• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *
3  * Common boot and setup code.
4  *
5  * Copyright (C) 2001 PPC64 Team, IBM Corp
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12 
13 #define DEBUG
14 
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/memory.h>
39 #include <linux/nmi.h>
40 #include <linux/debugfs.h>
41 
42 #include <asm/io.h>
43 #include <asm/kdump.h>
44 #include <asm/prom.h>
45 #include <asm/processor.h>
46 #include <asm/pgtable.h>
47 #include <asm/smp.h>
48 #include <asm/elf.h>
49 #include <asm/machdep.h>
50 #include <asm/paca.h>
51 #include <asm/time.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/btext.h>
55 #include <asm/nvram.h>
56 #include <asm/setup.h>
57 #include <asm/rtas.h>
58 #include <asm/iommu.h>
59 #include <asm/serial.h>
60 #include <asm/cache.h>
61 #include <asm/page.h>
62 #include <asm/mmu.h>
63 #include <asm/firmware.h>
64 #include <asm/xmon.h>
65 #include <asm/udbg.h>
66 #include <asm/kexec.h>
67 #include <asm/code-patching.h>
68 #include <asm/livepatch.h>
69 #include <asm/opal.h>
70 #include <asm/cputhreads.h>
71 
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77 
78 int spinning_secondaries;
79 u64 ppc64_pft_size;
80 
81 /* Pick defaults since we might want to patch instructions
82  * before we've read this from the device tree.
83  */
84 struct ppc64_caches ppc64_caches = {
85 	.dline_size = 0x40,
86 	.log_dline_size = 6,
87 	.iline_size = 0x40,
88 	.log_iline_size = 6
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91 
92 /*
93  * These are used in binfmt_elf.c to put aux entries on the stack
94  * for each elf executable being started.
95  */
96 int dcache_bsize;
97 int icache_bsize;
98 int ucache_bsize;
99 
100 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
setup_tlb_core_data(void)101 void __init setup_tlb_core_data(void)
102 {
103 	int cpu;
104 
105 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
106 
107 	for_each_possible_cpu(cpu) {
108 		int first = cpu_first_thread_sibling(cpu);
109 
110 		/*
111 		 * If we boot via kdump on a non-primary thread,
112 		 * make sure we point at the thread that actually
113 		 * set up this TLB.
114 		 */
115 		if (cpu_first_thread_sibling(boot_cpuid) == first)
116 			first = boot_cpuid;
117 
118 		paca[cpu].tcd_ptr = &paca[first].tcd;
119 
120 		/*
121 		 * If we have threads, we need either tlbsrx.
122 		 * or e6500 tablewalk mode, or else TLB handlers
123 		 * will be racy and could produce duplicate entries.
124 		 */
125 		if (smt_enabled_at_boot >= 2 &&
126 		    !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
127 		    book3e_htw_mode != PPC_HTW_E6500) {
128 			/* Should we panic instead? */
129 			WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
130 				  __func__);
131 		}
132 	}
133 }
134 #endif
135 
136 #ifdef CONFIG_SMP
137 
138 static char *smt_enabled_cmdline;
139 
140 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)141 void __init check_smt_enabled(void)
142 {
143 	struct device_node *dn;
144 	const char *smt_option;
145 
146 	/* Default to enabling all threads */
147 	smt_enabled_at_boot = threads_per_core;
148 
149 	/* Allow the command line to overrule the OF option */
150 	if (smt_enabled_cmdline) {
151 		if (!strcmp(smt_enabled_cmdline, "on"))
152 			smt_enabled_at_boot = threads_per_core;
153 		else if (!strcmp(smt_enabled_cmdline, "off"))
154 			smt_enabled_at_boot = 0;
155 		else {
156 			int smt;
157 			int rc;
158 
159 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
160 			if (!rc)
161 				smt_enabled_at_boot =
162 					min(threads_per_core, smt);
163 		}
164 	} else {
165 		dn = of_find_node_by_path("/options");
166 		if (dn) {
167 			smt_option = of_get_property(dn, "ibm,smt-enabled",
168 						     NULL);
169 
170 			if (smt_option) {
171 				if (!strcmp(smt_option, "on"))
172 					smt_enabled_at_boot = threads_per_core;
173 				else if (!strcmp(smt_option, "off"))
174 					smt_enabled_at_boot = 0;
175 			}
176 
177 			of_node_put(dn);
178 		}
179 	}
180 }
181 
182 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)183 static int __init early_smt_enabled(char *p)
184 {
185 	smt_enabled_cmdline = p;
186 	return 0;
187 }
188 early_param("smt-enabled", early_smt_enabled);
189 
190 #endif /* CONFIG_SMP */
191 
192 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(void)193 static void __init fixup_boot_paca(void)
194 {
195 	/* The boot cpu is started */
196 	get_paca()->cpu_start = 1;
197 	/* Allow percpu accesses to work until we setup percpu data */
198 	get_paca()->data_offset = 0;
199 }
200 
configure_exceptions(void)201 static void __init configure_exceptions(void)
202 {
203 	/*
204 	 * Setup the trampolines from the lowmem exception vectors
205 	 * to the kdump kernel when not using a relocatable kernel.
