• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/mm.h>
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
18 
19 #include <asm/tlb.h>
20 #include <asm/pgalloc.h>
21 #include "internal.h"
22 
23 enum scan_result {
24 	SCAN_FAIL,
25 	SCAN_SUCCEED,
26 	SCAN_PMD_NULL,
27 	SCAN_EXCEED_NONE_PTE,
28 	SCAN_PTE_NON_PRESENT,
29 	SCAN_PAGE_RO,
30 	SCAN_LACK_REFERENCED_PAGE,
31 	SCAN_PAGE_NULL,
32 	SCAN_SCAN_ABORT,
33 	SCAN_PAGE_COUNT,
34 	SCAN_PAGE_LRU,
35 	SCAN_PAGE_LOCK,
36 	SCAN_PAGE_ANON,
37 	SCAN_PAGE_COMPOUND,
38 	SCAN_ANY_PROCESS,
39 	SCAN_VMA_NULL,
40 	SCAN_VMA_CHECK,
41 	SCAN_ADDRESS_RANGE,
42 	SCAN_SWAP_CACHE_PAGE,
43 	SCAN_DEL_PAGE_LRU,
44 	SCAN_ALLOC_HUGE_PAGE_FAIL,
45 	SCAN_CGROUP_CHARGE_FAIL,
46 	SCAN_EXCEED_SWAP_PTE,
47 	SCAN_TRUNCATED,
48 };
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
52 
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static unsigned long khugepaged_sleep_expire;
61 static DEFINE_SPINLOCK(khugepaged_mm_lock);
62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63 /*
64  * default collapse hugepages if there is at least one pte mapped like
65  * it would have happened if the vma was large enough during page
66  * fault.
67  */
68 static unsigned int khugepaged_max_ptes_none __read_mostly;
69 static unsigned int khugepaged_max_ptes_swap __read_mostly;
70 
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73 
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75 
76 /**
77  * struct mm_slot - hash lookup from mm to mm_slot
78  * @hash: hash collision list
79  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80  * @mm: the mm that this information is valid for
81  */
82 struct mm_slot {
83 	struct hlist_node hash;
84 	struct list_head mm_node;
85 	struct mm_struct *mm;
86 };
87 
88 /**
89  * struct khugepaged_scan - cursor for scanning
90  * @mm_head: the head of the mm list to scan
91  * @mm_slot: the current mm_slot we are scanning
92  * @address: the next address inside that to be scanned
93  *
94  * There is only the one khugepaged_scan instance of this cursor structure.
95  */
96 struct khugepaged_scan {
97 	struct list_head mm_head;
98 	struct mm_slot *mm_slot;
99 	unsigned long address;
100 };
101 
102 static struct khugepaged_scan khugepaged_scan = {
103 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 };
105 
106 #ifdef CONFIG_SYSFS
scan_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)107 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
108 					 struct kobj_attribute *attr,
109 					 char *buf)
110 {
111 	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
112 }
113 
scan_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)114 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
115 					  struct kobj_attribute *attr,
116 					  const char *buf, size_t count)
117 {
118 	unsigned long msecs;
119 	int err;
120 
121 	err = kstrtoul(buf, 10, &msecs);
122 	if (err || msecs > UINT_MAX)
123 		return -EINVAL;
124 
125 	khugepaged_scan_sleep_millisecs = msecs;
126 	khugepaged_sleep_expire = 0;
127 	wake_up_interruptible(&khugepaged_wait);
128 
129 	return count;
130 }
131 static struct kobj_attribute scan_sleep_millisecs_attr =
132 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
133 	       scan_sleep_millisecs_store);
134 
alloc_sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)135 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
136 					  struct kobj_attribute *attr,
137 					  char *buf)
138 {
139 	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
140 }
141 
alloc_sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)142 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
143 					   struct kobj_attribute *attr,
144 					   const char *buf, size_t count)
145 {
146 	unsigned long msecs;
147 	int err;
148 
149 	err = kstrtoul(buf, 10, &msecs);
150 	if (err || msecs > UINT_MAX)
151 		return -EINVAL;
152 
153 	khugepaged_alloc_sleep_millisecs = msecs;
154 	khugepaged_sleep_expire = 0;
155 	wake_up_interruptible(&khugepaged_wait);
156 
157 	return count;
158 }
159 static struct kobj_attribute alloc_sleep_millisecs_attr =
160 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
161 	       alloc_sleep_millisecs_store);
162 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)163 static ssize_t pages_to_scan_show(struct kobject *kobj,
164 				  struct kobj_attribute *attr,
165 				  char *buf)
166 {
167 	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
168 }
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)169 static ssize_t pages_to_scan_store(struct kobject *kobj,
170 				   struct kobj_attribute *attr,
171 				   const char *buf, size_t count)
172 {
173 	int err;
174 	unsigned long pages;
175 
176 	err = kstrtoul(buf, 10, &pages);
177 	if (err || !pages || pages > UINT_MAX)
178 		return -EINVAL;
179 
180 	khugepaged_pages_to_scan = pages;
181 
182 	return count;
183 }
184 static struct kobj_attribute pages_to_scan_attr =
185 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
186 	       pages_to_scan_store);
187 
pages_collapsed_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)188 static ssize_t pages_collapsed_show(struct kobject *kobj,
189 				    struct kobj_attribute *attr,
190 				    char *buf)
191 {
192 	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
193 }
194 static struct kobj_attribute pages_collapsed_attr =
195 	__ATTR_RO(pages_collapsed);
196 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)197 static ssize_t full_scans_show(struct kobject *kobj,
198 			       struct kobj_attribute *attr,
199 			       char *buf)
200 {
201 	return sprintf(buf, "%u\n", khugepaged_full_scans);
202 }
203 static struct kobj_attribute full_scans_attr =
204 	__ATTR_RO(full_scans);
205 
khugepaged_defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)206 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
207 				      struct kobj_attribute *attr, char *buf)
208 {
209 	return single_hugepage_flag_show(kobj, attr, buf,
210 				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
211 }
khugepaged_defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)212 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
213 				       struct kobj_attribute *attr,
214 				       const char *buf, size_t count)
215 {
216 	return single_hugepage_flag_store(kobj, attr, buf, count,
217 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
218 }
219 static struct kobj_attribute khugepaged_defrag_attr =
220 	__ATTR(defrag, 0644, khugepaged_defrag_show,
221 	       khugepaged_defrag_store);
222 
223 /*
224  * max_ptes_none controls if khugepaged should collapse hugepages over
225  * any unmapped ptes in turn potentially increasing the memory
226  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
227  * reduce the available free memory in the system as it
228  * runs. Increasing max_ptes_none will instead potentially reduce the
229  * free memory in the system during the khugepaged scan.
230  */
khugepaged_max_ptes_none_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)231 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
232 					     struct kobj_attribute *attr,
233 					     char *buf)
234 {
235 	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
236 }
khugepaged_max_ptes_none_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)237 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
238 					      struct kobj_attribute *attr,
239 					      const char *buf, size_t count)
240 {
241 	int err;
242 	unsigned long max_ptes_none;
243 
244 	err = kstrtoul(buf, 10, &max_ptes_none);
245 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
246 		return -EINVAL;
247 
248 	khugepaged_max_ptes_none = max_ptes_none;
249 
250 	return count;
251 }
252 static struct kobj_attribute khugepaged_max_ptes_none_attr =
253 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
254 	       khugepaged_max_ptes_none_store);
255 
khugepaged_max_ptes_swap_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)256 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
257 					     struct kobj_attribute *attr,
258 					     char *buf)
259 {
260 	return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
261 }
262 
khugepaged_max_ptes_swap_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)263 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
264 					      struct kobj_attribute *attr,
265 					      const char *buf, size_t count)
266 {
267 	int err;
268 	unsigned long max_ptes_swap;
269 
270 	err  = kstrtoul(buf, 10, &max_ptes_swap);
271 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
272 		return -EINVAL;
273 
274 	khugepaged_max_ptes_swap = max_ptes_swap;
275 
276 	return count;
277 }
278 
279 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
280 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
281 	       khugepaged_max_ptes_swap_store);
282 
283 static struct attribute *khugepaged_attr[] = {
284 	&khugepaged_defrag_attr.attr,
285 	&khugepaged_max_ptes_none_attr.attr,
286 	&pages_to_scan_attr.attr,
287 	&pages_collapsed_attr.attr,
288 	&full_scans_attr.attr,
289 	&scan_sleep_millisecs_attr.attr,
290 	&alloc_sleep_millisecs_attr.attr,
291 	&khugepaged_max_ptes_swap_attr.attr,
292 	NULL,
293 };
294 
295 struct attribute_group khugepaged_attr_group = {
296 	.attrs = khugepaged_attr,
297 	.name = "khugepaged",
298 };
299 #endif /* CONFIG_SYSFS */
300 
301 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
302 
hugepage_madvise(struct vm_area_struct * vma,unsigned long * vm_flags,int advice)303 int hugepage_madvise(struct vm_area_struct *vma,
304 		     unsigned long *vm_flags, int advice)
305 {
306 	switch (advice) {
307 	case MADV_HUGEPAGE:
308 #ifdef CONFIG_S390
309 		/*
310 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
311 		 * can't handle this properly after s390_enable_sie, so we simply
312 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
313 		 */
314 		if (mm_has_pgste(vma->vm_mm))
315 			return 0;
316 #endif
317 		*vm_flags &= ~VM_NOHUGEPAGE;
318 		*vm_flags |= VM_HUGEPAGE;
319 		/*
320 		 * If the vma become good for khugepaged to scan,
321 		 * register it here without waiting a page fault that
322 		 * may not happen any time soon.
