1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_dh.h>
34
35 #include <trace/events/scsi.h>
36
37 #include "scsi_priv.h"
38 #include "scsi_logging.h"
39
40
41 struct kmem_cache *scsi_sdb_cache;
42
43 /*
44 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
45 * not change behaviour from the previous unplug mechanism, experimentation
46 * may prove this needs changing.
47 */
48 #define SCSI_QUEUE_DELAY 3
49
50 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)51 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
52 {
53 struct Scsi_Host *host = cmd->device->host;
54 struct scsi_device *device = cmd->device;
55 struct scsi_target *starget = scsi_target(device);
56
57 /*
58 * Set the appropriate busy bit for the device/host.
59 *
60 * If the host/device isn't busy, assume that something actually
61 * completed, and that we should be able to queue a command now.
62 *
63 * Note that the prior mid-layer assumption that any host could
64 * always queue at least one command is now broken. The mid-layer
65 * will implement a user specifiable stall (see
66 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
67 * if a command is requeued with no other commands outstanding
68 * either for the device or for the host.
69 */
70 switch (reason) {
71 case SCSI_MLQUEUE_HOST_BUSY:
72 atomic_set(&host->host_blocked, host->max_host_blocked);
73 break;
74 case SCSI_MLQUEUE_DEVICE_BUSY:
75 case SCSI_MLQUEUE_EH_RETRY:
76 atomic_set(&device->device_blocked,
77 device->max_device_blocked);
78 break;
79 case SCSI_MLQUEUE_TARGET_BUSY:
80 atomic_set(&starget->target_blocked,
81 starget->max_target_blocked);
82 break;
83 }
84 }
85
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)86 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
87 {
88 struct scsi_device *sdev = cmd->device;
89 struct request_queue *q = cmd->request->q;
90
91 blk_mq_requeue_request(cmd->request);
92 blk_mq_kick_requeue_list(q);
93 put_device(&sdev->sdev_gendev);
94 }
95
96 /**
97 * __scsi_queue_insert - private queue insertion
98 * @cmd: The SCSI command being requeued
99 * @reason: The reason for the requeue
100 * @unbusy: Whether the queue should be unbusied
101 *
102 * This is a private queue insertion. The public interface
103 * scsi_queue_insert() always assumes the queue should be unbusied
104 * because it's always called before the completion. This function is
105 * for a requeue after completion, which should only occur in this
106 * file.
107 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,int unbusy)108 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
109 {
110 struct scsi_device *device = cmd->device;
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
113
114 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
115 "Inserting command %p into mlqueue\n", cmd));
116
117 scsi_set_blocked(cmd, reason);
118
119 /*
120 * Decrement the counters, since these commands are no longer
121 * active on the host/device.
122 */
123 if (unbusy)
124 scsi_device_unbusy(device);
125
126 /*
127 * Requeue this command. It will go before all other commands
128 * that are already in the queue. Schedule requeue work under
129 * lock such that the kblockd_schedule_work() call happens
130 * before blk_cleanup_queue() finishes.
131 */
132 cmd->result = 0;
133 if (q->mq_ops) {
134 scsi_mq_requeue_cmd(cmd);
135 return;
136 }
137 spin_lock_irqsave(q->queue_lock, flags);
138 blk_requeue_request(q, cmd->request);
139 kblockd_schedule_work(&device->requeue_work);
140 spin_unlock_irqrestore(q->queue_lock, flags);
141 }
142
143 /*
144 * Function: scsi_queue_insert()
145 *
146 * Purpose: Insert a command in the midlevel queue.
147 *
148 * Arguments: cmd - command that we are adding to queue.
149 * reason - why we are inserting command to queue.
150 *
151 * Lock status: Assumed that lock is not held upon entry.
152 *
153 * Returns: Nothing.
154 *
155 * Notes: We do this for one of two cases. Either the host is busy
156 * and it cannot accept any more commands for the time being,
157 * or the device returned QUEUE_FULL and can accept no more
158 * commands.
159 * Notes: This could be called either from an interrupt context or a
160 * normal process context.
161 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)162 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
163 {
164 __scsi_queue_insert(cmd, reason, 1);
165 }
166 /**
167 * scsi_execute - insert request and wait for the result
168 * @sdev: scsi device
169 * @cmd: scsi command
170 * @data_direction: data direction
171 * @buffer: data buffer
172 * @bufflen: len of buffer
173 * @sense: optional sense buffer
174 * @timeout: request timeout in seconds
175 * @retries: number of times to retry request
176 * @flags: or into request flags;
177 * @resid: optional residual length
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,int timeout,int retries,u64 flags,int * resid)182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 int data_direction, void *buffer, unsigned bufflen,
184 unsigned char *sense, int timeout, int retries, u64 flags,
185 int *resid)
186 {
187 struct request *req;
188 int write = (data_direction == DMA_TO_DEVICE);
189 int ret = DRIVER_ERROR << 24;
190
191 req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
192 if (IS_ERR(req))
193 return ret;
194 blk_rq_set_block_pc(req);
195
196 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
197 buffer, bufflen, __GFP_RECLAIM))
198 goto out;
199
200 req->cmd_len = COMMAND_SIZE(cmd[0]);
201 memcpy(req->cmd, cmd, req->cmd_len);
202 req->sense = sense;
203 req->sense_len = 0;
204 req->retries = retries;
205 req->timeout = timeout;
206 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
207
208 /*
209 * head injection *required* here otherwise quiesce won't work
210 */
211 blk_execute_rq(req->q, NULL, req, 1);
212
213 /*
214 * Some devices (USB mass-storage in particular) may transfer
215 * garbage data together with a residue indicating that the data
216 * is invalid. Prevent the garbage from being misinterpreted
217 * and prevent security leaks by zeroing out the excess data.
218 */
219 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
220 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
221
222 if (resid)
223 *resid = req->resid_len;
224 ret = req->errors;
225 out:
226 blk_put_request(req);
227
228 return ret;
229 }
230 EXPORT_SYMBOL(scsi_execute);
231
scsi_execute_req_flags(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr,int timeout,int retries,int * resid,u64 flags)232 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
233 int data_direction, void *buffer, unsigned bufflen,
234 struct scsi_sense_hdr *sshdr, int timeout, int retries,
235 int *resid, u64 flags)
236 {
237 char *sense = NULL;
238 int result;
239
240 if (sshdr) {
241 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
242 if (!sense)
243 return DRIVER_ERROR << 24;
244 }
245 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
246 sense, timeout, retries, flags, resid);
247 if (sshdr)
248 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
249
250 kfree(sense);
251 return result;
252 }
253 EXPORT_SYMBOL(scsi_execute_req_flags);
254
255 /*
256 * Function: scsi_init_cmd_errh()
257 *
258 * Purpose: Initialize cmd fields related to error handling.
259 *
260 * Arguments: cmd - command that is ready to be queued.
261 *
262 * Notes: This function has the job of initializing a number of
263 * fields related to error handling. Typically this will
264 * be called once for each command, as required.
265 */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)266 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
267 {
268 cmd->serial_number = 0;
269 scsi_set_resid(cmd, 0);
270 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
271 if (cmd->cmd_len == 0)
272 cmd->cmd_len = scsi_command_size(cmd->cmnd);
273 }
274
scsi_device_unbusy(struct scsi_device * sdev)275 void scsi_device_unbusy(struct scsi_device *sdev)
276 {
277 struct Scsi_Host *shost = sdev->host;
278 struct scsi_target *starget = scsi_target(sdev);
279 unsigned long flags;
280
281 atomic_dec(&shost->host_busy);
282 if (starget->can_queue > 0)
283 atomic_dec(&starget->target_busy);
284
285 if (unlikely(scsi_host_in_recovery(shost) &&
286 (shost->host_failed || shost->host_eh_scheduled))) {
287 spin_lock_irqsave(shost->host_lock, flags);
288 scsi_eh_wakeup(shost);
289 spin_unlock_irqrestore(shost->host_lock, flags);
290 }
291
292 atomic_dec(&sdev->device_busy);
293 }
294
scsi_kick_queue(struct request_queue * q)295 static void scsi_kick_queue(struct request_queue *q)
296 {
297 if (q->mq_ops)
298 blk_mq_start_hw_queues(q);
299 else
300 blk_run_queue(q);
301 }
302
303 /*
304 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
305 * and call blk_run_queue for all the scsi_devices on the target -
306 * including current_sdev first.
307 *
308 * Called with *no* scsi locks held.
309 */
scsi_single_lun_run(struct scsi_device * current_sdev)310 static void scsi_single_lun_run(struct scsi_device *current_sdev)
311 {
312 struct Scsi_Host *shost = current_sdev->host;
313 struct scsi_device *sdev, *tmp;
314 struct scsi_target *starget = scsi_target(current_sdev);
315 unsigned long flags;
316
317 spin_lock_irqsave(shost->host_lock, flags);
318 starget->starget_sdev_user = NULL;
319 spin_unlock_irqrestore(shost->host_lock, flags);
320
321 /*
322 * Call blk_run_queue for all LUNs on the target, starting with
323 * current_sdev. We race with others (to set starget_sdev_user),
324 * but in most cases, we will be first. Ideally, each LU on the
325 * target would get some limited time or requests on the target.
326 */
327 scsi_kick_queue(current_sdev->request_queue);
328
329 spin_lock_irqsave(shost->host_lock, flags);
330 if (starget->starget_sdev_user)
331 goto out;
332 list_for_each_entry_safe(sdev, tmp, &starget->devices,
333 same_target_siblings) {
334 if (sdev == current_sdev)
335 continue;
336 if (scsi_device_get(sdev))
337 continue;
338
339 spin_unlock_irqrestore(shost->host_lock, flags);
340 scsi_kick_queue(sdev->request_queue);
341 spin_lock_irqsave(shost->host_lock, flags);
342
343 scsi_device_put(sdev);
344 }
345 out:
346 spin_unlock_irqrestore(shost->host_lock, flags);
347 }
348
scsi_device_is_busy(struct scsi_device * sdev)349 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
350 {
351 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
352 return true;
353 if (atomic_read(&sdev->device_blocked) > 0)
354 return true;
355 return false;
356 }
357
scsi_target_is_busy(struct scsi_target * starget)358 static inline bool scsi_target_is_busy(struct scsi_target *starget)
359 {
360 if (starget->can_queue > 0) {
361 if (atomic_read(&starget->target_busy) >= starget->can_queue)
362 return true;
363 if (atomic_read(&starget->target_blocked) > 0)
364 return true;
365 }
366 return false;
367 }
368
scsi_host_is_busy(struct Scsi_Host * shost)369 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
370 {
371 if (shost->can_queue > 0 &&
372 atomic_read(&shost->host_busy) >= shost->can_queue)
373 return true;
374 if (atomic_read(&shost->host_blocked) > 0)
375 return true;
376 if (shost->host_self_blocked)
377 return true;
378 return false;
379 }
380
scsi_starved_list_run(struct Scsi_Host * shost)381 static void scsi_starved_list_run(struct Scsi_Host *shost)
382 {
383 LIST_HEAD(starved_list);
384 struct scsi_device *sdev;
385 unsigned long flags;
386
387 spin_lock_irqsave(shost->host_lock, flags);
388 list_splice_init(&shost->starved_list, &starved_list);
389
390 while (!list_empty(&starved_list)) {
391 struct request_queue *slq;
392
393 /*
394 * As long as shost is accepting commands and we have
395 * starved queues, call blk_run_queue. scsi_request_fn
396 * drops the queue_lock and can add us back to the
397 * starved_list.
398 *
399 * host_lock protects the starved_list and starved_entry.
400 * scsi_request_fn must get the host_lock before checking
401 * or modifying starved_list or starved_entry.
402 */
403 if (scsi_host_is_busy(shost))
404 break;
405
406 sdev = list_entry(starved_list.next,
407 struct scsi_device, starved_entry);
408 list_del_init(&sdev->starved_entry);
409 if (scsi_target_is_busy(scsi_target(sdev))) {
410 list_move_tail(&sdev->starved_entry,
411 &shost->starved_list);
412 continue;
413 }
414
415 /*
416 * Once we drop the host lock, a racing scsi_remove_device()
417 * call may remove the sdev from the starved list and destroy
418 * it and the queue. Mitigate by taking a reference to the
419 * queue and never touching the sdev again after we drop the
420 * host lock. Note: if __scsi_remove_device() invokes
421 * blk_cleanup_queue() before the queue is run from this
422 * function then blk_run_queue() will return immediately since
423 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
424 */
425 slq = sdev->request_queue;
426 if (!blk_get_queue(slq))
427 continue;
428 spin_unlock_irqrestore(shost->host_lock, flags);
429
430 scsi_kick_queue(slq);
431 blk_put_queue(slq);
432
433 spin_lock_irqsave(shost->host_lock, flags);
434 }
435 /* put any unprocessed entries back */
436 list_splice(&starved_list, &shost->starved_list);
437 spin_unlock_irqrestore(shost->host_lock, flags);
438 }
439
440 /*
441 * Function: scsi_run_queue()
442 *
443 * Purpose: Select a proper request queue to serve next
444 *
445 * Arguments: q - last request's queue
446 *
447 * Returns: Nothing
448 *
449 * Notes: The previous command was completely finished, start
450 * a new one if possible.
