = child;
1898 				break;
1899 			}
1900 		}
1901 		sas_disable_routing(parent, phy->attached_sas_addr);
1902 	}
1903 	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1904 	if (phy->port) {
1905 		sas_port_delete_phy(phy->port, phy->phy);
1906 		sas_device_set_phy(found, phy->port);
1907 		if (phy->port->num_phys == 0)
1908 			sas_port_delete(phy->port);
1909 		phy->port = NULL;
1910 	}
1911 }
1912 
sas_discover_bfs_by_root_level(struct domain_device * root,const int level)1913 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1914 					  const int level)
1915 {
1916 	struct expander_device *ex_root = &root->ex_dev;
1917 	struct domain_device *child;
1918 	int res = 0;
1919 
1920 	list_for_each_entry(child, &ex_root->children, siblings) {
1921 		if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1922 		    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1923 			struct sas_expander_device *ex =
1924 				rphy_to_expander_device(child->rphy);
1925 
1926 			if (level > ex->level)
1927 				res = sas_discover_bfs_by_root_level(child,
1928 								     level);
1929 			else if (level == ex->level)
1930 				res = sas_ex_discover_devices(child, -1);
1931 		}
1932 	}
1933 	return res;
1934 }
1935 
sas_discover_bfs_by_root(struct domain_device * dev)1936 static int sas_discover_bfs_by_root(struct domain_device *dev)
1937 {
1938 	int res;
1939 	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1940 	int level = ex->level+1;
1941 
1942 	res = sas_ex_discover_devices(dev, -1);
1943 	if (res)
1944 		goto out;
1945 	do {
1946 		res = sas_discover_bfs_by_root_level(dev, level);
1947 		mb();
1948 		level += 1;
1949 	} while (level <= dev->port->disc.max_level);
1950 out:
1951 	return res;
1952 }
1953 
sas_discover_new(struct domain_device * dev,int phy_id)1954 static int sas_discover_new(struct domain_device *dev, int phy_id)
1955 {
1956 	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1957 	struct domain_device *child;
1958 	int res;
1959 
1960 	SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1961 		    SAS_ADDR(dev->sas_addr), phy_id);
1962 	res = sas_ex_phy_discover(dev, phy_id);
1963 	if (res)
1964 		return res;
1965 
1966 	if (sas_ex_join_wide_port(dev, phy_id))
1967 		return 0;
1968 
1969 	res = sas_ex_discover_devices(dev, phy_id);
1970 	if (res)
1971 		return res;
1972 	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1973 		if (SAS_ADDR(child->sas_addr) ==
1974 		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1975 			if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1976 			    child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1977 				res = sas_discover_bfs_by_root(child);
1978 			break;
1979 		}
1980 	}
1981 	return res;
1982 }
1983 
dev_type_flutter(enum sas_device_type new,enum sas_device_type old)1984 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1985 {
1986 	if (old == new)
1987 		return true;
1988 
1989 	/* treat device directed resets as flutter, if we went
1990 	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1991 	 */
1992 	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1993 	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1994 		return true;
1995 
1996 	return false;
1997 }
1998 
sas_rediscover_dev(struct domain_device * dev,int phy_id,bool last)1999 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2000 {
2001 	struct expander_device *ex = &dev->ex_dev;
2002 	struct ex_phy *phy = &ex->ex_phy[phy_id];
2003 	enum sas_device_type type = SAS_PHY_UNUSED;
2004 	u8 sas_addr[8];
2005 	int res;
2006 
2007 	memset(sas_addr, 0, 8);
2008 	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2009 	switch (res) {
2010 	case SMP_RESP_NO_PHY:
2011 		phy->phy_state = PHY_NOT_PRESENT;
2012 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2013 		return res;
2014 	case SMP_RESP_PHY_VACANT:
2015 		phy->phy_state = PHY_VACANT;
2016 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2017 		return res;
2018 	case SMP_RESP_FUNC_ACC:
2019 		break;
2020 	case -ECOMM:
2021 		break;
2022 	default:
2023 		return res;
2024 	}
2025 
2026 	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2027 		phy->phy_state = PHY_EMPTY;
2028 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2029 		return res;
2030 	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2031 		   dev_type_flutter(type, phy->attached_dev_type)) {
2032 		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2033 		char *action = "";
2034 
2035 		sas_ex_phy_discover(dev, phy_id);
2036 
2037 		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2038 			action = ", needs recovery";
2039 		SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2040 			    SAS_ADDR(dev->sas_addr), phy_id, action);
2041 		return res;
2042 	}
2043 
2044 	/* delete the old link */
2045 	if (SAS_ADDR(phy->attached_sas_addr) &&
2046 	    SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2047 		SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2048 			    SAS_ADDR(dev->sas_addr), phy_id,
2049 			    SAS_ADDR(phy->attached_sas_addr));
2050 		sas_unregister_devs_sas_addr(dev, phy_id, last);
2051 	}
2052 
2053 	return sas_discover_new(dev, phy_id);
2054 }
2055 
2056 /**
2057  * sas_rediscover - revalidate the domain.
