• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23 
dissector_set_key(struct flow_dissector * flow_dissector,enum flow_dissector_key_id key_id)24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25 			      enum flow_dissector_key_id key_id)
26 {
27 	flow_dissector->used_keys |= (1 << key_id);
28 }
29 
skb_flow_dissector_init(struct flow_dissector * flow_dissector,const struct flow_dissector_key * key,unsigned int key_count)30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31 			     const struct flow_dissector_key *key,
32 			     unsigned int key_count)
33 {
34 	unsigned int i;
35 
36 	memset(flow_dissector, 0, sizeof(*flow_dissector));
37 
38 	for (i = 0; i < key_count; i++, key++) {
39 		/* User should make sure that every key target offset is withing
40 		 * boundaries of unsigned short.
41 		 */
42 		BUG_ON(key->offset > USHRT_MAX);
43 		BUG_ON(dissector_uses_key(flow_dissector,
44 					  key->key_id));
45 
46 		dissector_set_key(flow_dissector, key->key_id);
47 		flow_dissector->offset[key->key_id] = key->offset;
48 	}
49 
50 	/* Ensure that the dissector always includes control and basic key.
51 	 * That way we are able to avoid handling lack of these in fast path.
52 	 */
53 	BUG_ON(!dissector_uses_key(flow_dissector,
54 				   FLOW_DISSECTOR_KEY_CONTROL));
55 	BUG_ON(!dissector_uses_key(flow_dissector,
56 				   FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59 
60 /**
61  * __skb_flow_get_ports - extract the upper layer ports and return them
62  * @skb: sk_buff to extract the ports from
63  * @thoff: transport header offset
64  * @ip_proto: protocol for which to get port offset
65  * @data: raw buffer pointer to the packet, if NULL use skb->data
66  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
67  *
68  * The function will try to retrieve the ports at offset thoff + poff where poff
69  * is the protocol port offset returned from proto_ports_offset
70  */
__skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto,void * data,int hlen)71 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
72 			    void *data, int hlen)
73 {
74 	int poff = proto_ports_offset(ip_proto);
75 
76 	if (!data) {
77 		data = skb->data;
78 		hlen = skb_headlen(skb);
79 	}
80 
81 	if (poff >= 0) {
82 		__be32 *ports, _ports;
83 
84 		ports = __skb_header_pointer(skb, thoff + poff,
85 					     sizeof(_ports), data, hlen, &_ports);
86 		if (ports)
87 			return *ports;
88 	}
89 
90 	return 0;
91 }
92 EXPORT_SYMBOL(__skb_flow_get_ports);
93 
94 /**
95  * __skb_flow_dissect - extract the flow_keys struct and return it
96  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
97  * @flow_dissector: list of keys to dissect
98  * @target_container: target structure to put dissected values into
99  * @data: raw buffer pointer to the packet, if NULL use skb->data
100  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
101  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
102  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
103  *
104  * The function will try to retrieve individual keys into target specified
105  * by flow_dissector from either the skbuff or a raw buffer specified by the
106  * rest parameters.
107  *
108  * Caller must take care of zeroing target container memory.
109  */
__skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)110 bool __skb_flow_dissect(const struct sk_buff *skb,
111 			struct flow_dissector *flow_dissector,
112 			void *target_container,
113 			void *data, __be16 proto, int nhoff, int hlen,
114 			unsigned int flags)
115 {
116 	struct flow_dissector_key_control *key_control;
117 	struct flow_dissector_key_basic *key_basic;
118 	struct flow_dissector_key_addrs *key_addrs;
119 	struct flow_dissector_key_ports *key_ports;
120 	struct flow_dissector_key_tags *key_tags;
121 	struct flow_dissector_key_vlan *key_vlan;
122 	struct flow_dissector_key_keyid *key_keyid;
123 	bool skip_vlan = false;
124 	u8 ip_proto = 0;
125 	bool ret;
126 
127 	if (!data) {
128 		data = skb->data;
129 		proto = skb_vlan_tag_present(skb) ?
130 			 skb->vlan_proto : skb->protocol;
131 		nhoff = skb_network_offset(skb);
132 		hlen = skb_headlen(skb);
133 	}
134 
135 	/* It is ensured by skb_flow_dissector_init() that control key will
136 	 * be always present.
