• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44 
spidev_release(struct device * dev)45 static void spidev_release(struct device *dev)
46 {
47 	struct spi_device	*spi = to_spi_device(dev);
48 
49 	/* spi masters may cleanup for released devices */
50 	if (spi->master->cleanup)
51 		spi->master->cleanup(spi);
52 
53 	spi_master_put(spi->master);
54 	kfree(spi);
55 }
56 
57 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 #define SPI_STATISTICS_ATTRS(field, file)				\
72 static ssize_t spi_master_##field##_show(struct device *dev,		\
73 					 struct device_attribute *attr,	\
74 					 char *buf)			\
75 {									\
76 	struct spi_master *master = container_of(dev,			\
77 						 struct spi_master, dev); \
78 	return spi_statistics_##field##_show(&master->statistics, buf);	\
79 }									\
80 static struct device_attribute dev_attr_spi_master_##field = {		\
81 	.attr = { .name = file, .mode = S_IRUGO },			\
82 	.show = spi_master_##field##_show,				\
83 };									\
84 static ssize_t spi_device_##field##_show(struct device *dev,		\
85 					 struct device_attribute *attr,	\
86 					char *buf)			\
87 {									\
88 	struct spi_device *spi = to_spi_device(dev);			\
89 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
90 }									\
91 static struct device_attribute dev_attr_spi_device_##field = {		\
92 	.attr = { .name = file, .mode = S_IRUGO },			\
93 	.show = spi_device_##field##_show,				\
94 }
95 
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 					    char *buf)			\
99 {									\
100 	unsigned long flags;						\
101 	ssize_t len;							\
102 	spin_lock_irqsave(&stat->lock, flags);				\
103 	len = sprintf(buf, format_string, stat->field);			\
104 	spin_unlock_irqrestore(&stat->lock, flags);			\
105 	return len;							\
106 }									\
107 SPI_STATISTICS_ATTRS(name, file)
108 
109 #define SPI_STATISTICS_SHOW(field, format_string)			\
110 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
111 				 field, format_string)
112 
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117 
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121 
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125 
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
127 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
128 				 "transfer_bytes_histo_" number,	\
129 				 transfer_bytes_histo[index],  "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147 
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
149 
150 static struct attribute *spi_dev_attrs[] = {
151 	&dev_attr_modalias.attr,
152 	NULL,
153 };
154 
155 static const struct attribute_group spi_dev_group = {
156 	.attrs  = spi_dev_attrs,
157 };
158 
159 static struct attribute *spi_device_statistics_attrs[] = {
160 	&dev_attr_spi_device_messages.attr,
161 	&dev_attr_spi_device_transfers.attr,
162 	&dev_attr_spi_device_errors.attr,
163 	&dev_attr_spi_device_timedout.attr,
164 	&dev_attr_spi_device_spi_sync.attr,
165 	&dev_attr_spi_device_spi_sync_immediate.attr,
166 	&dev_attr_spi_device_spi_async.attr,
167 	&dev_attr_spi_device_bytes.attr,
168 	&dev_attr_spi_device_bytes_rx.attr,
169 	&dev_attr_spi_device_bytes_tx.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
187 	&dev_attr_spi_device_transfers_split_maxsize.attr,
188 	NULL,
189 };
190 
191 static const struct attribute_group spi_device_statistics_group = {
192 	.name  = "statistics",
193 	.attrs  = spi_device_statistics_attrs,
194 };
195 
196 static const struct attribute_group *spi_dev_groups[] = {
197 	&spi_dev_group,
198 	&spi_device_statistics_group,
199 	NULL,
200 };
201 
202 static struct attribute *spi_master_statistics_attrs[] = {
203 	&dev_attr_spi_master_messages.attr,
204 	&dev_attr_spi_master_transfers.attr,
205 	&dev_attr_spi_master_errors.attr,
206 	&dev_attr_spi_master_timedout.attr,
207 	&dev_attr_spi_master_spi_sync.attr,
208 	&dev_attr_spi_master_spi_sync_immediate.attr,
209 	&dev_attr_spi_master_spi_async.attr,
210 	&dev_attr_spi_master_bytes.attr,
211 	&dev_attr_spi_master_bytes_rx.attr,
212 	&dev_attr_spi_master_bytes_tx.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
227 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
228 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
229 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
230 	&dev_attr_spi_master_transfers_split_maxsize.attr,
231 	NULL,
232 };
233 
234 static const struct attribute_group spi_master_statistics_group = {
235 	.name  = "statistics",
236 	.attrs  = spi_master_statistics_attrs,
237 };
238 
239 static const struct attribute_group *spi_master_groups[] = {
240 	&spi_master_statistics_group,
241 	NULL,
242 };
243 
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_master * master)244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 				       struct spi_transfer *xfer,
246 				       struct spi_master *master)
247 {
248 	unsigned long flags;
249 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250 
251 	if (l2len < 0)
252 		l2len = 0;
253 
254 	spin_lock_irqsave(&stats->lock, flags);
255 
256 	stats->transfers++;
257 	stats->transfer_bytes_histo[l2len]++;
258 
259 	stats->bytes += xfer->len;
260 	if ((xfer->tx_buf) &&
261 	    (xfer->tx_buf != master->dummy_tx))
262 		stats->bytes_tx += xfer->len;
263 	if ((xfer->rx_buf) &&
264 	    (xfer->rx_buf != master->dummy_rx))
265 		stats->bytes_rx += xfer->len;
266 
267 	spin_unlock_irqrestore(&stats->lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270 
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272  * and the sysfs version makes coldplug work too.
273  */
274 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 						const struct spi_device *sdev)
277 {
278 	while (id->name[0]) {
279 		if (!strcmp(sdev->modalias, id->name))
280 			return id;
281 		id++;
282 	}
283 	return NULL;
284 }
285 
spi_get_device_id(const struct spi_device * sdev)286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
287 {
288 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
289 
290 	return spi_match_id(sdrv->id_table, sdev);
291 }
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
293 
spi_match_device(struct device * dev,struct device_driver * drv)294 static int spi_match_device(struct device *dev, struct device_driver *drv)
295 {
296 	const struct spi_device	*spi = to_spi_device(dev);
297 	const struct spi_driver	*sdrv = to_spi_driver(drv);
298 
299 	/* Attempt an OF style match */
300 	if (of_driver_match_device(dev, drv))
301 		return 1;
302 
303 	/* Then try ACPI */
304 	if (acpi_driver_match_device(dev, drv))
305 		return 1;
306 
307 	if (sdrv->id_table)
308 		return !!spi_match_id(sdrv->id_table, spi);
309 
310 	return strcmp(spi->modalias, drv->name) == 0;
311 }
312 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 {
315 	const struct spi_device		*spi = to_spi_device(dev);
316 	int rc;
317 
318 	rc = acpi_device_uevent_modalias(dev, env);
319 	if (rc != -ENODEV)
320 		return rc;
321 
322 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 	return 0;
324 }
325 
326 struct bus_type spi_bus_type = {
327 	.name		= "spi",
328 	.dev_groups	= spi_dev_groups,
329 	.match		= spi_match_device,
330 	.uevent		= spi_uevent,
331 };
332 EXPORT_SYMBOL_GPL(spi_bus_type);
333 
334 
spi_drv_probe(struct device * dev)335 static int spi_drv_probe(struct device *dev)
336 {
337 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
338 	struct spi_device		*spi = to_spi_device(dev);
339 	int ret;
340 
341 	ret = of_clk_set_defaults(dev->of_node, false);
342 	if (ret)
343 		return ret;
344 
345 	if (dev->of_node) {
346 		spi->irq = of_irq_get(dev->of_node, 0);
347 		if (spi->irq == -EPROBE_DEFER)
348 			return -EPROBE_DEFER;
349 		if (spi->irq < 0)
350 			spi->irq = 0;
351 	}
352 
353 	ret = dev_pm_domain_attach(dev, true);
354 	if (ret != -EPROBE_DEFER) {
355 		ret = sdrv->probe(spi);
356 		if (ret)
357 			dev_pm_domain_detach(dev, true);
358 	}
359 
360 	return ret;
361 }
362 
spi_drv_remove(struct device * dev)363 static int spi_drv_remove(struct device *dev)
364 {
365 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
366 	int ret;
367 
368 	ret = sdrv->remove(to_spi_device(dev));
369 	dev_pm_domain_detach(dev, true);
370 
371 	return ret;
372 }
373 
spi_drv_shutdown(struct device * dev)374 static void spi_drv_shutdown(struct device *dev)
375 {
376 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
377 
378 	sdrv->shutdown(to_spi_device(dev));
379 }
380 
381 /**
382  * __spi_register_driver - register a SPI driver
383  * @owner: owner module of the driver to register
384  * @sdrv: the driver to register
385  * Context: can sleep
386  *
387  * Return: zero on success, else a negative error code.
388  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390 {
391 	sdrv->driver.owner = owner;
392 	sdrv->driver.bus = &spi_bus_type;
393 	if (sdrv->probe)
394 		sdrv->driver.probe = spi_drv_probe;
395 	if (sdrv->remove)
396 		sdrv->driver.remove = spi_drv_remove;
397 	if (sdrv->shutdown)
398 		sdrv->driver.shutdown = spi_drv_shutdown;
399 	return driver_register(&sdrv->driver);
400 }
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
402 
403 /*-------------------------------------------------------------------------*/
404 
405 /* SPI devices should normally not be created by SPI device drivers; that
406  * would make them board-specific.  Similarly with SPI master drivers.
407  * Device registration normally goes into like arch/.../mach.../board-YYY.c
408  * with other readonly (flashable) information about mainboard devices.
409  */
410 
411 struct boardinfo {
412 	struct list_head	list;
413 	struct spi_board_info	board_info;
414 };
415 
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
418 
419 /*
420  * Used to protect add/del opertion for board_info list and
421  * spi_master list, and their matching process
422  */
423 static DEFINE_MUTEX(board_lock);
424 
425 /**
426  * spi_alloc_device - Allocate a new SPI device
427  * @master: Controller to which device is connected
428  * Context: can sleep
429  *
430  * Allows a driver to allocate and initialize a spi_device without
431  * registering it immediately.  This allows a driver to directly
432  * fill the spi_device with device parameters before calling
433  * spi_add_device() on it.
434  *
435  * Caller is responsible to call spi_add_device() on the returned
436  * spi_device structure to add it to the SPI master.  If the caller
437  * needs to discard the spi_device without adding it, then it should
438  * call spi_dev_put() on it.
439  *
440  * Return: a pointer to the new device, or NULL.
441  */
spi_alloc_device(struct spi_master * master)442 struct spi_device *spi_alloc_device(struct spi_master *master)
443 {
444 	struct spi_device	*spi;
445 
446 	if (!spi_master_get(master))
447 		return NULL;
448 
449 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 	if (!spi) {
451 		spi_master_put(master);
452 		return NULL;
453 	}
454 
455 	spi->master = master;
456 	spi->dev.parent = &master->dev;
457 	spi->dev.bus = &spi_bus_type;
458 	spi->dev.release = spidev_release;
459 	spi->cs_gpio = -ENOENT;
460 
461 	spin_lock_init(&spi->statistics.lock);
462 
463 	device_initialize(&spi->dev);
464 	return spi;
465 }
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
467 
spi_dev_set_name(struct spi_device * spi)468 static void spi_dev_set_name(struct spi_device *spi)
469 {
470 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
471 
472 	if (adev) {
473 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 		return;
475 	}
476 
477 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 		     spi->chip_select);
479 }
480 
spi_dev_check(struct device * dev,void * data)481 static int spi_dev_check(struct device *dev, void *data)
482 {
483 	struct spi_device *spi = to_spi_device(dev);
484 	struct spi_device *new_spi = data;
485 
486 	if (spi->master == new_spi->master &&
487 	    spi->chip_select == new_spi->chip_select)
488 		return -EBUSY;
489 	return 0;
490 }
491 
492 /**
493  * spi_add_device - Add spi_device allocated with spi_alloc_device
494  * @spi: spi_device to register
495  *
496  * Companion function to spi_alloc_device.  Devices allocated with
497  * spi_alloc_device can be added onto the spi bus with this function.
498  *
499  * Return: 0 on success; negative errno on failure
500  */
spi_add_device(struct spi_device * spi)501 int spi_add_device(struct spi_device *spi)
502 {
503 	static DEFINE_MUTEX(spi_add_lock);
504 	struct spi_master *master = spi->master;
505 	struct device *dev = master->dev.parent;
506 	int status;
507 
508 	/* Chipselects are numbered 0..max; validate. */
509 	if (spi->chip_select >= master->num_chipselect) {
510 		dev_err(dev, "cs%d >= max %d\n",
511 			spi->chip_select,
512 			master->num_chipselect);
513 		return -EINVAL;
514 	}
515 
516 	/* Set the bus ID string */
517 	spi_dev_set_name(spi);
518 
519 	/* We need to make sure there's no other device with this
520 	 * chipselect **BEFORE** we call setup(), else we'll trash
521 	 * its configuration.  Lock against concurrent add() calls.
