1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
6 *
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
22 *
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 /*
36 * The functions in this file will not compile correctly with gcc 2.4.x
37 */
38
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
40
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/tcp.h>
51 #include <linux/udp.h>
52 #include <linux/sctp.h>
53 #include <linux/netdevice.h>
54 #ifdef CONFIG_NET_CLS_ACT
55 #include <net/pkt_sched.h>
56 #endif
57 #include <linux/string.h>
58 #include <linux/skbuff.h>
59 #include <linux/splice.h>
60 #include <linux/cache.h>
61 #include <linux/rtnetlink.h>
62 #include <linux/init.h>
63 #include <linux/scatterlist.h>
64 #include <linux/errqueue.h>
65 #include <linux/prefetch.h>
66 #include <linux/if_vlan.h>
67
68 #include <net/protocol.h>
69 #include <net/dst.h>
70 #include <net/sock.h>
71 #include <net/checksum.h>
72 #include <net/ip6_checksum.h>
73 #include <net/xfrm.h>
74
75 #include <asm/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80
81 struct kmem_cache *skbuff_head_cache __read_mostly;
82 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
83 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
84 EXPORT_SYMBOL(sysctl_max_skb_frags);
85
86 /**
87 * skb_panic - private function for out-of-line support
88 * @skb: buffer
89 * @sz: size
90 * @addr: address
91 * @msg: skb_over_panic or skb_under_panic
92 *
93 * Out-of-line support for skb_put() and skb_push().
94 * Called via the wrapper skb_over_panic() or skb_under_panic().
95 * Keep out of line to prevent kernel bloat.
96 * __builtin_return_address is not used because it is not always reliable.
97 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])98 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
99 const char msg[])
100 {
101 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
102 msg, addr, skb->len, sz, skb->head, skb->data,
103 (unsigned long)skb->tail, (unsigned long)skb->end,
104 skb->dev ? skb->dev->name : "<NULL>");
105 BUG();
106 }
107
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)108 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
109 {
110 skb_panic(skb, sz, addr, __func__);
111 }
112
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)113 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
114 {
115 skb_panic(skb, sz, addr, __func__);
116 }
117
118 /*
119 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
120 * the caller if emergency pfmemalloc reserves are being used. If it is and
121 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
122 * may be used. Otherwise, the packet data may be discarded until enough
123 * memory is free
124 */
125 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
126 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
127
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)128 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
129 unsigned long ip, bool *pfmemalloc)
130 {
131 void *obj;
132 bool ret_pfmemalloc = false;
133
134 /*
135 * Try a regular allocation, when that fails and we're not entitled
136 * to the reserves, fail.
137 */
138 obj = kmalloc_node_track_caller(size,
139 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
140 node);
141 if (obj || !(gfp_pfmemalloc_allowed(flags)))
142 goto out;
143
144 /* Try again but now we are using pfmemalloc reserves */
145 ret_pfmemalloc = true;
146 obj = kmalloc_node_track_caller(size, flags, node);
147
148 out:
149 if (pfmemalloc)
150 *pfmemalloc = ret_pfmemalloc;
151
152 return obj;
153 }
154
155 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
156 * 'private' fields and also do memory statistics to find all the
157 * [BEEP] leaks.
158 *
159 */
160
__alloc_skb_head(gfp_t gfp_mask,int node)161 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
162 {
163 struct sk_buff *skb;
164
165 /* Get the HEAD */
166 skb = kmem_cache_alloc_node(skbuff_head_cache,
167 gfp_mask & ~__GFP_DMA, node);
168 if (!skb)
169 goto out;
170
171 /*
172 * Only clear those fields we need to clear, not those that we will
173 * actually initialise below. Hence, don't put any more fields after
174 * the tail pointer in struct sk_buff!
175 */
176 memset(skb, 0, offsetof(struct sk_buff, tail));
177 skb->head = NULL;
178 skb->truesize = sizeof(struct sk_buff);
179 atomic_set(&skb->users, 1);
180
181 skb->mac_header = (typeof(skb->mac_header))~0U;
182 out:
183 return skb;
184 }
185
186 /**
187 * __alloc_skb - allocate a network buffer
188 * @size: size to allocate
189 * @gfp_mask: allocation mask
190 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
191 * instead of head cache and allocate a cloned (child) skb.
192 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
193 * allocations in case the data is required for writeback
194 * @node: numa node to allocate memory on
195 *
196 * Allocate a new &sk_buff. The returned buffer has no headroom and a
197 * tail room of at least size bytes. The object has a reference count
198 * of one. The return is the buffer. On a failure the return is %NULL.
199 *
200 * Buffers may only be allocated from interrupts using a @gfp_mask of
201 * %GFP_ATOMIC.
202 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)203 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
204 int flags, int node)
205 {
206 struct kmem_cache *cache;
207 struct skb_shared_info *shinfo;
208 struct sk_buff *skb;
209 u8 *data;
210 bool pfmemalloc;
211
212 cache = (flags & SKB_ALLOC_FCLONE)
213 ? skbuff_fclone_cache : skbuff_head_cache;
214
215 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
216 gfp_mask |= __GFP_MEMALLOC;
217
218 /* Get the HEAD */
219 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
220 if (!skb)
221 goto out;
222 prefetchw(skb);
223
224 /* We do our best to align skb_shared_info on a separate cache
225 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
226 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
227 * Both skb->head and skb_shared_info are cache line aligned.
228 */
229 size = SKB_DATA_ALIGN(size);
230 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
231 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
232 if (!data)
233 goto nodata;
234 /* kmalloc(size) might give us more room than requested.
235 * Put skb_shared_info exactly at the end of allocated zone,
236 * to allow max possible filling before reallocation.
237 */
238 size = SKB_WITH_OVERHEAD(ksize(data));
239 prefetchw(data + size);
240
241 /*
242 * Only clear those fields we need to clear, not those that we will
243 * actually initialise below. Hence, don't put any more fields after
244 * the tail pointer in struct sk_buff!
245 */
246 memset(skb, 0, offsetof(struct sk_buff, tail));
247 /* Account for allocated memory : skb + skb->head */
248 skb->truesize = SKB_TRUESIZE(size);
249 skb->pfmemalloc = pfmemalloc;
250 atomic_set(&skb->users, 1);
251 skb->head = data;
252 skb->data = data;
253 skb_reset_tail_pointer(skb);
254 skb->end = skb->tail + size;
255 skb->mac_header = (typeof(skb->mac_header))~0U;
256 skb->transport_header = (typeof(skb->transport_header))~0U;
257
258 /* make sure we initialize shinfo sequentially */
259 shinfo = skb_shinfo(skb);
260 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
261 atomic_set(&shinfo->dataref, 1);
262 kmemcheck_annotate_variable(shinfo->destructor_arg);
263
264 if (flags & SKB_ALLOC_FCLONE) {
265 struct sk_buff_fclones *fclones;
266
267 fclones = container_of(skb, struct sk_buff_fclones, skb1);
268
269 kmemcheck_annotate_bitfield(&fclones->skb2, flags1);
270 skb->fclone = SKB_FCLONE_ORIG;
271 atomic_set(&fclones->fclone_ref, 1);
272
273 fclones->skb2.fclone = SKB_FCLONE_CLONE;
274 fclones->skb2.pfmemalloc = pfmemalloc;
275 }
276 out:
277 return skb;
278 nodata:
279 kmem_cache_free(cache, skb);
280 skb = NULL;
281 goto out;
282 }
283 EXPORT_SYMBOL(__alloc_skb);
284
285 /**
286 * __build_skb - build a network buffer
287 * @data: data buffer provided by caller
288 * @frag_size: size of data, or 0 if head was kmalloced
289 *
290 * Allocate a new &sk_buff. Caller provides space holding head and
291 * skb_shared_info. @data must have been allocated by kmalloc() only if
292 * @frag_size is 0, otherwise data should come from the page allocator
293 * or vmalloc()
294 * The return is the new skb buffer.
295 * On a failure the return is %NULL, and @data is not freed.
296 * Notes :
297 * Before IO, driver allocates only data buffer where NIC put incoming frame
298 * Driver should add room at head (NET_SKB_PAD) and
299 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
300 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
301 * before giving packet to stack.
302 * RX rings only contains data buffers, not full skbs.
303 */
__build_skb(void * data,unsigned int frag_size)304 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
305 {
306 struct skb_shared_info *shinfo;
307 struct sk_buff *skb;
308 unsigned int size = frag_size ? : ksize(data);
309
310 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
311 if (!skb)
312 return NULL;
313
314 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
315
316 memset(skb, 0, offsetof(struct sk_buff, tail));
317 skb->truesize = SKB_TRUESIZE(size);
318 atomic_set(&skb->users, 1);
319 skb->head = data;
320 skb->data = data;
321 skb_reset_tail_pointer(skb);
322 skb->end = skb->tail + size;
323 skb->mac_header = (typeof(skb->mac_header))~0U;
324 skb->transport_header = (typeof(skb->transport_header))~0U;
325
326 /* make sure we initialize shinfo sequentially */
327 shinfo = skb_shinfo(skb);
328 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
329 atomic_set(&shinfo->dataref, 1);
330 kmemcheck_annotate_variable(shinfo->destructor_arg);
331
332 return skb;
333 }
334
335 /* build_skb() is wrapper over __build_skb(), that specifically
336 * takes care of skb->head and skb->pfmemalloc
337 * This means that if @frag_size is not zero, then @data must be backed
338 * by a page fragment, not kmalloc() or vmalloc()
339 */
build_skb(void * data,unsigned int frag_size)340 struct sk_buff *build_skb(void *data, unsigned int frag_size)
341 {
342 struct sk_buff *skb = __build_skb(data, frag_size);
343
344 if (skb && frag_size) {
345 skb->head_frag = 1;
346 if (page_is_pfmemalloc(virt_to_head_page(data)))
347 skb->pfmemalloc = 1;
348 }
349 return skb;
350 }
351 EXPORT_SYMBOL(build_skb);
352
353 #define NAPI_SKB_CACHE_SIZE 64
354
355 struct napi_alloc_cache {
356 struct page_frag_cache page;
357 size_t skb_count;
358 void *skb_cache[NAPI_SKB_CACHE_SIZE];
359 };
360
361 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
362 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
363
__netdev_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)364 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
365 {
366 struct page_frag_cache *nc;
367 unsigned long flags;
368 void *data;
369
370 local_irq_save(flags);
371 nc = this_cpu_ptr(&netdev_alloc_cache);
372 data = __alloc_page_frag(nc, fragsz, gfp_mask);
373 local_irq_restore(flags);
374 return data;
375 }
376
377 /**
378 * netdev_alloc_frag - allocate a page fragment
379 * @fragsz: fragment size
380 *
381 * Allocates a frag from a page for receive buffer.
382 * Uses GFP_ATOMIC allocations.
383 */
netdev_alloc_frag(unsigned int fragsz)384 void *netdev_alloc_frag(unsigned int fragsz)
385 {
386 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
387 }
388 EXPORT_SYMBOL(netdev_alloc_frag);
389
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)390 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
391 {
392 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
393
394 return __alloc_page_frag(&nc->page, fragsz, gfp_mask);
395 }
396
napi_alloc_frag(unsigned int fragsz)397 void *napi_alloc_frag(unsigned int fragsz)
398 {
399 return __napi_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
400 }
401 EXPORT_SYMBOL(napi_alloc_frag);
402
403 /**
404 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
405 * @dev: network device to receive on
406 * @len: length to allocate
407 * @gfp_mask: get_free_pages mask, passed to alloc_skb
408 *
409 * Allocate a new &sk_buff and assign it a usage count of one. The
410 * buffer has NET_SKB_PAD headroom built in. Users should allocate
411 * the headroom they think they need without accounting for the
412 * built in space. The built in space is used for optimisations.
413 *
414 * %NULL is returned if there is no free memory.
415 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)416 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
417 gfp_t gfp_mask)
418 {
419 struct page_frag_cache *nc;
420 unsigned long flags;
421 struct sk_buff *skb;
422 bool pfmemalloc;
423 void *data;
424
425 len += NET_SKB_PAD;
426
427 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
428 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
429 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
430 if (!skb)
431 goto skb_fail;
432 goto skb_success;
433 }
434
435 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 len = SKB_DATA_ALIGN(len);
437
438 if (sk_memalloc_socks())
439 gfp_mask |= __GFP_MEMALLOC;
440
441 local_irq_save(flags);
442
443 nc = this_cpu_ptr(&netdev_alloc_cache);
444 data = __alloc_page_frag(nc, len, gfp_mask);
445 pfmemalloc = nc->pfmemalloc;
446
447 local_irq_restore(flags);
448
449 if (unlikely(!data))
450 return NULL;
451
452 skb = __build_skb(data, len);
453 if (unlikely(!skb)) {
454 skb_free_frag(data);
455 return NULL;
456 }
457
458 /* use OR instead of assignment to avoid clearing of bits in mask */
459 if (pfmemalloc)
460 skb->pfmemalloc = 1;
461 skb->head_frag = 1;
462
463 skb_success:
464 skb_reserve(skb, NET_SKB_PAD);
465 skb->dev = dev;
466
467 skb_fail:
468 return skb;
469 }
470 EXPORT_SYMBOL(__netdev_alloc_skb);
471
472 /**
473 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
474 * @napi: napi instance this buffer was allocated for
475 * @len: length to allocate
476 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
477 *
478 * Allocate a new sk_buff for use in NAPI receive. This buffer will
479 * attempt to allocate the head from a special reserved region used
480 * only for NAPI Rx allocation. By doing this we can save several
481 * CPU cycles by avoiding having to disable and re-enable IRQs.
482 *
483 * %NULL is returned if there is no free memory.
484 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)485 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
486 gfp_t gfp_mask)
487 {
488 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
489 struct sk_buff *skb;
490 void *data;
491
492 len += NET_SKB_PAD + NET_IP_ALIGN;
493
494 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
495 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
496 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
497 if (!skb)
498 goto skb_fail;
499 goto skb_success;
500 }
501
502 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
503 len = SKB_DATA_ALIGN(len);
504
505 if (sk_memalloc_socks())
506 gfp_mask |= __GFP_MEMALLOC;
507
508 data = __alloc_page_frag(&nc->page, len, gfp_mask);
509 if (unlikely(!data))
510 return NULL;
511
512 skb = __build_skb(data, len);
513 if (unlikely(!skb)) {
514 skb_free_frag(data);
515 return NULL;
516 }
517
518 /* use OR instead of assignment to avoid clearing of bits in mask */
519 if (nc->page.pfmemalloc)
520 skb->pfmemalloc = 1;
521 skb->head_frag = 1;
522
523 skb_success:
524 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
525 skb->dev = napi->dev;
526
527 skb_fail:
528 return skb;
529 }
530 EXPORT_SYMBOL(__napi_alloc_skb);
531
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)532 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
533 int size, unsigned int truesize)
534 {
535 skb_fill_page_desc(skb, i, page, off, size);
536 skb->len += size;
537 skb->data_len += size;
538 skb->truesize += truesize;
539 }
540 EXPORT_SYMBOL(skb_add_rx_frag);
541
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)542 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
543 unsigned int truesize)
544 {
545 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
546
547 skb_frag_size_add(frag, size);
548 skb->len += size;
549 skb->data_len += size;
550 skb->truesize += truesize;
551 }
552 EXPORT_SYMBOL(skb_coalesce_rx_frag);
553
skb_drop_list(struct sk_buff ** listp)554 static void skb_drop_list(struct sk_buff **listp)
555 {
556 kfree_skb_list(*listp);
557 *listp = NULL;
558 }
559
skb_drop_fraglist(struct sk_buff * skb)560 static inline void skb_drop_fraglist(struct sk_buff *skb)
561 {
562 skb_drop_list(&skb_shinfo(skb)->frag_list);
563 }
564
skb_clone_fraglist(struct sk_buff * skb)565 static void skb_clone_fraglist(struct sk_buff *skb)
566 {
567 struct sk_buff *list;
568
569 skb_walk_frags(skb, list)
570 skb_get(list);
571 }
572
skb_free_head(struct sk_buff * skb)573 static void skb_free_head(struct sk_buff *skb)
574 {
575 unsigned char *head = skb->head;
576
577 if (skb->head_frag)
578 skb_free_frag(head);
579 else
580 kfree(head);
581 }
582
skb_release_data(struct sk_buff * skb)583 static void skb_release_data(struct sk_buff *skb)
584 {
585 struct skb_shared_info *shinfo = skb_shinfo(skb);
586 int i;
587
588 if (skb->cloned &&
589 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
590 &shinfo->dataref))
591 return;
592
593 for (i = 0; i < shinfo->nr_frags; i++)
594 __skb_frag_unref(&shinfo->frags[i]);
595
596 /*
597 * If skb buf is from userspace, we need to notify the caller
598 * the lower device DMA has done;
599 */
600 if (shinfo->tx_flags & SKBTX_DEV_ZEROCOPY) {
601 struct ubuf_info *uarg;
602
603 uarg = shinfo->destructor_arg;
604 if (uarg->callback)
605 uarg->callback(uarg, true);
606 }
607
608 if (shinfo->frag_list)
609 kfree_skb_list(shinfo->frag_list);
610
611 skb_free_head(skb);
612 }
613
614 /*
615 * Free an skbuff by memory without cleaning the state.
616 */
kfree_skbmem(struct sk_buff * skb)617 static void kfree_skbmem(struct sk_buff *skb)
618 {
619 struct sk_buff_fclones *fclones;
620
621 switch (skb->fclone) {
622 case SKB_FCLONE_UNAVAILABLE:
623 kmem_cache_free(skbuff_head_cache, skb);
624 return;
625
626 case SKB_FCLONE_ORIG:
627 fclones = container_of(skb, struct sk_buff_fclones, skb1);
628
629 /* We usually free the clone (TX completion) before original skb
630 * This test would have no chance to be true for the clone,
631 * while here, branch prediction will be good.
632 */
633 if (atomic_read(&fclones->fclone_ref) == 1)
634 goto fastpath;
635 break;
636
637 default: /* SKB_FCLONE_CLONE */
638 fclones = container_of(skb, struct sk_buff_fclones, skb2);
639 break;
640 }
641 if (!atomic_dec_and_test(&fclones->fclone_ref))
642 return;
643 fastpath:
644 kmem_cache_free(skbuff_fclone_cache, fclones);
645 }
646
skb_release_head_state(struct sk_buff * skb)647 static void skb_release_head_state(struct sk_buff *skb)
648 {
649 skb_dst_drop(skb);
650 #ifdef CONFIG_XFRM
651 secpath_put(skb->sp);
652 #endif
653 if (skb->destructor) {
654 WARN_ON(in_irq());
655 skb->destructor(skb);
656 }
657 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
658 nf_conntrack_put(skb->nfct);
659 #endif
660 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
661 nf_bridge_put(skb->nf_bridge);
662 #endif
663 }
664
665 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)666 static void skb_release_all(struct sk_buff *skb)
667 {
668 skb_release_head_state(skb);
669 if (likely(skb->head))
670 skb_release_data(skb);
671 }
672
673 /**
674 * __kfree_skb - private function
675 * @skb: buffer
676 *
677 * Free an sk_buff. Release anything attached to the buffer.