137 	 */
138 	key_control = skb_flow_dissector_target(flow_dissector,
139 						FLOW_DISSECTOR_KEY_CONTROL,
140 						target_container);
141 
142 	/* It is ensured by skb_flow_dissector_init() that basic key will
143 	 * be always present.
144 	 */
145 	key_basic = skb_flow_dissector_target(flow_dissector,
146 					      FLOW_DISSECTOR_KEY_BASIC,
147 					      target_container);
148 
149 	if (dissector_uses_key(flow_dissector,
150 			       FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
151 		struct ethhdr *eth = eth_hdr(skb);
152 		struct flow_dissector_key_eth_addrs *key_eth_addrs;
153 
154 		key_eth_addrs = skb_flow_dissector_target(flow_dissector,
155 							  FLOW_DISSECTOR_KEY_ETH_ADDRS,
156 							  target_container);
157 		memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
158 	}
159 
160 again:
161 	switch (proto) {
162 	case htons(ETH_P_IP): {
163 		const struct iphdr *iph;
164 		struct iphdr _iph;
165 ip:
166 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
167 		if (!iph || iph->ihl < 5)
168 			goto out_bad;
169 		nhoff += iph->ihl * 4;
170 
171 		ip_proto = iph->protocol;
172 
173 		if (dissector_uses_key(flow_dissector,
174 				       FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
175 			key_addrs = skb_flow_dissector_target(flow_dissector,
176 							      FLOW_DISSECTOR_KEY_IPV4_ADDRS,
177 							      target_container);
178 
179 			memcpy(&key_addrs->v4addrs, &iph->saddr,
180 			       sizeof(key_addrs->v4addrs));
181 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
182 		}
183 
184 		if (ip_is_fragment(iph)) {
185 			key_control->flags |= FLOW_DIS_IS_FRAGMENT;
186 
187 			if (iph->frag_off & htons(IP_OFFSET)) {
188 				goto out_good;
189 			} else {
190 				key_control->flags |= FLOW_DIS_FIRST_FRAG;
191 				if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
192 					goto out_good;
193 			}
194 		}
195 
196 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
197 			goto out_good;
198 
199 		break;
200 	}
201 	case htons(ETH_P_IPV6): {
202 		const struct ipv6hdr *iph;
203 		struct ipv6hdr _iph;
204 
205 ipv6:
206 		iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
207 		if (!iph)
208 			goto out_bad;
209 
210 		ip_proto = iph->nexthdr;
211 		nhoff += sizeof(struct ipv6hdr);
212 
213 		if (dissector_uses_key(flow_dissector,
214 				       FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
215 			key_addrs = skb_flow_dissector_target(flow_dissector,
216 							      FLOW_DISSECTOR_KEY_IPV6_ADDRS,
217 							      target_container);
218 
219 			memcpy(&key_addrs->v6addrs, &iph->saddr,
220 			       sizeof(key_addrs->v6addrs));
221 			key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
222 		}
223 
224 		if ((dissector_uses_key(flow_dissector,
225 					FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
226 		     (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
227 		    ip6_flowlabel(iph)) {
228 			__be32 flow_label = ip6_flowlabel(iph);
229 
230 			if (dissector_uses_key(flow_dissector,
231 					       FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
232 				key_tags = skb_flow_dissector_target(flow_dissector,
233 								     FLOW_DISSECTOR_KEY_FLOW_LABEL,
234 								     target_container);
235 				key_tags->flow_label = ntohl(flow_label);
236 			}
237 			if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
238 				goto out_good;
239 		}
240 
241 		if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
242 			goto out_good;
243 
244 		break;
245 	}
246 	case htons(ETH_P_8021AD):
247 	case htons(ETH_P_8021Q): {
248 		const struct vlan_hdr *vlan;
249 		struct vlan_hdr _vlan;
250 		bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
251 
252 		if (vlan_tag_present)
253 			proto = skb->protocol;
