1 /*
2 * Copyright (c) 2012 GCT Semiconductor, Inc. All rights reserved.
3 *
4 * This software is licensed under the terms of the GNU General Public
5 * License version 2, as published by the Free Software Foundation, and
6 * may be copied, distributed, and modified under those terms.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/ipv6.h>
19 #include <linux/udp.h>
20 #include <linux/in.h>
21 #include <linux/if_arp.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in6.h>
25 #include <linux/tcp.h>
26 #include <linux/icmp.h>
27 #include <linux/icmpv6.h>
28 #include <linux/uaccess.h>
29 #include <net/ndisc.h>
30
31 #include "gdm_lte.h"
32 #include "netlink_k.h"
33 #include "hci.h"
34 #include "hci_packet.h"
35 #include "gdm_endian.h"
36
37 /*
38 * Netlink protocol number
39 */
40 #define NETLINK_LTE 30
41
42 /*
43 * Default MTU Size
44 */
45 #define DEFAULT_MTU_SIZE 1500
46
47 #define IP_VERSION_4 4
48 #define IP_VERSION_6 6
49
50 static struct {
51 int ref_cnt;
52 struct sock *sock;
53 } lte_event;
54
55 static struct device_type wwan_type = {
56 .name = "wwan",
57 };
58
gdm_lte_open(struct net_device * dev)59 static int gdm_lte_open(struct net_device *dev)
60 {
61 netif_start_queue(dev);
62 return 0;
63 }
64
gdm_lte_close(struct net_device * dev)65 static int gdm_lte_close(struct net_device *dev)
66 {
67 netif_stop_queue(dev);
68 return 0;
69 }
70
gdm_lte_set_config(struct net_device * dev,struct ifmap * map)71 static int gdm_lte_set_config(struct net_device *dev, struct ifmap *map)
72 {
73 if (dev->flags & IFF_UP)
74 return -EBUSY;
75 return 0;
76 }
77
tx_complete(void * arg)78 static void tx_complete(void *arg)
79 {
80 struct nic *nic = arg;
81
82 if (netif_queue_stopped(nic->netdev))
83 netif_wake_queue(nic->netdev);
84 }
85
gdm_lte_rx(struct sk_buff * skb,struct nic * nic,int nic_type)86 static int gdm_lte_rx(struct sk_buff *skb, struct nic *nic, int nic_type)
87 {
88 int ret;
89
90 ret = netif_rx_ni(skb);
91 if (ret == NET_RX_DROP) {
92 nic->stats.rx_dropped++;
93 } else {
94 nic->stats.rx_packets++;
95 nic->stats.rx_bytes += skb->len + ETH_HLEN;
96 }
97
98 return 0;
99 }
100
gdm_lte_emulate_arp(struct sk_buff * skb_in,u32 nic_type)101 static int gdm_lte_emulate_arp(struct sk_buff *skb_in, u32 nic_type)
102 {
103 struct nic *nic = netdev_priv(skb_in->dev);
104 struct sk_buff *skb_out;
105 struct ethhdr eth;
106 struct vlan_ethhdr vlan_eth;
107 struct arphdr *arp_in;
108 struct arphdr *arp_out;
109 struct arpdata {
110 u8 ar_sha[ETH_ALEN];
111 u8 ar_sip[4];
112 u8 ar_tha[ETH_ALEN];
113 u8 ar_tip[4];
114 };
115 struct arpdata *arp_data_in;
116 struct arpdata *arp_data_out;
117 u8 arp_temp[60];
118 void *mac_header_data;
119 u32 mac_header_len;
120
121 /* Format the mac header so that it can be put to skb */
122 if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
123 memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
124 mac_header_data = &vlan_eth;
125 mac_header_len = VLAN_ETH_HLEN;
126 } else {
127 memcpy(ð, skb_in->data, sizeof(struct ethhdr));
128 mac_header_data = ð
129 mac_header_len = ETH_HLEN;
130 }
131
132 /* Get the pointer of the original request */
133 arp_in = (struct arphdr *)(skb_in->data + mac_header_len);
134 arp_data_in = (struct arpdata *)(skb_in->data + mac_header_len +
135 sizeof(struct arphdr));
136
137 /* Get the pointer of the outgoing response */
138 arp_out = (struct arphdr *)arp_temp;
139 arp_data_out = (struct arpdata *)(arp_temp + sizeof(struct arphdr));
