1 /*
2 * Firmware Assisted dump: A robust mechanism to get reliable kernel crash
3 * dump with assistance from firmware. This approach does not use kexec,
4 * instead firmware assists in booting the kdump kernel while preserving
5 * memory contents. The most of the code implementation has been adapted
6 * from phyp assisted dump implementation written by Linas Vepstas and
7 * Manish Ahuja
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 *
23 * Copyright 2011 IBM Corporation
24 * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
25 */
26
27 #undef DEBUG
28 #define pr_fmt(fmt) "fadump: " fmt
29
30 #include <linux/string.h>
31 #include <linux/memblock.h>
32 #include <linux/delay.h>
33 #include <linux/debugfs.h>
34 #include <linux/seq_file.h>
35 #include <linux/crash_dump.h>
36 #include <linux/kobject.h>
37 #include <linux/sysfs.h>
38
39 #include <asm/page.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/fadump.h>
43 #include <asm/debug.h>
44 #include <asm/setup.h>
45
46 static struct fw_dump fw_dump;
47 static struct fadump_mem_struct fdm;
48 static const struct fadump_mem_struct *fdm_active;
49
50 static DEFINE_MUTEX(fadump_mutex);
51 struct fad_crash_memory_ranges crash_memory_ranges[INIT_CRASHMEM_RANGES];
52 int crash_mem_ranges;
53
54 /* Scan the Firmware Assisted dump configuration details. */
early_init_dt_scan_fw_dump(unsigned long node,const char * uname,int depth,void * data)55 int __init early_init_dt_scan_fw_dump(unsigned long node,
56 const char *uname, int depth, void *data)
57 {
58 const __be32 *sections;
59 int i, num_sections;
60 int size;
61 const __be32 *token;
62
63 if (depth != 1 || strcmp(uname, "rtas") != 0)
64 return 0;
65
66 /*
67 * Check if Firmware Assisted dump is supported. if yes, check
68 * if dump has been initiated on last reboot.
69 */
70 token = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump", NULL);
71 if (!token)
72 return 1;
73
74 fw_dump.fadump_supported = 1;
75 fw_dump.ibm_configure_kernel_dump = be32_to_cpu(*token);
76
77 /*
78 * The 'ibm,kernel-dump' rtas node is present only if there is
79 * dump data waiting for us.
80 */
81 fdm_active = of_get_flat_dt_prop(node, "ibm,kernel-dump", NULL);
82 if (fdm_active)
83 fw_dump.dump_active = 1;
84
85 /* Get the sizes required to store dump data for the firmware provided
86 * dump sections.
87 * For each dump section type supported, a 32bit cell which defines
88 * the ID of a supported section followed by two 32 bit cells which
89 * gives teh size of the section in bytes.
90 */
91 sections = of_get_flat_dt_prop(node, "ibm,configure-kernel-dump-sizes",
92 &size);
93
94 if (!sections)
95 return 1;
96
97 num_sections = size / (3 * sizeof(u32));
98
99 for (i = 0; i < num_sections; i++, sections += 3) {
100 u32 type = (u32)of_read_number(sections, 1);
101
102 switch (type) {
103 case FADUMP_CPU_STATE_DATA:
104 fw_dump.cpu_state_data_size =
105 of_read_ulong(§ions[1], 2);
106 break;
107 case FADUMP_HPTE_REGION:
108 fw_dump.hpte_region_size =
109 of_read_ulong(§ions[1], 2);
110 break;
111 }
112 }
113
114 return 1;
115 }
116
is_fadump_active(void)117 int is_fadump_active(void)
118 {
119 return fw_dump.dump_active;
120 }
121
122 /* Print firmware assisted dump configurations for debugging purpose. */
fadump_show_config(void)123 static void fadump_show_config(void)
124 {
125 pr_debug("Support for firmware-assisted dump (fadump): %s\n",
126 (fw_dump.fadump_supported ? "present" : "no support"));
127
128 if (!fw_dump.fadump_supported)
129 return;
130
131 pr_debug("Fadump enabled : %s\n",
132 (fw_dump.fadump_enabled ? "yes" : "no"));
133 pr_debug("Dump Active : %s\n",
134 (fw_dump.dump_active ? "yes" : "no"));
135 pr_debug("Dump section sizes:\n");
136 pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
137 pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
138 pr_debug("Boot memory size : %lx\n", fw_dump.boot_memory_size);
139 }
140
init_fadump_mem_struct(struct fadump_mem_struct * fdm,unsigned long addr)141 static unsigned long init_fadump_mem_struct(struct fadump_mem_struct *fdm,
142 unsigned long addr)
143 {
144 if (!fdm)
145 return 0;
146
147 memset(fdm, 0, sizeof(struct fadump_mem_struct));
148 addr = addr & PAGE_MASK;
149
150 fdm->header.dump_format_version = cpu_to_be32(0x00000001);
151 fdm->header.dump_num_sections = cpu_to_be16(3);
152 fdm->header.dump_status_flag = 0;
153 fdm->header.offset_first_dump_section =
154 cpu_to_be32((u32)offsetof(struct fadump_mem_struct, cpu_state_data));
155
156 /*
157 * Fields for disk dump option.
158 * We are not using disk dump option, hence set these fields to 0.
159 */
160 fdm->header.dd_block_size = 0;
161 fdm->header.dd_block_offset = 0;
162 fdm->header.dd_num_blocks = 0;
163 fdm->header.dd_offset_disk_path = 0;
164
165 /* set 0 to disable an automatic dump-reboot. */
166 fdm->header.max_time_auto = 0;
167
168 /* Kernel dump sections */
169 /* cpu state data section. */
170 fdm->cpu_state_data.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
171 fdm->cpu_state_data.source_data_type = cpu_to_be16(FADUMP_CPU_STATE_DATA);
172 fdm->cpu_state_data.source_address = 0;
173 fdm->cpu_state_data.source_len = cpu_to_be64(fw_dump.cpu_state_data_size);
174 fdm->cpu_state_data.destination_address = cpu_to_be64(addr);
175 addr += fw_dump.cpu_state_data_size;
176
177 /* hpte region section */
178 fdm->hpte_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
179 fdm->hpte_region.source_data_type = cpu_to_be16(FADUMP_HPTE_REGION);
180 fdm->hpte_region.source_address = 0;
181 fdm->hpte_region.source_len = cpu_to_be64(fw_dump.hpte_region_size);
182 fdm->hpte_region.destination_address = cpu_to_be64(addr);
183 addr += fw_dump.hpte_region_size;
184
185 /* RMA region section */
186 fdm->rmr_region.request_flag = cpu_to_be32(FADUMP_REQUEST_FLAG);
187 fdm->rmr_region.source_data_type = cpu_to_be16(FADUMP_REAL_MODE_REGION);
188 fdm->rmr_region.source_address = cpu_to_be64(RMA_START);
189 fdm->rmr_region.source_len = cpu_to_be64(fw_dump.boot_memory_size);
190 fdm->rmr_region.destination_address = cpu_to_be64(addr);
191 addr += fw_dump.boot_memory_size;
192
193 return addr;
194 }
195
196 /**
197 * fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
198 *
199 * Function to find the largest memory size we need to reserve during early
200 * boot process. This will be the size of the memory that is required for a
201 * kernel to boot successfully.