254 
255 		if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
256 			vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
257 						    data, hlen, &_vlan);
258 			if (!vlan)
259 				goto out_bad;
260 			proto = vlan->h_vlan_encapsulated_proto;
261 			nhoff += sizeof(*vlan);
262 			if (skip_vlan)
263 				goto again;
264 		}
265 
266 		skip_vlan = true;
267 		if (dissector_uses_key(flow_dissector,
268 				       FLOW_DISSECTOR_KEY_VLAN)) {
269 			key_vlan = skb_flow_dissector_target(flow_dissector,
270 							     FLOW_DISSECTOR_KEY_VLAN,
271 							     target_container);
272 
273 			if (vlan_tag_present) {
274 				key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
275 				key_vlan->vlan_priority =
276 					(skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
277 			} else {
278 				key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
279 					VLAN_VID_MASK;
280 				key_vlan->vlan_priority =
281 					(ntohs(vlan->h_vlan_TCI) &
282 					 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
283 			}
284 		}
285 
286 		goto again;
287 	}
288 	case htons(ETH_P_PPP_SES): {
289 		struct {
290 			struct pppoe_hdr hdr;
291 			__be16 proto;
292 		} *hdr, _hdr;
293 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
294 		if (!hdr)
295 			goto out_bad;
296 		proto = hdr->proto;
297 		nhoff += PPPOE_SES_HLEN;
298 		switch (proto) {
299 		case htons(PPP_IP):
300 			goto ip;
301 		case htons(PPP_IPV6):
302 			goto ipv6;
303 		default:
304 			goto out_bad;
305 		}
306 	}
307 	case htons(ETH_P_TIPC): {
308 		struct {
309 			__be32 pre[3];
310 			__be32 srcnode;
311 		} *hdr, _hdr;
312 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
313 		if (!hdr)
314 			goto out_bad;
315 
316 		if (dissector_uses_key(flow_dissector,
317 				       FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
318 			key_addrs = skb_flow_dissector_target(flow_dissector,
319 							      FLOW_DISSECTOR_KEY_TIPC_ADDRS,
320 							      target_container);
321 			key_addrs->tipcaddrs.srcnode = hdr->srcnode;
322 			key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
323 		}
324 		goto out_good;
325 	}
326 
327 	case htons(ETH_P_MPLS_UC):
328 	case htons(ETH_P_MPLS_MC): {
329 		struct mpls_label *hdr, _hdr[2];
330 mpls:
331 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
332 					   hlen, &_hdr);
333 		if (!hdr)
334 			goto out_bad;
335 
336 		if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
337 		     MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
338 			if (dissector_uses_key(flow_dissector,
339 					       FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
340 				key_keyid = skb_flow_dissector_target(flow_dissector,
341 								      FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
342 								      target_container);
343 				key_keyid->keyid = hdr[1].entry &
344 					htonl(MPLS_LS_LABEL_MASK);
345 			}
346 
347 			goto out_good;
348 		}
349 
350 		goto out_good;
351 	}
352 
353 	case htons(ETH_P_FCOE):
354 		if ((hlen - nhoff) < FCOE_HEADER_LEN)
355 			goto out_bad;
356 
357 		nhoff += FCOE_HEADER_LEN;
358 		goto out_good;
359 	default:
360 		goto out_bad;
361 	}
362 
363 ip_proto_again:
364 	switch (ip_proto) {
365 	case IPPROTO_GRE: {
366 		struct gre_base_hdr *hdr, _hdr;
367 		u16 gre_ver;
368 		int offset = 0;
369 
370 		hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
371 		if (!hdr)
372 			goto out_bad;
373 
374 		/* Only look inside GRE without routing */
375 		if (hdr->flags & GRE_ROUTING)
376 			break;
377 
378 		/* Only look inside GRE for version 0 and 1 */
379 		gre_ver = ntohs(hdr->flags & GRE_VERSION);
380 		if (gre_ver > 1)
381 			break;
382 
383 		proto = hdr->protocol;
384 		if (gre_ver) {
385 			/* Version1 must be PPTP, and check the flags */