206 	 */
207 	setup_kdump_trampoline();
208 
209 	/* Under a PAPR hypervisor, we need hypercalls */
210 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
211 		/* Enable AIL if possible */
212 		pseries_enable_reloc_on_exc();
213 
214 		/*
215 		 * Tell the hypervisor that we want our exceptions to
216 		 * be taken in little endian mode.
217 		 *
218 		 * We don't call this for big endian as our calling convention
219 		 * makes us always enter in BE, and the call may fail under
220 		 * some circumstances with kdump.
221 		 */
222 #ifdef __LITTLE_ENDIAN__
223 		pseries_little_endian_exceptions();
224 #endif
225 	} else {
226 		/* Set endian mode using OPAL */
227 		if (firmware_has_feature(FW_FEATURE_OPAL))
228 			opal_configure_cores();
229 
230 		/* AIL on native is done in cpu_ready_for_interrupts() */
231 	}
232 }
233 
cpu_ready_for_interrupts(void)234 static void cpu_ready_for_interrupts(void)
235 {
236 	/*
237 	 * Enable AIL if supported, and we are in hypervisor mode. This
238 	 * is called once for every processor.
239 	 *
240 	 * If we are not in hypervisor mode the job is done once for
241 	 * the whole partition in configure_exceptions().
242 	 */
243 	if (early_cpu_has_feature(CPU_FTR_HVMODE) &&
244 	    early_cpu_has_feature(CPU_FTR_ARCH_207S)) {
245 		unsigned long lpcr = mfspr(SPRN_LPCR);
246 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
247 	}
248 
249 	/*
250 	 * Fixup HFSCR:TM based on CPU features. The bit is set by our
251 	 * early asm init because at that point we haven't updated our
252 	 * CPU features from firmware and device-tree. Here we have,
253 	 * so let's do it.
254 	 */
255 	if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
256 		mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
257 
258 	/* Set IR and DR in PACA MSR */
259 	get_paca()->kernel_msr = MSR_KERNEL;
260 }
261 
262 /*
263  * Early initialization entry point. This is called by head.S
264  * with MMU translation disabled. We rely on the "feature" of
265  * the CPU that ignores the top 2 bits of the address in real
266  * mode so we can access kernel globals normally provided we
267  * only toy with things in the RMO region. From here, we do
268  * some early parsing of the device-tree to setup out MEMBLOCK
269  * data structures, and allocate & initialize the hash table
270  * and segment tables so we can start running with translation
271  * enabled.
272  *
273  * It is this function which will call the probe() callback of
274  * the various platform types and copy the matching one to the
275  * global ppc_md structure. Your platform can eventually do
276  * some very early initializations from the probe() routine, but
277  * this is not recommended, be very careful as, for example, the
278  * device-tree is not accessible via normal means at this point.
279  */
280 
early_setup(unsigned long dt_ptr)281 void __init early_setup(unsigned long dt_ptr)
282 {
283 	static __initdata struct paca_struct boot_paca;
284 
285 	/* -------- printk is _NOT_ safe to use here ! ------- */
286 
287 	/* Identify CPU type */
288 	identify_cpu(0, mfspr(SPRN_PVR));
289 
290 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
291 	initialise_paca(&boot_paca, 0);
292 	setup_paca(&boot_paca);
293 	fixup_boot_paca();
294 
295 	/* -------- printk is now safe to use ------- */
296 
297 	/* Enable early debugging if any specified (see udbg.h) */
298 	udbg_early_init();
299 
300  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
301 
302 	/*
303 	 * Do early initialization using the flattened device
304 	 * tree, such as retrieving the physical memory map or
305 	 * calculating/retrieving the hash table size.