202 *
203 * This function has been taken from phyp-assisted dump feature implementation.
204 *
205 * returns larger of 256MB or 5% rounded down to multiples of 256MB.
206 *
207 * TODO: Come up with better approach to find out more accurate memory size
208 * that is required for a kernel to boot successfully.
209 *
210 */
fadump_calculate_reserve_size(void)211 static inline unsigned long fadump_calculate_reserve_size(void)
212 {
213 unsigned long size;
214
215 /*
216 * Check if the size is specified through fadump_reserve_mem= cmdline
217 * option. If yes, then use that.
218 */
219 if (fw_dump.reserve_bootvar)
220 return fw_dump.reserve_bootvar;
221
222 /* divide by 20 to get 5% of value */
223 size = memblock_end_of_DRAM() / 20;
224
225 /* round it down in multiples of 256 */
226 size = size & ~0x0FFFFFFFUL;
227
228 /* Truncate to memory_limit. We don't want to over reserve the memory.*/
229 if (memory_limit && size > memory_limit)
230 size = memory_limit;
231
232 return (size > MIN_BOOT_MEM ? size : MIN_BOOT_MEM);
233 }
234
235 /*
236 * Calculate the total memory size required to be reserved for
237 * firmware-assisted dump registration.
238 */
get_fadump_area_size(void)239 static unsigned long get_fadump_area_size(void)
240 {
241 unsigned long size = 0;
242
243 size += fw_dump.cpu_state_data_size;
244 size += fw_dump.hpte_region_size;
245 size += fw_dump.boot_memory_size;
246 size += sizeof(struct fadump_crash_info_header);
247 size += sizeof(struct elfhdr); /* ELF core header.*/
248 size += sizeof(struct elf_phdr); /* place holder for cpu notes */
249 /* Program headers for crash memory regions. */
250 size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
251
252 size = PAGE_ALIGN(size);
253 return size;
254 }
255
fadump_reserve_mem(void)256 int __init fadump_reserve_mem(void)
257 {
258 unsigned long base, size, memory_boundary;
259
260 if (!fw_dump.fadump_enabled)
261 return 0;
262
263 if (!fw_dump.fadump_supported) {
264 printk(KERN_INFO "Firmware-assisted dump is not supported on"
265 " this hardware\n");
266 fw_dump.fadump_enabled = 0;
267 return 0;
268 }
269 /*
270 * Initialize boot memory size
271 * If dump is active then we have already calculated the size during
272 * first kernel.
273 */
274 if (fdm_active)
275 fw_dump.boot_memory_size = be64_to_cpu(fdm_active->rmr_region.source_len);
276 else
277 fw_dump.boot_memory_size = fadump_calculate_reserve_size();
278
279 /*
280 * Calculate the memory boundary.
281 * If memory_limit is less than actual memory boundary then reserve
282 * the memory for fadump beyond the memory_limit and adjust the
283 * memory_limit accordingly, so that the running kernel can run with
284 * specified memory_limit.
285 */
286 if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
287 size = get_fadump_area_size();
288 if ((memory_limit + size) < memblock_end_of_DRAM())
289 memory_limit += size;
290 else
291 memory_limit = memblock_end_of_DRAM();
292 printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
293 " dump, now %#016llx\n", memory_limit);
294 }
295 if (memory_limit)
296 memory_boundary = memory_limit;
297 else
298 memory_boundary = memblock_end_of_DRAM();
299
300 if (fw_dump.dump_active) {
301 printk(KERN_INFO "Firmware-assisted dump is active.\n");
302 /*
303 * If last boot has crashed then reserve all the memory
304 * above boot_memory_size so that we don't touch it until
305 * dump is written to disk by userspace tool. This memory
306 * will be released for general use once the dump is saved.