678 * Clean the state. This is an internal helper function. Users should
679 * always call kfree_skb
680 */
681
__kfree_skb(struct sk_buff * skb)682 void __kfree_skb(struct sk_buff *skb)
683 {
684 skb_release_all(skb);
685 kfree_skbmem(skb);
686 }
687 EXPORT_SYMBOL(__kfree_skb);
688
689 /**
690 * kfree_skb - free an sk_buff
691 * @skb: buffer to free
692 *
693 * Drop a reference to the buffer and free it if the usage count has
694 * hit zero.
695 */
kfree_skb(struct sk_buff * skb)696 void kfree_skb(struct sk_buff *skb)
697 {
698 if (unlikely(!skb))
699 return;
700 if (likely(atomic_read(&skb->users) == 1))
701 smp_rmb();
702 else if (likely(!atomic_dec_and_test(&skb->users)))
703 return;
704 trace_kfree_skb(skb, __builtin_return_address(0));
705 __kfree_skb(skb);
706 }
707 EXPORT_SYMBOL(kfree_skb);
708
kfree_skb_list(struct sk_buff * segs)709 void kfree_skb_list(struct sk_buff *segs)
710 {
711 while (segs) {
712 struct sk_buff *next = segs->next;
713
714 kfree_skb(segs);
715 segs = next;
716 }
717 }
718 EXPORT_SYMBOL(kfree_skb_list);
719
720 /**
721 * skb_tx_error - report an sk_buff xmit error
722 * @skb: buffer that triggered an error
723 *
724 * Report xmit error if a device callback is tracking this skb.
725 * skb must be freed afterwards.
726 */
skb_tx_error(struct sk_buff * skb)727 void skb_tx_error(struct sk_buff *skb)
728 {
729 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
730 struct ubuf_info *uarg;
731
732 uarg = skb_shinfo(skb)->destructor_arg;
733 if (uarg->callback)
734 uarg->callback(uarg, false);
735 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
736 }
737 }
738 EXPORT_SYMBOL(skb_tx_error);
739
740 /**
741 * consume_skb - free an skbuff
742 * @skb: buffer to free
743 *
744 * Drop a ref to the buffer and free it if the usage count has hit zero
745 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
746 * is being dropped after a failure and notes that
747 */
consume_skb(struct sk_buff * skb)748 void consume_skb(struct sk_buff *skb)
749 {
750 if (unlikely(!skb))
751 return;
752 if (likely(atomic_read(&skb->users) == 1))
753 smp_rmb();
754 else if (likely(!atomic_dec_and_test(&skb->users)))
755 return;
756 trace_consume_skb(skb);
757 __kfree_skb(skb);
758 }
759 EXPORT_SYMBOL(consume_skb);
760
__kfree_skb_flush(void)761 void __kfree_skb_flush(void)
762 {
763 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
764
765 /* flush skb_cache if containing objects */
766 if (nc->skb_count) {
767 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
768 nc->skb_cache);
769 nc->skb_count = 0;
770 }
771 }
772
_kfree_skb_defer(struct sk_buff * skb)773 static inline void _kfree_skb_defer(struct sk_buff *skb)
774 {
775 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
776
777 /* drop skb->head and call any destructors for packet */
778 skb_release_all(skb);
779
780 /* record skb to CPU local list */
781 nc->skb_cache[nc->skb_count++] = skb;
782
783 #ifdef CONFIG_SLUB
784 /* SLUB writes into objects when freeing */
785 prefetchw(skb);
786 #endif
787
788 /* flush skb_cache if it is filled */
789 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
790 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
791 nc->skb_cache);
792 nc->skb_count = 0;
793 }
794 }
__kfree_skb_defer(struct sk_buff * skb)795 void __kfree_skb_defer(struct sk_buff *skb)
796 {
797 _kfree_skb_defer(skb);
798 }
799
napi_consume_skb(struct sk_buff * skb,int budget)800 void napi_consume_skb(struct sk_buff *skb, int budget)
801 {
802 if (unlikely(!skb))
803 return;
804
805 /* Zero budget indicate non-NAPI context called us, like netpoll */
806 if (unlikely(!budget)) {
807 dev_consume_skb_any(skb);
808 return;
809 }
810
811 if (likely(atomic_read(&skb->users) == 1))
812 smp_rmb();
813 else if (likely(!atomic_dec_and_test(&skb->users)))
814 return;
815 /* if reaching here SKB is ready to free */
816 trace_consume_skb(skb);
817
818 /* if SKB is a clone, don't handle this case */
819 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
820 __kfree_skb(skb);
821 return;
822 }
823
824 _kfree_skb_defer(skb);
825 }
826 EXPORT_SYMBOL(napi_consume_skb);
827
828 /* Make sure a field is enclosed inside headers_start/headers_end section */
829 #define CHECK_SKB_FIELD(field) \
830 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
831 offsetof(struct sk_buff, headers_start)); \
832 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
833 offsetof(struct sk_buff, headers_end)); \
834
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)835 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
836 {
837 new->tstamp = old->tstamp;
838 /* We do not copy old->sk */
839 new->dev = old->dev;
840 memcpy(new->cb, old->cb, sizeof(old->cb));
841 skb_dst_copy(new, old);
842 #ifdef CONFIG_XFRM
843 new->sp = secpath_get(old->sp);
844 #endif
845 __nf_copy(new, old, false);
846
847 /* Note : this field could be in headers_start/headers_end section
848 * It is not yet because we do not want to have a 16 bit hole
849 */
850 new->queue_mapping = old->queue_mapping;
851
852 memcpy(&new->headers_start, &old->headers_start,
853 offsetof(struct sk_buff, headers_end) -
854 offsetof(struct sk_buff, headers_start));
855 CHECK_SKB_FIELD(protocol);
856 CHECK_SKB_FIELD(csum);
857 CHECK_SKB_FIELD(hash);
858 CHECK_SKB_FIELD(priority);
859 CHECK_SKB_FIELD(skb_iif);
860 CHECK_SKB_FIELD(vlan_proto);
861 CHECK_SKB_FIELD(vlan_tci);
862 CHECK_SKB_FIELD(transport_header);
863 CHECK_SKB_FIELD(network_header);
864 CHECK_SKB_FIELD(mac_header);
865 CHECK_SKB_FIELD(inner_protocol);
866 CHECK_SKB_FIELD(inner_transport_header);
867 CHECK_SKB_FIELD(inner_network_header);
868 CHECK_SKB_FIELD(inner_mac_header);
869 CHECK_SKB_FIELD(mark);
870 #ifdef CONFIG_NETWORK_SECMARK
871 CHECK_SKB_FIELD(secmark);
872 #endif
873 #ifdef CONFIG_NET_RX_BUSY_POLL
874 CHECK_SKB_FIELD(napi_id);
875 #endif
876 #ifdef CONFIG_XPS
877 CHECK_SKB_FIELD(sender_cpu);
878 #endif
879 #ifdef CONFIG_NET_SCHED
880 CHECK_SKB_FIELD(tc_index);
881 #ifdef CONFIG_NET_CLS_ACT
882 CHECK_SKB_FIELD(tc_verd);
883 #endif
884 #endif
885
886 }
887
888 /*
889 * You should not add any new code to this function. Add it to
890 * __copy_skb_header above instead.
891 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)892 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
893 {
894 #define C(x) n->x = skb->x
895
896 n->next = n->prev = NULL;
897 n->sk = NULL;
898 __copy_skb_header(n, skb);
899
900 C(len);
901 C(data_len);
902 C(mac_len);
903 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
904 n->cloned = 1;
905 n->nohdr = 0;
906 n->destructor = NULL;
907 C(tail);
908 C(end);
909 C(head);
910 C(head_frag);
911 C(data);
912 C(truesize);
913 atomic_set(&n->users, 1);
914
915 atomic_inc(&(skb_shinfo(skb)->dataref));
916 skb->cloned = 1;
917
918 return n;
919 #undef C
920 }
921
922 /**
923 * skb_morph - morph one skb into another
924 * @dst: the skb to receive the contents
925 * @src: the skb to supply the contents
926 *
927 * This is identical to skb_clone except that the target skb is
928 * supplied by the user.
929 *
930 * The target skb is returned upon exit.
931 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)932 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
933 {
934 skb_release_all(dst);
935 return __skb_clone(dst, src);
936 }
937 EXPORT_SYMBOL_GPL(skb_morph);
938
939 /**
940 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
941 * @skb: the skb to modify
942 * @gfp_mask: allocation priority
943 *
944 * This must be called on SKBTX_DEV_ZEROCOPY skb.
945 * It will copy all frags into kernel and drop the reference
946 * to userspace pages.
947 *
948 * If this function is called from an interrupt gfp_mask() must be
949 * %GFP_ATOMIC.
950 *
951 * Returns 0 on success or a negative error code on failure
952 * to allocate kernel memory to copy to.
953 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)954 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
955 {
956 int i;
957 int num_frags = skb_shinfo(skb)->nr_frags;
958 struct page *page, *head = NULL;
959 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
960
961 for (i = 0; i < num_frags; i++) {
962 u8 *vaddr;
963 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
964
965 page = alloc_page(gfp_mask);
966 if (!page) {
967 while (head) {
968 struct page *next = (struct page *)page_private(head);
969 put_page(head);
970 head = next;
971 }
972 return -ENOMEM;
973 }
974 vaddr = kmap_atomic(skb_frag_page(f));
975 memcpy(page_address(page),
976 vaddr + f->page_offset, skb_frag_size(f));
977 kunmap_atomic(vaddr);
978 set_page_private(page, (unsigned long)head);
979 head = page;
980 }
981
982 /* skb frags release userspace buffers */
983 for (i = 0; i < num_frags; i++)
984 skb_frag_unref(skb, i);
985
986 uarg->callback(uarg, false);
987
988 /* skb frags point to kernel buffers */
989 for (i = num_frags - 1; i >= 0; i--) {
990 __skb_fill_page_desc(skb, i, head, 0,
991 skb_shinfo(skb)->frags[i].size);
992 head = (struct page *)page_private(head);
993 }
994
995 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
996 return 0;
997 }
998 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
999
1000 /**
1001 * skb_clone - duplicate an sk_buff
1002 * @skb: buffer to clone
1003 * @gfp_mask: allocation priority
1004 *
1005 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1006 * copies share the same packet data but not structure. The new
1007 * buffer has a reference count of 1. If the allocation fails the
1008 * function returns %NULL otherwise the new buffer is returned.
1009 *
1010 * If this function is called from an interrupt gfp_mask() must be
1011 * %GFP_ATOMIC.
1012 */
1013
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1014 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1015 {
1016 struct sk_buff_fclones *fclones = container_of(skb,
1017 struct sk_buff_fclones,
1018 skb1);
1019 struct sk_buff *n;
1020
1021 if (skb_orphan_frags(skb, gfp_mask))
1022 return NULL;
1023
1024 if (skb->fclone == SKB_FCLONE_ORIG &&
1025 atomic_read(&fclones->fclone_ref) == 1) {
1026 n = &fclones->skb2;
1027 atomic_set(&fclones->fclone_ref, 2);
1028 } else {
1029 if (skb_pfmemalloc(skb))
1030 gfp_mask |= __GFP_MEMALLOC;
1031
1032 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1033 if (!n)
1034 return NULL;
1035
1036 kmemcheck_annotate_bitfield(n, flags1);
1037 n->fclone = SKB_FCLONE_UNAVAILABLE;
1038 }
1039
1040 return __skb_clone(n, skb);
1041 }
1042 EXPORT_SYMBOL(skb_clone);
1043
skb_headers_offset_update(struct sk_buff * skb,int off)1044 static void skb_headers_offset_update(struct sk_buff *skb, int off)
1045 {
1046 /* Only adjust this if it actually is csum_start rather than csum */
1047 if (skb->ip_summed == CHECKSUM_PARTIAL)
1048 skb->csum_start += off;
1049 /* {transport,network,mac}_header and tail are relative to skb->head */
1050 skb->transport_header += off;
1051 skb->network_header += off;
1052 if (skb_mac_header_was_set(skb))
1053 skb->mac_header += off;
1054 skb->inner_transport_header += off;
1055 skb->inner_network_header += off;
1056 skb->inner_mac_header += off;
1057 }
1058
copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1059 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1060 {
1061 __copy_skb_header(new, old);
1062
1063 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1064 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1065 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1066 }
1067
skb_alloc_rx_flag(const struct sk_buff * skb)1068 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1069 {
1070 if (skb_pfmemalloc(skb))
1071 return SKB_ALLOC_RX;
1072 return 0;
1073 }
1074
1075 /**
1076 * skb_copy - create private copy of an sk_buff
1077 * @skb: buffer to copy
1078 * @gfp_mask: allocation priority
1079 *
1080 * Make a copy of both an &sk_buff and its data. This is used when the
1081 * caller wishes to modify the data and needs a private copy of the
1082 * data to alter. Returns %NULL on failure or the pointer to the buffer
1083 * on success. The returned buffer has a reference count of 1.
1084 *
1085 * As by-product this function converts non-linear &sk_buff to linear
1086 * one, so that &sk_buff becomes completely private and caller is allowed
1087 * to modify all the data of returned buffer. This means that this
1088 * function is not recommended for use in circumstances when only
1089 * header is going to be modified. Use pskb_copy() instead.
1090 */
1091
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1092 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1093 {
1094 int headerlen = skb_headroom(skb);
1095 unsigned int size = skb_end_offset(skb) + skb->data_len;
1096 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1097 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1098
1099 if (!n)
1100 return NULL;
1101
1102 /* Set the data pointer */
1103 skb_reserve(n, headerlen);
1104 /* Set the tail pointer and length */
1105 skb_put(n, skb->len);
1106
1107 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
1108 BUG();
1109
1110 copy_skb_header(n, skb);
1111 return n;
1112 }
1113 EXPORT_SYMBOL(skb_copy);
1114
1115 /**
1116 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1117 * @skb: buffer to copy
1118 * @headroom: headroom of new skb
1119 * @gfp_mask: allocation priority
1120 * @fclone: if true allocate the copy of the skb from the fclone
1121 * cache instead of the head cache; it is recommended to set this
1122 * to true for the cases where the copy will likely be cloned
1123 *
1124 * Make a copy of both an &sk_buff and part of its data, located
1125 * in header. Fragmented data remain shared. This is used when
1126 * the caller wishes to modify only header of &sk_buff and needs
1127 * private copy of the header to alter. Returns %NULL on failure
1128 * or the pointer to the buffer on success.
1129 * The returned buffer has a reference count of 1.
1130 */
1131
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1132 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1133 gfp_t gfp_mask, bool fclone)
1134 {
1135 unsigned int size = skb_headlen(skb) + headroom;
1136 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1137 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1138
1139 if (!n)
1140 goto out;
1141
1142 /* Set the data pointer */
1143 skb_reserve(n, headroom);
1144 /* Set the tail pointer and length */
1145 skb_put(n, skb_headlen(skb));
1146 /* Copy the bytes */
1147 skb_copy_from_linear_data(skb, n->data, n->len);
1148
1149 n->truesize += skb->data_len;
1150 n->data_len = skb->data_len;
1151 n->len = skb->len;
1152
1153 if (skb_shinfo(skb)->nr_frags) {
1154 int i;
1155
1156 if (skb_orphan_frags(skb, gfp_mask)) {
1157 kfree_skb(n);
1158 n = NULL;
1159 goto out;
1160 }
1161 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1163 skb_frag_ref(skb, i);
1164 }
1165 skb_shinfo(n)->nr_frags = i;
1166 }
1167
1168 if (skb_has_frag_list(skb)) {
1169 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1170 skb_clone_fraglist(n);
1171 }
1172
1173 copy_skb_header(n, skb);
1174 out:
1175 return n;
1176 }
1177 EXPORT_SYMBOL(__pskb_copy_fclone);
1178
1179 /**
1180 * pskb_expand_head - reallocate header of &sk_buff
1181 * @skb: buffer to reallocate
1182 * @nhead: room to add at head
1183 * @ntail: room to add at tail
1184 * @gfp_mask: allocation priority
1185 *
1186 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1187 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1188 * reference count of 1. Returns zero in the case of success or error,
1189 * if expansion failed. In the last case, &sk_buff is not changed.
1190 *
1191 * All the pointers pointing into skb header may change and must be
1192 * reloaded after call to this function.
1193 */
1194
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1195 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1196 gfp_t gfp_mask)
1197 {
1198 int i;
1199 u8 *data;
1200 int size = nhead + skb_end_offset(skb) + ntail;
1201 long off;
1202
1203 BUG_ON(nhead < 0);
1204
1205 if (skb_shared(skb))
1206 BUG();
1207
1208 size = SKB_DATA_ALIGN(size);
1209
1210 if (skb_pfmemalloc(skb))
1211 gfp_mask |= __GFP_MEMALLOC;
1212 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1213 gfp_mask, NUMA_NO_NODE, NULL);
1214 if (!data)
1215 goto nodata;
1216 size = SKB_WITH_OVERHEAD(ksize(data));
1217
1218 /* Copy only real data... and, alas, header. This should be
1219 * optimized for the cases when header is void.