2058  * @dev:domain device to be detect.
2059  * @phy_id: the phy id will be detected.
2060  *
2061  * NOTE: this process _must_ quit (return) as soon as any connection
2062  * errors are encountered.  Connection recovery is done elsewhere.
2063  * Discover process only interrogates devices in order to discover the
2064  * domain.For plugging out, we un-register the device only when it is
2065  * the last phy in the port, for other phys in this port, we just delete it
2066  * from the port.For inserting, we do discovery when it is the
2067  * first phy,for other phys in this port, we add it to the port to
2068  * forming the wide-port.
2069  */
sas_rediscover(struct domain_device * dev,const int phy_id)2070 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2071 {
2072 	struct expander_device *ex = &dev->ex_dev;
2073 	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2074 	int res = 0;
2075 	int i;
2076 	bool last = true;	/* is this the last phy of the port */
2077 
2078 	SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2079 		    SAS_ADDR(dev->sas_addr), phy_id);
2080 
2081 	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2082 		for (i = 0; i < ex->num_phys; i++) {
2083 			struct ex_phy *phy = &ex->ex_phy[i];
2084 
2085 			if (i == phy_id)
2086 				continue;
2087 			if (SAS_ADDR(phy->attached_sas_addr) ==
2088 			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2089 				SAS_DPRINTK("phy%d part of wide port with "
2090 					    "phy%d\n", phy_id, i);
2091 				last = false;
2092 				break;
2093 			}
2094 		}
2095 		res = sas_rediscover_dev(dev, phy_id, last);
2096 	} else
2097 		res = sas_discover_new(dev, phy_id);
2098 	return res;
2099 }
2100 
2101 /**
2102  * sas_revalidate_domain -- revalidate the domain
2103  * @port: port to the domain of interest
2104  *
2105  * NOTE: this process _must_ quit (return) as soon as any connection
2106  * errors are encountered.  Connection recovery is done elsewhere.
2107  * Discover process only interrogates devices in order to discover the
2108  * domain.
2109  */
sas_ex_revalidate_domain(struct domain_device * port_dev)2110 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2111 {
2112 	int res;
2113 	struct domain_device *dev = NULL;
2114 
2115 	res = sas_find_bcast_dev(port_dev, &dev);
2116 	while (res == 0 && dev) {
2117 		struct expander_device *ex = &dev->ex_dev;
2118 		int i = 0, phy_id;
2119 
2120 		do {
2121 			phy_id = -1;
2122 			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2123 			if (phy_id == -1)
2124 				break;
2125 			res = sas_rediscover(dev, phy_id);
2126 			i = phy_id + 1;
2127 		} while (i < ex->num_phys);
2128 
2129 		dev = NULL;
2130 		res = sas_find_bcast_dev(port_dev, &dev);
2131 	}
2132 	return res;
2133 }
2134 
sas_smp_handler(struct Scsi_Host * shost,struct sas_rphy * rphy,struct request * req)2135 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2136 		    struct request *req)
2137 {
2138 	struct domain_device *dev;
2139 	int ret, type;
2140 	struct request *rsp = req->next_rq;
2141 
2142 	if (!rsp) {
2143 		printk("%s: space for a smp response is missing\n",
2144 		       __func__);
2145 		return -EINVAL;
2146 	}
2147 
2148 	/* no rphy means no smp target support (ie aic94xx host) */
2149 	if (!rphy)
2150 		return sas_smp_host_handler(shost, req, rsp);
2151 
2152 	type = rphy->identify.device_type;
2153 
2154 	if (type != SAS_EDGE_EXPANDER_DEVICE &&
2155 	    type != SAS_FANOUT_EXPANDER_DEVICE) {
2156 		printk("%s: can we send a smp request to a device?\n",
2157 		       __func__);
2158 		return -EINVAL;
2159 	}
2160 
2161 	dev = sas_find_dev_by_rphy(rphy);
2162 	if (!dev) {
2163 		printk("%s: fail to find a domain_device?\n", __func__);
2164 		return -EINVAL;
2165 	}
2166 
2167 	/* do we need to support multiple segments? */
2168 	if (bio_multiple_segments(req->bio) ||
2169 	    bio_multiple_segments(rsp->bio)) {
2170 		printk("%s: multiple segments req %u, rsp %u\n",
2171 		       __func__, blk_rq_bytes(req), blk_rq_bytes(rsp));
2172 		return -EINVAL;
2173 	}
2174 
2175 	ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2176 			       bio_data(rsp->bio), blk_rq_bytes(rsp));
2177 	if (ret > 0) {
2178 		/* positive number is the untransferred residual */
2179 		rsp->resid_len = ret;
2180 		req->resid_len = 0;
2181 		ret = 0;
2182 	} else if (ret == 0) {
2183 		rsp->resid_len = 0;
2184 		req->resid_len = 0;
2185 	}
2186 
2187 	return ret;
2188 }
2189