522 	 */
523 	mutex_lock(&spi_add_lock);
524 
525 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 	if (status) {
527 		dev_err(dev, "chipselect %d already in use\n",
528 				spi->chip_select);
529 		goto done;
530 	}
531 
532 	if (master->cs_gpios)
533 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
534 
535 	/* Drivers may modify this initial i/o setup, but will
536 	 * normally rely on the device being setup.  Devices
537 	 * using SPI_CS_HIGH can't coexist well otherwise...
538 	 */
539 	status = spi_setup(spi);
540 	if (status < 0) {
541 		dev_err(dev, "can't setup %s, status %d\n",
542 				dev_name(&spi->dev), status);
543 		goto done;
544 	}
545 
546 	/* Device may be bound to an active driver when this returns */
547 	status = device_add(&spi->dev);
548 	if (status < 0)
549 		dev_err(dev, "can't add %s, status %d\n",
550 				dev_name(&spi->dev), status);
551 	else
552 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553 
554 done:
555 	mutex_unlock(&spi_add_lock);
556 	return status;
557 }
558 EXPORT_SYMBOL_GPL(spi_add_device);
559 
560 /**
561  * spi_new_device - instantiate one new SPI device
562  * @master: Controller to which device is connected
563  * @chip: Describes the SPI device
564  * Context: can sleep
565  *
566  * On typical mainboards, this is purely internal; and it's not needed
567  * after board init creates the hard-wired devices.  Some development
568  * platforms may not be able to use spi_register_board_info though, and
569  * this is exported so that for example a USB or parport based adapter
570  * driver could add devices (which it would learn about out-of-band).
571  *
572  * Return: the new device, or NULL.
573  */
spi_new_device(struct spi_master * master,struct spi_board_info * chip)574 struct spi_device *spi_new_device(struct spi_master *master,
575 				  struct spi_board_info *chip)
576 {
577 	struct spi_device	*proxy;
578 	int			status;
579 
580 	/* NOTE:  caller did any chip->bus_num checks necessary.
581 	 *
582 	 * Also, unless we change the return value convention to use
583 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 	 * suggests syslogged diagnostics are best here (ugh).
585 	 */
586 
587 	proxy = spi_alloc_device(master);
588 	if (!proxy)
589 		return NULL;
590 
591 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
592 
593 	proxy->chip_select = chip->chip_select;
594 	proxy->max_speed_hz = chip->max_speed_hz;
595 	proxy->mode = chip->mode;
596 	proxy->irq = chip->irq;
597 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 	proxy->dev.platform_data = (void *) chip->platform_data;
599 	proxy->controller_data = chip->controller_data;
600 	proxy->controller_state = NULL;
601 
602 	status = spi_add_device(proxy);
603 	if (status < 0) {
604 		spi_dev_put(proxy);
605 		return NULL;
606 	}
607 
608 	return proxy;
609 }
610 EXPORT_SYMBOL_GPL(spi_new_device);
611 
612 /**
613  * spi_unregister_device - unregister a single SPI device
614  * @spi: spi_device to unregister
615  *
616  * Start making the passed SPI device vanish. Normally this would be handled
617  * by spi_unregister_master().
618  */
spi_unregister_device(struct spi_device * spi)619 void spi_unregister_device(struct spi_device *spi)
620 {
621 	if (!spi)
622 		return;
623 
624 	if (spi->dev.of_node) {
625 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 		of_node_put(spi->dev.of_node);
627 	}
628 	if (ACPI_COMPANION(&spi->dev))
629 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
630 	device_unregister(&spi->dev);
631 }
632 EXPORT_SYMBOL_GPL(spi_unregister_device);
633 
spi_match_master_to_boardinfo(struct spi_master * master,struct spi_board_info * bi)634 static void spi_match_master_to_boardinfo(struct spi_master *master,
635 				struct spi_board_info *bi)
636 {
637 	struct spi_device *dev;
638 
639 	if (master->bus_num != bi->bus_num)
640 		return;
641 
642 	dev = spi_new_device(master, bi);
643 	if (!dev)
644 		dev_err(master->dev.parent, "can't create new device for %s\n",
645 			bi->modalias);
646 }
647 
648 /**
649  * spi_register_board_info - register SPI devices for a given board
650  * @info: array of chip descriptors
651  * @n: how many descriptors are provided
652  * Context: can sleep
653  *
654  * Board-specific early init code calls this (probably during arch_initcall)
655  * with segments of the SPI device table.  Any device nodes are created later,
656  * after the relevant parent SPI controller (bus_num) is defined.  We keep
657  * this table of devices forever, so that reloading a controller driver will
658  * not make Linux forget about these hard-wired devices.
659  *
660  * Other code can also call this, e.g. a particular add-on board might provide
661  * SPI devices through its expansion connector, so code initializing that board
662  * would naturally declare its SPI devices.
663  *
664  * The board info passed can safely be __initdata ... but be careful of
665  * any embedded pointers (platform_data, etc), they're copied as-is.
666  *
667  * Return: zero on success, else a negative error code.
668  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)669 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
670 {
671 	struct boardinfo *bi;
672 	int i;
673 
674 	if (!n)
675 		return -EINVAL;
676 
677 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
678 	if (!bi)
679 		return -ENOMEM;
680 
681 	for (i = 0; i < n; i++, bi++, info++) {
682 		struct spi_master *master;
683 
684 		memcpy(&bi->board_info, info, sizeof(*info));
685 		mutex_lock(&board_lock);
686 		list_add_tail(&bi->list, &board_list);
687 		list_for_each_entry(master, &spi_master_list, list)
688 			spi_match_master_to_boardinfo(master, &bi->board_info);
689 		mutex_unlock(&board_lock);
690 	}
691 
692 	return 0;
693 }
694 
695 /*-------------------------------------------------------------------------*/
696 
spi_set_cs(struct spi_device * spi,bool enable)697 static void spi_set_cs(struct spi_device *spi, bool enable)
698 {
699 	if (spi->mode & SPI_CS_HIGH)
700 		enable = !enable;
701 
702 	if (gpio_is_valid(spi->cs_gpio))
703 		gpio_set_value(spi->cs_gpio, !enable);
704 	else if (spi->master->set_cs)
705 		spi->master->set_cs(spi, !enable);
706 }
707 
708 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_master * master,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)709 static int spi_map_buf(struct spi_master *master, struct device *dev,
710 		       struct sg_table *sgt, void *buf, size_t len,
711 		       enum dma_data_direction dir)
712 {
713 	const bool vmalloced_buf = is_vmalloc_addr(buf);
714 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
715 #ifdef CONFIG_HIGHMEM
716 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
717 				(unsigned long)buf < (PKMAP_BASE +
718 					(LAST_PKMAP * PAGE_SIZE)));
719 #else
720 	const bool kmap_buf = false;
721 #endif
722 	int desc_len;
723 	int sgs;
724 	struct page *vm_page;
725 	void *sg_buf;
726 	size_t min;
727 	int i, ret;
728 
729 	if (vmalloced_buf || kmap_buf) {
730 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
731 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
732 	} else if (virt_addr_valid(buf)) {
733 		desc_len = min_t(int, max_seg_size, master->max_dma_len);
734 		sgs = DIV_ROUND_UP(len, desc_len);
735 	} else {
736 		return -EINVAL;
737 	}
738 
739 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
740 	if (ret != 0)
741 		return ret;
742 
743 	for (i = 0; i < sgs; i++) {
744 
745 		if (vmalloced_buf || kmap_buf) {
746 			/*
747 			 * Next scatterlist entry size is the minimum between
748 			 * the desc_len and the remaining buffer length that
749 			 * fits in a page.
750 			 */
751 			min = min_t(size_t, desc_len,
752 				    min_t(size_t, len,
753 					  PAGE_SIZE - offset_in_page(buf)));
754 			if (vmalloced_buf)
755 				vm_page = vmalloc_to_page(buf);
756 			else
757 				vm_page = kmap_to_page(buf);
758 			if (!vm_page) {
759 				sg_free_table(sgt);
760 				return -ENOMEM;
761 			}
762 			sg_set_page(&sgt->sgl[i], vm_page,
763 				    min, offset_in_page(buf));
764 		} else {
765 			min = min_t(size_t, len, desc_len);
766 			sg_buf = buf;
767 			sg_set_buf(&sgt->sgl[i], sg_buf, min);
768 		}
769 
770 		buf += min;
771 		len -= min;
772 	}
773 
774 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
775 	if (!ret)
776 		ret = -ENOMEM;
777 	if (ret < 0) {
778 		sg_free_table(sgt);
779 		return ret;
780 	}
781 
782 	sgt->nents = ret;
783 
784 	return 0;
785 }
786 
spi_unmap_buf(struct spi_master * master,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)787 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
788 			  struct sg_table *sgt, enum dma_data_direction dir)
789 {
790 	if (sgt->orig_nents) {
791 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
792 		sg_free_table(sgt);
793 	}
794 }
795 
__spi_map_msg(struct spi_master * master,struct spi_message * msg)796 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
797 {
798 	struct device *tx_dev, *rx_dev;
799 	struct spi_transfer *xfer;
800 	int ret;
801 
802 	if (!master->can_dma)
803 		return 0;
804 
805 	if (master->dma_tx)
806 		tx_dev = master->dma_tx->device->dev;
807 	else
808 		tx_dev = master->dev.parent;
809 
810 	if (master->dma_rx)
811 		rx_dev = master->dma_rx->device->dev;
812 	else
813 		rx_dev = master->dev.parent;
814 
815 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
816 		if (!master->can_dma(master, msg->spi, xfer))
817 			continue;
818 
819 		if (xfer->tx_buf != NULL) {
820 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
821 					  (void *)xfer->tx_buf, xfer->len,
822 					  DMA_TO_DEVICE);
823 			if (ret != 0)
824 				return ret;
825 		}
826 
827 		if (xfer->rx_buf != NULL) {
828 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
829 					  xfer->rx_buf, xfer->len,
830 					  DMA_FROM_DEVICE);
831 			if (ret != 0) {
832 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
833 					      DMA_TO_DEVICE);
834 				return ret;
835 			}
836 		}
837 	}
838 
839 	master->cur_msg_mapped = true;
840 
841 	return 0;
842 }
843 
__spi_unmap_msg(struct spi_master * master,struct spi_message * msg)844 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
845 {
846 	struct spi_transfer *xfer;
847 	struct device *tx_dev, *rx_dev;
848 
849 	if (!master->cur_msg_mapped || !master->can_dma)
850 		return 0;
851 
852 	if (master->dma_tx)
853 		tx_dev = master->dma_tx->device->dev;
854 	else
855 		tx_dev = master->dev.parent;
856 
857 	if (master->dma_rx)
858 		rx_dev = master->dma_rx->device->dev;
859 	else
860 		rx_dev = master->dev.parent;
861 
862 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
863 		if (!master->can_dma(master, msg->spi, xfer))
864 			continue;
865 
866 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
867 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
868 	}
869 
870 	return 0;
871 }
872 #else /* !CONFIG_HAS_DMA */
spi_map_buf(struct spi_master * master,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)873 static inline int spi_map_buf(struct spi_master *master,
874 			      struct device *dev, struct sg_table *sgt,
875 			      void *buf, size_t len,
876 			      enum dma_data_direction dir)
877 {
878 	return -EINVAL;
879 }
880 
spi_unmap_buf(struct spi_master * master,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)881 static inline void spi_unmap_buf(struct spi_master *master,
882 				 struct device *dev, struct sg_table *sgt,
883 				 enum dma_data_direction dir)
884 {
885 }
886 
__spi_map_msg(struct spi_master * master,struct spi_message * msg)887 static inline int __spi_map_msg(struct spi_master *master,
888 				struct spi_message *msg)
889 {
890 	return 0;
891 }
892 
__spi_unmap_msg(struct spi_master * master,struct spi_message * msg)893 static inline int __spi_unmap_msg(struct spi_master *master,
894 				  struct spi_message *msg)
895 {
896 	return 0;
897 }
898 #endif /* !CONFIG_HAS_DMA */
899 
spi_unmap_msg(struct spi_master * master,struct spi_message * msg)900 static inline int spi_unmap_msg(struct spi_master *master,
901 				struct spi_message *msg)
902 {
903 	struct spi_transfer *xfer;
904 
905 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
906 		/*
907 		 * Restore the original value of tx_buf or rx_buf if they are
908 		 * NULL.