386 			if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
387 				break;
388 		}
389 
390 		offset += sizeof(struct gre_base_hdr);
391 
392 		if (hdr->flags & GRE_CSUM)
393 			offset += sizeof(((struct gre_full_hdr *)0)->csum) +
394 				  sizeof(((struct gre_full_hdr *)0)->reserved1);
395 
396 		if (hdr->flags & GRE_KEY) {
397 			const __be32 *keyid;
398 			__be32 _keyid;
399 
400 			keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
401 						     data, hlen, &_keyid);
402 			if (!keyid)
403 				goto out_bad;
404 
405 			if (dissector_uses_key(flow_dissector,
406 					       FLOW_DISSECTOR_KEY_GRE_KEYID)) {
407 				key_keyid = skb_flow_dissector_target(flow_dissector,
408 								      FLOW_DISSECTOR_KEY_GRE_KEYID,
409 								      target_container);
410 				if (gre_ver == 0)
411 					key_keyid->keyid = *keyid;
412 				else
413 					key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
414 			}
415 			offset += sizeof(((struct gre_full_hdr *)0)->key);
416 		}
417 
418 		if (hdr->flags & GRE_SEQ)
419 			offset += sizeof(((struct pptp_gre_header *)0)->seq);
420 
421 		if (gre_ver == 0) {
422 			if (proto == htons(ETH_P_TEB)) {
423 				const struct ethhdr *eth;
424 				struct ethhdr _eth;
425 
426 				eth = __skb_header_pointer(skb, nhoff + offset,
427 							   sizeof(_eth),
428 							   data, hlen, &_eth);
429 				if (!eth)
430 					goto out_bad;
431 				proto = eth->h_proto;
432 				offset += sizeof(*eth);
433 
434 				/* Cap headers that we access via pointers at the
435 				 * end of the Ethernet header as our maximum alignment
436 				 * at that point is only 2 bytes.
437 				 */
438 				if (NET_IP_ALIGN)
439 					hlen = (nhoff + offset);
440 			}
441 		} else { /* version 1, must be PPTP */
442 			u8 _ppp_hdr[PPP_HDRLEN];
443 			u8 *ppp_hdr;
444 
445 			if (hdr->flags & GRE_ACK)
446 				offset += sizeof(((struct pptp_gre_header *)0)->ack);
447 
448 			ppp_hdr = __skb_header_pointer(skb, nhoff + offset,
449 						     sizeof(_ppp_hdr),
450 						     data, hlen, _ppp_hdr);
451 			if (!ppp_hdr)
452 				goto out_bad;
453 
454 			switch (PPP_PROTOCOL(ppp_hdr)) {
455 			case PPP_IP:
456 				proto = htons(ETH_P_IP);
457 				break;
458 			case PPP_IPV6:
459 				proto = htons(ETH_P_IPV6);
460 				break;
461 			default:
462 				/* Could probably catch some more like MPLS */
463 				break;
464 			}
465 
466 			offset += PPP_HDRLEN;
467 		}
468 
469 		nhoff += offset;
470 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
471 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
472 			goto out_good;
473 
474 		goto again;
475 	}
476 	case NEXTHDR_HOP:
477 	case NEXTHDR_ROUTING:
478 	case NEXTHDR_DEST: {
479 		u8 _opthdr[2], *opthdr;
480 
481 		if (proto != htons(ETH_P_IPV6))
482 			break;
483 
484 		opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
485 					      data, hlen, &_opthdr);
486 		if (!opthdr)
487 			goto out_bad;
488 
489 		ip_proto = opthdr[0];
490 		nhoff += (opthdr[1] + 1) << 3;
491 
492 		goto ip_proto_again;
493 	}
494 	case NEXTHDR_FRAGMENT: {
495 		struct frag_hdr _fh, *fh;
496 
497 		if (proto != htons(ETH_P_IPV6))
498 			break;
499 
500 		fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
501 					  data, hlen, &_fh);
502 
503 		if (!fh)
504 			goto out_bad;
505 
506 		key_control->flags |= FLOW_DIS_IS_FRAGMENT;
507 
508 		nhoff += sizeof(_fh);
509 		ip_proto = fh->nexthdr;
510 
511 		if (!(fh->frag_off & htons(IP6_OFFSET))) {
512 			key_control->flags |= FLOW_DIS_FIRST_FRAG;
513 			if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
514 				goto ip_proto_again;
515 		}
516 		goto out_good;
517 	}
518 	case IPPROTO_IPIP:
519 		proto = htons(ETH_P_IP);
520 
521 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