140
141 /* Copy the arp header */
142 memcpy(arp_out, arp_in, sizeof(struct arphdr));
143 arp_out->ar_op = htons(ARPOP_REPLY);
144
145 /* Copy the arp payload: based on 2 bytes of mac and fill the IP */
146 arp_data_out->ar_sha[0] = arp_data_in->ar_sha[0];
147 arp_data_out->ar_sha[1] = arp_data_in->ar_sha[1];
148 memcpy(&arp_data_out->ar_sha[2], &arp_data_in->ar_tip[0], 4);
149 memcpy(&arp_data_out->ar_sip[0], &arp_data_in->ar_tip[0], 4);
150 memcpy(&arp_data_out->ar_tha[0], &arp_data_in->ar_sha[0], 6);
151 memcpy(&arp_data_out->ar_tip[0], &arp_data_in->ar_sip[0], 4);
152
153 /* Fill the destination mac with source mac of the received packet */
154 memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
155 /* Fill the source mac with nic's source mac */
156 memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
157
158 /* Alloc skb and reserve align */
159 skb_out = dev_alloc_skb(skb_in->len);
160 if (!skb_out)
161 return -ENOMEM;
162 skb_reserve(skb_out, NET_IP_ALIGN);
163
164 memcpy(skb_put(skb_out, mac_header_len), mac_header_data,
165 mac_header_len);
166 memcpy(skb_put(skb_out, sizeof(struct arphdr)), arp_out,
167 sizeof(struct arphdr));
168 memcpy(skb_put(skb_out, sizeof(struct arpdata)), arp_data_out,
169 sizeof(struct arpdata));
170
171 skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
172 skb_out->dev = skb_in->dev;
173 skb_reset_mac_header(skb_out);
174 skb_pull(skb_out, ETH_HLEN);
175
176 gdm_lte_rx(skb_out, nic, nic_type);
177
178 return 0;
179 }
180
icmp6_checksum(struct ipv6hdr * ipv6,u16 * ptr,int len)181 static int icmp6_checksum(struct ipv6hdr *ipv6, u16 *ptr, int len)
182 {
183 unsigned short *w = ptr;
184 int sum = 0;
185 int i;
186
187 union {
188 struct {
189 u8 ph_src[16];
190 u8 ph_dst[16];
191 u32 ph_len;
192 u8 ph_zero[3];
193 u8 ph_nxt;
194 } ph __packed;
195 u16 pa[20];
196 } pseudo_header;
197
198 memset(&pseudo_header, 0, sizeof(pseudo_header));
199 memcpy(&pseudo_header.ph.ph_src, &ipv6->saddr.in6_u.u6_addr8, 16);
200 memcpy(&pseudo_header.ph.ph_dst, &ipv6->daddr.in6_u.u6_addr8, 16);
201 pseudo_header.ph.ph_len = ipv6->payload_len;
202 pseudo_header.ph.ph_nxt = ipv6->nexthdr;
203
204 w = (u16 *)&pseudo_header;
205 for (i = 0; i < ARRAY_SIZE(pseudo_header.pa); i++)
206 sum += pseudo_header.pa[i];
207
208 w = ptr;
209 while (len > 1) {
210 sum += *w++;
211 len -= 2;
212 }
213
214 sum = (sum >> 16) + (sum & 0xFFFF);
215 sum += (sum >> 16);
216 sum = ~sum & 0xffff;
217
218 return sum;
219 }
220
gdm_lte_emulate_ndp(struct sk_buff * skb_in,u32 nic_type)221 static int gdm_lte_emulate_ndp(struct sk_buff *skb_in, u32 nic_type)
222 {
223 struct nic *nic = netdev_priv(skb_in->dev);
224 struct sk_buff *skb_out;
225 struct ethhdr eth;
226 struct vlan_ethhdr vlan_eth;
227 struct neighbour_advertisement {
228 u8 target_address[16];
229 u8 type;
230 u8 length;
231 u8 link_layer_address[6];
232 };
233 struct neighbour_advertisement na;
234 struct neighbour_solicitation {
235 u8 target_address[16];
236 };
237 struct neighbour_solicitation *ns;
238 struct ipv6hdr *ipv6_in;
239 struct ipv6hdr ipv6_out;
240 struct icmp6hdr *icmp6_in;
241 struct icmp6hdr icmp6_out;
242
243 void *mac_header_data;
244 u32 mac_header_len;
245
246 /* Format the mac header so that it can be put to skb */
247 if (ntohs(((struct ethhdr *)skb_in->data)->h_proto) == ETH_P_8021Q) {
248 memcpy(&vlan_eth, skb_in->data, sizeof(struct vlan_ethhdr));
249 if (ntohs(vlan_eth.h_vlan_encapsulated_proto) != ETH_P_IPV6)