451 */
scsi_run_queue(struct request_queue * q)452 static void scsi_run_queue(struct request_queue *q)
453 {
454 struct scsi_device *sdev = q->queuedata;
455
456 if (scsi_target(sdev)->single_lun)
457 scsi_single_lun_run(sdev);
458 if (!list_empty(&sdev->host->starved_list))
459 scsi_starved_list_run(sdev->host);
460
461 if (q->mq_ops)
462 blk_mq_start_stopped_hw_queues(q, false);
463 else
464 blk_run_queue(q);
465 }
466
scsi_requeue_run_queue(struct work_struct * work)467 void scsi_requeue_run_queue(struct work_struct *work)
468 {
469 struct scsi_device *sdev;
470 struct request_queue *q;
471
472 sdev = container_of(work, struct scsi_device, requeue_work);
473 q = sdev->request_queue;
474 scsi_run_queue(q);
475 }
476
477 /*
478 * Function: scsi_requeue_command()
479 *
480 * Purpose: Handle post-processing of completed commands.
481 *
482 * Arguments: q - queue to operate on
483 * cmd - command that may need to be requeued.
484 *
485 * Returns: Nothing
486 *
487 * Notes: After command completion, there may be blocks left
488 * over which weren't finished by the previous command
489 * this can be for a number of reasons - the main one is
490 * I/O errors in the middle of the request, in which case
491 * we need to request the blocks that come after the bad
492 * sector.
493 * Notes: Upon return, cmd is a stale pointer.
494 */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)495 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
496 {
497 struct scsi_device *sdev = cmd->device;
498 struct request *req = cmd->request;
499 unsigned long flags;
500
501 spin_lock_irqsave(q->queue_lock, flags);
502 blk_unprep_request(req);
503 req->special = NULL;
504 scsi_put_command(cmd);
505 blk_requeue_request(q, req);
506 spin_unlock_irqrestore(q->queue_lock, flags);
507
508 scsi_run_queue(q);
509
510 put_device(&sdev->sdev_gendev);
511 }
512
scsi_run_host_queues(struct Scsi_Host * shost)513 void scsi_run_host_queues(struct Scsi_Host *shost)
514 {
515 struct scsi_device *sdev;
516
517 shost_for_each_device(sdev, shost)
518 scsi_run_queue(sdev->request_queue);
519 }
520
scsi_uninit_cmd(struct scsi_cmnd * cmd)521 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
522 {
523 if (cmd->request->cmd_type == REQ_TYPE_FS) {
524 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
525
526 if (drv->uninit_command)
527 drv->uninit_command(cmd);
528 }
529 }
530
scsi_mq_free_sgtables(struct scsi_cmnd * cmd)531 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
532 {
533 struct scsi_data_buffer *sdb;
534
535 if (cmd->sdb.table.nents)
536 sg_free_table_chained(&cmd->sdb.table, true);
537 if (cmd->request->next_rq) {
538 sdb = cmd->request->next_rq->special;
539 if (sdb)
540 sg_free_table_chained(&sdb->table, true);
541 }
542 if (scsi_prot_sg_count(cmd))
543 sg_free_table_chained(&cmd->prot_sdb->table, true);
544 }
545
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)546 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
547 {
548 struct scsi_device *sdev = cmd->device;
549 struct Scsi_Host *shost = sdev->host;
550 unsigned long flags;
551
552 scsi_mq_free_sgtables(cmd);
553 scsi_uninit_cmd(cmd);
554
555 if (shost->use_cmd_list) {
556 BUG_ON(list_empty(&cmd->list));
557 spin_lock_irqsave(&sdev->list_lock, flags);
558 list_del_init(&cmd->list);
559 spin_unlock_irqrestore(&sdev->list_lock, flags);
560 }
561 }
562
563 /*
564 * Function: scsi_release_buffers()
565 *
566 * Purpose: Free resources allocate for a scsi_command.
567 *
568 * Arguments: cmd - command that we are bailing.
569 *
570 * Lock status: Assumed that no lock is held upon entry.
571 *
572 * Returns: Nothing
573 *
574 * Notes: In the event that an upper level driver rejects a
575 * command, we must release resources allocated during
576 * the __init_io() function. Primarily this would involve
577 * the scatter-gather table.
578 */
scsi_release_buffers(struct scsi_cmnd * cmd)579 static void scsi_release_buffers(struct scsi_cmnd *cmd)
580 {
581 if (cmd->sdb.table.nents)
582 sg_free_table_chained(&cmd->sdb.table, false);
583
584 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
585
586 if (scsi_prot_sg_count(cmd))
587 sg_free_table_chained(&cmd->prot_sdb->table, false);
588 }
589
scsi_release_bidi_buffers(struct scsi_cmnd * cmd)590 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
591 {
592 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
593
594 sg_free_table_chained(&bidi_sdb->table, false);
595 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
596 cmd->request->next_rq->special = NULL;
597 }
598
scsi_end_request(struct request * req,int error,unsigned int bytes,unsigned int bidi_bytes)599 static bool scsi_end_request(struct request *req, int error,
600 unsigned int bytes, unsigned int bidi_bytes)
601 {
602 struct scsi_cmnd *cmd = req->special;
603 struct scsi_device *sdev = cmd->device;
604 struct request_queue *q = sdev->request_queue;
605
606 if (blk_update_request(req, error, bytes))
607 return true;
608
609 /* Bidi request must be completed as a whole */
610 if (unlikely(bidi_bytes) &&
611 blk_update_request(req->next_rq, error, bidi_bytes))
612 return true;
613
614 if (blk_queue_add_random(q))
615 add_disk_randomness(req->rq_disk);
616
617 if (req->mq_ctx) {
618 /*
619 * In the MQ case the command gets freed by __blk_mq_end_request,
620 * so we have to do all cleanup that depends on it earlier.
621 *
622 * We also can't kick the queues from irq context, so we
623 * will have to defer it to a workqueue.
624 */
625 scsi_mq_uninit_cmd(cmd);
626
627 __blk_mq_end_request(req, error);
628
629 if (scsi_target(sdev)->single_lun ||
630 !list_empty(&sdev->host->starved_list))
631 kblockd_schedule_work(&sdev->requeue_work);
632 else
633 blk_mq_start_stopped_hw_queues(q, true);
634 } else {
635 unsigned long flags;
636
637 if (bidi_bytes)
638 scsi_release_bidi_buffers(cmd);
639
640 spin_lock_irqsave(q->queue_lock, flags);
641 blk_finish_request(req, error);
642 spin_unlock_irqrestore(q->queue_lock, flags);
643
644 scsi_release_buffers(cmd);
645
646 scsi_put_command(cmd);
647 scsi_run_queue(q);
648 }
649
650 put_device(&sdev->sdev_gendev);
651 return false;
652 }
653
654 /**
655 * __scsi_error_from_host_byte - translate SCSI error code into errno
656 * @cmd: SCSI command (unused)
657 * @result: scsi error code
658 *
659 * Translate SCSI error code into standard UNIX errno.
660 * Return values:
661 * -ENOLINK temporary transport failure
662 * -EREMOTEIO permanent target failure, do not retry
663 * -EBADE permanent nexus failure, retry on other path
664 * -ENOSPC No write space available
665 * -ENODATA Medium error
666 * -EIO unspecified I/O error
667 */
__scsi_error_from_host_byte(struct scsi_cmnd * cmd,int result)668 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
669 {
670 int error = 0;
671
672 switch(host_byte(result)) {
673 case DID_TRANSPORT_FAILFAST:
674 error = -ENOLINK;
675 break;
676 case DID_TARGET_FAILURE:
677 set_host_byte(cmd, DID_OK);
678 error = -EREMOTEIO;
679 break;
680 case DID_NEXUS_FAILURE:
681 set_host_byte(cmd, DID_OK);
682 error = -EBADE;
683 break;
684 case DID_ALLOC_FAILURE:
685 set_host_byte(cmd, DID_OK);
686 error = -ENOSPC;
687 break;
688 case DID_MEDIUM_ERROR:
689 set_host_byte(cmd, DID_OK);
690 error = -ENODATA;
691 break;
692 default:
693 error = -EIO;
694 break;
695 }
696
697 return error;
698 }
699
700 /*
701 * Function: scsi_io_completion()
702 *
703 * Purpose: Completion processing for block device I/O requests.
704 *
705 * Arguments: cmd - command that is finished.
706 *
707 * Lock status: Assumed that no lock is held upon entry.
708 *
709 * Returns: Nothing
710 *
711 * Notes: We will finish off the specified number of sectors. If we
712 * are done, the command block will be released and the queue
713 * function will be goosed. If we are not done then we have to
714 * figure out what to do next:
715 *
716 * a) We can call scsi_requeue_command(). The request
717 * will be unprepared and put back on the queue. Then
718 * a new command will be created for it. This should
719 * be used if we made forward progress, or if we want
720 * to switch from READ(10) to READ(6) for example.
721 *
722 * b) We can call __scsi_queue_insert(). The request will
723 * be put back on the queue and retried using the same
724 * command as before, possibly after a delay.
725 *
726 * c) We can call scsi_end_request() with -EIO to fail
727 * the remainder of the request.
728 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)729 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
730 {
731 int result = cmd->result;
732 struct request_queue *q = cmd->device->request_queue;
733 struct request *req = cmd->request;
734 int error = 0;
735 struct scsi_sense_hdr sshdr;
736 bool sense_valid = false;
737 int sense_deferred = 0, level = 0;
738 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
739 ACTION_DELAYED_RETRY} action;
740 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
741
742 if (result) {
743 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
744 if (sense_valid)
745 sense_deferred = scsi_sense_is_deferred(&sshdr);
746 }
747
748 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
749 if (result) {
750 if (sense_valid && req->sense) {
751 /*
752 * SG_IO wants current and deferred errors
753 */
754 int len = 8 + cmd->sense_buffer[7];
755
756 if (len > SCSI_SENSE_BUFFERSIZE)
757 len = SCSI_SENSE_BUFFERSIZE;
758 memcpy(req->sense, cmd->sense_buffer, len);
759 req->sense_len = len;
760 }
761 if (!sense_deferred)
762 error = __scsi_error_from_host_byte(cmd, result);
763 }
764 /*
765 * __scsi_error_from_host_byte may have reset the host_byte
766 */
767 req->errors = cmd->result;
768
769 req->resid_len = scsi_get_resid(cmd);
770
771 if (scsi_bidi_cmnd(cmd)) {
772 /*
773 * Bidi commands Must be complete as a whole,
774 * both sides at once.
775 */
776 req->next_rq->resid_len = scsi_in(cmd)->resid;
777 if (scsi_end_request(req, 0, blk_rq_bytes(req),
778 blk_rq_bytes(req->next_rq)))
779 BUG();
780 return;
781 }
782 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
783 /*
784 * Certain non BLOCK_PC requests are commands that don't
785 * actually transfer anything (FLUSH), so cannot use
786 * good_bytes != blk_rq_bytes(req) as the signal for an error.
787 * This sets the error explicitly for the problem case.
788 */
789 error = __scsi_error_from_host_byte(cmd, result);
790 }
791
792 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
793 BUG_ON(blk_bidi_rq(req));
794
795 /*
796 * Next deal with any sectors which we were able to correctly
797 * handle.
798 */
799 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
800 "%u sectors total, %d bytes done.\n",
801 blk_rq_sectors(req), good_bytes));
802
803 /*
804 * Recovered errors need reporting, but they're always treated
805 * as success, so fiddle the result code here. For BLOCK_PC
806 * we already took a copy of the original into rq->errors which
807 * is what gets returned to the user
808 */
809 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
810 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
811 * print since caller wants ATA registers. Only occurs on
812 * SCSI ATA PASS_THROUGH commands when CK_COND=1
813 */
814 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
815 ;
816 else if (!(req->cmd_flags & REQ_QUIET))
817 scsi_print_sense(cmd);
818 result = 0;
819 /* BLOCK_PC may have set error */
820 error = 0;
821 }
822
823 /*
824 * special case: failed zero length commands always need to
825 * drop down into the retry code. Otherwise, if we finished
826 * all bytes in the request we are done now.
827 */
828 if (!(blk_rq_bytes(req) == 0 && error) &&
829 !scsi_end_request(req, error, good_bytes, 0))
830 return;
831
832 /*
833 * Kill remainder if no retrys.
