• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34 
35 #include <trace/events/scsi.h>
36 
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39 
40 
41 struct kmem_cache *scsi_sdb_cache;
42 
43 /*
44  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45  * not change behaviour from the previous unplug mechanism, experimentation
46  * may prove this needs changing.
47  */
48 #define SCSI_QUEUE_DELAY	3
49 
50 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
52 {
53 	struct Scsi_Host *host = cmd->device->host;
54 	struct scsi_device *device = cmd->device;
55 	struct scsi_target *starget = scsi_target(device);
56 
57 	/*
58 	 * Set the appropriate busy bit for the device/host.
59 	 *
60 	 * If the host/device isn't busy, assume that something actually
61 	 * completed, and that we should be able to queue a command now.
62 	 *
63 	 * Note that the prior mid-layer assumption that any host could
64 	 * always queue at least one command is now broken.  The mid-layer
65 	 * will implement a user specifiable stall (see
66 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67 	 * if a command is requeued with no other commands outstanding
68 	 * either for the device or for the host.
69 	 */
70 	switch (reason) {
71 	case SCSI_MLQUEUE_HOST_BUSY:
72 		atomic_set(&host->host_blocked, host->max_host_blocked);
73 		break;
74 	case SCSI_MLQUEUE_DEVICE_BUSY:
75 	case SCSI_MLQUEUE_EH_RETRY:
76 		atomic_set(&device->device_blocked,
77 			   device->max_device_blocked);
78 		break;
79 	case SCSI_MLQUEUE_TARGET_BUSY:
80 		atomic_set(&starget->target_blocked,
81 			   starget->max_target_blocked);
82 		break;
83 	}
84 }
85 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
87 {
88 	struct scsi_device *sdev = cmd->device;
89 	struct request_queue *q = cmd->request->q;
90 
91 	blk_mq_requeue_request(cmd->request);
92 	blk_mq_kick_requeue_list(q);
93 	put_device(&sdev->sdev_gendev);
94 }
95 
96 /**
97  * __scsi_queue_insert - private queue insertion
98  * @cmd: The SCSI command being requeued
99  * @reason:  The reason for the requeue
100  * @unbusy: Whether the queue should be unbusied
101  *
102  * This is a private queue insertion.  The public interface
103  * scsi_queue_insert() always assumes the queue should be unbusied
104  * because it's always called before the completion.  This function is
105  * for a requeue after completion, which should only occur in this
106  * file.
107  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,int unbusy)108 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
109 {
110 	struct scsi_device *device = cmd->device;
111 	struct request_queue *q = device->request_queue;
112 	unsigned long flags;
113 
114 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
115 		"Inserting command %p into mlqueue\n", cmd));
116 
117 	scsi_set_blocked(cmd, reason);
118 
119 	/*
120 	 * Decrement the counters, since these commands are no longer
121 	 * active on the host/device.
122 	 */
123 	if (unbusy)
124 		scsi_device_unbusy(device);
125 
126 	/*
127 	 * Requeue this command.  It will go before all other commands
128 	 * that are already in the queue. Schedule requeue work under
129 	 * lock such that the kblockd_schedule_work() call happens
130 	 * before blk_cleanup_queue() finishes.
131 	 */
132 	cmd->result = 0;
133 	if (q->mq_ops) {
134 		scsi_mq_requeue_cmd(cmd);
135 		return;
136 	}
137 	spin_lock_irqsave(q->queue_lock, flags);
138 	blk_requeue_request(q, cmd->request);
139 	kblockd_schedule_work(&device->requeue_work);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 }
142 
143 /*
144  * Function:    scsi_queue_insert()
145  *
146  * Purpose:     Insert a command in the midlevel queue.
147  *
148  * Arguments:   cmd    - command that we are adding to queue.
149  *              reason - why we are inserting command to queue.
150  *
151  * Lock status: Assumed that lock is not held upon entry.
152  *
153  * Returns:     Nothing.
154  *
155  * Notes:       We do this for one of two cases.  Either the host is busy
156  *              and it cannot accept any more commands for the time being,
157  *              or the device returned QUEUE_FULL and can accept no more
158  *              commands.
159  * Notes:       This could be called either from an interrupt context or a
160  *              normal process context.
161  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)162 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
163 {
164 	__scsi_queue_insert(cmd, reason, 1);
165 }
166 /**
167  * scsi_execute - insert request and wait for the result
168  * @sdev:	scsi device
169  * @cmd:	scsi command
170  * @data_direction: data direction
171  * @buffer:	data buffer
172  * @bufflen:	len of buffer
173  * @sense:	optional sense buffer
174  * @timeout:	request timeout in seconds
175  * @retries:	number of times to retry request
176  * @flags:	or into request flags;
177  * @resid:	optional residual length
178  *
179  * returns the req->errors value which is the scsi_cmnd result
180  * field.
181  */
scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,int timeout,int retries,u64 flags,int * resid)182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 		 int data_direction, void *buffer, unsigned bufflen,
184 		 unsigned char *sense, int timeout, int retries, u64 flags,
185 		 int *resid)
186 {
187 	struct request *req;
188 	int write = (data_direction == DMA_TO_DEVICE);
189 	int ret = DRIVER_ERROR << 24;
190 
191 	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
192 	if (IS_ERR(req))
193 		return ret;
194 	blk_rq_set_block_pc(req);
195 
196 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
197 					buffer, bufflen, __GFP_RECLAIM))
198 		goto out;
199 
200 	req->cmd_len = COMMAND_SIZE(cmd[0]);
201 	memcpy(req->cmd, cmd, req->cmd_len);
202 	req->sense = sense;
203 	req->sense_len = 0;
204 	req->retries = retries;
205 	req->timeout = timeout;
206 	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
207 
208 	/*
209 	 * head injection *required* here otherwise quiesce won't work
210 	 */
211 	blk_execute_rq(req->q, NULL, req, 1);
212 
213 	/*
214 	 * Some devices (USB mass-storage in particular) may transfer
215 	 * garbage data together with a residue indicating that the data
216 	 * is invalid.  Prevent the garbage from being misinterpreted
217 	 * and prevent security leaks by zeroing out the excess data.
218 	 */
219 	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
220 		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
221 
222 	if (resid)
223 		*resid = req->resid_len;
224 	ret = req->errors;
225  out:
226 	blk_put_request(req);
227 
228 	return ret;
229 }
230 EXPORT_SYMBOL(scsi_execute);
231 
scsi_execute_req_flags(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr,int timeout,int retries,int * resid,u64 flags)232 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
233 		     int data_direction, void *buffer, unsigned bufflen,
234 		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
235 		     int *resid, u64 flags)
236 {
237 	char *sense = NULL;
238 	int result;
239 
240 	if (sshdr) {
241 		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
242 		if (!sense)
243 			return DRIVER_ERROR << 24;
244 	}
245 	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
246 			      sense, timeout, retries, flags, resid);
247 	if (sshdr)
248 		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
249 
250 	kfree(sense);
251 	return result;
252 }
253 EXPORT_SYMBOL(scsi_execute_req_flags);
254 
255 /*
256  * Function:    scsi_init_cmd_errh()
257  *
258  * Purpose:     Initialize cmd fields related to error handling.
259  *
260  * Arguments:   cmd	- command that is ready to be queued.
261  *
262  * Notes:       This function has the job of initializing a number of
263  *              fields related to error handling.   Typically this will
264  *              be called once for each command, as required.
265  */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)266 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
267 {
268 	cmd->serial_number = 0;
269 	scsi_set_resid(cmd, 0);
270 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
271 	if (cmd->cmd_len == 0)
272 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
273 }
274 
scsi_device_unbusy(struct scsi_device * sdev)275 void scsi_device_unbusy(struct scsi_device *sdev)
276 {
277 	struct Scsi_Host *shost = sdev->host;
278 	struct scsi_target *starget = scsi_target(sdev);
279 	unsigned long flags;
280 
281 	atomic_dec(&shost->host_busy);
282 	if (starget->can_queue > 0)
283 		atomic_dec(&starget->target_busy);
284 
285 	if (unlikely(scsi_host_in_recovery(shost) &&
286 		     (shost->host_failed || shost->host_eh_scheduled))) {
287 		spin_lock_irqsave(shost->host_lock, flags);
288 		scsi_eh_wakeup(shost);
289 		spin_unlock_irqrestore(shost->host_lock, flags);
290 	}
291 
292 	atomic_dec(&sdev->device_busy);
293 }
294 
scsi_kick_queue(struct request_queue * q)295 static void scsi_kick_queue(struct request_queue *q)
296 {
297 	if (q->mq_ops)
298 		blk_mq_start_hw_queues(q);
299 	else
300 		blk_run_queue(q);
301 }
302 
303 /*
304  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
305  * and call blk_run_queue for all the scsi_devices on the target -
306  * including current_sdev first.
307  *
308  * Called with *no* scsi locks held.
309  */
scsi_single_lun_run(struct scsi_device * current_sdev)310 static void scsi_single_lun_run(struct scsi_device *current_sdev)
311 {
312 	struct Scsi_Host *shost = current_sdev->host;
313 	struct scsi_device *sdev, *tmp;
314 	struct scsi_target *starget = scsi_target(current_sdev);
315 	unsigned long flags;
316 
317 	spin_lock_irqsave(shost->host_lock, flags);
318 	starget->starget_sdev_user = NULL;
319 	spin_unlock_irqrestore(shost->host_lock, flags);
320 
321 	/*
322 	 * Call blk_run_queue for all LUNs on the target, starting with
323 	 * current_sdev. We race with others (to set starget_sdev_user),
324 	 * but in most cases, we will be first. Ideally, each LU on the
325 	 * target would get some limited time or requests on the target.
326 	 */
327 	scsi_kick_queue(current_sdev->request_queue);
328 
329 	spin_lock_irqsave(shost->host_lock, flags);
330 	if (starget->starget_sdev_user)
331 		goto out;
332 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
333 			same_target_siblings) {
334 		if (sdev == current_sdev)
335 			continue;
336 		if (scsi_device_get(sdev))
337 			continue;
338 
339 		spin_unlock_irqrestore(shost->host_lock, flags);
340 		scsi_kick_queue(sdev->request_queue);
341 		spin_lock_irqsave(shost->host_lock, flags);
342 
343 		scsi_device_put(sdev);
344 	}
345  out:
346 	spin_unlock_irqrestore(shost->host_lock, flags);
347 }
348 
scsi_device_is_busy(struct scsi_device * sdev)349 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
350 {
351 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
352 		return true;
353 	if (atomic_read(&sdev->device_blocked) > 0)
354 		return true;
355 	return false;
356 }
357 
scsi_target_is_busy(struct scsi_target * starget)358 static inline bool scsi_target_is_busy(struct scsi_target *starget)
359 {
360 	if (starget->can_queue > 0) {
361 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
362 			return true;
363 		if (atomic_read(&starget->target_blocked) > 0)
364 			return true;
365 	}
366 	return false;
367 }
368 
scsi_host_is_busy(struct Scsi_Host * shost)369 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
370 {
371 	if (shost->can_queue > 0 &&
372 	    atomic_read(&shost->host_busy) >= shost->can_queue)
373 		return true;
374 	if (atomic_read(&shost->host_blocked) > 0)
375 		return true;
376 	if (shost->host_self_blocked)
377 		return true;
378 	return false;
379 }
380 
scsi_starved_list_run(struct Scsi_Host * shost)381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383 	LIST_HEAD(starved_list);
384 	struct scsi_device *sdev;
385 	unsigned long flags;
386 
387 	spin_lock_irqsave(shost->host_lock, flags);
388 	list_splice_init(&shost->starved_list, &starved_list);
389 
390 	while (!list_empty(&starved_list)) {
391 		struct request_queue *slq;
392 
393 		/*
394 		 * As long as shost is accepting commands and we have
395 		 * starved queues, call blk_run_queue. scsi_request_fn
396 		 * drops the queue_lock and can add us back to the
397 		 * starved_list.
398 		 *
399 		 * host_lock protects the starved_list and starved_entry.
400 		 * scsi_request_fn must get the host_lock before checking
401 		 * or modifying starved_list or starved_entry.
402 		 */
403 		if (scsi_host_is_busy(shost))
404 			break;
405 
406 		sdev = list_entry(starved_list.next,
407 				  struct scsi_device, starved_entry);
408 		list_del_init(&sdev->starved_entry);
409 		if (scsi_target_is_busy(scsi_target(sdev))) {
410 			list_move_tail(&sdev->starved_entry,
411 				       &shost->starved_list);
412 			continue;
413 		}
414 
415 		/*
416 		 * Once we drop the host lock, a racing scsi_remove_device()
417 		 * call may remove the sdev from the starved list and destroy
418 		 * it and the queue.  Mitigate by taking a reference to the
419 		 * queue and never touching the sdev again after we drop the
420 		 * host lock.  Note: if __scsi_remove_device() invokes
421 		 * blk_cleanup_queue() before the queue is run from this
422 		 * function then blk_run_queue() will return immediately since
423 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
424 		 */
425 		slq = sdev->request_queue;
426 		if (!blk_get_queue(slq))
427 			continue;
428 		spin_unlock_irqrestore(shost->host_lock, flags);
429 
430 		scsi_kick_queue(slq);
431 		blk_put_queue(slq);
432 
433 		spin_lock_irqsave(shost->host_lock, flags);
434 	}
435 	/* put any unprocessed entries back */
436 	list_splice(&starved_list, &shost->starved_list);
437 	spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439 
440 /*
441  * Function:   scsi_run_queue()
442  *
443  * Purpose:    Select a proper request queue to serve next
444  *
445  * Arguments:  q       - last request's queue
446  *
447  * Returns:     Nothing
448  *
449  * Notes:      The previous command was completely finished, start
450  *             a new one if possible.
