• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25 
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43 
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55 
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65 
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static void transport_handle_queue_full(struct se_cmd *cmd,
68 		struct se_device *dev);
69 static int transport_put_cmd(struct se_cmd *cmd);
70 static void target_complete_ok_work(struct work_struct *work);
71 
init_se_kmem_caches(void)72 int init_se_kmem_caches(void)
73 {
74 	se_sess_cache = kmem_cache_create("se_sess_cache",
75 			sizeof(struct se_session), __alignof__(struct se_session),
76 			0, NULL);
77 	if (!se_sess_cache) {
78 		pr_err("kmem_cache_create() for struct se_session"
79 				" failed\n");
80 		goto out;
81 	}
82 	se_ua_cache = kmem_cache_create("se_ua_cache",
83 			sizeof(struct se_ua), __alignof__(struct se_ua),
84 			0, NULL);
85 	if (!se_ua_cache) {
86 		pr_err("kmem_cache_create() for struct se_ua failed\n");
87 		goto out_free_sess_cache;
88 	}
89 	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
90 			sizeof(struct t10_pr_registration),
91 			__alignof__(struct t10_pr_registration), 0, NULL);
92 	if (!t10_pr_reg_cache) {
93 		pr_err("kmem_cache_create() for struct t10_pr_registration"
94 				" failed\n");
95 		goto out_free_ua_cache;
96 	}
97 	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
98 			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
99 			0, NULL);
100 	if (!t10_alua_lu_gp_cache) {
101 		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102 				" failed\n");
103 		goto out_free_pr_reg_cache;
104 	}
105 	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 			sizeof(struct t10_alua_lu_gp_member),
107 			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 	if (!t10_alua_lu_gp_mem_cache) {
109 		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110 				"cache failed\n");
111 		goto out_free_lu_gp_cache;
112 	}
113 	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 			sizeof(struct t10_alua_tg_pt_gp),
115 			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 	if (!t10_alua_tg_pt_gp_cache) {
117 		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118 				"cache failed\n");
119 		goto out_free_lu_gp_mem_cache;
120 	}
121 	t10_alua_lba_map_cache = kmem_cache_create(
122 			"t10_alua_lba_map_cache",
123 			sizeof(struct t10_alua_lba_map),
124 			__alignof__(struct t10_alua_lba_map), 0, NULL);
125 	if (!t10_alua_lba_map_cache) {
126 		pr_err("kmem_cache_create() for t10_alua_lba_map_"
127 				"cache failed\n");
128 		goto out_free_tg_pt_gp_cache;
129 	}
130 	t10_alua_lba_map_mem_cache = kmem_cache_create(
131 			"t10_alua_lba_map_mem_cache",
132 			sizeof(struct t10_alua_lba_map_member),
133 			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
134 	if (!t10_alua_lba_map_mem_cache) {
135 		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
136 				"cache failed\n");
137 		goto out_free_lba_map_cache;
138 	}
139 
140 	target_completion_wq = alloc_workqueue("target_completion",
141 					       WQ_MEM_RECLAIM, 0);
142 	if (!target_completion_wq)
143 		goto out_free_lba_map_mem_cache;
144 
145 	return 0;
146 
147 out_free_lba_map_mem_cache:
148 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
149 out_free_lba_map_cache:
150 	kmem_cache_destroy(t10_alua_lba_map_cache);
151 out_free_tg_pt_gp_cache:
152 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
153 out_free_lu_gp_mem_cache:
154 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
155 out_free_lu_gp_cache:
156 	kmem_cache_destroy(t10_alua_lu_gp_cache);
157 out_free_pr_reg_cache:
158 	kmem_cache_destroy(t10_pr_reg_cache);
159 out_free_ua_cache:
160 	kmem_cache_destroy(se_ua_cache);
161 out_free_sess_cache:
162 	kmem_cache_destroy(se_sess_cache);
163 out:
164 	return -ENOMEM;
165 }
166 
release_se_kmem_caches(void)167 void release_se_kmem_caches(void)
168 {
169 	destroy_workqueue(target_completion_wq);
170 	kmem_cache_destroy(se_sess_cache);
171 	kmem_cache_destroy(se_ua_cache);
172 	kmem_cache_destroy(t10_pr_reg_cache);
173 	kmem_cache_destroy(t10_alua_lu_gp_cache);
174 	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
175 	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 	kmem_cache_destroy(t10_alua_lba_map_cache);
177 	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 }
179 
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock);
182 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 
184 /*
185  * Allocate a new row index for the entry type specified
186  */
scsi_get_new_index(scsi_index_t type)187 u32 scsi_get_new_index(scsi_index_t type)
188 {
189 	u32 new_index;
190 
191 	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192 
193 	spin_lock(&scsi_mib_index_lock);
194 	new_index = ++scsi_mib_index[type];
195 	spin_unlock(&scsi_mib_index_lock);
196 
197 	return new_index;
198 }
199 
transport_subsystem_check_init(void)200 void transport_subsystem_check_init(void)
201 {
202 	int ret;
203 	static int sub_api_initialized;
204 
205 	if (sub_api_initialized)
206 		return;
207 
208 	ret = request_module("target_core_iblock");
209 	if (ret != 0)
210 		pr_err("Unable to load target_core_iblock\n");
211 
212 	ret = request_module("target_core_file");
213 	if (ret != 0)
214 		pr_err("Unable to load target_core_file\n");
215 
216 	ret = request_module("target_core_pscsi");
217 	if (ret != 0)
218 		pr_err("Unable to load target_core_pscsi\n");
219 
220 	ret = request_module("target_core_user");
221 	if (ret != 0)
222 		pr_err("Unable to load target_core_user\n");
223 
224 	sub_api_initialized = 1;
225 }
226 
transport_init_session(enum target_prot_op sup_prot_ops)227 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 {
229 	struct se_session *se_sess;
230 
231 	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 	if (!se_sess) {
233 		pr_err("Unable to allocate struct se_session from"
234 				" se_sess_cache\n");
235 		return ERR_PTR(-ENOMEM);
236 	}
237 	INIT_LIST_HEAD(&se_sess->sess_list);
238 	INIT_LIST_HEAD(&se_sess->sess_acl_list);
239 	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240 	INIT_LIST_HEAD(&se_sess->sess_wait_list);
241 	spin_lock_init(&se_sess->sess_cmd_lock);
242 	se_sess->sup_prot_ops = sup_prot_ops;
243 
244 	return se_sess;
245 }
246 EXPORT_SYMBOL(transport_init_session);
247 
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)248 int transport_alloc_session_tags(struct se_session *se_sess,
249 			         unsigned int tag_num, unsigned int tag_size)
250 {
251 	int rc;
252 
253 	se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
254 					GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
255 	if (!se_sess->sess_cmd_map) {
256 		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
257 		if (!se_sess->sess_cmd_map) {
258 			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
259 			return -ENOMEM;
260 		}
261 	}
262 
263 	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
264 	if (rc < 0) {
265 		pr_err("Unable to init se_sess->sess_tag_pool,"
266 			" tag_num: %u\n", tag_num);
267 		kvfree(se_sess->sess_cmd_map);
268 		se_sess->sess_cmd_map = NULL;
269 		return -ENOMEM;
270 	}
271 
272 	return 0;
273 }
274 EXPORT_SYMBOL(transport_alloc_session_tags);
275 
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)276 struct se_session *transport_init_session_tags(unsigned int tag_num,
277 					       unsigned int tag_size,
278 					       enum target_prot_op sup_prot_ops)
279 {
280 	struct se_session *se_sess;
281 	int rc;
282 
283 	if (tag_num != 0 && !tag_size) {
284 		pr_err("init_session_tags called with percpu-ida tag_num:"
285 		       " %u, but zero tag_size\n", tag_num);
286 		return ERR_PTR(-EINVAL);
287 	}
288 	if (!tag_num && tag_size) {
289 		pr_err("init_session_tags called with percpu-ida tag_size:"
290 		       " %u, but zero tag_num\n", tag_size);
291 		return ERR_PTR(-EINVAL);
292 	}
293 
294 	se_sess = transport_init_session(sup_prot_ops);
295 	if (IS_ERR(se_sess))
296 		return se_sess;
297 
298 	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
299 	if (rc < 0) {
300 		transport_free_session(se_sess);
301 		return ERR_PTR(-ENOMEM);
302 	}
303 
304 	return se_sess;
305 }
306 EXPORT_SYMBOL(transport_init_session_tags);
307 
308 /*
309  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
310  */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)311 void __transport_register_session(
312 	struct se_portal_group *se_tpg,
313 	struct se_node_acl *se_nacl,
314 	struct se_session *se_sess,
315 	void *fabric_sess_ptr)
316 {
317 	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 	unsigned char buf[PR_REG_ISID_LEN];
319 
320 	se_sess->se_tpg = se_tpg;
321 	se_sess->fabric_sess_ptr = fabric_sess_ptr;
322 	/*
323 	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
324 	 *
325 	 * Only set for struct se_session's that will actually be moving I/O.
326 	 * eg: *NOT* discovery sessions.
327 	 */
328 	if (se_nacl) {
329 		/*
330 		 *
331 		 * Determine if fabric allows for T10-PI feature bits exposed to
332 		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
333 		 *
334 		 * If so, then always save prot_type on a per se_node_acl node
335 		 * basis and re-instate the previous sess_prot_type to avoid
336 		 * disabling PI from below any previously initiator side
337 		 * registered LUNs.
338 		 */
339 		if (se_nacl->saved_prot_type)
340 			se_sess->sess_prot_type = se_nacl->saved_prot_type;
341 		else if (tfo->tpg_check_prot_fabric_only)
342 			se_sess->sess_prot_type = se_nacl->saved_prot_type =
343 					tfo->tpg_check_prot_fabric_only(se_tpg);
344 		/*
345 		 * If the fabric module supports an ISID based TransportID,
346 		 * save this value in binary from the fabric I_T Nexus now.
347 		 */
348 		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349 			memset(&buf[0], 0, PR_REG_ISID_LEN);
350 			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 					&buf[0], PR_REG_ISID_LEN);
352 			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
353 		}
354 
355 		spin_lock_irq(&se_nacl->nacl_sess_lock);
356 		/*
357 		 * The se_nacl->nacl_sess pointer will be set to the
358 		 * last active I_T Nexus for each struct se_node_acl.
359 		 */
360 		se_nacl->nacl_sess = se_sess;
361 
362 		list_add_tail(&se_sess->sess_acl_list,
363 			      &se_nacl->acl_sess_list);
364 		spin_unlock_irq(&se_nacl->nacl_sess_lock);
365 	}
366 	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
367 
368 	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369 		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
370 }
371 EXPORT_SYMBOL(__transport_register_session);
372 
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)373 void transport_register_session(
374 	struct se_portal_group *se_tpg,
375 	struct se_node_acl *se_nacl,
376 	struct se_session *se_sess,
377 	void *fabric_sess_ptr)
378 {
379 	unsigned long flags;
380 
381 	spin_lock_irqsave(&se_tpg->session_lock, flags);
382 	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
384 }
385 EXPORT_SYMBOL(transport_register_session);
386 
387 struct se_session *
target_alloc_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))388 target_alloc_session(struct se_portal_group *tpg,
389 		     unsigned int tag_num, unsigned int tag_size,
390 		     enum target_prot_op prot_op,
391 		     const char *initiatorname, void *private,
392 		     int (*callback)(struct se_portal_group *,
393 				     struct se_session *, void *))
394 {
395 	struct se_session *sess;
396 
397 	/*
398 	 * If the fabric driver is using percpu-ida based pre allocation
399 	 * of I/O descriptor tags, go ahead and perform that setup now..
400 	 */
401 	if (tag_num != 0)
402 		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
403 	else
404 		sess = transport_init_session(prot_op);
405 
406 	if (IS_ERR(sess))
407 		return sess;
408 
409 	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
410 					(unsigned char *)initiatorname);
411 	if (!sess->se_node_acl) {
412 		transport_free_session(sess);
413 		return ERR_PTR(-EACCES);
414 	}
415 	/*
416 	 * Go ahead and perform any remaining fabric setup that is
417 	 * required before transport_register_session().