834 */
835 if (error && scsi_noretry_cmd(cmd)) {
836 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
837 BUG();
838 return;
839 }
840
841 /*
842 * If there had been no error, but we have leftover bytes in the
843 * requeues just queue the command up again.
844 */
845 if (result == 0)
846 goto requeue;
847
848 error = __scsi_error_from_host_byte(cmd, result);
849
850 if (host_byte(result) == DID_RESET) {
851 /* Third party bus reset or reset for error recovery
852 * reasons. Just retry the command and see what
853 * happens.
854 */
855 action = ACTION_RETRY;
856 } else if (sense_valid && !sense_deferred) {
857 switch (sshdr.sense_key) {
858 case UNIT_ATTENTION:
859 if (cmd->device->removable) {
860 /* Detected disc change. Set a bit
861 * and quietly refuse further access.
862 */
863 cmd->device->changed = 1;
864 action = ACTION_FAIL;
865 } else {
866 /* Must have been a power glitch, or a
867 * bus reset. Could not have been a
868 * media change, so we just retry the
869 * command and see what happens.
870 */
871 action = ACTION_RETRY;
872 }
873 break;
874 case ILLEGAL_REQUEST:
875 /* If we had an ILLEGAL REQUEST returned, then
876 * we may have performed an unsupported
877 * command. The only thing this should be
878 * would be a ten byte read where only a six
879 * byte read was supported. Also, on a system
880 * where READ CAPACITY failed, we may have
881 * read past the end of the disk.
882 */
883 if ((cmd->device->use_10_for_rw &&
884 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
885 (cmd->cmnd[0] == READ_10 ||
886 cmd->cmnd[0] == WRITE_10)) {
887 /* This will issue a new 6-byte command. */
888 cmd->device->use_10_for_rw = 0;
889 action = ACTION_REPREP;
890 } else if (sshdr.asc == 0x10) /* DIX */ {
891 action = ACTION_FAIL;
892 error = -EILSEQ;
893 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
894 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
895 action = ACTION_FAIL;
896 error = -EREMOTEIO;
897 } else
898 action = ACTION_FAIL;
899 break;
900 case ABORTED_COMMAND:
901 action = ACTION_FAIL;
902 if (sshdr.asc == 0x10) /* DIF */
903 error = -EILSEQ;
904 break;
905 case NOT_READY:
906 /* If the device is in the process of becoming
907 * ready, or has a temporary blockage, retry.
908 */
909 if (sshdr.asc == 0x04) {
910 switch (sshdr.ascq) {
911 case 0x01: /* becoming ready */
912 case 0x04: /* format in progress */
913 case 0x05: /* rebuild in progress */
914 case 0x06: /* recalculation in progress */
915 case 0x07: /* operation in progress */
916 case 0x08: /* Long write in progress */
917 case 0x09: /* self test in progress */
918 case 0x14: /* space allocation in progress */
919 action = ACTION_DELAYED_RETRY;
920 break;
921 default:
922 action = ACTION_FAIL;
923 break;
924 }
925 } else
926 action = ACTION_FAIL;
927 break;
928 case VOLUME_OVERFLOW:
929 /* See SSC3rXX or current. */
930 action = ACTION_FAIL;
931 break;
932 default:
933 action = ACTION_FAIL;
934 break;
935 }
936 } else
937 action = ACTION_FAIL;
938
939 if (action != ACTION_FAIL &&
940 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
941 action = ACTION_FAIL;
942
943 switch (action) {
944 case ACTION_FAIL:
945 /* Give up and fail the remainder of the request */
946 if (!(req->cmd_flags & REQ_QUIET)) {
947 static DEFINE_RATELIMIT_STATE(_rs,
948 DEFAULT_RATELIMIT_INTERVAL,
949 DEFAULT_RATELIMIT_BURST);
950
951 if (unlikely(scsi_logging_level))
952 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
953 SCSI_LOG_MLCOMPLETE_BITS);
954
955 /*
956 * if logging is enabled the failure will be printed
957 * in scsi_log_completion(), so avoid duplicate messages
958 */
959 if (!level && __ratelimit(&_rs)) {
960 scsi_print_result(cmd, NULL, FAILED);
961 if (driver_byte(result) & DRIVER_SENSE)
962 scsi_print_sense(cmd);
963 scsi_print_command(cmd);
964 }
965 }
966 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
967 return;
968 /*FALLTHRU*/
969 case ACTION_REPREP:
970 requeue:
971 /* Unprep the request and put it back at the head of the queue.
972 * A new command will be prepared and issued.
973 */
974 if (q->mq_ops) {
975 cmd->request->cmd_flags &= ~REQ_DONTPREP;
976 scsi_mq_uninit_cmd(cmd);
977 scsi_mq_requeue_cmd(cmd);
978 } else {
979 scsi_release_buffers(cmd);
980 scsi_requeue_command(q, cmd);
981 }
982 break;
983 case ACTION_RETRY:
984 /* Retry the same command immediately */
985 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
986 break;
987 case ACTION_DELAYED_RETRY:
988 /* Retry the same command after a delay */
989 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
990 break;
991 }
992 }
993
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb)994 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
995 {
996 int count;
997
998 /*
999 * If sg table allocation fails, requeue request later.
1000 */
1001 if (unlikely(sg_alloc_table_chained(&sdb->table, req->nr_phys_segments,
1002 sdb->table.sgl)))
1003 return BLKPREP_DEFER;
1004
1005 /*
1006 * Next, walk the list, and fill in the addresses and sizes of
1007 * each segment.
1008 */
1009 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1010 BUG_ON(count > sdb->table.nents);
1011 sdb->table.nents = count;
1012 sdb->length = blk_rq_bytes(req);
1013 return BLKPREP_OK;
1014 }
1015
1016 /*
1017 * Function: scsi_init_io()
1018 *
1019 * Purpose: SCSI I/O initialize function.
1020 *
1021 * Arguments: cmd - Command descriptor we wish to initialize
1022 *
1023 * Returns: 0 on success
1024 * BLKPREP_DEFER if the failure is retryable
1025 * BLKPREP_KILL if the failure is fatal
1026 */
scsi_init_io(struct scsi_cmnd * cmd)1027 int scsi_init_io(struct scsi_cmnd *cmd)
1028 {
1029 struct scsi_device *sdev = cmd->device;
1030 struct request *rq = cmd->request;
1031 bool is_mq = (rq->mq_ctx != NULL);
1032 int error;
1033
1034 if (WARN_ON_ONCE(!rq->nr_phys_segments))
1035 return -EINVAL;
1036
1037 error = scsi_init_sgtable(rq, &cmd->sdb);
1038 if (error)
1039 goto err_exit;
1040
1041 if (blk_bidi_rq(rq)) {
1042 if (!rq->q->mq_ops) {
1043 struct scsi_data_buffer *bidi_sdb =
1044 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1045 if (!bidi_sdb) {
1046 error = BLKPREP_DEFER;
1047 goto err_exit;
1048 }
1049
1050 rq->next_rq->special = bidi_sdb;
1051 }
1052
1053 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1054 if (error)
1055 goto err_exit;
1056 }
1057
1058 if (blk_integrity_rq(rq)) {
1059 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1060 int ivecs, count;
1061
1062 if (prot_sdb == NULL) {
1063 /*
1064 * This can happen if someone (e.g. multipath)
1065 * queues a command to a device on an adapter
1066 * that does not support DIX.
1067 */
1068 WARN_ON_ONCE(1);
1069 error = BLKPREP_KILL;
1070 goto err_exit;
1071 }
1072
1073 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1074
1075 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1076 prot_sdb->table.sgl)) {
1077 error = BLKPREP_DEFER;
1078 goto err_exit;
1079 }
1080
1081 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1082 prot_sdb->table.sgl);
1083 BUG_ON(unlikely(count > ivecs));
1084 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1085
1086 cmd->prot_sdb = prot_sdb;
1087 cmd->prot_sdb->table.nents = count;
1088 }
1089
1090 return BLKPREP_OK;
1091 err_exit:
1092 if (is_mq) {
1093 scsi_mq_free_sgtables(cmd);
1094 } else {
1095 scsi_release_buffers(cmd);
1096 cmd->request->special = NULL;
1097 scsi_put_command(cmd);
1098 put_device(&sdev->sdev_gendev);
1099 }
1100 return error;
1101 }
1102 EXPORT_SYMBOL(scsi_init_io);
1103
scsi_get_cmd_from_req(struct scsi_device * sdev,struct request * req)1104 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1105 struct request *req)
1106 {
1107 struct scsi_cmnd *cmd;
1108
1109 if (!req->special) {
1110 /* Bail if we can't get a reference to the device */
1111 if (!get_device(&sdev->sdev_gendev))
1112 return NULL;
1113
1114 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1115 if (unlikely(!cmd)) {
1116 put_device(&sdev->sdev_gendev);
1117 return NULL;
1118 }
1119 req->special = cmd;
1120 } else {
1121 cmd = req->special;
1122 }
1123
1124 /* pull a tag out of the request if we have one */
1125 cmd->tag = req->tag;
1126 cmd->request = req;
1127
1128 cmd->cmnd = req->cmd;
1129 cmd->prot_op = SCSI_PROT_NORMAL;
1130
1131 return cmd;
1132 }
1133
scsi_setup_blk_pc_cmnd(struct scsi_device * sdev,struct request * req)1134 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1135 {
1136 struct scsi_cmnd *cmd = req->special;
1137
1138 /*
1139 * BLOCK_PC requests may transfer data, in which case they must
1140 * a bio attached to them. Or they might contain a SCSI command
1141 * that does not transfer data, in which case they may optionally
1142 * submit a request without an attached bio.
1143 */
1144 if (req->bio) {
1145 int ret = scsi_init_io(cmd);
1146 if (unlikely(ret))
1147 return ret;
1148 } else {
1149 BUG_ON(blk_rq_bytes(req));
1150
1151 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1152 }
1153
1154 cmd->cmd_len = req->cmd_len;
1155 cmd->transfersize = blk_rq_bytes(req);
1156 cmd->allowed = req->retries;
1157 return BLKPREP_OK;
1158 }
1159
1160 /*
1161 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1162 * that still need to be translated to SCSI CDBs from the ULD.
1163 */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1164 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1165 {
1166 struct scsi_cmnd *cmd = req->special;
1167
1168 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1169 int ret = sdev->handler->prep_fn(sdev, req);
1170 if (ret != BLKPREP_OK)
1171 return ret;
1172 }
1173
1174 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1175 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1176 }
1177
scsi_setup_cmnd(struct scsi_device * sdev,struct request * req)1178 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1179 {
1180 struct scsi_cmnd *cmd = req->special;
1181
1182 if (!blk_rq_bytes(req))
1183 cmd->sc_data_direction = DMA_NONE;
1184 else if (rq_data_dir(req) == WRITE)
1185 cmd->sc_data_direction = DMA_TO_DEVICE;
1186 else
1187 cmd->sc_data_direction = DMA_FROM_DEVICE;
1188
1189 switch (req->cmd_type) {
1190 case REQ_TYPE_FS:
1191 return scsi_setup_fs_cmnd(sdev, req);
1192 case REQ_TYPE_BLOCK_PC:
1193 return scsi_setup_blk_pc_cmnd(sdev, req);
1194 default:
1195 return BLKPREP_KILL;
1196 }
1197 }
1198
1199 static int
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1200 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1201 {
1202 int ret = BLKPREP_OK;
1203
1204 /*
1205 * If the device is not in running state we will reject some
1206 * or all commands.
1207 */
1208 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1209 switch (sdev->sdev_state) {
1210 case SDEV_OFFLINE:
1211 case SDEV_TRANSPORT_OFFLINE:
1212 /*
1213 * If the device is offline we refuse to process any
1214 * commands. The device must be brought online
1215 * before trying any recovery commands.
1216 */
1217 sdev_printk(KERN_ERR, sdev,
1218 "rejecting I/O to offline device\n");
1219 ret = BLKPREP_KILL;
1220 break;
1221 case SDEV_DEL:
1222 /*
1223 * If the device is fully deleted, we refuse to
1224 * process any commands as well.
1225 */
1226 sdev_printk(KERN_ERR, sdev,
1227 "rejecting I/O to dead device\n");
1228 ret = BLKPREP_KILL;
1229 break;
1230 case SDEV_BLOCK:
1231 case SDEV_CREATED_BLOCK:
1232 ret = BLKPREP_DEFER;
1233 break;
1234 case SDEV_QUIESCE:
1235 /*
1236 * If the devices is blocked we defer normal commands.
1237 */
1238 if (!(req->cmd_flags & REQ_PREEMPT))
1239 ret = BLKPREP_DEFER;
1240 break;
1241 default:
1242 /*
1243 * For any other not fully online state we only allow
1244 * special commands. In particular any user initiated
1245 * command is not allowed.