451  */
scsi_run_queue(struct request_queue * q)452 static void scsi_run_queue(struct request_queue *q)
453 {
454 	struct scsi_device *sdev = q->queuedata;
455 
456 	if (scsi_target(sdev)->single_lun)
457 		scsi_single_lun_run(sdev);
458 	if (!list_empty(&sdev->host->starved_list))
459 		scsi_starved_list_run(sdev->host);
460 
461 	if (q->mq_ops)
462 		blk_mq_start_stopped_hw_queues(q, false);
463 	else
464 		blk_run_queue(q);
465 }
466 
scsi_requeue_run_queue(struct work_struct * work)467 void scsi_requeue_run_queue(struct work_struct *work)
468 {
469 	struct scsi_device *sdev;
470 	struct request_queue *q;
471 
472 	sdev = container_of(work, struct scsi_device, requeue_work);
473 	q = sdev->request_queue;
474 	scsi_run_queue(q);
475 }
476 
477 /*
478  * Function:	scsi_requeue_command()
479  *
480  * Purpose:	Handle post-processing of completed commands.
481  *
482  * Arguments:	q	- queue to operate on
483  *		cmd	- command that may need to be requeued.
484  *
485  * Returns:	Nothing
486  *
487  * Notes:	After command completion, there may be blocks left
488  *		over which weren't finished by the previous command
489  *		this can be for a number of reasons - the main one is
490  *		I/O errors in the middle of the request, in which case
491  *		we need to request the blocks that come after the bad
492  *		sector.
493  * Notes:	Upon return, cmd is a stale pointer.
494  */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)495 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
496 {
497 	struct scsi_device *sdev = cmd->device;
498 	struct request *req = cmd->request;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(q->queue_lock, flags);
502 	blk_unprep_request(req);
503 	req->special = NULL;
504 	scsi_put_command(cmd);
505 	blk_requeue_request(q, req);
506 	spin_unlock_irqrestore(q->queue_lock, flags);
507 
508 	scsi_run_queue(q);
509 
510 	put_device(&sdev->sdev_gendev);
511 }
512 
scsi_run_host_queues(struct Scsi_Host * shost)513 void scsi_run_host_queues(struct Scsi_Host *shost)
514 {
515 	struct scsi_device *sdev;
516 
517 	shost_for_each_device(sdev, shost)
518 		scsi_run_queue(sdev->request_queue);
519 }
520 
scsi_uninit_cmd(struct scsi_cmnd * cmd)521 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
522 {
523 	if (cmd->request->cmd_type == REQ_TYPE_FS) {
524 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
525 
526 		if (drv->uninit_command)
527 			drv->uninit_command(cmd);
528 	}
529 }
530 
scsi_mq_free_sgtables(struct scsi_cmnd * cmd)531 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
532 {
533 	struct scsi_data_buffer *sdb;
534 
535 	if (cmd->sdb.table.nents)
536 		sg_free_table_chained(&cmd->sdb.table, true);
537 	if (cmd->request->next_rq) {
538 		sdb = cmd->request->next_rq->special;
539 		if (sdb)
540 			sg_free_table_chained(&sdb->table, true);
541 	}
542 	if (scsi_prot_sg_count(cmd))
543 		sg_free_table_chained(&cmd->prot_sdb->table, true);
544 }
545 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)546 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
547 {
548 	struct scsi_device *sdev = cmd->device;
549 	struct Scsi_Host *shost = sdev->host;
550 	unsigned long flags;
551 
552 	scsi_mq_free_sgtables(cmd);
553 	scsi_uninit_cmd(cmd);
554 
555 	if (shost->use_cmd_list) {
556 		BUG_ON(list_empty(&cmd->list));
557 		spin_lock_irqsave(&sdev->list_lock, flags);
558 		list_del_init(&cmd->list);
559 		spin_unlock_irqrestore(&sdev->list_lock, flags);
560 	}
561 }
562 
563 /*
564  * Function:    scsi_release_buffers()
565  *
566  * Purpose:     Free resources allocate for a scsi_command.
567  *
568  * Arguments:   cmd	- command that we are bailing.
569  *
570  * Lock status: Assumed that no lock is held upon entry.
571  *
572  * Returns:     Nothing
573  *
574  * Notes:       In the event that an upper level driver rejects a
575  *		command, we must release resources allocated during
576  *		the __init_io() function.  Primarily this would involve
577  *		the scatter-gather table.
578  */
scsi_release_buffers(struct scsi_cmnd * cmd)579 static void scsi_release_buffers(struct scsi_cmnd *cmd)
580 {
581 	if (cmd->sdb.table.nents)
582 		sg_free_table_chained(&cmd->sdb.table, false);
583 
584 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
585 
586 	if (scsi_prot_sg_count(cmd))
587 		sg_free_table_chained(&cmd->prot_sdb->table, false);
588 }
589 
scsi_release_bidi_buffers(struct scsi_cmnd * cmd)590 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
591 {
592 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
593 
594 	sg_free_table_chained(&bidi_sdb->table, false);
595 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
596 	cmd->request->next_rq->special = NULL;
597 }
598 
scsi_end_request(struct request * req,int error,unsigned int bytes,unsigned int bidi_bytes)599 static bool scsi_end_request(struct request *req, int error,
600 		unsigned int bytes, unsigned int bidi_bytes)
601 {
602 	struct scsi_cmnd *cmd = req->special;
603 	struct scsi_device *sdev = cmd->device;
604 	struct request_queue *q = sdev->request_queue;
605 
606 	if (blk_update_request(req, error, bytes))
607 		return true;
608 
609 	/* Bidi request must be completed as a whole */
610 	if (unlikely(bidi_bytes) &&
611 	    blk_update_request(req->next_rq, error, bidi_bytes))
612 		return true;
613 
614 	if (blk_queue_add_random(q))
615 		add_disk_randomness(req->rq_disk);
616 
617 	if (req->mq_ctx) {
618 		/*
619 		 * In the MQ case the command gets freed by __blk_mq_end_request,
620 		 * so we have to do all cleanup that depends on it earlier.
621 		 *
622 		 * We also can't kick the queues from irq context, so we
623 		 * will have to defer it to a workqueue.
624 		 */
625 		scsi_mq_uninit_cmd(cmd);
626 
627 		__blk_mq_end_request(req, error);
628 
629 		if (scsi_target(sdev)->single_lun ||
630 		    !list_empty(&sdev->host->starved_list))
631 			kblockd_schedule_work(&sdev->requeue_work);
632 		else
633 			blk_mq_start_stopped_hw_queues(q, true);
634 	} else {
635 		unsigned long flags;
636 
637 		if (bidi_bytes)
638 			scsi_release_bidi_buffers(cmd);
639 
640 		spin_lock_irqsave(q->queue_lock, flags);
641 		blk_finish_request(req, error);
642 		spin_unlock_irqrestore(q->queue_lock, flags);
643 
644 		scsi_release_buffers(cmd);
645 
646 		scsi_put_command(cmd);
647 		scsi_run_queue(q);
648 	}
649 
650 	put_device(&sdev->sdev_gendev);
651 	return false;
652 }
653 
654 /**
655  * __scsi_error_from_host_byte - translate SCSI error code into errno
656  * @cmd:	SCSI command (unused)
657  * @result:	scsi error code
658  *
659  * Translate SCSI error code into standard UNIX errno.
660  * Return values:
661  * -ENOLINK	temporary transport failure
662  * -EREMOTEIO	permanent target failure, do not retry
663  * -EBADE	permanent nexus failure, retry on other path
664  * -ENOSPC	No write space available
665  * -ENODATA	Medium error
666  * -EIO		unspecified I/O error
667  */
__scsi_error_from_host_byte(struct scsi_cmnd * cmd,int result)668 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
669 {
670 	int error = 0;
671 
672 	switch(host_byte(result)) {
673 	case DID_TRANSPORT_FAILFAST:
674 		error = -ENOLINK;
675 		break;
676 	case DID_TARGET_FAILURE:
677 		set_host_byte(cmd, DID_OK);
678 		error = -EREMOTEIO;
679 		break;
680 	case DID_NEXUS_FAILURE:
681 		set_host_byte(cmd, DID_OK);
682 		error = -EBADE;
683 		break;
684 	case DID_ALLOC_FAILURE:
685 		set_host_byte(cmd, DID_OK);
686 		error = -ENOSPC;
687 		break;
688 	case DID_MEDIUM_ERROR:
689 		set_host_byte(cmd, DID_OK);
690 		error = -ENODATA;
691 		break;
692 	default:
693 		error = -EIO;
694 		break;
695 	}
696 
697 	return error;
698 }
699 
700 /*
701  * Function:    scsi_io_completion()
702  *
703  * Purpose:     Completion processing for block device I/O requests.
704  *
705  * Arguments:   cmd   - command that is finished.
706  *
707  * Lock status: Assumed that no lock is held upon entry.
708  *
709  * Returns:     Nothing
710  *
711  * Notes:       We will finish off the specified number of sectors.  If we
712  *		are done, the command block will be released and the queue
713  *		function will be goosed.  If we are not done then we have to
714  *		figure out what to do next:
715  *
716  *		a) We can call scsi_requeue_command().  The request
717  *		   will be unprepared and put back on the queue.  Then
718  *		   a new command will be created for it.  This should
719  *		   be used if we made forward progress, or if we want
720  *		   to switch from READ(10) to READ(6) for example.
721  *
722  *		b) We can call __scsi_queue_insert().  The request will
723  *		   be put back on the queue and retried using the same
724  *		   command as before, possibly after a delay.
725  *
726  *		c) We can call scsi_end_request() with -EIO to fail
727  *		   the remainder of the request.
728  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)729 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
730 {
731 	int result = cmd->result;
732 	struct request_queue *q = cmd->device->request_queue;
733 	struct request *req = cmd->request;
734 	int error = 0;
735 	struct scsi_sense_hdr sshdr;
736 	bool sense_valid = false;
737 	int sense_deferred = 0, level = 0;
738 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
739 	      ACTION_DELAYED_RETRY} action;
740 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
741 
742 	if (result) {
743 		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
744 		if (sense_valid)
745 			sense_deferred = scsi_sense_is_deferred(&sshdr);
746 	}
747 
748 	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
749 		if (result) {
750 			if (sense_valid && req->sense) {
751 				/*
752 				 * SG_IO wants current and deferred errors
753 				 */
754 				int len = 8 + cmd->sense_buffer[7];
755 
756 				if (len > SCSI_SENSE_BUFFERSIZE)
757 					len = SCSI_SENSE_BUFFERSIZE;
758 				memcpy(req->sense, cmd->sense_buffer,  len);
759 				req->sense_len = len;
760 			}
761 			if (!sense_deferred)
762 				error = __scsi_error_from_host_byte(cmd, result);
763 		}
764 		/*
765 		 * __scsi_error_from_host_byte may have reset the host_byte
766 		 */
767 		req->errors = cmd->result;
768 
769 		req->resid_len = scsi_get_resid(cmd);
770 
771 		if (scsi_bidi_cmnd(cmd)) {
772 			/*
773 			 * Bidi commands Must be complete as a whole,
774 			 * both sides at once.
775 			 */
776 			req->next_rq->resid_len = scsi_in(cmd)->resid;
777 			if (scsi_end_request(req, 0, blk_rq_bytes(req),
778 					blk_rq_bytes(req->next_rq)))
779 				BUG();
780 			return;
781 		}
782 	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
783 		/*
784 		 * Certain non BLOCK_PC requests are commands that don't
785 		 * actually transfer anything (FLUSH), so cannot use
786 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
787 		 * This sets the error explicitly for the problem case.
788 		 */
789 		error = __scsi_error_from_host_byte(cmd, result);
790 	}
791 
792 	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
793 	BUG_ON(blk_bidi_rq(req));
794 
795 	/*
796 	 * Next deal with any sectors which we were able to correctly
797 	 * handle.
798 	 */
799 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
800 		"%u sectors total, %d bytes done.\n",
801 		blk_rq_sectors(req), good_bytes));
802 
803 	/*
804 	 * Recovered errors need reporting, but they're always treated
805 	 * as success, so fiddle the result code here.  For BLOCK_PC
806 	 * we already took a copy of the original into rq->errors which
807 	 * is what gets returned to the user
808 	 */
809 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
810 		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
811 		 * print since caller wants ATA registers. Only occurs on
812 		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
813 		 */
814 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
815 			;
816 		else if (!(req->cmd_flags & REQ_QUIET))
817 			scsi_print_sense(cmd);
818 		result = 0;
819 		/* BLOCK_PC may have set error */
820 		error = 0;
821 	}
822 
823 	/*
824 	 * special case: failed zero length commands always need to
825 	 * drop down into the retry code. Otherwise, if we finished
826 	 * all bytes in the request we are done now.
827 	 */
828 	if (!(blk_rq_bytes(req) == 0 && error) &&
829 	    !scsi_end_request(req, error, good_bytes, 0))
830 		return;
831 
832 	/*
833 	 * Kill remainder if no retrys.