323 		 */
324 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
325 				khugepaged_enter_vma_merge(vma, *vm_flags))
326 			return -ENOMEM;
327 		break;
328 	case MADV_NOHUGEPAGE:
329 		*vm_flags &= ~VM_HUGEPAGE;
330 		*vm_flags |= VM_NOHUGEPAGE;
331 		/*
332 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
333 		 * this vma even if we leave the mm registered in khugepaged if
334 		 * it got registered before VM_NOHUGEPAGE was set.
335 		 */
336 		break;
337 	}
338 
339 	return 0;
340 }
341 
khugepaged_init(void)342 int __init khugepaged_init(void)
343 {
344 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
345 					  sizeof(struct mm_slot),
346 					  __alignof__(struct mm_slot), 0, NULL);
347 	if (!mm_slot_cache)
348 		return -ENOMEM;
349 
350 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
351 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
352 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
353 
354 	return 0;
355 }
356 
khugepaged_destroy(void)357 void __init khugepaged_destroy(void)
358 {
359 	kmem_cache_destroy(mm_slot_cache);
360 }
361 
alloc_mm_slot(void)362 static inline struct mm_slot *alloc_mm_slot(void)
363 {
364 	if (!mm_slot_cache)	/* initialization failed */
365 		return NULL;
366 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
367 }
368 
free_mm_slot(struct mm_slot * mm_slot)369 static inline void free_mm_slot(struct mm_slot *mm_slot)
370 {
371 	kmem_cache_free(mm_slot_cache, mm_slot);
372 }
373 
get_mm_slot(struct mm_struct * mm)374 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
375 {
376 	struct mm_slot *mm_slot;
377 
378 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
379 		if (mm == mm_slot->mm)
380 			return mm_slot;
381 
382 	return NULL;
383 }
384 
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)385 static void insert_to_mm_slots_hash(struct mm_struct *mm,
386 				    struct mm_slot *mm_slot)
387 {
388 	mm_slot->mm = mm;
389 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
390 }
391 
khugepaged_test_exit(struct mm_struct * mm)392 static inline int khugepaged_test_exit(struct mm_struct *mm)
393 {
394 	return atomic_read(&mm->mm_users) == 0;
395 }
396 
__khugepaged_enter(struct mm_struct * mm)397 int __khugepaged_enter(struct mm_struct *mm)
398 {
399 	struct mm_slot *mm_slot;
400 	int wakeup;
401 
402 	mm_slot = alloc_mm_slot();
403 	if (!mm_slot)
404 		return -ENOMEM;
405 
406 	/* __khugepaged_exit() must not run from under us */
407 	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
408 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
409 		free_mm_slot(mm_slot);
410 		return 0;
411 	}
412 
413 	spin_lock(&khugepaged_mm_lock);
414 	insert_to_mm_slots_hash(mm, mm_slot);
415 	/*
416 	 * Insert just behind the scanning cursor, to let the area settle
417 	 * down a little.
418 	 */
419 	wakeup = list_empty(&khugepaged_scan.mm_head);
420 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
421 	spin_unlock(&khugepaged_mm_lock);
422 
423 	atomic_inc(&mm->mm_count);
424 	if (wakeup)
425 		wake_up_interruptible(&khugepaged_wait);
426 
427 	return 0;
428 }
429 
khugepaged_enter_vma_merge(struct vm_area_struct * vma,unsigned long vm_flags)430 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
431 			       unsigned long vm_flags)
432 {
433 	unsigned long hstart, hend;
434 	if (!vma->anon_vma)
435 		/*
436 		 * Not yet faulted in so we will register later in the
437 		 * page fault if needed.
438 		 */
439 		return 0;
440 	if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
441 		/* khugepaged not yet working on file or special mappings */
442 		return 0;
443 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
444 	hend = vma->vm_end & HPAGE_PMD_MASK;
445 	if (hstart < hend)
446 		return khugepaged_enter(vma, vm_flags);
447 	return 0;
448 }
449 
__khugepaged_exit(struct mm_struct * mm)450 void __khugepaged_exit(struct mm_struct *mm)
451 {
452 	struct mm_slot *mm_slot;
453 	int free = 0;
454 
455 	spin_lock(&khugepaged_mm_lock);
456 	mm_slot = get_mm_slot(mm);
457 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
458 		hash_del(&mm_slot->hash);
459 		list_del(&mm_slot->mm_node);
460 		free = 1;
461 	}
462 	spin_unlock(&khugepaged_mm_lock);
463 
464 	if (free) {
465 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
466 		free_mm_slot(mm_slot);
467 		mmdrop(mm);
468 	} else if (mm_slot) {
469 		/*
470 		 * This is required to serialize against
471 		 * khugepaged_test_exit() (which is guaranteed to run
472 		 * under mmap sem read mode). Stop here (after we
473 		 * return all pagetables will be destroyed) until
474 		 * khugepaged has finished working on the pagetables
475 		 * under the mmap_sem.
476 		 */
477 		down_write(&mm->mmap_sem);
478 		up_write(&mm->mmap_sem);
479 	}
480 }
481 
release_pte_page(struct page * page)482 static void release_pte_page(struct page *page)
483 {
484 	/* 0 stands for page_is_file_cache(page) == false */
485 	dec_node_page_state(page, NR_ISOLATED_ANON + 0);
486 	unlock_page(page);
487 	putback_lru_page(page);
488 }
489 
release_pte_pages(pte_t * pte,pte_t * _pte)490 static void release_pte_pages(pte_t *pte, pte_t *_pte)
491 {
492 	while (--_pte >= pte) {
493 		pte_t pteval = *_pte;
494 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
495 			release_pte_page(pte_page(pteval));
496 	}
497 }
498 
__collapse_huge_page_isolate(struct vm_area_struct * vma,unsigned long address,pte_t * pte)499 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
500 					unsigned long address,
501 					pte_t *pte)
502 {
503 	struct page *page = NULL;
504 	pte_t *_pte;
505 	int none_or_zero = 0, result = 0, referenced = 0;
506 	bool writable = false;
507 
508 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
509 	     _pte++, address += PAGE_SIZE) {
510 		pte_t pteval = *_pte;
511 		if (pte_none(pteval) || (pte_present(pteval) &&
512 				is_zero_pfn(pte_pfn(pteval)))) {
513 			if (!userfaultfd_armed(vma) &&
514 			    ++none_or_zero <= khugepaged_max_ptes_none) {
515 				continue;
516 			} else {
517 				result = SCAN_EXCEED_NONE_PTE;
518 				goto out;
519 			}
520 		}
521 		if (!pte_present(pteval)) {
522 			result = SCAN_PTE_NON_PRESENT;
523 			goto out;
524 		}
525 		page = vm_normal_page(vma, address, pteval);
526 		if (unlikely(!page)) {
527 			result = SCAN_PAGE_NULL;
528 			goto out;
529 		}
530 
531 		/* TODO: teach khugepaged to collapse THP mapped with pte */
532 		if (PageCompound(page)) {
533 			result = SCAN_PAGE_COMPOUND;
534 			goto out;
535 		}
536 
537 		VM_BUG_ON_PAGE(!PageAnon(page), page);
538 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
539 
540 		/*
541 		 * We can do it before isolate_lru_page because the
542 		 * page can't be freed from under us. NOTE: PG_lock
543 		 * is needed to serialize against split_huge_page
544 		 * when invoked from the VM.