307 */
308 base = fw_dump.boot_memory_size;
309 size = memory_boundary - base;
310 memblock_reserve(base, size);
311 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
312 "for saving crash dump\n",
313 (unsigned long)(size >> 20),
314 (unsigned long)(base >> 20));
315
316 fw_dump.fadumphdr_addr =
317 be64_to_cpu(fdm_active->rmr_region.destination_address) +
318 be64_to_cpu(fdm_active->rmr_region.source_len);
319 pr_debug("fadumphdr_addr = %p\n",
320 (void *) fw_dump.fadumphdr_addr);
321 } else {
322 /* Reserve the memory at the top of memory. */
323 size = get_fadump_area_size();
324 base = memory_boundary - size;
325 memblock_reserve(base, size);
326 printk(KERN_INFO "Reserved %ldMB of memory at %ldMB "
327 "for firmware-assisted dump\n",
328 (unsigned long)(size >> 20),
329 (unsigned long)(base >> 20));
330 }
331 fw_dump.reserve_dump_area_start = base;
332 fw_dump.reserve_dump_area_size = size;
333 return 1;
334 }
335
arch_reserved_kernel_pages(void)336 unsigned long __init arch_reserved_kernel_pages(void)
337 {
338 return memblock_reserved_size() / PAGE_SIZE;
339 }
340
341 /* Look for fadump= cmdline option. */
early_fadump_param(char * p)342 static int __init early_fadump_param(char *p)
343 {
344 if (!p)
345 return 1;
346
347 if (strncmp(p, "on", 2) == 0)
348 fw_dump.fadump_enabled = 1;
349 else if (strncmp(p, "off", 3) == 0)
350 fw_dump.fadump_enabled = 0;
351
352 return 0;
353 }
354 early_param("fadump", early_fadump_param);
355
356 /* Look for fadump_reserve_mem= cmdline option */
early_fadump_reserve_mem(char * p)357 static int __init early_fadump_reserve_mem(char *p)
358 {
359 if (p)
360 fw_dump.reserve_bootvar = memparse(p, &p);
361 return 0;
362 }
363 early_param("fadump_reserve_mem", early_fadump_reserve_mem);
364
register_fw_dump(struct fadump_mem_struct * fdm)365 static void register_fw_dump(struct fadump_mem_struct *fdm)
366 {
367 int rc;
368 unsigned int wait_time;
369
370 pr_debug("Registering for firmware-assisted kernel dump...\n");
371
372 /* TODO: Add upper time limit for the delay */
373 do {
374 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
375 FADUMP_REGISTER, fdm,
376 sizeof(struct fadump_mem_struct));
377
378 wait_time = rtas_busy_delay_time(rc);
379 if (wait_time)
380 mdelay(wait_time);
381
382 } while (wait_time);
383
384 switch (rc) {
385 case -1:
386 printk(KERN_ERR "Failed to register firmware-assisted kernel"
387 " dump. Hardware Error(%d).\n", rc);
388 break;
389 case -3:
390 printk(KERN_ERR "Failed to register firmware-assisted kernel"
391 " dump. Parameter Error(%d).\n", rc);
392 break;
393 case -9:
394 printk(KERN_ERR "firmware-assisted kernel dump is already "
395 " registered.");
396 fw_dump.dump_registered = 1;
397 break;
398 case 0:
399 printk(KERN_INFO "firmware-assisted kernel dump registration"
400 " is successful\n");
401 fw_dump.dump_registered = 1;
402 break;
403 }
404 }
405
crash_fadump(struct pt_regs * regs,const char * str)406 void crash_fadump(struct pt_regs *regs, const char *str)
407 {
408 struct fadump_crash_info_header *fdh = NULL;
409
410 if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
411 return;
412
413 fdh = __va(fw_dump.fadumphdr_addr);
414 crashing_cpu = smp_processor_id();
415 fdh->crashing_cpu = crashing_cpu;
416 crash_save_vmcoreinfo();
417
418 if (regs)
419 fdh->regs = *regs;
420 else
421 ppc_save_regs(&fdh->regs);
422
423 fdh->online_mask = *cpu_online_mask;
424
425 /* Call ibm,os-term rtas call to trigger firmware assisted dump */
426 rtas_os_term((char *)str);
427 }
428
429 #define GPR_MASK 0xffffff0000000000
fadump_gpr_index(u64 id)430 static inline int fadump_gpr_index(u64 id)
431 {
432 int i = -1;
433 char str[3];
434
435 if ((id & GPR_MASK) == REG_ID("GPR")) {
436 /* get the digits at the end */
437 id &= ~GPR_MASK;
438 id >>= 24;
439 str[2] = '\0';
440 str[1] = id & 0xff;
441 str[0] = (id >> 8) & 0xff;
442 sscanf(str, "%d", &i);
443 if (i > 31)
444 i = -1;
445 }
446 return i;
447 }
448
fadump_set_regval(struct pt_regs * regs,u64 reg_id,u64 reg_val)449 static inline void fadump_set_regval(struct pt_regs *regs, u64 reg_id,
450 u64 reg_val)
451 {
452 int i;
453
454 i = fadump_gpr_index(reg_id);
455 if (i >= 0)
456 regs->gpr[i] = (unsigned long)reg_val;
457 else if (reg_id == REG_ID("NIA"))
458 regs->nip = (unsigned long)reg_val;
459 else if (reg_id == REG_ID("MSR"))
460 regs->msr = (unsigned long)reg_val;
461 else if (reg_id == REG_ID("CTR"))
462 regs->ctr = (unsigned long)reg_val;
463 else if (reg_id == REG_ID("LR"))
464 regs->link = (unsigned long)reg_val;
465 else if (reg_id == REG_ID("XER"))
466 regs->xer = (unsigned long)reg_val;
467 else if (reg_id == REG_ID("CR"))
468 regs->ccr = (unsigned long)reg_val;
469 else if (reg_id == REG_ID("DAR"))
470 regs->dar = (unsigned long)reg_val;
471 else if (reg_id == REG_ID("DSISR"))
472 regs->dsisr = (unsigned long)reg_val;
473 }
474
475 static struct fadump_reg_entry*
fadump_read_registers(struct fadump_reg_entry * reg_entry,struct pt_regs * regs)476 fadump_read_registers(struct fadump_reg_entry *reg_entry, struct pt_regs *regs)
477 {
478 memset(regs, 0, sizeof(struct pt_regs));
479
480 while (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUEND")) {
481 fadump_set_regval(regs, be64_to_cpu(reg_entry->reg_id),
482 be64_to_cpu(reg_entry->reg_value));
483 reg_entry++;
484 }
485 reg_entry++;
486 return reg_entry;
487 }
488
fadump_append_elf_note(u32 * buf,char * name,unsigned type,void * data,size_t data_len)489 static u32 *fadump_append_elf_note(u32 *buf, char *name, unsigned type,
490 void *data, size_t data_len)
491 {
492 struct elf_note note;
493
494 note.n_namesz = strlen(name) + 1;
495 note.n_descsz = data_len;
496 note.n_type = type;
497 memcpy(buf, ¬e, sizeof(note));
498 buf += (sizeof(note) + 3)/4;
499 memcpy(buf, name, note.n_namesz);
500 buf += (note.n_namesz + 3)/4;
501 memcpy(buf, data, note.n_descsz);
502 buf += (note.n_descsz + 3)/4;
503
504 return buf;
505 }
506
fadump_final_note(u32 * buf)507 static void fadump_final_note(u32 *buf)
508 {
509 struct elf_note note;
510
511 note.n_namesz = 0;
512 note.n_descsz = 0;
513 note.n_type = 0;
514 memcpy(buf, ¬e, sizeof(note));
515 }
516
fadump_regs_to_elf_notes(u32 * buf,struct pt_regs * regs)517 static u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
518 {
519 struct elf_prstatus prstatus;
520
521 memset(&prstatus, 0, sizeof(prstatus));
522 /*
523 * FIXME: How do i get PID? Do I really need it?