1220 */
1221 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1222
1223 memcpy((struct skb_shared_info *)(data + size),
1224 skb_shinfo(skb),
1225 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1226
1227 /*
1228 * if shinfo is shared we must drop the old head gracefully, but if it
1229 * is not we can just drop the old head and let the existing refcount
1230 * be since all we did is relocate the values
1231 */
1232 if (skb_cloned(skb)) {
1233 /* copy this zero copy skb frags */
1234 if (skb_orphan_frags(skb, gfp_mask))
1235 goto nofrags;
1236 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1237 skb_frag_ref(skb, i);
1238
1239 if (skb_has_frag_list(skb))
1240 skb_clone_fraglist(skb);
1241
1242 skb_release_data(skb);
1243 } else {
1244 skb_free_head(skb);
1245 }
1246 off = (data + nhead) - skb->head;
1247
1248 skb->head = data;
1249 skb->head_frag = 0;
1250 skb->data += off;
1251 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1252 skb->end = size;
1253 off = nhead;
1254 #else
1255 skb->end = skb->head + size;
1256 #endif
1257 skb->tail += off;
1258 skb_headers_offset_update(skb, nhead);
1259 skb->cloned = 0;
1260 skb->hdr_len = 0;
1261 skb->nohdr = 0;
1262 atomic_set(&skb_shinfo(skb)->dataref, 1);
1263 return 0;
1264
1265 nofrags:
1266 kfree(data);
1267 nodata:
1268 return -ENOMEM;
1269 }
1270 EXPORT_SYMBOL(pskb_expand_head);
1271
1272 /* Make private copy of skb with writable head and some headroom */
1273
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1274 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1275 {
1276 struct sk_buff *skb2;
1277 int delta = headroom - skb_headroom(skb);
1278
1279 if (delta <= 0)
1280 skb2 = pskb_copy(skb, GFP_ATOMIC);
1281 else {
1282 skb2 = skb_clone(skb, GFP_ATOMIC);
1283 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1284 GFP_ATOMIC)) {
1285 kfree_skb(skb2);
1286 skb2 = NULL;
1287 }
1288 }
1289 return skb2;
1290 }
1291 EXPORT_SYMBOL(skb_realloc_headroom);
1292
1293 /**
1294 * skb_copy_expand - copy and expand sk_buff
1295 * @skb: buffer to copy
1296 * @newheadroom: new free bytes at head
1297 * @newtailroom: new free bytes at tail
1298 * @gfp_mask: allocation priority
1299 *
1300 * Make a copy of both an &sk_buff and its data and while doing so
1301 * allocate additional space.
1302 *
1303 * This is used when the caller wishes to modify the data and needs a
1304 * private copy of the data to alter as well as more space for new fields.
1305 * Returns %NULL on failure or the pointer to the buffer
1306 * on success. The returned buffer has a reference count of 1.
1307 *
1308 * You must pass %GFP_ATOMIC as the allocation priority if this function
1309 * is called from an interrupt.
1310 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1311 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1312 int newheadroom, int newtailroom,
1313 gfp_t gfp_mask)
1314 {
1315 /*
1316 * Allocate the copy buffer
1317 */
1318 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1319 gfp_mask, skb_alloc_rx_flag(skb),
1320 NUMA_NO_NODE);
1321 int oldheadroom = skb_headroom(skb);
1322 int head_copy_len, head_copy_off;
1323
1324 if (!n)
1325 return NULL;
1326
1327 skb_reserve(n, newheadroom);
1328
1329 /* Set the tail pointer and length */
1330 skb_put(n, skb->len);
1331
1332 head_copy_len = oldheadroom;
1333 head_copy_off = 0;
1334 if (newheadroom <= head_copy_len)
1335 head_copy_len = newheadroom;
1336 else
1337 head_copy_off = newheadroom - head_copy_len;
1338
1339 /* Copy the linear header and data. */
1340 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1341 skb->len + head_copy_len))
1342 BUG();
1343
1344 copy_skb_header(n, skb);
1345
1346 skb_headers_offset_update(n, newheadroom - oldheadroom);
1347
1348 return n;
1349 }
1350 EXPORT_SYMBOL(skb_copy_expand);
1351
1352 /**
1353 * skb_pad - zero pad the tail of an skb
1354 * @skb: buffer to pad
1355 * @pad: space to pad
1356 *
1357 * Ensure that a buffer is followed by a padding area that is zero
1358 * filled. Used by network drivers which may DMA or transfer data
1359 * beyond the buffer end onto the wire.
1360 *
1361 * May return error in out of memory cases. The skb is freed on error.
1362 */
1363
skb_pad(struct sk_buff * skb,int pad)1364 int skb_pad(struct sk_buff *skb, int pad)
1365 {
1366 int err;
1367 int ntail;
1368
1369 /* If the skbuff is non linear tailroom is always zero.. */
1370 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1371 memset(skb->data+skb->len, 0, pad);
1372 return 0;
1373 }
1374
1375 ntail = skb->data_len + pad - (skb->end - skb->tail);
1376 if (likely(skb_cloned(skb) || ntail > 0)) {
1377 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1378 if (unlikely(err))
1379 goto free_skb;
1380 }
1381
1382 /* FIXME: The use of this function with non-linear skb's really needs
1383 * to be audited.
1384 */
1385 err = skb_linearize(skb);
1386 if (unlikely(err))
1387 goto free_skb;
1388
1389 memset(skb->data + skb->len, 0, pad);
1390 return 0;
1391
1392 free_skb:
1393 kfree_skb(skb);
1394 return err;
1395 }
1396 EXPORT_SYMBOL(skb_pad);
1397
1398 /**
1399 * pskb_put - add data to the tail of a potentially fragmented buffer
1400 * @skb: start of the buffer to use
1401 * @tail: tail fragment of the buffer to use
1402 * @len: amount of data to add
1403 *
1404 * This function extends the used data area of the potentially
1405 * fragmented buffer. @tail must be the last fragment of @skb -- or
1406 * @skb itself. If this would exceed the total buffer size the kernel
1407 * will panic. A pointer to the first byte of the extra data is
1408 * returned.
1409 */
1410
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1411 unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1412 {
1413 if (tail != skb) {
1414 skb->data_len += len;
1415 skb->len += len;
1416 }
1417 return skb_put(tail, len);
1418 }
1419 EXPORT_SYMBOL_GPL(pskb_put);
1420
1421 /**
1422 * skb_put - add data to a buffer
1423 * @skb: buffer to use
1424 * @len: amount of data to add
1425 *
1426 * This function extends the used data area of the buffer. If this would
1427 * exceed the total buffer size the kernel will panic. A pointer to the
1428 * first byte of the extra data is returned.
1429 */
skb_put(struct sk_buff * skb,unsigned int len)1430 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1431 {
1432 unsigned char *tmp = skb_tail_pointer(skb);
1433 SKB_LINEAR_ASSERT(skb);
1434 skb->tail += len;
1435 skb->len += len;
1436 if (unlikely(skb->tail > skb->end))
1437 skb_over_panic(skb, len, __builtin_return_address(0));
1438 return tmp;
1439 }
1440 EXPORT_SYMBOL(skb_put);
1441
1442 /**
1443 * skb_push - add data to the start of a buffer
1444 * @skb: buffer to use
1445 * @len: amount of data to add
1446 *
1447 * This function extends the used data area of the buffer at the buffer
1448 * start. If this would exceed the total buffer headroom the kernel will
1449 * panic. A pointer to the first byte of the extra data is returned.
1450 */
skb_push(struct sk_buff * skb,unsigned int len)1451 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1452 {
1453 skb->data -= len;
1454 skb->len += len;
1455 if (unlikely(skb->data<skb->head))
1456 skb_under_panic(skb, len, __builtin_return_address(0));
1457 return skb->data;
1458 }
1459 EXPORT_SYMBOL(skb_push);
1460
1461 /**
1462 * skb_pull - remove data from the start of a buffer
1463 * @skb: buffer to use
1464 * @len: amount of data to remove
1465 *
1466 * This function removes data from the start of a buffer, returning
1467 * the memory to the headroom. A pointer to the next data in the buffer
1468 * is returned. Once the data has been pulled future pushes will overwrite
1469 * the old data.
1470 */
skb_pull(struct sk_buff * skb,unsigned int len)1471 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1472 {
1473 return skb_pull_inline(skb, len);
1474 }
1475 EXPORT_SYMBOL(skb_pull);
1476
1477 /**
1478 * skb_trim - remove end from a buffer
1479 * @skb: buffer to alter
1480 * @len: new length
1481 *
1482 * Cut the length of a buffer down by removing data from the tail. If
1483 * the buffer is already under the length specified it is not modified.
1484 * The skb must be linear.
1485 */
skb_trim(struct sk_buff * skb,unsigned int len)1486 void skb_trim(struct sk_buff *skb, unsigned int len)
1487 {
1488 if (skb->len > len)
1489 __skb_trim(skb, len);
1490 }
1491 EXPORT_SYMBOL(skb_trim);
1492
1493 /* Trims skb to length len. It can change skb pointers.
1494 */
1495
___pskb_trim(struct sk_buff * skb,unsigned int len)1496 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1497 {
1498 struct sk_buff **fragp;
1499 struct sk_buff *frag;
1500 int offset = skb_headlen(skb);
1501 int nfrags = skb_shinfo(skb)->nr_frags;
1502 int i;
1503 int err;
1504
1505 if (skb_cloned(skb) &&
1506 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1507 return err;
1508
1509 i = 0;
1510 if (offset >= len)
1511 goto drop_pages;
1512
1513 for (; i < nfrags; i++) {
1514 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1515
1516 if (end < len) {
1517 offset = end;
1518 continue;
1519 }
1520
1521 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1522
1523 drop_pages:
1524 skb_shinfo(skb)->nr_frags = i;
1525
1526 for (; i < nfrags; i++)
1527 skb_frag_unref(skb, i);
1528
1529 if (skb_has_frag_list(skb))
1530 skb_drop_fraglist(skb);
1531 goto done;
1532 }
1533
1534 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1535 fragp = &frag->next) {
1536 int end = offset + frag->len;
1537
1538 if (skb_shared(frag)) {
1539 struct sk_buff *nfrag;
1540
1541 nfrag = skb_clone(frag, GFP_ATOMIC);
1542 if (unlikely(!nfrag))
1543 return -ENOMEM;
1544
1545 nfrag->next = frag->next;
1546 consume_skb(frag);
1547 frag = nfrag;
1548 *fragp = frag;
1549 }
1550
1551 if (end < len) {
1552 offset = end;
1553 continue;
1554 }
1555
1556 if (end > len &&
1557 unlikely((err = pskb_trim(frag, len - offset))))
1558 return err;
1559
1560 if (frag->next)
1561 skb_drop_list(&frag->next);
1562 break;
1563 }
1564
1565 done:
1566 if (len > skb_headlen(skb)) {
1567 skb->data_len -= skb->len - len;
1568 skb->len = len;
1569 } else {
1570 skb->len = len;
1571 skb->data_len = 0;
1572 skb_set_tail_pointer(skb, len);
1573 }
1574
1575 return 0;
1576 }
1577 EXPORT_SYMBOL(___pskb_trim);
1578
1579 /**
1580 * __pskb_pull_tail - advance tail of skb header
1581 * @skb: buffer to reallocate
1582 * @delta: number of bytes to advance tail
1583 *
1584 * The function makes a sense only on a fragmented &sk_buff,
1585 * it expands header moving its tail forward and copying necessary
1586 * data from fragmented part.
1587 *
1588 * &sk_buff MUST have reference count of 1.
1589 *
1590 * Returns %NULL (and &sk_buff does not change) if pull failed
1591 * or value of new tail of skb in the case of success.
1592 *
1593 * All the pointers pointing into skb header may change and must be
1594 * reloaded after call to this function.
1595 */
1596
1597 /* Moves tail of skb head forward, copying data from fragmented part,
1598 * when it is necessary.
1599 * 1. It may fail due to malloc failure.
1600 * 2. It may change skb pointers.
1601 *
1602 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1603 */
__pskb_pull_tail(struct sk_buff * skb,int delta)1604 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1605 {
1606 /* If skb has not enough free space at tail, get new one
1607 * plus 128 bytes for future expansions. If we have enough
1608 * room at tail, reallocate without expansion only if skb is cloned.
1609 */
1610 int i, k, eat = (skb->tail + delta) - skb->end;
1611
1612 if (eat > 0 || skb_cloned(skb)) {
1613 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1614 GFP_ATOMIC))
1615 return NULL;
1616 }
1617
1618 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1619 BUG();
1620
1621 /* Optimization: no fragments, no reasons to preestimate
1622 * size of pulled pages. Superb.
1623 */
1624 if (!skb_has_frag_list(skb))
1625 goto pull_pages;
1626
1627 /* Estimate size of pulled pages. */
1628 eat = delta;
1629 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1630 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1631
1632 if (size >= eat)
1633 goto pull_pages;
1634 eat -= size;
1635 }
1636
1637 /* If we need update frag list, we are in troubles.
1638 * Certainly, it possible to add an offset to skb data,
1639 * but taking into account that pulling is expected to
1640 * be very rare operation, it is worth to fight against
1641 * further bloating skb head and crucify ourselves here instead.
1642 * Pure masohism, indeed. 8)8)
1643 */
1644 if (eat) {
1645 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1646 struct sk_buff *clone = NULL;
1647 struct sk_buff *insp = NULL;
1648
1649 do {
1650 BUG_ON(!list);
1651
1652 if (list->len <= eat) {
1653 /* Eaten as whole. */
1654 eat -= list->len;
1655 list = list->next;
1656 insp = list;
1657 } else {
1658 /* Eaten partially. */
1659
1660 if (skb_shared(list)) {
1661 /* Sucks! We need to fork list. :-( */
1662 clone = skb_clone(list, GFP_ATOMIC);
1663 if (!clone)
1664 return NULL;
1665 insp = list->next;
1666 list = clone;
1667 } else {
1668 /* This may be pulled without
1669 * problems. */
1670 insp = list;
1671 }
1672 if (!pskb_pull(list, eat)) {
1673 kfree_skb(clone);
1674 return NULL;
1675 }
1676 break;
1677 }
1678 } while (eat);
1679
1680 /* Free pulled out fragments. */
1681 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1682 skb_shinfo(skb)->frag_list = list->next;
1683 kfree_skb(list);
1684 }
1685 /* And insert new clone at head. */
1686 if (clone) {
1687 clone->next = list;
1688 skb_shinfo(skb)->frag_list = clone;
1689 }
1690 }
1691 /* Success! Now we may commit changes to skb data. */
1692
1693 pull_pages:
1694 eat = delta;
1695 k = 0;
1696 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1697 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1698
1699 if (size <= eat) {
1700 skb_frag_unref(skb, i);
1701 eat -= size;
1702 } else {
1703 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1704 if (eat) {
1705 skb_shinfo(skb)->frags[k].page_offset += eat;
1706 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1707 eat = 0;
1708 }
1709 k++;
1710 }
1711 }
1712 skb_shinfo(skb)->nr_frags = k;
1713
1714 skb->tail += delta;
1715 skb->data_len -= delta;
1716
1717 return skb_tail_pointer(skb);
1718 }
1719 EXPORT_SYMBOL(__pskb_pull_tail);
1720
1721 /**
1722 * skb_copy_bits - copy bits from skb to kernel buffer
1723 * @skb: source skb
1724 * @offset: offset in source
1725 * @to: destination buffer
1726 * @len: number of bytes to copy
1727 *
1728 * Copy the specified number of bytes from the source skb to the
1729 * destination buffer.
1730 *
1731 * CAUTION ! :
1732 * If its prototype is ever changed,
1733 * check arch/{*}/net/{*}.S files,
1734 * since it is called from BPF assembly code.
1735 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)1736 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1737 {
1738 int start = skb_headlen(skb);
1739 struct sk_buff *frag_iter;
1740 int i, copy;
1741
1742 if (offset > (int)skb->len - len)
1743 goto fault;
1744
1745 /* Copy header. */
1746 if ((copy = start - offset) > 0) {
1747 if (copy > len)
1748 copy = len;
1749 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1750 if ((len -= copy) == 0)
1751 return 0;
1752 offset += copy;
1753 to += copy;
1754 }
1755
1756 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1757 int end;
1758 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1759
1760 WARN_ON(start > offset + len);
1761
1762 end = start + skb_frag_size(f);
1763 if ((copy = end - offset) > 0) {
1764 u8 *vaddr;
1765
1766 if (copy > len)
1767 copy = len;
1768
1769 vaddr = kmap_atomic(skb_frag_page(f));
1770 memcpy(to,
1771 vaddr + f->page_offset + offset - start,
1772 copy);
1773 kunmap_atomic(vaddr);
1774
1775 if ((len -= copy) == 0)
1776 return 0;
1777 offset += copy;
1778 to += copy;
1779 }
1780 start = end;
1781 }
1782
1783 skb_walk_frags(skb, frag_iter) {
1784 int end;
1785
1786 WARN_ON(start > offset + len);
1787
1788 end = start + frag_iter->len;
1789 if ((copy = end - offset) > 0) {
1790 if (copy > len)
1791 copy = len;
1792 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1793 goto fault;
1794 if ((len -= copy) == 0)
1795 return 0;
1796 offset += copy;
1797 to += copy;
1798 }
1799 start = end;
1800 }
1801
1802 if (!len)
1803 return 0;
1804
1805 fault:
1806 return -EFAULT;
1807 }
1808 EXPORT_SYMBOL(skb_copy_bits);
1809
1810 /*
1811 * Callback from splice_to_pipe(), if we need to release some pages
1812 * at the end of the spd in case we error'ed out in filling the pipe.
1813 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)1814 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1815 {
1816 put_page(spd->pages[i]);
1817 }
1818
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)1819 static struct page *linear_to_page(struct page *page, unsigned int *len,
1820 unsigned int *offset,
1821 struct sock *sk)
1822 {
1823 struct page_frag *pfrag = sk_page_frag(sk);
1824
1825 if (!sk_page_frag_refill(sk, pfrag))
1826 return NULL;
1827
1828 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1829
1830 memcpy(page_address(pfrag->page) + pfrag->offset,
1831 page_address(page) + *offset, *len);
1832 *offset = pfrag->offset;
1833 pfrag->offset += *len;
1834
1835 return pfrag->page;
1836 }
1837
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)1838 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1839 struct page *page,
1840 unsigned int offset)
1841 {
1842 return spd->nr_pages &&
1843 spd->pages[spd->nr_pages - 1] == page &&
1844 (spd->partial[spd->nr_pages - 1].offset +
1845 spd->partial[spd->nr_pages - 1].len == offset);
1846 }
1847
1848 /*
1849 * Fill page/offset/length into spd, if it can hold more pages.
1850 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)1851 static bool spd_fill_page(struct splice_pipe_desc *spd,
1852 struct pipe_inode_info *pipe, struct page *page,
1853 unsigned int *len, unsigned int offset,
1854 bool linear,
1855 struct sock *sk)
1856 {
1857 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1858 return true;
1859
1860 if (linear) {
1861 page = linear_to_page(page, len, &offset, sk);
1862 if (!page)
1863 return true;
1864 }
1865 if (spd_can_coalesce(spd, page, offset)) {
1866 spd->partial[spd->nr_pages - 1].len += *len;
1867 return false;
1868 }
1869 get_page(page);
1870 spd->pages[spd->nr_pages] = page;
1871 spd->partial[spd->nr_pages].len = *len;
1872 spd->partial[spd->nr_pages].offset = offset;
1873 spd->nr_pages++;
1874
1875 return false;
1876 }
1877
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)1878 static bool __splice_segment(struct page *page, unsigned int poff,
1879 unsigned int plen, unsigned int *off,
1880 unsigned int *len,
1881 struct splice_pipe_desc *spd, bool linear,
1882 struct sock *sk,
1883 struct pipe_inode_info *pipe)
1884 {
1885 if (!*len)
1886 return true;
1887
1888 /* skip this segment if already processed */
1889 if (*off >= plen) {
1890 *off -= plen;
1891 return false;
1892 }
1893
1894 /* ignore any bits we already processed */
1895 poff += *off;
1896 plen -= *off;
1897 *off = 0;
1898
1899 do {
1900 unsigned int flen = min(*len, plen);
1901
1902 if (spd_fill_page(spd, pipe, page, &flen, poff,
1903 linear, sk))
1904 return true;
1905 poff += flen;
1906 plen -= flen;
1907 *len -= flen;
1908 } while (*len && plen);
1909
1910 return false;
1911 }
1912
1913 /*
1914 * Map linear and fragment data from the skb to spd. It reports true if the
1915 * pipe is full or if we already spliced the requested length.