545 		 */
546 		if (!trylock_page(page)) {
547 			result = SCAN_PAGE_LOCK;
548 			goto out;
549 		}
550 
551 		/*
552 		 * cannot use mapcount: can't collapse if there's a gup pin.
553 		 * The page must only be referenced by the scanned process
554 		 * and page swap cache.
555 		 */
556 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
557 			unlock_page(page);
558 			result = SCAN_PAGE_COUNT;
559 			goto out;
560 		}
561 		if (pte_write(pteval)) {
562 			writable = true;
563 		} else {
564 			if (PageSwapCache(page) &&
565 			    !reuse_swap_page(page, NULL)) {
566 				unlock_page(page);
567 				result = SCAN_SWAP_CACHE_PAGE;
568 				goto out;
569 			}
570 			/*
571 			 * Page is not in the swap cache. It can be collapsed
572 			 * into a THP.
573 			 */
574 		}
575 
576 		/*
577 		 * Isolate the page to avoid collapsing an hugepage
578 		 * currently in use by the VM.
579 		 */
580 		if (isolate_lru_page(page)) {
581 			unlock_page(page);
582 			result = SCAN_DEL_PAGE_LRU;
583 			goto out;
584 		}
585 		/* 0 stands for page_is_file_cache(page) == false */
586 		inc_node_page_state(page, NR_ISOLATED_ANON + 0);
587 		VM_BUG_ON_PAGE(!PageLocked(page), page);
588 		VM_BUG_ON_PAGE(PageLRU(page), page);
589 
590 		/* There should be enough young pte to collapse the page */
591 		if (pte_young(pteval) ||
592 		    page_is_young(page) || PageReferenced(page) ||
593 		    mmu_notifier_test_young(vma->vm_mm, address))
594 			referenced++;
595 	}
596 	if (likely(writable)) {
597 		if (likely(referenced)) {
598 			result = SCAN_SUCCEED;
599 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
600 							    referenced, writable, result);
601 			return 1;
602 		}
603 	} else {
604 		result = SCAN_PAGE_RO;
605 	}
606 
607 out:
608 	release_pte_pages(pte, _pte);
609 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
610 					    referenced, writable, result);
611 	return 0;
612 }
613 
__collapse_huge_page_copy(pte_t * pte,struct page * page,struct vm_area_struct * vma,unsigned long address,spinlock_t * ptl)614 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
615 				      struct vm_area_struct *vma,
616 				      unsigned long address,
617 				      spinlock_t *ptl)
618 {
619 	pte_t *_pte;
620 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
621 		pte_t pteval = *_pte;
622 		struct page *src_page;
623 
624 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
625 			clear_user_highpage(page, address);
626 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
627 			if (is_zero_pfn(pte_pfn(pteval))) {
628 				/*
629 				 * ptl mostly unnecessary.
630 				 */
631 				spin_lock(ptl);
632 				/*
633 				 * paravirt calls inside pte_clear here are
634 				 * superfluous.
635 				 */
636 				pte_clear(vma->vm_mm, address, _pte);
637 				spin_unlock(ptl);
638 			}
639 		} else {
640 			src_page = pte_page(pteval);
641 			copy_user_highpage(page, src_page, address, vma);
642 			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
643 			release_pte_page(src_page);
644 			/*
645 			 * ptl mostly unnecessary, but preempt has to
646 			 * be disabled to update the per-cpu stats
647 			 * inside page_remove_rmap().
648 			 */
649 			spin_lock(ptl);
650 			/*
651 			 * paravirt calls inside pte_clear here are
652 			 * superfluous.
653 			 */
654 			pte_clear(vma->vm_mm, address, _pte);
655 			page_remove_rmap(src_page, false);
656 			spin_unlock(ptl);
657 			free_page_and_swap_cache(src_page);
658 		}
659 
660 		address += PAGE_SIZE;
661 		page++;
662 	}
663 }
664 
khugepaged_alloc_sleep(void)665 static void khugepaged_alloc_sleep(void)
666 {
667 	DEFINE_WAIT(wait);
668 
669 	add_wait_queue(&khugepaged_wait, &wait);
670 	freezable_schedule_timeout_interruptible(
671 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
672 	remove_wait_queue(&khugepaged_wait, &wait);
673 }
674 
675 static int khugepaged_node_load[MAX_NUMNODES];
676 
khugepaged_scan_abort(int nid)677 static bool khugepaged_scan_abort(int nid)
678 {
679 	int i;
680 
681 	/*
682 	 * If node_reclaim_mode is disabled, then no extra effort is made to
683 	 * allocate memory locally.
684 	 */
685 	if (!node_reclaim_mode)
686 		return false;
687 
688 	/* If there is a count for this node already, it must be acceptable */
689 	if (khugepaged_node_load[nid])
690 		return false;
691 
692 	for (i = 0; i < MAX_NUMNODES; i++) {
693 		if (!khugepaged_node_load[i])
694 			continue;
695 		if (node_distance(nid, i) > RECLAIM_DISTANCE)
696 			return true;
697 	}
698 	return false;
699 }
700 
701 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
alloc_hugepage_khugepaged_gfpmask(void)702 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
703 {
704 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
705 }
706 
707 #ifdef CONFIG_NUMA
khugepaged_find_target_node(void)708 static int khugepaged_find_target_node(void)
709 {
710 	static int last_khugepaged_target_node = NUMA_NO_NODE;
711 	int nid, target_node = 0, max_value = 0;
712 
713 	/* find first node with max normal pages hit */
714 	for (nid = 0; nid < MAX_NUMNODES; nid++)
715 		if (khugepaged_node_load[nid] > max_value) {
716 			max_value = khugepaged_node_load[nid];
717 			target_node = nid;
718 		}
719 
720 	/* do some balance if several nodes have the same hit record */
721 	if (target_node <= last_khugepaged_target_node)
722 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
723 				nid++)
724 			if (max_value == khugepaged_node_load[nid]) {
725 				target_node = nid;
726 				break;
727 			}
728 
729 	last_khugepaged_target_node = target_node;
730 	return target_node;
731 }
732 
khugepaged_prealloc_page(struct page ** hpage,bool * wait)733 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
734 {
735 	if (IS_ERR(*hpage)) {
736 		if (!*wait)
737 			return false;
738 
739 		*wait = false;
740 		*hpage = NULL;
741 		khugepaged_alloc_sleep();
742 	} else if (*hpage) {
743 		put_page(*hpage);
744 		*hpage = NULL;
745 	}
746 
747 	return true;
748 }
749 
750 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)751 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
752 {
753 	VM_BUG_ON_PAGE(*hpage, *hpage);
754 
755 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
756 	if (unlikely(!*hpage)) {
757 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
758 		*hpage = ERR_PTR(-ENOMEM);
759 		return NULL;
760 	}
761 
762 	prep_transhuge_page(*hpage);
763 	count_vm_event(THP_COLLAPSE_ALLOC);
764 	return *hpage;
765 }
766 #else
khugepaged_find_target_node(void)767 static int khugepaged_find_target_node(void)
768 {
769 	return 0;
770 }
771 
alloc_khugepaged_hugepage(void)772 static inline struct page *alloc_khugepaged_hugepage(void)
773 {
774 	struct page *page;
775 
776 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
777 			   HPAGE_PMD_ORDER);
778 	if (page)
779 		prep_transhuge_page(page);
780 	return page;
781 }
782 
khugepaged_alloc_hugepage(bool * wait)783 static struct page *khugepaged_alloc_hugepage(bool *wait)
784 {
785 	struct page *hpage;
786 
787 	do {
788 		hpage = alloc_khugepaged_hugepage();
789 		if (!hpage) {
790 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
791 			if (!*wait)
792 				return NULL;
793 
794 			*wait = false;
795 			khugepaged_alloc_sleep();
796 		} else
797 			count_vm_event(THP_COLLAPSE_ALLOC);
798 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
799 
800 	return hpage;
801 }
802 
khugepaged_prealloc_page(struct page ** hpage,bool * wait)803 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
804 {
805 	if (!*hpage)
806 		*hpage = khugepaged_alloc_hugepage(wait);
807 
808 	if (unlikely(!*hpage))
809 		return false;
810 
811 	return true;
812 }
813 
814 static struct page *
khugepaged_alloc_page(struct page ** hpage,gfp_t gfp,int node)815 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
816 {
817 	VM_BUG_ON(!*hpage);
818 
819 	return  *hpage;
820 }
821 #endif
822 
hugepage_vma_check(struct vm_area_struct * vma)823 static bool hugepage_vma_check(struct vm_area_struct *vma)
824 {
825 	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
826 	    (vma->vm_flags & VM_NOHUGEPAGE))
827 		return false;
828 	if (shmem_file(vma->vm_file)) {
829 		if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
830 			return false;
831 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
832 				HPAGE_PMD_NR);
833 	}
834 	if (!vma->anon_vma || vma->vm_ops)
835 		return false;
836 	if (is_vma_temporary_stack(vma))
837 		return false;
838 	return !(vma->vm_flags & VM_NO_KHUGEPAGED);
839 }
840 
841 /*
842  * If mmap_sem temporarily dropped, revalidate vma
843  * before taking mmap_sem.