834 	 */
835 	if (error && scsi_noretry_cmd(cmd)) {
836 		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
837 			BUG();
838 		return;
839 	}
840 
841 	/*
842 	 * If there had been no error, but we have leftover bytes in the
843 	 * requeues just queue the command up again.
844 	 */
845 	if (result == 0)
846 		goto requeue;
847 
848 	error = __scsi_error_from_host_byte(cmd, result);
849 
850 	if (host_byte(result) == DID_RESET) {
851 		/* Third party bus reset or reset for error recovery
852 		 * reasons.  Just retry the command and see what
853 		 * happens.
854 		 */
855 		action = ACTION_RETRY;
856 	} else if (sense_valid && !sense_deferred) {
857 		switch (sshdr.sense_key) {
858 		case UNIT_ATTENTION:
859 			if (cmd->device->removable) {
860 				/* Detected disc change.  Set a bit
861 				 * and quietly refuse further access.
862 				 */
863 				cmd->device->changed = 1;
864 				action = ACTION_FAIL;
865 			} else {
866 				/* Must have been a power glitch, or a
867 				 * bus reset.  Could not have been a
868 				 * media change, so we just retry the
869 				 * command and see what happens.
870 				 */
871 				action = ACTION_RETRY;
872 			}
873 			break;
874 		case ILLEGAL_REQUEST:
875 			/* If we had an ILLEGAL REQUEST returned, then
876 			 * we may have performed an unsupported
877 			 * command.  The only thing this should be
878 			 * would be a ten byte read where only a six
879 			 * byte read was supported.  Also, on a system
880 			 * where READ CAPACITY failed, we may have
881 			 * read past the end of the disk.
882 			 */
883 			if ((cmd->device->use_10_for_rw &&
884 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
885 			    (cmd->cmnd[0] == READ_10 ||
886 			     cmd->cmnd[0] == WRITE_10)) {
887 				/* This will issue a new 6-byte command. */
888 				cmd->device->use_10_for_rw = 0;
889 				action = ACTION_REPREP;
890 			} else if (sshdr.asc == 0x10) /* DIX */ {
891 				action = ACTION_FAIL;
892 				error = -EILSEQ;
893 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
894 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
895 				action = ACTION_FAIL;
896 				error = -EREMOTEIO;
897 			} else
898 				action = ACTION_FAIL;
899 			break;
900 		case ABORTED_COMMAND:
901 			action = ACTION_FAIL;
902 			if (sshdr.asc == 0x10) /* DIF */
903 				error = -EILSEQ;
904 			break;
905 		case NOT_READY:
906 			/* If the device is in the process of becoming
907 			 * ready, or has a temporary blockage, retry.
908 			 */
909 			if (sshdr.asc == 0x04) {
910 				switch (sshdr.ascq) {
911 				case 0x01: /* becoming ready */
912 				case 0x04: /* format in progress */
913 				case 0x05: /* rebuild in progress */
914 				case 0x06: /* recalculation in progress */
915 				case 0x07: /* operation in progress */
916 				case 0x08: /* Long write in progress */
917 				case 0x09: /* self test in progress */
918 				case 0x14: /* space allocation in progress */
919 					action = ACTION_DELAYED_RETRY;
920 					break;
921 				default:
922 					action = ACTION_FAIL;
923 					break;
924 				}
925 			} else
926 				action = ACTION_FAIL;
927 			break;
928 		case VOLUME_OVERFLOW:
929 			/* See SSC3rXX or current. */
930 			action = ACTION_FAIL;
931 			break;
932 		default:
933 			action = ACTION_FAIL;
934 			break;
935 		}
936 	} else
937 		action = ACTION_FAIL;
938 
939 	if (action != ACTION_FAIL &&
940 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
941 		action = ACTION_FAIL;
942 
943 	switch (action) {
944 	case ACTION_FAIL:
945 		/* Give up and fail the remainder of the request */
946 		if (!(req->cmd_flags & REQ_QUIET)) {
947 			static DEFINE_RATELIMIT_STATE(_rs,
948 					DEFAULT_RATELIMIT_INTERVAL,
949 					DEFAULT_RATELIMIT_BURST);
950 
951 			if (unlikely(scsi_logging_level))
952 				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
953 						       SCSI_LOG_MLCOMPLETE_BITS);
954 
955 			/*
956 			 * if logging is enabled the failure will be printed
957 			 * in scsi_log_completion(), so avoid duplicate messages
958 			 */
959 			if (!level && __ratelimit(&_rs)) {
960 				scsi_print_result(cmd, NULL, FAILED);
961 				if (driver_byte(result) & DRIVER_SENSE)
962 					scsi_print_sense(cmd);
963 				scsi_print_command(cmd);
964 			}
965 		}
966 		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
967 			return;
968 		/*FALLTHRU*/
969 	case ACTION_REPREP:
970 	requeue:
971 		/* Unprep the request and put it back at the head of the queue.
972 		 * A new command will be prepared and issued.
973 		 */
974 		if (q->mq_ops) {
975 			cmd->request->cmd_flags &= ~REQ_DONTPREP;
976 			scsi_mq_uninit_cmd(cmd);
977 			scsi_mq_requeue_cmd(cmd);
978 		} else {
979 			scsi_release_buffers(cmd);
980 			scsi_requeue_command(q, cmd);
981 		}
982 		break;
983 	case ACTION_RETRY:
984 		/* Retry the same command immediately */
985 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
986 		break;
987 	case ACTION_DELAYED_RETRY:
988 		/* Retry the same command after a delay */
989 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
990 		break;
991 	}
992 }
993 
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb)994 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
995 {
996 	int count;
997 
998 	/*
999 	 * If sg table allocation fails, requeue request later.
1000 	 */
1001 	if (unlikely(sg_alloc_table_chained(&sdb->table, req->nr_phys_segments,
1002 					sdb->table.sgl)))
1003 		return BLKPREP_DEFER;
1004 
1005 	/*
1006 	 * Next, walk the list, and fill in the addresses and sizes of
1007 	 * each segment.
1008 	 */
1009 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1010 	BUG_ON(count > sdb->table.nents);
1011 	sdb->table.nents = count;
1012 	sdb->length = blk_rq_bytes(req);
1013 	return BLKPREP_OK;
1014 }
1015 
1016 /*
1017  * Function:    scsi_init_io()
1018  *
1019  * Purpose:     SCSI I/O initialize function.
1020  *
1021  * Arguments:   cmd   - Command descriptor we wish to initialize
1022  *
1023  * Returns:     0 on success
1024  *		BLKPREP_DEFER if the failure is retryable
1025  *		BLKPREP_KILL if the failure is fatal
1026  */
scsi_init_io(struct scsi_cmnd * cmd)1027 int scsi_init_io(struct scsi_cmnd *cmd)
1028 {
1029 	struct scsi_device *sdev = cmd->device;
1030 	struct request *rq = cmd->request;
1031 	bool is_mq = (rq->mq_ctx != NULL);
1032 	int error;
1033 
1034 	if (WARN_ON_ONCE(!rq->nr_phys_segments))
1035 		return -EINVAL;
1036 
1037 	error = scsi_init_sgtable(rq, &cmd->sdb);
1038 	if (error)
1039 		goto err_exit;
1040 
1041 	if (blk_bidi_rq(rq)) {
1042 		if (!rq->q->mq_ops) {
1043 			struct scsi_data_buffer *bidi_sdb =
1044 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1045 			if (!bidi_sdb) {
1046 				error = BLKPREP_DEFER;
1047 				goto err_exit;
1048 			}
1049 
1050 			rq->next_rq->special = bidi_sdb;
1051 		}
1052 
1053 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1054 		if (error)
1055 			goto err_exit;
1056 	}
1057 
1058 	if (blk_integrity_rq(rq)) {
1059 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1060 		int ivecs, count;
1061 
1062 		if (prot_sdb == NULL) {
1063 			/*
1064 			 * This can happen if someone (e.g. multipath)
1065 			 * queues a command to a device on an adapter
1066 			 * that does not support DIX.
1067 			 */
1068 			WARN_ON_ONCE(1);
1069 			error = BLKPREP_KILL;
1070 			goto err_exit;
1071 		}
1072 
1073 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1074 
1075 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1076 				prot_sdb->table.sgl)) {
1077 			error = BLKPREP_DEFER;
1078 			goto err_exit;
1079 		}
1080 
1081 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1082 						prot_sdb->table.sgl);
1083 		BUG_ON(unlikely(count > ivecs));
1084 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1085 
1086 		cmd->prot_sdb = prot_sdb;
1087 		cmd->prot_sdb->table.nents = count;
1088 	}
1089 
1090 	return BLKPREP_OK;
1091 err_exit:
1092 	if (is_mq) {
1093 		scsi_mq_free_sgtables(cmd);
1094 	} else {
1095 		scsi_release_buffers(cmd);
1096 		cmd->request->special = NULL;
1097 		scsi_put_command(cmd);
1098 		put_device(&sdev->sdev_gendev);
1099 	}
1100 	return error;
1101 }
1102 EXPORT_SYMBOL(scsi_init_io);
1103 
scsi_get_cmd_from_req(struct scsi_device * sdev,struct request * req)1104 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1105 		struct request *req)
1106 {
1107 	struct scsi_cmnd *cmd;
1108 
1109 	if (!req->special) {
1110 		/* Bail if we can't get a reference to the device */
1111 		if (!get_device(&sdev->sdev_gendev))
1112 			return NULL;
1113 
1114 		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1115 		if (unlikely(!cmd)) {
1116 			put_device(&sdev->sdev_gendev);
1117 			return NULL;
1118 		}
1119 		req->special = cmd;
1120 	} else {
1121 		cmd = req->special;
1122 	}
1123 
1124 	/* pull a tag out of the request if we have one */
1125 	cmd->tag = req->tag;
1126 	cmd->request = req;
1127 
1128 	cmd->cmnd = req->cmd;
1129 	cmd->prot_op = SCSI_PROT_NORMAL;
1130 
1131 	return cmd;
1132 }
1133 
scsi_setup_blk_pc_cmnd(struct scsi_device * sdev,struct request * req)1134 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1135 {
1136 	struct scsi_cmnd *cmd = req->special;
1137 
1138 	/*
1139 	 * BLOCK_PC requests may transfer data, in which case they must
1140 	 * a bio attached to them.  Or they might contain a SCSI command
1141 	 * that does not transfer data, in which case they may optionally
1142 	 * submit a request without an attached bio.
1143 	 */
1144 	if (req->bio) {
1145 		int ret = scsi_init_io(cmd);
1146 		if (unlikely(ret))
1147 			return ret;
1148 	} else {
1149 		BUG_ON(blk_rq_bytes(req));
1150 
1151 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1152 	}
1153 
1154 	cmd->cmd_len = req->cmd_len;
1155 	cmd->transfersize = blk_rq_bytes(req);
1156 	cmd->allowed = req->retries;
1157 	return BLKPREP_OK;
1158 }
1159 
1160 /*
1161  * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1162  * that still need to be translated to SCSI CDBs from the ULD.
1163  */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1164 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1165 {
1166 	struct scsi_cmnd *cmd = req->special;
1167 
1168 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1169 		int ret = sdev->handler->prep_fn(sdev, req);
1170 		if (ret != BLKPREP_OK)
1171 			return ret;
1172 	}
1173 
1174 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1175 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1176 }
1177 
scsi_setup_cmnd(struct scsi_device * sdev,struct request * req)1178 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180 	struct scsi_cmnd *cmd = req->special;
1181 
1182 	if (!blk_rq_bytes(req))
1183 		cmd->sc_data_direction = DMA_NONE;
1184 	else if (rq_data_dir(req) == WRITE)
1185 		cmd->sc_data_direction = DMA_TO_DEVICE;
1186 	else
1187 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1188 
1189 	switch (req->cmd_type) {
1190 	case REQ_TYPE_FS:
1191 		return scsi_setup_fs_cmnd(sdev, req);
1192 	case REQ_TYPE_BLOCK_PC:
1193 		return scsi_setup_blk_pc_cmnd(sdev, req);
1194 	default:
1195 		return BLKPREP_KILL;
1196 	}
1197 }
1198 
1199 static int
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1200 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1201 {
1202 	int ret = BLKPREP_OK;
1203 
1204 	/*
1205 	 * If the device is not in running state we will reject some
1206 	 * or all commands.
1207 	 */
1208 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1209 		switch (sdev->sdev_state) {
1210 		case SDEV_OFFLINE:
1211 		case SDEV_TRANSPORT_OFFLINE:
1212 			/*
1213 			 * If the device is offline we refuse to process any
1214 			 * commands.  The device must be brought online
1215 			 * before trying any recovery commands.
1216 			 */
1217 			sdev_printk(KERN_ERR, sdev,
1218 				    "rejecting I/O to offline device\n");
1219 			ret = BLKPREP_KILL;
1220 			break;
1221 		case SDEV_DEL:
1222 			/*
1223 			 * If the device is fully deleted, we refuse to
1224 			 * process any commands as well.
1225 			 */
1226 			sdev_printk(KERN_ERR, sdev,
1227 				    "rejecting I/O to dead device\n");
1228 			ret = BLKPREP_KILL;
1229 			break;
1230 		case SDEV_BLOCK:
1231 		case SDEV_CREATED_BLOCK:
1232 			ret = BLKPREP_DEFER;
1233 			break;
1234 		case SDEV_QUIESCE:
1235 			/*
1236 			 * If the devices is blocked we defer normal commands.