1916 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)1917 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1918 unsigned int *offset, unsigned int *len,
1919 struct splice_pipe_desc *spd, struct sock *sk)
1920 {
1921 int seg;
1922 struct sk_buff *iter;
1923
1924 /* map the linear part :
1925 * If skb->head_frag is set, this 'linear' part is backed by a
1926 * fragment, and if the head is not shared with any clones then
1927 * we can avoid a copy since we own the head portion of this page.
1928 */
1929 if (__splice_segment(virt_to_page(skb->data),
1930 (unsigned long) skb->data & (PAGE_SIZE - 1),
1931 skb_headlen(skb),
1932 offset, len, spd,
1933 skb_head_is_locked(skb),
1934 sk, pipe))
1935 return true;
1936
1937 /*
1938 * then map the fragments
1939 */
1940 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1941 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1942
1943 if (__splice_segment(skb_frag_page(f),
1944 f->page_offset, skb_frag_size(f),
1945 offset, len, spd, false, sk, pipe))
1946 return true;
1947 }
1948
1949 skb_walk_frags(skb, iter) {
1950 if (*offset >= iter->len) {
1951 *offset -= iter->len;
1952 continue;
1953 }
1954 /* __skb_splice_bits() only fails if the output has no room
1955 * left, so no point in going over the frag_list for the error
1956 * case.
1957 */
1958 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
1959 return true;
1960 }
1961
1962 return false;
1963 }
1964
1965 /*
1966 * Map data from the skb to a pipe. Should handle both the linear part,
1967 * the fragments, and the frag list.
1968 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)1969 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
1970 struct pipe_inode_info *pipe, unsigned int tlen,
1971 unsigned int flags)
1972 {
1973 struct partial_page partial[MAX_SKB_FRAGS];
1974 struct page *pages[MAX_SKB_FRAGS];
1975 struct splice_pipe_desc spd = {
1976 .pages = pages,
1977 .partial = partial,
1978 .nr_pages_max = MAX_SKB_FRAGS,
1979 .flags = flags,
1980 .ops = &nosteal_pipe_buf_ops,
1981 .spd_release = sock_spd_release,
1982 };
1983 int ret = 0;
1984
1985 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
1986
1987 if (spd.nr_pages)
1988 ret = splice_to_pipe(pipe, &spd);
1989
1990 return ret;
1991 }
1992 EXPORT_SYMBOL_GPL(skb_splice_bits);
1993
1994 /**
1995 * skb_store_bits - store bits from kernel buffer to skb
1996 * @skb: destination buffer
1997 * @offset: offset in destination
1998 * @from: source buffer
1999 * @len: number of bytes to copy
2000 *
2001 * Copy the specified number of bytes from the source buffer to the
2002 * destination skb. This function handles all the messy bits of
2003 * traversing fragment lists and such.
2004 */
2005
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2006 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2007 {
2008 int start = skb_headlen(skb);
2009 struct sk_buff *frag_iter;
2010 int i, copy;
2011
2012 if (offset > (int)skb->len - len)
2013 goto fault;
2014
2015 if ((copy = start - offset) > 0) {
2016 if (copy > len)
2017 copy = len;
2018 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2019 if ((len -= copy) == 0)
2020 return 0;
2021 offset += copy;
2022 from += copy;
2023 }
2024
2025 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2026 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2027 int end;
2028
2029 WARN_ON(start > offset + len);
2030
2031 end = start + skb_frag_size(frag);
2032 if ((copy = end - offset) > 0) {
2033 u8 *vaddr;
2034
2035 if (copy > len)
2036 copy = len;
2037
2038 vaddr = kmap_atomic(skb_frag_page(frag));
2039 memcpy(vaddr + frag->page_offset + offset - start,
2040 from, copy);
2041 kunmap_atomic(vaddr);
2042
2043 if ((len -= copy) == 0)
2044 return 0;
2045 offset += copy;
2046 from += copy;
2047 }
2048 start = end;
2049 }
2050
2051 skb_walk_frags(skb, frag_iter) {
2052 int end;
2053
2054 WARN_ON(start > offset + len);
2055
2056 end = start + frag_iter->len;
2057 if ((copy = end - offset) > 0) {
2058 if (copy > len)
2059 copy = len;
2060 if (skb_store_bits(frag_iter, offset - start,
2061 from, copy))
2062 goto fault;
2063 if ((len -= copy) == 0)
2064 return 0;
2065 offset += copy;
2066 from += copy;
2067 }
2068 start = end;
2069 }
2070 if (!len)
2071 return 0;
2072
2073 fault:
2074 return -EFAULT;
2075 }
2076 EXPORT_SYMBOL(skb_store_bits);
2077
2078 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2079 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2080 __wsum csum, const struct skb_checksum_ops *ops)
2081 {
2082 int start = skb_headlen(skb);
2083 int i, copy = start - offset;
2084 struct sk_buff *frag_iter;
2085 int pos = 0;
2086
2087 /* Checksum header. */
2088 if (copy > 0) {
2089 if (copy > len)
2090 copy = len;
2091 csum = ops->update(skb->data + offset, copy, csum);
2092 if ((len -= copy) == 0)
2093 return csum;
2094 offset += copy;
2095 pos = copy;
2096 }
2097
2098 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2099 int end;
2100 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2101
2102 WARN_ON(start > offset + len);
2103
2104 end = start + skb_frag_size(frag);
2105 if ((copy = end - offset) > 0) {
2106 __wsum csum2;
2107 u8 *vaddr;
2108
2109 if (copy > len)
2110 copy = len;
2111 vaddr = kmap_atomic(skb_frag_page(frag));
2112 csum2 = ops->update(vaddr + frag->page_offset +
2113 offset - start, copy, 0);
2114 kunmap_atomic(vaddr);
2115 csum = ops->combine(csum, csum2, pos, copy);
2116 if (!(len -= copy))
2117 return csum;
2118 offset += copy;
2119 pos += copy;
2120 }
2121 start = end;
2122 }
2123
2124 skb_walk_frags(skb, frag_iter) {
2125 int end;
2126
2127 WARN_ON(start > offset + len);
2128
2129 end = start + frag_iter->len;
2130 if ((copy = end - offset) > 0) {
2131 __wsum csum2;
2132 if (copy > len)
2133 copy = len;
2134 csum2 = __skb_checksum(frag_iter, offset - start,
2135 copy, 0, ops);
2136 csum = ops->combine(csum, csum2, pos, copy);
2137 if ((len -= copy) == 0)
2138 return csum;
2139 offset += copy;
2140 pos += copy;
2141 }
2142 start = end;
2143 }
2144 BUG_ON(len);
2145
2146 return csum;
2147 }
2148 EXPORT_SYMBOL(__skb_checksum);
2149
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2150 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2151 int len, __wsum csum)
2152 {
2153 const struct skb_checksum_ops ops = {
2154 .update = csum_partial_ext,
2155 .combine = csum_block_add_ext,
2156 };
2157
2158 return __skb_checksum(skb, offset, len, csum, &ops);
2159 }
2160 EXPORT_SYMBOL(skb_checksum);
2161
2162 /* Both of above in one bottle. */
2163
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len,__wsum csum)2164 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2165 u8 *to, int len, __wsum csum)
2166 {
2167 int start = skb_headlen(skb);
2168 int i, copy = start - offset;
2169 struct sk_buff *frag_iter;
2170 int pos = 0;
2171
2172 /* Copy header. */
2173 if (copy > 0) {
2174 if (copy > len)
2175 copy = len;
2176 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2177 copy, csum);
2178 if ((len -= copy) == 0)
2179 return csum;
2180 offset += copy;
2181 to += copy;
2182 pos = copy;
2183 }
2184
2185 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2186 int end;
2187
2188 WARN_ON(start > offset + len);
2189
2190 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2191 if ((copy = end - offset) > 0) {
2192 __wsum csum2;
2193 u8 *vaddr;
2194 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2195
2196 if (copy > len)
2197 copy = len;
2198 vaddr = kmap_atomic(skb_frag_page(frag));
2199 csum2 = csum_partial_copy_nocheck(vaddr +
2200 frag->page_offset +
2201 offset - start, to,
2202 copy, 0);
2203 kunmap_atomic(vaddr);
2204 csum = csum_block_add(csum, csum2, pos);
2205 if (!(len -= copy))
2206 return csum;
2207 offset += copy;
2208 to += copy;
2209 pos += copy;
2210 }
2211 start = end;
2212 }
2213
2214 skb_walk_frags(skb, frag_iter) {
2215 __wsum csum2;
2216 int end;
2217
2218 WARN_ON(start > offset + len);
2219
2220 end = start + frag_iter->len;
2221 if ((copy = end - offset) > 0) {
2222 if (copy > len)
2223 copy = len;
2224 csum2 = skb_copy_and_csum_bits(frag_iter,
2225 offset - start,
2226 to, copy, 0);
2227 csum = csum_block_add(csum, csum2, pos);
2228 if ((len -= copy) == 0)
2229 return csum;
2230 offset += copy;
2231 to += copy;
2232 pos += copy;
2233 }
2234 start = end;
2235 }
2236 BUG_ON(len);
2237 return csum;
2238 }
2239 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2240
2241 /**
2242 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2243 * @from: source buffer
2244 *
2245 * Calculates the amount of linear headroom needed in the 'to' skb passed
2246 * into skb_zerocopy().
2247 */
2248 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2249 skb_zerocopy_headlen(const struct sk_buff *from)
2250 {
2251 unsigned int hlen = 0;
2252
2253 if (!from->head_frag ||
2254 skb_headlen(from) < L1_CACHE_BYTES ||
2255 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2256 hlen = skb_headlen(from);
2257
2258 if (skb_has_frag_list(from))
2259 hlen = from->len;
2260
2261 return hlen;
2262 }
2263 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2264
2265 /**
2266 * skb_zerocopy - Zero copy skb to skb
2267 * @to: destination buffer
2268 * @from: source buffer
2269 * @len: number of bytes to copy from source buffer
2270 * @hlen: size of linear headroom in destination buffer
2271 *
2272 * Copies up to `len` bytes from `from` to `to` by creating references
2273 * to the frags in the source buffer.
2274 *
2275 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2276 * headroom in the `to` buffer.
2277 *
2278 * Return value:
2279 * 0: everything is OK
2280 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2281 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2282 */
2283 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2284 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2285 {
2286 int i, j = 0;
2287 int plen = 0; /* length of skb->head fragment */
2288 int ret;
2289 struct page *page;
2290 unsigned int offset;
2291
2292 BUG_ON(!from->head_frag && !hlen);
2293
2294 /* dont bother with small payloads */
2295 if (len <= skb_tailroom(to))
2296 return skb_copy_bits(from, 0, skb_put(to, len), len);
2297
2298 if (hlen) {
2299 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2300 if (unlikely(ret))
2301 return ret;
2302 len -= hlen;
2303 } else {
2304 plen = min_t(int, skb_headlen(from), len);
2305 if (plen) {
2306 page = virt_to_head_page(from->head);
2307 offset = from->data - (unsigned char *)page_address(page);
2308 __skb_fill_page_desc(to, 0, page, offset, plen);
2309 get_page(page);
2310 j = 1;
2311 len -= plen;
2312 }
2313 }
2314
2315 to->truesize += len + plen;
2316 to->len += len + plen;
2317 to->data_len += len + plen;
2318
2319 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2320 skb_tx_error(from);
2321 return -ENOMEM;
2322 }
2323
2324 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2325 if (!len)
2326 break;
2327 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2328 skb_shinfo(to)->frags[j].size = min_t(int, skb_shinfo(to)->frags[j].size, len);
2329 len -= skb_shinfo(to)->frags[j].size;
2330 skb_frag_ref(to, j);
2331 j++;
2332 }
2333 skb_shinfo(to)->nr_frags = j;
2334
2335 return 0;
2336 }
2337 EXPORT_SYMBOL_GPL(skb_zerocopy);
2338
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2339 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2340 {
2341 __wsum csum;
2342 long csstart;
2343
2344 if (skb->ip_summed == CHECKSUM_PARTIAL)
2345 csstart = skb_checksum_start_offset(skb);
2346 else
2347 csstart = skb_headlen(skb);
2348
2349 BUG_ON(csstart > skb_headlen(skb));
2350
2351 skb_copy_from_linear_data(skb, to, csstart);
2352
2353 csum = 0;
2354 if (csstart != skb->len)
2355 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2356 skb->len - csstart, 0);
2357
2358 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2359 long csstuff = csstart + skb->csum_offset;
2360
2361 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2362 }
2363 }
2364 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2365
2366 /**
2367 * skb_dequeue - remove from the head of the queue
2368 * @list: list to dequeue from
2369 *
2370 * Remove the head of the list. The list lock is taken so the function
2371 * may be used safely with other locking list functions. The head item is
2372 * returned or %NULL if the list is empty.
2373 */
2374
skb_dequeue(struct sk_buff_head * list)2375 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2376 {
2377 unsigned long flags;
2378 struct sk_buff *result;
2379
2380 spin_lock_irqsave(&list->lock, flags);
2381 result = __skb_dequeue(list);
2382 spin_unlock_irqrestore(&list->lock, flags);
2383 return result;
2384 }
2385 EXPORT_SYMBOL(skb_dequeue);
2386
2387 /**
2388 * skb_dequeue_tail - remove from the tail of the queue
2389 * @list: list to dequeue from
2390 *
2391 * Remove the tail of the list. The list lock is taken so the function
2392 * may be used safely with other locking list functions. The tail item is
2393 * returned or %NULL if the list is empty.
2394 */
skb_dequeue_tail(struct sk_buff_head * list)2395 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2396 {
2397 unsigned long flags;
2398 struct sk_buff *result;
2399
2400 spin_lock_irqsave(&list->lock, flags);
2401 result = __skb_dequeue_tail(list);
2402 spin_unlock_irqrestore(&list->lock, flags);
2403 return result;
2404 }
2405 EXPORT_SYMBOL(skb_dequeue_tail);
2406
2407 /**
2408 * skb_queue_purge - empty a list
2409 * @list: list to empty
2410 *
2411 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2412 * the list and one reference dropped. This function takes the list
2413 * lock and is atomic with respect to other list locking functions.
2414 */
skb_queue_purge(struct sk_buff_head * list)2415 void skb_queue_purge(struct sk_buff_head *list)
2416 {
2417 struct sk_buff *skb;
2418 while ((skb = skb_dequeue(list)) != NULL)
2419 kfree_skb(skb);
2420 }
2421 EXPORT_SYMBOL(skb_queue_purge);
2422
2423 /**
2424 * skb_rbtree_purge - empty a skb rbtree
2425 * @root: root of the rbtree to empty
2426 *
2427 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
2428 * the list and one reference dropped. This function does not take
2429 * any lock. Synchronization should be handled by the caller (e.g., TCP
2430 * out-of-order queue is protected by the socket lock).
2431 */
skb_rbtree_purge(struct rb_root * root)2432 void skb_rbtree_purge(struct rb_root *root)
2433 {
2434 struct sk_buff *skb, *next;
2435
2436 rbtree_postorder_for_each_entry_safe(skb, next, root, rbnode)
2437 kfree_skb(skb);
2438
2439 *root = RB_ROOT;
2440 }
2441
2442 /**
2443 * skb_queue_head - queue a buffer at the list head
2444 * @list: list to use
2445 * @newsk: buffer to queue
2446 *
2447 * Queue a buffer at the start of the list. This function takes the
2448 * list lock and can be used safely with other locking &sk_buff functions
2449 * safely.
2450 *
2451 * A buffer cannot be placed on two lists at the same time.
2452 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2453 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2454 {
2455 unsigned long flags;
2456
2457 spin_lock_irqsave(&list->lock, flags);
2458 __skb_queue_head(list, newsk);
2459 spin_unlock_irqrestore(&list->lock, flags);
2460 }
2461 EXPORT_SYMBOL(skb_queue_head);
2462
2463 /**
2464 * skb_queue_tail - queue a buffer at the list tail
2465 * @list: list to use
2466 * @newsk: buffer to queue
2467 *
2468 * Queue a buffer at the tail of the list. This function takes the
2469 * list lock and can be used safely with other locking &sk_buff functions
2470 * safely.
2471 *
2472 * A buffer cannot be placed on two lists at the same time.
2473 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2474 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2475 {
2476 unsigned long flags;
2477
2478 spin_lock_irqsave(&list->lock, flags);
2479 __skb_queue_tail(list, newsk);
2480 spin_unlock_irqrestore(&list->lock, flags);
2481 }
2482 EXPORT_SYMBOL(skb_queue_tail);
2483
2484 /**
2485 * skb_unlink - remove a buffer from a list
2486 * @skb: buffer to remove
2487 * @list: list to use
2488 *
2489 * Remove a packet from a list. The list locks are taken and this
2490 * function is atomic with respect to other list locked calls
2491 *
2492 * You must know what list the SKB is on.
2493 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2494 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2495 {
2496 unsigned long flags;
2497
2498 spin_lock_irqsave(&list->lock, flags);
2499 __skb_unlink(skb, list);
2500 spin_unlock_irqrestore(&list->lock, flags);
2501 }
2502 EXPORT_SYMBOL(skb_unlink);
2503
2504 /**
2505 * skb_append - append a buffer
2506 * @old: buffer to insert after
2507 * @newsk: buffer to insert
2508 * @list: list to use
2509 *
2510 * Place a packet after a given packet in a list. The list locks are taken
2511 * and this function is atomic with respect to other list locked calls.
2512 * A buffer cannot be placed on two lists at the same time.
