• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Squashfs - a compressed read only filesystem for Linux
3  *
4  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
5  * Phillip Lougher <phillip@squashfs.org.uk>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version 2,
10  * or (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20  *
21  * cache.c
22  */
23 
24 /*
25  * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
26  * recently accessed data Squashfs uses two small metadata and fragment caches.
27  *
28  * This file implements a generic cache implementation used for both caches,
29  * plus functions layered ontop of the generic cache implementation to
30  * access the metadata and fragment caches.
31  *
32  * To avoid out of memory and fragmentation issues with vmalloc the cache
33  * uses sequences of kmalloced PAGE_SIZE buffers.
34  *
35  * It should be noted that the cache is not used for file datablocks, these
36  * are decompressed and cached in the page-cache in the normal way.  The
37  * cache is only used to temporarily cache fragment and metadata blocks
38  * which have been read as as a result of a metadata (i.e. inode or
39  * directory) or fragment access.  Because metadata and fragments are packed
40  * together into blocks (to gain greater compression) the read of a particular
41  * piece of metadata or fragment will retrieve other metadata/fragments which
42  * have been packed with it, these because of locality-of-reference may be read
43  * in the near future. Temporarily caching them ensures they are available for
44  * near future access without requiring an additional read and decompress.
45  */
46 
47 #include <linux/fs.h>
48 #include <linux/vfs.h>
49 #include <linux/slab.h>
50 #include <linux/vmalloc.h>
51 #include <linux/sched.h>
52 #include <linux/spinlock.h>
53 #include <linux/wait.h>
54 #include <linux/pagemap.h>
55 
56 #include "squashfs_fs.h"
57 #include "squashfs_fs_sb.h"
58 #include "squashfs.h"
59 #include "page_actor.h"
60 
61 /*
62  * Look-up block in cache, and increment usage count.  If not in cache, read
63  * and decompress it from disk.
64  */
squashfs_cache_get(struct super_block * sb,struct squashfs_cache * cache,u64 block,int length)65 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
66 	struct squashfs_cache *cache, u64 block, int length)
67 {
68 	int i, n;
69 	struct squashfs_cache_entry *entry;
70 
71 	spin_lock(&cache->lock);
72 
73 	while (1) {
74 		for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
75 			if (cache->entry[i].block == block) {
76 				cache->curr_blk = i;
77 				break;
78 			}
79 			i = (i + 1) % cache->entries;
80 		}
81 
82 		if (n == cache->entries) {
83 			/*
84 			 * Block not in cache, if all cache entries are used
85 			 * go to sleep waiting for one to become available.
86 			 */
87 			if (cache->unused == 0) {
88 				cache->num_waiters++;
89 				spin_unlock(&cache->lock);
90 				wait_event(cache->wait_queue, cache->unused);
91 				spin_lock(&cache->lock);
92 				cache->num_waiters--;
93 				continue;
94 			}
95 
96 			/*
97 			 * At least one unused cache entry.  A simple
98 			 * round-robin strategy is used to choose the entry to
99 			 * be evicted from the cache.
100 			 */
101 			i = cache->next_blk;
102 			for (n = 0; n < cache->entries; n++) {
103 				if (cache->entry[i].refcount == 0)
104 					break;
105 				i = (i + 1) % cache->entries;
106 			}
107 
108 			cache->next_blk = (i + 1) % cache->entries;
109 			entry = &cache->entry[i];
110 
111 			/*
112 			 * Initialise chosen cache entry, and fill it in from
113 			 * disk.
114 			 */
115 			cache->unused--;
116 			entry->block = block;
117 			entry->refcount = 1;
118 			entry->pending = 1;
119 			entry->num_waiters = 0;
120 			entry->error = 0;
121 			spin_unlock(&cache->lock);
122 
123 			entry->length = squashfs_read_data(sb, block, length,
124 				&entry->next_index, entry->actor);
125 
126 			spin_lock(&cache->lock);
127 
128 			if (entry->length < 0)
129 				entry->error = entry->length;
130 
131 			entry->pending = 0;
132 
133 			/*
134 			 * While filling this entry one or more other processes
135 			 * have looked it up in the cache, and have slept
136 			 * waiting for it to become available.
137 			 */
138 			if (entry->num_waiters) {
139 				spin_unlock(&cache->lock);
140 				wake_up_all(&entry->wait_queue);
141 			} else
142 				spin_unlock(&cache->lock);
143 
144 			goto out;
145 		}
146 
147 		/*
148 		 * Block already in cache.  Increment refcount so it doesn't
149 		 * get reused until we're finished with it, if it was
150 		 * previously unused there's one less cache entry available
151 		 * for reuse.