909 		 */
910 		if (xfer->tx_buf == master->dummy_tx)
911 			xfer->tx_buf = NULL;
912 		if (xfer->rx_buf == master->dummy_rx)
913 			xfer->rx_buf = NULL;
914 	}
915 
916 	return __spi_unmap_msg(master, msg);
917 }
918 
spi_map_msg(struct spi_master * master,struct spi_message * msg)919 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
920 {
921 	struct spi_transfer *xfer;
922 	void *tmp;
923 	unsigned int max_tx, max_rx;
924 
925 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
926 		max_tx = 0;
927 		max_rx = 0;
928 
929 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
930 			if ((master->flags & SPI_MASTER_MUST_TX) &&
931 			    !xfer->tx_buf)
932 				max_tx = max(xfer->len, max_tx);
933 			if ((master->flags & SPI_MASTER_MUST_RX) &&
934 			    !xfer->rx_buf)
935 				max_rx = max(xfer->len, max_rx);
936 		}
937 
938 		if (max_tx) {
939 			tmp = krealloc(master->dummy_tx, max_tx,
940 				       GFP_KERNEL | GFP_DMA);
941 			if (!tmp)
942 				return -ENOMEM;
943 			master->dummy_tx = tmp;
944 			memset(tmp, 0, max_tx);
945 		}
946 
947 		if (max_rx) {
948 			tmp = krealloc(master->dummy_rx, max_rx,
949 				       GFP_KERNEL | GFP_DMA);
950 			if (!tmp)
951 				return -ENOMEM;
952 			master->dummy_rx = tmp;
953 		}
954 
955 		if (max_tx || max_rx) {
956 			list_for_each_entry(xfer, &msg->transfers,
957 					    transfer_list) {
958 				if (!xfer->tx_buf)
959 					xfer->tx_buf = master->dummy_tx;
960 				if (!xfer->rx_buf)
961 					xfer->rx_buf = master->dummy_rx;
962 			}
963 		}
964 	}
965 
966 	return __spi_map_msg(master, msg);
967 }
968 
969 /*
970  * spi_transfer_one_message - Default implementation of transfer_one_message()
971  *
972  * This is a standard implementation of transfer_one_message() for
973  * drivers which implement a transfer_one() operation.  It provides
974  * standard handling of delays and chip select management.
975  */
spi_transfer_one_message(struct spi_master * master,struct spi_message * msg)976 static int spi_transfer_one_message(struct spi_master *master,
977 				    struct spi_message *msg)
978 {
979 	struct spi_transfer *xfer;
980 	bool keep_cs = false;
981 	int ret = 0;
982 	unsigned long long ms = 1;
983 	struct spi_statistics *statm = &master->statistics;
984 	struct spi_statistics *stats = &msg->spi->statistics;
985 
986 	spi_set_cs(msg->spi, true);
987 
988 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
989 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
990 
991 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 		trace_spi_transfer_start(msg, xfer);
993 
994 		spi_statistics_add_transfer_stats(statm, xfer, master);
995 		spi_statistics_add_transfer_stats(stats, xfer, master);
996 
997 		if (xfer->tx_buf || xfer->rx_buf) {
998 			reinit_completion(&master->xfer_completion);
999 
1000 			ret = master->transfer_one(master, msg->spi, xfer);
1001 			if (ret < 0) {
1002 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1003 							       errors);
1004 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1005 							       errors);
1006 				dev_err(&msg->spi->dev,
1007 					"SPI transfer failed: %d\n", ret);
1008 				goto out;
1009 			}
1010 
1011 			if (ret > 0) {
1012 				ret = 0;
1013 				ms = 8LL * 1000LL * xfer->len;
1014 				do_div(ms, xfer->speed_hz);
1015 				ms += ms + 200; /* some tolerance */
1016 
1017 				if (ms > UINT_MAX)
1018 					ms = UINT_MAX;
1019 
1020 				ms = wait_for_completion_timeout(&master->xfer_completion,
1021 								 msecs_to_jiffies(ms));
1022 			}
1023 
1024 			if (ms == 0) {
1025 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1026 							       timedout);
1027 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1028 							       timedout);
1029 				dev_err(&msg->spi->dev,
1030 					"SPI transfer timed out\n");
1031 				msg->status = -ETIMEDOUT;
1032 			}
1033 		} else {
1034 			if (xfer->len)
1035 				dev_err(&msg->spi->dev,
1036 					"Bufferless transfer has length %u\n",
1037 					xfer->len);
1038 		}
1039 
1040 		trace_spi_transfer_stop(msg, xfer);
1041 
1042 		if (msg->status != -EINPROGRESS)
1043 			goto out;
1044 
1045 		if (xfer->delay_usecs)
1046 			udelay(xfer->delay_usecs);
1047 
1048 		if (xfer->cs_change) {
1049 			if (list_is_last(&xfer->transfer_list,
1050 					 &msg->transfers)) {
1051 				keep_cs = true;
1052 			} else {
1053 				spi_set_cs(msg->spi, false);
1054 				udelay(10);
1055 				spi_set_cs(msg->spi, true);
1056 			}
1057 		}
1058 
1059 		msg->actual_length += xfer->len;
1060 	}
1061 
1062 out:
1063 	if (ret != 0 || !keep_cs)
1064 		spi_set_cs(msg->spi, false);
1065 
1066 	if (msg->status == -EINPROGRESS)
1067 		msg->status = ret;
1068 
1069 	if (msg->status && master->handle_err)
1070 		master->handle_err(master, msg);
1071 
1072 	spi_res_release(master, msg);
1073 
1074 	spi_finalize_current_message(master);
1075 
1076 	return ret;
1077 }
1078 
1079 /**
1080  * spi_finalize_current_transfer - report completion of a transfer
1081  * @master: the master reporting completion
1082  *
1083  * Called by SPI drivers using the core transfer_one_message()
1084  * implementation to notify it that the current interrupt driven
1085  * transfer has finished and the next one may be scheduled.
1086  */
spi_finalize_current_transfer(struct spi_master * master)1087 void spi_finalize_current_transfer(struct spi_master *master)
1088 {
1089 	complete(&master->xfer_completion);
1090 }
1091 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1092 
1093 /**
1094  * __spi_pump_messages - function which processes spi message queue
1095  * @master: master to process queue for
1096  * @in_kthread: true if we are in the context of the message pump thread
1097  *
1098  * This function checks if there is any spi message in the queue that
1099  * needs processing and if so call out to the driver to initialize hardware
1100  * and transfer each message.
1101  *
1102  * Note that it is called both from the kthread itself and also from
1103  * inside spi_sync(); the queue extraction handling at the top of the
1104  * function should deal with this safely.
1105  */
__spi_pump_messages(struct spi_master * master,bool in_kthread)1106 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1107 {
1108 	unsigned long flags;
1109 	bool was_busy = false;
1110 	int ret;
1111 
1112 	/* Lock queue */
1113 	spin_lock_irqsave(&master->queue_lock, flags);
1114 
1115 	/* Make sure we are not already running a message */
1116 	if (master->cur_msg) {
1117 		spin_unlock_irqrestore(&master->queue_lock, flags);
1118 		return;
1119 	}
1120 
1121 	/* If another context is idling the device then defer */
1122 	if (master->idling) {
1123 		kthread_queue_work(&master->kworker, &master->pump_messages);
1124 		spin_unlock_irqrestore(&master->queue_lock, flags);
1125 		return;
1126 	}
1127 
1128 	/* Check if the queue is idle */
1129 	if (list_empty(&master->queue) || !master->running) {
1130 		if (!master->busy) {
1131 			spin_unlock_irqrestore(&master->queue_lock, flags);
1132 			return;
1133 		}
1134 
1135 		/* Only do teardown in the thread */
1136 		if (!in_kthread) {
1137 			kthread_queue_work(&master->kworker,
1138 					   &master->pump_messages);
1139 			spin_unlock_irqrestore(&master->queue_lock, flags);
1140 			return;
1141 		}
1142 
1143 		master->busy = false;
1144 		master->idling = true;
1145 		spin_unlock_irqrestore(&master->queue_lock, flags);
1146 
1147 		kfree(master->dummy_rx);
1148 		master->dummy_rx = NULL;
1149 		kfree(master->dummy_tx);
1150 		master->dummy_tx = NULL;
1151 		if (master->unprepare_transfer_hardware &&
1152 		    master->unprepare_transfer_hardware(master))
1153 			dev_err(&master->dev,
1154 				"failed to unprepare transfer hardware\n");
1155 		if (master->auto_runtime_pm) {
1156 			pm_runtime_mark_last_busy(master->dev.parent);
1157 			pm_runtime_put_autosuspend(master->dev.parent);
1158 		}
1159 		trace_spi_master_idle(master);
1160 
1161 		spin_lock_irqsave(&master->queue_lock, flags);
1162 		master->idling = false;
1163 		spin_unlock_irqrestore(&master->queue_lock, flags);
1164 		return;
1165 	}
1166 
1167 	/* Extract head of queue */
1168 	master->cur_msg =
1169 		list_first_entry(&master->queue, struct spi_message, queue);
1170 
1171 	list_del_init(&master->cur_msg->queue);
1172 	if (master->busy)
1173 		was_busy = true;
1174 	else
1175 		master->busy = true;
1176 	spin_unlock_irqrestore(&master->queue_lock, flags);
1177 
1178 	mutex_lock(&master->io_mutex);
1179 
1180 	if (!was_busy && master->auto_runtime_pm) {
1181 		ret = pm_runtime_get_sync(master->dev.parent);
1182 		if (ret < 0) {
1183 			dev_err(&master->dev, "Failed to power device: %d\n",
1184 				ret);
1185 			mutex_unlock(&master->io_mutex);
1186 			return;
1187 		}
1188 	}
1189 
1190 	if (!was_busy)
1191 		trace_spi_master_busy(master);
1192 
1193 	if (!was_busy && master->prepare_transfer_hardware) {
1194 		ret = master->prepare_transfer_hardware(master);
1195 		if (ret) {
1196 			dev_err(&master->dev,
1197 				"failed to prepare transfer hardware\n");
1198 
1199 			if (master->auto_runtime_pm)
1200 				pm_runtime_put(master->dev.parent);
1201 			mutex_unlock(&master->io_mutex);
1202 			return;
1203 		}
1204 	}
1205 
1206 	trace_spi_message_start(master->cur_msg);
1207 
1208 	if (master->prepare_message) {
1209 		ret = master->prepare_message(master, master->cur_msg);
1210 		if (ret) {
1211 			dev_err(&master->dev,
1212 				"failed to prepare message: %d\n", ret);
1213 			master->cur_msg->status = ret;
1214 			spi_finalize_current_message(master);
1215 			goto out;
1216 		}
1217 		master->cur_msg_prepared = true;
1218 	}
1219 
1220 	ret = spi_map_msg(master, master->cur_msg);
1221 	if (ret) {
1222 		master->cur_msg->status = ret;
1223 		spi_finalize_current_message(master);
1224 		goto out;
1225 	}
1226 
1227 	ret = master->transfer_one_message(master, master->cur_msg);
1228 	if (ret) {
1229 		dev_err(&master->dev,
1230 			"failed to transfer one message from queue\n");
1231 		goto out;
1232 	}
1233 
1234 out:
1235 	mutex_unlock(&master->io_mutex);
1236 
1237 	/* Prod the scheduler in case transfer_one() was busy waiting */
1238 	if (!ret)
1239 		cond_resched();
1240 }
1241 
1242 /**
1243  * spi_pump_messages - kthread work function which processes spi message queue
1244  * @work: pointer to kthread work struct contained in the master struct
1245  */
spi_pump_messages(struct kthread_work * work)1246 static void spi_pump_messages(struct kthread_work *work)
1247 {
1248 	struct spi_master *master =
1249 		container_of(work, struct spi_master, pump_messages);
1250 
1251 	__spi_pump_messages(master, true);
1252 }
1253 
spi_init_queue(struct spi_master * master)1254 static int spi_init_queue(struct spi_master *master)
1255 {
1256 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1257 
1258 	master->running = false;
1259 	master->busy = false;
1260 
1261 	kthread_init_worker(&master->kworker);
1262 	master->kworker_task = kthread_run(kthread_worker_fn,
1263 					   &master->kworker, "%s",
1264 					   dev_name(&master->dev));
1265 	if (IS_ERR(master->kworker_task)) {
1266 		dev_err(&master->dev, "failed to create message pump task\n");
1267 		return PTR_ERR(master->kworker_task);
1268 	}
1269 	kthread_init_work(&master->pump_messages, spi_pump_messages);
1270 
1271 	/*
1272 	 * Master config will indicate if this controller should run the
1273 	 * message pump with high (realtime) priority to reduce the transfer
1274 	 * latency on the bus by minimising the delay between a transfer
1275 	 * request and the scheduling of the message pump thread. Without this
1276 	 * setting the message pump thread will remain at default priority.
1277 	 */
1278 	if (master->rt) {
1279 		dev_info(&master->dev,
1280 			"will run message pump with realtime priority\n");
1281 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1282 	}
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  * spi_get_next_queued_message() - called by driver to check for queued
1289  * messages
1290  * @master: the master to check for queued messages
1291  *
1292  * If there are more messages in the queue, the next message is returned from
1293  * this call.
1294  *
1295  * Return: the next message in the queue, else NULL if the queue is empty.
1296  */
spi_get_next_queued_message(struct spi_master * master)1297 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1298 {
1299 	struct spi_message *next;
1300 	unsigned long flags;
1301 
1302 	/* get a pointer to the next message, if any */
1303 	spin_lock_irqsave(&master->queue_lock, flags);
1304 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1305 					queue);
1306 	spin_unlock_irqrestore(&master->queue_lock, flags);
1307 
1308 	return next;
1309 }
1310 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1311 
1312 /**
1313  * spi_finalize_current_message() - the current message is complete
1314  * @master: the master to return the message to
1315  *
1316  * Called by the driver to notify the core that the message in the front of the
1317  * queue is complete and can be removed from the queue.