306 	 */
307 	early_init_devtree(__va(dt_ptr));
308 
309 	/* Now we know the logical id of our boot cpu, setup the paca. */
310 	setup_paca(&paca[boot_cpuid]);
311 	fixup_boot_paca();
312 
313 	/*
314 	 * Configure exception handlers. This include setting up trampolines
315 	 * if needed, setting exception endian mode, etc...
316 	 */
317 	configure_exceptions();
318 
319 	/* Apply all the dynamic patching */
320 	apply_feature_fixups();
321 	setup_feature_keys();
322 
323 	/* Initialize the hash table or TLB handling */
324 	early_init_mmu();
325 
326 	/*
327 	 * At this point, we can let interrupts switch to virtual mode
328 	 * (the MMU has been setup), so adjust the MSR in the PACA to
329 	 * have IR and DR set and enable AIL if it exists
330 	 */
331 	cpu_ready_for_interrupts();
332 
333 	DBG(" <- early_setup()\n");
334 
335 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
336 	/*
337 	 * This needs to be done *last* (after the above DBG() even)
338 	 *
339 	 * Right after we return from this function, we turn on the MMU
340 	 * which means the real-mode access trick that btext does will
341 	 * no longer work, it needs to switch to using a real MMU
342 	 * mapping. This call will ensure that it does
343 	 */
344 	btext_map();
345 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
346 }
347 
348 #ifdef CONFIG_SMP
early_setup_secondary(void)349 void early_setup_secondary(void)
350 {
351 	/* Mark interrupts disabled in PACA */
352 	get_paca()->soft_enabled = 0;
353 
354 	/* Initialize the hash table or TLB handling */
355 	early_init_mmu_secondary();
356 
357 	/*
358 	 * At this point, we can let interrupts switch to virtual mode
359 	 * (the MMU has been setup), so adjust the MSR in the PACA to
360 	 * have IR and DR set.
361 	 */
362 	cpu_ready_for_interrupts();
363 }
364 
365 #endif /* CONFIG_SMP */
366 
367 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
use_spinloop(void)368 static bool use_spinloop(void)
369 {
370 	if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
371 		return true;
372 
373 	/*
374 	 * When book3e boots from kexec, the ePAPR spin table does
375 	 * not get used.
376 	 */
377 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
378 }
379 
smp_release_cpus(void)380 void smp_release_cpus(void)
381 {
382 	unsigned long *ptr;
383 	int i;
384 
385 	if (!use_spinloop())
386 		return;
387 
388 	DBG(" -> smp_release_cpus()\n");
389 
390 	/* All secondary cpus are spinning on a common spinloop, release them
391 	 * all now so they can start to spin on their individual paca
392 	 * spinloops. For non SMP kernels, the secondary cpus never get out
393 	 * of the common spinloop.
