• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SN2 Platform specific SMP Support
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License.  See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/spinlock.h>
14 #include <linux/threads.h>
15 #include <linux/sched.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/mmzone.h>
20 #include <linux/module.h>
21 #include <linux/bitops.h>
22 #include <linux/nodemask.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 
26 #include <asm/processor.h>
27 #include <asm/irq.h>
28 #include <asm/sal.h>
29 #include <asm/delay.h>
30 #include <asm/io.h>
31 #include <asm/smp.h>
32 #include <asm/tlb.h>
33 #include <asm/numa.h>
34 #include <asm/hw_irq.h>
35 #include <asm/current.h>
36 #include <asm/sn/sn_cpuid.h>
37 #include <asm/sn/sn_sal.h>
38 #include <asm/sn/addrs.h>
39 #include <asm/sn/shub_mmr.h>
40 #include <asm/sn/nodepda.h>
41 #include <asm/sn/rw_mmr.h>
42 #include <asm/sn/sn_feature_sets.h>
43 
44 DEFINE_PER_CPU(struct ptc_stats, ptcstats);
45 DECLARE_PER_CPU(struct ptc_stats, ptcstats);
46 
47 static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
48 
49 /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
50 static int sn2_flush_opt = 0;
51 
52 extern unsigned long
53 sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
54 			       volatile unsigned long *, unsigned long,
55 			       volatile unsigned long *, unsigned long);
56 void
57 sn2_ptc_deadlock_recovery(nodemask_t, short, short, int,
58 			  volatile unsigned long *, unsigned long,
59 			  volatile unsigned long *, unsigned long);
60 
61 /*
62  * Note: some is the following is captured here to make degugging easier
63  * (the macros make more sense if you see the debug patch - not posted)
64  */
65 #define sn2_ptctest	0
66 #define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
67 #define max_active_pio(sh1)		((sh1) ? 32 : 7)
68 #define reset_max_active_on_deadlock()	1
69 #define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
70 
71 struct ptc_stats {
72 	unsigned long ptc_l;
73 	unsigned long change_rid;
74 	unsigned long shub_ptc_flushes;
75 	unsigned long nodes_flushed;
76 	unsigned long deadlocks;
77 	unsigned long deadlocks2;
78 	unsigned long lock_itc_clocks;
79 	unsigned long shub_itc_clocks;
80 	unsigned long shub_itc_clocks_max;
81 	unsigned long shub_ptc_flushes_not_my_mm;
82 	unsigned long shub_ipi_flushes;
83 	unsigned long shub_ipi_flushes_itc_clocks;
84 };
85 
86 #define sn2_ptctest	0
87 
wait_piowc(void)88 static inline unsigned long wait_piowc(void)
89 {
90 	volatile unsigned long *piows;
91 	unsigned long zeroval, ws;
92 
93 	piows = pda->pio_write_status_addr;
94 	zeroval = pda->pio_write_status_val;
95 	do {
96 		cpu_relax();
97 	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
98 	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
99 }
100 
101 /**
102  * sn_migrate - SN-specific task migration actions
103  * @task: Task being migrated to new CPU
104  *
105  * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
106  * Context switching user threads which have memory-mapped MMIO may cause
107  * PIOs to issue from separate CPUs, thus the PIO writes must be drained
108  * from the previous CPU's Shub before execution resumes on the new CPU.