1318  */
spi_finalize_current_message(struct spi_master * master)1319 void spi_finalize_current_message(struct spi_master *master)
1320 {
1321 	struct spi_message *mesg;
1322 	unsigned long flags;
1323 	int ret;
1324 
1325 	spin_lock_irqsave(&master->queue_lock, flags);
1326 	mesg = master->cur_msg;
1327 	spin_unlock_irqrestore(&master->queue_lock, flags);
1328 
1329 	spi_unmap_msg(master, mesg);
1330 
1331 	if (master->cur_msg_prepared && master->unprepare_message) {
1332 		ret = master->unprepare_message(master, mesg);
1333 		if (ret) {
1334 			dev_err(&master->dev,
1335 				"failed to unprepare message: %d\n", ret);
1336 		}
1337 	}
1338 
1339 	spin_lock_irqsave(&master->queue_lock, flags);
1340 	master->cur_msg = NULL;
1341 	master->cur_msg_prepared = false;
1342 	kthread_queue_work(&master->kworker, &master->pump_messages);
1343 	spin_unlock_irqrestore(&master->queue_lock, flags);
1344 
1345 	trace_spi_message_done(mesg);
1346 
1347 	mesg->state = NULL;
1348 	if (mesg->complete)
1349 		mesg->complete(mesg->context);
1350 }
1351 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1352 
spi_start_queue(struct spi_master * master)1353 static int spi_start_queue(struct spi_master *master)
1354 {
1355 	unsigned long flags;
1356 
1357 	spin_lock_irqsave(&master->queue_lock, flags);
1358 
1359 	if (master->running || master->busy) {
1360 		spin_unlock_irqrestore(&master->queue_lock, flags);
1361 		return -EBUSY;
1362 	}
1363 
1364 	master->running = true;
1365 	master->cur_msg = NULL;
1366 	spin_unlock_irqrestore(&master->queue_lock, flags);
1367 
1368 	kthread_queue_work(&master->kworker, &master->pump_messages);
1369 
1370 	return 0;
1371 }
1372 
spi_stop_queue(struct spi_master * master)1373 static int spi_stop_queue(struct spi_master *master)
1374 {
1375 	unsigned long flags;
1376 	unsigned limit = 500;
1377 	int ret = 0;
1378 
1379 	spin_lock_irqsave(&master->queue_lock, flags);
1380 
1381 	/*
1382 	 * This is a bit lame, but is optimized for the common execution path.
1383 	 * A wait_queue on the master->busy could be used, but then the common
1384 	 * execution path (pump_messages) would be required to call wake_up or
1385 	 * friends on every SPI message. Do this instead.
1386 	 */
1387 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1388 		spin_unlock_irqrestore(&master->queue_lock, flags);
1389 		usleep_range(10000, 11000);
1390 		spin_lock_irqsave(&master->queue_lock, flags);
1391 	}
1392 
1393 	if (!list_empty(&master->queue) || master->busy)
1394 		ret = -EBUSY;
1395 	else
1396 		master->running = false;
1397 
1398 	spin_unlock_irqrestore(&master->queue_lock, flags);
1399 
1400 	if (ret) {
1401 		dev_warn(&master->dev,
1402 			 "could not stop message queue\n");
1403 		return ret;
1404 	}
1405 	return ret;
1406 }
1407 
spi_destroy_queue(struct spi_master * master)1408 static int spi_destroy_queue(struct spi_master *master)
1409 {
1410 	int ret;
1411 
1412 	ret = spi_stop_queue(master);
1413 
1414 	/*
1415 	 * kthread_flush_worker will block until all work is done.
1416 	 * If the reason that stop_queue timed out is that the work will never
1417 	 * finish, then it does no good to call flush/stop thread, so
1418 	 * return anyway.
1419 	 */
1420 	if (ret) {
1421 		dev_err(&master->dev, "problem destroying queue\n");
1422 		return ret;
1423 	}
1424 
1425 	kthread_flush_worker(&master->kworker);
1426 	kthread_stop(master->kworker_task);
1427 
1428 	return 0;
1429 }
1430 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1431 static int __spi_queued_transfer(struct spi_device *spi,
1432 				 struct spi_message *msg,
1433 				 bool need_pump)
1434 {
1435 	struct spi_master *master = spi->master;
1436 	unsigned long flags;
1437 
1438 	spin_lock_irqsave(&master->queue_lock, flags);
1439 
1440 	if (!master->running) {
1441 		spin_unlock_irqrestore(&master->queue_lock, flags);
1442 		return -ESHUTDOWN;
1443 	}
1444 	msg->actual_length = 0;
1445 	msg->status = -EINPROGRESS;
1446 
1447 	list_add_tail(&msg->queue, &master->queue);
1448 	if (!master->busy && need_pump)
1449 		kthread_queue_work(&master->kworker, &master->pump_messages);
1450 
1451 	spin_unlock_irqrestore(&master->queue_lock, flags);
1452 	return 0;
1453 }
1454 
1455 /**
1456  * spi_queued_transfer - transfer function for queued transfers
1457  * @spi: spi device which is requesting transfer
1458  * @msg: spi message which is to handled is queued to driver queue
1459  *
1460  * Return: zero on success, else a negative error code.
1461  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1462 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1463 {
1464 	return __spi_queued_transfer(spi, msg, true);
1465 }
1466 
spi_master_initialize_queue(struct spi_master * master)1467 static int spi_master_initialize_queue(struct spi_master *master)
1468 {
1469 	int ret;
1470 
1471 	master->transfer = spi_queued_transfer;
1472 	if (!master->transfer_one_message)
1473 		master->transfer_one_message = spi_transfer_one_message;
1474 
1475 	/* Initialize and start queue */
1476 	ret = spi_init_queue(master);
1477 	if (ret) {
1478 		dev_err(&master->dev, "problem initializing queue\n");
1479 		goto err_init_queue;
1480 	}
1481 	master->queued = true;
1482 	ret = spi_start_queue(master);
1483 	if (ret) {
1484 		dev_err(&master->dev, "problem starting queue\n");
1485 		goto err_start_queue;
1486 	}
1487 
1488 	return 0;
1489 
1490 err_start_queue:
1491 	spi_destroy_queue(master);
1492 err_init_queue:
1493 	return ret;
1494 }
1495 
1496 /*-------------------------------------------------------------------------*/
1497 
1498 #if defined(CONFIG_OF)
1499 static struct spi_device *
of_register_spi_device(struct spi_master * master,struct device_node * nc)1500 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1501 {
1502 	struct spi_device *spi;
1503 	int rc;
1504 	u32 value;
1505 
1506 	/* Alloc an spi_device */
1507 	spi = spi_alloc_device(master);
1508 	if (!spi) {
1509 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1510 			nc->full_name);
1511 		rc = -ENOMEM;
1512 		goto err_out;
1513 	}
1514 
1515 	/* Select device driver */
1516 	rc = of_modalias_node(nc, spi->modalias,
1517 				sizeof(spi->modalias));
1518 	if (rc < 0) {
1519 		dev_err(&master->dev, "cannot find modalias for %s\n",
1520 			nc->full_name);
1521 		goto err_out;
1522 	}
1523 
1524 	/* Device address */
1525 	rc = of_property_read_u32(nc, "reg", &value);
1526 	if (rc) {
1527 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1528 			nc->full_name, rc);
1529 		goto err_out;
1530 	}
1531 	spi->chip_select = value;
1532 
1533 	/* Mode (clock phase/polarity/etc.) */
1534 	if (of_find_property(nc, "spi-cpha", NULL))
1535 		spi->mode |= SPI_CPHA;
1536 	if (of_find_property(nc, "spi-cpol", NULL))
1537 		spi->mode |= SPI_CPOL;
1538 	if (of_find_property(nc, "spi-cs-high", NULL))
1539 		spi->mode |= SPI_CS_HIGH;
1540 	if (of_find_property(nc, "spi-3wire", NULL))
1541 		spi->mode |= SPI_3WIRE;
1542 	if (of_find_property(nc, "spi-lsb-first", NULL))
1543 		spi->mode |= SPI_LSB_FIRST;
1544 
1545 	/* Device DUAL/QUAD mode */
1546 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1547 		switch (value) {
1548 		case 1:
1549 			break;
1550 		case 2:
1551 			spi->mode |= SPI_TX_DUAL;
1552 			break;
1553 		case 4:
1554 			spi->mode |= SPI_TX_QUAD;
1555 			break;
1556 		default:
1557 			dev_warn(&master->dev,
1558 				"spi-tx-bus-width %d not supported\n",
1559 				value);
1560 			break;
1561 		}
1562 	}
1563 
1564 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1565 		switch (value) {
1566 		case 1:
1567 			break;
1568 		case 2:
1569 			spi->mode |= SPI_RX_DUAL;
1570 			break;
1571 		case 4:
1572 			spi->mode |= SPI_RX_QUAD;
1573 			break;
1574 		default:
1575 			dev_warn(&master->dev,
1576 				"spi-rx-bus-width %d not supported\n",
1577 				value);
1578 			break;
1579 		}
1580 	}
1581 
1582 	/* Device speed */
1583 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1584 	if (rc) {
1585 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1586 			nc->full_name, rc);
1587 		goto err_out;
1588 	}
1589 	spi->max_speed_hz = value;
1590 
1591 	/* Store a pointer to the node in the device structure */
1592 	of_node_get(nc);
1593 	spi->dev.of_node = nc;
1594 
1595 	/* Register the new device */
1596 	rc = spi_add_device(spi);
1597 	if (rc) {
1598 		dev_err(&master->dev, "spi_device register error %s\n",
1599 			nc->full_name);
1600 		goto err_of_node_put;
1601 	}
1602 
1603 	return spi;
1604 
1605 err_of_node_put:
1606 	of_node_put(nc);
1607 err_out:
1608 	spi_dev_put(spi);
1609 	return ERR_PTR(rc);
1610 }
1611 
1612 /**
1613  * of_register_spi_devices() - Register child devices onto the SPI bus
1614  * @master:	Pointer to spi_master device
1615  *
1616  * Registers an spi_device for each child node of master node which has a 'reg'
1617  * property.
1618  */
of_register_spi_devices(struct spi_master * master)1619 static void of_register_spi_devices(struct spi_master *master)
1620 {
1621 	struct spi_device *spi;
1622 	struct device_node *nc;
1623 
1624 	if (!master->dev.of_node)
1625 		return;
1626 
1627 	for_each_available_child_of_node(master->dev.of_node, nc) {
1628 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1629 			continue;
1630 		spi = of_register_spi_device(master, nc);
1631 		if (IS_ERR(spi)) {
1632 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1633 				nc->full_name);
1634 			of_node_clear_flag(nc, OF_POPULATED);
1635 		}
1636 	}
1637 }
1638 #else
of_register_spi_devices(struct spi_master * master)1639 static void of_register_spi_devices(struct spi_master *master) { }
1640 #endif
1641 
1642 #ifdef CONFIG_ACPI
acpi_spi_add_resource(struct acpi_resource * ares,void * data)1643 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1644 {
1645 	struct spi_device *spi = data;
1646 	struct spi_master *master = spi->master;
1647 
1648 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1649 		struct acpi_resource_spi_serialbus *sb;
1650 
1651 		sb = &ares->data.spi_serial_bus;
1652 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1653 			/*
1654 			 * ACPI DeviceSelection numbering is handled by the
1655 			 * host controller driver in Windows and can vary
1656 			 * from driver to driver. In Linux we always expect
1657 			 * 0 .. max - 1 so we need to ask the driver to
1658 			 * translate between the two schemes.