394 	 */
395 
396 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
397 			- PHYSICAL_START);
398 	*ptr = ppc_function_entry(generic_secondary_smp_init);
399 
400 	/* And wait a bit for them to catch up */
401 	for (i = 0; i < 100000; i++) {
402 		mb();
403 		HMT_low();
404 		if (spinning_secondaries == 0)
405 			break;
406 		udelay(1);
407 	}
408 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
409 
410 	DBG(" <- smp_release_cpus()\n");
411 }
412 #endif /* CONFIG_SMP || CONFIG_KEXEC */
413 
414 /*
415  * Initialize some remaining members of the ppc64_caches and systemcfg
416  * structures
417  * (at least until we get rid of them completely). This is mostly some
418  * cache informations about the CPU that will be used by cache flush
419  * routines and/or provided to userland
420  */
initialize_cache_info(void)421 void __init initialize_cache_info(void)
422 {
423 	struct device_node *np;
424 	unsigned long num_cpus = 0;
425 
426 	DBG(" -> initialize_cache_info()\n");
427 
428 	for_each_node_by_type(np, "cpu") {
429 		num_cpus += 1;
430 
431 		/*
432 		 * We're assuming *all* of the CPUs have the same
433 		 * d-cache and i-cache sizes... -Peter
434 		 */
435 		if (num_cpus == 1) {
436 			const __be32 *sizep, *lsizep;
437 			u32 size, lsize;
438 
439 			size = 0;
440 			lsize = cur_cpu_spec->dcache_bsize;
441 			sizep = of_get_property(np, "d-cache-size", NULL);
442 			if (sizep != NULL)
443 				size = be32_to_cpu(*sizep);
444 			lsizep = of_get_property(np, "d-cache-block-size",
445 						 NULL);
446 			/* fallback if block size missing */
447 			if (lsizep == NULL)
448 				lsizep = of_get_property(np,
449 							 "d-cache-line-size",
450 							 NULL);
451 			if (lsizep != NULL)
452 				lsize = be32_to_cpu(*lsizep);
453 			if (sizep == NULL || lsizep == NULL)
454 				DBG("Argh, can't find dcache properties ! "
455 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
456 
457 			ppc64_caches.dsize = size;
458 			ppc64_caches.dline_size = lsize;
459 			ppc64_caches.log_dline_size = __ilog2(lsize);
460 			ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
461 
462 			size = 0;
463 			lsize = cur_cpu_spec->icache_bsize;
464 			sizep = of_get_property(np, "i-cache-size", NULL);
465 			if (sizep != NULL)
466 				size = be32_to_cpu(*sizep);
467 			lsizep = of_get_property(np, "i-cache-block-size",
468 						 NULL);
469 			if (lsizep == NULL)
470 				lsizep = of_get_property(np,
471 							 "i-cache-line-size",
472 							 NULL);
473 			if (lsizep != NULL)
474 				lsize = be32_to_cpu(*lsizep);
475 			if (sizep == NULL || lsizep == NULL)
476 				DBG("Argh, can't find icache properties ! "
477 				    "sizep: %p, lsizep: %p\n", sizep, lsizep);
478 
479 			ppc64_caches.isize = size;
480 			ppc64_caches.iline_size = lsize;
481 			ppc64_caches.log_iline_size = __ilog2(lsize);
482 			ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
483 		}
484 	}
485 
486 	/* For use by binfmt_elf */
487 	dcache_bsize = ppc64_caches.dline_size;
488 	icache_bsize = ppc64_caches.iline_size;
489 
490 	DBG(" <- initialize_cache_info()\n");
491 }
492 
493 /* This returns the limit below which memory accesses to the linear
494  * mapping are guarnateed not to cause a TLB or SLB miss. This is
495  * used to allocate interrupt or emergency stacks for which our
496  * exception entry path doesn't deal with being interrupted.
497  */
safe_stack_limit(void)498 static __init u64 safe_stack_limit(void)
499 {
500 #ifdef CONFIG_PPC_BOOK3E
501 	/* Freescale BookE bolts the entire linear mapping */
502 	if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
503 		return linear_map_top;
504 	/* Other BookE, we assume the first GB is bolted */
505 	return 1ul << 30;
506 #else
507 	/* BookS, the first segment is bolted */
508 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
509 		return 1UL << SID_SHIFT_1T;
510 	return 1UL << SID_SHIFT;
511 #endif
512 }
513 
irqstack_early_init(void)514 void __init irqstack_early_init(void)
515 {
516 	u64 limit = safe_stack_limit();
517 	unsigned int i;
518 
519 	/*
520 	 * Interrupt stacks must be in the first segment since we
521 	 * cannot afford to take SLB misses on them.
522 	 */
523 	for_each_possible_cpu(i) {
524 		softirq_ctx[i] = (struct thread_info *)
525 			__va(memblock_alloc_base(THREAD_SIZE,
526 					    THREAD_SIZE, limit));
527 		hardirq_ctx[i] = (struct thread_info *)
528 			__va(memblock_alloc_base(THREAD_SIZE,
529 					    THREAD_SIZE, limit));
530 	}
531 }
532 
533 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)534 void __init exc_lvl_early_init(void)
535 {
536 	unsigned int i;
537 	unsigned long sp;
538 
539 	for_each_possible_cpu(i) {
540 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
541 		critirq_ctx[i] = (struct thread_info *)__va(sp);
542 		paca[i].crit_kstack = __va(sp + THREAD_SIZE);
543 
544 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
545 		dbgirq_ctx[i] = (struct thread_info *)__va(sp);
546 		paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
547 
548 		sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
549 		mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
550 		paca[i].mc_kstack = __va(sp + THREAD_SIZE);
551 	}
552 
553 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
554 		patch_exception(0x040, exc_debug_debug_book3e);
555 }
556 #endif
557 
558 /*
559  * Stack space used when we detect a bad kernel stack pointer, and
560  * early in SMP boots before relocation is enabled. Exclusive emergency
561  * stack for machine checks.