250 return -1;
251 mac_header_data = &vlan_eth;
252 mac_header_len = VLAN_ETH_HLEN;
253 } else {
254 memcpy(ð, skb_in->data, sizeof(struct ethhdr));
255 if (ntohs(eth.h_proto) != ETH_P_IPV6)
256 return -1;
257 mac_header_data = ð
258 mac_header_len = ETH_HLEN;
259 }
260
261 /* Check if this is IPv6 ICMP packet */
262 ipv6_in = (struct ipv6hdr *)(skb_in->data + mac_header_len);
263 if (ipv6_in->version != 6 || ipv6_in->nexthdr != IPPROTO_ICMPV6)
264 return -1;
265
266 /* Check if this is NDP packet */
267 icmp6_in = (struct icmp6hdr *)(skb_in->data + mac_header_len +
268 sizeof(struct ipv6hdr));
269 if (icmp6_in->icmp6_type == NDISC_ROUTER_SOLICITATION) { /* Check RS */
270 return -1;
271 } else if (icmp6_in->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION) {
272 /* Check NS */
273 u8 icmp_na[sizeof(struct icmp6hdr) +
274 sizeof(struct neighbour_advertisement)];
275 u8 zero_addr8[16] = {0,};
276
277 if (memcmp(ipv6_in->saddr.in6_u.u6_addr8, zero_addr8, 16) == 0)
278 /* Duplicate Address Detection: Source IP is all zero */
279 return 0;
280
281 icmp6_out.icmp6_type = NDISC_NEIGHBOUR_ADVERTISEMENT;
282 icmp6_out.icmp6_code = 0;
283 icmp6_out.icmp6_cksum = 0;
284 /* R=0, S=1, O=1 */
285 icmp6_out.icmp6_dataun.un_data32[0] = htonl(0x60000000);
286
287 ns = (struct neighbour_solicitation *)
288 (skb_in->data + mac_header_len +
289 sizeof(struct ipv6hdr) + sizeof(struct icmp6hdr));
290 memcpy(&na.target_address, ns->target_address, 16);
291 na.type = 0x02;
292 na.length = 1;
293 na.link_layer_address[0] = 0x00;
294 na.link_layer_address[1] = 0x0a;
295 na.link_layer_address[2] = 0x3b;
296 na.link_layer_address[3] = 0xaf;
297 na.link_layer_address[4] = 0x63;
298 na.link_layer_address[5] = 0xc7;
299
300 memcpy(&ipv6_out, ipv6_in, sizeof(struct ipv6hdr));
301 memcpy(ipv6_out.saddr.in6_u.u6_addr8, &na.target_address, 16);
302 memcpy(ipv6_out.daddr.in6_u.u6_addr8,
303 ipv6_in->saddr.in6_u.u6_addr8, 16);
304 ipv6_out.payload_len = htons(sizeof(struct icmp6hdr) +
305 sizeof(struct neighbour_advertisement));
306
307 memcpy(icmp_na, &icmp6_out, sizeof(struct icmp6hdr));
308 memcpy(icmp_na + sizeof(struct icmp6hdr), &na,
309 sizeof(struct neighbour_advertisement));
310
311 icmp6_out.icmp6_cksum = icmp6_checksum(&ipv6_out,
312 (u16 *)icmp_na, sizeof(icmp_na));
313 } else {
314 return -1;
315 }
316
317 /* Fill the destination mac with source mac of the received packet */
318 memcpy(mac_header_data, mac_header_data + ETH_ALEN, ETH_ALEN);
319 /* Fill the source mac with nic's source mac */
320 memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
321
322 /* Alloc skb and reserve align */
323 skb_out = dev_alloc_skb(skb_in->len);
324 if (!skb_out)
325 return -ENOMEM;
326 skb_reserve(skb_out, NET_IP_ALIGN);
327
328 memcpy(skb_put(skb_out, mac_header_len), mac_header_data,
329 mac_header_len);
330 memcpy(skb_put(skb_out, sizeof(struct ipv6hdr)), &ipv6_out,
331 sizeof(struct ipv6hdr));
332 memcpy(skb_put(skb_out, sizeof(struct icmp6hdr)), &icmp6_out,
333 sizeof(struct icmp6hdr));
334 memcpy(skb_put(skb_out, sizeof(struct neighbour_advertisement)), &na,
335 sizeof(struct neighbour_advertisement));
336
337 skb_out->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
338 skb_out->dev = skb_in->dev;
339 skb_reset_mac_header(skb_out);
340 skb_pull(skb_out, ETH_HLEN);
341
342 gdm_lte_rx(skb_out, nic, nic_type);
343
344 return 0;
345 }
346