522 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
523 			goto out_good;
524 
525 		goto ip;
526 	case IPPROTO_IPV6:
527 		proto = htons(ETH_P_IPV6);
528 
529 		key_control->flags |= FLOW_DIS_ENCAPSULATION;
530 		if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
531 			goto out_good;
532 
533 		goto ipv6;
534 	case IPPROTO_MPLS:
535 		proto = htons(ETH_P_MPLS_UC);
536 		goto mpls;
537 	default:
538 		break;
539 	}
540 
541 	if (dissector_uses_key(flow_dissector,
542 			       FLOW_DISSECTOR_KEY_PORTS)) {
543 		key_ports = skb_flow_dissector_target(flow_dissector,
544 						      FLOW_DISSECTOR_KEY_PORTS,
545 						      target_container);
546 		key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
547 							data, hlen);
548 	}
549 
550 out_good:
551 	ret = true;
552 
553 out:
554 	key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
555 	key_basic->n_proto = proto;
556 	key_basic->ip_proto = ip_proto;
557 
558 	return ret;
559 
560 out_bad:
561 	ret = false;
562 	goto out;
563 }
564 EXPORT_SYMBOL(__skb_flow_dissect);
565 
566 static u32 hashrnd __read_mostly;
__flow_hash_secret_init(void)567 static __always_inline void __flow_hash_secret_init(void)
568 {
569 	net_get_random_once(&hashrnd, sizeof(hashrnd));
570 }
571 
__flow_hash_words(const u32 * words,u32 length,u32 keyval)572 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
573 					     u32 keyval)
574 {
575 	return jhash2(words, length, keyval);
576 }
577 
flow_keys_hash_start(const struct flow_keys * flow)578 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
579 {
580 	const void *p = flow;
581 
582 	BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
583 	return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
584 }
585 
flow_keys_hash_length(const struct flow_keys * flow)586 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
587 {
588 	size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
589 	BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
590 	BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
591 		     sizeof(*flow) - sizeof(flow->addrs));
592 
593 	switch (flow->control.addr_type) {
594 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
595 		diff -= sizeof(flow->addrs.v4addrs);
596 		break;
597 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
598 		diff -= sizeof(flow->addrs.v6addrs);
599 		break;
600 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
601 		diff -= sizeof(flow->addrs.tipcaddrs);
602 		break;
603 	}
604 	return (sizeof(*flow) - diff) / sizeof(u32);
605 }
606 
flow_get_u32_src(const struct flow_keys * flow)607 __be32 flow_get_u32_src(const struct flow_keys *flow)
608 {
609 	switch (flow->control.addr_type) {
610 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
611 		return flow->addrs.v4addrs.src;
612 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
613 		return (__force __be32)ipv6_addr_hash(
614 			&flow->addrs.v6addrs.src);
615 	case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
616 		return flow->addrs.tipcaddrs.srcnode;
617 	default:
618 		return 0;
619 	}
620 }
621 EXPORT_SYMBOL(flow_get_u32_src);
622 
flow_get_u32_dst(const struct flow_keys * flow)623 __be32 flow_get_u32_dst(const struct flow_keys *flow)
624 {
625 	switch (flow->control.addr_type) {
626 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
627 		return flow->addrs.v4addrs.dst;
628 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
629 		return (__force __be32)ipv6_addr_hash(
630 			&flow->addrs.v6addrs.dst);
631 	default:
632 		return 0;
633 	}
634 }
635 EXPORT_SYMBOL(flow_get_u32_dst);
636 
__flow_hash_consistentify(struct flow_keys * keys)637 static inline void __flow_hash_consistentify(struct flow_keys *keys)
638 {
639 	int addr_diff, i;