418 	 */
419 	if (callback != NULL) {
420 		int rc = callback(tpg, sess, private);
421 		if (rc) {
422 			transport_free_session(sess);
423 			return ERR_PTR(rc);
424 		}
425 	}
426 
427 	transport_register_session(tpg, sess->se_node_acl, sess, private);
428 	return sess;
429 }
430 EXPORT_SYMBOL(target_alloc_session);
431 
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)432 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
433 {
434 	struct se_session *se_sess;
435 	ssize_t len = 0;
436 
437 	spin_lock_bh(&se_tpg->session_lock);
438 	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
439 		if (!se_sess->se_node_acl)
440 			continue;
441 		if (!se_sess->se_node_acl->dynamic_node_acl)
442 			continue;
443 		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
444 			break;
445 
446 		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
447 				se_sess->se_node_acl->initiatorname);
448 		len += 1; /* Include NULL terminator */
449 	}
450 	spin_unlock_bh(&se_tpg->session_lock);
451 
452 	return len;
453 }
454 EXPORT_SYMBOL(target_show_dynamic_sessions);
455 
target_complete_nacl(struct kref * kref)456 static void target_complete_nacl(struct kref *kref)
457 {
458 	struct se_node_acl *nacl = container_of(kref,
459 				struct se_node_acl, acl_kref);
460 	struct se_portal_group *se_tpg = nacl->se_tpg;
461 
462 	if (!nacl->dynamic_stop) {
463 		complete(&nacl->acl_free_comp);
464 		return;
465 	}
466 
467 	mutex_lock(&se_tpg->acl_node_mutex);
468 	list_del_init(&nacl->acl_list);
469 	mutex_unlock(&se_tpg->acl_node_mutex);
470 
471 	core_tpg_wait_for_nacl_pr_ref(nacl);
472 	core_free_device_list_for_node(nacl, se_tpg);
473 	kfree(nacl);
474 }
475 
target_put_nacl(struct se_node_acl * nacl)476 void target_put_nacl(struct se_node_acl *nacl)
477 {
478 	kref_put(&nacl->acl_kref, target_complete_nacl);
479 }
480 EXPORT_SYMBOL(target_put_nacl);
481 
transport_deregister_session_configfs(struct se_session * se_sess)482 void transport_deregister_session_configfs(struct se_session *se_sess)
483 {
484 	struct se_node_acl *se_nacl;
485 	unsigned long flags;
486 	/*
487 	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
488 	 */
489 	se_nacl = se_sess->se_node_acl;
490 	if (se_nacl) {
491 		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
492 		if (!list_empty(&se_sess->sess_acl_list))
493 			list_del_init(&se_sess->sess_acl_list);
494 		/*
495 		 * If the session list is empty, then clear the pointer.
496 		 * Otherwise, set the struct se_session pointer from the tail
497 		 * element of the per struct se_node_acl active session list.
498 		 */
499 		if (list_empty(&se_nacl->acl_sess_list))
500 			se_nacl->nacl_sess = NULL;
501 		else {
502 			se_nacl->nacl_sess = container_of(
503 					se_nacl->acl_sess_list.prev,
504 					struct se_session, sess_acl_list);
505 		}
506 		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
507 	}
508 }
509 EXPORT_SYMBOL(transport_deregister_session_configfs);
510 
transport_free_session(struct se_session * se_sess)511 void transport_free_session(struct se_session *se_sess)
512 {
513 	struct se_node_acl *se_nacl = se_sess->se_node_acl;
514 
515 	/*
516 	 * Drop the se_node_acl->nacl_kref obtained from within
517 	 * core_tpg_get_initiator_node_acl().
518 	 */
519 	if (se_nacl) {
520 		struct se_portal_group *se_tpg = se_nacl->se_tpg;
521 		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
522 		unsigned long flags;
523 
524 		se_sess->se_node_acl = NULL;
525 
526 		/*
527 		 * Also determine if we need to drop the extra ->cmd_kref if
528 		 * it had been previously dynamically generated, and
529 		 * the endpoint is not caching dynamic ACLs.
530 		 */
531 		mutex_lock(&se_tpg->acl_node_mutex);
532 		if (se_nacl->dynamic_node_acl &&
533 		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
534 			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
535 			if (list_empty(&se_nacl->acl_sess_list))
536 				se_nacl->dynamic_stop = true;
537 			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
538 
539 			if (se_nacl->dynamic_stop)
540 				list_del_init(&se_nacl->acl_list);
541 		}
542 		mutex_unlock(&se_tpg->acl_node_mutex);
543 
544 		if (se_nacl->dynamic_stop)
545 			target_put_nacl(se_nacl);
546 
547 		target_put_nacl(se_nacl);
548 	}
549 	if (se_sess->sess_cmd_map) {
550 		percpu_ida_destroy(&se_sess->sess_tag_pool);
551 		kvfree(se_sess->sess_cmd_map);
552 	}
553 	kmem_cache_free(se_sess_cache, se_sess);
554 }
555 EXPORT_SYMBOL(transport_free_session);
556 
transport_deregister_session(struct se_session * se_sess)557 void transport_deregister_session(struct se_session *se_sess)
558 {
559 	struct se_portal_group *se_tpg = se_sess->se_tpg;
560 	unsigned long flags;
561 
562 	if (!se_tpg) {
563 		transport_free_session(se_sess);
564 		return;
565 	}
566 
567 	spin_lock_irqsave(&se_tpg->session_lock, flags);
568 	list_del(&se_sess->sess_list);
569 	se_sess->se_tpg = NULL;
570 	se_sess->fabric_sess_ptr = NULL;
571 	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
572 
573 	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574 		se_tpg->se_tpg_tfo->get_fabric_name());
575 	/*
576 	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577 	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578 	 * removal context from within transport_free_session() code.
579 	 *
580 	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
581 	 * to release all remaining generate_node_acl=1 created ACL resources.
582 	 */
583 
584 	transport_free_session(se_sess);
585 }
586 EXPORT_SYMBOL(transport_deregister_session);
587 
target_remove_from_state_list(struct se_cmd * cmd)588 static void target_remove_from_state_list(struct se_cmd *cmd)
589 {
590 	struct se_device *dev = cmd->se_dev;
591 	unsigned long flags;
592 
593 	if (!dev)
594 		return;
595 
596 	if (cmd->transport_state & CMD_T_BUSY)
597 		return;
598 
599 	spin_lock_irqsave(&dev->execute_task_lock, flags);
600 	if (cmd->state_active) {
601 		list_del(&cmd->state_list);
602 		cmd->state_active = false;
603 	}
604 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
605 }
606 
transport_cmd_check_stop(struct se_cmd * cmd,bool remove_from_lists,bool write_pending)607 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
608 				    bool write_pending)
609 {
610 	unsigned long flags;
611 
612 	if (remove_from_lists) {
613 		target_remove_from_state_list(cmd);
614 
615 		/*
616 		 * Clear struct se_cmd->se_lun before the handoff to FE.
617 		 */
618 		cmd->se_lun = NULL;
619 	}
620 
621 	spin_lock_irqsave(&cmd->t_state_lock, flags);
622 	if (write_pending)
623 		cmd->t_state = TRANSPORT_WRITE_PENDING;
624 
625 	/*
626 	 * Determine if frontend context caller is requesting the stopping of
627 	 * this command for frontend exceptions.
628 	 */
629 	if (cmd->transport_state & CMD_T_STOP) {
630 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
631 			__func__, __LINE__, cmd->tag);
632 
633 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
634 
635 		complete_all(&cmd->t_transport_stop_comp);
636 		return 1;
637 	}
638 
639 	cmd->transport_state &= ~CMD_T_ACTIVE;
640 	if (remove_from_lists) {
641 		/*
642 		 * Some fabric modules like tcm_loop can release
643 		 * their internally allocated I/O reference now and
644 		 * struct se_cmd now.
645 		 *
646 		 * Fabric modules are expected to return '1' here if the
647 		 * se_cmd being passed is released at this point,
648 		 * or zero if not being released.
649 		 */
650 		if (cmd->se_tfo->check_stop_free != NULL) {
651 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
652 			return cmd->se_tfo->check_stop_free(cmd);
653 		}
654 	}
655 
656 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
657 	return 0;
658 }
659 
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)660 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
661 {
662 	return transport_cmd_check_stop(cmd, true, false);
663 }
664 
transport_lun_remove_cmd(struct se_cmd * cmd)665 static void transport_lun_remove_cmd(struct se_cmd *cmd)
666 {
667 	struct se_lun *lun = cmd->se_lun;
668 
669 	if (!lun)
670 		return;
671 
672 	if (cmpxchg(&cmd->lun_ref_active, true, false))
673 		percpu_ref_put(&lun->lun_ref);
674 }
675 
transport_cmd_finish_abort(struct se_cmd * cmd,int remove)676 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
677 {
678 	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
679 	int ret = 0;
680 
681 	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
682 		transport_lun_remove_cmd(cmd);
683 	/*
684 	 * Allow the fabric driver to unmap any resources before
685 	 * releasing the descriptor via TFO->release_cmd()
686 	 */
687 	if (remove)
688 		cmd->se_tfo->aborted_task(cmd);
689 
690 	if (transport_cmd_check_stop_to_fabric(cmd))
691 		return 1;
692 	if (remove && ack_kref)
693 		ret = transport_put_cmd(cmd);
694 
695 	return ret;
696 }
697 
target_complete_failure_work(struct work_struct * work)698 static void target_complete_failure_work(struct work_struct *work)
699 {
700 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
701 
702 	transport_generic_request_failure(cmd,
703 			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
704 }
705 
706 /*
707  * Used when asking transport to copy Sense Data from the underlying
708  * Linux/SCSI struct scsi_cmnd
709  */
transport_get_sense_buffer(struct se_cmd * cmd)710 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
711 {
712 	struct se_device *dev = cmd->se_dev;
713 
714 	WARN_ON(!cmd->se_lun);
715 
716 	if (!dev)
717 		return NULL;
718 
719 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
720 		return NULL;
721 
722 	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
723 
724 	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
725 		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
726 	return cmd->sense_buffer;
727 }
728 
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)729 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
730 {
731 	struct se_device *dev = cmd->se_dev;
732 	int success = scsi_status == GOOD;
733 	unsigned long flags;
734 
735 	cmd->scsi_status = scsi_status;
736 
737 
738 	spin_lock_irqsave(&cmd->t_state_lock, flags);
739 	cmd->transport_state &= ~CMD_T_BUSY;
740 
741 	if (dev && dev->transport->transport_complete) {
742 		dev->transport->transport_complete(cmd,
743 				cmd->t_data_sg,
744 				transport_get_sense_buffer(cmd));
745 		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
746 			success = 1;
747 	}
748 
749 	/*
750 	 * Check for case where an explicit ABORT_TASK has been received
751 	 * and transport_wait_for_tasks() will be waiting for completion..
752 	 */
753 	if (cmd->transport_state & CMD_T_ABORTED ||
754 	    cmd->transport_state & CMD_T_STOP) {
755 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
756 		/*
757 		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
758 		 * release se_device->caw_sem obtained by sbc_compare_and_write()
759 		 * since target_complete_ok_work() or target_complete_failure_work()
760 		 * won't be called to invoke the normal CAW completion callbacks.
761 		 */
762 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
763 			up(&dev->caw_sem);
764 		}
765 		complete_all(&cmd->t_transport_stop_comp);
766 		return;
767 	} else if (!success) {
768 		INIT_WORK(&cmd->work, target_complete_failure_work);
769 	} else {
770 		INIT_WORK(&cmd->work, target_complete_ok_work);
771 	}
772 
773 	cmd->t_state = TRANSPORT_COMPLETE;
774 	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
775 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
776 
777 	if (cmd->se_cmd_flags & SCF_USE_CPUID)
778 		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
779 	else
780 		queue_work(target_completion_wq, &cmd->work);
781 }
782 EXPORT_SYMBOL(target_complete_cmd);
783 
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)784 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
785 {
786 	if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
787 		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
788 			cmd->residual_count += cmd->data_length - length;
789 		} else {
790 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
791 			cmd->residual_count = cmd->data_length - length;
792 		}
793 
794 		cmd->data_length = length;
795 	}
796 
797 	target_complete_cmd(cmd, scsi_status);
798 }
799 EXPORT_SYMBOL(target_complete_cmd_with_length);
800 
target_add_to_state_list(struct se_cmd * cmd)801 static void target_add_to_state_list(struct se_cmd *cmd)
802 {
803 	struct se_device *dev = cmd->se_dev;
804 	unsigned long flags;
805 
806 	spin_lock_irqsave(&dev->execute_task_lock, flags);
807 	if (!cmd->state_active) {
808 		list_add_tail(&cmd->state_list, &dev->state_list);
809 		cmd->state_active = true;
810 	}
811 	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
812 }
813 
814 /*
815  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
816  */
817 static void transport_write_pending_qf(struct se_cmd *cmd);
818 static void transport_complete_qf(struct se_cmd *cmd);
819 
target_qf_do_work(struct work_struct * work)820 void target_qf_do_work(struct work_struct *work)
821 {
822 	struct se_device *dev = container_of(work, struct se_device,
823 					qf_work_queue);
824 	LIST_HEAD(qf_cmd_list);
825 	struct se_cmd *cmd, *cmd_tmp;
826 
827 	spin_lock_irq(&dev->qf_cmd_lock);
828 	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
829 	spin_unlock_irq(&dev->qf_cmd_lock);
830 
831 	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
832 		list_del(&cmd->se_qf_node);
833 		atomic_dec_mb(&dev->dev_qf_count);
834 
835 		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
836 			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
837 			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
838 			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
839 			: "UNKNOWN");
840 
841 		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
842 			transport_write_pending_qf(cmd);
843 		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
844 			transport_complete_qf(cmd);
845 	}
846 }
847 
transport_dump_cmd_direction(struct se_cmd * cmd)848 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
849 {
850 	switch (cmd->data_direction) {
851 	case DMA_NONE:
852 		return "NONE";
853 	case DMA_FROM_DEVICE:
854 		return "READ";
855 	case DMA_TO_DEVICE:
856 		return "WRITE";
857 	case DMA_BIDIRECTIONAL:
858 		return "BIDI";
859 	default:
860 		break;
861 	}
862 
863 	return "UNKNOWN";
864 }
865 
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)866 void transport_dump_dev_state(
867 	struct se_device *dev,
868 	char *b,
869 	int *bl)
870 {
871 	*bl += sprintf(b + *bl, "Status: ");
872 	if (dev->export_count)
873 		*bl += sprintf(b + *bl, "ACTIVATED");
874 	else
875 		*bl += sprintf(b + *bl, "DEACTIVATED");
876 
877 	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
878 	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
879 		dev->dev_attrib.block_size,
880 		dev->dev_attrib.hw_max_sectors);
881 	*bl += sprintf(b + *bl, "        ");
882 }
883 
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)884 void transport_dump_vpd_proto_id(
885 	struct t10_vpd *vpd,
886 	unsigned char *p_buf,
887 	int p_buf_len)
888 {
889 	unsigned char buf[VPD_TMP_BUF_SIZE];
890 	int len;
891 
892 	memset(buf, 0, VPD_TMP_BUF_SIZE);
893 	len = sprintf(buf, "T10 VPD Protocol Identifier: ");
894 
895 	switch (vpd->protocol_identifier) {
896 	case 0x00:
897 		sprintf(buf+len, "Fibre Channel\n");
898 		break;
899 	case 0x10:
900 		sprintf(buf+len, "Parallel SCSI\n");
901 		break;
902 	case 0x20:
903 		sprintf(buf+len, "SSA\n");
904 		break;
905 	case 0x30:
906 		sprintf(buf+len, "IEEE 1394\n");
907 		break;
908 	case 0x40:
909 		sprintf(buf+len, "SCSI Remote Direct Memory Access"
910 				" Protocol\n");
911 		break;
912 	case 0x50:
913 		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
914 		break;
915 	case 0x60:
916 		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
917 		break;
918 	case 0x70:
919 		sprintf(buf+len, "Automation/Drive Interface Transport"
920 				" Protocol\n");
921 		break;
922 	case 0x80:
923 		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
924 		break;
925 	default:
926 		sprintf(buf+len, "Unknown 0x%02x\n",
927 				vpd->protocol_identifier);
928 		break;
929 	}
930 
931 	if (p_buf)
932 		strncpy(p_buf, buf, p_buf_len);
933 	else
934 		pr_debug("%s", buf);
935 }
936 
937 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)938 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
939 {
940 	/*
941 	 * Check if the Protocol Identifier Valid (PIV) bit is set..