1237 			 */
1238 			if (!(req->cmd_flags & REQ_PREEMPT))
1239 				ret = BLKPREP_DEFER;
1240 			break;
1241 		default:
1242 			/*
1243 			 * For any other not fully online state we only allow
1244 			 * special commands.  In particular any user initiated
1245 			 * command is not allowed.
1246 			 */
1247 			if (!(req->cmd_flags & REQ_PREEMPT))
1248 				ret = BLKPREP_KILL;
1249 			break;
1250 		}
1251 	}
1252 	return ret;
1253 }
1254 
1255 static int
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1256 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1257 {
1258 	struct scsi_device *sdev = q->queuedata;
1259 
1260 	switch (ret) {
1261 	case BLKPREP_KILL:
1262 	case BLKPREP_INVALID:
1263 		req->errors = DID_NO_CONNECT << 16;
1264 		/* release the command and kill it */
1265 		if (req->special) {
1266 			struct scsi_cmnd *cmd = req->special;
1267 			scsi_release_buffers(cmd);
1268 			scsi_put_command(cmd);
1269 			put_device(&sdev->sdev_gendev);
1270 			req->special = NULL;
1271 		}
1272 		break;
1273 	case BLKPREP_DEFER:
1274 		/*
1275 		 * If we defer, the blk_peek_request() returns NULL, but the
1276 		 * queue must be restarted, so we schedule a callback to happen
1277 		 * shortly.
1278 		 */
1279 		if (atomic_read(&sdev->device_busy) == 0)
1280 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1281 		break;
1282 	default:
1283 		req->cmd_flags |= REQ_DONTPREP;
1284 	}
1285 
1286 	return ret;
1287 }
1288 
scsi_prep_fn(struct request_queue * q,struct request * req)1289 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1290 {
1291 	struct scsi_device *sdev = q->queuedata;
1292 	struct scsi_cmnd *cmd;
1293 	int ret;
1294 
1295 	ret = scsi_prep_state_check(sdev, req);
1296 	if (ret != BLKPREP_OK)
1297 		goto out;
1298 
1299 	cmd = scsi_get_cmd_from_req(sdev, req);
1300 	if (unlikely(!cmd)) {
1301 		ret = BLKPREP_DEFER;
1302 		goto out;
1303 	}
1304 
1305 	ret = scsi_setup_cmnd(sdev, req);
1306 out:
1307 	return scsi_prep_return(q, req, ret);
1308 }
1309 
scsi_unprep_fn(struct request_queue * q,struct request * req)1310 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1311 {
1312 	scsi_uninit_cmd(req->special);
1313 }
1314 
1315 /*
1316  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1317  * return 0.
1318  *
1319  * Called with the queue_lock held.
1320  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1321 static inline int scsi_dev_queue_ready(struct request_queue *q,
1322 				  struct scsi_device *sdev)
1323 {
1324 	unsigned int busy;
1325 
1326 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1327 	if (atomic_read(&sdev->device_blocked)) {
1328 		if (busy)
1329 			goto out_dec;
1330 
1331 		/*
1332 		 * unblock after device_blocked iterates to zero
1333 		 */
1334 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1335 			/*
1336 			 * For the MQ case we take care of this in the caller.
1337 			 */
1338 			if (!q->mq_ops)
1339 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1340 			goto out_dec;
1341 		}
1342 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1343 				   "unblocking device at zero depth\n"));
1344 	}
1345 
1346 	if (busy >= sdev->queue_depth)
1347 		goto out_dec;
1348 
1349 	return 1;
1350 out_dec:
1351 	atomic_dec(&sdev->device_busy);
1352 	return 0;
1353 }
1354 
1355 /*
1356  * scsi_target_queue_ready: checks if there we can send commands to target
1357  * @sdev: scsi device on starget to check.
1358  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1359 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1360 					   struct scsi_device *sdev)
1361 {
1362 	struct scsi_target *starget = scsi_target(sdev);
1363 	unsigned int busy;
1364 
1365 	if (starget->single_lun) {
1366 		spin_lock_irq(shost->host_lock);
1367 		if (starget->starget_sdev_user &&
1368 		    starget->starget_sdev_user != sdev) {
1369 			spin_unlock_irq(shost->host_lock);
1370 			return 0;
1371 		}
1372 		starget->starget_sdev_user = sdev;
1373 		spin_unlock_irq(shost->host_lock);
1374 	}
1375 
1376 	if (starget->can_queue <= 0)
1377 		return 1;
1378 
1379 	busy = atomic_inc_return(&starget->target_busy) - 1;
1380 	if (atomic_read(&starget->target_blocked) > 0) {
1381 		if (busy)
1382 			goto starved;
1383 
1384 		/*
1385 		 * unblock after target_blocked iterates to zero
1386 		 */
1387 		if (atomic_dec_return(&starget->target_blocked) > 0)
1388 			goto out_dec;
1389 
1390 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1391 				 "unblocking target at zero depth\n"));
1392 	}
1393 
1394 	if (busy >= starget->can_queue)
1395 		goto starved;
1396 
1397 	return 1;
1398 
1399 starved:
1400 	spin_lock_irq(shost->host_lock);
1401 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1402 	spin_unlock_irq(shost->host_lock);
1403 out_dec:
1404 	if (starget->can_queue > 0)
1405 		atomic_dec(&starget->target_busy);
1406 	return 0;
1407 }
1408 
1409 /*
1410  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1411  * return 0. We must end up running the queue again whenever 0 is
1412  * returned, else IO can hang.
1413  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1414 static inline int scsi_host_queue_ready(struct request_queue *q,
1415 				   struct Scsi_Host *shost,
1416 				   struct scsi_device *sdev)
1417 {
1418 	unsigned int busy;
1419 
1420 	if (scsi_host_in_recovery(shost))
1421 		return 0;
1422 
1423 	busy = atomic_inc_return(&shost->host_busy) - 1;
1424 	if (atomic_read(&shost->host_blocked) > 0) {
1425 		if (busy)
1426 			goto starved;
1427 
1428 		/*
1429 		 * unblock after host_blocked iterates to zero
1430 		 */
1431 		if (atomic_dec_return(&shost->host_blocked) > 0)
1432 			goto out_dec;
1433 
1434 		SCSI_LOG_MLQUEUE(3,
1435 			shost_printk(KERN_INFO, shost,
1436 				     "unblocking host at zero depth\n"));
1437 	}
1438 
1439 	if (shost->can_queue > 0 && busy >= shost->can_queue)
1440 		goto starved;
1441 	if (shost->host_self_blocked)
1442 		goto starved;
1443 
1444 	/* We're OK to process the command, so we can't be starved */
1445 	if (!list_empty(&sdev->starved_entry)) {
1446 		spin_lock_irq(shost->host_lock);
1447 		if (!list_empty(&sdev->starved_entry))
1448 			list_del_init(&sdev->starved_entry);
1449 		spin_unlock_irq(shost->host_lock);
1450 	}
1451 
1452 	return 1;
1453 
1454 starved:
1455 	spin_lock_irq(shost->host_lock);
1456 	if (list_empty(&sdev->starved_entry))
1457 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1458 	spin_unlock_irq(shost->host_lock);
1459 out_dec:
1460 	atomic_dec(&shost->host_busy);
1461 	return 0;
1462 }
1463 
1464 /*
1465  * Busy state exporting function for request stacking drivers.
1466  *
1467  * For efficiency, no lock is taken to check the busy state of
1468  * shost/starget/sdev, since the returned value is not guaranteed and
1469  * may be changed after request stacking drivers call the function,
1470  * regardless of taking lock or not.
1471  *
1472  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1473  * needs to return 'not busy'. Otherwise, request stacking drivers
1474  * may hold requests forever.
1475  */
scsi_lld_busy(struct request_queue * q)1476 static int scsi_lld_busy(struct request_queue *q)
1477 {
1478 	struct scsi_device *sdev = q->queuedata;
1479 	struct Scsi_Host *shost;
1480 
1481 	if (blk_queue_dying(q))
1482 		return 0;
1483 
1484 	shost = sdev->host;
1485 
1486 	/*
1487 	 * Ignore host/starget busy state.
1488 	 * Since block layer does not have a concept of fairness across
1489 	 * multiple queues, congestion of host/starget needs to be handled
1490 	 * in SCSI layer.
1491 	 */
1492 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1493 		return 1;
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Kill a request for a dead device
1500  */
scsi_kill_request(struct request * req,struct request_queue * q)1501 static void scsi_kill_request(struct request *req, struct request_queue *q)
1502 {
1503 	struct scsi_cmnd *cmd = req->special;
1504 	struct scsi_device *sdev;
1505 	struct scsi_target *starget;
1506 	struct Scsi_Host *shost;
1507 
1508 	blk_start_request(req);
1509 
1510 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1511 
1512 	sdev = cmd->device;
1513 	starget = scsi_target(sdev);
1514 	shost = sdev->host;
1515 	scsi_init_cmd_errh(cmd);
1516 	cmd->result = DID_NO_CONNECT << 16;
1517 	atomic_inc(&cmd->device->iorequest_cnt);
1518 
1519 	/*
1520 	 * SCSI request completion path will do scsi_device_unbusy(),
1521 	 * bump busy counts.  To bump the counters, we need to dance
1522 	 * with the locks as normal issue path does.
1523 	 */
1524 	atomic_inc(&sdev->device_busy);
1525 	atomic_inc(&shost->host_busy);
1526 	if (starget->can_queue > 0)
1527 		atomic_inc(&starget->target_busy);
1528 
1529 	blk_complete_request(req);
1530 }
1531 
scsi_softirq_done(struct request * rq)1532 static void scsi_softirq_done(struct request *rq)
1533 {
1534 	struct scsi_cmnd *cmd = rq->special;
1535 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1536 	int disposition;
1537 
1538 	INIT_LIST_HEAD(&cmd->eh_entry);
1539 
1540 	atomic_inc(&cmd->device->iodone_cnt);
1541 	if (cmd->result)
1542 		atomic_inc(&cmd->device->ioerr_cnt);
1543 
1544 	disposition = scsi_decide_disposition(cmd);
1545 	if (disposition != SUCCESS &&
1546 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1547 		sdev_printk(KERN_ERR, cmd->device,
1548 			    "timing out command, waited %lus\n",
1549 			    wait_for/HZ);
1550 		disposition = SUCCESS;
1551 	}
1552 
1553 	scsi_log_completion(cmd, disposition);
1554 
1555 	switch (disposition) {
1556 		case SUCCESS:
1557 			scsi_finish_command(cmd);
1558 			break;
1559 		case NEEDS_RETRY:
1560 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1561 			break;
1562 		case ADD_TO_MLQUEUE:
1563 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1564 			break;
1565 		default:
1566 			if (!scsi_eh_scmd_add(cmd, 0))
1567 				scsi_finish_command(cmd);
1568 	}
1569 }
1570 
1571 /**
1572  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1573  * @cmd: command block we are dispatching.
1574  *
1575  * Return: nonzero return request was rejected and device's queue needs to be
1576  * plugged.
1577  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1578 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1579 {
1580 	struct Scsi_Host *host = cmd->device->host;
1581 	int rtn = 0;
1582 
1583 	atomic_inc(&cmd->device->iorequest_cnt);
1584 
1585 	/* check if the device is still usable */
1586 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1587 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1588 		 * returns an immediate error upwards, and signals
1589 		 * that the device is no longer present */
1590 		cmd->result = DID_NO_CONNECT << 16;
1591 		goto done;
1592 	}
1593 
1594 	/* Check to see if the scsi lld made this device blocked. */
1595 	if (unlikely(scsi_device_blocked(cmd->device))) {
1596 		/*
1597 		 * in blocked state, the command is just put back on
1598 		 * the device queue.  The suspend state has already
1599 		 * blocked the queue so future requests should not
1600 		 * occur until the device transitions out of the
1601 		 * suspend state.
1602 		 */
1603 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1604 			"queuecommand : device blocked\n"));
1605 		return SCSI_MLQUEUE_DEVICE_BUSY;
1606 	}
1607 
1608 	/* Store the LUN value in cmnd, if needed. */
1609 	if (cmd->device->lun_in_cdb)
1610 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1611 			       (cmd->device->lun << 5 & 0xe0);
1612 
1613 	scsi_log_send(cmd);
1614 
1615 	/*
1616 	 * Before we queue this command, check if the command
1617 	 * length exceeds what the host adapter can handle.
1618 	 */
1619 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1620 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1621 			       "queuecommand : command too long. "
1622 			       "cdb_size=%d host->max_cmd_len=%d\n",
1623 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1624 		cmd->result = (DID_ABORT << 16);
1625 		goto done;
1626 	}
1627 
1628 	if (unlikely(host->shost_state == SHOST_DEL)) {
1629 		cmd->result = (DID_NO_CONNECT << 16);
1630 		goto done;
1631 
1632 	}
1633 
1634 	trace_scsi_dispatch_cmd_start(cmd);
1635 	rtn = host->hostt->queuecommand(host, cmd);
1636 	if (rtn) {
1637 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1638 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1639 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1640 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1641 
1642 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1643 			"queuecommand : request rejected\n"));
1644 	}
1645 
1646 	return rtn;
1647  done:
1648 	cmd->scsi_done(cmd);
1649 	return 0;
1650 }
1651 
1652 /**
1653  * scsi_done - Invoke completion on finished SCSI command.