844  * Return 0 if succeeds, otherwise return none-zero
845  * value (scan code).
846  */
847 
hugepage_vma_revalidate(struct mm_struct * mm,unsigned long address,struct vm_area_struct ** vmap)848 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
849 		struct vm_area_struct **vmap)
850 {
851 	struct vm_area_struct *vma;
852 	unsigned long hstart, hend;
853 
854 	if (unlikely(khugepaged_test_exit(mm)))
855 		return SCAN_ANY_PROCESS;
856 
857 	*vmap = vma = find_vma(mm, address);
858 	if (!vma)
859 		return SCAN_VMA_NULL;
860 
861 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
862 	hend = vma->vm_end & HPAGE_PMD_MASK;
863 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
864 		return SCAN_ADDRESS_RANGE;
865 	if (!hugepage_vma_check(vma))
866 		return SCAN_VMA_CHECK;
867 	return 0;
868 }
869 
870 /*
871  * Bring missing pages in from swap, to complete THP collapse.
872  * Only done if khugepaged_scan_pmd believes it is worthwhile.
873  *
874  * Called and returns without pte mapped or spinlocks held,
875  * but with mmap_sem held to protect against vma changes.
876  */
877 
__collapse_huge_page_swapin(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,int referenced)878 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
879 					struct vm_area_struct *vma,
880 					unsigned long address, pmd_t *pmd,
881 					int referenced)
882 {
883 	pte_t pteval;
884 	int swapped_in = 0, ret = 0;
885 	struct fault_env fe = {
886 		.vma = vma,
887 		.address = address,
888 		.flags = FAULT_FLAG_ALLOW_RETRY,
889 		.pmd = pmd,
890 	};
891 
892 	/* we only decide to swapin, if there is enough young ptes */
893 	if (referenced < HPAGE_PMD_NR/2) {
894 		trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
895 		return false;
896 	}
897 	fe.pte = pte_offset_map(pmd, address);
898 	for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
899 			fe.pte++, fe.address += PAGE_SIZE) {
900 		pteval = *fe.pte;
901 		if (!is_swap_pte(pteval))
902 			continue;
903 		swapped_in++;
904 		ret = do_swap_page(&fe, pteval);
905 
906 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
907 		if (ret & VM_FAULT_RETRY) {
908 			down_read(&mm->mmap_sem);
909 			if (hugepage_vma_revalidate(mm, address, &fe.vma)) {
910 				/* vma is no longer available, don't continue to swapin */
911 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
912 				return false;
913 			}
914 			/* check if the pmd is still valid */
915 			if (mm_find_pmd(mm, address) != pmd)
916 				return false;
917 		}
918 		if (ret & VM_FAULT_ERROR) {
919 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
920 			return false;
921 		}
922 		/* pte is unmapped now, we need to map it */
923 		fe.pte = pte_offset_map(pmd, fe.address);
924 	}
925 	fe.pte--;
926 	pte_unmap(fe.pte);
927 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
928 	return true;
929 }
930 
collapse_huge_page(struct mm_struct * mm,unsigned long address,struct page ** hpage,int node,int referenced)931 static void collapse_huge_page(struct mm_struct *mm,
932 				   unsigned long address,
933 				   struct page **hpage,
934 				   int node, int referenced)
935 {
936 	pmd_t *pmd, _pmd;
937 	pte_t *pte;
938 	pgtable_t pgtable;
939 	struct page *new_page;
940 	spinlock_t *pmd_ptl, *pte_ptl;
941 	int isolated = 0, result = 0;
942 	struct mem_cgroup *memcg;
943 	struct vm_area_struct *vma;
944 	unsigned long mmun_start;	/* For mmu_notifiers */
945 	unsigned long mmun_end;		/* For mmu_notifiers */
946 	gfp_t gfp;
947 
948 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
949 
950 	/* Only allocate from the target node */
951 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
952 
953 	/*
954 	 * Before allocating the hugepage, release the mmap_sem read lock.
955 	 * The allocation can take potentially a long time if it involves
956 	 * sync compaction, and we do not need to hold the mmap_sem during
957 	 * that. We will recheck the vma after taking it again in write mode.
958 	 */
959 	up_read(&mm->mmap_sem);
960 	new_page = khugepaged_alloc_page(hpage, gfp, node);
961 	if (!new_page) {
962 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
963 		goto out_nolock;
964 	}
965 
966 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
967 		result = SCAN_CGROUP_CHARGE_FAIL;
968 		goto out_nolock;
969 	}
970 
971 	down_read(&mm->mmap_sem);
972 	result = hugepage_vma_revalidate(mm, address, &vma);
973 	if (result) {
974 		mem_cgroup_cancel_charge(new_page, memcg, true);
975 		up_read(&mm->mmap_sem);
976 		goto out_nolock;
977 	}
978 
979 	pmd = mm_find_pmd(mm, address);
980 	if (!pmd) {
981 		result = SCAN_PMD_NULL;
982 		mem_cgroup_cancel_charge(new_page, memcg, true);
983 		up_read(&mm->mmap_sem);
984 		goto out_nolock;
985 	}
986 
987 	/*
988 	 * __collapse_huge_page_swapin always returns with mmap_sem locked.
989 	 * If it fails, we release mmap_sem and jump out_nolock.
990 	 * Continuing to collapse causes inconsistency.
991 	 */
992 	if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
993 		mem_cgroup_cancel_charge(new_page, memcg, true);
994 		up_read(&mm->mmap_sem);
995 		goto out_nolock;
996 	}
997 
998 	up_read(&mm->mmap_sem);
999 	/*
1000 	 * Prevent all access to pagetables with the exception of
1001 	 * gup_fast later handled by the ptep_clear_flush and the VM
1002 	 * handled by the anon_vma lock + PG_lock.
1003 	 */
1004 	down_write(&mm->mmap_sem);
1005 	result = hugepage_vma_revalidate(mm, address, &vma);
1006 	if (result)
1007 		goto out;
1008 	/* check if the pmd is still valid */
1009 	if (mm_find_pmd(mm, address) != pmd)
1010 		goto out;
1011 
1012 	anon_vma_lock_write(vma->anon_vma);
1013 
1014 	pte = pte_offset_map(pmd, address);
1015 	pte_ptl = pte_lockptr(mm, pmd);
1016 
1017 	mmun_start = address;
1018 	mmun_end   = address + HPAGE_PMD_SIZE;
1019 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1020 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1021 	/*
1022 	 * After this gup_fast can't run anymore. This also removes
1023 	 * any huge TLB entry from the CPU so we won't allow
1024 	 * huge and small TLB entries for the same virtual address
1025 	 * to avoid the risk of CPU bugs in that area.