1659 			 */
1660 			if (master->fw_translate_cs) {
1661 				int cs = master->fw_translate_cs(master,
1662 						sb->device_selection);
1663 				if (cs < 0)
1664 					return cs;
1665 				spi->chip_select = cs;
1666 			} else {
1667 				spi->chip_select = sb->device_selection;
1668 			}
1669 
1670 			spi->max_speed_hz = sb->connection_speed;
1671 
1672 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1673 				spi->mode |= SPI_CPHA;
1674 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1675 				spi->mode |= SPI_CPOL;
1676 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1677 				spi->mode |= SPI_CS_HIGH;
1678 		}
1679 	} else if (spi->irq < 0) {
1680 		struct resource r;
1681 
1682 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1683 			spi->irq = r.start;
1684 	}
1685 
1686 	/* Always tell the ACPI core to skip this resource */
1687 	return 1;
1688 }
1689 
acpi_register_spi_device(struct spi_master * master,struct acpi_device * adev)1690 static acpi_status acpi_register_spi_device(struct spi_master *master,
1691 					    struct acpi_device *adev)
1692 {
1693 	struct list_head resource_list;
1694 	struct spi_device *spi;
1695 	int ret;
1696 
1697 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1698 	    acpi_device_enumerated(adev))
1699 		return AE_OK;
1700 
1701 	spi = spi_alloc_device(master);
1702 	if (!spi) {
1703 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1704 			dev_name(&adev->dev));
1705 		return AE_NO_MEMORY;
1706 	}
1707 
1708 	ACPI_COMPANION_SET(&spi->dev, adev);
1709 	spi->irq = -1;
1710 
1711 	INIT_LIST_HEAD(&resource_list);
1712 	ret = acpi_dev_get_resources(adev, &resource_list,
1713 				     acpi_spi_add_resource, spi);
1714 	acpi_dev_free_resource_list(&resource_list);
1715 
1716 	if (ret < 0 || !spi->max_speed_hz) {
1717 		spi_dev_put(spi);
1718 		return AE_OK;
1719 	}
1720 
1721 	if (spi->irq < 0)
1722 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1723 
1724 	acpi_device_set_enumerated(adev);
1725 
1726 	adev->power.flags.ignore_parent = true;
1727 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1728 	if (spi_add_device(spi)) {
1729 		adev->power.flags.ignore_parent = false;
1730 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1731 			dev_name(&adev->dev));
1732 		spi_dev_put(spi);
1733 	}
1734 
1735 	return AE_OK;
1736 }
1737 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)1738 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1739 				       void *data, void **return_value)
1740 {
1741 	struct spi_master *master = data;
1742 	struct acpi_device *adev;
1743 
1744 	if (acpi_bus_get_device(handle, &adev))
1745 		return AE_OK;
1746 
1747 	return acpi_register_spi_device(master, adev);
1748 }
1749 
acpi_register_spi_devices(struct spi_master * master)1750 static void acpi_register_spi_devices(struct spi_master *master)
1751 {
1752 	acpi_status status;
1753 	acpi_handle handle;
1754 
1755 	handle = ACPI_HANDLE(master->dev.parent);
1756 	if (!handle)
1757 		return;
1758 
1759 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1760 				     acpi_spi_add_device, NULL,
1761 				     master, NULL);
1762 	if (ACPI_FAILURE(status))
1763 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1764 }
1765 #else
acpi_register_spi_devices(struct spi_master * master)1766 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1767 #endif /* CONFIG_ACPI */
1768 
spi_master_release(struct device * dev)1769 static void spi_master_release(struct device *dev)
1770 {
1771 	struct spi_master *master;
1772 
1773 	master = container_of(dev, struct spi_master, dev);
1774 	kfree(master);
1775 }
1776 
1777 static struct class spi_master_class = {
1778 	.name		= "spi_master",
1779 	.owner		= THIS_MODULE,
1780 	.dev_release	= spi_master_release,
1781 	.dev_groups	= spi_master_groups,
1782 };
1783 
1784 
1785 /**
1786  * spi_alloc_master - allocate SPI master controller
1787  * @dev: the controller, possibly using the platform_bus
1788  * @size: how much zeroed driver-private data to allocate; the pointer to this
1789  *	memory is in the driver_data field of the returned device,
1790  *	accessible with spi_master_get_devdata().
1791  * Context: can sleep
1792  *
1793  * This call is used only by SPI master controller drivers, which are the
1794  * only ones directly touching chip registers.  It's how they allocate
1795  * an spi_master structure, prior to calling spi_register_master().
1796  *
1797  * This must be called from context that can sleep.
1798  *
1799  * The caller is responsible for assigning the bus number and initializing
1800  * the master's methods before calling spi_register_master(); and (after errors
1801  * adding the device) calling spi_master_put() to prevent a memory leak.
1802  *
1803  * Return: the SPI master structure on success, else NULL.
1804  */
spi_alloc_master(struct device * dev,unsigned size)1805 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1806 {
1807 	struct spi_master	*master;
1808 
1809 	if (!dev)
1810 		return NULL;
1811 
1812 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1813 	if (!master)
1814 		return NULL;
1815 
1816 	device_initialize(&master->dev);
1817 	master->bus_num = -1;
1818 	master->num_chipselect = 1;
1819 	master->dev.class = &spi_master_class;
1820 	master->dev.parent = dev;
1821 	pm_suspend_ignore_children(&master->dev, true);
1822 	spi_master_set_devdata(master, &master[1]);
1823 
1824 	return master;
1825 }
1826 EXPORT_SYMBOL_GPL(spi_alloc_master);
1827 
1828 #ifdef CONFIG_OF
of_spi_register_master(struct spi_master * master)1829 static int of_spi_register_master(struct spi_master *master)
1830 {
1831 	int nb, i, *cs;
1832 	struct device_node *np = master->dev.of_node;
1833 
1834 	if (!np)
1835 		return 0;
1836 
1837 	nb = of_gpio_named_count(np, "cs-gpios");
1838 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1839 
1840 	/* Return error only for an incorrectly formed cs-gpios property */
1841 	if (nb == 0 || nb == -ENOENT)
1842 		return 0;
1843 	else if (nb < 0)
1844 		return nb;
1845 
1846 	cs = devm_kzalloc(&master->dev,
1847 			  sizeof(int) * master->num_chipselect,
1848 			  GFP_KERNEL);
1849 	master->cs_gpios = cs;
1850 
1851 	if (!master->cs_gpios)
1852 		return -ENOMEM;
1853 
1854 	for (i = 0; i < master->num_chipselect; i++)
1855 		cs[i] = -ENOENT;
1856 
1857 	for (i = 0; i < nb; i++)
1858 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1859 
1860 	return 0;
1861 }
1862 #else
of_spi_register_master(struct spi_master * master)1863 static int of_spi_register_master(struct spi_master *master)
1864 {
1865 	return 0;
1866 }
1867 #endif
1868 
1869 /**
1870  * spi_register_master - register SPI master controller
1871  * @master: initialized master, originally from spi_alloc_master()
1872  * Context: can sleep
1873  *
1874  * SPI master controllers connect to their drivers using some non-SPI bus,
1875  * such as the platform bus.  The final stage of probe() in that code
1876  * includes calling spi_register_master() to hook up to this SPI bus glue.
1877  *
1878  * SPI controllers use board specific (often SOC specific) bus numbers,
1879  * and board-specific addressing for SPI devices combines those numbers
1880  * with chip select numbers.  Since SPI does not directly support dynamic
1881  * device identification, boards need configuration tables telling which
1882  * chip is at which address.
1883  *
1884  * This must be called from context that can sleep.  It returns zero on
1885  * success, else a negative error code (dropping the master's refcount).
1886  * After a successful return, the caller is responsible for calling
1887  * spi_unregister_master().
1888  *
1889  * Return: zero on success, else a negative error code.
1890  */
spi_register_master(struct spi_master * master)1891 int spi_register_master(struct spi_master *master)
1892 {
1893 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1894 	struct device		*dev = master->dev.parent;
1895 	struct boardinfo	*bi;
1896 	int			status = -ENODEV;
1897 	int			dynamic = 0;
1898 
1899 	if (!dev)
1900 		return -ENODEV;
1901 
1902 	status = of_spi_register_master(master);
1903 	if (status)
1904 		return status;
1905 
1906 	/* even if it's just one always-selected device, there must
1907 	 * be at least one chipselect
1908 	 */
1909 	if (master->num_chipselect == 0)
1910 		return -EINVAL;
1911 
1912 	if ((master->bus_num < 0) && master->dev.of_node)
1913 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1914 
1915 	/* convention:  dynamically assigned bus IDs count down from the max */
1916 	if (master->bus_num < 0) {
1917 		/* FIXME switch to an IDR based scheme, something like
1918 		 * I2C now uses, so we can't run out of "dynamic" IDs
1919 		 */
1920 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1921 		dynamic = 1;
1922 	}
1923 
1924 	INIT_LIST_HEAD(&master->queue);
1925 	spin_lock_init(&master->queue_lock);
1926 	spin_lock_init(&master->bus_lock_spinlock);
1927 	mutex_init(&master->bus_lock_mutex);
1928 	mutex_init(&master->io_mutex);
1929 	master->bus_lock_flag = 0;
1930 	init_completion(&master->xfer_completion);
1931 	if (!master->max_dma_len)
1932 		master->max_dma_len = INT_MAX;
1933 
1934 	/* register the device, then userspace will see it.
1935 	 * registration fails if the bus ID is in use.
1936 	 */
1937 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1938 	status = device_add(&master->dev);
1939 	if (status < 0)
1940 		goto done;
1941 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1942 			dynamic ? " (dynamic)" : "");
1943 
1944 	/* If we're using a queued driver, start the queue */
1945 	if (master->transfer)
1946 		dev_info(dev, "master is unqueued, this is deprecated\n");
1947 	else {
1948 		status = spi_master_initialize_queue(master);
1949 		if (status) {
1950 			device_del(&master->dev);
1951 			goto done;
1952 		}
1953 	}
1954 	/* add statistics */
1955 	spin_lock_init(&master->statistics.lock);
1956 
1957 	mutex_lock(&board_lock);
1958 	list_add_tail(&master->list, &spi_master_list);
1959 	list_for_each_entry(bi, &board_list, list)
1960 		spi_match_master_to_boardinfo(master, &bi->board_info);
1961 	mutex_unlock(&board_lock);
1962 
1963 	/* Register devices from the device tree and ACPI */
1964 	of_register_spi_devices(master);
1965 	acpi_register_spi_devices(master);
1966 done:
1967 	return status;
1968 }
1969 EXPORT_SYMBOL_GPL(spi_register_master);
1970 
devm_spi_unregister(struct device * dev,void * res)1971 static void devm_spi_unregister(struct device *dev, void *res)
1972 {
1973 	spi_unregister_master(*(struct spi_master **)res);
1974 }
1975 
1976 /**
1977  * dev_spi_register_master - register managed SPI master controller
1978  * @dev:    device managing SPI master
1979  * @master: initialized master, originally from spi_alloc_master()
1980  * Context: can sleep
1981  *
1982  * Register a SPI device as with spi_register_master() which will
1983  * automatically be unregister
1984  *
1985  * Return: zero on success, else a negative error code.
1986  */
devm_spi_register_master(struct device * dev,struct spi_master * master)1987 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1988 {
1989 	struct spi_master **ptr;
1990 	int ret;
1991 
1992 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1993 	if (!ptr)
1994 		return -ENOMEM;
1995 
1996 	ret = spi_register_master(master);
1997 	if (!ret) {
1998 		*ptr = master;
1999 		devres_add(dev, ptr);
2000 	} else {
2001 		devres_free(ptr);
2002 	}
2003 
2004 	return ret;
2005 }
2006 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2007 
__unregister(struct device * dev,void * null)2008 static int __unregister(struct device *dev, void *null)
2009 {
2010 	spi_unregister_device(to_spi_device(dev));
2011 	return 0;
2012 }
2013 
2014 /**
2015  * spi_unregister_master - unregister SPI master controller
2016  * @master: the master being unregistered
2017  * Context: can sleep
2018  *
2019  * This call is used only by SPI master controller drivers, which are the
2020  * only ones directly touching chip registers.
2021  *
2022  * This must be called from context that can sleep.
2023  */
spi_unregister_master(struct spi_master * master)2024 void spi_unregister_master(struct spi_master *master)
2025 {
2026 	int dummy;
2027 
2028 	if (master->queued) {
2029 		if (spi_destroy_queue(master))
2030 			dev_err(&master->dev, "queue remove failed\n");
2031 	}
2032 
2033 	mutex_lock(&board_lock);
2034 	list_del(&master->list);
2035 	mutex_unlock(&board_lock);
2036 
2037 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
2038 	device_unregister(&master->dev);
2039 }
2040 EXPORT_SYMBOL_GPL(spi_unregister_master);
2041 
spi_master_suspend(struct spi_master * master)2042 int spi_master_suspend(struct spi_master *master)
2043 {
2044 	int ret;
2045 
2046 	/* Basically no-ops for non-queued masters */
2047 	if (!master->queued)
2048 		return 0;
2049 
2050 	ret = spi_stop_queue(master);
2051 	if (ret)
2052 		dev_err(&master->dev, "queue stop failed\n");
2053 
2054 	return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(spi_master_suspend);
2057 
spi_master_resume(struct spi_master * master)2058 int spi_master_resume(struct spi_master *master)
2059 {
2060 	int ret;
2061 
2062 	if (!master->queued)
2063 		return 0;
2064 
2065 	ret = spi_start_queue(master);
2066 	if (ret)
2067 		dev_err(&master->dev, "queue restart failed\n");
2068 
2069 	return ret;
2070 }
2071 EXPORT_SYMBOL_GPL(spi_master_resume);
2072 
__spi_master_match(struct device * dev,const void * data)2073 static int __spi_master_match(struct device *dev, const void *data)
2074 {
2075 	struct spi_master *m;
2076 	const u16 *bus_num = data;
2077 
2078 	m = container_of(dev, struct spi_master, dev);
2079 	return m->bus_num == *bus_num;
2080 }
2081 
2082 /**
2083  * spi_busnum_to_master - look up master associated with bus_num
2084  * @bus_num: the master's bus number
2085  * Context: can sleep
2086  *
2087  * This call may be used with devices that are registered after
2088  * arch init time.  It returns a refcounted pointer to the relevant
2089  * spi_master (which the caller must release), or NULL if there is
2090  * no such master registered.
2091  *
2092  * Return: the SPI master structure on success, else NULL.