524 * prstatus.pr_pid = ????
525 */
526 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
527 buf = fadump_append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
528 &prstatus, sizeof(prstatus));
529 return buf;
530 }
531
fadump_update_elfcore_header(char * bufp)532 static void fadump_update_elfcore_header(char *bufp)
533 {
534 struct elfhdr *elf;
535 struct elf_phdr *phdr;
536
537 elf = (struct elfhdr *)bufp;
538 bufp += sizeof(struct elfhdr);
539
540 /* First note is a place holder for cpu notes info. */
541 phdr = (struct elf_phdr *)bufp;
542
543 if (phdr->p_type == PT_NOTE) {
544 phdr->p_paddr = fw_dump.cpu_notes_buf;
545 phdr->p_offset = phdr->p_paddr;
546 phdr->p_filesz = fw_dump.cpu_notes_buf_size;
547 phdr->p_memsz = fw_dump.cpu_notes_buf_size;
548 }
549 return;
550 }
551
fadump_cpu_notes_buf_alloc(unsigned long size)552 static void *fadump_cpu_notes_buf_alloc(unsigned long size)
553 {
554 void *vaddr;
555 struct page *page;
556 unsigned long order, count, i;
557
558 order = get_order(size);
559 vaddr = (void *)__get_free_pages(GFP_KERNEL|__GFP_ZERO, order);
560 if (!vaddr)
561 return NULL;
562
563 count = 1 << order;
564 page = virt_to_page(vaddr);
565 for (i = 0; i < count; i++)
566 SetPageReserved(page + i);
567 return vaddr;
568 }
569
fadump_cpu_notes_buf_free(unsigned long vaddr,unsigned long size)570 static void fadump_cpu_notes_buf_free(unsigned long vaddr, unsigned long size)
571 {
572 struct page *page;
573 unsigned long order, count, i;
574
575 order = get_order(size);
576 count = 1 << order;
577 page = virt_to_page(vaddr);
578 for (i = 0; i < count; i++)
579 ClearPageReserved(page + i);
580 __free_pages(page, order);
581 }
582
583 /*
584 * Read CPU state dump data and convert it into ELF notes.
585 * The CPU dump starts with magic number "REGSAVE". NumCpusOffset should be
586 * used to access the data to allow for additional fields to be added without
587 * affecting compatibility. Each list of registers for a CPU starts with
588 * "CPUSTRT" and ends with "CPUEND". Each register entry is of 16 bytes,
589 * 8 Byte ASCII identifier and 8 Byte register value. The register entry
590 * with identifier "CPUSTRT" and "CPUEND" contains 4 byte cpu id as part
591 * of register value. For more details refer to PAPR document.
592 *
593 * Only for the crashing cpu we ignore the CPU dump data and get exact
594 * state from fadump crash info structure populated by first kernel at the
595 * time of crash.
596 */
fadump_build_cpu_notes(const struct fadump_mem_struct * fdm)597 static int __init fadump_build_cpu_notes(const struct fadump_mem_struct *fdm)
598 {
599 struct fadump_reg_save_area_header *reg_header;
600 struct fadump_reg_entry *reg_entry;
601 struct fadump_crash_info_header *fdh = NULL;
602 void *vaddr;
603 unsigned long addr;
604 u32 num_cpus, *note_buf;
605 struct pt_regs regs;
606 int i, rc = 0, cpu = 0;
607
608 if (!fdm->cpu_state_data.bytes_dumped)
609 return -EINVAL;
610
611 addr = be64_to_cpu(fdm->cpu_state_data.destination_address);
612 vaddr = __va(addr);
613
614 reg_header = vaddr;
615 if (be64_to_cpu(reg_header->magic_number) != REGSAVE_AREA_MAGIC) {
616 printk(KERN_ERR "Unable to read register save area.\n");
617 return -ENOENT;
618 }
619 pr_debug("--------CPU State Data------------\n");
620 pr_debug("Magic Number: %llx\n", be64_to_cpu(reg_header->magic_number));
621 pr_debug("NumCpuOffset: %x\n", be32_to_cpu(reg_header->num_cpu_offset));
622
623 vaddr += be32_to_cpu(reg_header->num_cpu_offset);
624 num_cpus = be32_to_cpu(*((__be32 *)(vaddr)));
625 pr_debug("NumCpus : %u\n", num_cpus);
626 vaddr += sizeof(u32);
627 reg_entry = (struct fadump_reg_entry *)vaddr;
628
629 /* Allocate buffer to hold cpu crash notes. */
630 fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
631 fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
632 note_buf = fadump_cpu_notes_buf_alloc(fw_dump.cpu_notes_buf_size);
633 if (!note_buf) {
634 printk(KERN_ERR "Failed to allocate 0x%lx bytes for "
635 "cpu notes buffer\n", fw_dump.cpu_notes_buf_size);
636 return -ENOMEM;
637 }
638 fw_dump.cpu_notes_buf = __pa(note_buf);
639
640 pr_debug("Allocated buffer for cpu notes of size %ld at %p\n",
641 (num_cpus * sizeof(note_buf_t)), note_buf);
642
643 if (fw_dump.fadumphdr_addr)
644 fdh = __va(fw_dump.fadumphdr_addr);
645
646 for (i = 0; i < num_cpus; i++) {
647 if (be64_to_cpu(reg_entry->reg_id) != REG_ID("CPUSTRT")) {
648 printk(KERN_ERR "Unable to read CPU state data\n");
649 rc = -ENOENT;
650 goto error_out;
651 }
652 /* Lower 4 bytes of reg_value contains logical cpu id */
653 cpu = be64_to_cpu(reg_entry->reg_value) & FADUMP_CPU_ID_MASK;
654 if (fdh && !cpumask_test_cpu(cpu, &fdh->online_mask)) {
655 SKIP_TO_NEXT_CPU(reg_entry);
656 continue;
657 }
658 pr_debug("Reading register data for cpu %d...\n", cpu);
659 if (fdh && fdh->crashing_cpu == cpu) {
660 regs = fdh->regs;
661 note_buf = fadump_regs_to_elf_notes(note_buf, ®s);
662 SKIP_TO_NEXT_CPU(reg_entry);
663 } else {
664 reg_entry++;
665 reg_entry = fadump_read_registers(reg_entry, ®s);
666 note_buf = fadump_regs_to_elf_notes(note_buf, ®s);
667 }
668 }
669 fadump_final_note(note_buf);
670
671 if (fdh) {
672 pr_debug("Updating elfcore header (%llx) with cpu notes\n",
673 fdh->elfcorehdr_addr);
674 fadump_update_elfcore_header((char *)__va(fdh->elfcorehdr_addr));
675 }
676 return 0;
677
678 error_out:
679 fadump_cpu_notes_buf_free((unsigned long)__va(fw_dump.cpu_notes_buf),
680 fw_dump.cpu_notes_buf_size);
681 fw_dump.cpu_notes_buf = 0;
682 fw_dump.cpu_notes_buf_size = 0;
683 return rc;
684
685 }
686
687 /*
688 * Validate and process the dump data stored by firmware before exporting
689 * it through '/proc/vmcore'.