gdm_lte_tx_nic_type(struct net_device * dev,struct sk_buff * skb)347 static s32 gdm_lte_tx_nic_type(struct net_device *dev, struct sk_buff *skb)
348 {
349 struct nic *nic = netdev_priv(dev);
350 struct ethhdr *eth;
351 struct vlan_ethhdr *vlan_eth;
352 struct iphdr *ip;
353 struct ipv6hdr *ipv6;
354 int mac_proto;
355 void *network_data;
356 u32 nic_type = 0;
357
358 /* NIC TYPE is based on the nic_id of this net_device */
359 nic_type = 0x00000010 | nic->nic_id;
360
361 /* Get ethernet protocol */
362 eth = (struct ethhdr *)skb->data;
363 if (ntohs(eth->h_proto) == ETH_P_8021Q) {
364 vlan_eth = (struct vlan_ethhdr *)skb->data;
365 mac_proto = ntohs(vlan_eth->h_vlan_encapsulated_proto);
366 network_data = skb->data + VLAN_ETH_HLEN;
367 nic_type |= NIC_TYPE_F_VLAN;
368 } else {
369 mac_proto = ntohs(eth->h_proto);
370 network_data = skb->data + ETH_HLEN;
371 }
372
373 /* Process packet for nic type */
374 switch (mac_proto) {
375 case ETH_P_ARP:
376 nic_type |= NIC_TYPE_ARP;
377 break;
378 case ETH_P_IP:
379 nic_type |= NIC_TYPE_F_IPV4;
380 ip = network_data;
381
382 /* Check DHCPv4 */
383 if (ip->protocol == IPPROTO_UDP) {
384 struct udphdr *udp =
385 network_data + sizeof(struct iphdr);
386 if (ntohs(udp->dest) == 67 || ntohs(udp->dest) == 68)
387 nic_type |= NIC_TYPE_F_DHCP;
388 }
389 break;
390 case ETH_P_IPV6:
391 nic_type |= NIC_TYPE_F_IPV6;
392 ipv6 = network_data;
393
394 if (ipv6->nexthdr == IPPROTO_ICMPV6) /* Check NDP request */ {
395 struct icmp6hdr *icmp6 =
396 network_data + sizeof(struct ipv6hdr);
397 if (icmp6->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION)
398 nic_type |= NIC_TYPE_ICMPV6;
399 } else if (ipv6->nexthdr == IPPROTO_UDP) /* Check DHCPv6 */ {
400 struct udphdr *udp =
401 network_data + sizeof(struct ipv6hdr);
402 if (ntohs(udp->dest) == 546 || ntohs(udp->dest) == 547)
403 nic_type |= NIC_TYPE_F_DHCP;
404 }
405 break;
406 default:
407 break;
408 }
409
410 return nic_type;
411 }
412
gdm_lte_tx(struct sk_buff * skb,struct net_device * dev)413 static int gdm_lte_tx(struct sk_buff *skb, struct net_device *dev)
414 {
415 struct nic *nic = netdev_priv(dev);
416 u32 nic_type;
417 void *data_buf;
418 int data_len;
419 int idx;
420 int ret = 0;
421
422 nic_type = gdm_lte_tx_nic_type(dev, skb);
423 if (nic_type == 0) {
424 netdev_err(dev, "tx - invalid nic_type\n");
425 return -1;
426 }
427
428 if (nic_type & NIC_TYPE_ARP) {
429 if (gdm_lte_emulate_arp(skb, nic_type) == 0) {
430 dev_kfree_skb(skb);
431 return 0;
432 }
433 }
434
435 if (nic_type & NIC_TYPE_ICMPV6) {
436 if (gdm_lte_emulate_ndp(skb, nic_type) == 0) {
437 dev_kfree_skb(skb);
438 return 0;
439 }
440 }
441
442 /*
443 * Need byte shift (that is, remove VLAN tag) if there is one
444 * For the case of ARP, this breaks the offset as vlan_ethhdr+4
445 * is treated as ethhdr However, it shouldn't be a problem as
446 * the response starts from arp_hdr and ethhdr is created by this
447 * driver based on the NIC mac
448 */
449 if (nic_type & NIC_TYPE_F_VLAN) {
450 struct vlan_ethhdr *vlan_eth = (struct vlan_ethhdr *)skb->data;
451
452 nic->vlan_id = ntohs(vlan_eth->h_vlan_TCI) & VLAN_VID_MASK;
453 data_buf = skb->data + (VLAN_ETH_HLEN - ETH_HLEN);
454 data_len = skb->len - (VLAN_ETH_HLEN - ETH_HLEN);
455 } else {
456 nic->vlan_id = 0;
457 data_buf = skb->data;
458 data_len = skb->len;
459 }
460
461 /* If it is a ICMPV6 packet, clear all the other bits :
462 * for backward compatibility with the firmware
463 */
464 if (nic_type & NIC_TYPE_ICMPV6)