2513 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2514 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2515 {
2516 unsigned long flags;
2517
2518 spin_lock_irqsave(&list->lock, flags);
2519 __skb_queue_after(list, old, newsk);
2520 spin_unlock_irqrestore(&list->lock, flags);
2521 }
2522 EXPORT_SYMBOL(skb_append);
2523
2524 /**
2525 * skb_insert - insert a buffer
2526 * @old: buffer to insert before
2527 * @newsk: buffer to insert
2528 * @list: list to use
2529 *
2530 * Place a packet before a given packet in a list. The list locks are
2531 * taken and this function is atomic with respect to other list locked
2532 * calls.
2533 *
2534 * A buffer cannot be placed on two lists at the same time.
2535 */
skb_insert(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)2536 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2537 {
2538 unsigned long flags;
2539
2540 spin_lock_irqsave(&list->lock, flags);
2541 __skb_insert(newsk, old->prev, old, list);
2542 spin_unlock_irqrestore(&list->lock, flags);
2543 }
2544 EXPORT_SYMBOL(skb_insert);
2545
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)2546 static inline void skb_split_inside_header(struct sk_buff *skb,
2547 struct sk_buff* skb1,
2548 const u32 len, const int pos)
2549 {
2550 int i;
2551
2552 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2553 pos - len);
2554 /* And move data appendix as is. */
2555 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2556 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2557
2558 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2559 skb_shinfo(skb)->nr_frags = 0;
2560 skb1->data_len = skb->data_len;
2561 skb1->len += skb1->data_len;
2562 skb->data_len = 0;
2563 skb->len = len;
2564 skb_set_tail_pointer(skb, len);
2565 }
2566
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)2567 static inline void skb_split_no_header(struct sk_buff *skb,
2568 struct sk_buff* skb1,
2569 const u32 len, int pos)
2570 {
2571 int i, k = 0;
2572 const int nfrags = skb_shinfo(skb)->nr_frags;
2573
2574 skb_shinfo(skb)->nr_frags = 0;
2575 skb1->len = skb1->data_len = skb->len - len;
2576 skb->len = len;
2577 skb->data_len = len - pos;
2578
2579 for (i = 0; i < nfrags; i++) {
2580 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2581
2582 if (pos + size > len) {
2583 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2584
2585 if (pos < len) {
2586 /* Split frag.
2587 * We have two variants in this case:
2588 * 1. Move all the frag to the second
2589 * part, if it is possible. F.e.
2590 * this approach is mandatory for TUX,
2591 * where splitting is expensive.
2592 * 2. Split is accurately. We make this.
2593 */
2594 skb_frag_ref(skb, i);
2595 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2596 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2597 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2598 skb_shinfo(skb)->nr_frags++;
2599 }
2600 k++;
2601 } else
2602 skb_shinfo(skb)->nr_frags++;
2603 pos += size;
2604 }
2605 skb_shinfo(skb1)->nr_frags = k;
2606 }
2607
2608 /**
2609 * skb_split - Split fragmented skb to two parts at length len.
2610 * @skb: the buffer to split
2611 * @skb1: the buffer to receive the second part
2612 * @len: new length for skb
2613 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)2614 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2615 {
2616 int pos = skb_headlen(skb);
2617
2618 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
2619 SKBTX_SHARED_FRAG;
2620 if (len < pos) /* Split line is inside header. */
2621 skb_split_inside_header(skb, skb1, len, pos);
2622 else /* Second chunk has no header, nothing to copy. */
2623 skb_split_no_header(skb, skb1, len, pos);
2624 }
2625 EXPORT_SYMBOL(skb_split);
2626
2627 /* Shifting from/to a cloned skb is a no-go.
2628 *
2629 * Caller cannot keep skb_shinfo related pointers past calling here!
2630 */
skb_prepare_for_shift(struct sk_buff * skb)2631 static int skb_prepare_for_shift(struct sk_buff *skb)
2632 {
2633 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2634 }
2635
2636 /**
2637 * skb_shift - Shifts paged data partially from skb to another
2638 * @tgt: buffer into which tail data gets added
2639 * @skb: buffer from which the paged data comes from
2640 * @shiftlen: shift up to this many bytes
2641 *
2642 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2643 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2644 * It's up to caller to free skb if everything was shifted.
2645 *
2646 * If @tgt runs out of frags, the whole operation is aborted.
2647 *
2648 * Skb cannot include anything else but paged data while tgt is allowed
2649 * to have non-paged data as well.
2650 *
2651 * TODO: full sized shift could be optimized but that would need
2652 * specialized skb free'er to handle frags without up-to-date nr_frags.
2653 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)2654 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2655 {
2656 int from, to, merge, todo;
2657 struct skb_frag_struct *fragfrom, *fragto;
2658
2659 BUG_ON(shiftlen > skb->len);
2660 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2661
2662 todo = shiftlen;
2663 from = 0;
2664 to = skb_shinfo(tgt)->nr_frags;
2665 fragfrom = &skb_shinfo(skb)->frags[from];
2666
2667 /* Actual merge is delayed until the point when we know we can
2668 * commit all, so that we don't have to undo partial changes
2669 */
2670 if (!to ||
2671 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2672 fragfrom->page_offset)) {
2673 merge = -1;
2674 } else {
2675 merge = to - 1;
2676
2677 todo -= skb_frag_size(fragfrom);
2678 if (todo < 0) {
2679 if (skb_prepare_for_shift(skb) ||
2680 skb_prepare_for_shift(tgt))
2681 return 0;
2682
2683 /* All previous frag pointers might be stale! */
2684 fragfrom = &skb_shinfo(skb)->frags[from];
2685 fragto = &skb_shinfo(tgt)->frags[merge];
2686
2687 skb_frag_size_add(fragto, shiftlen);
2688 skb_frag_size_sub(fragfrom, shiftlen);
2689 fragfrom->page_offset += shiftlen;
2690
2691 goto onlymerged;
2692 }
2693
2694 from++;
2695 }
2696
2697 /* Skip full, not-fitting skb to avoid expensive operations */
2698 if ((shiftlen == skb->len) &&
2699 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2700 return 0;
2701
2702 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2703 return 0;
2704
2705 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2706 if (to == MAX_SKB_FRAGS)
2707 return 0;
2708
2709 fragfrom = &skb_shinfo(skb)->frags[from];
2710 fragto = &skb_shinfo(tgt)->frags[to];
2711
2712 if (todo >= skb_frag_size(fragfrom)) {
2713 *fragto = *fragfrom;
2714 todo -= skb_frag_size(fragfrom);
2715 from++;
2716 to++;
2717
2718 } else {
2719 __skb_frag_ref(fragfrom);
2720 fragto->page = fragfrom->page;
2721 fragto->page_offset = fragfrom->page_offset;
2722 skb_frag_size_set(fragto, todo);
2723
2724 fragfrom->page_offset += todo;
2725 skb_frag_size_sub(fragfrom, todo);
2726 todo = 0;
2727
2728 to++;
2729 break;
2730 }
2731 }
2732
2733 /* Ready to "commit" this state change to tgt */
2734 skb_shinfo(tgt)->nr_frags = to;
2735
2736 if (merge >= 0) {
2737 fragfrom = &skb_shinfo(skb)->frags[0];
2738 fragto = &skb_shinfo(tgt)->frags[merge];
2739
2740 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2741 __skb_frag_unref(fragfrom);
2742 }
2743
2744 /* Reposition in the original skb */
2745 to = 0;
2746 while (from < skb_shinfo(skb)->nr_frags)
2747 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2748 skb_shinfo(skb)->nr_frags = to;
2749
2750 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2751
2752 onlymerged:
2753 /* Most likely the tgt won't ever need its checksum anymore, skb on
2754 * the other hand might need it if it needs to be resent
2755 */
2756 tgt->ip_summed = CHECKSUM_PARTIAL;
2757 skb->ip_summed = CHECKSUM_PARTIAL;
2758
2759 /* Yak, is it really working this way? Some helper please? */
2760 skb->len -= shiftlen;
2761 skb->data_len -= shiftlen;
2762 skb->truesize -= shiftlen;
2763 tgt->len += shiftlen;
2764 tgt->data_len += shiftlen;
2765 tgt->truesize += shiftlen;
2766
2767 return shiftlen;
2768 }
2769
2770 /**
2771 * skb_prepare_seq_read - Prepare a sequential read of skb data
2772 * @skb: the buffer to read
2773 * @from: lower offset of data to be read
2774 * @to: upper offset of data to be read
2775 * @st: state variable
2776 *
2777 * Initializes the specified state variable. Must be called before
2778 * invoking skb_seq_read() for the first time.
2779 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)2780 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2781 unsigned int to, struct skb_seq_state *st)
2782 {
2783 st->lower_offset = from;
2784 st->upper_offset = to;
2785 st->root_skb = st->cur_skb = skb;
2786 st->frag_idx = st->stepped_offset = 0;
2787 st->frag_data = NULL;
2788 }
2789 EXPORT_SYMBOL(skb_prepare_seq_read);
2790
2791 /**
2792 * skb_seq_read - Sequentially read skb data
2793 * @consumed: number of bytes consumed by the caller so far
2794 * @data: destination pointer for data to be returned
2795 * @st: state variable
2796 *
2797 * Reads a block of skb data at @consumed relative to the
2798 * lower offset specified to skb_prepare_seq_read(). Assigns
2799 * the head of the data block to @data and returns the length
2800 * of the block or 0 if the end of the skb data or the upper
2801 * offset has been reached.
2802 *
2803 * The caller is not required to consume all of the data
2804 * returned, i.e. @consumed is typically set to the number
2805 * of bytes already consumed and the next call to
2806 * skb_seq_read() will return the remaining part of the block.
2807 *
2808 * Note 1: The size of each block of data returned can be arbitrary,
2809 * this limitation is the cost for zerocopy sequential
2810 * reads of potentially non linear data.
2811 *
2812 * Note 2: Fragment lists within fragments are not implemented
2813 * at the moment, state->root_skb could be replaced with
2814 * a stack for this purpose.
2815 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)2816 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2817 struct skb_seq_state *st)
2818 {
2819 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2820 skb_frag_t *frag;
2821
2822 if (unlikely(abs_offset >= st->upper_offset)) {
2823 if (st->frag_data) {
2824 kunmap_atomic(st->frag_data);
2825 st->frag_data = NULL;
2826 }
2827 return 0;
2828 }
2829
2830 next_skb:
2831 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2832
2833 if (abs_offset < block_limit && !st->frag_data) {
2834 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2835 return block_limit - abs_offset;
2836 }
2837
2838 if (st->frag_idx == 0 && !st->frag_data)
2839 st->stepped_offset += skb_headlen(st->cur_skb);
2840
2841 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2842 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2843 block_limit = skb_frag_size(frag) + st->stepped_offset;
2844
2845 if (abs_offset < block_limit) {
2846 if (!st->frag_data)
2847 st->frag_data = kmap_atomic(skb_frag_page(frag));
2848
2849 *data = (u8 *) st->frag_data + frag->page_offset +
2850 (abs_offset - st->stepped_offset);
2851
2852 return block_limit - abs_offset;
2853 }
2854
2855 if (st->frag_data) {
2856 kunmap_atomic(st->frag_data);
2857 st->frag_data = NULL;
2858 }
2859
2860 st->frag_idx++;
2861 st->stepped_offset += skb_frag_size(frag);
2862 }
2863
2864 if (st->frag_data) {
2865 kunmap_atomic(st->frag_data);
2866 st->frag_data = NULL;
2867 }
2868
2869 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2870 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2871 st->frag_idx = 0;
2872 goto next_skb;
2873 } else if (st->cur_skb->next) {
2874 st->cur_skb = st->cur_skb->next;
2875 st->frag_idx = 0;
2876 goto next_skb;
2877 }
2878
2879 return 0;
2880 }
2881 EXPORT_SYMBOL(skb_seq_read);
2882
2883 /**
2884 * skb_abort_seq_read - Abort a sequential read of skb data
2885 * @st: state variable
2886 *
2887 * Must be called if skb_seq_read() was not called until it
2888 * returned 0.
2889 */
skb_abort_seq_read(struct skb_seq_state * st)2890 void skb_abort_seq_read(struct skb_seq_state *st)
2891 {
2892 if (st->frag_data)
2893 kunmap_atomic(st->frag_data);
2894 }
2895 EXPORT_SYMBOL(skb_abort_seq_read);
2896
2897 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2898
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)2899 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2900 struct ts_config *conf,
2901 struct ts_state *state)
2902 {
2903 return skb_seq_read(offset, text, TS_SKB_CB(state));
2904 }
2905
skb_ts_finish(struct ts_config * conf,struct ts_state * state)2906 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2907 {
2908 skb_abort_seq_read(TS_SKB_CB(state));
2909 }
2910
2911 /**
2912 * skb_find_text - Find a text pattern in skb data
2913 * @skb: the buffer to look in
2914 * @from: search offset
2915 * @to: search limit
2916 * @config: textsearch configuration
2917 *
2918 * Finds a pattern in the skb data according to the specified
2919 * textsearch configuration. Use textsearch_next() to retrieve
2920 * subsequent occurrences of the pattern. Returns the offset
2921 * to the first occurrence or UINT_MAX if no match was found.
2922 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)2923 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2924 unsigned int to, struct ts_config *config)
2925 {
2926 struct ts_state state;
2927 unsigned int ret;
2928
2929 config->get_next_block = skb_ts_get_next_block;
2930 config->finish = skb_ts_finish;
2931
2932 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
2933
2934 ret = textsearch_find(config, &state);
2935 return (ret <= to - from ? ret : UINT_MAX);
2936 }
2937 EXPORT_SYMBOL(skb_find_text);
2938
2939 /**
2940 * skb_append_datato_frags - append the user data to a skb
2941 * @sk: sock structure
2942 * @skb: skb structure to be appended with user data.
2943 * @getfrag: call back function to be used for getting the user data
2944 * @from: pointer to user message iov
2945 * @length: length of the iov message
2946 *
2947 * Description: This procedure append the user data in the fragment part
2948 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2949 */
skb_append_datato_frags(struct sock * sk,struct sk_buff * skb,int (* getfrag)(void * from,char * to,int offset,int len,int odd,struct sk_buff * skb),void * from,int length)2950 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2951 int (*getfrag)(void *from, char *to, int offset,
2952 int len, int odd, struct sk_buff *skb),
2953 void *from, int length)
2954 {
2955 int frg_cnt = skb_shinfo(skb)->nr_frags;
2956 int copy;
2957 int offset = 0;
2958 int ret;
2959 struct page_frag *pfrag = ¤t->task_frag;
2960
2961 do {
2962 /* Return error if we don't have space for new frag */
2963 if (frg_cnt >= MAX_SKB_FRAGS)
2964 return -EMSGSIZE;
2965
2966 if (!sk_page_frag_refill(sk, pfrag))
2967 return -ENOMEM;
2968
2969 /* copy the user data to page */
2970 copy = min_t(int, length, pfrag->size - pfrag->offset);
2971
2972 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2973 offset, copy, 0, skb);
2974 if (ret < 0)
2975 return -EFAULT;
2976
2977 /* copy was successful so update the size parameters */
2978 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2979 copy);
2980 frg_cnt++;
2981 pfrag->offset += copy;
2982 get_page(pfrag->page);
2983
2984 skb->truesize += copy;
2985 atomic_add(copy, &sk->sk_wmem_alloc);
2986 skb->len += copy;
2987 skb->data_len += copy;
2988 offset += copy;
2989 length -= copy;
2990
2991 } while (length > 0);
2992
2993 return 0;
2994 }
2995 EXPORT_SYMBOL(skb_append_datato_frags);
2996
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)2997 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
2998 int offset, size_t size)
2999 {
3000 int i = skb_shinfo(skb)->nr_frags;
3001
3002 if (skb_can_coalesce(skb, i, page, offset)) {
3003 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3004 } else if (i < MAX_SKB_FRAGS) {
3005 get_page(page);
3006 skb_fill_page_desc(skb, i, page, offset, size);
3007 } else {
3008 return -EMSGSIZE;
3009 }
3010
3011 return 0;
3012 }
3013 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3014
3015 /**
3016 * skb_pull_rcsum - pull skb and update receive checksum
3017 * @skb: buffer to update
3018 * @len: length of data pulled
3019 *
3020 * This function performs an skb_pull on the packet and updates
3021 * the CHECKSUM_COMPLETE checksum. It should be used on
3022 * receive path processing instead of skb_pull unless you know
3023 * that the checksum difference is zero (e.g., a valid IP header)
3024 * or you are setting ip_summed to CHECKSUM_NONE.
3025 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3026 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3027 {
3028 unsigned char *data = skb->data;
3029
3030 BUG_ON(len > skb->len);
3031 __skb_pull(skb, len);
3032 skb_postpull_rcsum(skb, data, len);
3033 return skb->data;
3034 }
3035 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3036
3037 /**
3038 * skb_segment - Perform protocol segmentation on skb.
3039 * @head_skb: buffer to segment
3040 * @features: features for the output path (see dev->features)
3041 *
3042 * This function performs segmentation on the given skb. It returns
3043 * a pointer to the first in a list of new skbs for the segments.
3044 * In case of error it returns ERR_PTR(err).
3045 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3046 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3047 netdev_features_t features)
3048 {
3049 struct sk_buff *segs = NULL;
3050 struct sk_buff *tail = NULL;
3051 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3052 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3053 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3054 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3055 struct sk_buff *frag_skb = head_skb;
3056 unsigned int offset = doffset;
3057 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3058 unsigned int partial_segs = 0;
3059 unsigned int headroom;
3060 unsigned int len = head_skb->len;
3061 __be16 proto;
3062 bool csum, sg;
3063 int nfrags = skb_shinfo(head_skb)->nr_frags;
3064 int err = -ENOMEM;
3065 int i = 0;
3066 int pos;
3067 int dummy;
3068
3069 __skb_push(head_skb, doffset);
3070 proto = skb_network_protocol(head_skb, &dummy);
3071 if (unlikely(!proto))
3072 return ERR_PTR(-EINVAL);
3073
3074 sg = !!(features & NETIF_F_SG);
3075 csum = !!can_checksum_protocol(features, proto);
3076
3077 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3078 if (!(features & NETIF_F_GSO_PARTIAL)) {
3079 struct sk_buff *iter;
3080 unsigned int frag_len;
3081
3082 if (!list_skb ||
3083 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3084 goto normal;
3085
3086 /* If we get here then all the required
3087 * GSO features except frag_list are supported.
3088 * Try to split the SKB to multiple GSO SKBs
3089 * with no frag_list.
3090 * Currently we can do that only when the buffers don't
3091 * have a linear part and all the buffers except
3092 * the last are of the same length.