109  */
sn_migrate(struct task_struct * task)110 void sn_migrate(struct task_struct *task)
111 {
112 	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
113 	volatile unsigned long *adr = last_pda->pio_write_status_addr;
114 	unsigned long val = last_pda->pio_write_status_val;
115 
116 	/* Drain PIO writes from old CPU's Shub */
117 	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
118 			!= val))
119 		cpu_relax();
120 }
121 
sn_tlb_migrate_finish(struct mm_struct * mm)122 void sn_tlb_migrate_finish(struct mm_struct *mm)
123 {
124 	/* flush_tlb_mm is inefficient if more than 1 users of mm */
125 	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
126 		flush_tlb_mm(mm);
127 }
128 
129 static void
sn2_ipi_flush_all_tlb(struct mm_struct * mm)130 sn2_ipi_flush_all_tlb(struct mm_struct *mm)
131 {
132 	unsigned long itc;
133 
134 	itc = ia64_get_itc();
135 	smp_flush_tlb_cpumask(*mm_cpumask(mm));
136 	itc = ia64_get_itc() - itc;
137 	__this_cpu_add(ptcstats.shub_ipi_flushes_itc_clocks, itc);
138 	__this_cpu_inc(ptcstats.shub_ipi_flushes);
139 }
140 
141 /**
142  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
143  * @mm: mm_struct containing virtual address range
144  * @start: start of virtual address range
145  * @end: end of virtual address range
146  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
147  *
148  * Purges the translation caches of all processors of the given virtual address
149  * range.
150  *
151  * Note:
152  * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
153  * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
154  * 	  cpus in cpu_vm_mask.
155  *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
156  *	  process is purging its own virtual address range, then only the
157  *	  local TLB needs to be flushed. This flushing can be done using
158  *	  ptc.l. This is the common case & avoids the global spinlock.
159  *	- if multiple cpus have loaded the context, then flushing has to be
160  *	  done with ptc.g/MMRs under protection of the global ptc_lock.
161  */
162 
163 void
sn2_global_tlb_purge(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long nbits)164 sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
165 		     unsigned long end, unsigned long nbits)
166 {
167 	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
168 	int mymm = (mm == current->active_mm && mm == current->mm);
169 	int use_cpu_ptcga;
170 	volatile unsigned long *ptc0, *ptc1;
171 	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
172 	short nix;
173 	nodemask_t nodes_flushed;
174 	int active, max_active, deadlock, flush_opt = sn2_flush_opt;
175 
176 	if (flush_opt > 2) {
177 		sn2_ipi_flush_all_tlb(mm);
178 		return;
179 	}
180 
181 	nodes_clear(nodes_flushed);
182 	i = 0;
183 
184 	for_each_cpu(cpu, mm_cpumask(mm)) {
185 		cnode = cpu_to_node(cpu);
186 		node_set(cnode, nodes_flushed);
187 		lcpu = cpu;
188 		i++;
189 	}
190 
191 	if (i == 0)
192 		return;
193 
194 	preempt_disable();
195 
196 	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
197 		do {
198 			ia64_ptcl(start, nbits << 2);
199 			start += (1UL << nbits);
200 		} while (start < end);
201 		ia64_srlz_i();
202 		__this_cpu_inc(ptcstats.ptc_l);
203 		preempt_enable();
204 		return;
205 	}
206 
207 	if (atomic_read(&mm->mm_users) == 1 && mymm) {
208 		flush_tlb_mm(mm);
209 		__this_cpu_inc(ptcstats.change_rid);
210 		preempt_enable();
211 		return;
212 	}
213 
214 	if (flush_opt == 2) {
215 		sn2_ipi_flush_all_tlb(mm);
216 		preempt_enable();
217 		return;
218 	}
219 
220 	itc = ia64_get_itc();
221 	nix = nodes_weight(nodes_flushed);
222 
223 	rr_value = (mm->context << 3) | REGION_NUMBER(start);
224 
225 	shub1 = is_shub1();
226 	if (shub1) {
227 		data0 = (1UL << SH1_PTC_0_A_SHFT) |
228 		    	(nbits << SH1_PTC_0_PS_SHFT) |
229 			(rr_value << SH1_PTC_0_RID_SHFT) |
230 		    	(1UL << SH1_PTC_0_START_SHFT);
231 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
232 		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
233 	} else {
234 		data0 = (1UL << SH2_PTC_A_SHFT) |