640 
641 	switch (keys->control.addr_type) {
642 	case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
643 		addr_diff = (__force u32)keys->addrs.v4addrs.dst -
644 			    (__force u32)keys->addrs.v4addrs.src;
645 		if ((addr_diff < 0) ||
646 		    (addr_diff == 0 &&
647 		     ((__force u16)keys->ports.dst <
648 		      (__force u16)keys->ports.src))) {
649 			swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
650 			swap(keys->ports.src, keys->ports.dst);
651 		}
652 		break;
653 	case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
654 		addr_diff = memcmp(&keys->addrs.v6addrs.dst,
655 				   &keys->addrs.v6addrs.src,
656 				   sizeof(keys->addrs.v6addrs.dst));
657 		if ((addr_diff < 0) ||
658 		    (addr_diff == 0 &&
659 		     ((__force u16)keys->ports.dst <
660 		      (__force u16)keys->ports.src))) {
661 			for (i = 0; i < 4; i++)
662 				swap(keys->addrs.v6addrs.src.s6_addr32[i],
663 				     keys->addrs.v6addrs.dst.s6_addr32[i]);
664 			swap(keys->ports.src, keys->ports.dst);
665 		}
666 		break;
667 	}
668 }
669 
__flow_hash_from_keys(struct flow_keys * keys,u32 keyval)670 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
671 {
672 	u32 hash;
673 
674 	__flow_hash_consistentify(keys);
675 
676 	hash = __flow_hash_words(flow_keys_hash_start(keys),
677 				 flow_keys_hash_length(keys), keyval);
678 	if (!hash)
679 		hash = 1;
680 
681 	return hash;
682 }
683 
flow_hash_from_keys(struct flow_keys * keys)684 u32 flow_hash_from_keys(struct flow_keys *keys)
685 {
686 	__flow_hash_secret_init();
687 	return __flow_hash_from_keys(keys, hashrnd);
688 }
689 EXPORT_SYMBOL(flow_hash_from_keys);
690 
___skb_get_hash(const struct sk_buff * skb,struct flow_keys * keys,u32 keyval)691 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
692 				  struct flow_keys *keys, u32 keyval)
693 {
694 	skb_flow_dissect_flow_keys(skb, keys,
695 				   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
696 
697 	return __flow_hash_from_keys(keys, keyval);
698 }
699 
700 struct _flow_keys_digest_data {
701 	__be16	n_proto;
702 	u8	ip_proto;
703 	u8	padding;
704 	__be32	ports;
705 	__be32	src;
706 	__be32	dst;
707 };
708 
make_flow_keys_digest(struct flow_keys_digest * digest,const struct flow_keys * flow)709 void make_flow_keys_digest(struct flow_keys_digest *digest,
710 			   const struct flow_keys *flow)
711 {
712 	struct _flow_keys_digest_data *data =
713 	    (struct _flow_keys_digest_data *)digest;
714 
715 	BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
716 
717 	memset(digest, 0, sizeof(*digest));
718 
719 	data->n_proto = flow->basic.n_proto;
720 	data->ip_proto = flow->basic.ip_proto;
721 	data->ports = flow->ports.ports;
722 	data->src = flow->addrs.v4addrs.src;
723 	data->dst = flow->addrs.v4addrs.dst;
724 }
725 EXPORT_SYMBOL(make_flow_keys_digest);
726 
727 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
728 
__skb_get_hash_symmetric(struct sk_buff * skb)729 u32 __skb_get_hash_symmetric(struct sk_buff *skb)
730 {
731 	struct flow_keys keys;
732 
733 	__flow_hash_secret_init();
734 
735 	memset(&keys, 0, sizeof(keys));
736 	__skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
737 			   NULL, 0, 0, 0,
738 			   FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
739 
740 	return __flow_hash_from_keys(&keys, hashrnd);
741 }
742 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
743 
744 /**
745  * __skb_get_hash: calculate a flow hash
746  * @skb: sk_buff to calculate flow hash from
747  *
748  * This function calculates a flow hash based on src/dst addresses
749  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
750  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
751  * if hash is a canonical 4-tuple hash over transport ports.