942 	 *
943 	 * from spc3r23.pdf section 7.5.1
944 	 */
945 	 if (page_83[1] & 0x80) {
946 		vpd->protocol_identifier = (page_83[0] & 0xf0);
947 		vpd->protocol_identifier_set = 1;
948 		transport_dump_vpd_proto_id(vpd, NULL, 0);
949 	}
950 }
951 EXPORT_SYMBOL(transport_set_vpd_proto_id);
952 
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)953 int transport_dump_vpd_assoc(
954 	struct t10_vpd *vpd,
955 	unsigned char *p_buf,
956 	int p_buf_len)
957 {
958 	unsigned char buf[VPD_TMP_BUF_SIZE];
959 	int ret = 0;
960 	int len;
961 
962 	memset(buf, 0, VPD_TMP_BUF_SIZE);
963 	len = sprintf(buf, "T10 VPD Identifier Association: ");
964 
965 	switch (vpd->association) {
966 	case 0x00:
967 		sprintf(buf+len, "addressed logical unit\n");
968 		break;
969 	case 0x10:
970 		sprintf(buf+len, "target port\n");
971 		break;
972 	case 0x20:
973 		sprintf(buf+len, "SCSI target device\n");
974 		break;
975 	default:
976 		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
977 		ret = -EINVAL;
978 		break;
979 	}
980 
981 	if (p_buf)
982 		strncpy(p_buf, buf, p_buf_len);
983 	else
984 		pr_debug("%s", buf);
985 
986 	return ret;
987 }
988 
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)989 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
990 {
991 	/*
992 	 * The VPD identification association..
993 	 *
994 	 * from spc3r23.pdf Section 7.6.3.1 Table 297
995 	 */
996 	vpd->association = (page_83[1] & 0x30);
997 	return transport_dump_vpd_assoc(vpd, NULL, 0);
998 }
999 EXPORT_SYMBOL(transport_set_vpd_assoc);
1000 
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1001 int transport_dump_vpd_ident_type(
1002 	struct t10_vpd *vpd,
1003 	unsigned char *p_buf,
1004 	int p_buf_len)
1005 {
1006 	unsigned char buf[VPD_TMP_BUF_SIZE];
1007 	int ret = 0;
1008 	int len;
1009 
1010 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1011 	len = sprintf(buf, "T10 VPD Identifier Type: ");
1012 
1013 	switch (vpd->device_identifier_type) {
1014 	case 0x00:
1015 		sprintf(buf+len, "Vendor specific\n");
1016 		break;
1017 	case 0x01:
1018 		sprintf(buf+len, "T10 Vendor ID based\n");
1019 		break;
1020 	case 0x02:
1021 		sprintf(buf+len, "EUI-64 based\n");
1022 		break;
1023 	case 0x03:
1024 		sprintf(buf+len, "NAA\n");
1025 		break;
1026 	case 0x04:
1027 		sprintf(buf+len, "Relative target port identifier\n");
1028 		break;
1029 	case 0x08:
1030 		sprintf(buf+len, "SCSI name string\n");
1031 		break;
1032 	default:
1033 		sprintf(buf+len, "Unsupported: 0x%02x\n",
1034 				vpd->device_identifier_type);
1035 		ret = -EINVAL;
1036 		break;
1037 	}
1038 
1039 	if (p_buf) {
1040 		if (p_buf_len < strlen(buf)+1)
1041 			return -EINVAL;
1042 		strncpy(p_buf, buf, p_buf_len);
1043 	} else {
1044 		pr_debug("%s", buf);
1045 	}
1046 
1047 	return ret;
1048 }
1049 
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1050 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1051 {
1052 	/*
1053 	 * The VPD identifier type..
1054 	 *
1055 	 * from spc3r23.pdf Section 7.6.3.1 Table 298
1056 	 */
1057 	vpd->device_identifier_type = (page_83[1] & 0x0f);
1058 	return transport_dump_vpd_ident_type(vpd, NULL, 0);
1059 }
1060 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1061 
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1062 int transport_dump_vpd_ident(
1063 	struct t10_vpd *vpd,
1064 	unsigned char *p_buf,
1065 	int p_buf_len)
1066 {
1067 	unsigned char buf[VPD_TMP_BUF_SIZE];
1068 	int ret = 0;
1069 
1070 	memset(buf, 0, VPD_TMP_BUF_SIZE);
1071 
1072 	switch (vpd->device_identifier_code_set) {
1073 	case 0x01: /* Binary */
1074 		snprintf(buf, sizeof(buf),
1075 			"T10 VPD Binary Device Identifier: %s\n",
1076 			&vpd->device_identifier[0]);
1077 		break;
1078 	case 0x02: /* ASCII */
1079 		snprintf(buf, sizeof(buf),
1080 			"T10 VPD ASCII Device Identifier: %s\n",
1081 			&vpd->device_identifier[0]);
1082 		break;
1083 	case 0x03: /* UTF-8 */
1084 		snprintf(buf, sizeof(buf),
1085 			"T10 VPD UTF-8 Device Identifier: %s\n",
1086 			&vpd->device_identifier[0]);
1087 		break;
1088 	default:
1089 		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1090 			" 0x%02x", vpd->device_identifier_code_set);
1091 		ret = -EINVAL;
1092 		break;
1093 	}
1094 
1095 	if (p_buf)
1096 		strncpy(p_buf, buf, p_buf_len);
1097 	else
1098 		pr_debug("%s", buf);
1099 
1100 	return ret;
1101 }
1102 
1103 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1104 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1105 {
1106 	static const char hex_str[] = "0123456789abcdef";
1107 	int j = 0, i = 4; /* offset to start of the identifier */
1108 
1109 	/*
1110 	 * The VPD Code Set (encoding)
1111 	 *
1112 	 * from spc3r23.pdf Section 7.6.3.1 Table 296
1113 	 */
1114 	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1115 	switch (vpd->device_identifier_code_set) {
1116 	case 0x01: /* Binary */
1117 		vpd->device_identifier[j++] =
1118 				hex_str[vpd->device_identifier_type];
1119 		while (i < (4 + page_83[3])) {
1120 			vpd->device_identifier[j++] =
1121 				hex_str[(page_83[i] & 0xf0) >> 4];
1122 			vpd->device_identifier[j++] =
1123 				hex_str[page_83[i] & 0x0f];
1124 			i++;
1125 		}
1126 		break;
1127 	case 0x02: /* ASCII */
1128 	case 0x03: /* UTF-8 */
1129 		while (i < (4 + page_83[3]))
1130 			vpd->device_identifier[j++] = page_83[i++];
1131 		break;
1132 	default:
1133 		break;
1134 	}
1135 
1136 	return transport_dump_vpd_ident(vpd, NULL, 0);
1137 }
1138 EXPORT_SYMBOL(transport_set_vpd_ident);
1139 
1140 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1141 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1142 			       unsigned int size)
1143 {
1144 	u32 mtl;
1145 
1146 	if (!cmd->se_tfo->max_data_sg_nents)
1147 		return TCM_NO_SENSE;
1148 	/*
1149 	 * Check if fabric enforced maximum SGL entries per I/O descriptor
1150 	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1151 	 * residual_count and reduce original cmd->data_length to maximum
1152 	 * length based on single PAGE_SIZE entry scatter-lists.
1153 	 */
1154 	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1155 	if (cmd->data_length > mtl) {
1156 		/*
1157 		 * If an existing CDB overflow is present, calculate new residual
1158 		 * based on CDB size minus fabric maximum transfer length.
1159 		 *
1160 		 * If an existing CDB underflow is present, calculate new residual
1161 		 * based on original cmd->data_length minus fabric maximum transfer
1162 		 * length.
1163 		 *
1164 		 * Otherwise, set the underflow residual based on cmd->data_length
1165 		 * minus fabric maximum transfer length.
1166 		 */
1167 		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1168 			cmd->residual_count = (size - mtl);
1169 		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1170 			u32 orig_dl = size + cmd->residual_count;
1171 			cmd->residual_count = (orig_dl - mtl);
1172 		} else {
1173 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1174 			cmd->residual_count = (cmd->data_length - mtl);
1175 		}
1176 		cmd->data_length = mtl;
1177 		/*
1178 		 * Reset sbc_check_prot() calculated protection payload
1179 		 * length based upon the new smaller MTL.
1180 		 */
1181 		if (cmd->prot_length) {
1182 			u32 sectors = (mtl / dev->dev_attrib.block_size);
1183 			cmd->prot_length = dev->prot_length * sectors;
1184 		}
1185 	}
1186 	return TCM_NO_SENSE;
1187 }
1188 
1189 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1190 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1191 {
1192 	struct se_device *dev = cmd->se_dev;
1193 
1194 	if (cmd->unknown_data_length) {
1195 		cmd->data_length = size;
1196 	} else if (size != cmd->data_length) {
1197 		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1198 			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
1199 			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1200 				cmd->data_length, size, cmd->t_task_cdb[0]);
1201 
1202 		if (cmd->data_direction == DMA_TO_DEVICE) {
1203 			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1204 				pr_err_ratelimited("Rejecting underflow/overflow"
1205 						   " for WRITE data CDB\n");
1206 				return TCM_INVALID_CDB_FIELD;
1207 			}
1208 			/*
1209 			 * Some fabric drivers like iscsi-target still expect to
1210 			 * always reject overflow writes.  Reject this case until
1211 			 * full fabric driver level support for overflow writes
1212 			 * is introduced tree-wide.
1213 			 */
1214 			if (size > cmd->data_length) {
1215 				pr_err_ratelimited("Rejecting overflow for"
1216 						   " WRITE control CDB\n");
1217 				return TCM_INVALID_CDB_FIELD;
1218 			}
1219 		}
1220 		/*
1221 		 * Reject READ_* or WRITE_* with overflow/underflow for
1222 		 * type SCF_SCSI_DATA_CDB.
1223 		 */
1224 		if (dev->dev_attrib.block_size != 512)  {
1225 			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1226 				" CDB on non 512-byte sector setup subsystem"
1227 				" plugin: %s\n", dev->transport->name);
1228 			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1229 			return TCM_INVALID_CDB_FIELD;
1230 		}
1231 		/*
1232 		 * For the overflow case keep the existing fabric provided
1233 		 * ->data_length.  Otherwise for the underflow case, reset
1234 		 * ->data_length to the smaller SCSI expected data transfer
1235 		 * length.