2093  */
spi_busnum_to_master(u16 bus_num)2094 struct spi_master *spi_busnum_to_master(u16 bus_num)
2095 {
2096 	struct device		*dev;
2097 	struct spi_master	*master = NULL;
2098 
2099 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2100 				__spi_master_match);
2101 	if (dev)
2102 		master = container_of(dev, struct spi_master, dev);
2103 	/* reference got in class_find_device */
2104 	return master;
2105 }
2106 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2107 
2108 /*-------------------------------------------------------------------------*/
2109 
2110 /* Core methods for SPI resource management */
2111 
2112 /**
2113  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2114  *                 during the processing of a spi_message while using
2115  *                 spi_transfer_one
2116  * @spi:     the spi device for which we allocate memory
2117  * @release: the release code to execute for this resource
2118  * @size:    size to alloc and return
2119  * @gfp:     GFP allocation flags
2120  *
2121  * Return: the pointer to the allocated data
2122  *
2123  * This may get enhanced in the future to allocate from a memory pool
2124  * of the @spi_device or @spi_master to avoid repeated allocations.
2125  */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)2126 void *spi_res_alloc(struct spi_device *spi,
2127 		    spi_res_release_t release,
2128 		    size_t size, gfp_t gfp)
2129 {
2130 	struct spi_res *sres;
2131 
2132 	sres = kzalloc(sizeof(*sres) + size, gfp);
2133 	if (!sres)
2134 		return NULL;
2135 
2136 	INIT_LIST_HEAD(&sres->entry);
2137 	sres->release = release;
2138 
2139 	return sres->data;
2140 }
2141 EXPORT_SYMBOL_GPL(spi_res_alloc);
2142 
2143 /**
2144  * spi_res_free - free an spi resource
2145  * @res: pointer to the custom data of a resource
2146  *
2147  */
spi_res_free(void * res)2148 void spi_res_free(void *res)
2149 {
2150 	struct spi_res *sres = container_of(res, struct spi_res, data);
2151 
2152 	if (!res)
2153 		return;
2154 
2155 	WARN_ON(!list_empty(&sres->entry));
2156 	kfree(sres);
2157 }
2158 EXPORT_SYMBOL_GPL(spi_res_free);
2159 
2160 /**
2161  * spi_res_add - add a spi_res to the spi_message
2162  * @message: the spi message
2163  * @res:     the spi_resource
2164  */
spi_res_add(struct spi_message * message,void * res)2165 void spi_res_add(struct spi_message *message, void *res)
2166 {
2167 	struct spi_res *sres = container_of(res, struct spi_res, data);
2168 
2169 	WARN_ON(!list_empty(&sres->entry));
2170 	list_add_tail(&sres->entry, &message->resources);
2171 }
2172 EXPORT_SYMBOL_GPL(spi_res_add);
2173 
2174 /**
2175  * spi_res_release - release all spi resources for this message
2176  * @master:  the @spi_master
2177  * @message: the @spi_message
2178  */
spi_res_release(struct spi_master * master,struct spi_message * message)2179 void spi_res_release(struct spi_master *master,
2180 		     struct spi_message *message)
2181 {
2182 	struct spi_res *res;
2183 
2184 	while (!list_empty(&message->resources)) {
2185 		res = list_last_entry(&message->resources,
2186 				      struct spi_res, entry);
2187 
2188 		if (res->release)
2189 			res->release(master, message, res->data);
2190 
2191 		list_del(&res->entry);
2192 
2193 		kfree(res);
2194 	}
2195 }
2196 EXPORT_SYMBOL_GPL(spi_res_release);
2197 
2198 /*-------------------------------------------------------------------------*/
2199 
2200 /* Core methods for spi_message alterations */
2201 
__spi_replace_transfers_release(struct spi_master * master,struct spi_message * msg,void * res)2202 static void __spi_replace_transfers_release(struct spi_master *master,
2203 					    struct spi_message *msg,
2204 					    void *res)
2205 {
2206 	struct spi_replaced_transfers *rxfer = res;
2207 	size_t i;
2208 
2209 	/* call extra callback if requested */
2210 	if (rxfer->release)
2211 		rxfer->release(master, msg, res);
2212 
2213 	/* insert replaced transfers back into the message */
2214 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2215 
2216 	/* remove the formerly inserted entries */
2217 	for (i = 0; i < rxfer->inserted; i++)
2218 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2219 }
2220 
2221 /**
2222  * spi_replace_transfers - replace transfers with several transfers
2223  *                         and register change with spi_message.resources
2224  * @msg:           the spi_message we work upon
2225  * @xfer_first:    the first spi_transfer we want to replace
2226  * @remove:        number of transfers to remove
2227  * @insert:        the number of transfers we want to insert instead
2228  * @release:       extra release code necessary in some circumstances
2229  * @extradatasize: extra data to allocate (with alignment guarantees
2230  *                 of struct @spi_transfer)
2231  * @gfp:           gfp flags
2232  *
2233  * Returns: pointer to @spi_replaced_transfers,
2234  *          PTR_ERR(...) in case of errors.
2235  */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)2236 struct spi_replaced_transfers *spi_replace_transfers(
2237 	struct spi_message *msg,
2238 	struct spi_transfer *xfer_first,
2239 	size_t remove,
2240 	size_t insert,
2241 	spi_replaced_release_t release,
2242 	size_t extradatasize,
2243 	gfp_t gfp)
2244 {
2245 	struct spi_replaced_transfers *rxfer;
2246 	struct spi_transfer *xfer;
2247 	size_t i;
2248 
2249 	/* allocate the structure using spi_res */
2250 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2251 			      insert * sizeof(struct spi_transfer)
2252 			      + sizeof(struct spi_replaced_transfers)
2253 			      + extradatasize,
2254 			      gfp);
2255 	if (!rxfer)
2256 		return ERR_PTR(-ENOMEM);
2257 
2258 	/* the release code to invoke before running the generic release */
2259 	rxfer->release = release;
2260 
2261 	/* assign extradata */
2262 	if (extradatasize)
2263 		rxfer->extradata =
2264 			&rxfer->inserted_transfers[insert];
2265 
2266 	/* init the replaced_transfers list */
2267 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2268 
2269 	/* assign the list_entry after which we should reinsert
2270 	 * the @replaced_transfers - it may be spi_message.messages!
2271 	 */
2272 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2273 
2274 	/* remove the requested number of transfers */
2275 	for (i = 0; i < remove; i++) {
2276 		/* if the entry after replaced_after it is msg->transfers
2277 		 * then we have been requested to remove more transfers
2278 		 * than are in the list
2279 		 */
2280 		if (rxfer->replaced_after->next == &msg->transfers) {
2281 			dev_err(&msg->spi->dev,
2282 				"requested to remove more spi_transfers than are available\n");
2283 			/* insert replaced transfers back into the message */
2284 			list_splice(&rxfer->replaced_transfers,
2285 				    rxfer->replaced_after);
2286 
2287 			/* free the spi_replace_transfer structure */
2288 			spi_res_free(rxfer);
2289 
2290 			/* and return with an error */
2291 			return ERR_PTR(-EINVAL);
2292 		}
2293 
2294 		/* remove the entry after replaced_after from list of
2295 		 * transfers and add it to list of replaced_transfers
2296 		 */
2297 		list_move_tail(rxfer->replaced_after->next,
2298 			       &rxfer->replaced_transfers);
2299 	}
2300 
2301 	/* create copy of the given xfer with identical settings
2302 	 * based on the first transfer to get removed
2303 	 */
2304 	for (i = 0; i < insert; i++) {
2305 		/* we need to run in reverse order */
2306 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2307 
2308 		/* copy all spi_transfer data */
2309 		memcpy(xfer, xfer_first, sizeof(*xfer));
2310 
2311 		/* add to list */
2312 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2313 
2314 		/* clear cs_change and delay_usecs for all but the last */
2315 		if (i) {
2316 			xfer->cs_change = false;
2317 			xfer->delay_usecs = 0;
2318 		}
2319 	}
2320 
2321 	/* set up inserted */
2322 	rxfer->inserted = insert;
2323 
2324 	/* and register it with spi_res/spi_message */
2325 	spi_res_add(msg, rxfer);
2326 
2327 	return rxfer;
2328 }
2329 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2330 
__spi_split_transfer_maxsize(struct spi_master * master,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)2331 static int __spi_split_transfer_maxsize(struct spi_master *master,
2332 					struct spi_message *msg,
2333 					struct spi_transfer **xferp,
2334 					size_t maxsize,
2335 					gfp_t gfp)
2336 {
2337 	struct spi_transfer *xfer = *xferp, *xfers;
2338 	struct spi_replaced_transfers *srt;
2339 	size_t offset;
2340 	size_t count, i;
2341 
2342 	/* warn once about this fact that we are splitting a transfer */
2343 	dev_warn_once(&msg->spi->dev,
2344 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2345 		      xfer->len, maxsize);
2346 
2347 	/* calculate how many we have to replace */
2348 	count = DIV_ROUND_UP(xfer->len, maxsize);
2349 
2350 	/* create replacement */
2351 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2352 	if (IS_ERR(srt))
2353 		return PTR_ERR(srt);
2354 	xfers = srt->inserted_transfers;
2355 
2356 	/* now handle each of those newly inserted spi_transfers
2357 	 * note that the replacements spi_transfers all are preset
2358 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2359 	 * are all identical (as well as most others)
2360 	 * so we just have to fix up len and the pointers.
2361 	 *
2362 	 * this also includes support for the depreciated
2363 	 * spi_message.is_dma_mapped interface
2364 	 */
2365 
2366 	/* the first transfer just needs the length modified, so we
2367 	 * run it outside the loop
2368 	 */
2369 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2370 
2371 	/* all the others need rx_buf/tx_buf also set */
2372 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2373 		/* update rx_buf, tx_buf and dma */
2374 		if (xfers[i].rx_buf)
2375 			xfers[i].rx_buf += offset;
2376 		if (xfers[i].rx_dma)
2377 			xfers[i].rx_dma += offset;
2378 		if (xfers[i].tx_buf)
2379 			xfers[i].tx_buf += offset;
2380 		if (xfers[i].tx_dma)
2381 			xfers[i].tx_dma += offset;
2382 
2383 		/* update length */
2384 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2385 	}
2386 
2387 	/* we set up xferp to the last entry we have inserted,
2388 	 * so that we skip those already split transfers
2389 	 */
2390 	*xferp = &xfers[count - 1];
2391 
2392 	/* increment statistics counters */
2393 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2394 				       transfers_split_maxsize);
2395 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2396 				       transfers_split_maxsize);
2397 
2398 	return 0;
2399 }
2400 
2401 /**
2402  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2403  *                              when an individual transfer exceeds a
2404  *                              certain size
2405  * @master:    the @spi_master for this transfer
2406  * @msg:   the @spi_message to transform
2407  * @maxsize:  the maximum when to apply this
2408  * @gfp: GFP allocation flags
2409  *
2410  * Return: status of transformation
2411  */
spi_split_transfers_maxsize(struct spi_master * master,struct spi_message * msg,size_t maxsize,gfp_t gfp)2412 int spi_split_transfers_maxsize(struct spi_master *master,
2413 				struct spi_message *msg,
2414 				size_t maxsize,
2415 				gfp_t gfp)
2416 {
2417 	struct spi_transfer *xfer;
2418 	int ret;
2419 
2420 	/* iterate over the transfer_list,
2421 	 * but note that xfer is advanced to the last transfer inserted
2422 	 * to avoid checking sizes again unnecessarily (also xfer does
2423 	 * potentiall belong to a different list by the time the
2424 	 * replacement has happened
2425 	 */
2426 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2427 		if (xfer->len > maxsize) {
2428 			ret = __spi_split_transfer_maxsize(
2429 				master, msg, &xfer, maxsize, gfp);
2430 			if (ret)
2431 				return ret;
2432 		}
2433 	}
2434 
2435 	return 0;
2436 }
2437 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2438 
2439 /*-------------------------------------------------------------------------*/
2440 
2441 /* Core methods for SPI master protocol drivers.  Some of the
2442  * other core methods are currently defined as inline functions.
2443  */
2444 
__spi_validate_bits_per_word(struct spi_master * master,u8 bits_per_word)2445 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2446 {
2447 	if (master->bits_per_word_mask) {
2448 		/* Only 32 bits fit in the mask */
2449 		if (bits_per_word > 32)
2450 			return -EINVAL;
2451 		if (!(master->bits_per_word_mask &
2452 				SPI_BPW_MASK(bits_per_word)))
2453 			return -EINVAL;
2454 	}
2455 
2456 	return 0;
2457 }
2458 
2459 /**
2460  * spi_setup - setup SPI mode and clock rate
2461  * @spi: the device whose settings are being modified
2462  * Context: can sleep, and no requests are queued to the device
2463  *
2464  * SPI protocol drivers may need to update the transfer mode if the
2465  * device doesn't work with its default.  They may likewise need
2466  * to update clock rates or word sizes from initial values.  This function
2467  * changes those settings, and must be called from a context that can sleep.
2468  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2469  * effect the next time the device is selected and data is transferred to
2470  * or from it.  When this function returns, the spi device is deselected.
2471  *
2472  * Note that this call will fail if the protocol driver specifies an option
2473  * that the underlying controller or its driver does not support.  For
2474  * example, not all hardware supports wire transfers using nine bit words,
2475  * LSB-first wire encoding, or active-high chipselects.
2476  *
2477  * Return: zero on success, else a negative error code.