1246 */
1247 if (!(req->cmd_flags & REQ_PREEMPT))
1248 ret = BLKPREP_KILL;
1249 break;
1250 }
1251 }
1252 return ret;
1253 }
1254
1255 static int
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1256 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1257 {
1258 struct scsi_device *sdev = q->queuedata;
1259
1260 switch (ret) {
1261 case BLKPREP_KILL:
1262 case BLKPREP_INVALID:
1263 req->errors = DID_NO_CONNECT << 16;
1264 /* release the command and kill it */
1265 if (req->special) {
1266 struct scsi_cmnd *cmd = req->special;
1267 scsi_release_buffers(cmd);
1268 scsi_put_command(cmd);
1269 put_device(&sdev->sdev_gendev);
1270 req->special = NULL;
1271 }
1272 break;
1273 case BLKPREP_DEFER:
1274 /*
1275 * If we defer, the blk_peek_request() returns NULL, but the
1276 * queue must be restarted, so we schedule a callback to happen
1277 * shortly.
1278 */
1279 if (atomic_read(&sdev->device_busy) == 0)
1280 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1281 break;
1282 default:
1283 req->cmd_flags |= REQ_DONTPREP;
1284 }
1285
1286 return ret;
1287 }
1288
scsi_prep_fn(struct request_queue * q,struct request * req)1289 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1290 {
1291 struct scsi_device *sdev = q->queuedata;
1292 struct scsi_cmnd *cmd;
1293 int ret;
1294
1295 ret = scsi_prep_state_check(sdev, req);
1296 if (ret != BLKPREP_OK)
1297 goto out;
1298
1299 cmd = scsi_get_cmd_from_req(sdev, req);
1300 if (unlikely(!cmd)) {
1301 ret = BLKPREP_DEFER;
1302 goto out;
1303 }
1304
1305 ret = scsi_setup_cmnd(sdev, req);
1306 out:
1307 return scsi_prep_return(q, req, ret);
1308 }
1309
scsi_unprep_fn(struct request_queue * q,struct request * req)1310 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1311 {
1312 scsi_uninit_cmd(req->special);
1313 }
1314
1315 /*
1316 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1317 * return 0.
1318 *
1319 * Called with the queue_lock held.
1320 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1321 static inline int scsi_dev_queue_ready(struct request_queue *q,
1322 struct scsi_device *sdev)
1323 {
1324 unsigned int busy;
1325
1326 busy = atomic_inc_return(&sdev->device_busy) - 1;
1327 if (atomic_read(&sdev->device_blocked)) {
1328 if (busy)
1329 goto out_dec;
1330
1331 /*
1332 * unblock after device_blocked iterates to zero
1333 */
1334 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1335 /*
1336 * For the MQ case we take care of this in the caller.
1337 */
1338 if (!q->mq_ops)
1339 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1340 goto out_dec;
1341 }
1342 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1343 "unblocking device at zero depth\n"));
1344 }
1345
1346 if (busy >= sdev->queue_depth)
1347 goto out_dec;
1348
1349 return 1;
1350 out_dec:
1351 atomic_dec(&sdev->device_busy);
1352 return 0;
1353 }
1354
1355 /*
1356 * scsi_target_queue_ready: checks if there we can send commands to target
1357 * @sdev: scsi device on starget to check.
1358 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1359 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1360 struct scsi_device *sdev)
1361 {
1362 struct scsi_target *starget = scsi_target(sdev);
1363 unsigned int busy;
1364
1365 if (starget->single_lun) {
1366 spin_lock_irq(shost->host_lock);
1367 if (starget->starget_sdev_user &&
1368 starget->starget_sdev_user != sdev) {
1369 spin_unlock_irq(shost->host_lock);
1370 return 0;
1371 }
1372 starget->starget_sdev_user = sdev;
1373 spin_unlock_irq(shost->host_lock);
1374 }
1375
1376 if (starget->can_queue <= 0)
1377 return 1;
1378
1379 busy = atomic_inc_return(&starget->target_busy) - 1;
1380 if (atomic_read(&starget->target_blocked) > 0) {
1381 if (busy)
1382 goto starved;
1383
1384 /*
1385 * unblock after target_blocked iterates to zero
1386 */
1387 if (atomic_dec_return(&starget->target_blocked) > 0)
1388 goto out_dec;
1389
1390 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1391 "unblocking target at zero depth\n"));
1392 }
1393
1394 if (busy >= starget->can_queue)
1395 goto starved;
1396
1397 return 1;
1398
1399 starved:
1400 spin_lock_irq(shost->host_lock);
1401 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1402 spin_unlock_irq(shost->host_lock);
1403 out_dec:
1404 if (starget->can_queue > 0)
1405 atomic_dec(&starget->target_busy);
1406 return 0;
1407 }
1408
1409 /*
1410 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1411 * return 0. We must end up running the queue again whenever 0 is
1412 * returned, else IO can hang.
1413 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1414 static inline int scsi_host_queue_ready(struct request_queue *q,
1415 struct Scsi_Host *shost,
1416 struct scsi_device *sdev)
1417 {
1418 unsigned int busy;
1419
1420 if (scsi_host_in_recovery(shost))
1421 return 0;
1422
1423 busy = atomic_inc_return(&shost->host_busy) - 1;
1424 if (atomic_read(&shost->host_blocked) > 0) {
1425 if (busy)
1426 goto starved;
1427
1428 /*
1429 * unblock after host_blocked iterates to zero
1430 */
1431 if (atomic_dec_return(&shost->host_blocked) > 0)
1432 goto out_dec;
1433
1434 SCSI_LOG_MLQUEUE(3,
1435 shost_printk(KERN_INFO, shost,
1436 "unblocking host at zero depth\n"));
1437 }
1438
1439 if (shost->can_queue > 0 && busy >= shost->can_queue)
1440 goto starved;
1441 if (shost->host_self_blocked)
1442 goto starved;
1443
1444 /* We're OK to process the command, so we can't be starved */
1445 if (!list_empty(&sdev->starved_entry)) {
1446 spin_lock_irq(shost->host_lock);
1447 if (!list_empty(&sdev->starved_entry))
1448 list_del_init(&sdev->starved_entry);
1449 spin_unlock_irq(shost->host_lock);
1450 }
1451
1452 return 1;
1453
1454 starved:
1455 spin_lock_irq(shost->host_lock);
1456 if (list_empty(&sdev->starved_entry))
1457 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1458 spin_unlock_irq(shost->host_lock);
1459 out_dec:
1460 atomic_dec(&shost->host_busy);
1461 return 0;
1462 }
1463
1464 /*
1465 * Busy state exporting function for request stacking drivers.
1466 *
1467 * For efficiency, no lock is taken to check the busy state of
1468 * shost/starget/sdev, since the returned value is not guaranteed and
1469 * may be changed after request stacking drivers call the function,
1470 * regardless of taking lock or not.
1471 *
1472 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1473 * needs to return 'not busy'. Otherwise, request stacking drivers
1474 * may hold requests forever.
1475 */
scsi_lld_busy(struct request_queue * q)1476 static int scsi_lld_busy(struct request_queue *q)
1477 {
1478 struct scsi_device *sdev = q->queuedata;
1479 struct Scsi_Host *shost;
1480
1481 if (blk_queue_dying(q))
1482 return 0;
1483
1484 shost = sdev->host;
1485
1486 /*
1487 * Ignore host/starget busy state.
1488 * Since block layer does not have a concept of fairness across
1489 * multiple queues, congestion of host/starget needs to be handled
1490 * in SCSI layer.
1491 */
1492 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1493 return 1;
1494
1495 return 0;
1496 }
1497
1498 /*
1499 * Kill a request for a dead device
1500 */
scsi_kill_request(struct request * req,struct request_queue * q)1501 static void scsi_kill_request(struct request *req, struct request_queue *q)
1502 {
1503 struct scsi_cmnd *cmd = req->special;
1504 struct scsi_device *sdev;
1505 struct scsi_target *starget;
1506 struct Scsi_Host *shost;
1507
1508 blk_start_request(req);
1509
1510 scmd_printk(KERN_INFO, cmd, "killing request\n");
1511
1512 sdev = cmd->device;
1513 starget = scsi_target(sdev);
1514 shost = sdev->host;
1515 scsi_init_cmd_errh(cmd);
1516 cmd->result = DID_NO_CONNECT << 16;
1517 atomic_inc(&cmd->device->iorequest_cnt);
1518
1519 /*
1520 * SCSI request completion path will do scsi_device_unbusy(),
1521 * bump busy counts. To bump the counters, we need to dance
1522 * with the locks as normal issue path does.
1523 */
1524 atomic_inc(&sdev->device_busy);
1525 atomic_inc(&shost->host_busy);
1526 if (starget->can_queue > 0)
1527 atomic_inc(&starget->target_busy);
1528
1529 blk_complete_request(req);
1530 }
1531
scsi_softirq_done(struct request * rq)1532 static void scsi_softirq_done(struct request *rq)
1533 {
1534 struct scsi_cmnd *cmd = rq->special;
1535 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1536 int disposition;
1537
1538 INIT_LIST_HEAD(&cmd->eh_entry);
1539
1540 atomic_inc(&cmd->device->iodone_cnt);
1541 if (cmd->result)
1542 atomic_inc(&cmd->device->ioerr_cnt);
1543
1544 disposition = scsi_decide_disposition(cmd);
1545 if (disposition != SUCCESS &&
1546 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1547 sdev_printk(KERN_ERR, cmd->device,
1548 "timing out command, waited %lus\n",
1549 wait_for/HZ);
1550 disposition = SUCCESS;
1551 }
1552
1553 scsi_log_completion(cmd, disposition);
1554
1555 switch (disposition) {
1556 case SUCCESS:
1557 scsi_finish_command(cmd);
1558 break;
1559 case NEEDS_RETRY:
1560 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1561 break;
1562 case ADD_TO_MLQUEUE:
1563 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1564 break;
1565 default:
1566 if (!scsi_eh_scmd_add(cmd, 0))
1567 scsi_finish_command(cmd);
1568 }
1569 }
1570
1571 /**
1572 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1573 * @cmd: command block we are dispatching.
1574 *
1575 * Return: nonzero return request was rejected and device's queue needs to be
1576 * plugged.
1577 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1578 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1579 {
1580 struct Scsi_Host *host = cmd->device->host;
1581 int rtn = 0;
1582
1583 atomic_inc(&cmd->device->iorequest_cnt);
1584
1585 /* check if the device is still usable */
1586 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1587 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1588 * returns an immediate error upwards, and signals
1589 * that the device is no longer present */
1590 cmd->result = DID_NO_CONNECT << 16;
1591 goto done;
1592 }
1593
1594 /* Check to see if the scsi lld made this device blocked. */
1595 if (unlikely(scsi_device_blocked(cmd->device))) {
1596 /*
1597 * in blocked state, the command is just put back on
1598 * the device queue. The suspend state has already
1599 * blocked the queue so future requests should not
1600 * occur until the device transitions out of the
1601 * suspend state.
1602 */
1603 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1604 "queuecommand : device blocked\n"));
1605 return SCSI_MLQUEUE_DEVICE_BUSY;
1606 }
1607
1608 /* Store the LUN value in cmnd, if needed. */
1609 if (cmd->device->lun_in_cdb)
1610 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1611 (cmd->device->lun << 5 & 0xe0);
1612
1613 scsi_log_send(cmd);
1614
1615 /*
1616 * Before we queue this command, check if the command
1617 * length exceeds what the host adapter can handle.
1618 */
1619 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1620 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1621 "queuecommand : command too long. "
1622 "cdb_size=%d host->max_cmd_len=%d\n",
1623 cmd->cmd_len, cmd->device->host->max_cmd_len));
1624 cmd->result = (DID_ABORT << 16);
1625 goto done;
1626 }
1627
1628 if (unlikely(host->shost_state == SHOST_DEL)) {
1629 cmd->result = (DID_NO_CONNECT << 16);
1630 goto done;
1631
1632 }
1633
1634 trace_scsi_dispatch_cmd_start(cmd);
1635 rtn = host->hostt->queuecommand(host, cmd);
1636 if (rtn) {
1637 trace_scsi_dispatch_cmd_error(cmd, rtn);
1638 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1639 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1640 rtn = SCSI_MLQUEUE_HOST_BUSY;
1641
1642 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1643 "queuecommand : request rejected\n"));
1644 }
1645
1646 return rtn;
1647 done:
1648 cmd->scsi_done(cmd);
1649 return 0;
1650 }
1651
1652 /**
1653 * scsi_done - Invoke completion on finished SCSI command.
1654 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1655 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1656 *
1657 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1658 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1659 * calls blk_complete_request() for further processing.
1660 *
1661 * This function is interrupt context safe.