465 nic_type = NIC_TYPE_ICMPV6;
466
467 /* If it is not a dhcp packet, clear all the flag bits :
468 * original NIC, otherwise the special flag (IPVX | DHCP)
469 */
470 if (!(nic_type & NIC_TYPE_F_DHCP))
471 nic_type &= NIC_TYPE_MASK;
472
473 ret = sscanf(dev->name, "lte%d", &idx);
474 if (ret != 1) {
475 dev_kfree_skb(skb);
476 return -EINVAL;
477 }
478
479 ret = nic->phy_dev->send_sdu_func(nic->phy_dev->priv_dev,
480 data_buf, data_len,
481 nic->pdn_table.dft_eps_id, 0,
482 tx_complete, nic, idx,
483 nic_type);
484
485 if (ret == TX_NO_BUFFER || ret == TX_NO_SPC) {
486 netif_stop_queue(dev);
487 if (ret == TX_NO_BUFFER)
488 ret = 0;
489 else
490 ret = -ENOSPC;
491 } else if (ret == TX_NO_DEV) {
492 ret = -ENODEV;
493 }
494
495 /* Updates tx stats */
496 if (ret) {
497 nic->stats.tx_dropped++;
498 } else {
499 nic->stats.tx_packets++;
500 nic->stats.tx_bytes += data_len;
501 }
502 dev_kfree_skb(skb);
503
504 return 0;
505 }
506
gdm_lte_stats(struct net_device * dev)507 static struct net_device_stats *gdm_lte_stats(struct net_device *dev)
508 {
509 struct nic *nic = netdev_priv(dev);
510
511 return &nic->stats;
512 }
513
gdm_lte_event_send(struct net_device * dev,char * buf,int len)514 static int gdm_lte_event_send(struct net_device *dev, char *buf, int len)
515 {
516 struct nic *nic = netdev_priv(dev);
517 struct hci_packet *hci = (struct hci_packet *)buf;
518 int idx;
519 int ret;
520
521 ret = sscanf(dev->name, "lte%d", &idx);
522 if (ret != 1)
523 return -EINVAL;
524
525 return netlink_send(lte_event.sock, idx, 0, buf,
526 gdm_dev16_to_cpu(
527 nic->phy_dev->get_endian(
528 nic->phy_dev->priv_dev), hci->len)
529 + HCI_HEADER_SIZE);
530 }
531
gdm_lte_event_rcv(struct net_device * dev,u16 type,void * msg,int len)532 static void gdm_lte_event_rcv(struct net_device *dev, u16 type,
533 void *msg, int len)
534 {
535 struct nic *nic = netdev_priv(dev);
536
537 nic->phy_dev->send_hci_func(nic->phy_dev->priv_dev, msg, len, NULL,
538 NULL);
539 }
540
gdm_lte_event_init(void)541 int gdm_lte_event_init(void)
542 {
543 if (lte_event.ref_cnt == 0)
544 lte_event.sock = netlink_init(NETLINK_LTE, gdm_lte_event_rcv);
545
546 if (lte_event.sock) {
547 lte_event.ref_cnt++;
548 return 0;
549 }
550
551 pr_err("event init failed\n");
552 return -1;
553 }
554
gdm_lte_event_exit(void)555 void gdm_lte_event_exit(void)
556 {
557 if (lte_event.sock && --lte_event.ref_cnt == 0) {
558 sock_release(lte_event.sock->sk_socket);
559 lte_event.sock = NULL;
560 }
561 }
562
find_dev_index(u32 nic_type)563 static u8 find_dev_index(u32 nic_type)
564 {
565 u8 index;
566
567 index = (u8)(nic_type & 0x0000000f);
568 if (index > MAX_NIC_TYPE)
569 index = 0;
570
571 return index;
572 }
573
gdm_lte_netif_rx(struct net_device * dev,char * buf,int len,int flagged_nic_type)574 static void gdm_lte_netif_rx(struct net_device *dev, char *buf,
575 int len, int flagged_nic_type)
576 {
577 u32 nic_type;
578 struct nic *nic;
579 struct sk_buff *skb;
580 struct ethhdr eth;
581 struct vlan_ethhdr vlan_eth;
582 void *mac_header_data;
583 u32 mac_header_len;
584 char ip_version = 0;
585
586 nic_type = flagged_nic_type & NIC_TYPE_MASK;
587 nic = netdev_priv(dev);
588
589 if (flagged_nic_type & NIC_TYPE_F_DHCP) {
590 /* Change the destination mac address
591 * with the one requested the IP
592 */
593 if (flagged_nic_type & NIC_TYPE_F_IPV4) {
594 struct dhcp_packet {
595 u8 op; /* BOOTREQUEST or BOOTREPLY */
596 u8 htype; /* hardware address type.