1026 	 */
1027 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1028 	spin_unlock(pmd_ptl);
1029 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1030 
1031 	spin_lock(pte_ptl);
1032 	isolated = __collapse_huge_page_isolate(vma, address, pte);
1033 	spin_unlock(pte_ptl);
1034 
1035 	if (unlikely(!isolated)) {
1036 		pte_unmap(pte);
1037 		spin_lock(pmd_ptl);
1038 		BUG_ON(!pmd_none(*pmd));
1039 		/*
1040 		 * We can only use set_pmd_at when establishing
1041 		 * hugepmds and never for establishing regular pmds that
1042 		 * points to regular pagetables. Use pmd_populate for that
1043 		 */
1044 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1045 		spin_unlock(pmd_ptl);
1046 		anon_vma_unlock_write(vma->anon_vma);
1047 		result = SCAN_FAIL;
1048 		goto out;
1049 	}
1050 
1051 	/*
1052 	 * All pages are isolated and locked so anon_vma rmap
1053 	 * can't run anymore.
1054 	 */
1055 	anon_vma_unlock_write(vma->anon_vma);
1056 
1057 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1058 	pte_unmap(pte);
1059 	__SetPageUptodate(new_page);
1060 	pgtable = pmd_pgtable(_pmd);
1061 
1062 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1063 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1064 
1065 	/*
1066 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1067 	 * this is needed to avoid the copy_huge_page writes to become
1068 	 * visible after the set_pmd_at() write.
1069 	 */
1070 	smp_wmb();
1071 
1072 	spin_lock(pmd_ptl);
1073 	BUG_ON(!pmd_none(*pmd));
1074 	page_add_new_anon_rmap(new_page, vma, address, true);
1075 	mem_cgroup_commit_charge(new_page, memcg, false, true);
1076 	lru_cache_add_active_or_unevictable(new_page, vma);
1077 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1078 	set_pmd_at(mm, address, pmd, _pmd);
1079 	update_mmu_cache_pmd(vma, address, pmd);
1080 	spin_unlock(pmd_ptl);
1081 
1082 	*hpage = NULL;
1083 
1084 	khugepaged_pages_collapsed++;
1085 	result = SCAN_SUCCEED;
1086 out_up_write:
1087 	up_write(&mm->mmap_sem);
1088 out_nolock:
1089 	trace_mm_collapse_huge_page(mm, isolated, result);
1090 	return;
1091 out:
1092 	mem_cgroup_cancel_charge(new_page, memcg, true);
1093 	goto out_up_write;
1094 }
1095 
khugepaged_scan_pmd(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,struct page ** hpage)1096 static int khugepaged_scan_pmd(struct mm_struct *mm,
1097 			       struct vm_area_struct *vma,
1098 			       unsigned long address,
1099 			       struct page **hpage)
1100 {
1101 	pmd_t *pmd;
1102 	pte_t *pte, *_pte;
1103 	int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1104 	struct page *page = NULL;
1105 	unsigned long _address;
1106 	spinlock_t *ptl;
1107 	int node = NUMA_NO_NODE, unmapped = 0;
1108 	bool writable = false;
1109 
1110 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1111 
1112 	pmd = mm_find_pmd(mm, address);
1113 	if (!pmd) {
1114 		result = SCAN_PMD_NULL;
1115 		goto out;
1116 	}
1117 
1118 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1119 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1120 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1121 	     _pte++, _address += PAGE_SIZE) {
1122 		pte_t pteval = *_pte;
1123 		if (is_swap_pte(pteval)) {
1124 			if (++unmapped <= khugepaged_max_ptes_swap) {
1125 				continue;
1126 			} else {
1127 				result = SCAN_EXCEED_SWAP_PTE;
1128 				goto out_unmap;
1129 			}
1130 		}
1131 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1132 			if (!userfaultfd_armed(vma) &&
1133 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1134 				continue;
1135 			} else {
1136 				result = SCAN_EXCEED_NONE_PTE;
1137 				goto out_unmap;
1138 			}
1139 		}
1140 		if (!pte_present(pteval)) {
1141 			result = SCAN_PTE_NON_PRESENT;
1142 			goto out_unmap;
1143 		}
1144 		if (pte_write(pteval))
1145 			writable = true;
1146 
1147 		page = vm_normal_page(vma, _address, pteval);
1148 		if (unlikely(!page)) {
1149 			result = SCAN_PAGE_NULL;
1150 			goto out_unmap;
1151 		}
1152 
1153 		/* TODO: teach khugepaged to collapse THP mapped with pte */
1154 		if (PageCompound(page)) {
1155 			result = SCAN_PAGE_COMPOUND;
1156 			goto out_unmap;
1157 		}
1158 
1159 		/*
1160 		 * Record which node the original page is from and save this
1161 		 * information to khugepaged_node_load[].
1162 		 * Khupaged will allocate hugepage from the node has the max
1163 		 * hit record.
1164 		 */
1165 		node = page_to_nid(page);
1166 		if (khugepaged_scan_abort(node)) {
1167 			result = SCAN_SCAN_ABORT;
1168 			goto out_unmap;
1169 		}
1170 		khugepaged_node_load[node]++;
1171 		if (!PageLRU(page)) {
1172 			result = SCAN_PAGE_LRU;
1173 			goto out_unmap;
1174 		}
1175 		if (PageLocked(page)) {
1176 			result = SCAN_PAGE_LOCK;
1177 			goto out_unmap;
1178 		}
1179 		if (!PageAnon(page)) {
1180 			result = SCAN_PAGE_ANON;
1181 			goto out_unmap;
1182 		}
1183 
1184 		/*
1185 		 * cannot use mapcount: can't collapse if there's a gup pin.
1186 		 * The page must only be referenced by the scanned process
1187 		 * and page swap cache.
1188 		 */
1189 		if (page_count(page) != 1 + !!PageSwapCache(page)) {
1190 			result = SCAN_PAGE_COUNT;
1191 			goto out_unmap;
1192 		}
1193 		if (pte_young(pteval) ||
1194 		    page_is_young(page) || PageReferenced(page) ||
1195 		    mmu_notifier_test_young(vma->vm_mm, address))
1196 			referenced++;
1197 	}
1198 	if (writable) {
1199 		if (referenced) {
1200 			result = SCAN_SUCCEED;
1201 			ret = 1;
1202 		} else {
1203 			result = SCAN_LACK_REFERENCED_PAGE;
1204 		}
1205 	} else {
1206 		result = SCAN_PAGE_RO;
1207 	}
1208 out_unmap:
1209 	pte_unmap_unlock(pte, ptl);
1210 	if (ret) {
1211 		node = khugepaged_find_target_node();
1212 		/* collapse_huge_page will return with the mmap_sem released */
1213 		collapse_huge_page(mm, address, hpage, node, referenced);
1214 	}
1215 out:
1216 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1217 				     none_or_zero, result, unmapped);
1218 	return ret;
1219 }
1220 
collect_mm_slot(struct mm_slot * mm_slot)1221 static void collect_mm_slot(struct mm_slot *mm_slot)
1222 {
1223 	struct mm_struct *mm = mm_slot->mm;
1224 
1225 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1226 
1227 	if (khugepaged_test_exit(mm)) {
1228 		/* free mm_slot */
1229 		hash_del(&mm_slot->hash);
1230 		list_del(&mm_slot->mm_node);
1231 
1232 		/*
1233 		 * Not strictly needed because the mm exited already.
1234 		 *
1235 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1236 		 */
1237 
1238 		/* khugepaged_mm_lock actually not necessary for the below */
1239 		free_mm_slot(mm_slot);
1240 		mmdrop(mm);
1241 	}
1242 }
1243 
1244 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
retract_page_tables(struct address_space * mapping,pgoff_t pgoff)1245 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1246 {
1247 	struct vm_area_struct *vma;
1248 	unsigned long addr;
1249 	pmd_t *pmd, _pmd;
1250 
1251 	i_mmap_lock_write(mapping);
1252 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1253 		/* probably overkill */
1254 		if (vma->anon_vma)
1255 			continue;
1256 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1257 		if (addr & ~HPAGE_PMD_MASK)
1258 			continue;
1259 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1260 			continue;
1261 		pmd = mm_find_pmd(vma->vm_mm, addr);
1262 		if (!pmd)
1263 			continue;
1264 		/*
1265 		 * We need exclusive mmap_sem to retract page table.