1662 */
scsi_done(struct scsi_cmnd * cmd)1663 static void scsi_done(struct scsi_cmnd *cmd)
1664 {
1665 trace_scsi_dispatch_cmd_done(cmd);
1666 blk_complete_request(cmd->request);
1667 }
1668
1669 /*
1670 * Function: scsi_request_fn()
1671 *
1672 * Purpose: Main strategy routine for SCSI.
1673 *
1674 * Arguments: q - Pointer to actual queue.
1675 *
1676 * Returns: Nothing
1677 *
1678 * Lock status: IO request lock assumed to be held when called.
1679 */
scsi_request_fn(struct request_queue * q)1680 static void scsi_request_fn(struct request_queue *q)
1681 __releases(q->queue_lock)
1682 __acquires(q->queue_lock)
1683 {
1684 struct scsi_device *sdev = q->queuedata;
1685 struct Scsi_Host *shost;
1686 struct scsi_cmnd *cmd;
1687 struct request *req;
1688
1689 /*
1690 * To start with, we keep looping until the queue is empty, or until
1691 * the host is no longer able to accept any more requests.
1692 */
1693 shost = sdev->host;
1694 for (;;) {
1695 int rtn;
1696 /*
1697 * get next queueable request. We do this early to make sure
1698 * that the request is fully prepared even if we cannot
1699 * accept it.
1700 */
1701 req = blk_peek_request(q);
1702 if (!req)
1703 break;
1704
1705 if (unlikely(!scsi_device_online(sdev))) {
1706 sdev_printk(KERN_ERR, sdev,
1707 "rejecting I/O to offline device\n");
1708 scsi_kill_request(req, q);
1709 continue;
1710 }
1711
1712 if (!scsi_dev_queue_ready(q, sdev))
1713 break;
1714
1715 /*
1716 * Remove the request from the request list.
1717 */
1718 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1719 blk_start_request(req);
1720
1721 spin_unlock_irq(q->queue_lock);
1722 cmd = req->special;
1723 if (unlikely(cmd == NULL)) {
1724 printk(KERN_CRIT "impossible request in %s.\n"
1725 "please mail a stack trace to "
1726 "linux-scsi@vger.kernel.org\n",
1727 __func__);
1728 blk_dump_rq_flags(req, "foo");
1729 BUG();
1730 }
1731
1732 /*
1733 * We hit this when the driver is using a host wide
1734 * tag map. For device level tag maps the queue_depth check
1735 * in the device ready fn would prevent us from trying
1736 * to allocate a tag. Since the map is a shared host resource
1737 * we add the dev to the starved list so it eventually gets
1738 * a run when a tag is freed.
1739 */
1740 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1741 spin_lock_irq(shost->host_lock);
1742 if (list_empty(&sdev->starved_entry))
1743 list_add_tail(&sdev->starved_entry,
1744 &shost->starved_list);
1745 spin_unlock_irq(shost->host_lock);
1746 goto not_ready;
1747 }
1748
1749 if (!scsi_target_queue_ready(shost, sdev))
1750 goto not_ready;
1751
1752 if (!scsi_host_queue_ready(q, shost, sdev))
1753 goto host_not_ready;
1754
1755 if (sdev->simple_tags)
1756 cmd->flags |= SCMD_TAGGED;
1757 else
1758 cmd->flags &= ~SCMD_TAGGED;
1759
1760 /*
1761 * Finally, initialize any error handling parameters, and set up
1762 * the timers for timeouts.
1763 */
1764 scsi_init_cmd_errh(cmd);
1765
1766 /*
1767 * Dispatch the command to the low-level driver.
1768 */
1769 cmd->scsi_done = scsi_done;
1770 rtn = scsi_dispatch_cmd(cmd);
1771 if (rtn) {
1772 scsi_queue_insert(cmd, rtn);
1773 spin_lock_irq(q->queue_lock);
1774 goto out_delay;
1775 }
1776 spin_lock_irq(q->queue_lock);
1777 }
1778
1779 return;
1780
1781 host_not_ready:
1782 if (scsi_target(sdev)->can_queue > 0)
1783 atomic_dec(&scsi_target(sdev)->target_busy);
1784 not_ready:
1785 /*
1786 * lock q, handle tag, requeue req, and decrement device_busy. We
1787 * must return with queue_lock held.
1788 *
1789 * Decrementing device_busy without checking it is OK, as all such
1790 * cases (host limits or settings) should run the queue at some
1791 * later time.
1792 */
1793 spin_lock_irq(q->queue_lock);
1794 blk_requeue_request(q, req);
1795 atomic_dec(&sdev->device_busy);
1796 out_delay:
1797 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1798 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1799 }
1800
prep_to_mq(int ret)1801 static inline int prep_to_mq(int ret)
1802 {
1803 switch (ret) {
1804 case BLKPREP_OK:
1805 return 0;
1806 case BLKPREP_DEFER:
1807 return BLK_MQ_RQ_QUEUE_BUSY;
1808 default:
1809 return BLK_MQ_RQ_QUEUE_ERROR;
1810 }
1811 }
1812
scsi_mq_prep_fn(struct request * req)1813 static int scsi_mq_prep_fn(struct request *req)
1814 {
1815 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1816 struct scsi_device *sdev = req->q->queuedata;
1817 struct Scsi_Host *shost = sdev->host;
1818 unsigned char *sense_buf = cmd->sense_buffer;
1819 struct scatterlist *sg;
1820
1821 memset(cmd, 0, sizeof(struct scsi_cmnd));
1822
1823 req->special = cmd;
1824
1825 cmd->request = req;
1826 cmd->device = sdev;
1827 cmd->sense_buffer = sense_buf;
1828
1829 cmd->tag = req->tag;
1830
1831 cmd->cmnd = req->cmd;
1832 cmd->prot_op = SCSI_PROT_NORMAL;
1833
1834 INIT_LIST_HEAD(&cmd->list);
1835 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1836 cmd->jiffies_at_alloc = jiffies;
1837
1838 if (shost->use_cmd_list) {
1839 spin_lock_irq(&sdev->list_lock);
1840 list_add_tail(&cmd->list, &sdev->cmd_list);
1841 spin_unlock_irq(&sdev->list_lock);
1842 }
1843
1844 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1845 cmd->sdb.table.sgl = sg;
1846
1847 if (scsi_host_get_prot(shost)) {
1848 cmd->prot_sdb = (void *)sg +
1849 min_t(unsigned int,
1850 shost->sg_tablesize, SG_CHUNK_SIZE) *
1851 sizeof(struct scatterlist);
1852 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1853
1854 cmd->prot_sdb->table.sgl =
1855 (struct scatterlist *)(cmd->prot_sdb + 1);
1856 }
1857
1858 if (blk_bidi_rq(req)) {
1859 struct request *next_rq = req->next_rq;
1860 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1861
1862 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1863 bidi_sdb->table.sgl =
1864 (struct scatterlist *)(bidi_sdb + 1);
1865
1866 next_rq->special = bidi_sdb;
1867 }
1868
1869 blk_mq_start_request(req);
1870
1871 return scsi_setup_cmnd(sdev, req);
1872 }
1873
scsi_mq_done(struct scsi_cmnd * cmd)1874 static void scsi_mq_done(struct scsi_cmnd *cmd)
1875 {
1876 trace_scsi_dispatch_cmd_done(cmd);
1877 blk_mq_complete_request(cmd->request, cmd->request->errors);
1878 }
1879
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1880 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1881 const struct blk_mq_queue_data *bd)
1882 {
1883 struct request *req = bd->rq;
1884 struct request_queue *q = req->q;
1885 struct scsi_device *sdev = q->queuedata;
1886 struct Scsi_Host *shost = sdev->host;
1887 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1888 int ret;
1889 int reason;
1890
1891 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1892 if (ret)
1893 goto out;
1894
1895 ret = BLK_MQ_RQ_QUEUE_BUSY;
1896 if (!get_device(&sdev->sdev_gendev))
1897 goto out;
1898
1899 if (!scsi_dev_queue_ready(q, sdev))
1900 goto out_put_device;
1901 if (!scsi_target_queue_ready(shost, sdev))
1902 goto out_dec_device_busy;
1903 if (!scsi_host_queue_ready(q, shost, sdev))
1904 goto out_dec_target_busy;
1905
1906
1907 if (!(req->cmd_flags & REQ_DONTPREP)) {
1908 ret = prep_to_mq(scsi_mq_prep_fn(req));
1909 if (ret)
1910 goto out_dec_host_busy;
1911 req->cmd_flags |= REQ_DONTPREP;
1912 } else {
1913 blk_mq_start_request(req);
1914 }
1915
1916 if (sdev->simple_tags)
1917 cmd->flags |= SCMD_TAGGED;
1918 else
1919 cmd->flags &= ~SCMD_TAGGED;
1920
1921 scsi_init_cmd_errh(cmd);
1922 cmd->scsi_done = scsi_mq_done;
1923
1924 reason = scsi_dispatch_cmd(cmd);
1925 if (reason) {
1926 scsi_set_blocked(cmd, reason);
1927 ret = BLK_MQ_RQ_QUEUE_BUSY;
1928 goto out_dec_host_busy;
1929 }
1930
1931 return BLK_MQ_RQ_QUEUE_OK;
1932
1933 out_dec_host_busy:
1934 atomic_dec(&shost->host_busy);
1935 out_dec_target_busy:
1936 if (scsi_target(sdev)->can_queue > 0)
1937 atomic_dec(&scsi_target(sdev)->target_busy);
1938 out_dec_device_busy:
1939 atomic_dec(&sdev->device_busy);
1940 out_put_device:
1941 put_device(&sdev->sdev_gendev);
1942 out:
1943 switch (ret) {
1944 case BLK_MQ_RQ_QUEUE_BUSY:
1945 blk_mq_stop_hw_queue(hctx);
1946 if (atomic_read(&sdev->device_busy) == 0 &&
1947 !scsi_device_blocked(sdev))
1948 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1949 break;
1950 case BLK_MQ_RQ_QUEUE_ERROR:
1951 /*
1952 * Make sure to release all allocated ressources when
1953 * we hit an error, as we will never see this command
1954 * again.
1955 */
1956 if (req->cmd_flags & REQ_DONTPREP)
1957 scsi_mq_uninit_cmd(cmd);
1958 break;
1959 default:
1960 break;
1961 }
1962 return ret;
1963 }
1964
scsi_timeout(struct request * req,bool reserved)1965 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1966 bool reserved)
1967 {
1968 if (reserved)
1969 return BLK_EH_RESET_TIMER;
1970 return scsi_times_out(req);
1971 }
1972
scsi_init_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx,unsigned int numa_node)1973 static int scsi_init_request(void *data, struct request *rq,
1974 unsigned int hctx_idx, unsigned int request_idx,
1975 unsigned int numa_node)
1976 {
1977 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1978
1979 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1980 numa_node);
1981 if (!cmd->sense_buffer)
1982 return -ENOMEM;
1983 return 0;
1984 }
1985
scsi_exit_request(void * data,struct request * rq,unsigned int hctx_idx,unsigned int request_idx)1986 static void scsi_exit_request(void *data, struct request *rq,
1987 unsigned int hctx_idx, unsigned int request_idx)
1988 {
1989 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1990
1991 kfree(cmd->sense_buffer);
1992 }
1993
scsi_calculate_bounce_limit(struct Scsi_Host * shost)1994 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1995 {
1996 struct device *host_dev;
1997 u64 bounce_limit = 0xffffffff;
1998
1999 if (shost->unchecked_isa_dma)
2000 return BLK_BOUNCE_ISA;
2001 /*
2002 * Platforms with virtual-DMA translation
2003 * hardware have no practical limit.
2004 */
2005 if (!PCI_DMA_BUS_IS_PHYS)
2006 return BLK_BOUNCE_ANY;
2007
2008 host_dev = scsi_get_device(shost);
2009 if (host_dev && host_dev->dma_mask)
2010 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2011
2012 return bounce_limit;
2013 }
2014
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)2015 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2016 {
2017 struct device *dev = shost->dma_dev;
2018
2019 /*
2020 * this limit is imposed by hardware restrictions
2021 */
2022 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2023 SG_MAX_SEGMENTS));
2024
2025 if (scsi_host_prot_dma(shost)) {
2026 shost->sg_prot_tablesize =
2027 min_not_zero(shost->sg_prot_tablesize,
2028 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2029 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2030 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2031 }
2032
2033 blk_queue_max_hw_sectors(q, shost->max_sectors);
2034 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2035 blk_queue_segment_boundary(q, shost->dma_boundary);
2036 dma_set_seg_boundary(dev, shost->dma_boundary);
2037
2038 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2039
2040 if (!shost->use_clustering)
2041 q->limits.cluster = 0;
2042
2043 /*
2044 * Set a reasonable default alignment: The larger of 32-byte (dword),
2045 * which is a common minimum for HBAs, and the minimum DMA alignment,
2046 * which is set by the platform.