752  */
__skb_get_hash(struct sk_buff * skb)753 void __skb_get_hash(struct sk_buff *skb)
754 {
755 	struct flow_keys keys;
756 	u32 hash;
757 
758 	__flow_hash_secret_init();
759 
760 	hash = ___skb_get_hash(skb, &keys, hashrnd);
761 
762 	__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
763 }
764 EXPORT_SYMBOL(__skb_get_hash);
765 
skb_get_hash_perturb(const struct sk_buff * skb,u32 perturb)766 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
767 {
768 	struct flow_keys keys;
769 
770 	return ___skb_get_hash(skb, &keys, perturb);
771 }
772 EXPORT_SYMBOL(skb_get_hash_perturb);
773 
__skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)774 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
775 {
776 	struct flow_keys keys;
777 
778 	memset(&keys, 0, sizeof(keys));
779 
780 	memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
781 	       sizeof(keys.addrs.v6addrs.src));
782 	memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
783 	       sizeof(keys.addrs.v6addrs.dst));
784 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
785 	keys.ports.src = fl6->fl6_sport;
786 	keys.ports.dst = fl6->fl6_dport;
787 	keys.keyid.keyid = fl6->fl6_gre_key;
788 	keys.tags.flow_label = (__force u32)fl6->flowlabel;
789 	keys.basic.ip_proto = fl6->flowi6_proto;
790 
791 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
792 			  flow_keys_have_l4(&keys));
793 
794 	return skb->hash;
795 }
796 EXPORT_SYMBOL(__skb_get_hash_flowi6);
797 
__skb_get_hash_flowi4(struct sk_buff * skb,const struct flowi4 * fl4)798 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
799 {
800 	struct flow_keys keys;
801 
802 	memset(&keys, 0, sizeof(keys));
803 
804 	keys.addrs.v4addrs.src = fl4->saddr;
805 	keys.addrs.v4addrs.dst = fl4->daddr;
806 	keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
807 	keys.ports.src = fl4->fl4_sport;
808 	keys.ports.dst = fl4->fl4_dport;
809 	keys.keyid.keyid = fl4->fl4_gre_key;
810 	keys.basic.ip_proto = fl4->flowi4_proto;
811 
812 	__skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
813 			  flow_keys_have_l4(&keys));
814 
815 	return skb->hash;
816 }
817 EXPORT_SYMBOL(__skb_get_hash_flowi4);
818 
__skb_get_poff(const struct sk_buff * skb,void * data,const struct flow_keys * keys,int hlen)819 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
820 		   const struct flow_keys *keys, int hlen)
821 {
822 	u32 poff = keys->control.thoff;
823 
824 	/* skip L4 headers for fragments after the first */
825 	if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
826 	    !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
827 		return poff;
828 
829 	switch (keys->basic.ip_proto) {
830 	case IPPROTO_TCP: {
831 		/* access doff as u8 to avoid unaligned access */
832 		const u8 *doff;
833 		u8 _doff;
834 
835 		doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
836 					    data, hlen, &_doff);
837 		if (!doff)
838 			return poff;
839 
840 		poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
841 		break;
842 	}
843 	case IPPROTO_UDP:
844 	case IPPROTO_UDPLITE:
845 		poff += sizeof(struct udphdr);
846 		break;
847 	/* For the rest, we do not really care about header
848 	 * extensions at this point for now.
849 	 */
850 	case IPPROTO_ICMP:
851 		poff += sizeof(struct icmphdr);
852 		break;
853 	case IPPROTO_ICMPV6:
854 		poff += sizeof(struct icmp6hdr);
855 		break;
856 	case IPPROTO_IGMP:
857 		poff += sizeof(struct igmphdr);
858 		break;
859 	case IPPROTO_DCCP:
860 		poff += sizeof(struct dccp_hdr);
861 		break;
862 	case IPPROTO_SCTP:
863 		poff += sizeof(struct sctphdr);
864 		break;
865 	}
866 
867 	return poff;
868 }
869 
870 /**
871  * skb_get_poff - get the offset to the payload
872  * @skb: sk_buff to get the payload offset from
873  *
874  * The function will get the offset to the payload as far as it could
875  * be dissected.  The main user is currently BPF, so that we can dynamically
876  * truncate packets without needing to push actual payload to the user
877  * space and can analyze headers only, instead.