597 * 1 = 10mb ethernet
598 */
599 u8 hlen; /* hardware address length */
600 u8 hops; /* used by relay agents only */
601 u32 xid; /* unique id */
602 u16 secs; /* elapsed since client began
603 * acquisition/renewal
604 */
605 u16 flags; /* only one flag so far: */
606 #define BROADCAST_FLAG 0x8000
607 /* "I need broadcast replies" */
608 u32 ciaddr; /* client IP (if client is in
609 * BOUND, RENEW or REBINDING state)
610 */
611 u32 yiaddr; /* 'your' (client) IP address */
612 /* IP address of next server to use in
613 * bootstrap, returned in DHCPOFFER,
614 * DHCPACK by server
615 */
616 u32 siaddr_nip;
617 u32 gateway_nip; /* relay agent IP address */
618 u8 chaddr[16]; /* link-layer client hardware
619 * address (MAC)
620 */
621 u8 sname[64]; /* server host name (ASCIZ) */
622 u8 file[128]; /* boot file name (ASCIZ) */
623 u32 cookie; /* fixed first four option
624 * bytes (99,130,83,99 dec)
625 */
626 } __packed;
627 void *addr = buf + sizeof(struct iphdr) +
628 sizeof(struct udphdr) +
629 offsetof(struct dhcp_packet, chaddr);
630 ether_addr_copy(nic->dest_mac_addr, addr);
631 }
632 }
633
634 if (nic->vlan_id > 0) {
635 mac_header_data = (void *)&vlan_eth;
636 mac_header_len = VLAN_ETH_HLEN;
637 } else {
638 mac_header_data = (void *)ð
639 mac_header_len = ETH_HLEN;
640 }
641
642 /* Format the data so that it can be put to skb */
643 ether_addr_copy(mac_header_data, nic->dest_mac_addr);
644 memcpy(mac_header_data + ETH_ALEN, nic->src_mac_addr, ETH_ALEN);
645
646 vlan_eth.h_vlan_TCI = htons(nic->vlan_id);
647 vlan_eth.h_vlan_proto = htons(ETH_P_8021Q);
648
649 if (nic_type == NIC_TYPE_ARP) {
650 /* Should be response: Only happens because
651 * there was a request from the host
652 */
653 eth.h_proto = htons(ETH_P_ARP);
654 vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_ARP);
655 } else {
656 ip_version = buf[0] >> 4;
657 if (ip_version == IP_VERSION_4) {
658 eth.h_proto = htons(ETH_P_IP);
659 vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IP);
660 } else if (ip_version == IP_VERSION_6) {
661 eth.h_proto = htons(ETH_P_IPV6);
662 vlan_eth.h_vlan_encapsulated_proto = htons(ETH_P_IPV6);
663 } else {
664 netdev_err(dev, "Unknown IP version %d\n", ip_version);
665 return;
666 }
667 }
668
669 /* Alloc skb and reserve align */
670 skb = dev_alloc_skb(len + mac_header_len + NET_IP_ALIGN);
671 if (!skb)
672 return;
673 skb_reserve(skb, NET_IP_ALIGN);
674
675 memcpy(skb_put(skb, mac_header_len), mac_header_data, mac_header_len);
676 memcpy(skb_put(skb, len), buf, len);
677
678 skb->protocol = ((struct ethhdr *)mac_header_data)->h_proto;
679 skb->dev = dev;
680 skb_reset_mac_header(skb);
681 skb_pull(skb, ETH_HLEN);
682
683 gdm_lte_rx(skb, nic, nic_type);
684 }
685
gdm_lte_multi_sdu_pkt(struct phy_dev * phy_dev,char * buf,int len)686 static void gdm_lte_multi_sdu_pkt(struct phy_dev *phy_dev, char *buf, int len)
687 {
688 struct net_device *dev;
689 struct multi_sdu *multi_sdu = (struct multi_sdu *)buf;
690 struct sdu *sdu = NULL;
691 u8 *data = (u8 *)multi_sdu->data;
692 u16 i = 0;
693 u16 num_packet;
694 u16 hci_len;
695 u16 cmd_evt;
696 u32 nic_type;
697 u8 index;
698
699 hci_len = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
700 multi_sdu->len);
701 num_packet = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
702 multi_sdu->num_packet);
703
704 for (i = 0; i < num_packet; i++) {
705 sdu = (struct sdu *)data;