1266 		 * If trylock fails we would end up with pte-mapped THP after
1267 		 * re-fault. Not ideal, but it's more important to not disturb
1268 		 * the system too much.
1269 		 */
1270 		if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1271 			spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1272 			/* assume page table is clear */
1273 			_pmd = pmdp_collapse_flush(vma, addr, pmd);
1274 			spin_unlock(ptl);
1275 			up_write(&vma->vm_mm->mmap_sem);
1276 			atomic_long_dec(&vma->vm_mm->nr_ptes);
1277 			pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1278 		}
1279 	}
1280 	i_mmap_unlock_write(mapping);
1281 }
1282 
1283 /**
1284  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1285  *
1286  * Basic scheme is simple, details are more complex:
1287  *  - allocate and freeze a new huge page;
1288  *  - scan over radix tree replacing old pages the new one
1289  *    + swap in pages if necessary;
1290  *    + fill in gaps;
1291  *    + keep old pages around in case if rollback is required;
1292  *  - if replacing succeed:
1293  *    + copy data over;
1294  *    + free old pages;
1295  *    + unfreeze huge page;
1296  *  - if replacing failed;
1297  *    + put all pages back and unfreeze them;
1298  *    + restore gaps in the radix-tree;
1299  *    + free huge page;
1300  */
collapse_shmem(struct mm_struct * mm,struct address_space * mapping,pgoff_t start,struct page ** hpage,int node)1301 static void collapse_shmem(struct mm_struct *mm,
1302 		struct address_space *mapping, pgoff_t start,
1303 		struct page **hpage, int node)
1304 {
1305 	gfp_t gfp;
1306 	struct page *page, *new_page, *tmp;
1307 	struct mem_cgroup *memcg;
1308 	pgoff_t index, end = start + HPAGE_PMD_NR;
1309 	LIST_HEAD(pagelist);
1310 	struct radix_tree_iter iter;
1311 	void **slot;
1312 	int nr_none = 0, result = SCAN_SUCCEED;
1313 
1314 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1315 
1316 	/* Only allocate from the target node */
1317 	gfp = alloc_hugepage_khugepaged_gfpmask() |
1318 		__GFP_OTHER_NODE | __GFP_THISNODE;
1319 
1320 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1321 	if (!new_page) {
1322 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1323 		goto out;
1324 	}
1325 
1326 	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1327 		result = SCAN_CGROUP_CHARGE_FAIL;
1328 		goto out;
1329 	}
1330 
1331 	new_page->index = start;
1332 	new_page->mapping = mapping;
1333 	__SetPageSwapBacked(new_page);
1334 	__SetPageLocked(new_page);
1335 	BUG_ON(!page_ref_freeze(new_page, 1));
1336 
1337 
1338 	/*
1339 	 * At this point the new_page is 'frozen' (page_count() is zero), locked
1340 	 * and not up-to-date. It's safe to insert it into radix tree, because
1341 	 * nobody would be able to map it or use it in other way until we
1342 	 * unfreeze it.
1343 	 */
1344 
1345 	index = start;
1346 	spin_lock_irq(&mapping->tree_lock);
1347 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1348 		int n = min(iter.index, end) - index;
1349 
1350 		/*
1351 		 * Handle holes in the radix tree: charge it from shmem and
1352 		 * insert relevant subpage of new_page into the radix-tree.
1353 		 */
1354 		if (n && !shmem_charge(mapping->host, n)) {
1355 			result = SCAN_FAIL;
1356 			break;
1357 		}
1358 		nr_none += n;
1359 		for (; index < min(iter.index, end); index++) {
1360 			radix_tree_insert(&mapping->page_tree, index,
1361 					new_page + (index % HPAGE_PMD_NR));
1362 		}
1363 
1364 		/* We are done. */
1365 		if (index >= end)
1366 			break;
1367 
1368 		page = radix_tree_deref_slot_protected(slot,
1369 				&mapping->tree_lock);
1370 		if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1371 			spin_unlock_irq(&mapping->tree_lock);
1372 			/* swap in or instantiate fallocated page */
1373 			if (shmem_getpage(mapping->host, index, &page,
1374 						SGP_NOHUGE)) {
1375 				result = SCAN_FAIL;
1376 				goto tree_unlocked;
1377 			}
1378 			spin_lock_irq(&mapping->tree_lock);
1379 		} else if (trylock_page(page)) {
1380 			get_page(page);
1381 		} else {
1382 			result = SCAN_PAGE_LOCK;
1383 			break;
1384 		}
1385 
1386 		/*
1387 		 * The page must be locked, so we can drop the tree_lock
1388 		 * without racing with truncate.
1389 		 */
1390 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1391 		VM_BUG_ON_PAGE(!PageUptodate(page), page);
1392 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1393 
1394 		if (page_mapping(page) != mapping) {
1395 			result = SCAN_TRUNCATED;
1396 			goto out_unlock;
1397 		}
1398 		spin_unlock_irq(&mapping->tree_lock);
1399 
1400 		if (isolate_lru_page(page)) {
1401 			result = SCAN_DEL_PAGE_LRU;
1402 			goto out_isolate_failed;
1403 		}
1404 
1405 		if (page_mapped(page))
1406 			unmap_mapping_range(mapping, index << PAGE_SHIFT,
1407 					PAGE_SIZE, 0);
1408 
1409 		spin_lock_irq(&mapping->tree_lock);
1410 
1411 		slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1412 		VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1413 					&mapping->tree_lock), page);
1414 		VM_BUG_ON_PAGE(page_mapped(page), page);
1415 
1416 		/*
1417 		 * The page is expected to have page_count() == 3:
1418 		 *  - we hold a pin on it;
1419 		 *  - one reference from radix tree;
1420 		 *  - one from isolate_lru_page;
1421 		 */
1422 		if (!page_ref_freeze(page, 3)) {
1423 			result = SCAN_PAGE_COUNT;
1424 			goto out_lru;
1425 		}
1426 
1427 		/*
1428 		 * Add the page to the list to be able to undo the collapse if
1429 		 * something go wrong.
1430 		 */
1431 		list_add_tail(&page->lru, &pagelist);
1432 
1433 		/* Finally, replace with the new page. */
1434 		radix_tree_replace_slot(slot,
1435 				new_page + (index % HPAGE_PMD_NR));
1436 
1437 		slot = radix_tree_iter_next(&iter);
1438 		index++;
1439 		continue;
1440 out_lru:
1441 		spin_unlock_irq(&mapping->tree_lock);
1442 		putback_lru_page(page);
1443 out_isolate_failed:
1444 		unlock_page(page);
1445 		put_page(page);
1446 		goto tree_unlocked;
1447 out_unlock:
1448 		unlock_page(page);
1449 		put_page(page);
1450 		break;
1451 	}
1452 
1453 	/*
1454 	 * Handle hole in radix tree at the end of the range.
1455 	 * This code only triggers if there's nothing in radix tree
1456 	 * beyond 'end'.
1457 	 */
1458 	if (result == SCAN_SUCCEED && index < end) {
1459 		int n = end - index;
1460 
1461 		if (!shmem_charge(mapping->host, n)) {
1462 			result = SCAN_FAIL;
1463 			goto tree_locked;
1464 		}
1465 
1466 		for (; index < end; index++) {
1467 			radix_tree_insert(&mapping->page_tree, index,
1468 					new_page + (index % HPAGE_PMD_NR));
1469 		}
1470 		nr_none += n;
1471 	}
1472 
1473 tree_locked:
1474 	spin_unlock_irq(&mapping->tree_lock);
1475 tree_unlocked:
1476 
1477 	if (result == SCAN_SUCCEED) {
1478 		unsigned long flags;
1479 		struct zone *zone = page_zone(new_page);
1480 
1481 		/*
1482 		 * Replacing old pages with new one has succeed, now we need to
1483 		 * copy the content and free old pages.