1654  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1655  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1656  *
1657  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1658  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1659  * calls blk_complete_request() for further processing.
1660  *
1661  * This function is interrupt context safe.
1662  */
scsi_done(struct scsi_cmnd * cmd)1663 static void scsi_done(struct scsi_cmnd *cmd)
1664 {
1665 	trace_scsi_dispatch_cmd_done(cmd);
1666 	blk_complete_request(cmd->request);
1667 }
1668 
1669 /*
1670  * Function:    scsi_request_fn()
1671  *
1672  * Purpose:     Main strategy routine for SCSI.
1673  *
1674  * Arguments:   q       - Pointer to actual queue.
1675  *
1676  * Returns:     Nothing
1677  *
1678  * Lock status: IO request lock assumed to be held when called.
1679  */
scsi_request_fn(struct request_queue * q)1680 static void scsi_request_fn(struct request_queue *q)
1681 	__releases(q->queue_lock)
1682 	__acquires(q->queue_lock)
1683 {
1684 	struct scsi_device *sdev = q->queuedata;
1685 	struct Scsi_Host *shost;
1686 	struct scsi_cmnd *cmd;
1687 	struct request *req;
1688 
1689 	/*
1690 	 * To start with, we keep looping until the queue is empty, or until
1691 	 * the host is no longer able to accept any more requests.
1692 	 */
1693 	shost = sdev->host;
1694 	for (;;) {
1695 		int rtn;
1696 		/*
1697 		 * get next queueable request.  We do this early to make sure
1698 		 * that the request is fully prepared even if we cannot
1699 		 * accept it.
1700 		 */
1701 		req = blk_peek_request(q);
1702 		if (!req)
1703 			break;
1704 
1705 		if (unlikely(!scsi_device_online(sdev))) {
1706 			sdev_printk(KERN_ERR, sdev,
1707 				    "rejecting I/O to offline device\n");
1708 			scsi_kill_request(req, q);
1709 			continue;
1710 		}
1711 
1712 		if (!scsi_dev_queue_ready(q, sdev))
1713 			break;
1714 
1715 		/*
1716 		 * Remove the request from the request list.
1717 		 */
1718 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1719 			blk_start_request(req);
1720 
1721 		spin_unlock_irq(q->queue_lock);
1722 		cmd = req->special;
1723 		if (unlikely(cmd == NULL)) {
1724 			printk(KERN_CRIT "impossible request in %s.\n"
1725 					 "please mail a stack trace to "
1726 					 "linux-scsi@vger.kernel.org\n",
1727 					 __func__);
1728 			blk_dump_rq_flags(req, "foo");
1729 			BUG();
1730 		}
1731 
1732 		/*
1733 		 * We hit this when the driver is using a host wide
1734 		 * tag map. For device level tag maps the queue_depth check
1735 		 * in the device ready fn would prevent us from trying
1736 		 * to allocate a tag. Since the map is a shared host resource
1737 		 * we add the dev to the starved list so it eventually gets
1738 		 * a run when a tag is freed.
1739 		 */
1740 		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1741 			spin_lock_irq(shost->host_lock);
1742 			if (list_empty(&sdev->starved_entry))
1743 				list_add_tail(&sdev->starved_entry,
1744 					      &shost->starved_list);
1745 			spin_unlock_irq(shost->host_lock);
1746 			goto not_ready;
1747 		}
1748 
1749 		if (!scsi_target_queue_ready(shost, sdev))
1750 			goto not_ready;
1751 
1752 		if (!scsi_host_queue_ready(q, shost, sdev))
1753 			goto host_not_ready;
1754 
1755 		if (sdev->simple_tags)
1756 			cmd->flags |= SCMD_TAGGED;
1757 		else
1758 			cmd->flags &= ~SCMD_TAGGED;
1759 
1760 		/*
1761 		 * Finally, initialize any error handling parameters, and set up
1762 		 * the timers for timeouts.
1763 		 */
1764 		scsi_init_cmd_errh(cmd);
1765 
1766 		/*
1767 		 * Dispatch the command to the low-level driver.
1768 		 */
1769 		cmd->scsi_done = scsi_done;
1770 		rtn = scsi_dispatch_cmd(cmd);
1771 		if (rtn) {
1772 			scsi_queue_insert(cmd, rtn);
1773 			spin_lock_irq(q->queue_lock);
1774 			goto out_delay;
1775 		}
1776 		spin_lock_irq(q->queue_lock);
1777 	}
1778 
1779 	return;
1780 
1781  host_not_ready:
1782 	if (scsi_target(sdev)->can_queue > 0)
1783 		atomic_dec(&scsi_target(sdev)->target_busy);
1784  not_ready:
1785 	/*
1786 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1787 	 * must return with queue_lock held.
1788 	 *
1789 	 * Decrementing device_busy without checking it is OK, as all such
1790 	 * cases (host limits or settings) should run the queue at some
1791 	 * later time.
1792 	 */
1793 	spin_lock_irq(q->queue_lock);
1794 	blk_requeue_request(q, req);
1795 	atomic_dec(&sdev->device_busy);
1796 out_delay:
1797 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1798 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1799 }
1800 
prep_to_mq(int ret)1801 static inline int prep_to_mq(int ret)
1802 {
1803 	switch (ret) {
1804 	case BLKPREP_OK:
1805 		return 0;
1806 	case BLKPREP_DEFER:
1807 		return BLK_MQ_RQ_QUEUE_BUSY;
1808 	default:
1809 		return BLK_MQ_RQ_QUEUE_ERROR;
1810 	}
1811 }
1812 
scsi_mq_prep_fn(struct request * req)1813 static int scsi_mq_prep_fn(struct request *req)
1814 {
1815 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1816 	struct scsi_device *sdev = req->q->queuedata;
1817 	struct Scsi_Host *shost = sdev->host;
1818 	unsigned char *sense_buf = cmd->sense_buffer;
1819 	struct scatterlist *sg;
1820 
1821 	memset(cmd, 0, sizeof(struct scsi_cmnd));
1822 
1823 	req->special = cmd;
1824 
1825 	cmd->request = req;
1826 	cmd->device = sdev;
1827 	cmd->sense_buffer = sense_buf;
1828 
1829 	cmd->tag = req->tag;
1830 
1831 	cmd->cmnd = req->cmd;
1832 	cmd->prot_op = SCSI_PROT_NORMAL;
1833 
1834 	INIT_LIST_HEAD(&cmd->list);
1835 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1836 	cmd->jiffies_at_alloc = jiffies;
1837 
1838 	if (shost->use_cmd_list) {
1839 		spin_lock_irq(&sdev->list_lock);
1840 		list_add_tail(&cmd->list, &sdev->cmd_list);
1841 		spin_unlock_irq(&sdev->list_lock);
1842 	}
1843 
1844 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1845 	cmd->sdb.table.sgl = sg;
1846 
1847 	if (scsi_host_get_prot(shost)) {
1848 		cmd->prot_sdb = (void *)sg +
1849 			min_t(unsigned int,
1850 			      shost->sg_tablesize, SG_CHUNK_SIZE) *
1851 			sizeof(struct scatterlist);
1852 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1853 
1854 		cmd->prot_sdb->table.sgl =
1855 			(struct scatterlist *)(cmd->prot_sdb + 1);
1856 	}
1857 
1858 	if (blk_bidi_rq(req)) {
1859 		struct request *next_rq = req->next_rq;
1860 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1861 
1862 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1863 		bidi_sdb->table.sgl =
1864 			(struct scatterlist *)(bidi_sdb + 1);
1865 
1866 		next_rq->special = bidi_sdb;
1867 	}
1868 
1869 	blk_mq_start_request(req);
1870 
1871 	return scsi_setup_cmnd(sdev, req);
1872 }
1873 
scsi_mq_done(struct scsi_cmnd * cmd)1874 static void scsi_mq_done(struct scsi_cmnd *cmd)
1875 {
1876 	trace_scsi_dispatch_cmd_done(cmd);
1877 	blk_mq_complete_request(cmd->request, cmd->request->errors);
1878 }
1879 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1880 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1881 			 const struct blk_mq_queue_data *bd)
1882 {
1883 	struct request *req = bd->rq;
1884 	struct request_queue *q = req->q;
1885 	struct scsi_device *sdev = q->queuedata;
1886 	struct Scsi_Host *shost = sdev->host;
1887 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1888 	int ret;
1889 	int reason;
1890 
1891 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1892 	if (ret)
1893 		goto out;
1894 
1895 	ret = BLK_MQ_RQ_QUEUE_BUSY;
1896 	if (!get_device(&sdev->sdev_gendev))
1897 		goto out;
1898 
1899 	if (!scsi_dev_queue_ready(q, sdev))
1900 		goto out_put_device;
1901 	if (!scsi_target_queue_ready(shost, sdev))
1902 		goto out_dec_device_busy;
1903 	if (!scsi_host_queue_ready(q, shost, sdev))
1904 		goto out_dec_target_busy;
1905 
1906 
1907 	if (!(req->cmd_flags & REQ_DONTPREP)) {
1908 		ret = prep_to_mq(scsi_mq_prep_fn(req));
1909 		if (ret)
1910 			goto out_dec_host_busy;
1911 		req->cmd_flags |= REQ_DONTPREP;
1912 	} else {
1913 		blk_mq_start_request(req);
1914 	}
1915 
1916 	if (sdev->simple_tags)
1917 		cmd->flags |= SCMD_TAGGED;
1918 	else
1919 		cmd->flags &= ~SCMD_TAGGED;
1920 
1921 	scsi_init_cmd_errh(cmd);
1922 	cmd->scsi_done = scsi_mq_done;
1923 
1924 	reason = scsi_dispatch_cmd(cmd);
1925 	if (reason) {
1926 		scsi_set_blocked(cmd, reason);
1927 		ret = BLK_MQ_RQ_QUEUE_BUSY;
1928 		goto out_dec_host_busy;
1929 	}
1930 
1931 	return BLK_MQ_RQ_QUEUE_OK;
1932 
1933 out_dec_host_busy:
1934 	atomic_dec(&shost->host_busy);
1935 out_dec_target_busy:
1936 	if (scsi_target(sdev)->can_queue > 0)
1937 		atomic_dec(&scsi_target(sdev)->target_busy);
1938 out_dec_device_busy:
1939 	atomic_dec(&sdev->device_busy);
1940 out_put_device:
1941 	put_device(&sdev->sdev_gendev);
1942 out:
1943 	switch (ret) {
1944 	case BLK_MQ_RQ_QUEUE_BUSY:
1945 		blk_mq_stop_hw_queue(hctx);
1946 		if (atomic_read(&sdev->device_busy) == 0 &&
1947 		    !scsi_device_blocked(sdev))
1948 			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1949 		break;
1950 	case BLK_MQ_RQ_QUEUE_ERROR:
1951 		/*
1952 		 * Make sure to release all allocated ressources when
1953 		 * we hit an error, as we will never see this command
1954 		 * again.
1955 		 */
1956 		if (req->cmd_flags & REQ_DONTPREP)
1957 			scsi_mq_uninit_cmd(cmd);
1958 		break;
1959 	default:
1960 		break;
1961 	}
1962 	return ret;
1963 }
1964 
scsi_timeout(struct request * req,bool reserved)1965 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1966 		bool reserved)
1967 {
1968 	if (reserved)
1969 		return BLK_EH_RESET_TIMER;
1970 	return scsi_times_out(req);
1971 }
1972 
scsi_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)1973 static int scsi_init_request(void *data, struct request *rq,
1974 		unsigned int hctx_idx, unsigned int request_idx,
1975 		unsigned int numa_node)
1976 {
1977 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1978 
1979 	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1980 			numa_node);
1981 	if (!cmd->sense_buffer)
1982 		return -ENOMEM;
1983 	return 0;
1984 }
1985 
scsi_exit_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx)1986 static void scsi_exit_request(void *data, struct request *rq,
1987 		unsigned int hctx_idx, unsigned int request_idx)
1988 {
1989 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1990 
1991 	kfree(cmd->sense_buffer);
1992 }
1993 
scsi_calculate_bounce_limit(struct Scsi_Host * shost)1994 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1995 {
1996 	struct device *host_dev;
1997 	u64 bounce_limit = 0xffffffff;
1998 
1999 	if (shost->unchecked_isa_dma)
2000 		return BLK_BOUNCE_ISA;
2001 	/*
2002 	 * Platforms with virtual-DMA translation
2003 	 * hardware have no practical limit.
2004 	 */
2005 	if (!PCI_DMA_BUS_IS_PHYS)
2006 		return BLK_BOUNCE_ANY;
2007 
2008 	host_dev = scsi_get_device(shost);
2009 	if (host_dev && host_dev->dma_mask)
2010 		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2011 
2012 	return bounce_limit;
2013 }
2014 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)2015 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2016 {
2017 	struct device *dev = shost->dma_dev;
2018 
2019 	/*
2020 	 * this limit is imposed by hardware restrictions
2021 	 */
2022 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2023 					SG_MAX_SEGMENTS));
2024 
2025 	if (scsi_host_prot_dma(shost)) {
2026 		shost->sg_prot_tablesize =
2027 			min_not_zero(shost->sg_prot_tablesize,
2028 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2029 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2030 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2031 	}
2032 
2033 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2034 	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2035 	blk_queue_segment_boundary(q, shost->dma_boundary);
2036 	dma_set_seg_boundary(dev, shost->dma_boundary);
2037 
2038 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2039 
2040 	if (!shost->use_clustering)
2041 		q->limits.cluster = 0;
2042 
2043 	/*
2044 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2045 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2046 	 * which is set by the platform.