690 */
process_fadump(const struct fadump_mem_struct * fdm_active)691 static int __init process_fadump(const struct fadump_mem_struct *fdm_active)
692 {
693 struct fadump_crash_info_header *fdh;
694 int rc = 0;
695
696 if (!fdm_active || !fw_dump.fadumphdr_addr)
697 return -EINVAL;
698
699 /* Check if the dump data is valid. */
700 if ((be16_to_cpu(fdm_active->header.dump_status_flag) == FADUMP_ERROR_FLAG) ||
701 (fdm_active->cpu_state_data.error_flags != 0) ||
702 (fdm_active->rmr_region.error_flags != 0)) {
703 printk(KERN_ERR "Dump taken by platform is not valid\n");
704 return -EINVAL;
705 }
706 if ((fdm_active->rmr_region.bytes_dumped !=
707 fdm_active->rmr_region.source_len) ||
708 !fdm_active->cpu_state_data.bytes_dumped) {
709 printk(KERN_ERR "Dump taken by platform is incomplete\n");
710 return -EINVAL;
711 }
712
713 /* Validate the fadump crash info header */
714 fdh = __va(fw_dump.fadumphdr_addr);
715 if (fdh->magic_number != FADUMP_CRASH_INFO_MAGIC) {
716 printk(KERN_ERR "Crash info header is not valid.\n");
717 return -EINVAL;
718 }
719
720 rc = fadump_build_cpu_notes(fdm_active);
721 if (rc)
722 return rc;
723
724 /*
725 * We are done validating dump info and elfcore header is now ready
726 * to be exported. set elfcorehdr_addr so that vmcore module will
727 * export the elfcore header through '/proc/vmcore'.
728 */
729 elfcorehdr_addr = fdh->elfcorehdr_addr;
730
731 return 0;
732 }
733
fadump_add_crash_memory(unsigned long long base,unsigned long long end)734 static inline void fadump_add_crash_memory(unsigned long long base,
735 unsigned long long end)
736 {
737 if (base == end)
738 return;
739
740 pr_debug("crash_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
741 crash_mem_ranges, base, end - 1, (end - base));
742 crash_memory_ranges[crash_mem_ranges].base = base;
743 crash_memory_ranges[crash_mem_ranges].size = end - base;
744 crash_mem_ranges++;
745 }
746
fadump_exclude_reserved_area(unsigned long long start,unsigned long long end)747 static void fadump_exclude_reserved_area(unsigned long long start,
748 unsigned long long end)
749 {
750 unsigned long long ra_start, ra_end;
751
752 ra_start = fw_dump.reserve_dump_area_start;
753 ra_end = ra_start + fw_dump.reserve_dump_area_size;
754
755 if ((ra_start < end) && (ra_end > start)) {
756 if ((start < ra_start) && (end > ra_end)) {
757 fadump_add_crash_memory(start, ra_start);
758 fadump_add_crash_memory(ra_end, end);
759 } else if (start < ra_start) {
760 fadump_add_crash_memory(start, ra_start);
761 } else if (ra_end < end) {
762 fadump_add_crash_memory(ra_end, end);
763 }
764 } else
765 fadump_add_crash_memory(start, end);
766 }
767
fadump_init_elfcore_header(char * bufp)768 static int fadump_init_elfcore_header(char *bufp)
769 {
770 struct elfhdr *elf;
771
772 elf = (struct elfhdr *) bufp;
773 bufp += sizeof(struct elfhdr);
774 memcpy(elf->e_ident, ELFMAG, SELFMAG);
775 elf->e_ident[EI_CLASS] = ELF_CLASS;
776 elf->e_ident[EI_DATA] = ELF_DATA;
777 elf->e_ident[EI_VERSION] = EV_CURRENT;
778 elf->e_ident[EI_OSABI] = ELF_OSABI;
779 memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
780 elf->e_type = ET_CORE;
781 elf->e_machine = ELF_ARCH;
782 elf->e_version = EV_CURRENT;
783 elf->e_entry = 0;
784 elf->e_phoff = sizeof(struct elfhdr);
785 elf->e_shoff = 0;
786 #if defined(_CALL_ELF)
787 elf->e_flags = _CALL_ELF;
788 #else
789 elf->e_flags = 0;
790 #endif
791 elf->e_ehsize = sizeof(struct elfhdr);
792 elf->e_phentsize = sizeof(struct elf_phdr);
793 elf->e_phnum = 0;
794 elf->e_shentsize = 0;
795 elf->e_shnum = 0;
796 elf->e_shstrndx = 0;
797
798 return 0;
799 }
800
801 /*
802 * Traverse through memblock structure and setup crash memory ranges. These
803 * ranges will be used create PT_LOAD program headers in elfcore header.
804 */
fadump_setup_crash_memory_ranges(void)805 static void fadump_setup_crash_memory_ranges(void)
806 {
807 struct memblock_region *reg;
808 unsigned long long start, end;
809
810 pr_debug("Setup crash memory ranges.\n");
811 crash_mem_ranges = 0;
812 /*
813 * add the first memory chunk (RMA_START through boot_memory_size) as
814 * a separate memory chunk. The reason is, at the time crash firmware
815 * will move the content of this memory chunk to different location
816 * specified during fadump registration. We need to create a separate
817 * program header for this chunk with the correct offset.