1484 		 */
1485 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1486 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1487 					page);
1488 			list_del(&page->lru);
1489 			unlock_page(page);
1490 			page_ref_unfreeze(page, 1);
1491 			page->mapping = NULL;
1492 			ClearPageActive(page);
1493 			ClearPageUnevictable(page);
1494 			put_page(page);
1495 		}
1496 
1497 		local_irq_save(flags);
1498 		__inc_node_page_state(new_page, NR_SHMEM_THPS);
1499 		if (nr_none) {
1500 			__mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1501 			__mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1502 		}
1503 		local_irq_restore(flags);
1504 
1505 		/*
1506 		 * Remove pte page tables, so we can re-faulti
1507 		 * the page as huge.
1508 		 */
1509 		retract_page_tables(mapping, start);
1510 
1511 		/* Everything is ready, let's unfreeze the new_page */
1512 		set_page_dirty(new_page);
1513 		SetPageUptodate(new_page);
1514 		page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1515 		mem_cgroup_commit_charge(new_page, memcg, false, true);
1516 		lru_cache_add_anon(new_page);
1517 		unlock_page(new_page);
1518 
1519 		*hpage = NULL;
1520 	} else {
1521 		/* Something went wrong: rollback changes to the radix-tree */
1522 		shmem_uncharge(mapping->host, nr_none);
1523 		spin_lock_irq(&mapping->tree_lock);
1524 		radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1525 				start) {
1526 			if (iter.index >= end)
1527 				break;
1528 			page = list_first_entry_or_null(&pagelist,
1529 					struct page, lru);
1530 			if (!page || iter.index < page->index) {
1531 				if (!nr_none)
1532 					break;
1533 				nr_none--;
1534 				/* Put holes back where they were */
1535 				radix_tree_delete(&mapping->page_tree,
1536 						  iter.index);
1537 				slot = radix_tree_iter_next(&iter);
1538 				continue;
1539 			}
1540 
1541 			VM_BUG_ON_PAGE(page->index != iter.index, page);
1542 
1543 			/* Unfreeze the page. */
1544 			list_del(&page->lru);
1545 			page_ref_unfreeze(page, 2);
1546 			radix_tree_replace_slot(slot, page);
1547 			spin_unlock_irq(&mapping->tree_lock);
1548 			putback_lru_page(page);
1549 			unlock_page(page);
1550 			spin_lock_irq(&mapping->tree_lock);
1551 			slot = radix_tree_iter_next(&iter);
1552 		}
1553 		VM_BUG_ON(nr_none);
1554 		spin_unlock_irq(&mapping->tree_lock);
1555 
1556 		/* Unfreeze new_page, caller would take care about freeing it */
1557 		page_ref_unfreeze(new_page, 1);
1558 		mem_cgroup_cancel_charge(new_page, memcg, true);
1559 		unlock_page(new_page);
1560 		new_page->mapping = NULL;
1561 	}
1562 out:
1563 	VM_BUG_ON(!list_empty(&pagelist));
1564 	/* TODO: tracepoints */
1565 }
1566 
khugepaged_scan_shmem(struct mm_struct * mm,struct address_space * mapping,pgoff_t start,struct page ** hpage)1567 static void khugepaged_scan_shmem(struct mm_struct *mm,
1568 		struct address_space *mapping,
1569 		pgoff_t start, struct page **hpage)
1570 {
1571 	struct page *page = NULL;
1572 	struct radix_tree_iter iter;
1573 	void **slot;
1574 	int present, swap;
1575 	int node = NUMA_NO_NODE;
1576 	int result = SCAN_SUCCEED;
1577 
1578 	present = 0;
1579 	swap = 0;
1580 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1581 	rcu_read_lock();
1582 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1583 		if (iter.index >= start + HPAGE_PMD_NR)
1584 			break;
1585 
1586 		page = radix_tree_deref_slot(slot);
1587 		if (radix_tree_deref_retry(page)) {
1588 			slot = radix_tree_iter_retry(&iter);
1589 			continue;
1590 		}
1591 
1592 		if (radix_tree_exception(page)) {
1593 			if (++swap > khugepaged_max_ptes_swap) {
1594 				result = SCAN_EXCEED_SWAP_PTE;
1595 				break;
1596 			}
1597 			continue;
1598 		}
1599 
1600 		if (PageTransCompound(page)) {
1601 			result = SCAN_PAGE_COMPOUND;
1602 			break;
1603 		}
1604 
1605 		node = page_to_nid(page);
1606 		if (khugepaged_scan_abort(node)) {
1607 			result = SCAN_SCAN_ABORT;
1608 			break;
1609 		}
1610 		khugepaged_node_load[node]++;
1611 
1612 		if (!PageLRU(page)) {
1613 			result = SCAN_PAGE_LRU;
1614 			break;
1615 		}
1616 
1617 		if (page_count(page) != 1 + page_mapcount(page)) {
1618 			result = SCAN_PAGE_COUNT;
1619 			break;
1620 		}
1621 
1622 		/*
1623 		 * We probably should check if the page is referenced here, but
1624 		 * nobody would transfer pte_young() to PageReferenced() for us.
1625 		 * And rmap walk here is just too costly...
1626 		 */
1627 
1628 		present++;
1629 
1630 		if (need_resched()) {
1631 			cond_resched_rcu();
1632 			slot = radix_tree_iter_next(&iter);
1633 		}
1634 	}
1635 	rcu_read_unlock();
1636 
1637 	if (result == SCAN_SUCCEED) {
1638 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1639 			result = SCAN_EXCEED_NONE_PTE;
1640 		} else {
1641 			node = khugepaged_find_target_node();
1642 			collapse_shmem(mm, mapping, start, hpage, node);
1643 		}
1644 	}
1645 
1646 	/* TODO: tracepoints */
1647 }
1648 #else
khugepaged_scan_shmem(struct mm_struct * mm,struct address_space * mapping,pgoff_t start,struct page ** hpage)1649 static void khugepaged_scan_shmem(struct mm_struct *mm,
1650 		struct address_space *mapping,
1651 		pgoff_t start, struct page **hpage)
1652 {
1653 	BUILD_BUG();
1654 }
1655 #endif
1656 
khugepaged_scan_mm_slot(unsigned int pages,struct page ** hpage)1657 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1658 					    struct page **hpage)
1659 	__releases(&khugepaged_mm_lock)
1660 	__acquires(&khugepaged_mm_lock)
1661 {
1662 	struct mm_slot *mm_slot;
1663 	struct mm_struct *mm;
1664 	struct vm_area_struct *vma;
1665 	int progress = 0;
1666 
1667 	VM_BUG_ON(!pages);
1668 	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1669 
1670 	if (khugepaged_scan.mm_slot)
1671 		mm_slot = khugepaged_scan.mm_slot;
1672 	else {
1673 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
1674 				     struct mm_slot, mm_node);
1675 		khugepaged_scan.address = 0;
1676 		khugepaged_scan.mm_slot = mm_slot;
1677 	}
1678 	spin_unlock(&khugepaged_mm_lock);
1679 
1680 	mm = mm_slot->mm;
1681 	down_read(&mm->mmap_sem);
1682 	if (unlikely(khugepaged_test_exit(mm)))
1683 		vma = NULL;
1684 	else
1685 		vma = find_vma(mm, khugepaged_scan.address);
1686 
1687 	progress++;
1688 	for (; vma; vma = vma->vm_next) {
1689 		unsigned long hstart, hend;
1690 
1691 		cond_resched();
1692 		if (unlikely(khugepaged_test_exit(mm))) {
1693 			progress++;
1694 			break;
1695 		}
1696 		if (!hugepage_vma_check(vma)) {
1697 skip:
1698 			progress++;
1699 			continue;
1700 		}
1701 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1702 		hend = vma->vm_end & HPAGE_PMD_MASK;
1703 		if (hstart >= hend)
1704 			goto skip;
1705 		if (khugepaged_scan.address > hend)
1706 			goto skip;
1707 		if (khugepaged_scan.address < hstart)
1708 			khugepaged_scan.address = hstart;
1709 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1710 
1711 		while (khugepaged_scan.address < hend) {
1712 			int ret;
1713 			cond_resched();
1714 			if (unlikely(khugepaged_test_exit(mm)))
1715 				goto breakouterloop;
1716 
1717 			VM_BUG_ON(khugepaged_scan.address < hstart ||
1718 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
1719 				  hend);
1720 			if (shmem_file(vma->vm_file)) {
1721 				struct file *file;
1722 				pgoff_t pgoff = linear_page_index(vma,
1723 						khugepaged_scan.address);
1724 				if (!shmem_huge_enabled(vma))
1725 					goto skip;
1726 				file = get_file(vma->vm_file);
1727 				up_read(&mm->mmap_sem);
1728 				ret = 1;
1729 				khugepaged_scan_shmem(mm, file->f_mapping,
1730 						pgoff, hpage);
1731 				fput(file);
1732 			} else {
1733 				ret = khugepaged_scan_pmd(mm, vma,
1734 						khugepaged_scan.address,
1735 						hpage);
1736 			}
1737 			/* move to next address */
1738 			khugepaged_scan.address += HPAGE_PMD_SIZE;
1739 			progress += HPAGE_PMD_NR;
1740 			if (ret)
1741 				/* we released mmap_sem so break loop */
1742 				goto breakouterloop_mmap_sem;
1743 			if (progress >= pages)
1744 				goto breakouterloop;
1745 		}
1746 	}
1747 breakouterloop:
1748 	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1749 breakouterloop_mmap_sem:
1750 
1751 	spin_lock(&khugepaged_mm_lock);
1752 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1753 	/*
1754 	 * Release the current mm_slot if this mm is about to die, or
1755 	 * if we scanned all vmas of this mm.