2047 	 *
2048 	 * Devices that require a bigger alignment can increase it later.
2049 	 */
2050 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2051 }
2052 
__scsi_alloc_queue(struct Scsi_Host * shost,request_fn_proc * request_fn)2053 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2054 					 request_fn_proc *request_fn)
2055 {
2056 	struct request_queue *q;
2057 
2058 	q = blk_init_queue(request_fn, NULL);
2059 	if (!q)
2060 		return NULL;
2061 	__scsi_init_queue(shost, q);
2062 	return q;
2063 }
2064 EXPORT_SYMBOL(__scsi_alloc_queue);
2065 
scsi_alloc_queue(struct scsi_device * sdev)2066 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2067 {
2068 	struct request_queue *q;
2069 
2070 	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2071 	if (!q)
2072 		return NULL;
2073 
2074 	blk_queue_prep_rq(q, scsi_prep_fn);
2075 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2076 	blk_queue_softirq_done(q, scsi_softirq_done);
2077 	blk_queue_rq_timed_out(q, scsi_times_out);
2078 	blk_queue_lld_busy(q, scsi_lld_busy);
2079 	return q;
2080 }
2081 
2082 static struct blk_mq_ops scsi_mq_ops = {
2083 	.queue_rq	= scsi_queue_rq,
2084 	.complete	= scsi_softirq_done,
2085 	.timeout	= scsi_timeout,
2086 	.init_request	= scsi_init_request,
2087 	.exit_request	= scsi_exit_request,
2088 };
2089 
scsi_mq_alloc_queue(struct scsi_device * sdev)2090 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2091 {
2092 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2093 	if (IS_ERR(sdev->request_queue))
2094 		return NULL;
2095 
2096 	sdev->request_queue->queuedata = sdev;
2097 	__scsi_init_queue(sdev->host, sdev->request_queue);
2098 	return sdev->request_queue;
2099 }
2100 
scsi_mq_setup_tags(struct Scsi_Host * shost)2101 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2102 {
2103 	unsigned int cmd_size, sgl_size, tbl_size;
2104 
2105 	tbl_size = shost->sg_tablesize;
2106 	if (tbl_size > SG_CHUNK_SIZE)
2107 		tbl_size = SG_CHUNK_SIZE;
2108 	sgl_size = tbl_size * sizeof(struct scatterlist);
2109 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2110 	if (scsi_host_get_prot(shost))
2111 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2112 
2113 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2114 	shost->tag_set.ops = &scsi_mq_ops;
2115 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2116 	shost->tag_set.queue_depth = shost->can_queue;
2117 	shost->tag_set.cmd_size = cmd_size;
2118 	shost->tag_set.numa_node = NUMA_NO_NODE;
2119 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2120 	shost->tag_set.flags |=
2121 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2122 	shost->tag_set.driver_data = shost;
2123 
2124 	return blk_mq_alloc_tag_set(&shost->tag_set);
2125 }
2126 
scsi_mq_destroy_tags(struct Scsi_Host * shost)2127 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2128 {
2129 	blk_mq_free_tag_set(&shost->tag_set);
2130 }
2131 
2132 /**
2133  * scsi_device_from_queue - return sdev associated with a request_queue
2134  * @q: The request queue to return the sdev from
2135  *
2136  * Return the sdev associated with a request queue or NULL if the
2137  * request_queue does not reference a SCSI device.
2138  */
scsi_device_from_queue(struct request_queue * q)2139 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2140 {
2141 	struct scsi_device *sdev = NULL;
2142 
2143 	if (q->mq_ops) {
2144 		if (q->mq_ops == &scsi_mq_ops)
2145 			sdev = q->queuedata;
2146 	} else if (q->request_fn == scsi_request_fn)
2147 		sdev = q->queuedata;
2148 	if (!sdev || !get_device(&sdev->sdev_gendev))
2149 		sdev = NULL;
2150 
2151 	return sdev;
2152 }
2153 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2154 
2155 /*
2156  * Function:    scsi_block_requests()
2157  *
2158  * Purpose:     Utility function used by low-level drivers to prevent further
2159  *		commands from being queued to the device.
2160  *
2161  * Arguments:   shost       - Host in question
2162  *
2163  * Returns:     Nothing
2164  *
2165  * Lock status: No locks are assumed held.
2166  *
2167  * Notes:       There is no timer nor any other means by which the requests
2168  *		get unblocked other than the low-level driver calling
2169  *		scsi_unblock_requests().
2170  */
scsi_block_requests(struct Scsi_Host * shost)2171 void scsi_block_requests(struct Scsi_Host *shost)
2172 {
2173 	shost->host_self_blocked = 1;
2174 }
2175 EXPORT_SYMBOL(scsi_block_requests);
2176 
2177 /*
2178  * Function:    scsi_unblock_requests()
2179  *
2180  * Purpose:     Utility function used by low-level drivers to allow further
2181  *		commands from being queued to the device.
2182  *
2183  * Arguments:   shost       - Host in question
2184  *
2185  * Returns:     Nothing
2186  *
2187  * Lock status: No locks are assumed held.
2188  *
2189  * Notes:       There is no timer nor any other means by which the requests
2190  *		get unblocked other than the low-level driver calling
2191  *		scsi_unblock_requests().
2192  *
2193  *		This is done as an API function so that changes to the
2194  *		internals of the scsi mid-layer won't require wholesale
2195  *		changes to drivers that use this feature.
2196  */
scsi_unblock_requests(struct Scsi_Host * shost)2197 void scsi_unblock_requests(struct Scsi_Host *shost)
2198 {
2199 	shost->host_self_blocked = 0;
2200 	scsi_run_host_queues(shost);
2201 }
2202 EXPORT_SYMBOL(scsi_unblock_requests);
2203 
scsi_init_queue(void)2204 int __init scsi_init_queue(void)
2205 {
2206 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2207 					   sizeof(struct scsi_data_buffer),
2208 					   0, 0, NULL);
2209 	if (!scsi_sdb_cache) {
2210 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2211 		return -ENOMEM;
2212 	}
2213 
2214 	return 0;
2215 }
2216 
scsi_exit_queue(void)2217 void scsi_exit_queue(void)
2218 {
2219 	kmem_cache_destroy(scsi_sdb_cache);
2220 }
2221 
2222 /**
2223  *	scsi_mode_select - issue a mode select
2224  *	@sdev:	SCSI device to be queried
2225  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2226  *	@sp:	Save page bit (0 == don't save, 1 == save)
2227  *	@modepage: mode page being requested
2228  *	@buffer: request buffer (may not be smaller than eight bytes)
2229  *	@len:	length of request buffer.
2230  *	@timeout: command timeout
2231  *	@retries: number of retries before failing
2232  *	@data: returns a structure abstracting the mode header data
2233  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2234  *		must be SCSI_SENSE_BUFFERSIZE big.
2235  *
2236  *	Returns zero if successful; negative error number or scsi
2237  *	status on error
2238  *
2239  */
2240 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2241 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2242 		 unsigned char *buffer, int len, int timeout, int retries,
2243 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2244 {
2245 	unsigned char cmd[10];
2246 	unsigned char *real_buffer;
2247 	int ret;
2248 
2249 	memset(cmd, 0, sizeof(cmd));
2250 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2251 
2252 	if (sdev->use_10_for_ms) {
2253 		if (len > 65535)
2254 			return -EINVAL;
2255 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2256 		if (!real_buffer)
2257 			return -ENOMEM;
2258 		memcpy(real_buffer + 8, buffer, len);
2259 		len += 8;
2260 		real_buffer[0] = 0;
2261 		real_buffer[1] = 0;
2262 		real_buffer[2] = data->medium_type;
2263 		real_buffer[3] = data->device_specific;
2264 		real_buffer[4] = data->longlba ? 0x01 : 0;
2265 		real_buffer[5] = 0;
2266 		real_buffer[6] = data->block_descriptor_length >> 8;
2267 		real_buffer[7] = data->block_descriptor_length;
2268 
2269 		cmd[0] = MODE_SELECT_10;
2270 		cmd[7] = len >> 8;
2271 		cmd[8] = len;
2272 	} else {
2273 		if (len > 255 || data->block_descriptor_length > 255 ||
2274 		    data->longlba)
2275 			return -EINVAL;
2276 
2277 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2278 		if (!real_buffer)
2279 			return -ENOMEM;
2280 		memcpy(real_buffer + 4, buffer, len);
2281 		len += 4;
2282 		real_buffer[0] = 0;
2283 		real_buffer[1] = data->medium_type;
2284 		real_buffer[2] = data->device_specific;
2285 		real_buffer[3] = data->block_descriptor_length;
2286 
2287 
2288 		cmd[0] = MODE_SELECT;
2289 		cmd[4] = len;
2290 	}
2291 
2292 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2293 			       sshdr, timeout, retries, NULL);
2294 	kfree(real_buffer);
2295 	return ret;
2296 }
2297 EXPORT_SYMBOL_GPL(scsi_mode_select);
2298 
2299 /**
2300  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2301  *	@sdev:	SCSI device to be queried
2302  *	@dbd:	set if mode sense will allow block descriptors to be returned
2303  *	@modepage: mode page being requested
2304  *	@buffer: request buffer (may not be smaller than eight bytes)
2305  *	@len:	length of request buffer.
2306  *	@timeout: command timeout
2307  *	@retries: number of retries before failing
2308  *	@data: returns a structure abstracting the mode header data
2309  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2310  *		must be SCSI_SENSE_BUFFERSIZE big.
2311  *
2312  *	Returns zero if unsuccessful, or the header offset (either 4
2313  *	or 8 depending on whether a six or ten byte command was
2314  *	issued) if successful.
2315  */
2316 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2317 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2318 		  unsigned char *buffer, int len, int timeout, int retries,
2319 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2320 {
2321 	unsigned char cmd[12];
2322 	int use_10_for_ms;
2323 	int header_length;
2324 	int result, retry_count = retries;
2325 	struct scsi_sense_hdr my_sshdr;
2326 
2327 	memset(data, 0, sizeof(*data));
2328 	memset(&cmd[0], 0, 12);
2329 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2330 	cmd[2] = modepage;
2331 
2332 	/* caller might not be interested in sense, but we need it */
2333 	if (!sshdr)
2334 		sshdr = &my_sshdr;
2335 
2336  retry:
2337 	use_10_for_ms = sdev->use_10_for_ms;
2338 
2339 	if (use_10_for_ms) {
2340 		if (len < 8)
2341 			len = 8;
2342 
2343 		cmd[0] = MODE_SENSE_10;
2344 		cmd[8] = len;
2345 		header_length = 8;
2346 	} else {
2347 		if (len < 4)
2348 			len = 4;
2349 
2350 		cmd[0] = MODE_SENSE;
2351 		cmd[4] = len;
2352 		header_length = 4;
2353 	}
2354 
2355 	memset(buffer, 0, len);
2356 
2357 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2358 				  sshdr, timeout, retries, NULL);
2359 
2360 	/* This code looks awful: what it's doing is making sure an
2361 	 * ILLEGAL REQUEST sense return identifies the actual command
2362 	 * byte as the problem.  MODE_SENSE commands can return
2363 	 * ILLEGAL REQUEST if the code page isn't supported */
2364 
2365 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2366 	    (driver_byte(result) & DRIVER_SENSE)) {
2367 		if (scsi_sense_valid(sshdr)) {
2368 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2369 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2370 				/*
2371 				 * Invalid command operation code
2372 				 */
2373 				sdev->use_10_for_ms = 0;
2374 				goto retry;
2375 			}
2376 		}
2377 	}
2378 
2379 	if(scsi_status_is_good(result)) {
2380 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2381 			     (modepage == 6 || modepage == 8))) {
2382 			/* Initio breakage? */
2383 			header_length = 0;
2384 			data->length = 13;
2385 			data->medium_type = 0;
2386 			data->device_specific = 0;
2387 			data->longlba = 0;
2388 			data->block_descriptor_length = 0;
2389 		} else if(use_10_for_ms) {
2390 			data->length = buffer[0]*256 + buffer[1] + 2;
2391 			data->medium_type = buffer[2];
2392 			data->device_specific = buffer[3];
2393 			data->longlba = buffer[4] & 0x01;
2394 			data->block_descriptor_length = buffer[6]*256
2395 				+ buffer[7];
2396 		} else {
2397 			data->length = buffer[0] + 1;
2398 			data->medium_type = buffer[1];
2399 			data->device_specific = buffer[2];
2400 			data->block_descriptor_length = buffer[3];
2401 		}
2402 		data->header_length = header_length;
2403 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2404 		   scsi_sense_valid(sshdr) &&
2405 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2406 		retry_count--;
2407 		goto retry;
2408 	}
2409 
2410 	return result;
2411 }
2412 EXPORT_SYMBOL(scsi_mode_sense);
2413 
2414 /**
2415  *	scsi_test_unit_ready - test if unit is ready
2416  *	@sdev:	scsi device to change the state of.
2417  *	@timeout: command timeout
2418  *	@retries: number of retries before failing
2419  *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2420  *		returning sense. Make sure that this is cleared before passing
2421  *		in.