152 		 */
153 		entry = &cache->entry[i];
154 		if (entry->refcount == 0)
155 			cache->unused--;
156 		entry->refcount++;
157 
158 		/*
159 		 * If the entry is currently being filled in by another process
160 		 * go to sleep waiting for it to become available.
161 		 */
162 		if (entry->pending) {
163 			entry->num_waiters++;
164 			spin_unlock(&cache->lock);
165 			wait_event(entry->wait_queue, !entry->pending);
166 		} else
167 			spin_unlock(&cache->lock);
168 
169 		goto out;
170 	}
171 
172 out:
173 	TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
174 		cache->name, i, entry->block, entry->refcount, entry->error);
175 
176 	if (entry->error)
177 		ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
178 							block);
179 	return entry;
180 }
181 
182 
183 /*
184  * Release cache entry, once usage count is zero it can be reused.
185  */
squashfs_cache_put(struct squashfs_cache_entry * entry)186 void squashfs_cache_put(struct squashfs_cache_entry *entry)
187 {
188 	struct squashfs_cache *cache = entry->cache;
189 
190 	spin_lock(&cache->lock);
191 	entry->refcount--;
192 	if (entry->refcount == 0) {
193 		cache->unused++;
194 		/*
195 		 * If there's any processes waiting for a block to become
196 		 * available, wake one up.
197 		 */
198 		if (cache->num_waiters) {
199 			spin_unlock(&cache->lock);
200 			wake_up(&cache->wait_queue);
201 			return;
202 		}
203 	}
204 	spin_unlock(&cache->lock);
205 }
206 
207 /*
208  * Delete cache reclaiming all kmalloced buffers.
209  */
squashfs_cache_delete(struct squashfs_cache * cache)210 void squashfs_cache_delete(struct squashfs_cache *cache)
211 {
212 	int i;
213 
214 	if (cache == NULL)
215 		return;
216 
217 	for (i = 0; i < cache->entries; i++) {
218 		if (cache->entry[i].page)
219 			free_page_array(cache->entry[i].page, cache->pages);
220 		kfree(cache->entry[i].actor);
221 	}
222 
223 	kfree(cache->entry);
224 	kfree(cache);
225 }
226 
227 
228 /*
229  * Initialise cache allocating the specified number of entries, each of
230  * size block_size.  To avoid vmalloc fragmentation issues each entry
231  * is allocated as a sequence of kmalloced PAGE_SIZE buffers.
232  */
squashfs_cache_init(char * name,int entries,int block_size)233 struct squashfs_cache *squashfs_cache_init(char *name, int entries,
234 	int block_size)
235 {
236 	int i;
237 	struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
238 
239 	if (cache == NULL) {
240 		ERROR("Failed to allocate %s cache\n", name);
241 		return NULL;
242 	}
243 
244 	cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
245 	if (cache->entry == NULL) {
246 		ERROR("Failed to allocate %s cache\n", name);
247 		goto cleanup;
248 	}
249 
250 	cache->curr_blk = 0;
251 	cache->next_blk = 0;
252 	cache->unused = entries;
253 	cache->entries = entries;
254 	cache->block_size = block_size;
255 	cache->pages = block_size >> PAGE_SHIFT;
256 	cache->pages = cache->pages ? cache->pages : 1;
257 	cache->name = name;
258 	cache->num_waiters = 0;
259 	spin_lock_init(&cache->lock);
260 	init_waitqueue_head(&cache->wait_queue);
261 
262 	for (i = 0; i < entries; i++) {
263 		struct squashfs_cache_entry *entry = &cache->entry[i];
264 
265 		init_waitqueue_head(&cache->entry[i].wait_queue);
266 		entry->cache = cache;
267 		entry->block = SQUASHFS_INVALID_BLK;
268 		entry->page = alloc_page_array(cache->pages, GFP_KERNEL);
269 		if (!entry->page) {
270 			ERROR("Failed to allocate %s cache entry\n", name);
271 			goto cleanup;
272 		}
273 		entry->actor = squashfs_page_actor_init(entry->page,
274 			cache->pages, 0, NULL);
275 		if (entry->actor == NULL) {
276 			ERROR("Failed to allocate %s cache entry\n", name);
277 			goto cleanup;
278 		}
279 	}
280 
281 	return cache;
282 
283 cleanup:
284 	squashfs_cache_delete(cache);
285 	return NULL;
286 }
287 
288 
289 /*
290  * Copy up to length bytes from cache entry to buffer starting at offset bytes
291  * into the cache entry.  If there's not length bytes then copy the number of
292  * bytes available.  In all cases return the number of bytes copied.