1756 	 */
1757 	if (khugepaged_test_exit(mm) || !vma) {
1758 		/*
1759 		 * Make sure that if mm_users is reaching zero while
1760 		 * khugepaged runs here, khugepaged_exit will find
1761 		 * mm_slot not pointing to the exiting mm.
1762 		 */
1763 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1764 			khugepaged_scan.mm_slot = list_entry(
1765 				mm_slot->mm_node.next,
1766 				struct mm_slot, mm_node);
1767 			khugepaged_scan.address = 0;
1768 		} else {
1769 			khugepaged_scan.mm_slot = NULL;
1770 			khugepaged_full_scans++;
1771 		}
1772 
1773 		collect_mm_slot(mm_slot);
1774 	}
1775 
1776 	return progress;
1777 }
1778 
khugepaged_has_work(void)1779 static int khugepaged_has_work(void)
1780 {
1781 	return !list_empty(&khugepaged_scan.mm_head) &&
1782 		khugepaged_enabled();
1783 }
1784 
khugepaged_wait_event(void)1785 static int khugepaged_wait_event(void)
1786 {
1787 	return !list_empty(&khugepaged_scan.mm_head) ||
1788 		kthread_should_stop();
1789 }
1790 
khugepaged_do_scan(void)1791 static void khugepaged_do_scan(void)
1792 {
1793 	struct page *hpage = NULL;
1794 	unsigned int progress = 0, pass_through_head = 0;
1795 	unsigned int pages = khugepaged_pages_to_scan;
1796 	bool wait = true;
1797 
1798 	barrier(); /* write khugepaged_pages_to_scan to local stack */
1799 
1800 	while (progress < pages) {
1801 		if (!khugepaged_prealloc_page(&hpage, &wait))
1802 			break;
1803 
1804 		cond_resched();
1805 
1806 		if (unlikely(kthread_should_stop() || try_to_freeze()))
1807 			break;
1808 
1809 		spin_lock(&khugepaged_mm_lock);
1810 		if (!khugepaged_scan.mm_slot)
1811 			pass_through_head++;
1812 		if (khugepaged_has_work() &&
1813 		    pass_through_head < 2)
1814 			progress += khugepaged_scan_mm_slot(pages - progress,
1815 							    &hpage);
1816 		else
1817 			progress = pages;
1818 		spin_unlock(&khugepaged_mm_lock);
1819 	}
1820 
1821 	if (!IS_ERR_OR_NULL(hpage))
1822 		put_page(hpage);
1823 }
1824 
khugepaged_should_wakeup(void)1825 static bool khugepaged_should_wakeup(void)
1826 {
1827 	return kthread_should_stop() ||
1828 	       time_after_eq(jiffies, khugepaged_sleep_expire);
1829 }
1830 
khugepaged_wait_work(void)1831 static void khugepaged_wait_work(void)
1832 {
1833 	if (khugepaged_has_work()) {
1834 		const unsigned long scan_sleep_jiffies =
1835 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1836 
1837 		if (!scan_sleep_jiffies)
1838 			return;
1839 
1840 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1841 		wait_event_freezable_timeout(khugepaged_wait,
1842 					     khugepaged_should_wakeup(),
1843 					     scan_sleep_jiffies);
1844 		return;
1845 	}
1846 
1847 	if (khugepaged_enabled())
1848 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1849 }
1850 
khugepaged(void * none)1851 static int khugepaged(void *none)
1852 {
1853 	struct mm_slot *mm_slot;
1854 
1855 	set_freezable();
1856 	set_user_nice(current, MAX_NICE);
1857 
1858 	while (!kthread_should_stop()) {
1859 		khugepaged_do_scan();
1860 		khugepaged_wait_work();
1861 	}
1862 
1863 	spin_lock(&khugepaged_mm_lock);
1864 	mm_slot = khugepaged_scan.mm_slot;
1865 	khugepaged_scan.mm_slot = NULL;
1866 	if (mm_slot)
1867 		collect_mm_slot(mm_slot);
1868 	spin_unlock(&khugepaged_mm_lock);
1869 	return 0;
1870 }
1871 
set_recommended_min_free_kbytes(void)1872 static void set_recommended_min_free_kbytes(void)
1873 {
1874 	struct zone *zone;
1875 	int nr_zones = 0;
1876 	unsigned long recommended_min;
1877 
1878 	for_each_populated_zone(zone)
1879 		nr_zones++;
1880 
1881 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1882 	recommended_min = pageblock_nr_pages * nr_zones * 2;
1883 
1884 	/*
1885 	 * Make sure that on average at least two pageblocks are almost free
1886 	 * of another type, one for a migratetype to fall back to and a
1887 	 * second to avoid subsequent fallbacks of other types There are 3
1888 	 * MIGRATE_TYPES we care about.
1889 	 */
1890 	recommended_min += pageblock_nr_pages * nr_zones *
1891 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1892 
1893 	/* don't ever allow to reserve more than 5% of the lowmem */
1894 	recommended_min = min(recommended_min,
1895 			      (unsigned long) nr_free_buffer_pages() / 20);
1896 	recommended_min <<= (PAGE_SHIFT-10);
1897 
1898 	if (recommended_min > min_free_kbytes) {
1899 		if (user_min_free_kbytes >= 0)
1900 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1901 				min_free_kbytes, recommended_min);
1902 
1903 		min_free_kbytes = recommended_min;
1904 	}
1905 	setup_per_zone_wmarks();
1906 }
1907 
start_stop_khugepaged(void)1908 int start_stop_khugepaged(void)
1909 {
1910 	static struct task_struct *khugepaged_thread __read_mostly;
1911 	static DEFINE_MUTEX(khugepaged_mutex);
1912 	int err = 0;
1913 
1914 	mutex_lock(&khugepaged_mutex);
1915 	if (khugepaged_enabled()) {
1916 		if (!khugepaged_thread)
1917 			khugepaged_thread = kthread_run(khugepaged, NULL,
1918 							"khugepaged");
1919 		if (IS_ERR(khugepaged_thread)) {
1920 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1921 			err = PTR_ERR(khugepaged_thread);
1922 			khugepaged_thread = NULL;
1923 			goto fail;
1924 		}
1925 
1926 		if (!list_empty(&khugepaged_scan.mm_head))
1927 			wake_up_interruptible(&khugepaged_wait);
1928 
1929 		set_recommended_min_free_kbytes();
1930 	} else if (khugepaged_thread) {
1931 		kthread_stop(khugepaged_thread);
1932 		khugepaged_thread = NULL;
1933 	}
1934 fail:
1935 	mutex_unlock(&khugepaged_mutex);
1936 	return err;
1937 }
1938