818 */
819 fadump_add_crash_memory(RMA_START, fw_dump.boot_memory_size);
820
821 for_each_memblock(memory, reg) {
822 start = (unsigned long long)reg->base;
823 end = start + (unsigned long long)reg->size;
824 if (start == RMA_START && end >= fw_dump.boot_memory_size)
825 start = fw_dump.boot_memory_size;
826
827 /* add this range excluding the reserved dump area. */
828 fadump_exclude_reserved_area(start, end);
829 }
830 }
831
832 /*
833 * If the given physical address falls within the boot memory region then
834 * return the relocated address that points to the dump region reserved
835 * for saving initial boot memory contents.
836 */
fadump_relocate(unsigned long paddr)837 static inline unsigned long fadump_relocate(unsigned long paddr)
838 {
839 if (paddr > RMA_START && paddr < fw_dump.boot_memory_size)
840 return be64_to_cpu(fdm.rmr_region.destination_address) + paddr;
841 else
842 return paddr;
843 }
844
fadump_create_elfcore_headers(char * bufp)845 static int fadump_create_elfcore_headers(char *bufp)
846 {
847 struct elfhdr *elf;
848 struct elf_phdr *phdr;
849 int i;
850
851 fadump_init_elfcore_header(bufp);
852 elf = (struct elfhdr *)bufp;
853 bufp += sizeof(struct elfhdr);
854
855 /*
856 * setup ELF PT_NOTE, place holder for cpu notes info. The notes info
857 * will be populated during second kernel boot after crash. Hence
858 * this PT_NOTE will always be the first elf note.
859 *
860 * NOTE: Any new ELF note addition should be placed after this note.
861 */
862 phdr = (struct elf_phdr *)bufp;
863 bufp += sizeof(struct elf_phdr);
864 phdr->p_type = PT_NOTE;
865 phdr->p_flags = 0;
866 phdr->p_vaddr = 0;
867 phdr->p_align = 0;
868
869 phdr->p_offset = 0;
870 phdr->p_paddr = 0;
871 phdr->p_filesz = 0;
872 phdr->p_memsz = 0;
873
874 (elf->e_phnum)++;
875
876 /* setup ELF PT_NOTE for vmcoreinfo */
877 phdr = (struct elf_phdr *)bufp;
878 bufp += sizeof(struct elf_phdr);
879 phdr->p_type = PT_NOTE;
880 phdr->p_flags = 0;
881 phdr->p_vaddr = 0;
882 phdr->p_align = 0;
883
884 phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
885 phdr->p_offset = phdr->p_paddr;
886 phdr->p_memsz = vmcoreinfo_max_size;
887 phdr->p_filesz = vmcoreinfo_max_size;
888
889 /* Increment number of program headers. */
890 (elf->e_phnum)++;
891
892 /* setup PT_LOAD sections. */
893
894 for (i = 0; i < crash_mem_ranges; i++) {
895 unsigned long long mbase, msize;
896 mbase = crash_memory_ranges[i].base;
897 msize = crash_memory_ranges[i].size;
898
899 if (!msize)
900 continue;
901
902 phdr = (struct elf_phdr *)bufp;
903 bufp += sizeof(struct elf_phdr);
904 phdr->p_type = PT_LOAD;
905 phdr->p_flags = PF_R|PF_W|PF_X;
906 phdr->p_offset = mbase;
907
908 if (mbase == RMA_START) {
909 /*
910 * The entire RMA region will be moved by firmware
911 * to the specified destination_address. Hence set
912 * the correct offset.
913 */
914 phdr->p_offset = be64_to_cpu(fdm.rmr_region.destination_address);
915 }
916
917 phdr->p_paddr = mbase;
918 phdr->p_vaddr = (unsigned long)__va(mbase);
919 phdr->p_filesz = msize;
920 phdr->p_memsz = msize;
921 phdr->p_align = 0;
922
923 /* Increment number of program headers. */
924 (elf->e_phnum)++;
925 }
926 return 0;
927 }
928
init_fadump_header(unsigned long addr)929 static unsigned long init_fadump_header(unsigned long addr)
930 {
931 struct fadump_crash_info_header *fdh;
932
933 if (!addr)
934 return 0;
935
936 fw_dump.fadumphdr_addr = addr;
937 fdh = __va(addr);
938 addr += sizeof(struct fadump_crash_info_header);
939
940 memset(fdh, 0, sizeof(struct fadump_crash_info_header));
941 fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
942 fdh->elfcorehdr_addr = addr;
943 /* We will set the crashing cpu id in crash_fadump() during crash. */
944 fdh->crashing_cpu = CPU_UNKNOWN;
945
946 return addr;
947 }
948
register_fadump(void)949 static void register_fadump(void)
950 {
951 unsigned long addr;
952 void *vaddr;
953
954 /*
955 * If no memory is reserved then we can not register for firmware-
956 * assisted dump.
957 */
958 if (!fw_dump.reserve_dump_area_size)
959 return;
960
961 fadump_setup_crash_memory_ranges();
962
963 addr = be64_to_cpu(fdm.rmr_region.destination_address) + be64_to_cpu(fdm.rmr_region.source_len);
964 /* Initialize fadump crash info header. */
965 addr = init_fadump_header(addr);
966 vaddr = __va(addr);
967
968 pr_debug("Creating ELF core headers at %#016lx\n", addr);
969 fadump_create_elfcore_headers(vaddr);
970
971 /* register the future kernel dump with firmware. */
972 register_fw_dump(&fdm);
973 }
974
fadump_unregister_dump(struct fadump_mem_struct * fdm)975 static int fadump_unregister_dump(struct fadump_mem_struct *fdm)
976 {
977 int rc = 0;
978 unsigned int wait_time;
979
980 pr_debug("Un-register firmware-assisted dump\n");
981
982 /* TODO: Add upper time limit for the delay */
983 do {
984 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
985 FADUMP_UNREGISTER, fdm,
986 sizeof(struct fadump_mem_struct));
987
988 wait_time = rtas_busy_delay_time(rc);
989 if (wait_time)
990 mdelay(wait_time);
991 } while (wait_time);
992
993 if (rc) {
994 printk(KERN_ERR "Failed to un-register firmware-assisted dump."