2047 *
2048 * Devices that require a bigger alignment can increase it later.
2049 */
2050 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2051 }
2052
__scsi_alloc_queue(struct Scsi_Host * shost,request_fn_proc * request_fn)2053 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2054 request_fn_proc *request_fn)
2055 {
2056 struct request_queue *q;
2057
2058 q = blk_init_queue(request_fn, NULL);
2059 if (!q)
2060 return NULL;
2061 __scsi_init_queue(shost, q);
2062 return q;
2063 }
2064 EXPORT_SYMBOL(__scsi_alloc_queue);
2065
scsi_alloc_queue(struct scsi_device * sdev)2066 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2067 {
2068 struct request_queue *q;
2069
2070 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2071 if (!q)
2072 return NULL;
2073
2074 blk_queue_prep_rq(q, scsi_prep_fn);
2075 blk_queue_unprep_rq(q, scsi_unprep_fn);
2076 blk_queue_softirq_done(q, scsi_softirq_done);
2077 blk_queue_rq_timed_out(q, scsi_times_out);
2078 blk_queue_lld_busy(q, scsi_lld_busy);
2079 return q;
2080 }
2081
2082 static struct blk_mq_ops scsi_mq_ops = {
2083 .queue_rq = scsi_queue_rq,
2084 .complete = scsi_softirq_done,
2085 .timeout = scsi_timeout,
2086 .init_request = scsi_init_request,
2087 .exit_request = scsi_exit_request,
2088 };
2089
scsi_mq_alloc_queue(struct scsi_device * sdev)2090 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2091 {
2092 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2093 if (IS_ERR(sdev->request_queue))
2094 return NULL;
2095
2096 sdev->request_queue->queuedata = sdev;
2097 __scsi_init_queue(sdev->host, sdev->request_queue);
2098 return sdev->request_queue;
2099 }
2100
scsi_mq_setup_tags(struct Scsi_Host * shost)2101 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2102 {
2103 unsigned int cmd_size, sgl_size, tbl_size;
2104
2105 tbl_size = shost->sg_tablesize;
2106 if (tbl_size > SG_CHUNK_SIZE)
2107 tbl_size = SG_CHUNK_SIZE;
2108 sgl_size = tbl_size * sizeof(struct scatterlist);
2109 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2110 if (scsi_host_get_prot(shost))
2111 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2112
2113 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2114 shost->tag_set.ops = &scsi_mq_ops;
2115 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2116 shost->tag_set.queue_depth = shost->can_queue;
2117 shost->tag_set.cmd_size = cmd_size;
2118 shost->tag_set.numa_node = NUMA_NO_NODE;
2119 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2120 shost->tag_set.flags |=
2121 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2122 shost->tag_set.driver_data = shost;
2123
2124 return blk_mq_alloc_tag_set(&shost->tag_set);
2125 }
2126
scsi_mq_destroy_tags(struct Scsi_Host * shost)2127 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2128 {
2129 blk_mq_free_tag_set(&shost->tag_set);
2130 }
2131
2132 /**
2133 * scsi_device_from_queue - return sdev associated with a request_queue
2134 * @q: The request queue to return the sdev from
2135 *
2136 * Return the sdev associated with a request queue or NULL if the
2137 * request_queue does not reference a SCSI device.
2138 */
scsi_device_from_queue(struct request_queue * q)2139 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2140 {
2141 struct scsi_device *sdev = NULL;
2142
2143 if (q->mq_ops) {
2144 if (q->mq_ops == &scsi_mq_ops)
2145 sdev = q->queuedata;
2146 } else if (q->request_fn == scsi_request_fn)
2147 sdev = q->queuedata;
2148 if (!sdev || !get_device(&sdev->sdev_gendev))
2149 sdev = NULL;
2150
2151 return sdev;
2152 }
2153 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2154
2155 /*
2156 * Function: scsi_block_requests()
2157 *
2158 * Purpose: Utility function used by low-level drivers to prevent further
2159 * commands from being queued to the device.
2160 *
2161 * Arguments: shost - Host in question
2162 *
2163 * Returns: Nothing
2164 *
2165 * Lock status: No locks are assumed held.
2166 *
2167 * Notes: There is no timer nor any other means by which the requests
2168 * get unblocked other than the low-level driver calling
2169 * scsi_unblock_requests().
2170 */
scsi_block_requests(struct Scsi_Host * shost)2171 void scsi_block_requests(struct Scsi_Host *shost)
2172 {
2173 shost->host_self_blocked = 1;
2174 }
2175 EXPORT_SYMBOL(scsi_block_requests);
2176
2177 /*
2178 * Function: scsi_unblock_requests()
2179 *
2180 * Purpose: Utility function used by low-level drivers to allow further
2181 * commands from being queued to the device.
2182 *
2183 * Arguments: shost - Host in question
2184 *
2185 * Returns: Nothing
2186 *
2187 * Lock status: No locks are assumed held.
2188 *
2189 * Notes: There is no timer nor any other means by which the requests
2190 * get unblocked other than the low-level driver calling
2191 * scsi_unblock_requests().
2192 *
2193 * This is done as an API function so that changes to the
2194 * internals of the scsi mid-layer won't require wholesale
2195 * changes to drivers that use this feature.
2196 */
scsi_unblock_requests(struct Scsi_Host * shost)2197 void scsi_unblock_requests(struct Scsi_Host *shost)
2198 {
2199 shost->host_self_blocked = 0;
2200 scsi_run_host_queues(shost);
2201 }
2202 EXPORT_SYMBOL(scsi_unblock_requests);
2203
scsi_init_queue(void)2204 int __init scsi_init_queue(void)
2205 {
2206 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2207 sizeof(struct scsi_data_buffer),
2208 0, 0, NULL);
2209 if (!scsi_sdb_cache) {
2210 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2211 return -ENOMEM;
2212 }
2213
2214 return 0;
2215 }
2216
scsi_exit_queue(void)2217 void scsi_exit_queue(void)
2218 {
2219 kmem_cache_destroy(scsi_sdb_cache);
2220 }
2221
2222 /**
2223 * scsi_mode_select - issue a mode select
2224 * @sdev: SCSI device to be queried
2225 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2226 * @sp: Save page bit (0 == don't save, 1 == save)
2227 * @modepage: mode page being requested
2228 * @buffer: request buffer (may not be smaller than eight bytes)
2229 * @len: length of request buffer.
2230 * @timeout: command timeout
2231 * @retries: number of retries before failing
2232 * @data: returns a structure abstracting the mode header data
2233 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2234 * must be SCSI_SENSE_BUFFERSIZE big.
2235 *
2236 * Returns zero if successful; negative error number or scsi
2237 * status on error
2238 *
2239 */
2240 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2241 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2242 unsigned char *buffer, int len, int timeout, int retries,
2243 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2244 {
2245 unsigned char cmd[10];
2246 unsigned char *real_buffer;
2247 int ret;
2248
2249 memset(cmd, 0, sizeof(cmd));
2250 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2251
2252 if (sdev->use_10_for_ms) {
2253 if (len > 65535)
2254 return -EINVAL;
2255 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2256 if (!real_buffer)
2257 return -ENOMEM;
2258 memcpy(real_buffer + 8, buffer, len);
2259 len += 8;
2260 real_buffer[0] = 0;
2261 real_buffer[1] = 0;
2262 real_buffer[2] = data->medium_type;
2263 real_buffer[3] = data->device_specific;
2264 real_buffer[4] = data->longlba ? 0x01 : 0;
2265 real_buffer[5] = 0;
2266 real_buffer[6] = data->block_descriptor_length >> 8;
2267 real_buffer[7] = data->block_descriptor_length;
2268
2269 cmd[0] = MODE_SELECT_10;
2270 cmd[7] = len >> 8;
2271 cmd[8] = len;
2272 } else {
2273 if (len > 255 || data->block_descriptor_length > 255 ||
2274 data->longlba)
2275 return -EINVAL;
2276
2277 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2278 if (!real_buffer)
2279 return -ENOMEM;
2280 memcpy(real_buffer + 4, buffer, len);
2281 len += 4;
2282 real_buffer[0] = 0;
2283 real_buffer[1] = data->medium_type;
2284 real_buffer[2] = data->device_specific;
2285 real_buffer[3] = data->block_descriptor_length;
2286
2287
2288 cmd[0] = MODE_SELECT;
2289 cmd[4] = len;
2290 }
2291
2292 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2293 sshdr, timeout, retries, NULL);
2294 kfree(real_buffer);
2295 return ret;
2296 }
2297 EXPORT_SYMBOL_GPL(scsi_mode_select);
2298
2299 /**
2300 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2301 * @sdev: SCSI device to be queried
2302 * @dbd: set if mode sense will allow block descriptors to be returned
2303 * @modepage: mode page being requested
2304 * @buffer: request buffer (may not be smaller than eight bytes)
2305 * @len: length of request buffer.
2306 * @timeout: command timeout
2307 * @retries: number of retries before failing
2308 * @data: returns a structure abstracting the mode header data
2309 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2310 * must be SCSI_SENSE_BUFFERSIZE big.
2311 *
2312 * Returns zero if unsuccessful, or the header offset (either 4
2313 * or 8 depending on whether a six or ten byte command was
2314 * issued) if successful.
2315 */
2316 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2317 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2318 unsigned char *buffer, int len, int timeout, int retries,
2319 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2320 {
2321 unsigned char cmd[12];
2322 int use_10_for_ms;
2323 int header_length;
2324 int result, retry_count = retries;
2325 struct scsi_sense_hdr my_sshdr;
2326
2327 memset(data, 0, sizeof(*data));
2328 memset(&cmd[0], 0, 12);
2329 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2330 cmd[2] = modepage;
2331
2332 /* caller might not be interested in sense, but we need it */
2333 if (!sshdr)
2334 sshdr = &my_sshdr;
2335
2336 retry:
2337 use_10_for_ms = sdev->use_10_for_ms;
2338
2339 if (use_10_for_ms) {
2340 if (len < 8)
2341 len = 8;
2342
2343 cmd[0] = MODE_SENSE_10;
2344 cmd[8] = len;
2345 header_length = 8;
2346 } else {
2347 if (len < 4)
2348 len = 4;
2349
2350 cmd[0] = MODE_SENSE;
2351 cmd[4] = len;
2352 header_length = 4;
2353 }
2354
2355 memset(buffer, 0, len);
2356
2357 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2358 sshdr, timeout, retries, NULL);
2359
2360 /* This code looks awful: what it's doing is making sure an
2361 * ILLEGAL REQUEST sense return identifies the actual command
2362 * byte as the problem. MODE_SENSE commands can return
2363 * ILLEGAL REQUEST if the code page isn't supported */
2364
2365 if (use_10_for_ms && !scsi_status_is_good(result) &&
2366 (driver_byte(result) & DRIVER_SENSE)) {
2367 if (scsi_sense_valid(sshdr)) {
2368 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2369 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2370 /*
2371 * Invalid command operation code
2372 */
2373 sdev->use_10_for_ms = 0;
2374 goto retry;
2375 }
2376 }
2377 }
2378
2379 if(scsi_status_is_good(result)) {
2380 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2381 (modepage == 6 || modepage == 8))) {
2382 /* Initio breakage? */
2383 header_length = 0;
2384 data->length = 13;
2385 data->medium_type = 0;
2386 data->device_specific = 0;
2387 data->longlba = 0;
2388 data->block_descriptor_length = 0;
2389 } else if(use_10_for_ms) {
2390 data->length = buffer[0]*256 + buffer[1] + 2;
2391 data->medium_type = buffer[2];
2392 data->device_specific = buffer[3];
2393 data->longlba = buffer[4] & 0x01;
2394 data->block_descriptor_length = buffer[6]*256
2395 + buffer[7];
2396 } else {
2397 data->length = buffer[0] + 1;
2398 data->medium_type = buffer[1];
2399 data->device_specific = buffer[2];
2400 data->block_descriptor_length = buffer[3];
2401 }
2402 data->header_length = header_length;
2403 } else if ((status_byte(result) == CHECK_CONDITION) &&
2404 scsi_sense_valid(sshdr) &&
2405 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2406 retry_count--;
2407 goto retry;
2408 }
2409
2410 return result;
2411 }
2412 EXPORT_SYMBOL(scsi_mode_sense);
2413
2414 /**
2415 * scsi_test_unit_ready - test if unit is ready
2416 * @sdev: scsi device to change the state of.
2417 * @timeout: command timeout
2418 * @retries: number of retries before failing
2419 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2420 * returning sense. Make sure that this is cleared before passing
2421 * in.
2422 *
2423 * Returns zero if unsuccessful or an error if TUR failed. For
2424 * removable media, UNIT_ATTENTION sets ->changed flag.