1236 		 */
1237 		if (size > cmd->data_length) {
1238 			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1239 			cmd->residual_count = (size - cmd->data_length);
1240 		} else {
1241 			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1242 			cmd->residual_count = (cmd->data_length - size);
1243 			cmd->data_length = size;
1244 		}
1245 	}
1246 
1247 	return target_check_max_data_sg_nents(cmd, dev, size);
1248 
1249 }
1250 
1251 /*
1252  * Used by fabric modules containing a local struct se_cmd within their
1253  * fabric dependent per I/O descriptor.
1254  *
1255  * Preserves the value of @cmd->tag.
1256  */
transport_init_se_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer)1257 void transport_init_se_cmd(
1258 	struct se_cmd *cmd,
1259 	const struct target_core_fabric_ops *tfo,
1260 	struct se_session *se_sess,
1261 	u32 data_length,
1262 	int data_direction,
1263 	int task_attr,
1264 	unsigned char *sense_buffer)
1265 {
1266 	INIT_LIST_HEAD(&cmd->se_delayed_node);
1267 	INIT_LIST_HEAD(&cmd->se_qf_node);
1268 	INIT_LIST_HEAD(&cmd->se_cmd_list);
1269 	INIT_LIST_HEAD(&cmd->state_list);
1270 	init_completion(&cmd->t_transport_stop_comp);
1271 	init_completion(&cmd->cmd_wait_comp);
1272 	spin_lock_init(&cmd->t_state_lock);
1273 	kref_init(&cmd->cmd_kref);
1274 	cmd->transport_state = CMD_T_DEV_ACTIVE;
1275 
1276 	cmd->se_tfo = tfo;
1277 	cmd->se_sess = se_sess;
1278 	cmd->data_length = data_length;
1279 	cmd->data_direction = data_direction;
1280 	cmd->sam_task_attr = task_attr;
1281 	cmd->sense_buffer = sense_buffer;
1282 
1283 	cmd->state_active = false;
1284 }
1285 EXPORT_SYMBOL(transport_init_se_cmd);
1286 
1287 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1288 transport_check_alloc_task_attr(struct se_cmd *cmd)
1289 {
1290 	struct se_device *dev = cmd->se_dev;
1291 
1292 	/*
1293 	 * Check if SAM Task Attribute emulation is enabled for this
1294 	 * struct se_device storage object
1295 	 */
1296 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1297 		return 0;
1298 
1299 	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1300 		pr_debug("SAM Task Attribute ACA"
1301 			" emulation is not supported\n");
1302 		return TCM_INVALID_CDB_FIELD;
1303 	}
1304 
1305 	return 0;
1306 }
1307 
1308 sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd * cmd,unsigned char * cdb)1309 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1310 {
1311 	struct se_device *dev = cmd->se_dev;
1312 	sense_reason_t ret;
1313 
1314 	/*
1315 	 * Ensure that the received CDB is less than the max (252 + 8) bytes
1316 	 * for VARIABLE_LENGTH_CMD
1317 	 */
1318 	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1319 		pr_err("Received SCSI CDB with command_size: %d that"
1320 			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1321 			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1322 		return TCM_INVALID_CDB_FIELD;
1323 	}
1324 	/*
1325 	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1326 	 * allocate the additional extended CDB buffer now..  Otherwise
1327 	 * setup the pointer from __t_task_cdb to t_task_cdb.
1328 	 */
1329 	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1330 		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1331 						GFP_KERNEL);
1332 		if (!cmd->t_task_cdb) {
1333 			pr_err("Unable to allocate cmd->t_task_cdb"
1334 				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1335 				scsi_command_size(cdb),
1336 				(unsigned long)sizeof(cmd->__t_task_cdb));
1337 			return TCM_OUT_OF_RESOURCES;
1338 		}
1339 	} else
1340 		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1341 	/*
1342 	 * Copy the original CDB into cmd->
1343 	 */
1344 	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1345 
1346 	trace_target_sequencer_start(cmd);
1347 
1348 	ret = dev->transport->parse_cdb(cmd);
1349 	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1350 		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1351 				    cmd->se_tfo->get_fabric_name(),
1352 				    cmd->se_sess->se_node_acl->initiatorname,
1353 				    cmd->t_task_cdb[0]);
1354 	if (ret)
1355 		return ret;
1356 
1357 	ret = transport_check_alloc_task_attr(cmd);
1358 	if (ret)
1359 		return ret;
1360 
1361 	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1362 	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1363 	return 0;
1364 }
1365 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1366 
1367 /*
1368  * Used by fabric module frontends to queue tasks directly.
1369  * May only be used from process context.
1370  */
transport_handle_cdb_direct(struct se_cmd * cmd)1371 int transport_handle_cdb_direct(
1372 	struct se_cmd *cmd)
1373 {
1374 	sense_reason_t ret;
1375 
1376 	if (!cmd->se_lun) {
1377 		dump_stack();
1378 		pr_err("cmd->se_lun is NULL\n");
1379 		return -EINVAL;
1380 	}
1381 	if (in_interrupt()) {
1382 		dump_stack();
1383 		pr_err("transport_generic_handle_cdb cannot be called"
1384 				" from interrupt context\n");
1385 		return -EINVAL;
1386 	}
1387 	/*
1388 	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1389 	 * outstanding descriptors are handled correctly during shutdown via
1390 	 * transport_wait_for_tasks()
1391 	 *
1392 	 * Also, we don't take cmd->t_state_lock here as we only expect
1393 	 * this to be called for initial descriptor submission.
1394 	 */
1395 	cmd->t_state = TRANSPORT_NEW_CMD;
1396 	cmd->transport_state |= CMD_T_ACTIVE;
1397 
1398 	/*
1399 	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1400 	 * so follow TRANSPORT_NEW_CMD processing thread context usage
1401 	 * and call transport_generic_request_failure() if necessary..
1402 	 */
1403 	ret = transport_generic_new_cmd(cmd);
1404 	if (ret)
1405 		transport_generic_request_failure(cmd, ret);
1406 	return 0;
1407 }
1408 EXPORT_SYMBOL(transport_handle_cdb_direct);
1409 
1410 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1411 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1412 		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1413 {
1414 	if (!sgl || !sgl_count)
1415 		return 0;
1416 
1417 	/*
1418 	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1419 	 * scatterlists already have been set to follow what the fabric
1420 	 * passes for the original expected data transfer length.
1421 	 */
1422 	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1423 		pr_warn("Rejecting SCSI DATA overflow for fabric using"
1424 			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1425 		return TCM_INVALID_CDB_FIELD;
1426 	}
1427 
1428 	cmd->t_data_sg = sgl;
1429 	cmd->t_data_nents = sgl_count;
1430 	cmd->t_bidi_data_sg = sgl_bidi;
1431 	cmd->t_bidi_data_nents = sgl_bidi_count;
1432 
1433 	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1434 	return 0;
1435 }
1436 
1437 /*
1438  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1439  * 			 se_cmd + use pre-allocated SGL memory.
1440  *
1441  * @se_cmd: command descriptor to submit
1442  * @se_sess: associated se_sess for endpoint
1443  * @cdb: pointer to SCSI CDB
1444  * @sense: pointer to SCSI sense buffer
1445  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1446  * @data_length: fabric expected data transfer length
1447  * @task_addr: SAM task attribute
1448  * @data_dir: DMA data direction
1449  * @flags: flags for command submission from target_sc_flags_tables
1450  * @sgl: struct scatterlist memory for unidirectional mapping
1451  * @sgl_count: scatterlist count for unidirectional mapping
1452  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1453  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1454  * @sgl_prot: struct scatterlist memory protection information
1455  * @sgl_prot_count: scatterlist count for protection information
1456  *
1457  * Task tags are supported if the caller has set @se_cmd->tag.
1458  *
1459  * Returns non zero to signal active I/O shutdown failure.  All other
1460  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1461  * but still return zero here.
1462  *
1463  * This may only be called from process context, and also currently
1464  * assumes internal allocation of fabric payload buffer by target-core.
1465  */
target_submit_cmd_map_sgls(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count)1466 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1467 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1468 		u32 data_length, int task_attr, int data_dir, int flags,
1469 		struct scatterlist *sgl, u32 sgl_count,
1470 		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1471 		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1472 {
1473 	struct se_portal_group *se_tpg;
1474 	sense_reason_t rc;
1475 	int ret;
1476 
1477 	se_tpg = se_sess->se_tpg;
1478 	BUG_ON(!se_tpg);
1479 	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1480 	BUG_ON(in_interrupt());
1481 	/*
1482 	 * Initialize se_cmd for target operation.  From this point
1483 	 * exceptions are handled by sending exception status via
1484 	 * target_core_fabric_ops->queue_status() callback
1485 	 */
1486 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1487 				data_length, data_dir, task_attr, sense);
1488 
1489 	if (flags & TARGET_SCF_USE_CPUID)
1490 		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1491 	else
1492 		se_cmd->cpuid = WORK_CPU_UNBOUND;
1493 
1494 	if (flags & TARGET_SCF_UNKNOWN_SIZE)
1495 		se_cmd->unknown_data_length = 1;
1496 	/*
1497 	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1498 	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
1499 	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1500 	 * kref_put() to happen during fabric packet acknowledgement.
1501 	 */
1502 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1503 	if (ret)
1504 		return ret;
1505 	/*
1506 	 * Signal bidirectional data payloads to target-core
1507 	 */
1508 	if (flags & TARGET_SCF_BIDI_OP)
1509 		se_cmd->se_cmd_flags |= SCF_BIDI;
1510 	/*
1511 	 * Locate se_lun pointer and attach it to struct se_cmd
1512 	 */
1513 	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1514 	if (rc) {
1515 		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1516 		target_put_sess_cmd(se_cmd);
1517 		return 0;
1518 	}
1519 
1520 	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1521 	if (rc != 0) {
1522 		transport_generic_request_failure(se_cmd, rc);
1523 		return 0;
1524 	}
1525 
1526 	/*
1527 	 * Save pointers for SGLs containing protection information,
1528 	 * if present.
1529 	 */
1530 	if (sgl_prot_count) {
1531 		se_cmd->t_prot_sg = sgl_prot;
1532 		se_cmd->t_prot_nents = sgl_prot_count;
1533 		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1534 	}
1535 
1536 	/*
1537 	 * When a non zero sgl_count has been passed perform SGL passthrough
1538 	 * mapping for pre-allocated fabric memory instead of having target
1539 	 * core perform an internal SGL allocation..
1540 	 */
1541 	if (sgl_count != 0) {
1542 		BUG_ON(!sgl);
1543 
1544 		/*
1545 		 * A work-around for tcm_loop as some userspace code via
1546 		 * scsi-generic do not memset their associated read buffers,
1547 		 * so go ahead and do that here for type non-data CDBs.  Also
1548 		 * note that this is currently guaranteed to be a single SGL
1549 		 * for this case by target core in target_setup_cmd_from_cdb()
1550 		 * -> transport_generic_cmd_sequencer().
1551 		 */
1552 		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1553 		     se_cmd->data_direction == DMA_FROM_DEVICE) {
1554 			unsigned char *buf = NULL;
1555 
1556 			if (sgl)
1557 				buf = kmap(sg_page(sgl)) + sgl->offset;
1558 
1559 			if (buf) {
1560 				memset(buf, 0, sgl->length);
1561 				kunmap(sg_page(sgl));
1562 			}
1563 		}
1564 
1565 		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1566 				sgl_bidi, sgl_bidi_count);
1567 		if (rc != 0) {
1568 			transport_generic_request_failure(se_cmd, rc);
1569 			return 0;
1570 		}
1571 	}
1572 
1573 	/*
1574 	 * Check if we need to delay processing because of ALUA
1575 	 * Active/NonOptimized primary access state..
1576 	 */
1577 	core_alua_check_nonop_delay(se_cmd);
1578 
1579 	transport_handle_cdb_direct(se_cmd);
1580 	return 0;
1581 }
1582 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1583 
1584 /*
1585  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1586  *
1587  * @se_cmd: command descriptor to submit
1588  * @se_sess: associated se_sess for endpoint
1589  * @cdb: pointer to SCSI CDB
1590  * @sense: pointer to SCSI sense buffer
1591  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1592  * @data_length: fabric expected data transfer length
1593  * @task_addr: SAM task attribute
1594  * @data_dir: DMA data direction
1595  * @flags: flags for command submission from target_sc_flags_tables
1596  *
1597  * Task tags are supported if the caller has set @se_cmd->tag.
1598  *
1599  * Returns non zero to signal active I/O shutdown failure.  All other
1600  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1601  * but still return zero here.
1602  *
1603  * This may only be called from process context, and also currently
1604  * assumes internal allocation of fabric payload buffer by target-core.
1605  *
1606  * It also assumes interal target core SGL memory allocation.