293  */
squashfs_copy_data(void * buffer,struct squashfs_cache_entry * entry,int offset,int length)294 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
295 		int offset, int length)
296 {
297 	int remaining = length;
298 
299 	if (length == 0)
300 		return 0;
301 	else if (buffer == NULL)
302 		return min(length, entry->length - offset);
303 
304 	while (offset < entry->length) {
305 		void *buff = kmap_atomic(entry->page[offset / PAGE_SIZE])
306 			     + (offset % PAGE_SIZE);
307 		int bytes = min_t(int, entry->length - offset,
308 				PAGE_SIZE - (offset % PAGE_SIZE));
309 
310 		if (bytes >= remaining) {
311 			memcpy(buffer, buff, remaining);
312 			kunmap_atomic(buff);
313 			remaining = 0;
314 			break;
315 		}
316 
317 		memcpy(buffer, buff, bytes);
318 		kunmap_atomic(buff);
319 		buffer += bytes;
320 		remaining -= bytes;
321 		offset += bytes;
322 	}
323 
324 	return length - remaining;
325 }
326 
327 
328 /*
329  * Read length bytes from metadata position <block, offset> (block is the
330  * start of the compressed block on disk, and offset is the offset into
331  * the block once decompressed).  Data is packed into consecutive blocks,
332  * and length bytes may require reading more than one block.
333  */
squashfs_read_metadata(struct super_block * sb,void * buffer,u64 * block,int * offset,int length)334 int squashfs_read_metadata(struct super_block *sb, void *buffer,
335 		u64 *block, int *offset, int length)
336 {
337 	struct squashfs_sb_info *msblk = sb->s_fs_info;
338 	int bytes, res = length;
339 	struct squashfs_cache_entry *entry;
340 
341 	TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
342 
343 	while (length) {
344 		entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
345 		if (entry->error) {
346 			res = entry->error;
347 			goto error;
348 		} else if (*offset >= entry->length) {
349 			res = -EIO;
350 			goto error;
351 		}
352 
353 		bytes = squashfs_copy_data(buffer, entry, *offset, length);
354 		if (buffer)
355 			buffer += bytes;
356 		length -= bytes;
357 		*offset += bytes;
358 
359 		if (*offset == entry->length) {
360 			*block = entry->next_index;
361 			*offset = 0;
362 		}
363 
364 		squashfs_cache_put(entry);
365 	}
366 
367 	return res;
368 
369 error:
370 	squashfs_cache_put(entry);
371 	return res;
372 }
373 
374 
375 /*
376  * Look-up in the fragmment cache the fragment located at <start_block> in the
377  * filesystem.  If necessary read and decompress it from disk.
378  */
squashfs_get_fragment(struct super_block * sb,u64 start_block,int length)379 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
380 				u64 start_block, int length)
381 {
382 	struct squashfs_sb_info *msblk = sb->s_fs_info;
383 
384 	return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
385 		length);
386 }
387 
388 
389 /*
390  * Read and decompress the datablock located at <start_block> in the
391  * filesystem.  The cache is used here to avoid duplicating locking and
392  * read/decompress code.
393  */
squashfs_get_datablock(struct super_block * sb,u64 start_block,int length)394 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
395 				u64 start_block, int length)
396 {
397 	struct squashfs_sb_info *msblk = sb->s_fs_info;
398 
399 	return squashfs_cache_get(sb, msblk->read_page, start_block, length);
400 }
401 
402 
403 /*
404  * Read a filesystem table (uncompressed sequence of bytes) from disk
405  */
squashfs_read_table(struct super_block * sb,u64 block,int length)406 void *squashfs_read_table(struct super_block *sb, u64 block, int length)
407 {
408 	int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
409 	struct page **page;
410 	void *buff;
411 	int res;
412 	struct squashfs_page_actor *actor;
413 
414 	page = alloc_page_array(pages, GFP_KERNEL);
415 	if (!page)
416 		return ERR_PTR(-ENOMEM);
417 
418 	actor = squashfs_page_actor_init(page, pages, length, NULL);
419 	if (actor == NULL) {
420 		res = -ENOMEM;
421 		goto failed;
422 	}
423 
424 	res = squashfs_read_data(sb, block, length |
425 		SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
426 
427 	if (res < 0)
428 		goto failed2;
429 
430 	buff = kmalloc(length, GFP_KERNEL);
431 	if (!buff)
432 		goto failed2;
433 	squashfs_actor_to_buf(actor, buff, length);
434 	squashfs_page_actor_free(actor, 0);
435 	free_page_array(page, pages);
436 	return buff;
437 
438 failed2:
439 	squashfs_page_actor_free(actor, 0);
440 failed:
441 	free_page_array(page, pages);
442 	return ERR_PTR(res);
443 }
444