3093 */
3094 frag_len = list_skb->len;
3095 skb_walk_frags(head_skb, iter) {
3096 if (frag_len != iter->len && iter->next)
3097 goto normal;
3098 if (skb_headlen(iter))
3099 goto normal;
3100
3101 len -= iter->len;
3102 }
3103
3104 if (len != frag_len)
3105 goto normal;
3106 }
3107
3108 /* GSO partial only requires that we trim off any excess that
3109 * doesn't fit into an MSS sized block, so take care of that
3110 * now.
3111 */
3112 partial_segs = len / mss;
3113 if (partial_segs > 1)
3114 mss *= partial_segs;
3115 else
3116 partial_segs = 0;
3117 }
3118
3119 normal:
3120 headroom = skb_headroom(head_skb);
3121 pos = skb_headlen(head_skb);
3122
3123 do {
3124 struct sk_buff *nskb;
3125 skb_frag_t *nskb_frag;
3126 int hsize;
3127 int size;
3128
3129 if (unlikely(mss == GSO_BY_FRAGS)) {
3130 len = list_skb->len;
3131 } else {
3132 len = head_skb->len - offset;
3133 if (len > mss)
3134 len = mss;
3135 }
3136
3137 hsize = skb_headlen(head_skb) - offset;
3138 if (hsize < 0)
3139 hsize = 0;
3140 if (hsize > len || !sg)
3141 hsize = len;
3142
3143 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3144 (skb_headlen(list_skb) == len || sg)) {
3145 BUG_ON(skb_headlen(list_skb) > len);
3146
3147 i = 0;
3148 nfrags = skb_shinfo(list_skb)->nr_frags;
3149 frag = skb_shinfo(list_skb)->frags;
3150 frag_skb = list_skb;
3151 pos += skb_headlen(list_skb);
3152
3153 while (pos < offset + len) {
3154 BUG_ON(i >= nfrags);
3155
3156 size = skb_frag_size(frag);
3157 if (pos + size > offset + len)
3158 break;
3159
3160 i++;
3161 pos += size;
3162 frag++;
3163 }
3164
3165 nskb = skb_clone(list_skb, GFP_ATOMIC);
3166 list_skb = list_skb->next;
3167
3168 if (unlikely(!nskb))
3169 goto err;
3170
3171 if (unlikely(pskb_trim(nskb, len))) {
3172 kfree_skb(nskb);
3173 goto err;
3174 }
3175
3176 hsize = skb_end_offset(nskb);
3177 if (skb_cow_head(nskb, doffset + headroom)) {
3178 kfree_skb(nskb);
3179 goto err;
3180 }
3181
3182 nskb->truesize += skb_end_offset(nskb) - hsize;
3183 skb_release_head_state(nskb);
3184 __skb_push(nskb, doffset);
3185 } else {
3186 nskb = __alloc_skb(hsize + doffset + headroom,
3187 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3188 NUMA_NO_NODE);
3189
3190 if (unlikely(!nskb))
3191 goto err;
3192
3193 skb_reserve(nskb, headroom);
3194 __skb_put(nskb, doffset);
3195 }
3196
3197 if (segs)
3198 tail->next = nskb;
3199 else
3200 segs = nskb;
3201 tail = nskb;
3202
3203 __copy_skb_header(nskb, head_skb);
3204
3205 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3206 skb_reset_mac_len(nskb);
3207
3208 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3209 nskb->data - tnl_hlen,
3210 doffset + tnl_hlen);
3211
3212 if (nskb->len == len + doffset)
3213 goto perform_csum_check;
3214
3215 if (!sg) {
3216 if (!nskb->remcsum_offload)
3217 nskb->ip_summed = CHECKSUM_NONE;
3218 SKB_GSO_CB(nskb)->csum =
3219 skb_copy_and_csum_bits(head_skb, offset,
3220 skb_put(nskb, len),
3221 len, 0);
3222 SKB_GSO_CB(nskb)->csum_start =
3223 skb_headroom(nskb) + doffset;
3224 continue;
3225 }
3226
3227 nskb_frag = skb_shinfo(nskb)->frags;
3228
3229 skb_copy_from_linear_data_offset(head_skb, offset,
3230 skb_put(nskb, hsize), hsize);
3231
3232 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3233 SKBTX_SHARED_FRAG;
3234
3235 while (pos < offset + len) {
3236 if (i >= nfrags) {
3237 BUG_ON(skb_headlen(list_skb));
3238
3239 i = 0;
3240 nfrags = skb_shinfo(list_skb)->nr_frags;
3241 frag = skb_shinfo(list_skb)->frags;
3242 frag_skb = list_skb;
3243
3244 BUG_ON(!nfrags);
3245
3246 list_skb = list_skb->next;
3247 }
3248
3249 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3250 MAX_SKB_FRAGS)) {
3251 net_warn_ratelimited(
3252 "skb_segment: too many frags: %u %u\n",
3253 pos, mss);
3254 goto err;
3255 }
3256
3257 if (unlikely(skb_orphan_frags(frag_skb, GFP_ATOMIC)))
3258 goto err;
3259
3260 *nskb_frag = *frag;
3261 __skb_frag_ref(nskb_frag);
3262 size = skb_frag_size(nskb_frag);
3263
3264 if (pos < offset) {
3265 nskb_frag->page_offset += offset - pos;
3266 skb_frag_size_sub(nskb_frag, offset - pos);
3267 }
3268
3269 skb_shinfo(nskb)->nr_frags++;
3270
3271 if (pos + size <= offset + len) {
3272 i++;
3273 frag++;
3274 pos += size;
3275 } else {
3276 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
3277 goto skip_fraglist;
3278 }
3279
3280 nskb_frag++;
3281 }
3282
3283 skip_fraglist:
3284 nskb->data_len = len - hsize;
3285 nskb->len += nskb->data_len;
3286 nskb->truesize += nskb->data_len;
3287
3288 perform_csum_check:
3289 if (!csum) {
3290 if (skb_has_shared_frag(nskb)) {
3291 err = __skb_linearize(nskb);
3292 if (err)
3293 goto err;
3294 }
3295 if (!nskb->remcsum_offload)
3296 nskb->ip_summed = CHECKSUM_NONE;
3297 SKB_GSO_CB(nskb)->csum =
3298 skb_checksum(nskb, doffset,
3299 nskb->len - doffset, 0);
3300 SKB_GSO_CB(nskb)->csum_start =
3301 skb_headroom(nskb) + doffset;
3302 }
3303 } while ((offset += len) < head_skb->len);
3304
3305 /* Some callers want to get the end of the list.
3306 * Put it in segs->prev to avoid walking the list.
3307 * (see validate_xmit_skb_list() for example)
3308 */
3309 segs->prev = tail;
3310
3311 if (partial_segs) {
3312 struct sk_buff *iter;
3313 int type = skb_shinfo(head_skb)->gso_type;
3314 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
3315
3316 /* Update type to add partial and then remove dodgy if set */
3317 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
3318 type &= ~SKB_GSO_DODGY;
3319
3320 /* Update GSO info and prepare to start updating headers on
3321 * our way back down the stack of protocols.
3322 */
3323 for (iter = segs; iter; iter = iter->next) {
3324 skb_shinfo(iter)->gso_size = gso_size;
3325 skb_shinfo(iter)->gso_segs = partial_segs;
3326 skb_shinfo(iter)->gso_type = type;
3327 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
3328 }
3329
3330 if (tail->len - doffset <= gso_size)
3331 skb_shinfo(tail)->gso_size = 0;
3332 else if (tail != segs)
3333 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
3334 }
3335
3336 /* Following permits correct backpressure, for protocols
3337 * using skb_set_owner_w().
3338 * Idea is to tranfert ownership from head_skb to last segment.
3339 */
3340 if (head_skb->destructor == sock_wfree) {
3341 swap(tail->truesize, head_skb->truesize);
3342 swap(tail->destructor, head_skb->destructor);
3343 swap(tail->sk, head_skb->sk);
3344 }
3345 return segs;
3346
3347 err:
3348 kfree_skb_list(segs);
3349 return ERR_PTR(err);
3350 }
3351 EXPORT_SYMBOL_GPL(skb_segment);
3352
skb_gro_receive(struct sk_buff ** head,struct sk_buff * skb)3353 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
3354 {
3355 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
3356 unsigned int offset = skb_gro_offset(skb);
3357 unsigned int headlen = skb_headlen(skb);
3358 unsigned int len = skb_gro_len(skb);
3359 struct sk_buff *lp, *p = *head;
3360 unsigned int delta_truesize;
3361
3362 if (unlikely(p->len + len >= 65536))
3363 return -E2BIG;
3364
3365 lp = NAPI_GRO_CB(p)->last;
3366 pinfo = skb_shinfo(lp);
3367
3368 if (headlen <= offset) {
3369 skb_frag_t *frag;
3370 skb_frag_t *frag2;
3371 int i = skbinfo->nr_frags;
3372 int nr_frags = pinfo->nr_frags + i;
3373
3374 if (nr_frags > MAX_SKB_FRAGS)
3375 goto merge;
3376
3377 offset -= headlen;
3378 pinfo->nr_frags = nr_frags;
3379 skbinfo->nr_frags = 0;
3380
3381 frag = pinfo->frags + nr_frags;
3382 frag2 = skbinfo->frags + i;
3383 do {
3384 *--frag = *--frag2;
3385 } while (--i);
3386
3387 frag->page_offset += offset;
3388 skb_frag_size_sub(frag, offset);
3389
3390 /* all fragments truesize : remove (head size + sk_buff) */
3391 delta_truesize = skb->truesize -
3392 SKB_TRUESIZE(skb_end_offset(skb));
3393
3394 skb->truesize -= skb->data_len;
3395 skb->len -= skb->data_len;
3396 skb->data_len = 0;
3397
3398 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3399 goto done;
3400 } else if (skb->head_frag) {
3401 int nr_frags = pinfo->nr_frags;
3402 skb_frag_t *frag = pinfo->frags + nr_frags;
3403 struct page *page = virt_to_head_page(skb->head);
3404 unsigned int first_size = headlen - offset;
3405 unsigned int first_offset;
3406
3407 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3408 goto merge;
3409
3410 first_offset = skb->data -
3411 (unsigned char *)page_address(page) +
3412 offset;
3413
3414 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3415
3416 frag->page.p = page;
3417 frag->page_offset = first_offset;
3418 skb_frag_size_set(frag, first_size);
3419
3420 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3421 /* We dont need to clear skbinfo->nr_frags here */
3422
3423 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3424 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3425 goto done;
3426 }
3427
3428 merge:
3429 delta_truesize = skb->truesize;
3430 if (offset > headlen) {
3431 unsigned int eat = offset - headlen;
3432
3433 skbinfo->frags[0].page_offset += eat;
3434 skb_frag_size_sub(&skbinfo->frags[0], eat);
3435 skb->data_len -= eat;
3436 skb->len -= eat;
3437 offset = headlen;
3438 }
3439
3440 __skb_pull(skb, offset);
3441
3442 if (NAPI_GRO_CB(p)->last == p)
3443 skb_shinfo(p)->frag_list = skb;
3444 else
3445 NAPI_GRO_CB(p)->last->next = skb;
3446 NAPI_GRO_CB(p)->last = skb;
3447 __skb_header_release(skb);
3448 lp = p;
3449
3450 done:
3451 NAPI_GRO_CB(p)->count++;
3452 p->data_len += len;
3453 p->truesize += delta_truesize;
3454 p->len += len;
3455 if (lp != p) {
3456 lp->data_len += len;
3457 lp->truesize += delta_truesize;
3458 lp->len += len;
3459 }
3460 NAPI_GRO_CB(skb)->same_flow = 1;
3461 return 0;
3462 }
3463 EXPORT_SYMBOL_GPL(skb_gro_receive);
3464
skb_init(void)3465 void __init skb_init(void)
3466 {
3467 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3468 sizeof(struct sk_buff),
3469 0,
3470 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3471 NULL);
3472 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3473 sizeof(struct sk_buff_fclones),
3474 0,
3475 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3476 NULL);
3477 }
3478
3479 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)3480 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
3481 unsigned int recursion_level)
3482 {
3483 int start = skb_headlen(skb);
3484 int i, copy = start - offset;
3485 struct sk_buff *frag_iter;
3486 int elt = 0;
3487
3488 if (unlikely(recursion_level >= 24))
3489 return -EMSGSIZE;
3490
3491 if (copy > 0) {
3492 if (copy > len)
3493 copy = len;
3494 sg_set_buf(sg, skb->data + offset, copy);
3495 elt++;
3496 if ((len -= copy) == 0)
3497 return elt;
3498 offset += copy;
3499 }
3500
3501 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3502 int end;
3503
3504 WARN_ON(start > offset + len);
3505
3506 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3507 if ((copy = end - offset) > 0) {
3508 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3509 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3510 return -EMSGSIZE;
3511
3512 if (copy > len)
3513 copy = len;
3514 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3515 frag->page_offset+offset-start);
3516 elt++;
3517 if (!(len -= copy))
3518 return elt;
3519 offset += copy;
3520 }
3521 start = end;
3522 }
3523
3524 skb_walk_frags(skb, frag_iter) {
3525 int end, ret;
3526
3527 WARN_ON(start > offset + len);
3528
3529 end = start + frag_iter->len;
3530 if ((copy = end - offset) > 0) {
3531 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
3532 return -EMSGSIZE;
3533
3534 if (copy > len)
3535 copy = len;
3536 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3537 copy, recursion_level + 1);
3538 if (unlikely(ret < 0))
3539 return ret;
3540 elt += ret;
3541 if ((len -= copy) == 0)
3542 return elt;
3543 offset += copy;
3544 }
3545 start = end;
3546 }
3547 BUG_ON(len);
3548 return elt;
3549 }
3550
3551 /**
3552 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3553 * @skb: Socket buffer containing the buffers to be mapped
3554 * @sg: The scatter-gather list to map into
3555 * @offset: The offset into the buffer's contents to start mapping
3556 * @len: Length of buffer space to be mapped
3557 *
3558 * Fill the specified scatter-gather list with mappings/pointers into a
3559 * region of the buffer space attached to a socket buffer. Returns either
3560 * the number of scatterlist items used, or -EMSGSIZE if the contents
3561 * could not fit.
3562 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3563 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3564 {
3565 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
3566
3567 if (nsg <= 0)
3568 return nsg;
3569
3570 sg_mark_end(&sg[nsg - 1]);
3571
3572 return nsg;
3573 }
3574 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3575
3576 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
3577 * sglist without mark the sg which contain last skb data as the end.
3578 * So the caller can mannipulate sg list as will when padding new data after
3579 * the first call without calling sg_unmark_end to expend sg list.
3580 *
3581 * Scenario to use skb_to_sgvec_nomark:
3582 * 1. sg_init_table
3583 * 2. skb_to_sgvec_nomark(payload1)
3584 * 3. skb_to_sgvec_nomark(payload2)
3585 *
3586 * This is equivalent to:
3587 * 1. sg_init_table
3588 * 2. skb_to_sgvec(payload1)
3589 * 3. sg_unmark_end
3590 * 4. skb_to_sgvec(payload2)
3591 *
3592 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
3593 * is more preferable.
3594 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)3595 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
3596 int offset, int len)
3597 {
3598 return __skb_to_sgvec(skb, sg, offset, len, 0);
3599 }
3600 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
3601
3602
3603
3604 /**
3605 * skb_cow_data - Check that a socket buffer's data buffers are writable
3606 * @skb: The socket buffer to check.
3607 * @tailbits: Amount of trailing space to be added
3608 * @trailer: Returned pointer to the skb where the @tailbits space begins
3609 *
3610 * Make sure that the data buffers attached to a socket buffer are
3611 * writable. If they are not, private copies are made of the data buffers
3612 * and the socket buffer is set to use these instead.
3613 *
3614 * If @tailbits is given, make sure that there is space to write @tailbits
3615 * bytes of data beyond current end of socket buffer. @trailer will be
3616 * set to point to the skb in which this space begins.
3617 *
3618 * The number of scatterlist elements required to completely map the
3619 * COW'd and extended socket buffer will be returned.
3620 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)3621 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3622 {
3623 int copyflag;
3624 int elt;
3625 struct sk_buff *skb1, **skb_p;
3626
3627 /* If skb is cloned or its head is paged, reallocate
3628 * head pulling out all the pages (pages are considered not writable
3629 * at the moment even if they are anonymous).
3630 */
3631 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3632 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3633 return -ENOMEM;
3634
3635 /* Easy case. Most of packets will go this way. */
3636 if (!skb_has_frag_list(skb)) {
3637 /* A little of trouble, not enough of space for trailer.
3638 * This should not happen, when stack is tuned to generate
3639 * good frames. OK, on miss we reallocate and reserve even more
3640 * space, 128 bytes is fair. */
3641
3642 if (skb_tailroom(skb) < tailbits &&
3643 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3644 return -ENOMEM;
3645
3646 /* Voila! */
3647 *trailer = skb;
3648 return 1;
3649 }
3650
3651 /* Misery. We are in troubles, going to mincer fragments... */
3652
3653 elt = 1;
3654 skb_p = &skb_shinfo(skb)->frag_list;
3655 copyflag = 0;
3656
3657 while ((skb1 = *skb_p) != NULL) {
3658 int ntail = 0;
3659
3660 /* The fragment is partially pulled by someone,
3661 * this can happen on input. Copy it and everything
3662 * after it. */
3663
3664 if (skb_shared(skb1))
3665 copyflag = 1;
3666
3667 /* If the skb is the last, worry about trailer. */
3668
3669 if (skb1->next == NULL && tailbits) {
3670 if (skb_shinfo(skb1)->nr_frags ||
3671 skb_has_frag_list(skb1) ||
3672 skb_tailroom(skb1) < tailbits)
3673 ntail = tailbits + 128;
3674 }
3675
3676 if (copyflag ||
3677 skb_cloned(skb1) ||
3678 ntail ||
3679 skb_shinfo(skb1)->nr_frags ||
3680 skb_has_frag_list(skb1)) {
3681 struct sk_buff *skb2;
3682
3683 /* Fuck, we are miserable poor guys... */
3684 if (ntail == 0)
3685 skb2 = skb_copy(skb1, GFP_ATOMIC);
3686 else
3687 skb2 = skb_copy_expand(skb1,
3688 skb_headroom(skb1),
3689 ntail,
3690 GFP_ATOMIC);
3691 if (unlikely(skb2 == NULL))
3692 return -ENOMEM;
3693
3694 if (skb1->sk)
3695 skb_set_owner_w(skb2, skb1->sk);
3696
3697 /* Looking around. Are we still alive?