1607  */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1608 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1609 		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1610 		u32 data_length, int task_attr, int data_dir, int flags)
1611 {
1612 	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1613 			unpacked_lun, data_length, task_attr, data_dir,
1614 			flags, NULL, 0, NULL, 0, NULL, 0);
1615 }
1616 EXPORT_SYMBOL(target_submit_cmd);
1617 
target_complete_tmr_failure(struct work_struct * work)1618 static void target_complete_tmr_failure(struct work_struct *work)
1619 {
1620 	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1621 
1622 	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1623 	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1624 
1625 	transport_cmd_check_stop_to_fabric(se_cmd);
1626 }
1627 
1628 /**
1629  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1630  *                     for TMR CDBs
1631  *
1632  * @se_cmd: command descriptor to submit
1633  * @se_sess: associated se_sess for endpoint
1634  * @sense: pointer to SCSI sense buffer
1635  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1636  * @fabric_context: fabric context for TMR req
1637  * @tm_type: Type of TM request
1638  * @gfp: gfp type for caller
1639  * @tag: referenced task tag for TMR_ABORT_TASK
1640  * @flags: submit cmd flags
1641  *
1642  * Callable from all contexts.
1643  **/
1644 
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1645 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1646 		unsigned char *sense, u64 unpacked_lun,
1647 		void *fabric_tmr_ptr, unsigned char tm_type,
1648 		gfp_t gfp, u64 tag, int flags)
1649 {
1650 	struct se_portal_group *se_tpg;
1651 	int ret;
1652 
1653 	se_tpg = se_sess->se_tpg;
1654 	BUG_ON(!se_tpg);
1655 
1656 	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1657 			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1658 	/*
1659 	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1660 	 * allocation failure.
1661 	 */
1662 	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1663 	if (ret < 0)
1664 		return -ENOMEM;
1665 
1666 	if (tm_type == TMR_ABORT_TASK)
1667 		se_cmd->se_tmr_req->ref_task_tag = tag;
1668 
1669 	/* See target_submit_cmd for commentary */
1670 	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1671 	if (ret) {
1672 		core_tmr_release_req(se_cmd->se_tmr_req);
1673 		return ret;
1674 	}
1675 
1676 	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1677 	if (ret) {
1678 		/*
1679 		 * For callback during failure handling, push this work off
1680 		 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1681 		 */
1682 		INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1683 		schedule_work(&se_cmd->work);
1684 		return 0;
1685 	}
1686 	transport_generic_handle_tmr(se_cmd);
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL(target_submit_tmr);
1690 
1691 /*
1692  * Handle SAM-esque emulation for generic transport request failures.
1693  */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1694 void transport_generic_request_failure(struct se_cmd *cmd,
1695 		sense_reason_t sense_reason)
1696 {
1697 	int ret = 0, post_ret = 0;
1698 
1699 	pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1700 		" CDB: 0x%02x\n", cmd, cmd->tag, cmd->t_task_cdb[0]);
1701 	pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1702 		cmd->se_tfo->get_cmd_state(cmd),
1703 		cmd->t_state, sense_reason);
1704 	pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1705 		(cmd->transport_state & CMD_T_ACTIVE) != 0,
1706 		(cmd->transport_state & CMD_T_STOP) != 0,
1707 		(cmd->transport_state & CMD_T_SENT) != 0);
1708 
1709 	/*
1710 	 * For SAM Task Attribute emulation for failed struct se_cmd
1711 	 */
1712 	transport_complete_task_attr(cmd);
1713 	/*
1714 	 * Handle special case for COMPARE_AND_WRITE failure, where the
1715 	 * callback is expected to drop the per device ->caw_sem.
1716 	 */
1717 	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1718 	     cmd->transport_complete_callback)
1719 		cmd->transport_complete_callback(cmd, false, &post_ret);
1720 
1721 	switch (sense_reason) {
1722 	case TCM_NON_EXISTENT_LUN:
1723 	case TCM_UNSUPPORTED_SCSI_OPCODE:
1724 	case TCM_INVALID_CDB_FIELD:
1725 	case TCM_INVALID_PARAMETER_LIST:
1726 	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1727 	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1728 	case TCM_UNKNOWN_MODE_PAGE:
1729 	case TCM_WRITE_PROTECTED:
1730 	case TCM_ADDRESS_OUT_OF_RANGE:
1731 	case TCM_CHECK_CONDITION_ABORT_CMD:
1732 	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1733 	case TCM_CHECK_CONDITION_NOT_READY:
1734 	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1735 	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1736 	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1737 	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1738 		break;
1739 	case TCM_OUT_OF_RESOURCES:
1740 		sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1741 		break;
1742 	case TCM_RESERVATION_CONFLICT:
1743 		/*
1744 		 * No SENSE Data payload for this case, set SCSI Status
1745 		 * and queue the response to $FABRIC_MOD.
1746 		 *
1747 		 * Uses linux/include/scsi/scsi.h SAM status codes defs
1748 		 */
1749 		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1750 		/*
1751 		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1752 		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1753 		 * CONFLICT STATUS.
1754 		 *
1755 		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1756 		 */
1757 		if (cmd->se_sess &&
1758 		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1759 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1760 					       cmd->orig_fe_lun, 0x2C,
1761 					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1762 		}
1763 		trace_target_cmd_complete(cmd);
1764 		ret = cmd->se_tfo->queue_status(cmd);
1765 		if (ret == -EAGAIN || ret == -ENOMEM)
1766 			goto queue_full;
1767 		goto check_stop;
1768 	default:
1769 		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1770 			cmd->t_task_cdb[0], sense_reason);
1771 		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1772 		break;
1773 	}
1774 
1775 	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1776 	if (ret == -EAGAIN || ret == -ENOMEM)
1777 		goto queue_full;
1778 
1779 check_stop:
1780 	transport_lun_remove_cmd(cmd);
1781 	transport_cmd_check_stop_to_fabric(cmd);
1782 	return;
1783 
1784 queue_full:
1785 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1786 	transport_handle_queue_full(cmd, cmd->se_dev);
1787 }
1788 EXPORT_SYMBOL(transport_generic_request_failure);
1789 
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)1790 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1791 {
1792 	sense_reason_t ret;
1793 
1794 	if (!cmd->execute_cmd) {
1795 		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1796 		goto err;
1797 	}
1798 	if (do_checks) {
1799 		/*
1800 		 * Check for an existing UNIT ATTENTION condition after
1801 		 * target_handle_task_attr() has done SAM task attr
1802 		 * checking, and possibly have already defered execution
1803 		 * out to target_restart_delayed_cmds() context.
1804 		 */
1805 		ret = target_scsi3_ua_check(cmd);
1806 		if (ret)
1807 			goto err;
1808 
1809 		ret = target_alua_state_check(cmd);
1810 		if (ret)
1811 			goto err;
1812 
1813 		ret = target_check_reservation(cmd);
1814 		if (ret) {
1815 			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1816 			goto err;
1817 		}
1818 	}
1819 
1820 	ret = cmd->execute_cmd(cmd);
1821 	if (!ret)
1822 		return;
1823 err:
1824 	spin_lock_irq(&cmd->t_state_lock);
1825 	cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1826 	spin_unlock_irq(&cmd->t_state_lock);
1827 
1828 	transport_generic_request_failure(cmd, ret);
1829 }
1830 
target_write_prot_action(struct se_cmd * cmd)1831 static int target_write_prot_action(struct se_cmd *cmd)
1832 {
1833 	u32 sectors;
1834 	/*
1835 	 * Perform WRITE_INSERT of PI using software emulation when backend
1836 	 * device has PI enabled, if the transport has not already generated
1837 	 * PI using hardware WRITE_INSERT offload.
1838 	 */
1839 	switch (cmd->prot_op) {
1840 	case TARGET_PROT_DOUT_INSERT:
1841 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1842 			sbc_dif_generate(cmd);
1843 		break;
1844 	case TARGET_PROT_DOUT_STRIP:
1845 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1846 			break;
1847 
1848 		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1849 		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1850 					     sectors, 0, cmd->t_prot_sg, 0);
1851 		if (unlikely(cmd->pi_err)) {
1852 			spin_lock_irq(&cmd->t_state_lock);
1853 			cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1854 			spin_unlock_irq(&cmd->t_state_lock);
1855 			transport_generic_request_failure(cmd, cmd->pi_err);
1856 			return -1;
1857 		}
1858 		break;
1859 	default:
1860 		break;
1861 	}
1862 
1863 	return 0;
1864 }
1865 
target_handle_task_attr(struct se_cmd * cmd)1866 static bool target_handle_task_attr(struct se_cmd *cmd)
1867 {
1868 	struct se_device *dev = cmd->se_dev;
1869 
1870 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1871 		return false;
1872 
1873 	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1874 
1875 	/*
1876 	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1877 	 * to allow the passed struct se_cmd list of tasks to the front of the list.
1878 	 */
1879 	switch (cmd->sam_task_attr) {
1880 	case TCM_HEAD_TAG:
1881 		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1882 			 cmd->t_task_cdb[0]);
1883 		return false;
1884 	case TCM_ORDERED_TAG:
1885 		atomic_inc_mb(&dev->dev_ordered_sync);
1886 
1887 		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1888 			 cmd->t_task_cdb[0]);
1889 
1890 		/*
1891 		 * Execute an ORDERED command if no other older commands
1892 		 * exist that need to be completed first.
1893 		 */
1894 		if (!atomic_read(&dev->simple_cmds))
1895 			return false;
1896 		break;
1897 	default:
1898 		/*
1899 		 * For SIMPLE and UNTAGGED Task Attribute commands
1900 		 */
1901 		atomic_inc_mb(&dev->simple_cmds);
1902 		break;
1903 	}
1904 
1905 	if (atomic_read(&dev->dev_ordered_sync) == 0)
1906 		return false;
1907 
1908 	spin_lock(&dev->delayed_cmd_lock);
1909 	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1910 	spin_unlock(&dev->delayed_cmd_lock);
1911 
1912 	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1913 		cmd->t_task_cdb[0], cmd->sam_task_attr);
1914 	return true;
1915 }
1916 
1917 static int __transport_check_aborted_status(struct se_cmd *, int);
1918 
target_execute_cmd(struct se_cmd * cmd)1919 void target_execute_cmd(struct se_cmd *cmd)
1920 {
1921 	/*
1922 	 * Determine if frontend context caller is requesting the stopping of
1923 	 * this command for frontend exceptions.
1924 	 *
1925 	 * If the received CDB has aleady been aborted stop processing it here.
1926 	 */
1927 	spin_lock_irq(&cmd->t_state_lock);
1928 	if (__transport_check_aborted_status(cmd, 1)) {
1929 		spin_unlock_irq(&cmd->t_state_lock);
1930 		return;
1931 	}
1932 	if (cmd->transport_state & CMD_T_STOP) {
1933 		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1934 			__func__, __LINE__, cmd->tag);
1935 
1936 		spin_unlock_irq(&cmd->t_state_lock);
1937 		complete_all(&cmd->t_transport_stop_comp);
1938 		return;
1939 	}
1940 
1941 	cmd->t_state = TRANSPORT_PROCESSING;
1942 	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1943 	cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1944 	spin_unlock_irq(&cmd->t_state_lock);
1945 
1946 	if (target_write_prot_action(cmd))
1947 		return;
1948 
1949 	if (target_handle_task_attr(cmd)) {
1950 		spin_lock_irq(&cmd->t_state_lock);
1951 		cmd->transport_state &= ~(CMD_T_BUSY | CMD_T_SENT);
1952 		spin_unlock_irq(&cmd->t_state_lock);
1953 		return;
1954 	}
1955 
1956 	__target_execute_cmd(cmd, true);
1957 }
1958 EXPORT_SYMBOL(target_execute_cmd);
1959 
1960 /*
1961  * Process all commands up to the last received ORDERED task attribute which
1962  * requires another blocking boundary
1963  */
target_restart_delayed_cmds(struct se_device * dev)1964 static void target_restart_delayed_cmds(struct se_device *dev)
1965 {
1966 	for (;;) {
1967 		struct se_cmd *cmd;
1968 
1969 		spin_lock(&dev->delayed_cmd_lock);
1970 		if (list_empty(&dev->delayed_cmd_list)) {
1971 			spin_unlock(&dev->delayed_cmd_lock);
1972 			break;
1973 		}
1974 
1975 		cmd = list_entry(dev->delayed_cmd_list.next,
1976 				 struct se_cmd, se_delayed_node);
1977 		list_del(&cmd->se_delayed_node);
1978 		spin_unlock(&dev->delayed_cmd_lock);
1979 
1980 		cmd->transport_state |= CMD_T_SENT;
1981 
1982 		__target_execute_cmd(cmd, true);
1983 
1984 		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
1985 			break;
1986 	}
1987 }
1988 
1989 /*
1990  * Called from I/O completion to determine which dormant/delayed
1991  * and ordered cmds need to have their tasks added to the execution queue.