706
707 cmd_evt = gdm_dev16_to_cpu(phy_dev->
708 get_endian(phy_dev->priv_dev), sdu->cmd_evt);
709 hci_len = gdm_dev16_to_cpu(phy_dev->
710 get_endian(phy_dev->priv_dev), sdu->len);
711 nic_type = gdm_dev32_to_cpu(phy_dev->
712 get_endian(phy_dev->priv_dev), sdu->nic_type);
713
714 if (cmd_evt != LTE_RX_SDU) {
715 pr_err("rx sdu wrong hci %04x\n", cmd_evt);
716 return;
717 }
718 if (hci_len < 12) {
719 pr_err("rx sdu invalid len %d\n", hci_len);
720 return;
721 }
722
723 index = find_dev_index(nic_type);
724 if (index < MAX_NIC_TYPE) {
725 dev = phy_dev->dev[index];
726 gdm_lte_netif_rx(dev, (char *)sdu->data,
727 (int)(hci_len - 12), nic_type);
728 } else {
729 pr_err("rx sdu invalid nic_type :%x\n", nic_type);
730 }
731
732 data += ((hci_len + 3) & 0xfffc) + HCI_HEADER_SIZE;
733 }
734 }
735
gdm_lte_pdn_table(struct net_device * dev,char * buf,int len)736 static void gdm_lte_pdn_table(struct net_device *dev, char *buf, int len)
737 {
738 struct nic *nic = netdev_priv(dev);
739 struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
740
741 if (pdn_table->activate) {
742 nic->pdn_table.activate = pdn_table->activate;
743 nic->pdn_table.dft_eps_id = gdm_dev32_to_cpu(
744 nic->phy_dev->get_endian(
745 nic->phy_dev->priv_dev),
746 pdn_table->dft_eps_id);
747 nic->pdn_table.nic_type = gdm_dev32_to_cpu(
748 nic->phy_dev->get_endian(
749 nic->phy_dev->priv_dev),
750 pdn_table->nic_type);
751
752 netdev_info(dev, "pdn activated, nic_type=0x%x\n",
753 nic->pdn_table.nic_type);
754 } else {
755 memset(&nic->pdn_table, 0x00, sizeof(struct pdn_table));
756 netdev_info(dev, "pdn deactivated\n");
757 }
758 }
759
gdm_lte_receive_pkt(struct phy_dev * phy_dev,char * buf,int len)760 static int gdm_lte_receive_pkt(struct phy_dev *phy_dev, char *buf, int len)
761 {
762 struct hci_packet *hci = (struct hci_packet *)buf;
763 struct hci_pdn_table_ind *pdn_table = (struct hci_pdn_table_ind *)buf;
764 struct sdu *sdu;
765 struct net_device *dev;
766 int ret = 0;
767 u16 cmd_evt;
768 u32 nic_type;
769 u8 index;
770
771 if (!len)
772 return ret;
773
774 cmd_evt = gdm_dev16_to_cpu(phy_dev->get_endian(phy_dev->priv_dev),
775 hci->cmd_evt);
776
777 dev = phy_dev->dev[0];
778 if (!dev)
779 return 0;
780
781 switch (cmd_evt) {
782 case LTE_RX_SDU:
783 sdu = (struct sdu *)hci->data;
784 nic_type = gdm_dev32_to_cpu(phy_dev->
785 get_endian(phy_dev->priv_dev), sdu->nic_type);
786 index = find_dev_index(nic_type);
787 dev = phy_dev->dev[index];
788 gdm_lte_netif_rx(dev, hci->data, len, nic_type);
789 break;
790 case LTE_RX_MULTI_SDU:
791 gdm_lte_multi_sdu_pkt(phy_dev, buf, len);
792 break;
793 case LTE_LINK_ON_OFF_INDICATION:
794 netdev_info(dev, "link %s\n",
795 ((struct hci_connect_ind *)buf)->connect
796 ? "on" : "off");
797 break;
798 case LTE_PDN_TABLE_IND:
799 pdn_table = (struct hci_pdn_table_ind *)buf;
800 nic_type = gdm_dev32_to_cpu(phy_dev->
801 get_endian(phy_dev->priv_dev),
802 pdn_table->nic_type);
803 index = find_dev_index(nic_type);
804 dev = phy_dev->dev[index];
805 gdm_lte_pdn_table(dev, buf, len);
806 /* Fall through */
807 default:
808 ret = gdm_lte_event_send(dev, buf, len);
809 break;
810 }
811
812 return ret;
813 }
814
rx_complete(void * arg,void * data,int len,int context)815 static int rx_complete(void *arg, void *data, int len, int context)
816 {
817 struct phy_dev *phy_dev = arg;
818
819 return gdm_lte_receive_pkt(phy_dev, data, len);