562  */
emergency_stack_init(void)563 void __init emergency_stack_init(void)
564 {
565 	u64 limit;
566 	unsigned int i;
567 
568 	/*
569 	 * Emergency stacks must be under 256MB, we cannot afford to take
570 	 * SLB misses on them. The ABI also requires them to be 128-byte
571 	 * aligned.
572 	 *
573 	 * Since we use these as temporary stacks during secondary CPU
574 	 * bringup, we need to get at them in real mode. This means they
575 	 * must also be within the RMO region.
576 	 */
577 	limit = min(safe_stack_limit(), ppc64_rma_size);
578 
579 	for_each_possible_cpu(i) {
580 		struct thread_info *ti;
581 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
582 		klp_init_thread_info(ti);
583 		paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
584 
585 #ifdef CONFIG_PPC_BOOK3S_64
586 		/* emergency stack for machine check exception handling. */
587 		ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
588 		klp_init_thread_info(ti);
589 		paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
590 #endif
591 	}
592 }
593 
594 #ifdef CONFIG_SMP
595 #define PCPU_DYN_SIZE		()
596 
pcpu_fc_alloc(unsigned int cpu,size_t size,size_t align)597 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
598 {
599 	return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
600 				    __pa(MAX_DMA_ADDRESS));
601 }
602 
pcpu_fc_free(void * ptr,size_t size)603 static void __init pcpu_fc_free(void *ptr, size_t size)
604 {
605 	free_bootmem(__pa(ptr), size);
606 }
607 
pcpu_cpu_distance(unsigned int from,unsigned int to)608 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
609 {
610 	if (cpu_to_node(from) == cpu_to_node(to))
611 		return LOCAL_DISTANCE;
612 	else
613 		return REMOTE_DISTANCE;
614 }
615 
616 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
617 EXPORT_SYMBOL(__per_cpu_offset);
618 
setup_per_cpu_areas(void)619 void __init setup_per_cpu_areas(void)
620 {
621 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
622 	size_t atom_size;
623 	unsigned long delta;
624 	unsigned int cpu;
625 	int rc;
626 
627 	/*
628 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
629 	 * to group units.  For larger mappings, use 1M atom which
630 	 * should be large enough to contain a number of units.
631 	 */
632 	if (mmu_linear_psize == MMU_PAGE_4K)
633 		atom_size = PAGE_SIZE;
634 	else
635 		atom_size = 1 << 20;
636 
637 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
638 				    pcpu_fc_alloc, pcpu_fc_free);
639 	if (rc < 0)
640 		panic("cannot initialize percpu area (err=%d)", rc);
641 
642 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
643 	for_each_possible_cpu(cpu) {
644                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
645 		paca[cpu].data_offset = __per_cpu_offset[cpu];
646 	}
647 }
648 #endif
649 
650 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory_block_size_bytes(void)651 unsigned long memory_block_size_bytes(void)
652 {
653 	if (ppc_md.memory_block_size)
654 		return ppc_md.memory_block_size();
655 
656 	return MIN_MEMORY_BLOCK_SIZE;
657 }
658 #endif
659 
660 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
661 struct ppc_pci_io ppc_pci_io;
662 EXPORT_SYMBOL(ppc_pci_io);
663 #endif
664 
665 #ifdef CONFIG_HARDLOCKUP_DETECTOR
hw_nmi_get_sample_period(int watchdog_thresh)666 u64 hw_nmi_get_sample_period(int watchdog_thresh)
667 {
668 	return ppc_proc_freq * watchdog_thresh;
669 }
670 
671 /*
672  * The hardlockup detector breaks PMU event based branches and is likely
673  * to get false positives in KVM guests, so disable it by default.