2425 **/
2426 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr_external)2427 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2428 struct scsi_sense_hdr *sshdr_external)
2429 {
2430 char cmd[] = {
2431 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2432 };
2433 struct scsi_sense_hdr *sshdr;
2434 int result;
2435
2436 if (!sshdr_external)
2437 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2438 else
2439 sshdr = sshdr_external;
2440
2441 /* try to eat the UNIT_ATTENTION if there are enough retries */
2442 do {
2443 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2444 timeout, retries, NULL);
2445 if (sdev->removable && scsi_sense_valid(sshdr) &&
2446 sshdr->sense_key == UNIT_ATTENTION)
2447 sdev->changed = 1;
2448 } while (scsi_sense_valid(sshdr) &&
2449 sshdr->sense_key == UNIT_ATTENTION && --retries);
2450
2451 if (!sshdr_external)
2452 kfree(sshdr);
2453 return result;
2454 }
2455 EXPORT_SYMBOL(scsi_test_unit_ready);
2456
2457 /**
2458 * scsi_device_set_state - Take the given device through the device state model.
2459 * @sdev: scsi device to change the state of.
2460 * @state: state to change to.
2461 *
2462 * Returns zero if unsuccessful or an error if the requested
2463 * transition is illegal.
2464 */
2465 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2466 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2467 {
2468 enum scsi_device_state oldstate = sdev->sdev_state;
2469
2470 if (state == oldstate)
2471 return 0;
2472
2473 switch (state) {
2474 case SDEV_CREATED:
2475 switch (oldstate) {
2476 case SDEV_CREATED_BLOCK:
2477 break;
2478 default:
2479 goto illegal;
2480 }
2481 break;
2482
2483 case SDEV_RUNNING:
2484 switch (oldstate) {
2485 case SDEV_CREATED:
2486 case SDEV_OFFLINE:
2487 case SDEV_TRANSPORT_OFFLINE:
2488 case SDEV_QUIESCE:
2489 case SDEV_BLOCK:
2490 break;
2491 default:
2492 goto illegal;
2493 }
2494 break;
2495
2496 case SDEV_QUIESCE:
2497 switch (oldstate) {
2498 case SDEV_RUNNING:
2499 case SDEV_OFFLINE:
2500 case SDEV_TRANSPORT_OFFLINE:
2501 break;
2502 default:
2503 goto illegal;
2504 }
2505 break;
2506
2507 case SDEV_OFFLINE:
2508 case SDEV_TRANSPORT_OFFLINE:
2509 switch (oldstate) {
2510 case SDEV_CREATED:
2511 case SDEV_RUNNING:
2512 case SDEV_QUIESCE:
2513 case SDEV_BLOCK:
2514 break;
2515 default:
2516 goto illegal;
2517 }
2518 break;
2519
2520 case SDEV_BLOCK:
2521 switch (oldstate) {
2522 case SDEV_RUNNING:
2523 case SDEV_CREATED_BLOCK:
2524 break;
2525 default:
2526 goto illegal;
2527 }
2528 break;
2529
2530 case SDEV_CREATED_BLOCK:
2531 switch (oldstate) {
2532 case SDEV_CREATED:
2533 break;
2534 default:
2535 goto illegal;
2536 }
2537 break;
2538
2539 case SDEV_CANCEL:
2540 switch (oldstate) {
2541 case SDEV_CREATED:
2542 case SDEV_RUNNING:
2543 case SDEV_QUIESCE:
2544 case SDEV_OFFLINE:
2545 case SDEV_TRANSPORT_OFFLINE:
2546 case SDEV_BLOCK:
2547 break;
2548 default:
2549 goto illegal;
2550 }
2551 break;
2552
2553 case SDEV_DEL:
2554 switch (oldstate) {
2555 case SDEV_CREATED:
2556 case SDEV_RUNNING:
2557 case SDEV_OFFLINE:
2558 case SDEV_TRANSPORT_OFFLINE:
2559 case SDEV_CANCEL:
2560 case SDEV_CREATED_BLOCK:
2561 break;
2562 default:
2563 goto illegal;
2564 }
2565 break;
2566
2567 }
2568 sdev->sdev_state = state;
2569 return 0;
2570
2571 illegal:
2572 SCSI_LOG_ERROR_RECOVERY(1,
2573 sdev_printk(KERN_ERR, sdev,
2574 "Illegal state transition %s->%s",
2575 scsi_device_state_name(oldstate),
2576 scsi_device_state_name(state))
2577 );
2578 return -EINVAL;
2579 }
2580 EXPORT_SYMBOL(scsi_device_set_state);
2581
2582 /**
2583 * sdev_evt_emit - emit a single SCSI device uevent
2584 * @sdev: associated SCSI device
2585 * @evt: event to emit
2586 *
2587 * Send a single uevent (scsi_event) to the associated scsi_device.
2588 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2589 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2590 {
2591 int idx = 0;
2592 char *envp[3];
2593
2594 switch (evt->evt_type) {
2595 case SDEV_EVT_MEDIA_CHANGE:
2596 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2597 break;
2598 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2599 scsi_rescan_device(&sdev->sdev_gendev);
2600 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2601 break;
2602 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2603 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2604 break;
2605 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2606 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2607 break;
2608 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2609 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2610 break;
2611 case SDEV_EVT_LUN_CHANGE_REPORTED:
2612 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2613 break;
2614 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2615 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2616 break;
2617 default:
2618 /* do nothing */
2619 break;
2620 }
2621
2622 envp[idx++] = NULL;
2623
2624 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2625 }
2626
2627 /**
2628 * sdev_evt_thread - send a uevent for each scsi event
2629 * @work: work struct for scsi_device
2630 *
2631 * Dispatch queued events to their associated scsi_device kobjects
2632 * as uevents.
2633 */
scsi_evt_thread(struct work_struct * work)2634 void scsi_evt_thread(struct work_struct *work)
2635 {
2636 struct scsi_device *sdev;
2637 enum scsi_device_event evt_type;
2638 LIST_HEAD(event_list);
2639
2640 sdev = container_of(work, struct scsi_device, event_work);
2641
2642 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2643 if (test_and_clear_bit(evt_type, sdev->pending_events))
2644 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2645
2646 while (1) {
2647 struct scsi_event *evt;
2648 struct list_head *this, *tmp;
2649 unsigned long flags;
2650
2651 spin_lock_irqsave(&sdev->list_lock, flags);
2652 list_splice_init(&sdev->event_list, &event_list);
2653 spin_unlock_irqrestore(&sdev->list_lock, flags);
2654
2655 if (list_empty(&event_list))
2656 break;
2657
2658 list_for_each_safe(this, tmp, &event_list) {
2659 evt = list_entry(this, struct scsi_event, node);
2660 list_del(&evt->node);
2661 scsi_evt_emit(sdev, evt);
2662 kfree(evt);
2663 }
2664 }
2665 }
2666
2667 /**
2668 * sdev_evt_send - send asserted event to uevent thread
2669 * @sdev: scsi_device event occurred on
2670 * @evt: event to send
2671 *
2672 * Assert scsi device event asynchronously.
2673 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2674 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2675 {
2676 unsigned long flags;
2677
2678 #if 0
2679 /* FIXME: currently this check eliminates all media change events
2680 * for polled devices. Need to update to discriminate between AN
2681 * and polled events */
2682 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2683 kfree(evt);
2684 return;
2685 }
2686 #endif
2687
2688 spin_lock_irqsave(&sdev->list_lock, flags);
2689 list_add_tail(&evt->node, &sdev->event_list);
2690 schedule_work(&sdev->event_work);
2691 spin_unlock_irqrestore(&sdev->list_lock, flags);
2692 }
2693 EXPORT_SYMBOL_GPL(sdev_evt_send);
2694
2695 /**
2696 * sdev_evt_alloc - allocate a new scsi event
2697 * @evt_type: type of event to allocate
2698 * @gfpflags: GFP flags for allocation
2699 *
2700 * Allocates and returns a new scsi_event.
2701 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2702 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2703 gfp_t gfpflags)
2704 {
2705 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2706 if (!evt)
2707 return NULL;
2708
2709 evt->evt_type = evt_type;
2710 INIT_LIST_HEAD(&evt->node);
2711
2712 /* evt_type-specific initialization, if any */
2713 switch (evt_type) {
2714 case SDEV_EVT_MEDIA_CHANGE:
2715 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2716 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2717 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2718 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2719 case SDEV_EVT_LUN_CHANGE_REPORTED:
2720 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2721 default:
2722 /* do nothing */
2723 break;
2724 }
2725
2726 return evt;
2727 }
2728 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2729
2730 /**
2731 * sdev_evt_send_simple - send asserted event to uevent thread
2732 * @sdev: scsi_device event occurred on
2733 * @evt_type: type of event to send
2734 * @gfpflags: GFP flags for allocation
2735 *
2736 * Assert scsi device event asynchronously, given an event type.
2737 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2738 void sdev_evt_send_simple(struct scsi_device *sdev,
2739 enum scsi_device_event evt_type, gfp_t gfpflags)
2740 {
2741 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2742 if (!evt) {
2743 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2744 evt_type);
2745 return;
2746 }
2747
2748 sdev_evt_send(sdev, evt);
2749 }
2750 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2751
2752 /**
2753 * scsi_device_quiesce - Block user issued commands.
2754 * @sdev: scsi device to quiesce.
2755 *
2756 * This works by trying to transition to the SDEV_QUIESCE state
2757 * (which must be a legal transition). When the device is in this
2758 * state, only special requests will be accepted, all others will
2759 * be deferred. Since special requests may also be requeued requests,
2760 * a successful return doesn't guarantee the device will be
2761 * totally quiescent.
2762 *
2763 * Must be called with user context, may sleep.
2764 *
2765 * Returns zero if unsuccessful or an error if not.
2766 */
2767 int
scsi_device_quiesce(struct scsi_device * sdev)2768 scsi_device_quiesce(struct scsi_device *sdev)
2769 {
2770 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2771 if (err)
2772 return err;
2773
2774 scsi_run_queue(sdev->request_queue);
2775 while (atomic_read(&sdev->device_busy)) {
2776 msleep_interruptible(200);
2777 scsi_run_queue(sdev->request_queue);
2778 }
2779 return 0;
2780 }
2781 EXPORT_SYMBOL(scsi_device_quiesce);
2782
2783 /**
2784 * scsi_device_resume - Restart user issued commands to a quiesced device.
2785 * @sdev: scsi device to resume.
2786 *
2787 * Moves the device from quiesced back to running and restarts the
2788 * queues.
2789 *
2790 * Must be called with user context, may sleep.
2791 */
scsi_device_resume(struct scsi_device * sdev)2792 void scsi_device_resume(struct scsi_device *sdev)
2793 {
2794 /* check if the device state was mutated prior to resume, and if
2795 * so assume the state is being managed elsewhere (for example
2796 * device deleted during suspend)
2797 */
2798 if (sdev->sdev_state != SDEV_QUIESCE ||
2799 scsi_device_set_state(sdev, SDEV_RUNNING))
2800 return;
2801 scsi_run_queue(sdev->request_queue);
2802 }
2803 EXPORT_SYMBOL(scsi_device_resume);
2804
2805 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2806 device_quiesce_fn(struct scsi_device *sdev, void *data)
2807 {
2808 scsi_device_quiesce(sdev);
2809 }
2810
2811 void
scsi_target_quiesce(struct scsi_target * starget)2812 scsi_target_quiesce(struct scsi_target *starget)
2813 {
2814 starget_for_each_device(starget, NULL, device_quiesce_fn);
2815 }
2816 EXPORT_SYMBOL(scsi_target_quiesce);
2817
2818 static void
device_resume_fn(struct scsi_device * sdev,void * data)2819 device_resume_fn(struct scsi_device *sdev, void *data)
2820 {
2821 scsi_device_resume(sdev);
2822 }
2823
2824 void
scsi_target_resume(struct scsi_target * starget)2825 scsi_target_resume(struct scsi_target *starget)
2826 {
2827 starget_for_each_device(starget, NULL, device_resume_fn);
2828 }
2829 EXPORT_SYMBOL(scsi_target_resume);
2830
2831 /**
2832 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2833 * @sdev: device to block
2834 *
2835 * Block request made by scsi lld's to temporarily stop all
2836 * scsi commands on the specified device. Called from interrupt
2837 * or normal process context.
2838 *
2839 * Returns zero if successful or error if not
2840 *
2841 * Notes:
2842 * This routine transitions the device to the SDEV_BLOCK state
2843 * (which must be a legal transition). When the device is in this
2844 * state, all commands are deferred until the scsi lld reenables
2845 * the device with scsi_device_unblock or device_block_tmo fires.
2846 */
2847 int
scsi_internal_device_block(struct scsi_device * sdev)2848 scsi_internal_device_block(struct scsi_device *sdev)
2849 {
2850 struct request_queue *q = sdev->request_queue;
2851 unsigned long flags;
2852 int err = 0;
2853
2854 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2855 if (err) {
2856 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2857
2858 if (err)
2859 return err;
2860 }
2861
2862 /*
2863 * The device has transitioned to SDEV_BLOCK. Stop the
2864 * block layer from calling the midlayer with this device's
2865 * request queue.