2422  *
2423  *	Returns zero if unsuccessful or an error if TUR failed.  For
2424  *	removable media, UNIT_ATTENTION sets ->changed flag.
2425  **/
2426 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr_external)2427 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2428 		     struct scsi_sense_hdr *sshdr_external)
2429 {
2430 	char cmd[] = {
2431 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2432 	};
2433 	struct scsi_sense_hdr *sshdr;
2434 	int result;
2435 
2436 	if (!sshdr_external)
2437 		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2438 	else
2439 		sshdr = sshdr_external;
2440 
2441 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2442 	do {
2443 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2444 					  timeout, retries, NULL);
2445 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2446 		    sshdr->sense_key == UNIT_ATTENTION)
2447 			sdev->changed = 1;
2448 	} while (scsi_sense_valid(sshdr) &&
2449 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2450 
2451 	if (!sshdr_external)
2452 		kfree(sshdr);
2453 	return result;
2454 }
2455 EXPORT_SYMBOL(scsi_test_unit_ready);
2456 
2457 /**
2458  *	scsi_device_set_state - Take the given device through the device state model.
2459  *	@sdev:	scsi device to change the state of.
2460  *	@state:	state to change to.
2461  *
2462  *	Returns zero if unsuccessful or an error if the requested
2463  *	transition is illegal.
2464  */
2465 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2466 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2467 {
2468 	enum scsi_device_state oldstate = sdev->sdev_state;
2469 
2470 	if (state == oldstate)
2471 		return 0;
2472 
2473 	switch (state) {
2474 	case SDEV_CREATED:
2475 		switch (oldstate) {
2476 		case SDEV_CREATED_BLOCK:
2477 			break;
2478 		default:
2479 			goto illegal;
2480 		}
2481 		break;
2482 
2483 	case SDEV_RUNNING:
2484 		switch (oldstate) {
2485 		case SDEV_CREATED:
2486 		case SDEV_OFFLINE:
2487 		case SDEV_TRANSPORT_OFFLINE:
2488 		case SDEV_QUIESCE:
2489 		case SDEV_BLOCK:
2490 			break;
2491 		default:
2492 			goto illegal;
2493 		}
2494 		break;
2495 
2496 	case SDEV_QUIESCE:
2497 		switch (oldstate) {
2498 		case SDEV_RUNNING:
2499 		case SDEV_OFFLINE:
2500 		case SDEV_TRANSPORT_OFFLINE:
2501 			break;
2502 		default:
2503 			goto illegal;
2504 		}
2505 		break;
2506 
2507 	case SDEV_OFFLINE:
2508 	case SDEV_TRANSPORT_OFFLINE:
2509 		switch (oldstate) {
2510 		case SDEV_CREATED:
2511 		case SDEV_RUNNING:
2512 		case SDEV_QUIESCE:
2513 		case SDEV_BLOCK:
2514 			break;
2515 		default:
2516 			goto illegal;
2517 		}
2518 		break;
2519 
2520 	case SDEV_BLOCK:
2521 		switch (oldstate) {
2522 		case SDEV_RUNNING:
2523 		case SDEV_CREATED_BLOCK:
2524 			break;
2525 		default:
2526 			goto illegal;
2527 		}
2528 		break;
2529 
2530 	case SDEV_CREATED_BLOCK:
2531 		switch (oldstate) {
2532 		case SDEV_CREATED:
2533 			break;
2534 		default:
2535 			goto illegal;
2536 		}
2537 		break;
2538 
2539 	case SDEV_CANCEL:
2540 		switch (oldstate) {
2541 		case SDEV_CREATED:
2542 		case SDEV_RUNNING:
2543 		case SDEV_QUIESCE:
2544 		case SDEV_OFFLINE:
2545 		case SDEV_TRANSPORT_OFFLINE:
2546 		case SDEV_BLOCK:
2547 			break;
2548 		default:
2549 			goto illegal;
2550 		}
2551 		break;
2552 
2553 	case SDEV_DEL:
2554 		switch (oldstate) {
2555 		case SDEV_CREATED:
2556 		case SDEV_RUNNING:
2557 		case SDEV_OFFLINE:
2558 		case SDEV_TRANSPORT_OFFLINE:
2559 		case SDEV_CANCEL:
2560 		case SDEV_CREATED_BLOCK:
2561 			break;
2562 		default:
2563 			goto illegal;
2564 		}
2565 		break;
2566 
2567 	}
2568 	sdev->sdev_state = state;
2569 	return 0;
2570 
2571  illegal:
2572 	SCSI_LOG_ERROR_RECOVERY(1,
2573 				sdev_printk(KERN_ERR, sdev,
2574 					    "Illegal state transition %s->%s",
2575 					    scsi_device_state_name(oldstate),
2576 					    scsi_device_state_name(state))
2577 				);
2578 	return -EINVAL;
2579 }
2580 EXPORT_SYMBOL(scsi_device_set_state);
2581 
2582 /**
2583  * 	sdev_evt_emit - emit a single SCSI device uevent
2584  *	@sdev: associated SCSI device
2585  *	@evt: event to emit
2586  *
2587  *	Send a single uevent (scsi_event) to the associated scsi_device.
2588  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2589 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2590 {
2591 	int idx = 0;
2592 	char *envp[3];
2593 
2594 	switch (evt->evt_type) {
2595 	case SDEV_EVT_MEDIA_CHANGE:
2596 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2597 		break;
2598 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2599 		scsi_rescan_device(&sdev->sdev_gendev);
2600 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2601 		break;
2602 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2603 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2604 		break;
2605 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2606 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2607 		break;
2608 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2609 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2610 		break;
2611 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2612 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2613 		break;
2614 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2615 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2616 		break;
2617 	default:
2618 		/* do nothing */
2619 		break;
2620 	}
2621 
2622 	envp[idx++] = NULL;
2623 
2624 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2625 }
2626 
2627 /**
2628  * 	sdev_evt_thread - send a uevent for each scsi event
2629  *	@work: work struct for scsi_device
2630  *
2631  *	Dispatch queued events to their associated scsi_device kobjects
2632  *	as uevents.
2633  */
scsi_evt_thread(struct work_struct * work)2634 void scsi_evt_thread(struct work_struct *work)
2635 {
2636 	struct scsi_device *sdev;
2637 	enum scsi_device_event evt_type;
2638 	LIST_HEAD(event_list);
2639 
2640 	sdev = container_of(work, struct scsi_device, event_work);
2641 
2642 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2643 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2644 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2645 
2646 	while (1) {
2647 		struct scsi_event *evt;
2648 		struct list_head *this, *tmp;
2649 		unsigned long flags;
2650 
2651 		spin_lock_irqsave(&sdev->list_lock, flags);
2652 		list_splice_init(&sdev->event_list, &event_list);
2653 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2654 
2655 		if (list_empty(&event_list))
2656 			break;
2657 
2658 		list_for_each_safe(this, tmp, &event_list) {
2659 			evt = list_entry(this, struct scsi_event, node);
2660 			list_del(&evt->node);
2661 			scsi_evt_emit(sdev, evt);
2662 			kfree(evt);
2663 		}
2664 	}
2665 }
2666 
2667 /**
2668  * 	sdev_evt_send - send asserted event to uevent thread
2669  *	@sdev: scsi_device event occurred on
2670  *	@evt: event to send
2671  *
2672  *	Assert scsi device event asynchronously.
2673  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2674 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2675 {
2676 	unsigned long flags;
2677 
2678 #if 0
2679 	/* FIXME: currently this check eliminates all media change events
2680 	 * for polled devices.  Need to update to discriminate between AN
2681 	 * and polled events */
2682 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2683 		kfree(evt);
2684 		return;
2685 	}
2686 #endif
2687 
2688 	spin_lock_irqsave(&sdev->list_lock, flags);
2689 	list_add_tail(&evt->node, &sdev->event_list);
2690 	schedule_work(&sdev->event_work);
2691 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2692 }
2693 EXPORT_SYMBOL_GPL(sdev_evt_send);
2694 
2695 /**
2696  * 	sdev_evt_alloc - allocate a new scsi event
2697  *	@evt_type: type of event to allocate
2698  *	@gfpflags: GFP flags for allocation
2699  *
2700  *	Allocates and returns a new scsi_event.
2701  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2702 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2703 				  gfp_t gfpflags)
2704 {
2705 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2706 	if (!evt)
2707 		return NULL;
2708 
2709 	evt->evt_type = evt_type;
2710 	INIT_LIST_HEAD(&evt->node);
2711 
2712 	/* evt_type-specific initialization, if any */
2713 	switch (evt_type) {
2714 	case SDEV_EVT_MEDIA_CHANGE:
2715 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2716 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2717 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2718 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2719 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2720 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2721 	default:
2722 		/* do nothing */
2723 		break;
2724 	}
2725 
2726 	return evt;
2727 }
2728 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2729 
2730 /**
2731  * 	sdev_evt_send_simple - send asserted event to uevent thread
2732  *	@sdev: scsi_device event occurred on
2733  *	@evt_type: type of event to send
2734  *	@gfpflags: GFP flags for allocation
2735  *
2736  *	Assert scsi device event asynchronously, given an event type.
2737  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2738 void sdev_evt_send_simple(struct scsi_device *sdev,
2739 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2740 {
2741 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2742 	if (!evt) {
2743 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2744 			    evt_type);
2745 		return;
2746 	}
2747 
2748 	sdev_evt_send(sdev, evt);
2749 }
2750 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2751 
2752 /**
2753  *	scsi_device_quiesce - Block user issued commands.
2754  *	@sdev:	scsi device to quiesce.
2755  *
2756  *	This works by trying to transition to the SDEV_QUIESCE state
2757  *	(which must be a legal transition).  When the device is in this
2758  *	state, only special requests will be accepted, all others will
2759  *	be deferred.  Since special requests may also be requeued requests,
2760  *	a successful return doesn't guarantee the device will be
2761  *	totally quiescent.
2762  *
2763  *	Must be called with user context, may sleep.
2764  *
2765  *	Returns zero if unsuccessful or an error if not.
2766  */
2767 int
scsi_device_quiesce(struct scsi_device * sdev)2768 scsi_device_quiesce(struct scsi_device *sdev)
2769 {
2770 	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2771 	if (err)
2772 		return err;
2773 
2774 	scsi_run_queue(sdev->request_queue);
2775 	while (atomic_read(&sdev->device_busy)) {
2776 		msleep_interruptible(200);
2777 		scsi_run_queue(sdev->request_queue);
2778 	}
2779 	return 0;
2780 }
2781 EXPORT_SYMBOL(scsi_device_quiesce);
2782 
2783 /**
2784  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2785  *	@sdev:	scsi device to resume.
2786  *
2787  *	Moves the device from quiesced back to running and restarts the
2788  *	queues.
2789  *
2790  *	Must be called with user context, may sleep.
2791  */
scsi_device_resume(struct scsi_device * sdev)2792 void scsi_device_resume(struct scsi_device *sdev)
2793 {
2794 	/* check if the device state was mutated prior to resume, and if
2795 	 * so assume the state is being managed elsewhere (for example
2796 	 * device deleted during suspend)
2797 	 */
2798 	if (sdev->sdev_state != SDEV_QUIESCE ||
2799 	    scsi_device_set_state(sdev, SDEV_RUNNING))
2800 		return;
2801 	scsi_run_queue(sdev->request_queue);
2802 }
2803 EXPORT_SYMBOL(scsi_device_resume);
2804 
2805 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2806 device_quiesce_fn(struct scsi_device *sdev, void *data)
2807 {
2808 	scsi_device_quiesce(sdev);
2809 }
2810 
2811 void
scsi_target_quiesce(struct scsi_target * starget)2812 scsi_target_quiesce(struct scsi_target *starget)
2813 {
2814 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2815 }
2816 EXPORT_SYMBOL(scsi_target_quiesce);
2817 
2818 static void
device_resume_fn(struct scsi_device * sdev,void * data)2819 device_resume_fn(struct scsi_device *sdev, void *data)
2820 {
2821 	scsi_device_resume(sdev);
2822 }
2823 
2824 void
scsi_target_resume(struct scsi_target * starget)2825 scsi_target_resume(struct scsi_target *starget)
2826 {
2827 	starget_for_each_device(starget, NULL, device_resume_fn);
2828 }
2829 EXPORT_SYMBOL(scsi_target_resume);
2830 
2831 /**
2832  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2833  * @sdev:	device to block
2834  *
2835  * Block request made by scsi lld's to temporarily stop all
2836  * scsi commands on the specified device.  Called from interrupt
2837  * or normal process context.
2838  *
2839  * Returns zero if successful or error if not
2840  *
2841  * Notes:
2842  *	This routine transitions the device to the SDEV_BLOCK state
2843  *	(which must be a legal transition).  When the device is in this
2844  *	state, all commands are deferred until the scsi lld reenables
2845  *	the device with scsi_device_unblock or device_block_tmo fires.
2846  */
2847 int
scsi_internal_device_block(struct scsi_device * sdev)2848 scsi_internal_device_block(struct scsi_device *sdev)
2849 {
2850 	struct request_queue *q = sdev->request_queue;
2851 	unsigned long flags;
2852 	int err = 0;
2853 
2854 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2855 	if (err) {
2856 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2857 
2858 		if (err)
2859 			return err;
2860 	}
2861 
2862 	/*
2863 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2864 	 * block layer from calling the midlayer with this device's
2865 	 * request queue.