3698 * OK, link new skb, drop old one */
3699
3700 skb2->next = skb1->next;
3701 *skb_p = skb2;
3702 kfree_skb(skb1);
3703 skb1 = skb2;
3704 }
3705 elt++;
3706 *trailer = skb1;
3707 skb_p = &skb1->next;
3708 }
3709
3710 return elt;
3711 }
3712 EXPORT_SYMBOL_GPL(skb_cow_data);
3713
sock_rmem_free(struct sk_buff * skb)3714 static void sock_rmem_free(struct sk_buff *skb)
3715 {
3716 struct sock *sk = skb->sk;
3717
3718 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3719 }
3720
3721 /*
3722 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3723 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)3724 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3725 {
3726 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3727 (unsigned int)sk->sk_rcvbuf)
3728 return -ENOMEM;
3729
3730 skb_orphan(skb);
3731 skb->sk = sk;
3732 skb->destructor = sock_rmem_free;
3733 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3734
3735 /* before exiting rcu section, make sure dst is refcounted */
3736 skb_dst_force(skb);
3737
3738 skb_queue_tail(&sk->sk_error_queue, skb);
3739 if (!sock_flag(sk, SOCK_DEAD))
3740 sk->sk_error_report(sk);
3741 return 0;
3742 }
3743 EXPORT_SYMBOL(sock_queue_err_skb);
3744
sock_dequeue_err_skb(struct sock * sk)3745 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
3746 {
3747 struct sk_buff_head *q = &sk->sk_error_queue;
3748 struct sk_buff *skb, *skb_next;
3749 unsigned long flags;
3750 int err = 0;
3751
3752 spin_lock_irqsave(&q->lock, flags);
3753 skb = __skb_dequeue(q);
3754 if (skb && (skb_next = skb_peek(q)))
3755 err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
3756 spin_unlock_irqrestore(&q->lock, flags);
3757
3758 sk->sk_err = err;
3759 if (err)
3760 sk->sk_error_report(sk);
3761
3762 return skb;
3763 }
3764 EXPORT_SYMBOL(sock_dequeue_err_skb);
3765
3766 /**
3767 * skb_clone_sk - create clone of skb, and take reference to socket
3768 * @skb: the skb to clone
3769 *
3770 * This function creates a clone of a buffer that holds a reference on
3771 * sk_refcnt. Buffers created via this function are meant to be
3772 * returned using sock_queue_err_skb, or free via kfree_skb.
3773 *
3774 * When passing buffers allocated with this function to sock_queue_err_skb
3775 * it is necessary to wrap the call with sock_hold/sock_put in order to
3776 * prevent the socket from being released prior to being enqueued on
3777 * the sk_error_queue.
3778 */
skb_clone_sk(struct sk_buff * skb)3779 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
3780 {
3781 struct sock *sk = skb->sk;
3782 struct sk_buff *clone;
3783
3784 if (!sk || !atomic_inc_not_zero(&sk->sk_refcnt))
3785 return NULL;
3786
3787 clone = skb_clone(skb, GFP_ATOMIC);
3788 if (!clone) {
3789 sock_put(sk);
3790 return NULL;
3791 }
3792
3793 clone->sk = sk;
3794 clone->destructor = sock_efree;
3795
3796 return clone;
3797 }
3798 EXPORT_SYMBOL(skb_clone_sk);
3799
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype)3800 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
3801 struct sock *sk,
3802 int tstype)
3803 {
3804 struct sock_exterr_skb *serr;
3805 int err;
3806
3807 serr = SKB_EXT_ERR(skb);
3808 memset(serr, 0, sizeof(*serr));
3809 serr->ee.ee_errno = ENOMSG;
3810 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3811 serr->ee.ee_info = tstype;
3812 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
3813 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
3814 serr->ee.ee_data = skb_shinfo(skb)->tskey;
3815 if (sk->sk_protocol == IPPROTO_TCP &&
3816 sk->sk_type == SOCK_STREAM)
3817 serr->ee.ee_data -= sk->sk_tskey;
3818 }
3819
3820 err = sock_queue_err_skb(sk, skb);
3821
3822 if (err)
3823 kfree_skb(skb);
3824 }
3825
skb_may_tx_timestamp(struct sock * sk,bool tsonly)3826 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
3827 {
3828 bool ret;
3829
3830 if (likely(sysctl_tstamp_allow_data || tsonly))
3831 return true;
3832
3833 read_lock_bh(&sk->sk_callback_lock);
3834 ret = sk->sk_socket && sk->sk_socket->file &&
3835 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
3836 read_unlock_bh(&sk->sk_callback_lock);
3837 return ret;
3838 }
3839
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)3840 void skb_complete_tx_timestamp(struct sk_buff *skb,
3841 struct skb_shared_hwtstamps *hwtstamps)
3842 {
3843 struct sock *sk = skb->sk;
3844
3845 if (!skb_may_tx_timestamp(sk, false))
3846 goto err;
3847
3848 /* Take a reference to prevent skb_orphan() from freeing the socket,
3849 * but only if the socket refcount is not zero.
3850 */
3851 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3852 *skb_hwtstamps(skb) = *hwtstamps;
3853 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND);
3854 sock_put(sk);
3855 return;
3856 }
3857
3858 err:
3859 kfree_skb(skb);
3860 }
3861 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
3862
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)3863 void __skb_tstamp_tx(struct sk_buff *orig_skb,
3864 struct skb_shared_hwtstamps *hwtstamps,
3865 struct sock *sk, int tstype)
3866 {
3867 struct sk_buff *skb;
3868 bool tsonly;
3869
3870 if (!sk)
3871 return;
3872
3873 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
3874 if (!skb_may_tx_timestamp(sk, tsonly))
3875 return;
3876
3877 if (tsonly)
3878 skb = alloc_skb(0, GFP_ATOMIC);
3879 else
3880 skb = skb_clone(orig_skb, GFP_ATOMIC);
3881 if (!skb)
3882 return;
3883
3884 if (tsonly) {
3885 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
3886 SKBTX_ANY_TSTAMP;
3887 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
3888 }
3889
3890 if (hwtstamps)
3891 *skb_hwtstamps(skb) = *hwtstamps;
3892 else
3893 skb->tstamp = ktime_get_real();
3894
3895 __skb_complete_tx_timestamp(skb, sk, tstype);
3896 }
3897 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
3898
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)3899 void skb_tstamp_tx(struct sk_buff *orig_skb,
3900 struct skb_shared_hwtstamps *hwtstamps)
3901 {
3902 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
3903 SCM_TSTAMP_SND);
3904 }
3905 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3906
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)3907 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3908 {
3909 struct sock *sk = skb->sk;
3910 struct sock_exterr_skb *serr;
3911 int err = 1;
3912
3913 skb->wifi_acked_valid = 1;
3914 skb->wifi_acked = acked;
3915
3916 serr = SKB_EXT_ERR(skb);
3917 memset(serr, 0, sizeof(*serr));
3918 serr->ee.ee_errno = ENOMSG;
3919 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3920
3921 /* Take a reference to prevent skb_orphan() from freeing the socket,
3922 * but only if the socket refcount is not zero.
3923 */
3924 if (likely(atomic_inc_not_zero(&sk->sk_refcnt))) {
3925 err = sock_queue_err_skb(sk, skb);
3926 sock_put(sk);
3927 }
3928 if (err)
3929 kfree_skb(skb);
3930 }
3931 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3932
3933 /**
3934 * skb_partial_csum_set - set up and verify partial csum values for packet
3935 * @skb: the skb to set
3936 * @start: the number of bytes after skb->data to start checksumming.
3937 * @off: the offset from start to place the checksum.
3938 *
3939 * For untrusted partially-checksummed packets, we need to make sure the values
3940 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3941 *
3942 * This function checks and sets those values and skb->ip_summed: if this
3943 * returns false you should drop the packet.
3944 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)3945 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3946 {
3947 if (unlikely(start > skb_headlen(skb)) ||
3948 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3949 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3950 start, off, skb_headlen(skb));
3951 return false;
3952 }
3953 skb->ip_summed = CHECKSUM_PARTIAL;
3954 skb->csum_start = skb_headroom(skb) + start;
3955 skb->csum_offset = off;
3956 skb_set_transport_header(skb, start);
3957 return true;
3958 }
3959 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3960
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)3961 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
3962 unsigned int max)
3963 {
3964 if (skb_headlen(skb) >= len)
3965 return 0;
3966
3967 /* If we need to pullup then pullup to the max, so we
3968 * won't need to do it again.
3969 */
3970 if (max > skb->len)
3971 max = skb->len;
3972
3973 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
3974 return -ENOMEM;
3975
3976 if (skb_headlen(skb) < len)
3977 return -EPROTO;
3978
3979 return 0;
3980 }
3981
3982 #define MAX_TCP_HDR_LEN (15 * 4)
3983
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)3984 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
3985 typeof(IPPROTO_IP) proto,
3986 unsigned int off)
3987 {
3988 switch (proto) {
3989 int err;
3990
3991 case IPPROTO_TCP:
3992 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
3993 off + MAX_TCP_HDR_LEN);
3994 if (!err && !skb_partial_csum_set(skb, off,
3995 offsetof(struct tcphdr,
3996 check)))
3997 err = -EPROTO;
3998 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
3999
4000 case IPPROTO_UDP:
4001 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4002 off + sizeof(struct udphdr));
4003 if (!err && !skb_partial_csum_set(skb, off,
4004 offsetof(struct udphdr,
4005 check)))
4006 err = -EPROTO;
4007 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4008 }
4009
4010 return ERR_PTR(-EPROTO);
4011 }
4012
4013 /* This value should be large enough to cover a tagged ethernet header plus
4014 * maximally sized IP and TCP or UDP headers.
4015 */
4016 #define MAX_IP_HDR_LEN 128
4017
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4018 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4019 {
4020 unsigned int off;
4021 bool fragment;
4022 __sum16 *csum;
4023 int err;
4024
4025 fragment = false;
4026
4027 err = skb_maybe_pull_tail(skb,
4028 sizeof(struct iphdr),
4029 MAX_IP_HDR_LEN);
4030 if (err < 0)
4031 goto out;
4032
4033 if (ip_hdr(skb)->frag_off & htons(IP_OFFSET | IP_MF))
4034 fragment = true;
4035
4036 off = ip_hdrlen(skb);
4037
4038 err = -EPROTO;
4039
4040 if (fragment)
4041 goto out;
4042
4043 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4044 if (IS_ERR(csum))
4045 return PTR_ERR(csum);
4046
4047 if (recalculate)
4048 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4049 ip_hdr(skb)->daddr,
4050 skb->len - off,
4051 ip_hdr(skb)->protocol, 0);
4052 err = 0;
4053
4054 out:
4055 return err;
4056 }
4057
4058 /* This value should be large enough to cover a tagged ethernet header plus
4059 * an IPv6 header, all options, and a maximal TCP or UDP header.
4060 */
4061 #define MAX_IPV6_HDR_LEN 256
4062
4063 #define OPT_HDR(type, skb, off) \
4064 (type *)(skb_network_header(skb) + (off))
4065
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4066 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4067 {
4068 int err;
4069 u8 nexthdr;
4070 unsigned int off;
4071 unsigned int len;
4072 bool fragment;
4073 bool done;
4074 __sum16 *csum;
4075
4076 fragment = false;
4077 done = false;
4078
4079 off = sizeof(struct ipv6hdr);
4080
4081 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4082 if (err < 0)
4083 goto out;
4084
4085 nexthdr = ipv6_hdr(skb)->nexthdr;
4086
4087 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4088 while (off <= len && !done) {
4089 switch (nexthdr) {
4090 case IPPROTO_DSTOPTS:
4091 case IPPROTO_HOPOPTS:
4092 case IPPROTO_ROUTING: {
4093 struct ipv6_opt_hdr *hp;
4094
4095 err = skb_maybe_pull_tail(skb,
4096 off +
4097 sizeof(struct ipv6_opt_hdr),
4098 MAX_IPV6_HDR_LEN);
4099 if (err < 0)
4100 goto out;
4101
4102 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4103 nexthdr = hp->nexthdr;
4104 off += ipv6_optlen(hp);
4105 break;
4106 }
4107 case IPPROTO_AH: {
4108 struct ip_auth_hdr *hp;
4109
4110 err = skb_maybe_pull_tail(skb,
4111 off +
4112 sizeof(struct ip_auth_hdr),
4113 MAX_IPV6_HDR_LEN);
4114 if (err < 0)
4115 goto out;
4116
4117 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4118 nexthdr = hp->nexthdr;
4119 off += ipv6_authlen(hp);
4120 break;
4121 }
4122 case IPPROTO_FRAGMENT: {
4123 struct frag_hdr *hp;
4124
4125 err = skb_maybe_pull_tail(skb,
4126 off +
4127 sizeof(struct frag_hdr),
4128 MAX_IPV6_HDR_LEN);
4129 if (err < 0)
4130 goto out;
4131
4132 hp = OPT_HDR(struct frag_hdr, skb, off);
4133
4134 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4135 fragment = true;
4136
4137 nexthdr = hp->nexthdr;
4138 off += sizeof(struct frag_hdr);
4139 break;
4140 }
4141 default:
4142 done = true;
4143 break;
4144 }
4145 }
4146
4147 err = -EPROTO;
4148
4149 if (!done || fragment)
4150 goto out;
4151
4152 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4153 if (IS_ERR(csum))
4154 return PTR_ERR(csum);
4155
4156 if (recalculate)
4157 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4158 &ipv6_hdr(skb)->daddr,
4159 skb->len - off, nexthdr, 0);
4160 err = 0;
4161
4162 out:
4163 return err;
4164 }
4165
4166 /**
4167 * skb_checksum_setup - set up partial checksum offset
4168 * @skb: the skb to set up
4169 * @recalculate: if true the pseudo-header checksum will be recalculated
4170 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)4171 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4172 {
4173 int err;
4174
4175 switch (skb->protocol) {
4176 case htons(ETH_P_IP):
4177 err = skb_checksum_setup_ipv4(skb, recalculate);
4178 break;
4179
4180 case htons(ETH_P_IPV6):
4181 err = skb_checksum_setup_ipv6(skb, recalculate);
4182 break;
4183
4184 default:
4185 err = -EPROTO;
4186 break;
4187 }
4188
4189 return err;
4190 }
4191 EXPORT_SYMBOL(skb_checksum_setup);
4192
4193 /**
4194 * skb_checksum_maybe_trim - maybe trims the given skb
4195 * @skb: the skb to check
4196 * @transport_len: the data length beyond the network header
4197 *
4198 * Checks whether the given skb has data beyond the given transport length.
4199 * If so, returns a cloned skb trimmed to this transport length.
4200 * Otherwise returns the provided skb. Returns NULL in error cases
4201 * (e.g. transport_len exceeds skb length or out-of-memory).
4202 *
4203 * Caller needs to set the skb transport header and free any returned skb if it
4204 * differs from the provided skb.
4205 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)4206 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
4207 unsigned int transport_len)
4208 {
4209 struct sk_buff *skb_chk;
4210 unsigned int len = skb_transport_offset(skb) + transport_len;
4211 int ret;
4212
4213 if (skb->len < len)
4214 return NULL;
4215 else if (skb->len == len)
4216 return skb;
4217
4218 skb_chk = skb_clone(skb, GFP_ATOMIC);
4219 if (!skb_chk)
4220 return NULL;
4221
4222 ret = pskb_trim_rcsum(skb_chk, len);
4223 if (ret) {
4224 kfree_skb(skb_chk);
4225 return NULL;
4226 }
4227
4228 return skb_chk;
4229 }
4230
4231 /**
4232 * skb_checksum_trimmed - validate checksum of an skb
4233 * @skb: the skb to check
4234 * @transport_len: the data length beyond the network header
4235 * @skb_chkf: checksum function to use
4236 *
4237 * Applies the given checksum function skb_chkf to the provided skb.
4238 * Returns a checked and maybe trimmed skb. Returns NULL on error.
4239 *
4240 * If the skb has data beyond the given transport length, then a
4241 * trimmed & cloned skb is checked and returned.
4242 *
4243 * Caller needs to set the skb transport header and free any returned skb if it
4244 * differs from the provided skb.
4245 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))4246 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4247 unsigned int transport_len,
4248 __sum16(*skb_chkf)(struct sk_buff *skb))
4249 {
4250 struct sk_buff *skb_chk;
4251 unsigned int offset = skb_transport_offset(skb);
4252 __sum16 ret;
4253
4254 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
4255 if (!skb_chk)
4256 goto err;
4257
4258 if (!pskb_may_pull(skb_chk, offset))
4259 goto err;
4260
4261 skb_pull_rcsum(skb_chk, offset);
4262 ret = skb_chkf(skb_chk);
4263 skb_push_rcsum(skb_chk, offset);
4264
4265 if (ret)
4266 goto err;
4267
4268 return skb_chk;
4269
4270 err:
4271 if (skb_chk && skb_chk != skb)
4272 kfree_skb(skb_chk);
4273
4274 return NULL;
4275
4276 }
4277 EXPORT_SYMBOL(skb_checksum_trimmed);
4278
__skb_warn_lro_forwarding(const struct sk_buff * skb)4279 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
4280 {
4281 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
4282 skb->dev->name);
4283 }
4284 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
4285
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)4286 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
4287 {
4288 if (head_stolen) {
4289 skb_release_head_state(skb);
4290 kmem_cache_free(skbuff_head_cache, skb);
4291 } else {
4292 __kfree_skb(skb);
4293 }
4294 }
4295 EXPORT_SYMBOL(kfree_skb_partial);
4296
4297 /**
4298 * skb_try_coalesce - try to merge skb to prior one
4299 * @to: prior buffer
4300 * @from: buffer to add
4301 * @fragstolen: pointer to boolean
4302 * @delta_truesize: how much more was allocated than was requested
4303 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)4304 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
4305 bool *fragstolen, int *delta_truesize)
4306 {
4307 int i, delta, len = from->len;
4308
4309 *fragstolen = false;
4310
4311 if (skb_cloned(to))
4312 return false;
4313
4314 if (len <= skb_tailroom(to)) {
4315 if (len)
4316 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
4317 *delta_truesize = 0;
4318 return true;
4319 }
4320
4321 if (skb_has_frag_list(to) || skb_has_frag_list(from))
4322 return false;
4323
4324 if (skb_headlen(from) != 0) {
4325 struct page *page;
4326 unsigned int offset;
4327
4328 if (skb_shinfo(to)->nr_frags +
4329 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
4330 return false;
4331
4332 if (skb_head_is_locked(from))
4333 return false;
4334
4335 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4336
4337 page = virt_to_head_page(from->head);
4338 offset = from->data - (unsigned char *)page_address(page);
4339
4340 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
4341 page, offset, skb_headlen(from));
4342 *fragstolen = true;
4343 } else {
4344 if (skb_shinfo(to)->nr_frags +
4345 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
4346 return false;
4347
4348 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
4349 }
4350
4351 WARN_ON_ONCE(delta < len);
4352
4353 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
4354 skb_shinfo(from)->frags,
4355 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
4356 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
4357
4358 if (!skb_cloned(from))
4359 skb_shinfo(from)->nr_frags = 0;
4360
4361 /* if the skb is not cloned this does nothing
4362 * since we set nr_frags to 0.