820 }
821
start_rx_proc(struct phy_dev * phy_dev)822 void start_rx_proc(struct phy_dev *phy_dev)
823 {
824 int i;
825
826 for (i = 0; i < MAX_RX_SUBMIT_COUNT; i++)
827 phy_dev->rcv_func(phy_dev->priv_dev,
828 rx_complete, phy_dev, USB_COMPLETE);
829 }
830
831 static const struct net_device_ops gdm_netdev_ops = {
832 .ndo_open = gdm_lte_open,
833 .ndo_stop = gdm_lte_close,
834 .ndo_set_config = gdm_lte_set_config,
835 .ndo_start_xmit = gdm_lte_tx,
836 .ndo_get_stats = gdm_lte_stats,
837 };
838
839 static u8 gdm_lte_macaddr[ETH_ALEN] = {0x00, 0x0a, 0x3b, 0x00, 0x00, 0x00};
840
form_mac_address(u8 * dev_addr,u8 * nic_src,u8 * nic_dest,u8 * mac_address,u8 index)841 static void form_mac_address(u8 *dev_addr, u8 *nic_src, u8 *nic_dest,
842 u8 *mac_address, u8 index)
843 {
844 /* Form the dev_addr */
845 if (!mac_address)
846 ether_addr_copy(dev_addr, gdm_lte_macaddr);
847 else
848 ether_addr_copy(dev_addr, mac_address);
849
850 /* The last byte of the mac address
851 * should be less than or equal to 0xFC
852 */
853 dev_addr[ETH_ALEN - 1] += index;
854
855 /* Create random nic src and copy the first
856 * 3 bytes to be the same as dev_addr
857 */
858 eth_random_addr(nic_src);
859 memcpy(nic_src, dev_addr, 3);
860
861 /* Copy the nic_dest from dev_addr*/
862 ether_addr_copy(nic_dest, dev_addr);
863 }
864
validate_mac_address(u8 * mac_address)865 static void validate_mac_address(u8 *mac_address)
866 {
867 /* if zero address or multicast bit set, restore the default value */
868 if (is_zero_ether_addr(mac_address) || (mac_address[0] & 0x01)) {
869 pr_err("MAC invalid, restoring default\n");
870 memcpy(mac_address, gdm_lte_macaddr, 6);
871 }
872 }
873
register_lte_device(struct phy_dev * phy_dev,struct device * dev,u8 * mac_address)874 int register_lte_device(struct phy_dev *phy_dev,
875 struct device *dev, u8 *mac_address)
876 {
877 struct nic *nic;
878 struct net_device *net;
879 char pdn_dev_name[16];
880 int ret = 0;
881 u8 index;
882
883 validate_mac_address(mac_address);
884
885 for (index = 0; index < MAX_NIC_TYPE; index++) {
886 /* Create device name lteXpdnX */
887 sprintf(pdn_dev_name, "lte%%dpdn%d", index);
888
889 /* Allocate netdev */
890 net = alloc_netdev(sizeof(struct nic), pdn_dev_name,
891 NET_NAME_UNKNOWN, ether_setup);
892 if (!net) {
893 pr_err("alloc_netdev failed\n");
894 ret = -ENOMEM;
895 goto err;
896 }
897 net->netdev_ops = &gdm_netdev_ops;
898 net->flags &= ~IFF_MULTICAST;
899 net->mtu = DEFAULT_MTU_SIZE;
900
901 nic = netdev_priv(net);
902 memset(nic, 0, sizeof(struct nic));
903 nic->netdev = net;
904 nic->phy_dev = phy_dev;
905 nic->nic_id = index;
906
907 form_mac_address(
908 net->dev_addr,
909 nic->src_mac_addr,
910 nic->dest_mac_addr,
911 mac_address,
912 index);
913
914 SET_NETDEV_DEV(net, dev);
915 SET_NETDEV_DEVTYPE(net, &wwan_type);
916
917 ret = register_netdev(net);
918 if (ret)
919 goto err;
920
921 netif_carrier_on(net);
922
923 phy_dev->dev[index] = net;
924 }
925
926 return 0;
927
928 err:
929 unregister_lte_device(phy_dev);
930
931 return ret;
932 }
933
unregister_lte_device(struct phy_dev * phy_dev)934 void unregister_lte_device(struct phy_dev *phy_dev)
935 {
936 struct net_device *net;
937 int index;
938
939 for (index = 0; index < MAX_NIC_TYPE; index++) {
940 net = phy_dev->dev[index];
941 if (!net)
942 continue;
943
944 unregister_netdev(net);
945 free_netdev(net);
946 }
947 }
948