674  */
disable_hardlockup_detector(void)675 static int __init disable_hardlockup_detector(void)
676 {
677 	hardlockup_detector_disable();
678 
679 	return 0;
680 }
681 early_initcall(disable_hardlockup_detector);
682 
683 #ifdef CONFIG_PPC_BOOK3S_64
684 static enum l1d_flush_type enabled_flush_types;
685 static void *l1d_flush_fallback_area;
686 static bool no_rfi_flush;
687 bool rfi_flush;
688 
handle_no_rfi_flush(char * p)689 static int __init handle_no_rfi_flush(char *p)
690 {
691 	pr_info("rfi-flush: disabled on command line.");
692 	no_rfi_flush = true;
693 	return 0;
694 }
695 early_param("no_rfi_flush", handle_no_rfi_flush);
696 
697 /*
698  * The RFI flush is not KPTI, but because users will see doco that says to use
699  * nopti we hijack that option here to also disable the RFI flush.
700  */
handle_no_pti(char * p)701 static int __init handle_no_pti(char *p)
702 {
703 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
704 	handle_no_rfi_flush(NULL);
705 	return 0;
706 }
707 early_param("nopti", handle_no_pti);
708 
do_nothing(void * unused)709 static void do_nothing(void *unused)
710 {
711 	/*
712 	 * We don't need to do the flush explicitly, just enter+exit kernel is
713 	 * sufficient, the RFI exit handlers will do the right thing.
714 	 */
715 }
716 
rfi_flush_enable(bool enable)717 void rfi_flush_enable(bool enable)
718 {
719 	if (rfi_flush == enable)
720 		return;
721 
722 	if (enable) {
723 		do_rfi_flush_fixups(enabled_flush_types);
724 		on_each_cpu(do_nothing, NULL, 1);
725 	} else
726 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
727 
728 	rfi_flush = enable;
729 }
730 
init_fallback_flush(void)731 static void init_fallback_flush(void)
732 {
733 	u64 l1d_size, limit;
734 	int cpu;
735 
736 	l1d_size = ppc64_caches.dsize;
737 	limit = min(safe_stack_limit(), ppc64_rma_size);
738 
739 	/*
740 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
741 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
742 	 * reliably avoid the prefetcher.
743 	 */
744 	l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
745 	memset(l1d_flush_fallback_area, 0, l1d_size * 2);
746 
747 	for_each_possible_cpu(cpu) {
748 		paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
749 		paca[cpu].l1d_flush_size = l1d_size;
750 	}
751 }
752 
setup_rfi_flush(enum l1d_flush_type types,bool enable)753 void __init setup_rfi_flush(enum l1d_flush_type types, bool enable)
754 {
755 	if (types & L1D_FLUSH_FALLBACK) {
756 		pr_info("rfi-flush: Using fallback displacement flush\n");
757 		init_fallback_flush();
758 	}
759 
760 	if (types & L1D_FLUSH_ORI)
761 		pr_info("rfi-flush: Using ori type flush\n");
762 
763 	if (types & L1D_FLUSH_MTTRIG)
764 		pr_info("rfi-flush: Using mttrig type flush\n");
765 
766 	enabled_flush_types = types;
767 
768 	if (!no_rfi_flush)
769 		rfi_flush_enable(enable);
770 }
771 
772 #ifdef CONFIG_DEBUG_FS
rfi_flush_set(void * data,u64 val)773 static int rfi_flush_set(void *data, u64 val)
774 {
775 	if (val == 1)
776 		rfi_flush_enable(true);
777 	else if (val == 0)
778 		rfi_flush_enable(false);
779 	else
780 		return -EINVAL;
781 
782 	return 0;
783 }
784 
rfi_flush_get(void * data,u64 * val)785 static int rfi_flush_get(void *data, u64 *val)
786 {
787 	*val = rfi_flush ? 1 : 0;
788 	return 0;
789 }
790 
791 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
792 
rfi_flush_debugfs_init(void)793 static __init int rfi_flush_debugfs_init(void)
794 {
795 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
796 	return 0;
797 }
798 device_initcall(rfi_flush_debugfs_init);
799 #endif
800 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)801 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
802 {
803 	if (rfi_flush)
804 		return sprintf(buf, "Mitigation: RFI Flush\n");
805 
806 	return sprintf(buf, "Vulnerable\n");
807 }
808 #endif /* CONFIG_PPC_BOOK3S_64 */
809 #endif
810