995 " unexpected error(%d).\n", rc);
996 return rc;
997 }
998 fw_dump.dump_registered = 0;
999 return 0;
1000 }
1001
fadump_invalidate_dump(struct fadump_mem_struct * fdm)1002 static int fadump_invalidate_dump(struct fadump_mem_struct *fdm)
1003 {
1004 int rc = 0;
1005 unsigned int wait_time;
1006
1007 pr_debug("Invalidating firmware-assisted dump registration\n");
1008
1009 /* TODO: Add upper time limit for the delay */
1010 do {
1011 rc = rtas_call(fw_dump.ibm_configure_kernel_dump, 3, 1, NULL,
1012 FADUMP_INVALIDATE, fdm,
1013 sizeof(struct fadump_mem_struct));
1014
1015 wait_time = rtas_busy_delay_time(rc);
1016 if (wait_time)
1017 mdelay(wait_time);
1018 } while (wait_time);
1019
1020 if (rc) {
1021 pr_err("Failed to invalidate firmware-assisted dump registration. Unexpected error (%d).\n", rc);
1022 return rc;
1023 }
1024 fw_dump.dump_active = 0;
1025 fdm_active = NULL;
1026 return 0;
1027 }
1028
fadump_cleanup(void)1029 void fadump_cleanup(void)
1030 {
1031 /* Invalidate the registration only if dump is active. */
1032 if (fw_dump.dump_active) {
1033 init_fadump_mem_struct(&fdm,
1034 be64_to_cpu(fdm_active->cpu_state_data.destination_address));
1035 fadump_invalidate_dump(&fdm);
1036 }
1037 }
1038
1039 /*
1040 * Release the memory that was reserved in early boot to preserve the memory
1041 * contents. The released memory will be available for general use.
1042 */
fadump_release_memory(unsigned long begin,unsigned long end)1043 static void fadump_release_memory(unsigned long begin, unsigned long end)
1044 {
1045 unsigned long addr;
1046 unsigned long ra_start, ra_end;
1047
1048 ra_start = fw_dump.reserve_dump_area_start;
1049 ra_end = ra_start + fw_dump.reserve_dump_area_size;
1050
1051 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1052 /*
1053 * exclude the dump reserve area. Will reuse it for next
1054 * fadump registration.
1055 */
1056 if (addr <= ra_end && ((addr + PAGE_SIZE) > ra_start))
1057 continue;
1058
1059 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT));
1060 }
1061 }
1062
fadump_invalidate_release_mem(void)1063 static void fadump_invalidate_release_mem(void)
1064 {
1065 unsigned long reserved_area_start, reserved_area_end;
1066 unsigned long destination_address;
1067
1068 mutex_lock(&fadump_mutex);
1069 if (!fw_dump.dump_active) {
1070 mutex_unlock(&fadump_mutex);
1071 return;
1072 }
1073
1074 destination_address = be64_to_cpu(fdm_active->cpu_state_data.destination_address);
1075 fadump_cleanup();
1076 mutex_unlock(&fadump_mutex);
1077
1078 /*
1079 * Save the current reserved memory bounds we will require them
1080 * later for releasing the memory for general use.
1081 */
1082 reserved_area_start = fw_dump.reserve_dump_area_start;
1083 reserved_area_end = reserved_area_start +
1084 fw_dump.reserve_dump_area_size;
1085 /*
1086 * Setup reserve_dump_area_start and its size so that we can
1087 * reuse this reserved memory for Re-registration.
1088 */
1089 fw_dump.reserve_dump_area_start = destination_address;
1090 fw_dump.reserve_dump_area_size = get_fadump_area_size();
1091
1092 fadump_release_memory(reserved_area_start, reserved_area_end);
1093 if (fw_dump.cpu_notes_buf) {
1094 fadump_cpu_notes_buf_free(
1095 (unsigned long)__va(fw_dump.cpu_notes_buf),
1096 fw_dump.cpu_notes_buf_size);
1097 fw_dump.cpu_notes_buf = 0;
1098 fw_dump.cpu_notes_buf_size = 0;
1099 }
1100 /* Initialize the kernel dump memory structure for FAD registration. */
1101 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1102 }
1103
fadump_release_memory_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1104 static ssize_t fadump_release_memory_store(struct kobject *kobj,
1105 struct kobj_attribute *attr,
1106 const char *buf, size_t count)
1107 {
1108 if (!fw_dump.dump_active)
1109 return -EPERM;
1110
1111 if (buf[0] == '1') {
1112 /*
1113 * Take away the '/proc/vmcore'. We are releasing the dump
1114 * memory, hence it will not be valid anymore.