1992  */
transport_complete_task_attr(struct se_cmd * cmd)1993 static void transport_complete_task_attr(struct se_cmd *cmd)
1994 {
1995 	struct se_device *dev = cmd->se_dev;
1996 
1997 	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1998 		return;
1999 
2000 	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2001 		goto restart;
2002 
2003 	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2004 		atomic_dec_mb(&dev->simple_cmds);
2005 		dev->dev_cur_ordered_id++;
2006 		pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
2007 			 dev->dev_cur_ordered_id);
2008 	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2009 		dev->dev_cur_ordered_id++;
2010 		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2011 			 dev->dev_cur_ordered_id);
2012 	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2013 		atomic_dec_mb(&dev->dev_ordered_sync);
2014 
2015 		dev->dev_cur_ordered_id++;
2016 		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2017 			 dev->dev_cur_ordered_id);
2018 	}
2019 	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2020 
2021 restart:
2022 	target_restart_delayed_cmds(dev);
2023 }
2024 
transport_complete_qf(struct se_cmd * cmd)2025 static void transport_complete_qf(struct se_cmd *cmd)
2026 {
2027 	int ret = 0;
2028 
2029 	transport_complete_task_attr(cmd);
2030 
2031 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2032 		trace_target_cmd_complete(cmd);
2033 		ret = cmd->se_tfo->queue_status(cmd);
2034 		goto out;
2035 	}
2036 
2037 	switch (cmd->data_direction) {
2038 	case DMA_FROM_DEVICE:
2039 		if (cmd->scsi_status)
2040 			goto queue_status;
2041 
2042 		trace_target_cmd_complete(cmd);
2043 		ret = cmd->se_tfo->queue_data_in(cmd);
2044 		break;
2045 	case DMA_TO_DEVICE:
2046 		if (cmd->se_cmd_flags & SCF_BIDI) {
2047 			ret = cmd->se_tfo->queue_data_in(cmd);
2048 			break;
2049 		}
2050 		/* Fall through for DMA_TO_DEVICE */
2051 	case DMA_NONE:
2052 queue_status:
2053 		trace_target_cmd_complete(cmd);
2054 		ret = cmd->se_tfo->queue_status(cmd);
2055 		break;
2056 	default:
2057 		break;
2058 	}
2059 
2060 out:
2061 	if (ret < 0) {
2062 		transport_handle_queue_full(cmd, cmd->se_dev);
2063 		return;
2064 	}
2065 	transport_lun_remove_cmd(cmd);
2066 	transport_cmd_check_stop_to_fabric(cmd);
2067 }
2068 
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev)2069 static void transport_handle_queue_full(
2070 	struct se_cmd *cmd,
2071 	struct se_device *dev)
2072 {
2073 	spin_lock_irq(&dev->qf_cmd_lock);
2074 	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2075 	atomic_inc_mb(&dev->dev_qf_count);
2076 	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2077 
2078 	schedule_work(&cmd->se_dev->qf_work_queue);
2079 }
2080 
target_read_prot_action(struct se_cmd * cmd)2081 static bool target_read_prot_action(struct se_cmd *cmd)
2082 {
2083 	switch (cmd->prot_op) {
2084 	case TARGET_PROT_DIN_STRIP:
2085 		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2086 			u32 sectors = cmd->data_length >>
2087 				  ilog2(cmd->se_dev->dev_attrib.block_size);
2088 
2089 			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2090 						     sectors, 0, cmd->t_prot_sg,
2091 						     0);
2092 			if (cmd->pi_err)
2093 				return true;
2094 		}
2095 		break;
2096 	case TARGET_PROT_DIN_INSERT:
2097 		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2098 			break;
2099 
2100 		sbc_dif_generate(cmd);
2101 		break;
2102 	default:
2103 		break;
2104 	}
2105 
2106 	return false;
2107 }
2108 
target_complete_ok_work(struct work_struct * work)2109 static void target_complete_ok_work(struct work_struct *work)
2110 {
2111 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2112 	int ret;
2113 
2114 	/*
2115 	 * Check if we need to move delayed/dormant tasks from cmds on the
2116 	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2117 	 * Attribute.
2118 	 */
2119 	transport_complete_task_attr(cmd);
2120 
2121 	/*
2122 	 * Check to schedule QUEUE_FULL work, or execute an existing
2123 	 * cmd->transport_qf_callback()
2124 	 */
2125 	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2126 		schedule_work(&cmd->se_dev->qf_work_queue);
2127 
2128 	/*
2129 	 * Check if we need to send a sense buffer from
2130 	 * the struct se_cmd in question.
2131 	 */
2132 	if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2133 		WARN_ON(!cmd->scsi_status);
2134 		ret = transport_send_check_condition_and_sense(
2135 					cmd, 0, 1);
2136 		if (ret == -EAGAIN || ret == -ENOMEM)
2137 			goto queue_full;
2138 
2139 		transport_lun_remove_cmd(cmd);
2140 		transport_cmd_check_stop_to_fabric(cmd);
2141 		return;
2142 	}
2143 	/*
2144 	 * Check for a callback, used by amongst other things
2145 	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2146 	 */
2147 	if (cmd->transport_complete_callback) {
2148 		sense_reason_t rc;
2149 		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2150 		bool zero_dl = !(cmd->data_length);
2151 		int post_ret = 0;
2152 
2153 		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2154 		if (!rc && !post_ret) {
2155 			if (caw && zero_dl)
2156 				goto queue_rsp;
2157 
2158 			return;
2159 		} else if (rc) {
2160 			ret = transport_send_check_condition_and_sense(cmd,
2161 						rc, 0);
2162 			if (ret == -EAGAIN || ret == -ENOMEM)
2163 				goto queue_full;
2164 
2165 			transport_lun_remove_cmd(cmd);
2166 			transport_cmd_check_stop_to_fabric(cmd);
2167 			return;
2168 		}
2169 	}
2170 
2171 queue_rsp:
2172 	switch (cmd->data_direction) {
2173 	case DMA_FROM_DEVICE:
2174 		if (cmd->scsi_status)
2175 			goto queue_status;
2176 
2177 		atomic_long_add(cmd->data_length,
2178 				&cmd->se_lun->lun_stats.tx_data_octets);
2179 		/*
2180 		 * Perform READ_STRIP of PI using software emulation when
2181 		 * backend had PI enabled, if the transport will not be
2182 		 * performing hardware READ_STRIP offload.
2183 		 */
2184 		if (target_read_prot_action(cmd)) {
2185 			ret = transport_send_check_condition_and_sense(cmd,
2186 						cmd->pi_err, 0);
2187 			if (ret == -EAGAIN || ret == -ENOMEM)
2188 				goto queue_full;
2189 
2190 			transport_lun_remove_cmd(cmd);
2191 			transport_cmd_check_stop_to_fabric(cmd);
2192 			return;
2193 		}
2194 
2195 		trace_target_cmd_complete(cmd);
2196 		ret = cmd->se_tfo->queue_data_in(cmd);
2197 		if (ret == -EAGAIN || ret == -ENOMEM)
2198 			goto queue_full;
2199 		break;
2200 	case DMA_TO_DEVICE:
2201 		atomic_long_add(cmd->data_length,
2202 				&cmd->se_lun->lun_stats.rx_data_octets);
2203 		/*
2204 		 * Check if we need to send READ payload for BIDI-COMMAND
2205 		 */
2206 		if (cmd->se_cmd_flags & SCF_BIDI) {
2207 			atomic_long_add(cmd->data_length,
2208 					&cmd->se_lun->lun_stats.tx_data_octets);
2209 			ret = cmd->se_tfo->queue_data_in(cmd);
2210 			if (ret == -EAGAIN || ret == -ENOMEM)
2211 				goto queue_full;
2212 			break;
2213 		}
2214 		/* Fall through for DMA_TO_DEVICE */
2215 	case DMA_NONE:
2216 queue_status:
2217 		trace_target_cmd_complete(cmd);
2218 		ret = cmd->se_tfo->queue_status(cmd);
2219 		if (ret == -EAGAIN || ret == -ENOMEM)
2220 			goto queue_full;
2221 		break;
2222 	default:
2223 		break;
2224 	}
2225 
2226 	transport_lun_remove_cmd(cmd);
2227 	transport_cmd_check_stop_to_fabric(cmd);
2228 	return;
2229 
2230 queue_full:
2231 	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2232 		" data_direction: %d\n", cmd, cmd->data_direction);
2233 	cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2234 	transport_handle_queue_full(cmd, cmd->se_dev);
2235 }
2236 
target_free_sgl(struct scatterlist * sgl,int nents)2237 void target_free_sgl(struct scatterlist *sgl, int nents)
2238 {
2239 	struct scatterlist *sg;
2240 	int count;
2241 
2242 	for_each_sg(sgl, sg, nents, count)
2243 		__free_page(sg_page(sg));
2244 
2245 	kfree(sgl);
2246 }
2247 EXPORT_SYMBOL(target_free_sgl);
2248 
transport_reset_sgl_orig(struct se_cmd * cmd)2249 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2250 {
2251 	/*
2252 	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2253 	 * emulation, and free + reset pointers if necessary..
2254 	 */
2255 	if (!cmd->t_data_sg_orig)
2256 		return;
2257 
2258 	kfree(cmd->t_data_sg);
2259 	cmd->t_data_sg = cmd->t_data_sg_orig;
2260 	cmd->t_data_sg_orig = NULL;
2261 	cmd->t_data_nents = cmd->t_data_nents_orig;
2262 	cmd->t_data_nents_orig = 0;
2263 }
2264 
transport_free_pages(struct se_cmd * cmd)2265 static inline void transport_free_pages(struct se_cmd *cmd)
2266 {
2267 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2268 		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2269 		cmd->t_prot_sg = NULL;
2270 		cmd->t_prot_nents = 0;
2271 	}
2272 
2273 	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2274 		/*
2275 		 * Release special case READ buffer payload required for
2276 		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2277 		 */
2278 		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2279 			target_free_sgl(cmd->t_bidi_data_sg,
2280 					   cmd->t_bidi_data_nents);
2281 			cmd->t_bidi_data_sg = NULL;
2282 			cmd->t_bidi_data_nents = 0;
2283 		}
2284 		transport_reset_sgl_orig(cmd);
2285 		return;
2286 	}
2287 	transport_reset_sgl_orig(cmd);
2288 
2289 	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2290 	cmd->t_data_sg = NULL;
2291 	cmd->t_data_nents = 0;
2292 
2293 	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2294 	cmd->t_bidi_data_sg = NULL;
2295 	cmd->t_bidi_data_nents = 0;
2296 }
2297 
2298 /**
2299  * transport_put_cmd - release a reference to a command
2300  * @cmd:       command to release
2301  *
2302  * This routine releases our reference to the command and frees it if possible.
2303  */
transport_put_cmd(struct se_cmd * cmd)2304 static int transport_put_cmd(struct se_cmd *cmd)
2305 {
2306 	BUG_ON(!cmd->se_tfo);
2307 	/*
2308 	 * If this cmd has been setup with target_get_sess_cmd(), drop
2309 	 * the kref and call ->release_cmd() in kref callback.
2310 	 */
2311 	return target_put_sess_cmd(cmd);
2312 }
2313 
transport_kmap_data_sg(struct se_cmd * cmd)2314 void *transport_kmap_data_sg(struct se_cmd *cmd)
2315 {
2316 	struct scatterlist *sg = cmd->t_data_sg;
2317 	struct page **pages;
2318 	int i;
2319 
2320 	/*
2321 	 * We need to take into account a possible offset here for fabrics like
2322 	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2323 	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2324 	 */
2325 	if (!cmd->t_data_nents)
2326 		return NULL;
2327 
2328 	BUG_ON(!sg);
2329 	if (cmd->t_data_nents == 1)
2330 		return kmap(sg_page(sg)) + sg->offset;
2331 
2332 	/* >1 page. use vmap */
2333 	pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2334 	if (!pages)
2335 		return NULL;
2336 
2337 	/* convert sg[] to pages[] */
2338 	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2339 		pages[i] = sg_page(sg);
2340 	}
2341 
2342 	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2343 	kfree(pages);
2344 	if (!cmd->t_data_vmap)
2345 		return NULL;
2346 
2347 	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2348 }
2349 EXPORT_SYMBOL(transport_kmap_data_sg);
2350 
transport_kunmap_data_sg(struct se_cmd * cmd)2351 void transport_kunmap_data_sg(struct se_cmd *cmd)
2352 {
2353 	if (!cmd->t_data_nents) {
2354 		return;
2355 	} else if (cmd->t_data_nents == 1) {
2356 		kunmap(sg_page(cmd->t_data_sg));
2357 		return;
2358 	}
2359 
2360 	vunmap(cmd->t_data_vmap);
2361 	cmd->t_data_vmap = NULL;
2362 }
2363 EXPORT_SYMBOL(transport_kunmap_data_sg);
2364 
2365 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2366 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2367 		 bool zero_page, bool chainable)
2368 {
2369 	struct scatterlist *sg;
2370 	struct page *page;
2371 	gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2372 	unsigned int nalloc, nent;
2373 	int i = 0;
2374 
2375 	nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2376 	if (chainable)
2377 		nalloc++;
2378 	sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2379 	if (!sg)
2380 		return -ENOMEM;
2381 
2382 	sg_init_table(sg, nalloc);
2383 
2384 	while (length) {
2385 		u32 page_len = min_t(u32, length, PAGE_SIZE);
2386 		page = alloc_page(GFP_KERNEL | zero_flag);
2387 		if (!page)
2388 			goto out;
2389 
2390 		sg_set_page(&sg[i], page, page_len, 0);
2391 		length -= page_len;
2392 		i++;
2393 	}
2394 	*sgl = sg;
2395 	*nents = nent;
2396 	return 0;
2397 
2398 out:
2399 	while (i > 0) {
2400 		i--;
2401 		__free_page(sg_page(&sg[i]));
2402 	}
2403 	kfree(sg);
2404 	return -ENOMEM;
2405 }
2406 EXPORT_SYMBOL(target_alloc_sgl);
2407 
2408 /*
2409  * Allocate any required resources to execute the command.  For writes we
2410  * might not have the payload yet, so notify the fabric via a call to
2411  * ->write_pending instead. Otherwise place it on the execution queue.