4363 */
4364 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
4365 skb_frag_ref(from, i);
4366
4367 to->truesize += delta;
4368 to->len += len;
4369 to->data_len += len;
4370
4371 *delta_truesize = delta;
4372 return true;
4373 }
4374 EXPORT_SYMBOL(skb_try_coalesce);
4375
4376 /**
4377 * skb_scrub_packet - scrub an skb
4378 *
4379 * @skb: buffer to clean
4380 * @xnet: packet is crossing netns
4381 *
4382 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
4383 * into/from a tunnel. Some information have to be cleared during these
4384 * operations.
4385 * skb_scrub_packet can also be used to clean a skb before injecting it in
4386 * another namespace (@xnet == true). We have to clear all information in the
4387 * skb that could impact namespace isolation.
4388 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)4389 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
4390 {
4391 skb->tstamp.tv64 = 0;
4392 skb->pkt_type = PACKET_HOST;
4393 skb->skb_iif = 0;
4394 skb->ignore_df = 0;
4395 skb_dst_drop(skb);
4396 secpath_reset(skb);
4397 nf_reset(skb);
4398 nf_reset_trace(skb);
4399
4400 if (!xnet)
4401 return;
4402
4403 ipvs_reset(skb);
4404 skb_orphan(skb);
4405 skb->mark = 0;
4406 }
4407 EXPORT_SYMBOL_GPL(skb_scrub_packet);
4408
4409 /**
4410 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
4411 *
4412 * @skb: GSO skb
4413 *
4414 * skb_gso_transport_seglen is used to determine the real size of the
4415 * individual segments, including Layer4 headers (TCP/UDP).
4416 *
4417 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
4418 */
skb_gso_transport_seglen(const struct sk_buff * skb)4419 unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
4420 {
4421 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4422 unsigned int thlen = 0;
4423
4424 if (skb->encapsulation) {
4425 thlen = skb_inner_transport_header(skb) -
4426 skb_transport_header(skb);
4427
4428 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
4429 thlen += inner_tcp_hdrlen(skb);
4430 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4431 thlen = tcp_hdrlen(skb);
4432 } else if (unlikely(shinfo->gso_type & SKB_GSO_SCTP)) {
4433 thlen = sizeof(struct sctphdr);
4434 }
4435 /* UFO sets gso_size to the size of the fragmentation
4436 * payload, i.e. the size of the L4 (UDP) header is already
4437 * accounted for.
4438 */
4439 return thlen + shinfo->gso_size;
4440 }
4441 EXPORT_SYMBOL_GPL(skb_gso_transport_seglen);
4442
4443 /**
4444 * skb_gso_validate_mtu - Return in case such skb fits a given MTU
4445 *
4446 * @skb: GSO skb
4447 * @mtu: MTU to validate against
4448 *
4449 * skb_gso_validate_mtu validates if a given skb will fit a wanted MTU
4450 * once split.
4451 */
skb_gso_validate_mtu(const struct sk_buff * skb,unsigned int mtu)4452 bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu)
4453 {
4454 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4455 const struct sk_buff *iter;
4456 unsigned int hlen;
4457
4458 hlen = skb_gso_network_seglen(skb);
4459
4460 if (shinfo->gso_size != GSO_BY_FRAGS)
4461 return hlen <= mtu;
4462
4463 /* Undo this so we can re-use header sizes */
4464 hlen -= GSO_BY_FRAGS;
4465
4466 skb_walk_frags(skb, iter) {
4467 if (hlen + skb_headlen(iter) > mtu)
4468 return false;
4469 }
4470
4471 return true;
4472 }
4473 EXPORT_SYMBOL_GPL(skb_gso_validate_mtu);
4474
skb_reorder_vlan_header(struct sk_buff * skb)4475 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
4476 {
4477 if (skb_cow(skb, skb_headroom(skb)) < 0) {
4478 kfree_skb(skb);
4479 return NULL;
4480 }
4481
4482 memmove(skb->data - ETH_HLEN, skb->data - skb->mac_len - VLAN_HLEN,
4483 2 * ETH_ALEN);
4484 skb->mac_header += VLAN_HLEN;
4485 return skb;
4486 }
4487
skb_vlan_untag(struct sk_buff * skb)4488 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
4489 {
4490 struct vlan_hdr *vhdr;
4491 u16 vlan_tci;
4492
4493 if (unlikely(skb_vlan_tag_present(skb))) {
4494 /* vlan_tci is already set-up so leave this for another time */
4495 return skb;
4496 }
4497
4498 skb = skb_share_check(skb, GFP_ATOMIC);
4499 if (unlikely(!skb))
4500 goto err_free;
4501
4502 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
4503 goto err_free;
4504
4505 vhdr = (struct vlan_hdr *)skb->data;
4506 vlan_tci = ntohs(vhdr->h_vlan_TCI);
4507 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
4508
4509 skb_pull_rcsum(skb, VLAN_HLEN);
4510 vlan_set_encap_proto(skb, vhdr);
4511
4512 skb = skb_reorder_vlan_header(skb);
4513 if (unlikely(!skb))
4514 goto err_free;
4515
4516 skb_reset_network_header(skb);
4517 skb_reset_transport_header(skb);
4518 skb_reset_mac_len(skb);
4519
4520 return skb;
4521
4522 err_free:
4523 kfree_skb(skb);
4524 return NULL;
4525 }
4526 EXPORT_SYMBOL(skb_vlan_untag);
4527
skb_ensure_writable(struct sk_buff * skb,int write_len)4528 int skb_ensure_writable(struct sk_buff *skb, int write_len)
4529 {
4530 if (!pskb_may_pull(skb, write_len))
4531 return -ENOMEM;
4532
4533 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
4534 return 0;
4535
4536 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4537 }
4538 EXPORT_SYMBOL(skb_ensure_writable);
4539
4540 /* remove VLAN header from packet and update csum accordingly.
4541 * expects a non skb_vlan_tag_present skb with a vlan tag payload
4542 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)4543 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
4544 {
4545 struct vlan_hdr *vhdr;
4546 int offset = skb->data - skb_mac_header(skb);
4547 int err;
4548
4549 if (WARN_ONCE(offset,
4550 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
4551 offset)) {
4552 return -EINVAL;
4553 }
4554
4555 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
4556 if (unlikely(err))
4557 return err;
4558
4559 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4560
4561 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
4562 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
4563
4564 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
4565 __skb_pull(skb, VLAN_HLEN);
4566
4567 vlan_set_encap_proto(skb, vhdr);
4568 skb->mac_header += VLAN_HLEN;
4569
4570 if (skb_network_offset(skb) < ETH_HLEN)
4571 skb_set_network_header(skb, ETH_HLEN);
4572
4573 skb_reset_mac_len(skb);
4574
4575 return err;
4576 }
4577 EXPORT_SYMBOL(__skb_vlan_pop);
4578
4579 /* Pop a vlan tag either from hwaccel or from payload.
4580 * Expects skb->data at mac header.
4581 */
skb_vlan_pop(struct sk_buff * skb)4582 int skb_vlan_pop(struct sk_buff *skb)
4583 {
4584 u16 vlan_tci;
4585 __be16 vlan_proto;
4586 int err;
4587
4588 if (likely(skb_vlan_tag_present(skb))) {
4589 skb->vlan_tci = 0;
4590 } else {
4591 if (unlikely(!eth_type_vlan(skb->protocol)))
4592 return 0;
4593
4594 err = __skb_vlan_pop(skb, &vlan_tci);
4595 if (err)
4596 return err;
4597 }
4598 /* move next vlan tag to hw accel tag */
4599 if (likely(!eth_type_vlan(skb->protocol)))
4600 return 0;
4601
4602 vlan_proto = skb->protocol;
4603 err = __skb_vlan_pop(skb, &vlan_tci);
4604 if (unlikely(err))
4605 return err;
4606
4607 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4608 return 0;
4609 }
4610 EXPORT_SYMBOL(skb_vlan_pop);
4611
4612 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
4613 * Expects skb->data at mac header.
4614 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)4615 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
4616 {
4617 if (skb_vlan_tag_present(skb)) {
4618 int offset = skb->data - skb_mac_header(skb);
4619 int err;
4620
4621 if (WARN_ONCE(offset,
4622 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
4623 offset)) {
4624 return -EINVAL;
4625 }
4626
4627 err = __vlan_insert_tag(skb, skb->vlan_proto,
4628 skb_vlan_tag_get(skb));
4629 if (err)
4630 return err;
4631
4632 skb->protocol = skb->vlan_proto;
4633 skb->mac_len += VLAN_HLEN;
4634
4635 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
4636 }
4637 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
4638 return 0;
4639 }
4640 EXPORT_SYMBOL(skb_vlan_push);
4641
4642 /**
4643 * alloc_skb_with_frags - allocate skb with page frags
4644 *
4645 * @header_len: size of linear part
4646 * @data_len: needed length in frags
4647 * @max_page_order: max page order desired.
4648 * @errcode: pointer to error code if any
4649 * @gfp_mask: allocation mask
4650 *
4651 * This can be used to allocate a paged skb, given a maximal order for frags.
4652 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)4653 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
4654 unsigned long data_len,
4655 int max_page_order,
4656 int *errcode,
4657 gfp_t gfp_mask)
4658 {
4659 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
4660 unsigned long chunk;
4661 struct sk_buff *skb;
4662 struct page *page;
4663 gfp_t gfp_head;
4664 int i;
4665
4666 *errcode = -EMSGSIZE;
4667 /* Note this test could be relaxed, if we succeed to allocate
4668 * high order pages...
4669 */
4670 if (npages > MAX_SKB_FRAGS)
4671 return NULL;
4672
4673 gfp_head = gfp_mask;
4674 if (gfp_head & __GFP_DIRECT_RECLAIM)
4675 gfp_head |= __GFP_REPEAT;
4676
4677 *errcode = -ENOBUFS;
4678 skb = alloc_skb(header_len, gfp_head);
4679 if (!skb)
4680 return NULL;
4681
4682 skb->truesize += npages << PAGE_SHIFT;
4683
4684 for (i = 0; npages > 0; i++) {
4685 int order = max_page_order;
4686
4687 while (order) {
4688 if (npages >= 1 << order) {
4689 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
4690 __GFP_COMP |
4691 __GFP_NOWARN |
4692 __GFP_NORETRY,
4693 order);
4694 if (page)
4695 goto fill_page;
4696 /* Do not retry other high order allocations */
4697 order = 1;
4698 max_page_order = 0;
4699 }
4700 order--;
4701 }
4702 page = alloc_page(gfp_mask);
4703 if (!page)
4704 goto failure;
4705 fill_page:
4706 chunk = min_t(unsigned long, data_len,
4707 PAGE_SIZE << order);
4708 skb_fill_page_desc(skb, i, page, 0, chunk);
4709 data_len -= chunk;
4710 npages -= 1 << order;
4711 }
4712 return skb;
4713
4714 failure:
4715 kfree_skb(skb);
4716 return NULL;
4717 }
4718 EXPORT_SYMBOL(alloc_skb_with_frags);
4719
4720 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)4721 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
4722 const int headlen, gfp_t gfp_mask)
4723 {
4724 int i;
4725 int size = skb_end_offset(skb);
4726 int new_hlen = headlen - off;
4727 u8 *data;
4728
4729 size = SKB_DATA_ALIGN(size);
4730
4731 if (skb_pfmemalloc(skb))
4732 gfp_mask |= __GFP_MEMALLOC;
4733 data = kmalloc_reserve(size +
4734 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4735 gfp_mask, NUMA_NO_NODE, NULL);
4736 if (!data)
4737 return -ENOMEM;
4738
4739 size = SKB_WITH_OVERHEAD(ksize(data));
4740
4741 /* Copy real data, and all frags */
4742 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
4743 skb->len -= off;
4744
4745 memcpy((struct skb_shared_info *)(data + size),
4746 skb_shinfo(skb),
4747 offsetof(struct skb_shared_info,
4748 frags[skb_shinfo(skb)->nr_frags]));
4749 if (skb_cloned(skb)) {
4750 /* drop the old head gracefully */
4751 if (skb_orphan_frags(skb, gfp_mask)) {
4752 kfree(data);
4753 return -ENOMEM;
4754 }
4755 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
4756 skb_frag_ref(skb, i);
4757 if (skb_has_frag_list(skb))
4758 skb_clone_fraglist(skb);
4759 skb_release_data(skb);
4760 } else {
4761 /* we can reuse existing recount- all we did was
4762 * relocate values
4763 */
4764 skb_free_head(skb);
4765 }
4766
4767 skb->head = data;
4768 skb->data = data;
4769 skb->head_frag = 0;
4770 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4771 skb->end = size;
4772 #else
4773 skb->end = skb->head + size;
4774 #endif
4775 skb_set_tail_pointer(skb, skb_headlen(skb));
4776 skb_headers_offset_update(skb, 0);
4777 skb->cloned = 0;
4778 skb->hdr_len = 0;
4779 skb->nohdr = 0;
4780 atomic_set(&skb_shinfo(skb)->dataref, 1);
4781
4782 return 0;
4783 }
4784
4785 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
4786
4787 /* carve out the first eat bytes from skb's frag_list. May recurse into
4788 * pskb_carve()
4789 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)4790 static int pskb_carve_frag_list(struct sk_buff *skb,
4791 struct skb_shared_info *shinfo, int eat,
4792 gfp_t gfp_mask)
4793 {
4794 struct sk_buff *list = shinfo->frag_list;
4795 struct sk_buff *clone = NULL;
4796 struct sk_buff *insp = NULL;
4797
4798 do {
4799 if (!list) {
4800 pr_err("Not enough bytes to eat. Want %d\n", eat);
4801 return -EFAULT;
4802 }
4803 if (list->len <= eat) {
4804 /* Eaten as whole. */
4805 eat -= list->len;
4806 list = list->next;
4807 insp = list;
4808 } else {
4809 /* Eaten partially. */
4810 if (skb_shared(list)) {
4811 clone = skb_clone(list, gfp_mask);
4812 if (!clone)
4813 return -ENOMEM;
4814 insp = list->next;
4815 list = clone;
4816 } else {
4817 /* This may be pulled without problems. */
4818 insp = list;
4819 }
4820 if (pskb_carve(list, eat, gfp_mask) < 0) {
4821 kfree_skb(clone);
4822 return -ENOMEM;
4823 }
4824 break;
4825 }
4826 } while (eat);
4827
4828 /* Free pulled out fragments. */
4829 while ((list = shinfo->frag_list) != insp) {
4830 shinfo->frag_list = list->next;
4831 kfree_skb(list);
4832 }
4833 /* And insert new clone at head. */
4834 if (clone) {
4835 clone->next = list;
4836 shinfo->frag_list = clone;
4837 }
4838 return 0;
4839 }
4840
4841 /* carve off first len bytes from skb. Split line (off) is in the
4842 * non-linear part of skb
4843 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)4844 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
4845 int pos, gfp_t gfp_mask)
4846 {
4847 int i, k = 0;
4848 int size = skb_end_offset(skb);
4849 u8 *data;
4850 const int nfrags = skb_shinfo(skb)->nr_frags;
4851 struct skb_shared_info *shinfo;
4852
4853 size = SKB_DATA_ALIGN(size);
4854
4855 if (skb_pfmemalloc(skb))
4856 gfp_mask |= __GFP_MEMALLOC;
4857 data = kmalloc_reserve(size +
4858 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
4859 gfp_mask, NUMA_NO_NODE, NULL);
4860 if (!data)
4861 return -ENOMEM;
4862
4863 size = SKB_WITH_OVERHEAD(ksize(data));
4864
4865 memcpy((struct skb_shared_info *)(data + size),
4866 skb_shinfo(skb), offsetof(struct skb_shared_info,
4867 frags[skb_shinfo(skb)->nr_frags]));
4868 if (skb_orphan_frags(skb, gfp_mask)) {
4869 kfree(data);
4870 return -ENOMEM;
4871 }
4872 shinfo = (struct skb_shared_info *)(data + size);
4873 for (i = 0; i < nfrags; i++) {
4874 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
4875
4876 if (pos + fsize > off) {
4877 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
4878
4879 if (pos < off) {
4880 /* Split frag.
4881 * We have two variants in this case:
4882 * 1. Move all the frag to the second
4883 * part, if it is possible. F.e.
4884 * this approach is mandatory for TUX,
4885 * where splitting is expensive.
4886 * 2. Split is accurately. We make this.
4887 */
4888 shinfo->frags[0].page_offset += off - pos;
4889 skb_frag_size_sub(&shinfo->frags[0], off - pos);
4890 }
4891 skb_frag_ref(skb, i);
4892 k++;
4893 }
4894 pos += fsize;
4895 }
4896 shinfo->nr_frags = k;
4897 if (skb_has_frag_list(skb))
4898 skb_clone_fraglist(skb);
4899
4900 if (k == 0) {
4901 /* split line is in frag list */
4902 pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask);
4903 }
4904 skb_release_data(skb);
4905
4906 skb->head = data;
4907 skb->head_frag = 0;
4908 skb->data = data;
4909 #ifdef NET_SKBUFF_DATA_USES_OFFSET
4910 skb->end = size;
4911 #else
4912 skb->end = skb->head + size;
4913 #endif
4914 skb_reset_tail_pointer(skb);
4915 skb_headers_offset_update(skb, 0);
4916 skb->cloned = 0;
4917 skb->hdr_len = 0;
4918 skb->nohdr = 0;
4919 skb->len -= off;
4920 skb->data_len = skb->len;
4921 atomic_set(&skb_shinfo(skb)->dataref, 1);
4922 return 0;
4923 }
4924
4925 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)4926 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
4927 {
4928 int headlen = skb_headlen(skb);
4929
4930 if (len < headlen)
4931 return pskb_carve_inside_header(skb, len, headlen, gfp);
4932 else
4933 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
4934 }
4935
4936 /* Extract to_copy bytes starting at off from skb, and return this in
4937 * a new skb
4938 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)4939 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
4940 int to_copy, gfp_t gfp)
4941 {
4942 struct sk_buff *clone = skb_clone(skb, gfp);
4943
4944 if (!clone)
4945 return NULL;
4946
4947 if (pskb_carve(clone, off, gfp) < 0 ||
4948 pskb_trim(clone, to_copy)) {
4949 kfree_skb(clone);
4950 return NULL;
4951 }
4952 return clone;
4953 }
4954 EXPORT_SYMBOL(pskb_extract);
4955