2866 */
2867 if (q->mq_ops) {
2868 blk_mq_stop_hw_queues(q);
2869 } else {
2870 spin_lock_irqsave(q->queue_lock, flags);
2871 blk_stop_queue(q);
2872 spin_unlock_irqrestore(q->queue_lock, flags);
2873 }
2874
2875 return 0;
2876 }
2877 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2878
2879 /**
2880 * scsi_internal_device_unblock - resume a device after a block request
2881 * @sdev: device to resume
2882 * @new_state: state to set devices to after unblocking
2883 *
2884 * Called by scsi lld's or the midlayer to restart the device queue
2885 * for the previously suspended scsi device. Called from interrupt or
2886 * normal process context.
2887 *
2888 * Returns zero if successful or error if not.
2889 *
2890 * Notes:
2891 * This routine transitions the device to the SDEV_RUNNING state
2892 * or to one of the offline states (which must be a legal transition)
2893 * allowing the midlayer to goose the queue for this device.
2894 */
2895 int
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2896 scsi_internal_device_unblock(struct scsi_device *sdev,
2897 enum scsi_device_state new_state)
2898 {
2899 struct request_queue *q = sdev->request_queue;
2900 unsigned long flags;
2901
2902 /*
2903 * Try to transition the scsi device to SDEV_RUNNING or one of the
2904 * offlined states and goose the device queue if successful.
2905 */
2906 if ((sdev->sdev_state == SDEV_BLOCK) ||
2907 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2908 sdev->sdev_state = new_state;
2909 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2910 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2911 new_state == SDEV_OFFLINE)
2912 sdev->sdev_state = new_state;
2913 else
2914 sdev->sdev_state = SDEV_CREATED;
2915 } else if (sdev->sdev_state != SDEV_CANCEL &&
2916 sdev->sdev_state != SDEV_OFFLINE)
2917 return -EINVAL;
2918
2919 if (q->mq_ops) {
2920 blk_mq_start_stopped_hw_queues(q, false);
2921 } else {
2922 spin_lock_irqsave(q->queue_lock, flags);
2923 blk_start_queue(q);
2924 spin_unlock_irqrestore(q->queue_lock, flags);
2925 }
2926
2927 return 0;
2928 }
2929 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2930
2931 static void
device_block(struct scsi_device * sdev,void * data)2932 device_block(struct scsi_device *sdev, void *data)
2933 {
2934 scsi_internal_device_block(sdev);
2935 }
2936
2937 static int
target_block(struct device * dev,void * data)2938 target_block(struct device *dev, void *data)
2939 {
2940 if (scsi_is_target_device(dev))
2941 starget_for_each_device(to_scsi_target(dev), NULL,
2942 device_block);
2943 return 0;
2944 }
2945
2946 void
scsi_target_block(struct device * dev)2947 scsi_target_block(struct device *dev)
2948 {
2949 if (scsi_is_target_device(dev))
2950 starget_for_each_device(to_scsi_target(dev), NULL,
2951 device_block);
2952 else
2953 device_for_each_child(dev, NULL, target_block);
2954 }
2955 EXPORT_SYMBOL_GPL(scsi_target_block);
2956
2957 static void
device_unblock(struct scsi_device * sdev,void * data)2958 device_unblock(struct scsi_device *sdev, void *data)
2959 {
2960 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2961 }
2962
2963 static int
target_unblock(struct device * dev,void * data)2964 target_unblock(struct device *dev, void *data)
2965 {
2966 if (scsi_is_target_device(dev))
2967 starget_for_each_device(to_scsi_target(dev), data,
2968 device_unblock);
2969 return 0;
2970 }
2971
2972 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2973 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2974 {
2975 if (scsi_is_target_device(dev))
2976 starget_for_each_device(to_scsi_target(dev), &new_state,
2977 device_unblock);
2978 else
2979 device_for_each_child(dev, &new_state, target_unblock);
2980 }
2981 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2982
2983 /**
2984 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2985 * @sgl: scatter-gather list
2986 * @sg_count: number of segments in sg
2987 * @offset: offset in bytes into sg, on return offset into the mapped area
2988 * @len: bytes to map, on return number of bytes mapped
2989 *
2990 * Returns virtual address of the start of the mapped page
2991 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2992 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2993 size_t *offset, size_t *len)
2994 {
2995 int i;
2996 size_t sg_len = 0, len_complete = 0;
2997 struct scatterlist *sg;
2998 struct page *page;
2999
3000 WARN_ON(!irqs_disabled());
3001
3002 for_each_sg(sgl, sg, sg_count, i) {
3003 len_complete = sg_len; /* Complete sg-entries */
3004 sg_len += sg->length;
3005 if (sg_len > *offset)
3006 break;
3007 }
3008
3009 if (unlikely(i == sg_count)) {
3010 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3011 "elements %d\n",
3012 __func__, sg_len, *offset, sg_count);
3013 WARN_ON(1);
3014 return NULL;
3015 }
3016
3017 /* Offset starting from the beginning of first page in this sg-entry */
3018 *offset = *offset - len_complete + sg->offset;
3019
3020 /* Assumption: contiguous pages can be accessed as "page + i" */
3021 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3022 *offset &= ~PAGE_MASK;
3023
3024 /* Bytes in this sg-entry from *offset to the end of the page */
3025 sg_len = PAGE_SIZE - *offset;
3026 if (*len > sg_len)
3027 *len = sg_len;
3028
3029 return kmap_atomic(page);
3030 }
3031 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3032
3033 /**
3034 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3035 * @virt: virtual address to be unmapped
3036 */
scsi_kunmap_atomic_sg(void * virt)3037 void scsi_kunmap_atomic_sg(void *virt)
3038 {
3039 kunmap_atomic(virt);
3040 }
3041 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3042
sdev_disable_disk_events(struct scsi_device * sdev)3043 void sdev_disable_disk_events(struct scsi_device *sdev)
3044 {
3045 atomic_inc(&sdev->disk_events_disable_depth);
3046 }
3047 EXPORT_SYMBOL(sdev_disable_disk_events);
3048
sdev_enable_disk_events(struct scsi_device * sdev)3049 void sdev_enable_disk_events(struct scsi_device *sdev)
3050 {
3051 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3052 return;
3053 atomic_dec(&sdev->disk_events_disable_depth);
3054 }
3055 EXPORT_SYMBOL(sdev_enable_disk_events);
3056
3057 /**
3058 * scsi_vpd_lun_id - return a unique device identification
3059 * @sdev: SCSI device
3060 * @id: buffer for the identification
3061 * @id_len: length of the buffer
3062 *
3063 * Copies a unique device identification into @id based
3064 * on the information in the VPD page 0x83 of the device.
3065 * The string will be formatted as a SCSI name string.
3066 *
3067 * Returns the length of the identification or error on failure.
3068 * If the identifier is longer than the supplied buffer the actual
3069 * identifier length is returned and the buffer is not zero-padded.
3070 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3071 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3072 {
3073 u8 cur_id_type = 0xff;
3074 u8 cur_id_size = 0;
3075 unsigned char *d, *cur_id_str;
3076 unsigned char __rcu *vpd_pg83;
3077 int id_size = -EINVAL;
3078
3079 rcu_read_lock();
3080 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3081 if (!vpd_pg83) {
3082 rcu_read_unlock();
3083 return -ENXIO;
3084 }
3085
3086 /*
3087 * Look for the correct descriptor.
3088 * Order of preference for lun descriptor:
3089 * - SCSI name string
3090 * - NAA IEEE Registered Extended
3091 * - EUI-64 based 16-byte
3092 * - EUI-64 based 12-byte
3093 * - NAA IEEE Registered
3094 * - NAA IEEE Extended
3095 * - T10 Vendor ID
3096 * as longer descriptors reduce the likelyhood
3097 * of identification clashes.
3098 */
3099
3100 /* The id string must be at least 20 bytes + terminating NULL byte */
3101 if (id_len < 21) {
3102 rcu_read_unlock();
3103 return -EINVAL;
3104 }
3105
3106 memset(id, 0, id_len);
3107 d = vpd_pg83 + 4;
3108 while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3109 /* Skip designators not referring to the LUN */
3110 if ((d[1] & 0x30) != 0x00)
3111 goto next_desig;
3112
3113 switch (d[1] & 0xf) {
3114 case 0x1:
3115 /* T10 Vendor ID */
3116 if (cur_id_size > d[3])
3117 break;
3118 /* Prefer anything */
3119 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3120 break;
3121 cur_id_size = d[3];
3122 if (cur_id_size + 4 > id_len)
3123 cur_id_size = id_len - 4;
3124 cur_id_str = d + 4;
3125 cur_id_type = d[1] & 0xf;
3126 id_size = snprintf(id, id_len, "t10.%*pE",
3127 cur_id_size, cur_id_str);
3128 break;
3129 case 0x2:
3130 /* EUI-64 */
3131 if (cur_id_size > d[3])
3132 break;
3133 /* Prefer NAA IEEE Registered Extended */
3134 if (cur_id_type == 0x3 &&
3135 cur_id_size == d[3])
3136 break;
3137 cur_id_size = d[3];
3138 cur_id_str = d + 4;
3139 cur_id_type = d[1] & 0xf;
3140 switch (cur_id_size) {
3141 case 8:
3142 id_size = snprintf(id, id_len,
3143 "eui.%8phN",
3144 cur_id_str);
3145 break;
3146 case 12:
3147 id_size = snprintf(id, id_len,
3148 "eui.%12phN",
3149 cur_id_str);
3150 break;
3151 case 16:
3152 id_size = snprintf(id, id_len,
3153 "eui.%16phN",
3154 cur_id_str);
3155 break;
3156 default:
3157 cur_id_size = 0;
3158 break;
3159 }
3160 break;
3161 case 0x3:
3162 /* NAA */
3163 if (cur_id_size > d[3])
3164 break;
3165 cur_id_size = d[3];
3166 cur_id_str = d + 4;
3167 cur_id_type = d[1] & 0xf;
3168 switch (cur_id_size) {
3169 case 8:
3170 id_size = snprintf(id, id_len,
3171 "naa.%8phN",
3172 cur_id_str);
3173 break;
3174 case 16:
3175 id_size = snprintf(id, id_len,
3176 "naa.%16phN",
3177 cur_id_str);
3178 break;
3179 default:
3180 cur_id_size = 0;
3181 break;
3182 }
3183 break;
3184 case 0x8:
3185 /* SCSI name string */
3186 if (cur_id_size + 4 > d[3])
3187 break;
3188 /* Prefer others for truncated descriptor */
3189 if (cur_id_size && d[3] > id_len)
3190 break;
3191 cur_id_size = id_size = d[3];
3192 cur_id_str = d + 4;
3193 cur_id_type = d[1] & 0xf;
3194 if (cur_id_size >= id_len)
3195 cur_id_size = id_len - 1;
3196 memcpy(id, cur_id_str, cur_id_size);
3197 /* Decrease priority for truncated descriptor */
3198 if (cur_id_size != id_size)
3199 cur_id_size = 6;
3200 break;
3201 default:
3202 break;
3203 }
3204 next_desig:
3205 d += d[3] + 4;
3206 }
3207 rcu_read_unlock();
3208
3209 return id_size;
3210 }
3211 EXPORT_SYMBOL(scsi_vpd_lun_id);
3212
3213 /*
3214 * scsi_vpd_tpg_id - return a target port group identifier
3215 * @sdev: SCSI device
3216 *
3217 * Returns the Target Port Group identifier from the information
3218 * froom VPD page 0x83 of the device.
3219 *
3220 * Returns the identifier or error on failure.
3221 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3222 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3223 {
3224 unsigned char *d;
3225 unsigned char __rcu *vpd_pg83;
3226 int group_id = -EAGAIN, rel_port = -1;
3227
3228 rcu_read_lock();
3229 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3230 if (!vpd_pg83) {
3231 rcu_read_unlock();
3232 return -ENXIO;
3233 }
3234
3235 d = sdev->vpd_pg83 + 4;
3236 while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3237 switch (d[1] & 0xf) {
3238 case 0x4:
3239 /* Relative target port */
3240 rel_port = get_unaligned_be16(&d[6]);
3241 break;
3242 case 0x5:
3243 /* Target port group */
3244 group_id = get_unaligned_be16(&d[6]);
3245 break;
3246 default:
3247 break;
3248 }
3249 d += d[3] + 4;
3250 }
3251 rcu_read_unlock();
3252
3253 if (group_id >= 0 && rel_id && rel_port != -1)
3254 *rel_id = rel_port;
3255
3256 return group_id;
3257 }
3258 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3259