2478  */
spi_setup(struct spi_device * spi)2479 int spi_setup(struct spi_device *spi)
2480 {
2481 	unsigned	bad_bits, ugly_bits;
2482 	int		status;
2483 
2484 	/* check mode to prevent that DUAL and QUAD set at the same time
2485 	 */
2486 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2487 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2488 		dev_err(&spi->dev,
2489 		"setup: can not select dual and quad at the same time\n");
2490 		return -EINVAL;
2491 	}
2492 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2493 	 */
2494 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2495 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2496 		return -EINVAL;
2497 	/* help drivers fail *cleanly* when they need options
2498 	 * that aren't supported with their current master
2499 	 */
2500 	bad_bits = spi->mode & ~spi->master->mode_bits;
2501 	ugly_bits = bad_bits &
2502 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2503 	if (ugly_bits) {
2504 		dev_warn(&spi->dev,
2505 			 "setup: ignoring unsupported mode bits %x\n",
2506 			 ugly_bits);
2507 		spi->mode &= ~ugly_bits;
2508 		bad_bits &= ~ugly_bits;
2509 	}
2510 	if (bad_bits) {
2511 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2512 			bad_bits);
2513 		return -EINVAL;
2514 	}
2515 
2516 	if (!spi->bits_per_word)
2517 		spi->bits_per_word = 8;
2518 
2519 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2520 	if (status)
2521 		return status;
2522 
2523 	if (!spi->max_speed_hz)
2524 		spi->max_speed_hz = spi->master->max_speed_hz;
2525 
2526 	if (spi->master->setup)
2527 		status = spi->master->setup(spi);
2528 
2529 	spi_set_cs(spi, false);
2530 
2531 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2532 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2533 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2534 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2535 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2536 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2537 			spi->bits_per_word, spi->max_speed_hz,
2538 			status);
2539 
2540 	return status;
2541 }
2542 EXPORT_SYMBOL_GPL(spi_setup);
2543 
__spi_validate(struct spi_device * spi,struct spi_message * message)2544 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2545 {
2546 	struct spi_master *master = spi->master;
2547 	struct spi_transfer *xfer;
2548 	int w_size;
2549 
2550 	if (list_empty(&message->transfers))
2551 		return -EINVAL;
2552 
2553 	/* Half-duplex links include original MicroWire, and ones with
2554 	 * only one data pin like SPI_3WIRE (switches direction) or where
2555 	 * either MOSI or MISO is missing.  They can also be caused by
2556 	 * software limitations.
2557 	 */
2558 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2559 			|| (spi->mode & SPI_3WIRE)) {
2560 		unsigned flags = master->flags;
2561 
2562 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2563 			if (xfer->rx_buf && xfer->tx_buf)
2564 				return -EINVAL;
2565 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2566 				return -EINVAL;
2567 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2568 				return -EINVAL;
2569 		}
2570 	}
2571 
2572 	/**
2573 	 * Set transfer bits_per_word and max speed as spi device default if
2574 	 * it is not set for this transfer.
2575 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2576 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2577 	 */
2578 	message->frame_length = 0;
2579 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2580 		message->frame_length += xfer->len;
2581 		if (!xfer->bits_per_word)
2582 			xfer->bits_per_word = spi->bits_per_word;
2583 
2584 		if (!xfer->speed_hz)
2585 			xfer->speed_hz = spi->max_speed_hz;
2586 		if (!xfer->speed_hz)
2587 			xfer->speed_hz = master->max_speed_hz;
2588 
2589 		if (master->max_speed_hz &&
2590 		    xfer->speed_hz > master->max_speed_hz)
2591 			xfer->speed_hz = master->max_speed_hz;
2592 
2593 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2594 			return -EINVAL;
2595 
2596 		/*
2597 		 * SPI transfer length should be multiple of SPI word size
2598 		 * where SPI word size should be power-of-two multiple
2599 		 */
2600 		if (xfer->bits_per_word <= 8)
2601 			w_size = 1;
2602 		else if (xfer->bits_per_word <= 16)
2603 			w_size = 2;
2604 		else
2605 			w_size = 4;
2606 
2607 		/* No partial transfers accepted */
2608 		if (xfer->len % w_size)
2609 			return -EINVAL;
2610 
2611 		if (xfer->speed_hz && master->min_speed_hz &&
2612 		    xfer->speed_hz < master->min_speed_hz)
2613 			return -EINVAL;
2614 
2615 		if (xfer->tx_buf && !xfer->tx_nbits)
2616 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2617 		if (xfer->rx_buf && !xfer->rx_nbits)
2618 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2619 		/* check transfer tx/rx_nbits:
2620 		 * 1. check the value matches one of single, dual and quad
2621 		 * 2. check tx/rx_nbits match the mode in spi_device
2622 		 */
2623 		if (xfer->tx_buf) {
2624 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2625 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2626 				xfer->tx_nbits != SPI_NBITS_QUAD)
2627 				return -EINVAL;
2628 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2629 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2630 				return -EINVAL;
2631 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2632 				!(spi->mode & SPI_TX_QUAD))
2633 				return -EINVAL;
2634 		}
2635 		/* check transfer rx_nbits */
2636 		if (xfer->rx_buf) {
2637 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2638 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2639 				xfer->rx_nbits != SPI_NBITS_QUAD)
2640 				return -EINVAL;
2641 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2642 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2643 				return -EINVAL;
2644 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2645 				!(spi->mode & SPI_RX_QUAD))
2646 				return -EINVAL;
2647 		}
2648 	}
2649 
2650 	message->status = -EINPROGRESS;
2651 
2652 	return 0;
2653 }
2654 
__spi_async(struct spi_device * spi,struct spi_message * message)2655 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2656 {
2657 	struct spi_master *master = spi->master;
2658 
2659 	message->spi = spi;
2660 
2661 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2662 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2663 
2664 	trace_spi_message_submit(message);
2665 
2666 	return master->transfer(spi, message);
2667 }
2668 
2669 /**
2670  * spi_async - asynchronous SPI transfer
2671  * @spi: device with which data will be exchanged
2672  * @message: describes the data transfers, including completion callback
2673  * Context: any (irqs may be blocked, etc)
2674  *
2675  * This call may be used in_irq and other contexts which can't sleep,
2676  * as well as from task contexts which can sleep.
2677  *
2678  * The completion callback is invoked in a context which can't sleep.
2679  * Before that invocation, the value of message->status is undefined.
2680  * When the callback is issued, message->status holds either zero (to
2681  * indicate complete success) or a negative error code.  After that
2682  * callback returns, the driver which issued the transfer request may
2683  * deallocate the associated memory; it's no longer in use by any SPI
2684  * core or controller driver code.
2685  *
2686  * Note that although all messages to a spi_device are handled in
2687  * FIFO order, messages may go to different devices in other orders.
2688  * Some device might be higher priority, or have various "hard" access
2689  * time requirements, for example.
2690  *
2691  * On detection of any fault during the transfer, processing of
2692  * the entire message is aborted, and the device is deselected.
2693  * Until returning from the associated message completion callback,
2694  * no other spi_message queued to that device will be processed.
2695  * (This rule applies equally to all the synchronous transfer calls,
2696  * which are wrappers around this core asynchronous primitive.)
2697  *
2698  * Return: zero on success, else a negative error code.
2699  */
spi_async(struct spi_device * spi,struct spi_message * message)2700 int spi_async(struct spi_device *spi, struct spi_message *message)
2701 {
2702 	struct spi_master *master = spi->master;
2703 	int ret;
2704 	unsigned long flags;
2705 
2706 	ret = __spi_validate(spi, message);
2707 	if (ret != 0)
2708 		return ret;
2709 
2710 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2711 
2712 	if (master->bus_lock_flag)
2713 		ret = -EBUSY;
2714 	else
2715 		ret = __spi_async(spi, message);
2716 
2717 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2718 
2719 	return ret;
2720 }
2721 EXPORT_SYMBOL_GPL(spi_async);
2722 
2723 /**
2724  * spi_async_locked - version of spi_async with exclusive bus usage
2725  * @spi: device with which data will be exchanged
2726  * @message: describes the data transfers, including completion callback
2727  * Context: any (irqs may be blocked, etc)
2728  *
2729  * This call may be used in_irq and other contexts which can't sleep,
2730  * as well as from task contexts which can sleep.
2731  *
2732  * The completion callback is invoked in a context which can't sleep.
2733  * Before that invocation, the value of message->status is undefined.
2734  * When the callback is issued, message->status holds either zero (to
2735  * indicate complete success) or a negative error code.  After that
2736  * callback returns, the driver which issued the transfer request may
2737  * deallocate the associated memory; it's no longer in use by any SPI
2738  * core or controller driver code.
2739  *
2740  * Note that although all messages to a spi_device are handled in
2741  * FIFO order, messages may go to different devices in other orders.
2742  * Some device might be higher priority, or have various "hard" access
2743  * time requirements, for example.
2744  *
2745  * On detection of any fault during the transfer, processing of
2746  * the entire message is aborted, and the device is deselected.
2747  * Until returning from the associated message completion callback,
2748  * no other spi_message queued to that device will be processed.
2749  * (This rule applies equally to all the synchronous transfer calls,
2750  * which are wrappers around this core asynchronous primitive.)
2751  *
2752  * Return: zero on success, else a negative error code.
2753  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)2754 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2755 {
2756 	struct spi_master *master = spi->master;
2757 	int ret;
2758 	unsigned long flags;
2759 
2760 	ret = __spi_validate(spi, message);
2761 	if (ret != 0)
2762 		return ret;
2763 
2764 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2765 
2766 	ret = __spi_async(spi, message);
2767 
2768 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2769 
2770 	return ret;
2771 
2772 }
2773 EXPORT_SYMBOL_GPL(spi_async_locked);
2774 
2775 
spi_flash_read(struct spi_device * spi,struct spi_flash_read_message * msg)2776 int spi_flash_read(struct spi_device *spi,
2777 		   struct spi_flash_read_message *msg)
2778 
2779 {
2780 	struct spi_master *master = spi->master;
2781 	struct device *rx_dev = NULL;
2782 	int ret;
2783 
2784 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2785 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2786 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2787 		return -EINVAL;
2788 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2789 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2790 	    !(spi->mode & SPI_TX_QUAD))
2791 		return -EINVAL;
2792 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2793 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2794 		return -EINVAL;
2795 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2796 	    !(spi->mode &  SPI_RX_QUAD))
2797 		return -EINVAL;
2798 
2799 	if (master->auto_runtime_pm) {
2800 		ret = pm_runtime_get_sync(master->dev.parent);
2801 		if (ret < 0) {
2802 			dev_err(&master->dev, "Failed to power device: %d\n",
2803 				ret);
2804 			return ret;
2805 		}
2806 	}
2807 
2808 	mutex_lock(&master->bus_lock_mutex);
2809 	mutex_lock(&master->io_mutex);
2810 	if (master->dma_rx) {
2811 		rx_dev = master->dma_rx->device->dev;
2812 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2813 				  msg->buf, msg->len,
2814 				  DMA_FROM_DEVICE);
2815 		if (!ret)
2816 			msg->cur_msg_mapped = true;
2817 	}
2818 	ret = master->spi_flash_read(spi, msg);
2819 	if (msg->cur_msg_mapped)
2820 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2821 			      DMA_FROM_DEVICE);
2822 	mutex_unlock(&master->io_mutex);
2823 	mutex_unlock(&master->bus_lock_mutex);
2824 
2825 	if (master->auto_runtime_pm)
2826 		pm_runtime_put(master->dev.parent);
2827 
2828 	return ret;
2829 }
2830 EXPORT_SYMBOL_GPL(spi_flash_read);
2831 
2832 /*-------------------------------------------------------------------------*/
2833 
2834 /* Utility methods for SPI master protocol drivers, layered on
2835  * top of the core.  Some other utility methods are defined as
2836  * inline functions.
2837  */
2838 
spi_complete(void * arg)2839 static void spi_complete(void *arg)
2840 {
2841 	complete(arg);
2842 }
2843 
__spi_sync(struct spi_device * spi,struct spi_message * message)2844 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2845 {
2846 	DECLARE_COMPLETION_ONSTACK(done);
2847 	int status;
2848 	struct spi_master *master = spi->master;
2849 	unsigned long flags;
2850 
2851 	status = __spi_validate(spi, message);
2852 	if (status != 0)
2853 		return status;
2854 
2855 	message->complete = spi_complete;
2856 	message->context = &done;
2857 	message->spi = spi;
2858 
2859 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2860 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2861 
2862 	/* If we're not using the legacy transfer method then we will
2863 	 * try to transfer in the calling context so special case.
2864 	 * This code would be less tricky if we could remove the
2865 	 * support for driver implemented message queues.
2866 	 */
2867 	if (master->transfer == spi_queued_transfer) {
2868 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2869 
2870 		trace_spi_message_submit(message);
2871 
2872 		status = __spi_queued_transfer(spi, message, false);
2873 
2874 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2875 	} else {
2876 		status = spi_async_locked(spi, message);
2877 	}
2878 
2879 	if (status == 0) {
2880 		/* Push out the messages in the calling context if we
2881 		 * can.