235 			(nbits << SH2_PTC_PS_SHFT) |
236 		    	(1UL << SH2_PTC_START_SHFT);
237 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC +
238 			(rr_value << SH2_PTC_RID_SHFT));
239 		ptc1 = NULL;
240 	}
241 
242 
243 	mynasid = get_nasid();
244 	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
245 	max_active = max_active_pio(shub1);
246 
247 	itc = ia64_get_itc();
248 	spin_lock_irqsave(PTC_LOCK(shub1), flags);
249 	itc2 = ia64_get_itc();
250 
251 	__this_cpu_add(ptcstats.lock_itc_clocks, itc2 - itc);
252 	__this_cpu_inc(ptcstats.shub_ptc_flushes);
253 	__this_cpu_add(ptcstats.nodes_flushed, nix);
254 	if (!mymm)
255 		 __this_cpu_inc(ptcstats.shub_ptc_flushes_not_my_mm);
256 
257 	if (use_cpu_ptcga && !mymm) {
258 		old_rr = ia64_get_rr(start);
259 		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
260 		ia64_srlz_d();
261 	}
262 
263 	wait_piowc();
264 	do {
265 		if (shub1)
266 			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
267 		else
268 			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
269 		deadlock = 0;
270 		active = 0;
271 		ibegin = 0;
272 		i = 0;
273 		for_each_node_mask(cnode, nodes_flushed) {
274 			nasid = cnodeid_to_nasid(cnode);
275 			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
276 				ia64_ptcga(start, nbits << 2);
277 				ia64_srlz_i();
278 			} else {
279 				ptc0 = CHANGE_NASID(nasid, ptc0);
280 				if (ptc1)
281 					ptc1 = CHANGE_NASID(nasid, ptc1);
282 				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
283 				active++;
284 			}
285 			if (active >= max_active || i == (nix - 1)) {
286 				if ((deadlock = wait_piowc())) {
287 					if (flush_opt == 1)
288 						goto done;
289 					sn2_ptc_deadlock_recovery(nodes_flushed, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
290 					if (reset_max_active_on_deadlock())
291 						max_active = 1;
292 				}
293 				active = 0;
294 				ibegin = i + 1;
295 			}
296 			i++;
297 		}
298 		start += (1UL << nbits);
299 	} while (start < end);
300 
301 done:
302 	itc2 = ia64_get_itc() - itc2;
303 	__this_cpu_add(ptcstats.shub_itc_clocks, itc2);
304 	if (itc2 > __this_cpu_read(ptcstats.shub_itc_clocks_max))
305 		__this_cpu_write(ptcstats.shub_itc_clocks_max, itc2);
306 
307 	if (old_rr) {
308 		ia64_set_rr(start, old_rr);
309 		ia64_srlz_d();
310 	}
311 
312 	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
313 
314 	if (flush_opt == 1 && deadlock) {
315 		__this_cpu_inc(ptcstats.deadlocks);
316 		sn2_ipi_flush_all_tlb(mm);
317 	}
318 
319 	preempt_enable();
320 }
321 
322 /*
323  * sn2_ptc_deadlock_recovery
324  *
325  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each
326  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
327  * coded in assembly language.
328  */
329 
330 void
sn2_ptc_deadlock_recovery(nodemask_t nodes,short ib,short ie,int mynasid,volatile unsigned long * ptc0,unsigned long data0,volatile unsigned long * ptc1,unsigned long data1)331 sn2_ptc_deadlock_recovery(nodemask_t nodes, short ib, short ie, int mynasid,
332 			  volatile unsigned long *ptc0, unsigned long data0,
333 			  volatile unsigned long *ptc1, unsigned long data1)
334 {
335 	short nasid, i;
336 	int cnode;
337 	unsigned long *piows, zeroval, n;
338 
339 	__this_cpu_inc(ptcstats.deadlocks);
340 
341 	piows = (unsigned long *) pda->pio_write_status_addr;
342 	zeroval = pda->pio_write_status_val;
343 
344 	i = 0;
345 	for_each_node_mask(cnode, nodes) {
346 		if (i < ib)
347 			goto next;
348 
349 		if (i > ie)
350 			break;
351 
352 		nasid = cnodeid_to_nasid(cnode);
353 		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
354 			goto next;
355 
356 		ptc0 = CHANGE_NASID(nasid, ptc0);
357 		if (ptc1)
358 			ptc1 = CHANGE_NASID(nasid, ptc1);
359 
360 		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
361 		__this_cpu_add(ptcstats.deadlocks2, n);
362 next:
363 		i++;
364 	}
365 
366 }
367 
368 /**
369  * sn_send_IPI_phys - send an IPI to a Nasid and slice
370  * @nasid: nasid to receive the interrupt (may be outside partition)
371  * @physid: physical cpuid to receive the interrupt.