878  */
skb_get_poff(const struct sk_buff * skb)879 u32 skb_get_poff(const struct sk_buff *skb)
880 {
881 	struct flow_keys keys;
882 
883 	if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
884 		return 0;
885 
886 	return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
887 }
888 
__get_hash_from_flowi6(const struct flowi6 * fl6,struct flow_keys * keys)889 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
890 {
891 	memset(keys, 0, sizeof(*keys));
892 
893 	memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
894 	    sizeof(keys->addrs.v6addrs.src));
895 	memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
896 	    sizeof(keys->addrs.v6addrs.dst));
897 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
898 	keys->ports.src = fl6->fl6_sport;
899 	keys->ports.dst = fl6->fl6_dport;
900 	keys->keyid.keyid = fl6->fl6_gre_key;
901 	keys->tags.flow_label = (__force u32)fl6->flowlabel;
902 	keys->basic.ip_proto = fl6->flowi6_proto;
903 
904 	return flow_hash_from_keys(keys);
905 }
906 EXPORT_SYMBOL(__get_hash_from_flowi6);
907 
__get_hash_from_flowi4(const struct flowi4 * fl4,struct flow_keys * keys)908 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
909 {
910 	memset(keys, 0, sizeof(*keys));
911 
912 	keys->addrs.v4addrs.src = fl4->saddr;
913 	keys->addrs.v4addrs.dst = fl4->daddr;
914 	keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
915 	keys->ports.src = fl4->fl4_sport;
916 	keys->ports.dst = fl4->fl4_dport;
917 	keys->keyid.keyid = fl4->fl4_gre_key;
918 	keys->basic.ip_proto = fl4->flowi4_proto;
919 
920 	return flow_hash_from_keys(keys);
921 }
922 EXPORT_SYMBOL(__get_hash_from_flowi4);
923 
924 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
925 	{
926 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
927 		.offset = offsetof(struct flow_keys, control),
928 	},
929 	{
930 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
931 		.offset = offsetof(struct flow_keys, basic),
932 	},
933 	{
934 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
935 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
936 	},
937 	{
938 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
939 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
940 	},
941 	{
942 		.key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
943 		.offset = offsetof(struct flow_keys, addrs.tipcaddrs),
944 	},
945 	{
946 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
947 		.offset = offsetof(struct flow_keys, ports),
948 	},
949 	{
950 		.key_id = FLOW_DISSECTOR_KEY_VLAN,
951 		.offset = offsetof(struct flow_keys, vlan),
952 	},
953 	{
954 		.key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
955 		.offset = offsetof(struct flow_keys, tags),
956 	},
957 	{
958 		.key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
959 		.offset = offsetof(struct flow_keys, keyid),
960 	},
961 };
962 
963 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
964 	{
965 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
966 		.offset = offsetof(struct flow_keys, control),
967 	},
968 	{
969 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
970 		.offset = offsetof(struct flow_keys, basic),
971 	},
972 	{
973 		.key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
974 		.offset = offsetof(struct flow_keys, addrs.v4addrs),
975 	},
976 	{
977 		.key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
978 		.offset = offsetof(struct flow_keys, addrs.v6addrs),
979 	},
980 	{
981 		.key_id = FLOW_DISSECTOR_KEY_PORTS,
982 		.offset = offsetof(struct flow_keys, ports),
983 	},
984 };
985 
986 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
987 	{
988 		.key_id = FLOW_DISSECTOR_KEY_CONTROL,
989 		.offset = offsetof(struct flow_keys, control),
990 	},
991 	{
992 		.key_id = FLOW_DISSECTOR_KEY_BASIC,
993 		.offset = offsetof(struct flow_keys, basic),
994 	},
995 };
996 
997 struct flow_dissector flow_keys_dissector __read_mostly;
998 EXPORT_SYMBOL(flow_keys_dissector);
999 
1000 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1001 
init_default_flow_dissectors(void)1002 static int __init init_default_flow_dissectors(void)
1003 {
1004 	skb_flow_dissector_init(&flow_keys_dissector,
1005 				flow_keys_dissector_keys,
1006 				ARRAY_SIZE(flow_keys_dissector_keys));
1007 	skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1008 				flow_keys_dissector_symmetric_keys,
1009 				ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1010 	skb_flow_dissector_init(&flow_keys_buf_dissector,
1011 				flow_keys_buf_dissector_keys,
1012 				ARRAY_SIZE(flow_keys_buf_dissector_keys));
1013 	return 0;
1014 }
1015 
1016 core_initcall(init_default_flow_dissectors);
1017