2882 		 */
2883 		if (master->transfer == spi_queued_transfer) {
2884 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2885 						       spi_sync_immediate);
2886 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2887 						       spi_sync_immediate);
2888 			__spi_pump_messages(master, false);
2889 		}
2890 
2891 		wait_for_completion(&done);
2892 		status = message->status;
2893 	}
2894 	message->context = NULL;
2895 	return status;
2896 }
2897 
2898 /**
2899  * spi_sync - blocking/synchronous SPI data transfers
2900  * @spi: device with which data will be exchanged
2901  * @message: describes the data transfers
2902  * Context: can sleep
2903  *
2904  * This call may only be used from a context that may sleep.  The sleep
2905  * is non-interruptible, and has no timeout.  Low-overhead controller
2906  * drivers may DMA directly into and out of the message buffers.
2907  *
2908  * Note that the SPI device's chip select is active during the message,
2909  * and then is normally disabled between messages.  Drivers for some
2910  * frequently-used devices may want to minimize costs of selecting a chip,
2911  * by leaving it selected in anticipation that the next message will go
2912  * to the same chip.  (That may increase power usage.)
2913  *
2914  * Also, the caller is guaranteeing that the memory associated with the
2915  * message will not be freed before this call returns.
2916  *
2917  * Return: zero on success, else a negative error code.
2918  */
spi_sync(struct spi_device * spi,struct spi_message * message)2919 int spi_sync(struct spi_device *spi, struct spi_message *message)
2920 {
2921 	int ret;
2922 
2923 	mutex_lock(&spi->master->bus_lock_mutex);
2924 	ret = __spi_sync(spi, message);
2925 	mutex_unlock(&spi->master->bus_lock_mutex);
2926 
2927 	return ret;
2928 }
2929 EXPORT_SYMBOL_GPL(spi_sync);
2930 
2931 /**
2932  * spi_sync_locked - version of spi_sync with exclusive bus usage
2933  * @spi: device with which data will be exchanged
2934  * @message: describes the data transfers
2935  * Context: can sleep
2936  *
2937  * This call may only be used from a context that may sleep.  The sleep
2938  * is non-interruptible, and has no timeout.  Low-overhead controller
2939  * drivers may DMA directly into and out of the message buffers.
2940  *
2941  * This call should be used by drivers that require exclusive access to the
2942  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2943  * be released by a spi_bus_unlock call when the exclusive access is over.
2944  *
2945  * Return: zero on success, else a negative error code.
2946  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)2947 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2948 {
2949 	return __spi_sync(spi, message);
2950 }
2951 EXPORT_SYMBOL_GPL(spi_sync_locked);
2952 
2953 /**
2954  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2955  * @master: SPI bus master that should be locked for exclusive bus access
2956  * Context: can sleep
2957  *
2958  * This call may only be used from a context that may sleep.  The sleep
2959  * is non-interruptible, and has no timeout.
2960  *
2961  * This call should be used by drivers that require exclusive access to the
2962  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2963  * exclusive access is over. Data transfer must be done by spi_sync_locked
2964  * and spi_async_locked calls when the SPI bus lock is held.
2965  *
2966  * Return: always zero.
2967  */
spi_bus_lock(struct spi_master * master)2968 int spi_bus_lock(struct spi_master *master)
2969 {
2970 	unsigned long flags;
2971 
2972 	mutex_lock(&master->bus_lock_mutex);
2973 
2974 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2975 	master->bus_lock_flag = 1;
2976 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2977 
2978 	/* mutex remains locked until spi_bus_unlock is called */
2979 
2980 	return 0;
2981 }
2982 EXPORT_SYMBOL_GPL(spi_bus_lock);
2983 
2984 /**
2985  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2986  * @master: SPI bus master that was locked for exclusive bus access
2987  * Context: can sleep
2988  *
2989  * This call may only be used from a context that may sleep.  The sleep
2990  * is non-interruptible, and has no timeout.
2991  *
2992  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2993  * call.
2994  *
2995  * Return: always zero.
2996  */
spi_bus_unlock(struct spi_master * master)2997 int spi_bus_unlock(struct spi_master *master)
2998 {
2999 	master->bus_lock_flag = 0;
3000 
3001 	mutex_unlock(&master->bus_lock_mutex);
3002 
3003 	return 0;
3004 }
3005 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3006 
3007 /* portable code must never pass more than 32 bytes */
3008 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3009 
3010 static u8	*buf;
3011 
3012 /**
3013  * spi_write_then_read - SPI synchronous write followed by read
3014  * @spi: device with which data will be exchanged
3015  * @txbuf: data to be written (need not be dma-safe)
3016  * @n_tx: size of txbuf, in bytes
3017  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3018  * @n_rx: size of rxbuf, in bytes
3019  * Context: can sleep
3020  *
3021  * This performs a half duplex MicroWire style transaction with the
3022  * device, sending txbuf and then reading rxbuf.  The return value
3023  * is zero for success, else a negative errno status code.
3024  * This call may only be used from a context that may sleep.
3025  *
3026  * Parameters to this routine are always copied using a small buffer;
3027  * portable code should never use this for more than 32 bytes.
3028  * Performance-sensitive or bulk transfer code should instead use
3029  * spi_{async,sync}() calls with dma-safe buffers.
3030  *
3031  * Return: zero on success, else a negative error code.
3032  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)3033 int spi_write_then_read(struct spi_device *spi,
3034 		const void *txbuf, unsigned n_tx,
3035 		void *rxbuf, unsigned n_rx)
3036 {
3037 	static DEFINE_MUTEX(lock);
3038 
3039 	int			status;
3040 	struct spi_message	message;
3041 	struct spi_transfer	x[2];
3042 	u8			*local_buf;
3043 
3044 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3045 	 * copying here, (as a pure convenience thing), but we can
3046 	 * keep heap costs out of the hot path unless someone else is
3047 	 * using the pre-allocated buffer or the transfer is too large.
3048 	 */
3049 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3050 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3051 				    GFP_KERNEL | GFP_DMA);
3052 		if (!local_buf)
3053 			return -ENOMEM;
3054 	} else {
3055 		local_buf = buf;
3056 	}
3057 
3058 	spi_message_init(&message);
3059 	memset(x, 0, sizeof(x));
3060 	if (n_tx) {
3061 		x[0].len = n_tx;
3062 		spi_message_add_tail(&x[0], &message);
3063 	}
3064 	if (n_rx) {
3065 		x[1].len = n_rx;
3066 		spi_message_add_tail(&x[1], &message);
3067 	}
3068 
3069 	memcpy(local_buf, txbuf, n_tx);
3070 	x[0].tx_buf = local_buf;
3071 	x[1].rx_buf = local_buf + n_tx;
3072 
3073 	/* do the i/o */
3074 	status = spi_sync(spi, &message);
3075 	if (status == 0)
3076 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3077 
3078 	if (x[0].tx_buf == buf)
3079 		mutex_unlock(&lock);
3080 	else
3081 		kfree(local_buf);
3082 
3083 	return status;
3084 }
3085 EXPORT_SYMBOL_GPL(spi_write_then_read);
3086 
3087 /*-------------------------------------------------------------------------*/
3088 
3089 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
__spi_of_device_match(struct device * dev,void * data)3090 static int __spi_of_device_match(struct device *dev, void *data)
3091 {
3092 	return dev->of_node == data;
3093 }
3094 
3095 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)3096 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3097 {
3098 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3099 						__spi_of_device_match);
3100 	return dev ? to_spi_device(dev) : NULL;
3101 }
3102 
__spi_of_master_match(struct device * dev,const void * data)3103 static int __spi_of_master_match(struct device *dev, const void *data)
3104 {
3105 	return dev->of_node == data;
3106 }
3107 
3108 /* the spi masters are not using spi_bus, so we find it with another way */
of_find_spi_master_by_node(struct device_node * node)3109 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3110 {
3111 	struct device *dev;
3112 
3113 	dev = class_find_device(&spi_master_class, NULL, node,
3114 				__spi_of_master_match);
3115 	if (!dev)
3116 		return NULL;
3117 
3118 	/* reference got in class_find_device */
3119 	return container_of(dev, struct spi_master, dev);
3120 }
3121 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)3122 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3123 			 void *arg)
3124 {
3125 	struct of_reconfig_data *rd = arg;
3126 	struct spi_master *master;
3127 	struct spi_device *spi;
3128 
3129 	switch (of_reconfig_get_state_change(action, arg)) {
3130 	case OF_RECONFIG_CHANGE_ADD:
3131 		master = of_find_spi_master_by_node(rd->dn->parent);
3132 		if (master == NULL)
3133 			return NOTIFY_OK;	/* not for us */
3134 
3135 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3136 			put_device(&master->dev);
3137 			return NOTIFY_OK;
3138 		}
3139 
3140 		spi = of_register_spi_device(master, rd->dn);
3141 		put_device(&master->dev);
3142 
3143 		if (IS_ERR(spi)) {
3144 			pr_err("%s: failed to create for '%s'\n",
3145 					__func__, rd->dn->full_name);
3146 			of_node_clear_flag(rd->dn, OF_POPULATED);
3147 			return notifier_from_errno(PTR_ERR(spi));
3148 		}
3149 		break;
3150 
3151 	case OF_RECONFIG_CHANGE_REMOVE:
3152 		/* already depopulated? */
3153 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3154 			return NOTIFY_OK;
3155 
3156 		/* find our device by node */
3157 		spi = of_find_spi_device_by_node(rd->dn);
3158 		if (spi == NULL)
3159 			return NOTIFY_OK;	/* no? not meant for us */
3160 
3161 		/* unregister takes one ref away */
3162 		spi_unregister_device(spi);
3163 
3164 		/* and put the reference of the find */
3165 		put_device(&spi->dev);
3166 		break;
3167 	}
3168 
3169 	return NOTIFY_OK;
3170 }
3171 
3172 static struct notifier_block spi_of_notifier = {
3173 	.notifier_call = of_spi_notify,
3174 };
3175 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3176 extern struct notifier_block spi_of_notifier;
3177 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3178 
3179 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_master_match(struct device * dev,const void * data)3180 static int spi_acpi_master_match(struct device *dev, const void *data)
3181 {
3182 	return ACPI_COMPANION(dev->parent) == data;
3183 }
3184 
spi_acpi_device_match(struct device * dev,void * data)3185 static int spi_acpi_device_match(struct device *dev, void *data)
3186 {
3187 	return ACPI_COMPANION(dev) == data;
3188 }
3189 
acpi_spi_find_master_by_adev(struct acpi_device * adev)3190 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3191 {
3192 	struct device *dev;
3193 
3194 	dev = class_find_device(&spi_master_class, NULL, adev,
3195 				spi_acpi_master_match);
3196 	if (!dev)
3197 		return NULL;
3198 
3199 	return container_of(dev, struct spi_master, dev);
3200 }
3201 
acpi_spi_find_device_by_adev(struct acpi_device * adev)3202 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3203 {
3204 	struct device *dev;
3205 
3206 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3207 
3208 	return dev ? to_spi_device(dev) : NULL;
3209 }
3210 
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)3211 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3212 			   void *arg)
3213 {
3214 	struct acpi_device *adev = arg;
3215 	struct spi_master *master;
3216 	struct spi_device *spi;
3217 
3218 	switch (value) {
3219 	case ACPI_RECONFIG_DEVICE_ADD:
3220 		master = acpi_spi_find_master_by_adev(adev->parent);
3221 		if (!master)
3222 			break;
3223 
3224 		acpi_register_spi_device(master, adev);
3225 		put_device(&master->dev);
3226 		break;
3227 	case ACPI_RECONFIG_DEVICE_REMOVE:
3228 		if (!acpi_device_enumerated(adev))
3229 			break;
3230 
3231 		spi = acpi_spi_find_device_by_adev(adev);
3232 		if (!spi)
3233 			break;
3234 
3235 		spi_unregister_device(spi);
3236 		put_device(&spi->dev);
3237 		break;
3238 	}
3239 
3240 	return NOTIFY_OK;
3241 }
3242 
3243 static struct notifier_block spi_acpi_notifier = {
3244 	.notifier_call = acpi_spi_notify,
3245 };
3246 #else
3247 extern struct notifier_block spi_acpi_notifier;
3248 #endif
3249 
spi_init(void)3250 static int __init spi_init(void)
3251 {
3252 	int	status;
3253 
3254 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3255 	if (!buf) {
3256 		status = -ENOMEM;
3257 		goto err0;
3258 	}
3259 
3260 	status = bus_register(&spi_bus_type);
3261 	if (status < 0)
3262 		goto err1;
3263 
3264 	status = class_register(&spi_master_class);
3265 	if (status < 0)
3266 		goto err2;
3267 
3268 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3269 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3270 	if (IS_ENABLED(CONFIG_ACPI))
3271 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3272 
3273 	return 0;
3274 
3275 err2:
3276 	bus_unregister(&spi_bus_type);
3277 err1:
3278 	kfree(buf);
3279 	buf = NULL;
3280 err0:
3281 	return status;
3282 }
3283 
3284 /* board_info is normally registered in arch_initcall(),
3285  * but even essential drivers wait till later
3286  *
3287  * REVISIT only boardinfo really needs static linking. the rest (device and
3288  * driver registration) _could_ be dynamically linked (modular) ... costs
3289  * include needing to have boardinfo data structures be much more public.
3290  */
3291 postcore_initcall(spi_init);
3292 
3293