372  * @vector: command to send
373  * @delivery_mode: delivery mechanism
374  *
375  * Sends an IPI (interprocessor interrupt) to the processor specified by
376  * @physid
377  *
378  * @delivery_mode can be one of the following
379  *
380  * %IA64_IPI_DM_INT - pend an interrupt
381  * %IA64_IPI_DM_PMI - pend a PMI
382  * %IA64_IPI_DM_NMI - pend an NMI
383  * %IA64_IPI_DM_INIT - pend an INIT interrupt
384  */
sn_send_IPI_phys(int nasid,long physid,int vector,int delivery_mode)385 void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
386 {
387 	long val;
388 	unsigned long flags = 0;
389 	volatile long *p;
390 
391 	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
392 	val = (1UL << SH_IPI_INT_SEND_SHFT) |
393 	    (physid << SH_IPI_INT_PID_SHFT) |
394 	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
395 	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
396 	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
397 
398 	mb();
399 	if (enable_shub_wars_1_1()) {
400 		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
401 	}
402 	pio_phys_write_mmr(p, val);
403 	if (enable_shub_wars_1_1()) {
404 		wait_piowc();
405 		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
406 	}
407 
408 }
409 
410 EXPORT_SYMBOL(sn_send_IPI_phys);
411 
412 /**
413  * sn2_send_IPI - send an IPI to a processor
414  * @cpuid: target of the IPI
415  * @vector: command to send
416  * @delivery_mode: delivery mechanism
417  * @redirect: redirect the IPI?
418  *
419  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
420  * @cpuid.  @vector specifies the command to send, while @delivery_mode can
421  * be one of the following
422  *
423  * %IA64_IPI_DM_INT - pend an interrupt
424  * %IA64_IPI_DM_PMI - pend a PMI
425  * %IA64_IPI_DM_NMI - pend an NMI
426  * %IA64_IPI_DM_INIT - pend an INIT interrupt
427  */
sn2_send_IPI(int cpuid,int vector,int delivery_mode,int redirect)428 void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
429 {
430 	long physid;
431 	int nasid;
432 
433 	physid = cpu_physical_id(cpuid);
434 	nasid = cpuid_to_nasid(cpuid);
435 
436 	/* the following is used only when starting cpus at boot time */
437 	if (unlikely(nasid == -1))
438 		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
439 
440 	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
441 }
442 
443 #ifdef CONFIG_HOTPLUG_CPU
444 /**
445  * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
446  * @cpu - CPU that is requested to be disabled.
447  *
448  * CPU disable is only allowed on SHub2 systems running with a PROM
449  * that supports CPU disable. It is not permitted to disable the boot processor.