2412  */
2413 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2414 transport_generic_new_cmd(struct se_cmd *cmd)
2415 {
2416 	int ret = 0;
2417 	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2418 
2419 	if (cmd->prot_op != TARGET_PROT_NORMAL &&
2420 	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2421 		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2422 				       cmd->prot_length, true, false);
2423 		if (ret < 0)
2424 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2425 	}
2426 
2427 	/*
2428 	 * Determine is the TCM fabric module has already allocated physical
2429 	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2430 	 * beforehand.
2431 	 */
2432 	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2433 	    cmd->data_length) {
2434 
2435 		if ((cmd->se_cmd_flags & SCF_BIDI) ||
2436 		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2437 			u32 bidi_length;
2438 
2439 			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2440 				bidi_length = cmd->t_task_nolb *
2441 					      cmd->se_dev->dev_attrib.block_size;
2442 			else
2443 				bidi_length = cmd->data_length;
2444 
2445 			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2446 					       &cmd->t_bidi_data_nents,
2447 					       bidi_length, zero_flag, false);
2448 			if (ret < 0)
2449 				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2450 		}
2451 
2452 		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2453 				       cmd->data_length, zero_flag, false);
2454 		if (ret < 0)
2455 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2456 	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2457 		    cmd->data_length) {
2458 		/*
2459 		 * Special case for COMPARE_AND_WRITE with fabrics
2460 		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2461 		 */
2462 		u32 caw_length = cmd->t_task_nolb *
2463 				 cmd->se_dev->dev_attrib.block_size;
2464 
2465 		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2466 				       &cmd->t_bidi_data_nents,
2467 				       caw_length, zero_flag, false);
2468 		if (ret < 0)
2469 			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2470 	}
2471 	/*
2472 	 * If this command is not a write we can execute it right here,
2473 	 * for write buffers we need to notify the fabric driver first
2474 	 * and let it call back once the write buffers are ready.
2475 	 */
2476 	target_add_to_state_list(cmd);
2477 	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2478 		target_execute_cmd(cmd);
2479 		return 0;
2480 	}
2481 	transport_cmd_check_stop(cmd, false, true);
2482 
2483 	ret = cmd->se_tfo->write_pending(cmd);
2484 	if (ret == -EAGAIN || ret == -ENOMEM)
2485 		goto queue_full;
2486 
2487 	/* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2488 	WARN_ON(ret);
2489 
2490 	return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2491 
2492 queue_full:
2493 	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2494 	cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2495 	transport_handle_queue_full(cmd, cmd->se_dev);
2496 	return 0;
2497 }
2498 EXPORT_SYMBOL(transport_generic_new_cmd);
2499 
transport_write_pending_qf(struct se_cmd * cmd)2500 static void transport_write_pending_qf(struct se_cmd *cmd)
2501 {
2502 	int ret;
2503 
2504 	ret = cmd->se_tfo->write_pending(cmd);
2505 	if (ret == -EAGAIN || ret == -ENOMEM) {
2506 		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2507 			 cmd);
2508 		transport_handle_queue_full(cmd, cmd->se_dev);
2509 	}
2510 }
2511 
2512 static bool
2513 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2514 			   unsigned long *flags);
2515 
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2516 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2517 {
2518 	unsigned long flags;
2519 
2520 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2521 	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2522 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2523 }
2524 
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2525 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2526 {
2527 	int ret = 0;
2528 	bool aborted = false, tas = false;
2529 
2530 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2531 		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2532 			target_wait_free_cmd(cmd, &aborted, &tas);
2533 
2534 		if (!aborted || tas)
2535 			ret = transport_put_cmd(cmd);
2536 	} else {
2537 		if (wait_for_tasks)
2538 			target_wait_free_cmd(cmd, &aborted, &tas);
2539 		/*
2540 		 * Handle WRITE failure case where transport_generic_new_cmd()
2541 		 * has already added se_cmd to state_list, but fabric has
2542 		 * failed command before I/O submission.
2543 		 */
2544 		if (cmd->state_active)
2545 			target_remove_from_state_list(cmd);
2546 
2547 		if (cmd->se_lun)
2548 			transport_lun_remove_cmd(cmd);
2549 
2550 		if (!aborted || tas)
2551 			ret = transport_put_cmd(cmd);
2552 	}
2553 	/*
2554 	 * If the task has been internally aborted due to TMR ABORT_TASK
2555 	 * or LUN_RESET, target_core_tmr.c is responsible for performing
2556 	 * the remaining calls to target_put_sess_cmd(), and not the
2557 	 * callers of this function.
2558 	 */
2559 	if (aborted) {
2560 		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2561 		wait_for_completion(&cmd->cmd_wait_comp);
2562 		cmd->se_tfo->release_cmd(cmd);
2563 		ret = 1;
2564 	}
2565 	return ret;
2566 }
2567 EXPORT_SYMBOL(transport_generic_free_cmd);
2568 
2569 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2570  * @se_cmd:	command descriptor to add
2571  * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2572  */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2573 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2574 {
2575 	struct se_session *se_sess = se_cmd->se_sess;
2576 	unsigned long flags;
2577 	int ret = 0;
2578 
2579 	/*
2580 	 * Add a second kref if the fabric caller is expecting to handle
2581 	 * fabric acknowledgement that requires two target_put_sess_cmd()
2582 	 * invocations before se_cmd descriptor release.
2583 	 */
2584 	if (ack_kref) {
2585 		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2586 			return -EINVAL;
2587 
2588 		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2589 	}
2590 
2591 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2592 	if (se_sess->sess_tearing_down) {
2593 		ret = -ESHUTDOWN;
2594 		goto out;
2595 	}
2596 	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2597 	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2598 out:
2599 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2600 
2601 	if (ret && ack_kref)
2602 		target_put_sess_cmd(se_cmd);
2603 
2604 	return ret;
2605 }
2606 EXPORT_SYMBOL(target_get_sess_cmd);
2607 
target_free_cmd_mem(struct se_cmd * cmd)2608 static void target_free_cmd_mem(struct se_cmd *cmd)
2609 {
2610 	transport_free_pages(cmd);
2611 
2612 	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2613 		core_tmr_release_req(cmd->se_tmr_req);
2614 	if (cmd->t_task_cdb != cmd->__t_task_cdb)
2615 		kfree(cmd->t_task_cdb);
2616 }
2617 
target_release_cmd_kref(struct kref * kref)2618 static void target_release_cmd_kref(struct kref *kref)
2619 {
2620 	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2621 	struct se_session *se_sess = se_cmd->se_sess;
2622 	unsigned long flags;
2623 	bool fabric_stop;
2624 
2625 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2626 
2627 	spin_lock(&se_cmd->t_state_lock);
2628 	fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2629 		      (se_cmd->transport_state & CMD_T_ABORTED);
2630 	spin_unlock(&se_cmd->t_state_lock);
2631 
2632 	if (se_cmd->cmd_wait_set || fabric_stop) {
2633 		list_del_init(&se_cmd->se_cmd_list);
2634 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2635 		target_free_cmd_mem(se_cmd);
2636 		complete(&se_cmd->cmd_wait_comp);
2637 		return;
2638 	}
2639 	list_del_init(&se_cmd->se_cmd_list);
2640 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2641 
2642 	target_free_cmd_mem(se_cmd);
2643 	se_cmd->se_tfo->release_cmd(se_cmd);
2644 }
2645 
2646 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2647  * @se_cmd:	command descriptor to drop
2648  */
target_put_sess_cmd(struct se_cmd * se_cmd)2649 int target_put_sess_cmd(struct se_cmd *se_cmd)
2650 {
2651 	struct se_session *se_sess = se_cmd->se_sess;
2652 
2653 	if (!se_sess) {
2654 		target_free_cmd_mem(se_cmd);
2655 		se_cmd->se_tfo->release_cmd(se_cmd);
2656 		return 1;
2657 	}
2658 	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2659 }
2660 EXPORT_SYMBOL(target_put_sess_cmd);
2661 
2662 /* target_sess_cmd_list_set_waiting - Flag all commands in
2663  *         sess_cmd_list to complete cmd_wait_comp.  Set
2664  *         sess_tearing_down so no more commands are queued.
2665  * @se_sess:	session to flag
2666  */
target_sess_cmd_list_set_waiting(struct se_session * se_sess)2667 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2668 {
2669 	struct se_cmd *se_cmd, *tmp_cmd;
2670 	unsigned long flags;
2671 	int rc;
2672 
2673 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2674 	if (se_sess->sess_tearing_down) {
2675 		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2676 		return;
2677 	}
2678 	se_sess->sess_tearing_down = 1;
2679 	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2680 
2681 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2682 				 &se_sess->sess_wait_list, se_cmd_list) {
2683 		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2684 		if (rc) {
2685 			se_cmd->cmd_wait_set = 1;
2686 			spin_lock(&se_cmd->t_state_lock);
2687 			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2688 			spin_unlock(&se_cmd->t_state_lock);
2689 		} else
2690 			list_del_init(&se_cmd->se_cmd_list);
2691 	}
2692 
2693 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2694 }
2695 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2696 
2697 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2698  * @se_sess:    session to wait for active I/O
2699  */
target_wait_for_sess_cmds(struct se_session * se_sess)2700 void target_wait_for_sess_cmds(struct se_session *se_sess)
2701 {
2702 	struct se_cmd *se_cmd, *tmp_cmd;
2703 	unsigned long flags;
2704 	bool tas;
2705 
2706 	list_for_each_entry_safe(se_cmd, tmp_cmd,
2707 				&se_sess->sess_wait_list, se_cmd_list) {
2708 		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2709 			" %d\n", se_cmd, se_cmd->t_state,
2710 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2711 
2712 		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2713 		tas = (se_cmd->transport_state & CMD_T_TAS);
2714 		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2715 
2716 		if (!target_put_sess_cmd(se_cmd)) {
2717 			if (tas)
2718 				target_put_sess_cmd(se_cmd);
2719 		}
2720 
2721 		wait_for_completion(&se_cmd->cmd_wait_comp);
2722 		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2723 			" fabric state: %d\n", se_cmd, se_cmd->t_state,
2724 			se_cmd->se_tfo->get_cmd_state(se_cmd));
2725 
2726 		se_cmd->se_tfo->release_cmd(se_cmd);
2727 	}
2728 
2729 	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2730 	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2731 	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2732 
2733 }
2734 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2735 
target_lun_confirm(struct percpu_ref * ref)2736 static void target_lun_confirm(struct percpu_ref *ref)
2737 {
2738 	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2739 
2740 	complete(&lun->lun_ref_comp);
2741 }
2742 
transport_clear_lun_ref(struct se_lun * lun)2743 void transport_clear_lun_ref(struct se_lun *lun)
2744 {
2745 	/*
2746 	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2747 	 * the initial reference and schedule confirm kill to be
2748 	 * executed after one full RCU grace period has completed.
2749 	 */
2750 	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2751 	/*
2752 	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2753 	 * to call target_lun_confirm after lun->lun_ref has been marked
2754 	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2755 	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2756 	 * fails for all new incoming I/O.
2757 	 */
2758 	wait_for_completion(&lun->lun_ref_comp);
2759 	/*
2760 	 * The second completion waits for percpu_ref_put_many() to
2761 	 * invoke ->release() after lun->lun_ref has switched to
2762 	 * atomic_t mode, and lun->lun_ref.count has reached zero.
2763 	 *
2764 	 * At this point all target-core lun->lun_ref references have
2765 	 * been dropped via transport_lun_remove_cmd(), and it's safe
2766 	 * to proceed with the remaining LUN shutdown.
2767 	 */
2768 	wait_for_completion(&lun->lun_shutdown_comp);
2769 }
2770 
2771 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)2772 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2773 			   bool *aborted, bool *tas, unsigned long *flags)
2774 	__releases(&cmd->t_state_lock)
2775 	__acquires(&cmd->t_state_lock)
2776 {
2777 
2778 	assert_spin_locked(&cmd->t_state_lock);
2779 	WARN_ON_ONCE(!irqs_disabled());
2780 
2781 	if (fabric_stop)
2782 		cmd->transport_state |= CMD_T_FABRIC_STOP;
2783 
2784 	if (cmd->transport_state & CMD_T_ABORTED)
2785 		*aborted = true;
2786 
2787 	if (cmd->transport_state & CMD_T_TAS)
2788 		*tas = true;
2789 
2790 	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2791 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2792 		return false;
2793 
2794 	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2795 	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2796 		return false;
2797 
2798 	if (!(cmd->transport_state & CMD_T_ACTIVE))
2799 		return false;
2800 
2801 	if (fabric_stop && *aborted)
2802 		return false;
2803 
2804 	cmd->transport_state |= CMD_T_STOP;
2805 
2806 	pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d,"
2807 		 " t_state: %d, CMD_T_STOP\n", cmd, cmd->tag,
2808 		 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2809 
2810 	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2811 
2812 	wait_for_completion(&cmd->t_transport_stop_comp);
2813 
2814 	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2815 	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2816 
2817 	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
2818 		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2819 
2820 	return true;
2821 }
2822 
2823 /**
2824  * transport_wait_for_tasks - wait for completion to occur
2825  * @cmd:	command to wait
2826  *
2827  * Called from frontend fabric context to wait for storage engine
2828  * to pause and/or release frontend generated struct se_cmd.