1115 */
1116 #ifdef CONFIG_PROC_VMCORE
1117 vmcore_cleanup();
1118 #endif
1119 fadump_invalidate_release_mem();
1120
1121 } else
1122 return -EINVAL;
1123 return count;
1124 }
1125
fadump_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1126 static ssize_t fadump_enabled_show(struct kobject *kobj,
1127 struct kobj_attribute *attr,
1128 char *buf)
1129 {
1130 return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
1131 }
1132
fadump_register_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1133 static ssize_t fadump_register_show(struct kobject *kobj,
1134 struct kobj_attribute *attr,
1135 char *buf)
1136 {
1137 return sprintf(buf, "%d\n", fw_dump.dump_registered);
1138 }
1139
fadump_register_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1140 static ssize_t fadump_register_store(struct kobject *kobj,
1141 struct kobj_attribute *attr,
1142 const char *buf, size_t count)
1143 {
1144 int ret = 0;
1145
1146 if (!fw_dump.fadump_enabled || fdm_active)
1147 return -EPERM;
1148
1149 mutex_lock(&fadump_mutex);
1150
1151 switch (buf[0]) {
1152 case '0':
1153 if (fw_dump.dump_registered == 0) {
1154 ret = -EINVAL;
1155 goto unlock_out;
1156 }
1157 /* Un-register Firmware-assisted dump */
1158 fadump_unregister_dump(&fdm);
1159 break;
1160 case '1':
1161 if (fw_dump.dump_registered == 1) {
1162 ret = -EINVAL;
1163 goto unlock_out;
1164 }
1165 /* Register Firmware-assisted dump */
1166 register_fadump();
1167 break;
1168 default:
1169 ret = -EINVAL;
1170 break;
1171 }
1172
1173 unlock_out:
1174 mutex_unlock(&fadump_mutex);
1175 return ret < 0 ? ret : count;
1176 }
1177
fadump_region_show(struct seq_file * m,void * private)1178 static int fadump_region_show(struct seq_file *m, void *private)
1179 {
1180 const struct fadump_mem_struct *fdm_ptr;
1181
1182 if (!fw_dump.fadump_enabled)
1183 return 0;
1184
1185 mutex_lock(&fadump_mutex);
1186 if (fdm_active)
1187 fdm_ptr = fdm_active;
1188 else {
1189 mutex_unlock(&fadump_mutex);
1190 fdm_ptr = &fdm;
1191 }
1192
1193 seq_printf(m,
1194 "CPU : [%#016llx-%#016llx] %#llx bytes, "
1195 "Dumped: %#llx\n",
1196 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address),
1197 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) +
1198 be64_to_cpu(fdm_ptr->cpu_state_data.source_len) - 1,
1199 be64_to_cpu(fdm_ptr->cpu_state_data.source_len),
1200 be64_to_cpu(fdm_ptr->cpu_state_data.bytes_dumped));
1201 seq_printf(m,
1202 "HPTE: [%#016llx-%#016llx] %#llx bytes, "
1203 "Dumped: %#llx\n",
1204 be64_to_cpu(fdm_ptr->hpte_region.destination_address),
1205 be64_to_cpu(fdm_ptr->hpte_region.destination_address) +
1206 be64_to_cpu(fdm_ptr->hpte_region.source_len) - 1,
1207 be64_to_cpu(fdm_ptr->hpte_region.source_len),
1208 be64_to_cpu(fdm_ptr->hpte_region.bytes_dumped));
1209 seq_printf(m,
1210 "DUMP: [%#016llx-%#016llx] %#llx bytes, "
1211 "Dumped: %#llx\n",
1212 be64_to_cpu(fdm_ptr->rmr_region.destination_address),
1213 be64_to_cpu(fdm_ptr->rmr_region.destination_address) +
1214 be64_to_cpu(fdm_ptr->rmr_region.source_len) - 1,
1215 be64_to_cpu(fdm_ptr->rmr_region.source_len),
1216 be64_to_cpu(fdm_ptr->rmr_region.bytes_dumped));
1217
1218 if (!fdm_active ||
1219 (fw_dump.reserve_dump_area_start ==
1220 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address)))
1221 goto out;
1222
1223 /* Dump is active. Show reserved memory region. */
1224 seq_printf(m,
1225 " : [%#016llx-%#016llx] %#llx bytes, "
1226 "Dumped: %#llx\n",
1227 (unsigned long long)fw_dump.reserve_dump_area_start,
1228 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) - 1,
1229 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1230 fw_dump.reserve_dump_area_start,
1231 be64_to_cpu(fdm_ptr->cpu_state_data.destination_address) -
1232 fw_dump.reserve_dump_area_start);
1233 out:
1234 if (fdm_active)
1235 mutex_unlock(&fadump_mutex);
1236 return 0;
1237 }
1238
1239 static struct kobj_attribute fadump_release_attr = __ATTR(fadump_release_mem,
1240 0200, NULL,
1241 fadump_release_memory_store);
1242 static struct kobj_attribute fadump_attr = __ATTR(fadump_enabled,
1243 0444, fadump_enabled_show,
1244 NULL);
1245 static struct kobj_attribute fadump_register_attr = __ATTR(fadump_registered,
1246 0644, fadump_register_show,
1247 fadump_register_store);
1248
fadump_region_open(struct inode * inode,struct file * file)1249 static int fadump_region_open(struct inode *inode, struct file *file)
1250 {
1251 return single_open(file, fadump_region_show, inode->i_private);
1252 }
1253
1254 static const struct file_operations fadump_region_fops = {
1255 .open = fadump_region_open,
1256 .read = seq_read,
1257 .llseek = seq_lseek,
1258 .release = single_release,
1259 };
1260
fadump_init_files(void)1261 static void fadump_init_files(void)
1262 {
1263 struct dentry *debugfs_file;
1264 int rc = 0;
1265
1266 rc = sysfs_create_file(kernel_kobj, &fadump_attr.attr);
1267 if (rc)
1268 printk(KERN_ERR "fadump: unable to create sysfs file"
1269 " fadump_enabled (%d)\n", rc);
1270
1271 rc = sysfs_create_file(kernel_kobj, &fadump_register_attr.attr);
1272 if (rc)
1273 printk(KERN_ERR "fadump: unable to create sysfs file"
1274 " fadump_registered (%d)\n", rc);
1275
1276 debugfs_file = debugfs_create_file("fadump_region", 0444,
1277 powerpc_debugfs_root, NULL,
1278 &fadump_region_fops);
1279 if (!debugfs_file)
1280 printk(KERN_ERR "fadump: unable to create debugfs file"
1281 " fadump_region\n");
1282
1283 if (fw_dump.dump_active) {
1284 rc = sysfs_create_file(kernel_kobj, &fadump_release_attr.attr);
1285 if (rc)
1286 printk(KERN_ERR "fadump: unable to create sysfs file"
1287 " fadump_release_mem (%d)\n", rc);
1288 }
1289 return;
1290 }
1291
1292 /*
1293 * Prepare for firmware-assisted dump.
1294 */
setup_fadump(void)1295 int __init setup_fadump(void)
1296 {
1297 if (!fw_dump.fadump_enabled)
1298 return 0;
1299
1300 if (!fw_dump.fadump_supported) {
1301 printk(KERN_ERR "Firmware-assisted dump is not supported on"
1302 " this hardware\n");
1303 return 0;
1304 }
1305
1306 fadump_show_config();
1307 /*
1308 * If dump data is available then see if it is valid and prepare for
1309 * saving it to the disk.
1310 */
1311 if (fw_dump.dump_active) {
1312 /*
1313 * if dump process fails then invalidate the registration
1314 * and release memory before proceeding for re-registration.
1315 */
1316 if (process_fadump(fdm_active) < 0)
1317 fadump_invalidate_release_mem();
1318 }
1319 /* Initialize the kernel dump memory structure for FAD registration. */
1320 else if (fw_dump.reserve_dump_area_size)
1321 init_fadump_mem_struct(&fdm, fw_dump.reserve_dump_area_start);
1322 fadump_init_files();
1323
1324 return 1;
1325 }
1326 subsys_initcall(setup_fadump);
1327