450  */
sn_cpu_disable_allowed(int cpu)451 bool sn_cpu_disable_allowed(int cpu)
452 {
453 	if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
454 		if (cpu != 0)
455 			return true;
456 		else
457 			printk(KERN_WARNING
458 			      "Disabling the boot processor is not allowed.\n");
459 
460 	} else
461 		printk(KERN_WARNING
462 		       "CPU disable is not supported on this system.\n");
463 
464 	return false;
465 }
466 #endif /* CONFIG_HOTPLUG_CPU */
467 
468 #ifdef CONFIG_PROC_FS
469 
470 #define PTC_BASENAME	"sgi_sn/ptc_statistics"
471 
sn2_ptc_seq_start(struct seq_file * file,loff_t * offset)472 static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
473 {
474 	if (*offset < nr_cpu_ids)
475 		return offset;
476 	return NULL;
477 }
478 
sn2_ptc_seq_next(struct seq_file * file,void * data,loff_t * offset)479 static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
480 {
481 	(*offset)++;
482 	if (*offset < nr_cpu_ids)
483 		return offset;
484 	return NULL;
485 }
486 
sn2_ptc_seq_stop(struct seq_file * file,void * data)487 static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
488 {
489 }
490 
sn2_ptc_seq_show(struct seq_file * file,void * data)491 static int sn2_ptc_seq_show(struct seq_file *file, void *data)
492 {
493 	struct ptc_stats *stat;
494 	int cpu;
495 
496 	cpu = *(loff_t *) data;
497 
498 	if (!cpu) {
499 		seq_printf(file,
500 			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
501 		seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
502 	}
503 
504 	if (cpu < nr_cpu_ids && cpu_online(cpu)) {
505 		stat = &per_cpu(ptcstats, cpu);
506 		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
507 				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
508 				stat->deadlocks,
509 				1000 * stat->lock_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
510 				1000 * stat->shub_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
511 				1000 * stat->shub_itc_clocks_max / per_cpu(ia64_cpu_info, cpu).cyc_per_usec,
512 				stat->shub_ptc_flushes_not_my_mm,
513 				stat->deadlocks2,
514 				stat->shub_ipi_flushes,
515 				1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(ia64_cpu_info, cpu).cyc_per_usec);
516 	}
517 	return 0;
518 }
519 
sn2_ptc_proc_write(struct file * file,const char __user * user,size_t count,loff_t * data)520 static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
521 {
522 	int cpu;
523 	char optstr[64];
524 
525 	if (count == 0 || count > sizeof(optstr))
526 		return -EINVAL;
527 	if (copy_from_user(optstr, user, count))
528 		return -EFAULT;
529 	optstr[count - 1] = '\0';
530 	sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
531 
532 	for_each_online_cpu(cpu)
533 		memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
534 
535 	return count;
536 }
537 
538 static const struct seq_operations sn2_ptc_seq_ops = {
539 	.start = sn2_ptc_seq_start,
540 	.next = sn2_ptc_seq_next,
541 	.stop = sn2_ptc_seq_stop,
542 	.show = sn2_ptc_seq_show
543 };
544 
sn2_ptc_proc_open(struct inode * inode,struct file * file)545 static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
546 {
547 	return seq_open(file, &sn2_ptc_seq_ops);
548 }
549 
550 static const struct file_operations proc_sn2_ptc_operations = {
551 	.open = sn2_ptc_proc_open,
552 	.read = seq_read,
553 	.write = sn2_ptc_proc_write,
554 	.llseek = seq_lseek,
555 	.release = seq_release,
556 };
557 
558 static struct proc_dir_entry *proc_sn2_ptc;
559 
sn2_ptc_init(void)560 static int __init sn2_ptc_init(void)
561 {
562 	if (!ia64_platform_is("sn2"))
563 		return 0;
564 
565 	proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
566 				   NULL, &proc_sn2_ptc_operations);
567 	if (!proc_sn2_ptc) {
568 		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
569 		return -EINVAL;
570 	}
571 	spin_lock_init(&sn2_global_ptc_lock);
572 	return 0;
573 }
574 
sn2_ptc_exit(void)575 static void __exit sn2_ptc_exit(void)
576 {
577 	remove_proc_entry(PTC_BASENAME, NULL);
578 }
579 
580 module_init(sn2_ptc_init);
581 module_exit(sn2_ptc_exit);
582 #endif /* CONFIG_PROC_FS */
583 
584