2866 	 */
2867 	if (q->mq_ops) {
2868 		blk_mq_stop_hw_queues(q);
2869 	} else {
2870 		spin_lock_irqsave(q->queue_lock, flags);
2871 		blk_stop_queue(q);
2872 		spin_unlock_irqrestore(q->queue_lock, flags);
2873 	}
2874 
2875 	return 0;
2876 }
2877 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2878 
2879 /**
2880  * scsi_internal_device_unblock - resume a device after a block request
2881  * @sdev:	device to resume
2882  * @new_state:	state to set devices to after unblocking
2883  *
2884  * Called by scsi lld's or the midlayer to restart the device queue
2885  * for the previously suspended scsi device.  Called from interrupt or
2886  * normal process context.
2887  *
2888  * Returns zero if successful or error if not.
2889  *
2890  * Notes:
2891  *	This routine transitions the device to the SDEV_RUNNING state
2892  *	or to one of the offline states (which must be a legal transition)
2893  *	allowing the midlayer to goose the queue for this device.
2894  */
2895 int
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2896 scsi_internal_device_unblock(struct scsi_device *sdev,
2897 			     enum scsi_device_state new_state)
2898 {
2899 	struct request_queue *q = sdev->request_queue;
2900 	unsigned long flags;
2901 
2902 	/*
2903 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2904 	 * offlined states and goose the device queue if successful.
2905 	 */
2906 	if ((sdev->sdev_state == SDEV_BLOCK) ||
2907 	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2908 		sdev->sdev_state = new_state;
2909 	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2910 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2911 		    new_state == SDEV_OFFLINE)
2912 			sdev->sdev_state = new_state;
2913 		else
2914 			sdev->sdev_state = SDEV_CREATED;
2915 	} else if (sdev->sdev_state != SDEV_CANCEL &&
2916 		 sdev->sdev_state != SDEV_OFFLINE)
2917 		return -EINVAL;
2918 
2919 	if (q->mq_ops) {
2920 		blk_mq_start_stopped_hw_queues(q, false);
2921 	} else {
2922 		spin_lock_irqsave(q->queue_lock, flags);
2923 		blk_start_queue(q);
2924 		spin_unlock_irqrestore(q->queue_lock, flags);
2925 	}
2926 
2927 	return 0;
2928 }
2929 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2930 
2931 static void
device_block(struct scsi_device * sdev,void * data)2932 device_block(struct scsi_device *sdev, void *data)
2933 {
2934 	scsi_internal_device_block(sdev);
2935 }
2936 
2937 static int
target_block(struct device * dev,void * data)2938 target_block(struct device *dev, void *data)
2939 {
2940 	if (scsi_is_target_device(dev))
2941 		starget_for_each_device(to_scsi_target(dev), NULL,
2942 					device_block);
2943 	return 0;
2944 }
2945 
2946 void
scsi_target_block(struct device * dev)2947 scsi_target_block(struct device *dev)
2948 {
2949 	if (scsi_is_target_device(dev))
2950 		starget_for_each_device(to_scsi_target(dev), NULL,
2951 					device_block);
2952 	else
2953 		device_for_each_child(dev, NULL, target_block);
2954 }
2955 EXPORT_SYMBOL_GPL(scsi_target_block);
2956 
2957 static void
device_unblock(struct scsi_device * sdev,void * data)2958 device_unblock(struct scsi_device *sdev, void *data)
2959 {
2960 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2961 }
2962 
2963 static int
target_unblock(struct device * dev,void * data)2964 target_unblock(struct device *dev, void *data)
2965 {
2966 	if (scsi_is_target_device(dev))
2967 		starget_for_each_device(to_scsi_target(dev), data,
2968 					device_unblock);
2969 	return 0;
2970 }
2971 
2972 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2973 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2974 {
2975 	if (scsi_is_target_device(dev))
2976 		starget_for_each_device(to_scsi_target(dev), &new_state,
2977 					device_unblock);
2978 	else
2979 		device_for_each_child(dev, &new_state, target_unblock);
2980 }
2981 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2982 
2983 /**
2984  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2985  * @sgl:	scatter-gather list
2986  * @sg_count:	number of segments in sg
2987  * @offset:	offset in bytes into sg, on return offset into the mapped area
2988  * @len:	bytes to map, on return number of bytes mapped
2989  *
2990  * Returns virtual address of the start of the mapped page
2991  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2992 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2993 			  size_t *offset, size_t *len)
2994 {
2995 	int i;
2996 	size_t sg_len = 0, len_complete = 0;
2997 	struct scatterlist *sg;
2998 	struct page *page;
2999 
3000 	WARN_ON(!irqs_disabled());
3001 
3002 	for_each_sg(sgl, sg, sg_count, i) {
3003 		len_complete = sg_len; /* Complete sg-entries */
3004 		sg_len += sg->length;
3005 		if (sg_len > *offset)
3006 			break;
3007 	}
3008 
3009 	if (unlikely(i == sg_count)) {
3010 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3011 			"elements %d\n",
3012 		       __func__, sg_len, *offset, sg_count);
3013 		WARN_ON(1);
3014 		return NULL;
3015 	}
3016 
3017 	/* Offset starting from the beginning of first page in this sg-entry */
3018 	*offset = *offset - len_complete + sg->offset;
3019 
3020 	/* Assumption: contiguous pages can be accessed as "page + i" */
3021 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3022 	*offset &= ~PAGE_MASK;
3023 
3024 	/* Bytes in this sg-entry from *offset to the end of the page */
3025 	sg_len = PAGE_SIZE - *offset;
3026 	if (*len > sg_len)
3027 		*len = sg_len;
3028 
3029 	return kmap_atomic(page);
3030 }
3031 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3032 
3033 /**
3034  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3035  * @virt:	virtual address to be unmapped
3036  */
scsi_kunmap_atomic_sg(void * virt)3037 void scsi_kunmap_atomic_sg(void *virt)
3038 {
3039 	kunmap_atomic(virt);
3040 }
3041 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3042 
sdev_disable_disk_events(struct scsi_device * sdev)3043 void sdev_disable_disk_events(struct scsi_device *sdev)
3044 {
3045 	atomic_inc(&sdev->disk_events_disable_depth);
3046 }
3047 EXPORT_SYMBOL(sdev_disable_disk_events);
3048 
sdev_enable_disk_events(struct scsi_device * sdev)3049 void sdev_enable_disk_events(struct scsi_device *sdev)
3050 {
3051 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3052 		return;
3053 	atomic_dec(&sdev->disk_events_disable_depth);
3054 }
3055 EXPORT_SYMBOL(sdev_enable_disk_events);
3056 
3057 /**
3058  * scsi_vpd_lun_id - return a unique device identification
3059  * @sdev: SCSI device
3060  * @id:   buffer for the identification
3061  * @id_len:  length of the buffer
3062  *
3063  * Copies a unique device identification into @id based
3064  * on the information in the VPD page 0x83 of the device.
3065  * The string will be formatted as a SCSI name string.
3066  *
3067  * Returns the length of the identification or error on failure.
3068  * If the identifier is longer than the supplied buffer the actual
3069  * identifier length is returned and the buffer is not zero-padded.
3070  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3071 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3072 {
3073 	u8 cur_id_type = 0xff;
3074 	u8 cur_id_size = 0;
3075 	unsigned char *d, *cur_id_str;
3076 	unsigned char __rcu *vpd_pg83;
3077 	int id_size = -EINVAL;
3078 
3079 	rcu_read_lock();
3080 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3081 	if (!vpd_pg83) {
3082 		rcu_read_unlock();
3083 		return -ENXIO;
3084 	}
3085 
3086 	/*
3087 	 * Look for the correct descriptor.
3088 	 * Order of preference for lun descriptor:
3089 	 * - SCSI name string
3090 	 * - NAA IEEE Registered Extended
3091 	 * - EUI-64 based 16-byte
3092 	 * - EUI-64 based 12-byte
3093 	 * - NAA IEEE Registered
3094 	 * - NAA IEEE Extended
3095 	 * - T10 Vendor ID
3096 	 * as longer descriptors reduce the likelyhood
3097 	 * of identification clashes.
3098 	 */
3099 
3100 	/* The id string must be at least 20 bytes + terminating NULL byte */
3101 	if (id_len < 21) {
3102 		rcu_read_unlock();
3103 		return -EINVAL;
3104 	}
3105 
3106 	memset(id, 0, id_len);
3107 	d = vpd_pg83 + 4;
3108 	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3109 		/* Skip designators not referring to the LUN */
3110 		if ((d[1] & 0x30) != 0x00)
3111 			goto next_desig;
3112 
3113 		switch (d[1] & 0xf) {
3114 		case 0x1:
3115 			/* T10 Vendor ID */
3116 			if (cur_id_size > d[3])
3117 				break;
3118 			/* Prefer anything */
3119 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3120 				break;
3121 			cur_id_size = d[3];
3122 			if (cur_id_size + 4 > id_len)
3123 				cur_id_size = id_len - 4;
3124 			cur_id_str = d + 4;
3125 			cur_id_type = d[1] & 0xf;
3126 			id_size = snprintf(id, id_len, "t10.%*pE",
3127 					   cur_id_size, cur_id_str);
3128 			break;
3129 		case 0x2:
3130 			/* EUI-64 */
3131 			if (cur_id_size > d[3])
3132 				break;
3133 			/* Prefer NAA IEEE Registered Extended */
3134 			if (cur_id_type == 0x3 &&
3135 			    cur_id_size == d[3])
3136 				break;
3137 			cur_id_size = d[3];
3138 			cur_id_str = d + 4;
3139 			cur_id_type = d[1] & 0xf;
3140 			switch (cur_id_size) {
3141 			case 8:
3142 				id_size = snprintf(id, id_len,
3143 						   "eui.%8phN",
3144 						   cur_id_str);
3145 				break;
3146 			case 12:
3147 				id_size = snprintf(id, id_len,
3148 						   "eui.%12phN",
3149 						   cur_id_str);
3150 				break;
3151 			case 16:
3152 				id_size = snprintf(id, id_len,
3153 						   "eui.%16phN",
3154 						   cur_id_str);
3155 				break;
3156 			default:
3157 				cur_id_size = 0;
3158 				break;
3159 			}
3160 			break;
3161 		case 0x3:
3162 			/* NAA */
3163 			if (cur_id_size > d[3])
3164 				break;
3165 			cur_id_size = d[3];
3166 			cur_id_str = d + 4;
3167 			cur_id_type = d[1] & 0xf;
3168 			switch (cur_id_size) {
3169 			case 8:
3170 				id_size = snprintf(id, id_len,
3171 						   "naa.%8phN",
3172 						   cur_id_str);
3173 				break;
3174 			case 16:
3175 				id_size = snprintf(id, id_len,
3176 						   "naa.%16phN",
3177 						   cur_id_str);
3178 				break;
3179 			default:
3180 				cur_id_size = 0;
3181 				break;
3182 			}
3183 			break;
3184 		case 0x8:
3185 			/* SCSI name string */
3186 			if (cur_id_size + 4 > d[3])
3187 				break;
3188 			/* Prefer others for truncated descriptor */
3189 			if (cur_id_size && d[3] > id_len)
3190 				break;
3191 			cur_id_size = id_size = d[3];
3192 			cur_id_str = d + 4;
3193 			cur_id_type = d[1] & 0xf;
3194 			if (cur_id_size >= id_len)
3195 				cur_id_size = id_len - 1;
3196 			memcpy(id, cur_id_str, cur_id_size);
3197 			/* Decrease priority for truncated descriptor */
3198 			if (cur_id_size != id_size)
3199 				cur_id_size = 6;
3200 			break;
3201 		default:
3202 			break;
3203 		}
3204 next_desig:
3205 		d += d[3] + 4;
3206 	}
3207 	rcu_read_unlock();
3208 
3209 	return id_size;
3210 }
3211 EXPORT_SYMBOL(scsi_vpd_lun_id);
3212 
3213 /*
3214  * scsi_vpd_tpg_id - return a target port group identifier
3215  * @sdev: SCSI device
3216  *
3217  * Returns the Target Port Group identifier from the information
3218  * froom VPD page 0x83 of the device.
3219  *
3220  * Returns the identifier or error on failure.
3221  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3222 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3223 {
3224 	unsigned char *d;
3225 	unsigned char __rcu *vpd_pg83;
3226 	int group_id = -EAGAIN, rel_port = -1;
3227 
3228 	rcu_read_lock();
3229 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3230 	if (!vpd_pg83) {
3231 		rcu_read_unlock();
3232 		return -ENXIO;
3233 	}
3234 
3235 	d = sdev->vpd_pg83 + 4;
3236 	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3237 		switch (d[1] & 0xf) {
3238 		case 0x4:
3239 			/* Relative target port */
3240 			rel_port = get_unaligned_be16(&d[6]);
3241 			break;
3242 		case 0x5:
3243 			/* Target port group */
3244 			group_id = get_unaligned_be16(&d[6]);
3245 			break;
3246 		default:
3247 			break;
3248 		}
3249 		d += d[3] + 4;
3250 	}
3251 	rcu_read_unlock();
3252 
3253 	if (group_id >= 0 && rel_id && rel_port != -1)
3254 		*rel_id = rel_port;
3255 
3256 	return group_id;
3257 }
3258 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3259