2829  */
transport_wait_for_tasks(struct se_cmd * cmd)2830 bool transport_wait_for_tasks(struct se_cmd *cmd)
2831 {
2832 	unsigned long flags;
2833 	bool ret, aborted = false, tas = false;
2834 
2835 	spin_lock_irqsave(&cmd->t_state_lock, flags);
2836 	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
2837 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2838 
2839 	return ret;
2840 }
2841 EXPORT_SYMBOL(transport_wait_for_tasks);
2842 
2843 struct sense_info {
2844 	u8 key;
2845 	u8 asc;
2846 	u8 ascq;
2847 	bool add_sector_info;
2848 };
2849 
2850 static const struct sense_info sense_info_table[] = {
2851 	[TCM_NO_SENSE] = {
2852 		.key = NOT_READY
2853 	},
2854 	[TCM_NON_EXISTENT_LUN] = {
2855 		.key = ILLEGAL_REQUEST,
2856 		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2857 	},
2858 	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
2859 		.key = ILLEGAL_REQUEST,
2860 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2861 	},
2862 	[TCM_SECTOR_COUNT_TOO_MANY] = {
2863 		.key = ILLEGAL_REQUEST,
2864 		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
2865 	},
2866 	[TCM_UNKNOWN_MODE_PAGE] = {
2867 		.key = ILLEGAL_REQUEST,
2868 		.asc = 0x24, /* INVALID FIELD IN CDB */
2869 	},
2870 	[TCM_CHECK_CONDITION_ABORT_CMD] = {
2871 		.key = ABORTED_COMMAND,
2872 		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2873 		.ascq = 0x03,
2874 	},
2875 	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
2876 		.key = ABORTED_COMMAND,
2877 		.asc = 0x0c, /* WRITE ERROR */
2878 		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2879 	},
2880 	[TCM_INVALID_CDB_FIELD] = {
2881 		.key = ILLEGAL_REQUEST,
2882 		.asc = 0x24, /* INVALID FIELD IN CDB */
2883 	},
2884 	[TCM_INVALID_PARAMETER_LIST] = {
2885 		.key = ILLEGAL_REQUEST,
2886 		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
2887 	},
2888 	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
2889 		.key = ILLEGAL_REQUEST,
2890 		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
2891 	},
2892 	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
2893 		.key = ILLEGAL_REQUEST,
2894 		.asc = 0x0c, /* WRITE ERROR */
2895 		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2896 	},
2897 	[TCM_SERVICE_CRC_ERROR] = {
2898 		.key = ABORTED_COMMAND,
2899 		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
2900 		.ascq = 0x05, /* N/A */
2901 	},
2902 	[TCM_SNACK_REJECTED] = {
2903 		.key = ABORTED_COMMAND,
2904 		.asc = 0x11, /* READ ERROR */
2905 		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
2906 	},
2907 	[TCM_WRITE_PROTECTED] = {
2908 		.key = DATA_PROTECT,
2909 		.asc = 0x27, /* WRITE PROTECTED */
2910 	},
2911 	[TCM_ADDRESS_OUT_OF_RANGE] = {
2912 		.key = ILLEGAL_REQUEST,
2913 		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2914 	},
2915 	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
2916 		.key = UNIT_ATTENTION,
2917 	},
2918 	[TCM_CHECK_CONDITION_NOT_READY] = {
2919 		.key = NOT_READY,
2920 	},
2921 	[TCM_MISCOMPARE_VERIFY] = {
2922 		.key = MISCOMPARE,
2923 		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2924 		.ascq = 0x00,
2925 	},
2926 	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
2927 		.key = ABORTED_COMMAND,
2928 		.asc = 0x10,
2929 		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2930 		.add_sector_info = true,
2931 	},
2932 	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
2933 		.key = ABORTED_COMMAND,
2934 		.asc = 0x10,
2935 		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2936 		.add_sector_info = true,
2937 	},
2938 	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
2939 		.key = ABORTED_COMMAND,
2940 		.asc = 0x10,
2941 		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2942 		.add_sector_info = true,
2943 	},
2944 	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
2945 		.key = COPY_ABORTED,
2946 		.asc = 0x0d,
2947 		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
2948 
2949 	},
2950 	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
2951 		/*
2952 		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2953 		 * Solaris initiators.  Returning NOT READY instead means the
2954 		 * operations will be retried a finite number of times and we
2955 		 * can survive intermittent errors.
2956 		 */
2957 		.key = NOT_READY,
2958 		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2959 	},
2960 };
2961 
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)2962 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
2963 {
2964 	const struct sense_info *si;
2965 	u8 *buffer = cmd->sense_buffer;
2966 	int r = (__force int)reason;
2967 	u8 asc, ascq;
2968 	bool desc_format = target_sense_desc_format(cmd->se_dev);
2969 
2970 	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
2971 		si = &sense_info_table[r];
2972 	else
2973 		si = &sense_info_table[(__force int)
2974 				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
2975 
2976 	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
2977 		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2978 		WARN_ON_ONCE(asc == 0);
2979 	} else if (si->asc == 0) {
2980 		WARN_ON_ONCE(cmd->scsi_asc == 0);
2981 		asc = cmd->scsi_asc;
2982 		ascq = cmd->scsi_ascq;
2983 	} else {
2984 		asc = si->asc;
2985 		ascq = si->ascq;
2986 	}
2987 
2988 	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
2989 	if (si->add_sector_info)
2990 		return scsi_set_sense_information(buffer,
2991 						  cmd->scsi_sense_length,
2992 						  cmd->bad_sector);
2993 
2994 	return 0;
2995 }
2996 
2997 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)2998 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2999 		sense_reason_t reason, int from_transport)
3000 {
3001 	unsigned long flags;
3002 
3003 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3004 	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3005 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3006 		return 0;
3007 	}
3008 	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3009 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3010 
3011 	if (!from_transport) {
3012 		int rc;
3013 
3014 		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3015 		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3016 		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3017 		rc = translate_sense_reason(cmd, reason);
3018 		if (rc)
3019 			return rc;
3020 	}
3021 
3022 	trace_target_cmd_complete(cmd);
3023 	return cmd->se_tfo->queue_status(cmd);
3024 }
3025 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3026 
__transport_check_aborted_status(struct se_cmd * cmd,int send_status)3027 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3028 	__releases(&cmd->t_state_lock)
3029 	__acquires(&cmd->t_state_lock)
3030 {
3031 	assert_spin_locked(&cmd->t_state_lock);
3032 	WARN_ON_ONCE(!irqs_disabled());
3033 
3034 	if (!(cmd->transport_state & CMD_T_ABORTED))
3035 		return 0;
3036 	/*
3037 	 * If cmd has been aborted but either no status is to be sent or it has
3038 	 * already been sent, just return
3039 	 */
3040 	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3041 		if (send_status)
3042 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3043 		return 1;
3044 	}
3045 
3046 	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3047 		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3048 
3049 	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3050 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3051 	trace_target_cmd_complete(cmd);
3052 
3053 	spin_unlock_irq(&cmd->t_state_lock);
3054 	cmd->se_tfo->queue_status(cmd);
3055 	spin_lock_irq(&cmd->t_state_lock);
3056 
3057 	return 1;
3058 }
3059 
transport_check_aborted_status(struct se_cmd * cmd,int send_status)3060 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3061 {
3062 	int ret;
3063 
3064 	spin_lock_irq(&cmd->t_state_lock);
3065 	ret = __transport_check_aborted_status(cmd, send_status);
3066 	spin_unlock_irq(&cmd->t_state_lock);
3067 
3068 	return ret;
3069 }
3070 EXPORT_SYMBOL(transport_check_aborted_status);
3071 
transport_send_task_abort(struct se_cmd * cmd)3072 void transport_send_task_abort(struct se_cmd *cmd)
3073 {
3074 	unsigned long flags;
3075 
3076 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3077 	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3078 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3079 		return;
3080 	}
3081 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3082 
3083 	/*
3084 	 * If there are still expected incoming fabric WRITEs, we wait
3085 	 * until until they have completed before sending a TASK_ABORTED
3086 	 * response.  This response with TASK_ABORTED status will be
3087 	 * queued back to fabric module by transport_check_aborted_status().
3088 	 */
3089 	if (cmd->data_direction == DMA_TO_DEVICE) {
3090 		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3091 			spin_lock_irqsave(&cmd->t_state_lock, flags);
3092 			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3093 				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3094 				goto send_abort;
3095 			}
3096 			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3097 			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3098 			return;
3099 		}
3100 	}
3101 send_abort:
3102 	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3103 
3104 	transport_lun_remove_cmd(cmd);
3105 
3106 	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3107 		 cmd->t_task_cdb[0], cmd->tag);
3108 
3109 	trace_target_cmd_complete(cmd);
3110 	cmd->se_tfo->queue_status(cmd);
3111 }
3112 
target_tmr_work(struct work_struct * work)3113 static void target_tmr_work(struct work_struct *work)
3114 {
3115 	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3116 	struct se_device *dev = cmd->se_dev;
3117 	struct se_tmr_req *tmr = cmd->se_tmr_req;
3118 	unsigned long flags;
3119 	int ret;
3120 
3121 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3122 	if (cmd->transport_state & CMD_T_ABORTED) {
3123 		tmr->response = TMR_FUNCTION_REJECTED;
3124 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3125 		goto check_stop;
3126 	}
3127 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3128 
3129 	switch (tmr->function) {
3130 	case TMR_ABORT_TASK:
3131 		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3132 		break;
3133 	case TMR_ABORT_TASK_SET:
3134 	case TMR_CLEAR_ACA:
3135 	case TMR_CLEAR_TASK_SET:
3136 		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3137 		break;
3138 	case TMR_LUN_RESET:
3139 		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3140 		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3141 					 TMR_FUNCTION_REJECTED;
3142 		if (tmr->response == TMR_FUNCTION_COMPLETE) {
3143 			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3144 					       cmd->orig_fe_lun, 0x29,
3145 					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3146 		}
3147 		break;
3148 	case TMR_TARGET_WARM_RESET:
3149 		tmr->response = TMR_FUNCTION_REJECTED;
3150 		break;
3151 	case TMR_TARGET_COLD_RESET:
3152 		tmr->response = TMR_FUNCTION_REJECTED;
3153 		break;
3154 	default:
3155 		pr_err("Uknown TMR function: 0x%02x.\n",
3156 				tmr->function);
3157 		tmr->response = TMR_FUNCTION_REJECTED;
3158 		break;
3159 	}
3160 
3161 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3162 	if (cmd->transport_state & CMD_T_ABORTED) {
3163 		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3164 		goto check_stop;
3165 	}
3166 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3167 
3168 	cmd->se_tfo->queue_tm_rsp(cmd);
3169 
3170 check_stop:
3171 	transport_cmd_check_stop_to_fabric(cmd);
3172 }
3173 
transport_generic_handle_tmr(struct se_cmd * cmd)3174 int transport_generic_handle_tmr(
3175 	struct se_cmd *cmd)
3176 {
3177 	unsigned long flags;
3178 	bool aborted = false;
3179 
3180 	spin_lock_irqsave(&cmd->t_state_lock, flags);
3181 	if (cmd->transport_state & CMD_T_ABORTED) {
3182 		aborted = true;
3183 	} else {
3184 		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3185 		cmd->transport_state |= CMD_T_ACTIVE;
3186 	}
3187 	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3188 
3189 	if (aborted) {
3190 		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3191 			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3192 			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3193 		transport_cmd_check_stop_to_fabric(cmd);
3194 		return 0;
3195 	}
3196 
3197 	INIT_WORK(&cmd->work, target_tmr_work);
3198 	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3199 	return 0;
3200 }
3201 EXPORT_SYMBOL(transport_generic_handle_tmr);
3202 
3203 bool
target_check_wce(struct se_device * dev)3204 target_check_wce(struct se_device *dev)
3205 {
3206 	bool wce = false;
3207 
3208 	if (dev->transport->get_write_cache)
3209 		wce = dev->transport->get_write_cache(dev);
3210 	else if (dev->dev_attrib.emulate_write_cache > 0)
3211 		wce = true;
3212 
3213 	return wce;
3214 }
3215 
3216 bool
target_check_fua(struct se_device * dev)3217 target_check_fua(struct se_device *dev)
3218 {
3219 	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3220 }
3221